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The conception of the conformal phase transiton~CPT!, which is relevant for the description of nonpertur-
bative dynamics in gauge theories, is introduced and elaborated. The main features of such a phase transition
are established. In particular, it is shown that in the CPT there is an abrupt change of the spectrum of light
excitations at the critical point, though the phase transition is continuous. The structure of the effective action
describing the CPT is elaborated and its connection with the dynamics of the partially conserved dilatation
current is pointed out. The applications of these results to QCD, models of dynamical electroweak symmetry
breaking, and to the description of the phase diagram in~311!-dimensional SU(Nc) gauge theories are
considered.@S0556-2821~97!02008-0#
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I. INTRODUCTION

The standard framework for the description of continuous
phase transitions is the Landau-Ginzburg, ors-model-like,
effective action@1#. In particular, in that approach, a phase
transition is governed by the parameter

M ~2![
d2V

dX2 U
X50

, ~1!

whereV is the effective potential andX in an order param-
eter connected with the phase transition. When
M (2).0 (M (2),0), the symmetric~nonsymmetric! phase is
realized. The valueM (2)50 defines the critical point.

Thus, asM (2) changes, one phase smoothly transforms
into another. In particular, masses of light excitations are
continuous~though nonanalytic at the critical point! func-
tions of such parameters as coupling constants, temperature,
etc.

If M (2)[0, the parameterM (4)[d4V/dX4uX50 plays the
role ofM (2), etc.

In this paper, we will describe a non-s-model-like,
though continuous, phase transition, which is relevant for the
description of nonperturbative dynamics in gauge field theo-
ries. Because, as will become clear below, this phase transi-
tion is intimately connected with a nonperturbative break-
down of the conformal symmetry, we will call it the
conformal phase transition~CPT!.

In a s-model-like phase transition, around the critical
point z5zc ~wherez is a generic notation for parameters of a
theory, as the coupling constanta, number of particle flavors
Nf , etc.!, an order parameterX is

X5L f ~z! ~2!

(L is an ultraviolet cutoff!, wheref (z) has such a nonessen-
tial singularity atz5zc that limf (z)50 asz goes tozc both

in symmetric and nonsymmetric phases. The standard form
for f (z) is f (z);(z2zc)

n, n.0, around1 z5zc .
The CPT is a very different continuous phase transition.

We define it as a phase transition in which an order param-
eterX is given by Eq.~2! where f (z) has such anessential
singularity atz5zc that while

lim
z→zc

f ~z!50 ~3!

as z goes tozc from the side of the nonsymmetric phase,
lim f (z)Þ0 asz→zc from the side of the symmetric phase
~whereX[0). Notice that since relation~3! ensures that the
order parameterX→0 asz→zc , the phase transition is con-
tinuous.

There actually exist well-known models in which such a
phase transition is realized. An example of the CPT is the
phase transition ata (0)50 @a (0)5(g(0))2/4p is the bare cou-
pling constant# in massless QCD with a small, say,Nf<3,
number of fermion flavors. In this case, the order parameter
X, describing chiral symmetry breaking, isX;LQCD and

X;LQCD;L f ~a~0!!, ~4!

where f (a (0)).exp@21/ba (0)# (b is the first coefficient of
the QCDb function!. The functionf (a (0)) goes to zero only
if a (0)→0 from the side of Rea (0).0.

The above example is somewhat degenerate: the critical
point ac

(0)50 is at the edge of the physical space with
a (0)>0. A more regular example of the CPT is given by the
phase transition atg(0)50 in the (111)-dimensional Gross-

1Strictly speaking, Landau and Ginzburg considered the mean-
field phase transition withn51/2. By as-model-like phase transi-
tion, we understand a more general class, when fields may have
anomalous dimensions@2#.
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Neveu model: in that case both positive and negative values
of g(0) are physical~see Sec. III!.

There may exist more sophisticated realizations of the
CPT. As will be discussed in Sec. VII, an example of the
CPT may be provided by the phase transition with respect to
the number of fermion flavorsNf in an SU(Nc) vectorlike
gauge theory in 311 dimensions, considered by Banks and
Zaks long ago@3#. In that case, unlike the phase transition at
a (0)50 in QCD, the critical valueNf

cr separates two physical
phases, withNf,Nf

cr andNf>Nf
cr .

There may exist other examples of the CPT. Also, there
may exist phase transitions in (211)-dimensional theories
which ‘‘imitate’’ the CPT ~see Sec. V!.

The main goal of this paper is to reveal the main features
of the CPT ~common for its different realizations! and to
apply the conception of the CPT to concrete models.

The CPT isnot as-model-like phase transition, though it
is continuous. In particular, in the CPT, one cannot introduce
the parametersM (2n)5d2nV/dX2nuX50 ,n51,2, . . . , gov-
erning the phase transition. Another characteristic feature of
the CPT is an abrupt change of the number of light excita-
tions as the critical point is crossed~though the phase tran-
sition is continuous!. While evident in QCD and the Gross-
Neveu model, it is realized in a more subtle way in the
general case. This feature implies a specific form of the ef-
fective action describing light excitations in theories with the
CPT, which will be discussed in this paper.

The paper is organized as follows. In Sec. II we consider
the properties of the spectrum of light excitations around the
critical point z5zc in the CPT. We show that, though the
CPT is a continuous phase transition, there is an abrupt
change of the spectrum of light excitations as the critical
point is crossed. In Sec. III we describe the chiral phase
transition in theD-dimensional (2<D,4) Nambu–Jona-
Lasinio ~Gross-Neveu! model. We study the CPT in the two-
dimensional Gross-Neveu model. This allows one to illus-
trate the main features of the CPT in a very clear way. In
Sec. IV we study the CPT in quenched four-dimensional
QED ~QED4), which is relevant for the study of the phase
transition with respect to fermion flavors in a four-
dimensional SU(Nc) gauge theory. In Sec. V the main fea-
tures of the CPT are summarized and the realization of a
pseudo-CPT in QED3 is considered. In Sec. VI the structure
of the effective action in theories with the CPT and the real-
ization of the dynamics of the partially conserved dilatation
current in these theories are discussed. In Sec. VII the phase
diagram with respect to the bare coupling constanta (0) and
the number of fermion flavorsNf in an SU(Nc) gauge theory
is considered. In particular, we suggest a modified~as com-
pared to that suggested in Ref.@3#! phase diagram. Possibili-
ties of the examination of this phase diagram in lattice com-
puter simulations are discussed. In Sec. VIII we summarize
the main results of the paper. In the Appendix some useful
relations are derived.

