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Is the antiferromagnetic RP?> model in four dimensions trivial?
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We study the antiferromagnetic RBhodel in four dimensions. We find a second order transition with two
order parameters, one ferromagnetic and the other antiferromagnetic. The antiferromagnetic sector has mean-
field critical exponents and a renormalized coupling which goes to zero in the continuum limit. The exponents
of the ferromagnetic channel are not the mean-field ones, but the difference can be interpreted as logarithmic
corrections. We perform a detailed analysis of these corrections and conclude the triviality of the continuum
limit of this model.[S0556-282(197)05208-9

PACS numbgs): 11.15.Ha, 02.70.Lq, 11.10.Lm, 64.60.Fr

I. INTRODUCTION size scaling(FS9 analysis which includes logarithmic cor-
rections will be used to deal with these effects.

The nonperturbative formulation of nonasymptotically = We define the model and observables in Sec. I, where we
free, interacting field theories in four dimensions is yet to bealso describe the techniques we have used to measure the
accomplished. The conventional analysis, fogp* and  critical exponents. The results of the MC simulation are pre-
O(N) theories, yields triviality in four dimensiord]. That  sented in Sec. Ill. The model exhibits a phase transition at a
is, once the continuum limit is taken, correlation functionsnegative coupling with two independent order parameters.
factorize as the Wick’s theorem prescribes for the Gaussia@ne of these channels, the staggered one, presents mean-field
theory. A possible way, in order to obtain a model with acritical exponents, but the other, ferromagnetic, presents de-
nontrivial continuum limit, is to introduce antiferromag- viations. We show in Secs. Ill and IV how the discrepancies
netism (AFM). Gallavotti and Rivasseau have consideredwith the mean-field behavior can be interpreted as logarith-
AFM actions to change the ultraviolet limit ap* theories  mic corrections.

[2]. From a statistical physics point of view, a great variety

of AFM models in three dimensions has been studied to

obtain different qualitative behavior from that of the corre- IIl. THE MODEL

sponding ferromagneti¢FM) models[3]. In four dimen-
sions, recent works have studied the possibility of new uni
versality classes if AFM is adddd].

The AFM RP model has recently been studied in three

We shall consider the RE: S?/Z, (real projective spage
‘spin model in four dimensions. Our basic variable is a three-
component normalized spw, interacting through a gauge

di ; b fi . 5 For | Z,-invariant action. As a local symmetry cannot be broken,
imensions, because of its exotic properi6s]. For in-  naqe are effectively Rivariables(only the direction of the

stance,' it has a disordered, unfrustrateq ground state.. Ey%ctors is relevant We consider a hypercubic lattice, with
more, it seems to present a full breaking of the action Sfirst neighbor coupling:

0O(3) symmetry[6]. Perturbative studies of this spontaneous
symmetry breakingSSB) pattern yield the O(4) universality
class[8]. If this prediction holds true in four dimensions, the ) s
fate of the model is triviality. S:B% (Vi-vj)*, Z:f H dv; |e.
However, this theoretical prediction has been questioned .
in three dimensions by Monte Carl®C) simulations|[6].
Therefore, the study of the triviality of this model in four  The ferromagnetidpositive coupling model presents a
dimensions is very interesting. It also would help to en-first order transition a8~0.94. The ground state consists of
lighten the situation in three dimensions. We will see,spins parallel or antiparallel to an arbitrary direction, and the
though, that a detailed analysis of the MC simulation of thisSSB is S@3)/SO2). The analysis of the antiferromagnetic
model indicates the triviality of its continuum limit through counterpart is trickier, given the more complicated nature of
the appearance of logarithmic corrections to the divergencethe ground state. Let us call a lattice site, labeled by
of the observables of the theory. A special form of the finite(x,y,z,t), even or odd according to the parity of
x+y+z+t. In the ground state, every even or odd spin is
parallel or antiparallel to an arbitrary direction, while odd or

()

*Electronic address: hector@lIattice.fis.ucm.es even spins lie randomly on the perpendicular plane. The cor-
SElectronic address: carmona@sol.unizar.es responding SSB is S@)/SO(2), which calls for the O(3)
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A. Definition of observables B. Standard finite size scaling