II. PECULIARITIES OF THE SPECTRUM
OF LIGHT EXCITATIONS IN THE CPT

As was already pointed out in the Introduction, in the case
of thes-model-like phase transition, masses of light excita-
tions are continuous functions of the parametersz around the

critical point z5zc ~though they are nonanalytic atz5zc).
Let us show that the situation in the case of the CPT is
different: there is an abrupt change of the spectrum of light
excitations, as the critical pointz5zc is crossed.

Let us start from a particular, and important, case of the
CPT connected with dynamical chiral symmetry breaking. In
this case, in the nonsymmetric phase, amongst light~with
masses much less than cutoffL) excitations, there are mass-
less Nambu-Goldstone~NG! bosonsp, their chiral partners,
s bosons, and light~with mdyn!L) fermions. The masses of
s and fermions are given by scaling relations

Ms
25CsL2f ~z!, ~5!

mdyn
2 5CfL

2f ~z!, ~6!

whereCs andCf are some positive constants, andf (z) is a
universal scaling function. Because of the assumption~3!,
Ms

2 andmdyn
2 are indeed much less thanL2, whenz is near

zc from the side of the nonsymmetric phase.
Now, are there lightp ands resonances in the symmetric

phase, withmdyn50? Since, as was assumed, limf (z)Þ0 as
z→zc in that phase, one should expect that there are no light
resonances. Let us show that this is indeed the case.

One might think that in the symmetric phase the mass
relation forp ands is yielded by the analytic continuation
of the relation~5! for Ms

2 . However this is not the case. The
point is that while in the nonsymmetric phase,p and s
bosons are described by Bethe-Salpeter~BS! equations with
a nonzero fermion mass, in the symmetric phase they are
described by BS equations withmdyn[0. Because of that,
BS equations~and, more generally, all the Schwinger-Dyson
equations for Green’s functions! in the symmetric phase are
not yielded by an analytic continuation of the equations in
the nonsymmetric phase.

To overcome these obstacles, we shall use the following
trick. In the nonsymmetric phase, besides the stable solution
with mdynÞ0, there is also an unstable solution with
mdyn50. In that solution,p and s bosons are tachyons:
Mp

25Ms
2[M tch

2 ,0. Since the replacement ofmdynÞ0 by
mdyn50 ~at fixed values of the parametersz) does not
change the ultraviolet properties of the theory, the scaling
relation for the tachyon masses has the same form as that in
Eqs.~5! and ~6!:

Mp
25Ms

25M tch
2 52CtchL

2f ~z!,Ctch.0. ~7!

Since nowmdyn50, the BS equations for tachyons have the
same form as the BS equations forp ands in the symmetric
phase; the difference between these equations is only in the
values of z @for convenience, we shall assume that
z.zc (z,zc) in the nonsymmetric~symmetric! phase#.
Then, in the symmetric phase,

Mp
25Ms

252CtchL
2f ~z!, Ctch.0, ~8!

with z,zc andCtch from Eq. ~7!. Notice that because in the
symmetric phasep ands bosons decay to massless fermions
and antifermions,Mp

2 andMs
2 are complex, i.e.,p ands are

now resonances, if they exist at all.
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Since, by definition, in the CPT, limf (z)Þ0 as
z→zc20, we conclude from Eq.~8! that there are no light
resonances near the critical point from the side of the sym-
metric phase:uMp

2 u5uMs
2 u;L2 asz→zc20.

So far, for concreteness, we have considered the case of
dynamical chiral symmetry breaking. But it is clear that
~with minor modifications! this consideration can be ex-
tended to the general case of the CPT connected with spon-
taneous breakdown of other symmetries.

Notice also that the relation in Eq.~8! can be useful for
general phase transitions and not just for the CPT. The point
is that the scaling functionf (z) can be determined from the
gap equation for the order parameter (mdyn

2 , in the case of
chiral symmetry! which is usually much simpler than the BS
equation for massive composites. For example, an abrupt
change of the spectrum at the critical pointz5zc have been
revealed in some models: in quenched QED4 @4,5# and
QED3 @6#. This conclusion was based on an analysis of the
effective action@4# and the BS equation@5,6#, considered in
a rather crude approximation. On the other hand, since the
determination of the scaling functionf (z) in these models is
a much simpler task, this conclusion can be firmly estab-
lished in the present approach~see Secs. IV and V!. Thus the
present consideration yields a simple and general criterion of
such a peculiar behavior of the spectrum of light excitations.

It is clear that the abrupt change of the spectrum discussed
above implies rather peculiar properties of the effective ac-
tion for light excitations at the critical point. Below we shall
consider this problem in more detail. We shall also reveal an
intimate connection between this point and the essential dif-
ference of the character of the breakdown of the conformal
symmetry in different phases of theories with the CPT.

III. D-DIMENSIONAL NAMBU –JONA-LASINIO
„GROSS-NEVEU… MODEL: THE CPT AT D52

In this section we consider the dynamics in the
D-dimensional (2<D,4) Nambu–Jona-Lasinio~Gross-
Neveu! model and, in particular, describe the CPT in the
Gross-Neveu~GN! model atD52. This will allow one to
illustrate main features of the CPT in a very clear way.

The Lagrangian density of theD-dimensional GN model,
with the U(1)L3U(1)R chiral symmetry, is

L5
1

2
@c̄,~ igm]m!c#1

G

2
@~ c̄c!21~ c̄ ig5c!2#, ~9!

wherem50,1, . . . ,D21, and the fermion field carries an
additional ‘‘color’’ index a51,2, . . . ,Nc . The theory is
equivalent to the theory with the Lagrangian density

L85
1

2
@c̄,~ igm]m!c#2c̄~s1 ig5p!c2

1

2G
~s21p2!.

~10!

The Euler-Lagrange equations for the auxiliary fieldss and
p take the form of constraints:

s52Gc̄c, p52Gc̄ ig5c, ~11!

and the Lagrangian density~10! reproduces Eq.~9! upon
application of the constraints~11!. The effective action for
the composite fieldss andp is obtained by integrating over
fermions in the path integral:

G~s,p!52 i Tr ln @ igm]m2~s1 ig5p!#

2
1

2GE dDx~s21p2!. ~12!

The low energy dynamics are described by the path integral
@with the integrand exp(iG)# over the fieldss and p. As
Nc→`, the path integral is dominated by the stationary
points of the action:dG/ds5dG/dp50.

Let us look at the effective potential in this theory. It is
@7#

V~s,p!5
4NcL

D

~4p!D/2G~D/2! F S 1g2
1

gcr
D r2

2L2

1
2

42D

jD
D S r

L D DG1OS r4

L4D , ~13!

where r5(s21p2)1/2,jD5B(D/221,32D/2), the dimen-
sionless coupling constantg is

g5
4NcL

D22

~4p!D/2G~D/2!
G, ~14!

and the critical couplinggcr5D/221.
At D.2, one finds that

M ~2![
d2V

dr2 U
r50

.
4NcL

D22

~4p!D/2G~D/2!

gcr2g

gcrg
. ~15!

The sign ofM (2) defines two different phases:M (2).0
(g,gcr) corresponds to the symmetric phase andM (2),0
(g.gcr) corresponds to the phase with spontaneous chiral
symmetry breaking, U(1)L3U(1)R→U(1)L1R . The value
M (2)50 defines the critical pointg5gcr .

Therefore atD.2, as-model-like phase transition is re-
alized. However the caseD52 is special: nowgcr→0 and
jD→` asD→2. In this case the effective potential is the
well-known potential of the Gross-Neveu model@8#:

V~s,p!5
Nc

2pg
r22

Ncr
2

2p F lnL2

r2
11G . ~16!

The parameterM (2) is now

M ~2!5
d2V

dr2 U
r50

→1`. ~17!

Therefore, in this model, one cannot useM (2) as a parameter
governing the continuous phase transition atg5gcr50: the
phase transition is not as-model-like phase transition in this
case. Indeed, as follows from Eq.~16!, the order parameter,
which is a solution to the gap equationdV/dr50, is

r̄2 5 L2expS 2
1

gD ~18!
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in this model. The functionf (z), defined in Eq.~2!, is now
f (g)5exp(21/2g), i.e., z5g, and therefore the CPT takes
place in this model atg50: f (g) goes to zero only if
g→0 from the side of the nonsymmetric phase.

Let us discuss this point in more detail.
At D>2, the spectrum of thes andp excitations in the

symmetric solution, withr̄50, is defined by the equation~in
leading order in 1/Nc) @7#

S 1g2
1

gcr
DLD221

jD
22D/2

~2Mp
2 !D/22150. ~19!

Therefore atD.2, there are tachyons with

Mp
25Ms

25M tch
2 52L2S 42D

2jD
D 2/~D22!S g2gcr

gcrg
D 2/~D22!

~20!

at g.gcr , and atg,gcr there are ‘‘resonances’’ with

uMp
2 u5uMs

2 u5L2S 42D

2jD
D 2/~D22!S gcr2g

gcrg
D 2/~D22!

, ~21!

which agrees with2 Eq. ~8!. Equation~21! implies that the
limit D→2 is special. One finds from Eq.~19! that, at
D52,

Mp
25Ms

25M tch
2 52L2expS 2

1

gD ~22!

at g.0, and

uMp
2 u5uMs

2 u5L2expS 1

ugu D ~23!

at g,0, i.e., in agreement with the main feature of the CPT,
there are no light resonances in the symmetric phase at
D52.

The effective potential~16! can be rewritten as

V~s,p!5
Ncr

2

2p F lnr2

r̄2
21G ~24!

@with r̄ given by Eq.~18!# in the nonsymmetric phase. That
is, in this phaseV(s,p) is finite in the continuum limit
L→` after the renormalization of the coupling constant,

g5
1

2ln~L/ r̄ !
~25!

@see Eq.~18!#. But what is the form of the effective potential
in the continuum limit in the symmetric phase, withg,0?
As Eq. ~16! implies, it is infinite asL→`: indeed atg,0,
there is no way to cancel the logarithmic divergence inV.

It is unlike the case withD.2: in that case, using Eq.
~15!, the potential~13! can be put in as-model-like form:

V~s,p!5
M ~2!

2
r21

8Nc

~4p!D/2G~D/2!

jD
~42D !D

rD.

~26!

However, sinceM (2)5` atD52, thes-model-like form for
the potential is not available in the Gross-Neveu model.

What are physical reasons of such a peculiar behavior of
the effective potential atD52? Unlike the case with
D.2, atD52 the Lagrangian density~9! defines a confor-
mal theory in the classical limit. By using the conventional
approach, one can derive the following equation for the con-
formal anomaly in this model~see the Appendix!:

]mDm5um
m5

p

2Nc
b~g!@~ c̄c!21~ c̄ ig5c!2#, ~27!

where Dm is the dilatation current,un
m is the energy-

momentum tensor, and theb function b5]g/] lnL. It is
b(g)52g2 both in the nonsymmetric and symmetric
phases. While the nonsymmetric phase corresponds to as-
ymptotically free dynamics, the symmetric phase~with
g,0) defines infrared free dynamics: asL→`, we are led
to a free theory of massless fermions, which is of course
conformal invariant.

On the other hand, in the nonsymmetric phase the confor-
mal symmetry is broken, even asL→`. In particular, Eq.
~24! implies that

^0uum
mu0&54V~ r̄ !52

2Nc

p
r̄2Þ0 ~28!

in leading order in 1/Nc in that phase.
The physics underlying this difference between the two

phases is clear: while negativeg correspond to repulsive
interactions between fermions, attractive interactions at posi-
tive g lead to the formation of bound states, thus breaking
the conformal symmetry.

Notice the following interesting point. As follows from
Eq. ~26!, at D.2 the conformal symmetry is broken by a
relevant ~superrenormalized! mass operator: its dynamical
dimension isd52 at all 2<D<4. On the other hand, at
D52 the symmetry is broken by a marginal~renormalized!
operator with the dynamical dimensiond52. This point is
reflected in that, while atD52, the expression for the order
parameterr̄ has an essential singularity at the critical point
g5gcr50, at D.2, the singularity atg5gcr in r̄ is not
essential: as follows from Eq.~13!, the solution to the gap
equationdV/dr50 is r̄;L(g2gcr)

1/(D22) in that case. As
is known, the essential singularity implies the absence of
fine-tuning for bare parameters. This is another reason why
the CPT is so interesting.

Thus, the CPT, in accordance with its name, describes the
two essentially different realizations of the conformal sym-
metry in the symmetric and nonsymmetric phases.