The natural RP variables are given by the traceless ten-  To study critical exponents, we have used a method espe-
sorial fieldT; cially suited to the measurements of anomalous dimensions

Wb a B 1 [6,7]. Let us consider the mean value of an oper@pmea-

TP=v{vf -3 6°, (2)  sured in a size. lattice, at a coupling valug in the critical

region. Lett be the reduced temperatur8<{ B.)/B.. The

whose lattice Fourier transform will be representedTby standard FSS formula states that]
_ L

whereO(t) meansO(,t) andFg is a smooth function. We

We will work in aL* lattice with periodic boundary condi- suppose that the values bfand £(t) are large, so that we
tions. We define two order parameters, according to the disynore scaling corrections in Eq(9). Now, we have

cussion of the ground state above, the intensive staggerqi(t))~t-*o, which is the definition of the critical exponent
(ferromagnetit magnetization, as the sums of tensors Oy, and &(t)~t ", and we can writd.*o’"=(O(t))s*0’".
even sites minugplus) those on odd sites or, equivalently, This allows one to write Eq9) as

1. 1. O(L,t))=L*""G(s). (10
Ms:FT(w,w,w,w): (M: Fﬂo,o,o,o)- (4) < ) ©

Applying Eg. (10) to the correlation length, it gives

As no spontaneous symmetry breaking can occur on a finité(l"t)_ LG¢(s). so that

lattice, in a MC simulation one needs to measure (L,

O(3)-invariant operators. For the magnetization and the sus- x(L,t)= 3 =G(s), (11
ceptibility, we define

-1
M =<\/W>, = L4trM2), ) ands=g; “(x). From Eq.(10) we have
(O(L,)=L"0""G[ G H(x)]=L"""To(x),  (12)
and analogously with the staggered observables.
A very useful quantity for a triviality study is the Binder and we finish up with the useful expression
cumulant. For this model, we define

(O(L,t))=L>o!"f (ﬁ +.. (13
5(7 ((ttM2)?) ’ °b L ’
Vu=3\5 " (wmzz | ©
where the ellipsis stands for possible scaling corrections. Let
L o - . us denote
which, in the infinite volume limit, becomes 1 in the broken
phase and 0 in the symmetric one. The cumulant for the (O(rL,1))

staggered magnetization is defined analogously. (14
Another very interesting quantity is the second momen-

tum correlation length defined #8]

°T{o(L D)’

we can produce with it a sensible measure of critical expo-
nents:

[ xIF-1 |2
6= 4sirf(m/L)) ™ QoIQ§:r=rX°’”+--~- (19

. - Therefore, from simulations of lattice sizksandrL, we can
where F is the mean value of the trace af squared at R N
d extract the critical exponenty/v from the quotient(14),

minimal momentum (Z/L in any of the four directions ) ) N
i A measured at the point where one correlation lengthties
For & we useys and Fs, analogously defined front at 14 other.

momentum (2r/L + 7,7, 7, 7) and permutations.
The field theoretical definition of the renormalized cou-

pling constant can now be introduced Ill. THE MONTE CARLO SIMULATION

To simulate the system, we have used a standard three-
gr=Vm(L/&)S, (8)  hits Metropolis algorithm, with an uncorrelated change pro-
posal, achieving approximately a 50% acceptance. The lat-
whered is the dimension of the lattice. We will consider the tice sizes have beeh=4, 6, 8, 10, 12, 16, 20, and 24.
renormalized couplings associated with the two different secFor the larger sizes, 20 and 24, we have combined Metropo-
tors. lis with an overrelaxed update, described in the Appendix, to
In addition, we measure the energy, which is needed foflecrease the autocorrelation time. The overrelaxed algorithm
the spectral density meth¢dl0], invaluable for extrapolating is not able to decrease the dynamic critical exporehti,
MC measures to a neighborhood of the critical coupling. nevertheless, we save total CPU time when compared with
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TABLE I. Total number of measures and the corresponding
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the simple Metropolis simulation FIG. 2. Quotients oM?2 andM? as a function of the quotient of