If one adds a fermion mass term,m(0)c̄c, in the two-
dimensional GN model, the conformal and chiral symmetries
will be, of course, broken in both phases. However, there
remains an essential trace of the CPT also in this case: an
abrupt change of the spectrum of light excitations still takes
place. While now in the subcritical (g,gcr50) phase repul-
sive interactions between massive fermions take place~and

2For our purposes, it is sufficient to calculate the absolute value of
Mp

2 . Notice that, as follows from Eq.~19!, narrow resonances occur
nearD54: G/MR.p@(42D)/)D22)]@Mp5MR2 i (G/2)#.
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there are no light resonances there!, in the supercritical
(g.gcr50) phase the PCAC~partial conservation of axial-
vector current! dynamics, describing interactions between
fermions and lightp ands bosons, is realized.3

Besides the point that in the two-dimensional GN model
both subcritical and supercritical phases are physical, this
picture is similar to that in QCD. It is hardly surprising: in
both models the dynamics in the supercritical phases are as-
ymptotically free. We will however argue that the main fea-
tures of the CPT found in the GN model will remain valid
~with appropriate minor modifications! in the general case.

IV. THE CPT IN QUENCHED QED 4

In this section we shall describe the main features of the
CPT in quenched QED4. The dynamics in this model is rel-
evant for some scenarios of dynamical electroweak symme-
try breaking and has been intensively discussed in the litera-
ture ~for a review see Ref.@10#!. In the present paper the
emphasis of the discussion will be on the points relevant for
the general CPT in gauge theories.

We shall consider the ladder~rainbow! approximation in
massless QED4. Since the contribution of fermion loops is
omitted, the perturbativeb function equals zero in this ap-
proximation. However, as is well known@10–12#, beyond
the critical valuea5ac;1, there are nonperturbative diver-
gences which break the conformal symmetry in the model.
Moreover, since ata5ac , the anomalous dimensiongm of
the chiral operatorsc̄c and c̄ ig5c is gm51 @12,13#, the
four-fermion operators (c̄c)2 and ~c̄ ig5c)

2 become~mar-
ginally! relevant: their dynamical dimensiond is
d5dc22gm54, wheredc56 is their canonical dimension.

Therefore, it is appropriate to include these four-fermion
operators in the QED action. This leads to the gauged
Nambu–Jona-Lasinio model@13#:

L52
1

4
~Fmn!21

1

2
@c̄,~ igmDm!c#

1
G

2
@~ c̄c!21~ c̄ ig5c!2#, ~29!

whereDm5]m2 ieAm @for simplicity, we consider the chiral
symmetry UL(1)3UR(1)#. In this model, the gauge interac-
tions are treated in the ladder approximation and the four-
fermion interactions are treated in the Hartree-Fock~mean-
field! approximation.

Since the coupling constantG is dimensional, one may
think that the four-fermion interactions in Eq.~29! explicitly
break the conformal symmetry. The real situation is however
more subtle. In Fig. 1, we show the critical line in this model
@14#, dividing the symmetric phase, with the unbroken
UL(1)3UR(1), and thephase with the spontaneously broken

chiral symmetry@UL(1)3UR(1)→UL1R(1)#. Each point of
the critical line corresponds to a continuous phase transition.
We distinguish two parts of the critical line:

g[
GL2

4p2 5
1

4 F11S 12
a

ac
D 1/2G2, ac5

p

3
, ~30!

at g. 1
4, and

a5ac ~31!

at g, 1
4. The anomalous dimensiongm of the operatorsc̄c

and c̄ ig5c along the critical line is@15#

gm511S 12
a

ac
D 1/2. ~32!

In this approximation, the anomalous dimension of the four-
fermion operator@(c̄c)21(c̄ ig5c)

2# equals 2gm . There-
fore while this operator indeed breaks the conformal symme-
try along the part~30! of the critical line, it is a marginal
~scale invariant! operator along the part of the critical line
with a5ac : its dynamical dimension isdc̄c5622gm54
there.

Thus the part~31! of the critical line witha5ac is spe-
cial. In this case the symmetric phase is not only chiral in-
variant but also conformal invariant. On the other hand, in
the nonsymmetric phase, both these symmetries are broken:
while the chiral symmetry is broken spontaneously, the con-
formal symmetry is broken explicitly~see below! @13,14#.

Unlike the case of the NJL model, where the Lagrangian
density ~10! with the auxiliary fieldss andp was used to
derive the effective actionG@s,p#, now we will derive an-
other effective action: generating functional for proper verti-
ces of the local composite operatorsc̄c and c̄ ig5c. The
point is that the trick, used in Eq.~10!, to introduce the fields
s and p does not work in pure QED (G50). It is also

3We are of course aware that the exact solution in the nonsym-
metric phase of the two-dimensional GN model yields a realization
of the Berezinsky-Kosterlitz-Thouless~BKT! phase: though chiral
symmetry is unbroken, the parameterr̄ still defines the fermion
dynamical mass, and the would-be NG bosonp transforms into a
BKT gapless excitation@9#.

FIG. 1. The phase diagram in the gauged NJL model.S andA
denote the symmetric and asymmetric phases, respectively.
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unclear how well this effective action describes the collective
xcitations s and p in the case of weakly coupling four-
fermion interactions~when QED forces dominate!. We shall
discuss the connection between these two actions below~the
effective action based on using the auxiliary fieldss andp
was considered in this model in@16,17,7#!.

Let us describe the effective action~generating functional
for proper vertices! for the local composite operatorsc̄c and
c̄ ig5c in the gauged NJL model. This effective action was
derived in Ref.@4#. In the present paper, we will describe in
more detail those features of the action which are relevant for
understanding the nature of the CPT.

The effective action is constructed in the
standard way. First, one introduces a generating
functional for Green’s functions of the operators
r̂ i(x), i51,2 (r̂15c̄c,r̂25c̄ ig5c):

Z~$Ji%!5exp@ iW~$Ji%!#

5E dwexpF i E d4xS L~x!1(
i51

2

Ji~x!r̂ i~x!D G ,
~33!

where thew integration is functional,Ji(x) is the source for
r̂ i(x), andL(x) is the Lagrangian density~29! @the symbol
w(x) represents all fields of the model#.

The effective action for the operatorsr̂ i(x) is a Legendre
transform of the functionalW($Ji%):

G̃~$r i%!5W~$Ji%!2E d4x(
i51

2

Ji~x!r i~x!, ~34!

wherer i(x)[^0ur̂ i(x)u0& ~we use ‘‘tilde’’ here in order to
distinguish this effective action from that for the auxiliary
fieldss andp). From Eqs.~33! and ~34! one finds that the
following relations are satisfied:

dW

dJi~x!
5r i~x!, ~35!

dG̃

dr i~x!
52Ji~x!. ~36!

The effective actionG̃($r i%) can be expanded in powers
of derivatives of the fieldsr i(x):

G̃~$r i%!5E d4xF2Ṽ~$r i%!1
1

2
Z̃i j ~$r i%!]mr i]

mr j1••• G ,
~37!

whereṼ($r i%) is the effective potential.
The calculation of the effective potential is reduced to

finding the Legendre transform of the functionalW($Ji%)
with the sourcesJi independent of coordinatesx. Because of
chiral symmetry, W depends on the chiral invariant
J̃25J1

21J2
2. Therefore to determine the form ofW, it is suf-

ficient to consider the source term withJ1Þ0,J250. Then,
owing to relation~35!, one finds that

w~J1!5ES0~J1!

^0uc̄cu0&J
dJ

dS0
dS0 , ~38!

where

W~J1!5w~J1!E d4x ~39!

andS0[S(p2)up250. HereS(p2) is the fermion mass func-
tion ~the fermion propagator isG(p)5@A(p2)pmgm
2S(p2)#21).

Since the functionalW(J1) corresponds to the source
term with J1Þ0,J250, the condensatê0uc̄cu0&J is related
to the gauged NJL model with the bare massm(0)52J.

Now we need to know the following information concern-
ing the fermion propagator in rainbow QED4 ~for a review,
see, Ref.@10#!. In the Landau gauge, the functionsA(p2) and
S(p2) satisfy the equations

A~p2!51, ~40!

S~p2!5m~0!1
g

L2E
0

L2

dq2
q2S~q2!

q21S2~q2!

1
3a

4pE0L
2

dq2
q2

q21S2~q2! Fu~p22q2!

p2

1
u~q22p2!

q2 GS~q2!, ~41!

where g[GL2/4p2, L is an ultraviolet cutoff, and
m(0)[2J is the bare mass of fermions@Eq. ~41! is written in
Euclidean space#.

Differentiating Eq.~41! with respect top2, one finds that
S(p2) satisfies the differential equation

d

dp2 Fp2dS~p2!

dp2 G1
3a

4p

S~p2!

p21S2~p2!
50 ~42!

and two boundary conditions

m~0![2J5F S 11
4pg

3a D p2dS~p2!

dp2
1S~p2!GU

p25L2

,

~43!

lim
p2→0

F ~p2!2dS~p2!

dp2 G50. ~44!

Differentiating Eq.~41! with respect top2 at p25L2, we
find that the chiral condensate^0uc̄cu)&J is

^0uc̄cu0&J52
1

4p2E
0

L2

dq2
q2S~q2!

q21S2~q2!

5
1

3pa S ~p2!2
dS

dp2D U
p25L2

. ~45!

As was mentioned above, Eqs.~40! and~41! are written in
the Landau gauge. This gauge is preferable in the rainbow
approximation from the viewpoint of satisfying the Ward-
Takahashi identities@10#. The transformation to other gauges
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changes the vertex; i.e., it leads to an approximation beyond
the rainbow one. However, the main results of the analysis
remain essentially the same@18#.

The function S(p2), satisfying Eqs. ~42!–~44!, has
the following ultraviolet asymptotics ~at p2@S0

2

[S2(p2)up250):

S~p2!→Ã
S0
2

~p2!1/2
1

v
sinhFvS 12 lnp2S0

2 1d D G ~46!

at a,ac5p/3 @v5(12a/ac)
1/2#,

S~p2!→Ã
S0
2

~p2!1/2S 12 lnp2S0
2 1d D ~47!

at a5ac , and

S~p2!→Ã
S0
2

~p2!1/2
1

ṽ
sinF ṽS 12 lnp2S0

2 1d D G ~48!

at a.ac @ṽ5(a/ac21)1/2#. Here Ã(a) and d(a) are
known functions ofa.4

We will calculate the effective potential along the critical
line. Our aim is to show that while along the part of the
critical line ~30!, with g. 1

4,a,ac , the potential has the
conventional,s-model-like, form, its form is rather unusual
along the critical line witha5ac , where the CPT occurs.

We begin by considering the potential along the part of
the critical line ~30!. From Eqs.~45! and ~46!, we find the
chiral condensate in this case:

^0uc̄cu0&J15
ÃS0

2L

12pav Fevd~v21!S L

S0
D v

1e2vd~v11!S S0

L D vG . ~49!

The functionS0(J1) is determined from Eq.~43! with
m(0)52J1. Substituting the condensate~49! in Eq. ~38!, we
find

w~J1!52
Ã2S0

4

96pav2 F ~v21!Q1e2vdS L

S0
D 2v

1~v11!Q2e22vdS S0

L D 2v

12~124g!G , ~50!

where

Q15v112
4g

v11
,

Q25
4g

12v
2~12v!, ~51!

andS0 has to be considered here as a function ofJ1. Real-
izing the Legendre transform ofw(J1), we find the effective
potential:

Ṽ~r1!5J1r12w

5
Ã2S0

4

96pav2 F S 12v224g
12v

11v De2vdS L

S0
D 2v

1S 12v224g
11v

12v De22vdS S0

L D 2v

12~4g2122v2!G , ~52!

where nowS0 has to be considered as a function of the
condensate

r15^0uc̄cu0&J1.
Ã~v21!

12pav
evdL~v11!S0

22v . ~53!

A solution S05S̄0 to the gap equationdV/dS050 ~or
dV/dr150) defines the dynamical massmdyn[S̄0 as a func-
tion of L,a, andg:

mdyn
2 [S̄0

25L2e2dF S 12v

11v D g2@~v11!/2#2

g2@~12v!/2#2G
1/v

. ~54!

The limit mdyn→0 defines the critical line~30!: g2(v
11)2/450.

Let us show that the potential~52! can be rewritten as a
conventional,s-model-like, potential.

It is convenient to define the renormalized fields (c̄c)m

and (c̄g5c)m as

~ c̄c!m5Zm
~m!~ c̄c!,

~ c̄ ig5c!m5Zm
~m!~ c̄ ig5c!, ~55!

where the renormalization constant is

Zm
~m!5

12pave2vd

Ã~v21!
L2~v21!mv21 ~56!

@see Eq.~53!; notice that the renormalized composite fields
(c̄c)m and (c̄ ig5c)m are defined in such a way as to have
canonical dimension equal to 1#. Then we find that

s~m![^0u~ c̄c!mu0&5mS S0

m D 22v

~57!

at m!L andS0!L.
We will express the potential~52! through the chiral

invariant r (m)5@(s (m))21(p (m))2#1/2 @where
p (m)[^0u(c̄ ig5c)mu0&# and the mass parameter

4Note that in the so-called linearized approximation@12# for the
Schwinger-Dyson~SD! equation~which is a good one!, the param-
etersÃ andd are

Ã~a!52F G~11v!G~12v!