The runs have been distributed over several workstationg (1) The horizontal straight lines correspond to mean-field behav-
We display in Table | the integrated autocorrelation time for'®" The symbol sizes are proportional to the lattice sizes.
Xxs and the number of measurements performed for ever . o
lattice size. Every two measurements are separated by tgﬂr the susceptibility, andy = — 5 for the magngtlzat|on. To
sweeps, each consisting of either one Metropolis update di2ICUlater, We usexgzqs=v+1. All along this paper we
one Metropolis plus three overrelaxed updates when we usi !l taker=2.

the latter algorithm. ~ We obtain the anomalous dimensignthrough the scal-
ing relations
A. Order parameters (2=n)v=y, 2B=v(d-2+7). (16)

The RP model presents a second order phase transition g resulting values for the exponent from these two re-
B~ —1.34. The ferromagnetic and staggered magnetizationgjons will be denoted by, and 7y, respectively.
defined in Eq(5) are zero below the transition. To show that As far as the exponemisxconcerned we expect the same
they are real order parameters, we should ensure that they diical exponent for both correlation lengths, the ferromag-
not vanish in the broken phase whén-. In Fig. 1 we plot i ¢ and the staggeregl We have found that the mea-

the values ofMs and M at g=—1.5 for the lattice sizes g a5 forg are more accurate so we have used this variable
L=8, 12, and 16. It is clear that both magnetizations reach,s -orrelation length.

an asymptotic value different from zero in the thermody- \ye plot in Fig. 2 an example of how this method works in

namical limit in the broken phase. both channels. Notice tha®,2 takes the value 2s’*~9
N whenQ,=2. ©
B. Critical exponents The resulting exponents are shown in Table Il. After the

two different channels using E15), which yieldsx,=y  Square brackets5]. The high accuracy reached on the mea-
sures of they exponents is due, in part, to the strong statis-

tical correlation betweeQ, and Q2.

We obtain a value for compatible with the mean-field
prediction as well as for the magnetic exponents of the stag-
gered sector. However, in the ferromagnetic channel, our ex-
ponents are close but not compatible with those given by
mean-field theory.

Another possible interpretation of these values is that they
could beeffectivecritical exponents because of the presence
of strong logarithmic corrections in the FM sector. To check
this, let us suppose that there are logarithmic corrections
only in the susceptibility. We do not take into account here
the fact of possible logarithmic correctionsg@s we use the
values of the quotients measuredrat2 value. This is an
0.005 0.010 0.015 approximation that holds for large. We address to Sec. IV

1/1.2 for a more complete treatment of the logarithmic corrections.
So that

_.‘
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FIG. 1. Asymptotic values oM (straight line@ and MJ/10 _
(dashed lingfrom their values fol.=8, 12, and 16 a8=—1.5. x~L™(InL)™, a7
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TABLE II. Estimations for the critical exponents of the AFM

sz model. 10 ;1.?50| . l—1.1|345I . I—1.1I340I . l-1..'i)35I — I-1.?3(z

0sF @ 3
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Ly Lo v[0.9] 7,[0] nwl0] 7,[2] ul2] 0ab 3
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FIG. 3. Binder cumulants for both sector®) staggered(b)

where m=vy/v. The effective exponents obtained with the .
ferromagnetic.

standard FS$n/ =InQ, /In2 can be written as
Considering the crossing of the Binder cumulants of the

—lInh - i i i
m/ =m-+m L (19) L=10 lattice with the larger lattices scarcely changes the
In2 numbers.
The fit discarding the 4,8 pair for the ferromagnetic suscep- IV. LOGARITHMIC CORRECTIONS
tibility gives OF THE RP? MODEL

m=0.099), m=-0.137), x?*Npr=0.04/2.
(20

As we have previously shown, the values obtained for the
critical exponents for the four-dimensional AFM Rmodel
are compatible with those predicted by mean-field plus loga-
] o _rithmic corrections. They appear more clearly in the FM
The fit (20) indicates that the exponents of the ferromagneticchannel because in this sector there is no power-law diver-
channel in Table II are compatible with a mean-field situa-yence of the susceptibility, while in the staggered sector the
tion with logarithmic corrections in the susceptibility. logarithmic divergence is added to a power-law one. We
need a modification of the standard FSS to include these