G@~31v!/2#G@~32v!/2#G@~11v!/2#G@~12v!/2#G
1/2

and

d~a!5
1

2v
lnFG~11v!

G~12v!
•

G@~32v!/2#G@~12v!/2#

G@~31v!/2#G@~11v!/2#G
at a,ac . At a.ac , v is replaced byi ṽ in these expressions.
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Mm
~2!5

d2Ṽ

dr~m!2U
r~m!50

. ~58!

It is easy to check that, along the critical line~30!, the pa-
rameterMm

(2) is

Mm
~2!5

Ã2m2

48pav2 S 12v

11v D @~11v!224g#e2vdS L

m D 2v

.

~59!

One can see thatMm
(2).0 andMm

(2),0 from the side of the
symmetric and nonsymmetric phases, respectively. As
L→`, with Mm

(2) being fixed, the potential~52! is

Ṽ5
1

2
Mm

~2!~r~m!!21
~22v!Ã2

16p2v~12v2!
m4S r~m!

m D 4/~22v!

.

~60!

Thus, as was promised, we derived as-model-like potential:
the sign ofMm

(2) defines two different phases, and the value
Mm

(2)50 corresponds to the critical line with
0,a,ac5p/3. Notice that the parameterMm

(2) appears in
Ṽ as a result of the dynamical transmutation: in the con-
tinuum limit, L→`, the dimensional parameterMm

(2) re-
places the dimensionless coupling constantg.

Note also that, because the anomalous dimensiongm of
c̄c and c̄ ig5c is gm511v @see Eq.~32!#, the dynamical
dimension of these operators, and therefore ofr (m), is
dc̄c532gm522v. Therefore the second term in potential
~60! has a dynamical dimension equal to 4, i.e., it preserves
the conformal symmetry. The first, massive, term in the po-
tential breaks this symmetry.

One can check that, takingm5mdyn[S̄0, the potential in
the nonsymmetric phase can be rewritten as

Ṽ5
Ã

16p2v~12v2!
S̄0
4F ~22v!S r r

S̄0
D 4/~22v!

22S r r

S̄0
D 2G ,

~61!

wherer r[r (m)um5S̄0
.

As shown in Refs.@4,17#, the kinetic term and terms with
a larger number of derivatives in the effective action are also
finite in the continuum limit.5 A heuristic explanation of this
fact is simple: the most severe ultraviolet divergences always
occur in the effective potential; therefore the finiteness of the
potential implies the finiteness of other terms in the action.
This implies that around the critical line~30!, both in the
symmetric and nonsymmetric phase, the light excitations in-
clude, besides fermions and a photon, composites andp
particles.

Let us now turn to the part of the critical line with
a5ac , where the CPT takes place, and show that the char-
acter of the phase transition is essentially different there.

We begin by considering the critical point (a,g)
5(ac ,

1
4). Calculating the potential in the same way as po-

tential ~52! for a,ac , we find that ata5ac , aroundg5
1
4, it is

Ṽ52
Ã2S0

4

8p2 F ~4g21!L228gL14g1
3

2G , ~62!

whereL5 ln(Led/S0). The gap equationdṼ/dS050 yields
the dynamical mass atg. 1

4:

mdyn
2 [S̄0

25L2e2~d21!expS 2
1

~g21/4! D . ~63!

At a5ac , the relation betweenr r5r (m)um5S̄0
andS0 is

r r5S̄0S S0

S̄0
D 2 ~64!

@compare with Eq.~57!; in this case the renormalization con-
stant isZm

(m)5(22p2/ÃLm)@ ln(Led/m)21#21#. Taking the
continuum limitL→` in Eq. ~62! ~with S̄0 being fixed! we
come to the expression for the potential in the nonsymmetric
phase:

Ṽ5
Ã2

16p2 S̄0
2r2S lnr r

2

S̄0
2

21D . ~65!

But what is the form of the potential~in the continuum limit!
from the side of the symmetric phase? Let us show that there
the potentialṼ goes to infinity asL→`.6 Indeed Eq.~62!
implies that to get a finiteṼ asL→`, the coupling constant
g must have the behavior

4g21;
2

L
.0 ; ~66!

i.e., itmustgo to the critical valuegc5
1
4 from the side of the

nonsymmetric phase. In the symmetric phase the potential
Ṽ→` asL→`.

What is the physical meaning of this result? As in the case
of the Gross-Neveu model, it implies that there are no com-
posite light resonances in the symmetric phase at
a5ac ,g,gc5

1
4. Indeed, relations~8! and~63! imply that in

the symmetric phase

uMp
2 u5uMs

2 u;L2expS 1

1/42gD.L2. ~67!

This conclusion correlates with the point that, unlike the
case with the critical line witha,ac , the parameterMm

(2) is
not well defined at (a,g)5(ac ,

1
4): it is Mm

(2)→1` and
Mm

(2)→2` in the symmetric and nonsymmetric phase, re-
spectively@see Eq.~59!#.

Thus the CPT takes place at (a,g)5(ac ,
1
4).

5Actually, as was shown in Ref.@17#, all these terms are confor-
mal invariant.

6There was an attempt to make the effective potential finite at
a5ac in the L→` limit @7#. This may define a different con-
tinuum theory than that discussed in this paper.
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Let us show that a similar situation takes place along the
whole critical line witha5ac , where the CPT takes place.

Around the critical line witha5ac , the condensate
^0uc̄cu0&J is

^0uc̄cu0&J52
ÃS0

2L

2p2 S sinhuv
2coshu D ~68!

at a,ac , ~the symmetric phase!, and

^0uc̄cu0&J52
ÃS0

2L

2p2 S sinũ
ṽ

2cosũ D ~69!

at a.ac ~the nonsymmetric phase!. Here u5v ln(Led/S0)
andũ5ṽ ln(Led/S0), and Eqs.~45!, ~46!, and~48! were used
in the derivation of expressions~68! and ~69!.

Now the effective potential can be derived in the same
way as before. It is

Ṽ5
Ã2S0

4

96pav2 F S 12v224g
12v

11v D S Led

S0
D 2v

1S 12v224g
11v

12v D S S0

LedD 2v

14g2122v2G
.2

Ã2S0
4

24pa F ~4g21!L228gL14g1
3

2G ~70!

at a,ac andv!1 (g, 1
4), and

Ṽ5
Ã2S0

4

48paṽ2
@124g22ṽ22~11ṽ2!cos~2ṽL !

14gcos~2ṽL22arctanṽ !# ~71!

at a.ac and ṽ!1 (g, 1
4).

Notice that ata5ac5p/3, expression~70! for Ṽ coin-
cides with expression~62!. Therefore we conclude that in the
symmetric phase, along the whole critical line witha5ac ,
the collectives andp excitations decouple from the infrared
dynamics. In this phase, the conformal dynamics of massless
fermions and photons is realized.

Let us now consider the potential~71! in the nonsymmet-
ric phase. The gap equationdṼ/dS050 yields the following
solutions forS0 at (124g)@ṽ!1:

ṽL̄5pn2ṽ
114g

124g
, n51,2,. . . , ~72!

ṽL̄5pn1
3

2
ṽ, n51,2, . . . , ~73!

whereL̄5 ln(Led/S̄0). One can check that while all the solu-
tions ~72! correspond to minima ofṼ, solutions~73! corre-
spond to maxima of the potential. Actually, only the global
minimum, corresponding ton51, defines the stable vacuum.
Therefore the dynamical mass is

mdyn
2 [S̄0

25L2expS 2d1
2~114g!

124g DexpS 2
2p

S a

ac
21D 1/2D .

~74!

Expression ~74! is valid at (124g)@ṽ!1. At
(124g)!ṽ!1, we find from Eq.~71! that

mdyn
2 5L2exp~2d23!expS 2

p

~a/ac 21!1/2D . ~75!

In the continuum limitL→`, with S̄0 being fixed ~i.e.,
lim ṽL̄→p asL→` andṽ→0), we find the expression for
Ṽ:

Ṽ5
Ã2S0

4~r r !

16p2 F8S 142gD ln2S0~r r !

S̄0

14ln
S0~r r !

S̄0

21G .
~76!

HereS0 is considered as a function of a renormalized field
r r5(s r

21p r
2) which is defined in the following way. One

finds from Eq.~69! that, in the continuum limit, the conden-
sate is

^0uc̄cu0&J.
ÃS0

2L

p2~4g21! S 11
124g

2
ln

S0

S̄0
D . ~77!

Therefore it is appropriate to define the renormalized fields
^c̄c& r and ^c̄ ig5c& r with the renormalization constant

Zm5
p2~4g21!

Ã
L21S̄0

21 . ~78!

Then one finds that

s r5Zm^0uc̄cu0&J5S0
2S̄0

21F11
124g

2
ln

S0

S̄0
G . ~79!

The functionS̄0(r r) in Eq. ~76! is defined from Eq.~79!,
with s r replaced byr r .

Potential~76! describes composites andp particles in
the nonsymmetric phase.

Thus there is an abrupt change of the number of light
excitations and the character of the dynamics, as the critical
line is crossed, along the whole critical line witha5ac ,
where the CPT takes place.

It is instructive to compare the effective action~generat-
ing functional for proper vertices of the operatorsc̄c and
c̄ ig5c) considered here with the effective actionG for aux-
iliary fields, whose derivation in the gauged NJL model was
considered in Refs.@16,17,7#. The actionG(s,p) is derived
by rewriting the Lagrangian density~29! as

L52
1

4
~Fmn!21

1

2
@c̄,~ igmDm!c#2c̄~s1 ig5p!c

2
1

2G
~s21p2!, ~80!
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and then integrating out both the fermion and photon fields.
In the mean-field approximation, the path integral overs and
p is dominated by the stationary points ofG:
dG/dp5dG/ds50.

It is clear, however, that the trick of introducing the fields
s and p in Eq. ~80! cannot be applied to pure QED
(G50). It is also unclear how well the mean-field approxi-
mation is around the part of the critical line witha5ac ,
where the QED dynamics dominate.

Comparing the expression for the potentialṼ with that for
the potentialV, derived in Refs.@16,17,7#, one finds that
while they coincide around part~30! of the critical line, with
a,ac andg. 1

4 ~where the four-fermion interactions domi-
nate!, they are different around the critical line with
a5ac , where the CPT takes place. In particular, the coun-
terpart of expressions~62! and ~76! for Ṽ are @16,7#

V52
Ã2S0

4

8p2 F S 4g21

4g DL222L1
5

2G , ~81!

and @17#

V5
Ã2S0

4

16p2 F2g S 142gD ln2S0

S̄0

14ln
S0

S̄0

21G , ~82!

respectively. Unlike expressions~62! and ~76! for Ṽ, V is
singular atg50 ~pure QED!.

This feature ofV reflects the point that ata.ac , g, 1
4,

when QED interactions dominate, the mean-field approxima-
tion is not good enough and one has to consider quantum
fluctuations of the fieldss andp. On the other hand, the
generating functionalG̃ adequately describes the dynamics
along the whole critical line.

A similarity between the dynamics in quenched QED4
and theD-dimensional GN model considered in Sec. III is
evident. Ata,ac5p/3 (D.2) as-model-like phase tran-
sition is realized in quenched QED4 ~GN model!; at a5ac
(D52) the CPT takes place in these models. However, there
is an essential difference between the CPT phase transitions
in these two models. While in the GN model, the symmetric
phase, withg,0, is infrared free, the symmetric phase in
quenched QED is a Coulomb phase, describing interactions
between massless fermions and photons.

As was indicated in Sec. III, a marginal operator is re-
sponsible for the breakdown of the conformal symmetry in
the nonsymmetric phase in the two-dimensional GN model
@see Eq.~27!#. This leads to an essential singularity in the
expression for the order parameterr̄ ~18!. This in turn cures
the fine-tuning problem which takes place atD.2, where
relevant~superrenormalized! operators break the conformal
symmetry.

A similar situation takes place in quenched QED4. While
ata,ac , the~relevant! mass operator breaks the conformal
symmetry@see Eq.~60!#, at a5ac , it is a broken~in non-
symmetric! phase by a marginal operator. Actually, as shown
in the Appendix, the equation for the conformal anomaly has
the following form at (a,g)5(ac ,

1
4):

]mDm5um
m5 lim

L→`,g→ 1/4

G

2

b~g!

g
@~ c̄c!21~ c̄ ig5c!2#

5 lim
L→`,a→ac

lim
b~a!

4a
FmnF

mn, ~83!

whereb(g)5]g/] lnL522(g21
4)
2 is determined from Eq.

~63!, and b(a)5]a/] lnL524
3(a/ac21)3/2 is determined

from Eq. ~75!. As was pointed above, at (a,g)5(ac ,
1
4) the

dynamical dimension of the operator@(c̄c)21(c̄ ig5c)
2# is

d54 and, therefore, it is indeed a marginal operator@the
operatorFmnF

mn in Eq. ~83! is also of course marginal#.
At a5ac and g, 1

4, the equation for the conformal
anomaly is~see the Appendix!