C. Critical temperature corrections.
The thermodynamical critical temperature of our system ] o )
can be estimated from the crossing points of the Binder cu- A. FSS with logarithmic corrections
mulants for the different Iattice. sizefl2]. To obtain Let us consider an observab®(t) whose behavior near
Bc(), we can extrapolate according to the formula the critical point would have a logarithmic contribution
Bo(*) = BL)~L~". (21 (O(t))~t~¥|Int|*. (23)

It should be noted that E421) is only a first approxima- We will follow [13] to take into account the logarithmic
tion, because it does not include any logarithmic correctionscorrections: the scaling variabi(L,t) of Eg. (9) is now
In Sec. IVC we will be able to measug@(x) taking into  substituted by&(L,0)/&(t):
account logarithmic corrections. However, it hardly modifies £L.0)
the value of the critical coupling obtained with this method. _ '

We show in Fig. 3 the Binder cumulants for the staggered (O(L.v) <O(t)>]:o( (1) ) 24
and ferromagnetic channels.

We have fitted the crossing points of the Binder cumu-Formula(24) coincides with Eq(9) below the upper critical
lants of thel = 8 lattice with latticed =12, 16, 20, and 24. dimension, wherg(L,0)~L, otherwise it can also take into

The results of the fit are account the logarithmic corrections to the finite volume cor-
Staggered Ferromagnetic relation length. _
B(*) = —1.3426(3) Bo(*)=—1.3421(6) Let us suppose that, to leading order,
2 = 2 = - .

Both values are compatible and, as we expect one transi- . R
tion point, we take the value g8 () with lower error, that wherea andg are two exponents that depend on the theory.
is For the O(N) models,a=1, B=1 [11]. The transition at
finite L takes place when is such that{(L,0)~&(t). If
B(°)=—1.34263). (220 &(t)~t~"|Int)”, then, employing Eq(25),
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tNL—&/V(mL)(V_—Z})/u_ (26) TABLE lll.  The renormalized four-point coupling
grlL,B()].

Below four dimensionsa=1 and 8=v=0. Now, we

have L Staggered Ferromagnetic
- 5 8 3.16(3) —-0.19(3)
L,0) L*(InL _
S(Lt)= §(L,0) L% )_' 27 10 2.84(4) 0.19(5)
&N tint]” 12 2.61(5) ~0.21(5)
16 2.34(4) —0.23(5)
so that making use of E§26), and with a change of variable 20 2.08(9) -0.23(11)
similar to Eq.(11), we obtain 24 1.95(13) -0.15(17)
. B+ xe g(l—!t)
0] L,t) :LaX/V InL x/v(B— V)+>(f (___r , (28) . .
,0=]In im,_, —].
IR t—0v g t71/2||m|v

which is the equation analogue to E§3). We follow now

the same method as in the standard FSS case: we compute . . .
the quotient We can eliminate thet dependence in Eq.(34) if

IimHO]-"gR(z)~z"’/”, which makes thélnt| = factor disap-

(O(2L,1)) | 14 In2\ X/"(B-+x pear. After that, we employ relatiot26) and get finally
o:— = —
(O(L,1)) InL _
gr(L,0)~(InL) "7, (35
&(2L,t) L . . ;
fo PRV which is also directly obtained from E8). We can obtain
(2L)*(In2L) p fitting the values of Table Il to the functional forg35).
( &(L,Y) ) ' The fit for all lattice sizesL.=8, yields(Fig. 4)
Ol \ 2 1n1 \B _
L#(InL)? 29 p=1.0716), x%Npr=0.8/4. (36)
MeasuringQo, at the pointt, where The result(36) implieg trivialit){ for the staggered sector
of the AFM RP model in four dimensions. The renormal-
§2L.t) - 3 ized coupling goes to zero because of logarithmic correc-
ELt) 1) =2°ht, (30 tions, exactly in the same way as in the ferromagnetic
’ O(N) models, for whichp=1 [15].
with h, =1+In2/InL, we find The behavior of the ferromagnetic channel is, however,
A o rather different from that of the staggered sector. From the
Qo(ty)=2/hy/vB=v)tx (31  data of Table lll we cannot conclude an asymptotic value for

the renormalized coupling. We have seen above that the

This is the new expression that substitutes @) when  logarithmic corrections are very strong in this channel, and

there are logarithmic corrections, from it we can extract themaybe for that reason, the renormalized coupling is very

exponentx/v. We no longer have to measu@®, where the hard to measure. To conclude about the triviality of this sec-
quotient of correlation lengths is 2, but instead where ittor, we will try to study in full detail the logarithmic correc-

equals Zh?. tions of this channel, following the FSS analysis derived in
Sec. IVA.
B. Staggered channel: Renormalized four-point coupling
We proceed now to calculate the renormalized four-point L L
coupling of our theory. The limit we are interested in is
gr= lim gg[L, Bc()]. (32) 10

L—o
(=4
The evolution ofgg at the critical temperature with is ED
shown in Table Ill, where we have used the value for 08
Be() of Eq. (22.
When hyperscaling is violated by logarithms,
gr~|Int|™” [14]. Let us apply the FSS formul@4):

LI N S S S s B S B B B S

P I T T N I S S S T R S S S T

0.6

o
3
=)
o
54
©
-
o
-
o

L%(InL)# -
t~12nt|” )’ In(in L)

gR<L,t>=gR<t>ng(

The scaling behavior with at the critical point is FIG. 4. Fit ofgg(L) (staggered channeht 8 ().
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with the predicted value for the ®) models,3=0.25, es-
pecially the one obtained from the ferromagnetic correlation
length.

-0.50 p——T— T T

-0.55

-0.60

In(&/L)

-0.65 2. Magnetic operators

-0.70

T T Y
NTIITTRA CARTA RN ST ==

| | | | We shall try to control other logarithmic corrections by
075t ———————— making use of the results of Sec. IVA. From E9), we

||/ know that

-2.0
2.1 szz&y/vhzlv(,é—v_)+y_’ (38)

-2.2

In(EFM/L)

when measuring the quotient at the point which verifies the
A N condition (30). The logarithmic corrections are given in
0.4 06 08 10 terms of the unknown exponentsand y but, as we assume
In(In L) mean-field exponentg;=0, »=0.5, we can reduce E¢398)
to

Frovr T rorrTy
\

a
-
Shi il o

-2.3

FIG. 5. Determination of the exponept of the FSS formulas
from the behavior of¢™ and ¢ measured at the mean values of InQ,=yInh, . (39
B from the fits withL=8.
In a similar way, if we take the magnetization,
C. Computation of the logarithmic corrections

—o—aplvp—BIvV(B-+B
1. Correlation lengths Qu=2"FIPh PrBmmTE, (40)

To parametrize the logarithmic corrections, we need a lo,, (mean field:3=1)

of, in principle, unknown exponentst,(,v, ... . There-
fore, it will be necessary to make a few assumptions about INQy = —2In2+ «Inh_, (41)
these exponents.

The most important exponents ate and B, Eq. (25),  wherex= —2(B— v) + . Therefore, from every pair of lat-
because we have to measure at the points which satisfy EgcesL,2L, we can obtain the exponenjsk. This is shown
(30). Assuming a mean-field plus logarithmic correctionsin Table V.
scenario, we expeat=1. To find out the value of exponent ~ Notice that they and « values are very close to their
B, we use the predictiof25) for the correlation length in a  corresponding values for the magnetization iBCand Q4)
finite lattice atB(): models. It should be understood that these values @.5
and k~0.25) are calculated for the order parameter on the
¢ fundamental(vectoria) representation of the ®) group.

= C+pBIn(InL). (37 However, the critical exponents of the FM magnetization in
the RP model and those of the order parameter in the ten-
sorial representation for the @ models are the same at the

We have performed the fit for both correlation lengths, themean-field level. Let us remark that the- 2« just means
ferromagnetic ¢€™), and the staggerect) one (Fig. 5. In that(M2)~(M)Z2.
order to monitorize subleading effects, we have compared This final result from the FM sector completes the con-
the fits withL=8, andL=10. We have found that the fit for clusion that we obtained after examining the renormalized
&M is more stable with growing lattice sizes. In Table IV, coupling of the staggered sector in Sec. IV B: thé Rvdel
we show the fit parameters. The infinite volume critical cou-is trivial because of the logarithmic corrections to the mean-
pling, and the fit-parameter errors have been estimated frofeld behavior.
the increment in one unit of the? function. Comparing with The question of the SSB pattern remains unsolved as the
the previous determination of the critical coupli(®9), both  ferromagnetic susceptibility is only logarithmically diver-
determinations are consistent and of similar accuracy, algent. We recall that the power-law behavior was crucial to

though logarithmic corrections to scaling were not consid-check the symmetry breaking in three dimensiféls
ered previously. Our value for the exponghtis consistent

|nr =

TABLE V. Exponents of the logarithmic corrections of the FM
TABLE IV. Fits for the logarithmic corrections to the correla- sector of the RPmodel.
tion lengths at the critical point.

L,.L, v ra
Fit X3IN 3 B()
o A ¢ 4.8 0.45(2) 0.23(6)
£ Lmin=38 2.1/3 0.212) —1.34233) 6,12 0.45(1) 0.22(6)
L min=10 0.3/2 0.183) —1.34246) 8,16 0.49(1) 0.24(3)
&M Lyin=8 0.8/3 0.224) —1.3425%3) 10,20 0.5312) 0.26(1)

Lin=10 0.2/2 0.1 —1.34243) 12,24 0.52(3) 0.26 (2)
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V. CONCLUSIONS In order to satisfy these two conditions, let us wiiteas
N=UAU 1, whereA is the matrix of eigenvalues ™, and
defineC=U "!RU. Then, the updating conditions, written in
terms of the matribxC, are

We have examined the triviality question of the four-
dimensional AFM RP model, which presents a second order
transition. A very interesting feature of this model is that it
presents two different order parameters. A detailed study of
these two sectors reveals that the model has a trivial con-
tinuum limit. We have been able to calculate explicitly the ) . ) o
logarithmic corrections to the mean-field behavior by meané\s A is a diagonal matrixA3) implies thatC has to be also

of a FSS analysis also valid at the critical dimension of thediagonal, andC?=1, which means that its three eigenvalues
model. will be =1. We have reduced our updating process to a

choice of the matrixC. Here enters the second characteristic
ACKNOWLEDGMENTS of the overrelaxed algorithm: the change in the veactor
should be maximum, which can be achieved by minimizing
We thank J. L. Alonso and J. J. Ruiz-Lorenzo for the value of the squared scalar product
many enlightening discussions. This work was partially sup-

[C,A]=0, C l=C*. (A3)

ported by CICyT AEN93-0604, AEN94-0218, and AEN95- A=(v-V')?=(v-Rv)?=(V-CV )?, (A4)
1284-E.
where
APPENDIX: THE OVERRELAXED ALGORITHM V=U"v= %y, X0, Xa). (A5)

Overrelaxation is a local microcanonical update algo-
rithm. It makes the maximum change in the variable at a T0 do the update, we then have to take the three numbers
given point without modifying the energy. We will now de- Ci==1 that minimize the quantity
scribe how this method works in our model. It is easy to see
that A= (cx2+cox5+cgx3)2. (A6)

(vi~vj)2=trTiTJ-+ %, (A1) To sum up, the overrelaxe_d algorlthm c;onssts of calculatmg
the matrixN of nearest neighbors, its eigenvectors to obtain

. U, and then looking for the minimum of the combinations in
so that the chang&;— T/ must be such that theTyN is  Eq. (A6).

conserved, wherBl is the sum of the tensors at the neighbor |t is easy to see that this algorithm verifies detailed bal-
points ofi. If we setT’=RTR™, the conservation of the ance: if we makev—V —V', so thatV'=UC'V’ and
energy is then expressed by V '=CVv, we have to minimize

[R,N]=0. (A2)
. (V'-C'V'")2=(N-CC'CV)?, (A7)
In addition, we must ensure that the new tensor belongs to
RP?, so that the change il is associated with a change in
v: V'=Ruv. As the vectors are normalized, this puts also theand the last expression was minimized &, so that

condition of unitarity on the matriR. C=CC'C or C'=C. Thereforey'=v.
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