]mDm5um
m5 lim

L→`,a→ac

b~a!

4a
FmnF

mn, ~84!

where b(a)522 2
3(a/ac21)3/2 is determined from Eq.

~74!. Here, again,]mDm is a marginal operator. In the next
section, we shall summarize the main features of the CPT.
We shall also discuss the phase transition in QED3.

V. GENERAL FEATURES OF THE CPT:
A PSEUDO-CPT IN QED3

Now we are ready to summarize the main features of the
CPT.

There is an abrupt change of the spectrum of light exci-
tations, as the critical pointz5zc is crossed, in the CPT. As
was shown in Sec. II, this property is general and reflects the
presence of an essential singularity atz5zc in the scaling
function f (z).

The CPT is ~though continuous! a non-s-model-like
phase transition. This implies a specific form of the effective
action, in particular, the effective potential, for the light ex-
citation nearz5zc . While the potential does not exist in the
continuum limit in the symmetric phase, it has infrared sin-
gularities atr50 in the nonsymmetric phase (r is a generic
notation for fields describing the light excitations!. As a re-
sult, unlike thes-model-like phase transition, one cannot
introduce parametersM (2n)5d2nV/dr2nur50 which would
govern the phase transition: all of them are equal either to
zero or to infinity.

The infrared singularities in the effective potential imply
the presence of long range interactions asr→0. This is con-
nected with an important role of the conformal symmetry in
the CPT. In the examples considered in Secs. III and IV,
while the symmetric phase is conformal invariant, there is a
conformal anomaly in the nonsymmetric phase: the confor-
mal symmetry is broken by a marginal operator. The latter
allows one to get rid of the fine-tuning problem in such a
dynamics. We shall return to the problem of the effective
action in the CPT in the next section.

Because of the abrupt changing of the spectrum of light
excitations atz5zc , the very notion of the universality class
for the dynamics with the CPT seems rather delicate. For
example, in both GN model and QCD, at the critical point
(g50 anda (0)50, respectively!, and at finite cutoffL, the
theories are free and their infrared dynamics are very differ-
ent from the infrared dynamics in the nonsymmetric phases
of these theories~at g.0 anda (0).0, respectively!. This is
a common feature of the CPT: around the critical point, the
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infrared dynamics in the symmetric and nonsymmetric
phases are very different. However, in the nonsymmetric
phase, the hypothesis of universality has to be applied to the
region of momentap satisfying r̄!p!L, where r̄ is an
order parameter. In that region, critical indices~anomalous
dimensions! of both elementary and composite local opera-
tors in near-critical regions of symmetric and nonsymmetric
phases are nearly the same: the critical indices are continu-
ous functions ofz aroundz5zc .

7 On the other hand, since
the infrared dynamics~with p;r̄ and p! r̄) abruptly
changes as the critical pointz5zc is crossed, the low energy
effective actions in the symmetric and nonsymmetric phases
are different.

One can consider deformations of theories with the CPT,
by adding relevant operators in their Lagrangians, such as
fermion mass terms, which break explicitly the conformal
symmetry. Also if there is a perturbative running of the cou-
pling in the symmetric phase, it will lead to perturbative
violation of the conformal symmetry~see Sec. VII!. In many
cases, the deformations do not change the most characteristic
point of the CPT: the abrupt change of the spectrum of light
excitations atz5zc discussed above. The reason is that there
is an additional, nonperturbative, source of the breakdown of
the conformal symmetry in the nonsymmetric phase, which
provides the creation of light composites.

The conception of the CPT, in a slightly modified form,
can be also useful for a different type of dynamics. As an
example, let us consider QED3 with massless four-
component fermions@19#. It is a super-renormalizable theory
where ultraviolet dynamics plays rather a minor role. As was
shown in Refs.@20,21#, when the number of fermion flavors
Nf is less thanNcr , with 3,Ncr,4, there is dynamical
breakdown of the flavor U(2Nf) symmetry in the model, and
fermions acquire a dynamical mass:8

mdyn;a3expF2
2p

ANcr /Nf21
G , ~85!

where the coupling constanta35e2/4p is dimensional in
QED3.

Though this expression resembles expression~74! for the
dynamical mass in quenched QED4, whereL plays the role
of a3 and a plays the role ofNf , the phase transition at
Nf5Ncr is, strictly speaking, not the CPT. Indeed, because of
super-renormalizability of QED3, the ultraviolet cutoffL is
irrelevant for the dynamics leading to relation~85!. Also,
sincea3 is dimensional, the conformal symmetry is broken
in both symmetric (Nf.Ncr) and nonsymmetric (Nf,Ncr)
phases.

Nevertheless, the consideration of the spectrum of light
@with (M2!a3

2)# excitations in this model can be done along

the lines used in Sec. II. In agreement with the result of Ref.
@6#, where the BS equation was used, one concludes that
there are no light resonances@with (M2!a3

2)# in the sym-
metric phase of QED3 and that there is an abrupt change of
the spectrum of light excitations atNf5Ncr .

It is appropriate to call the phase transition in QED3 a
pseudo-CPT: in the nonsymmetric phase, atNf,Ncr , a new,
nonperturbative, source of the breakdown of the conformal
symmetry occurs.

VI. THE EFFECTIVE ACTION IN THE THEORIES
WITH THE CPT AND THE DYNAMICS

OF THE PARTIALLY
CONSERVED DILATATION CURRENT

In this section we shall discuss the properties of the effec-
tive action in theories with the CPT in more detail. In par-
ticular, we shall consider a connection of the dynamics of the
CPT with the hypothesis of the partially conserved dilatation
current~PCDC! @24–27#.

The effective potentials derived in the two-dimensional
GN model@see Eqs.~16! and ~24!# and in quenched QED4
with (a,g)5(ac ,

1
4) @see Eqs.~62! and ~65!# have a similar

form.
Moreover, one can show that the kinetic term and terms

with higher number of derivatives in both the GN model and
quenched QED4 are conformal invariant@8,17#. In other
words, the conformal anomaly comes only from the effective
potential in both these models.

This point is intimately connected with the PCDC dynam-
ics. In order to see this, let us determine the divergence of the
dilatation current in these models. Equation~24! implies that

]mDm5um
m52

2Nc

p
r2 ~86!

in the GN model, and Eq.~65! yields

]mDm5um
m52

Ã2

4p2mdyn
2 r2 ~87!

in quenched QED4 with a5ac , where the CPT takes place
(mdyn[S̄0). Now, recall that the dynamical dimensiondr of
the field r is dr51 and dr52 in the GN model and in
quenched QED4 ~with a5ac), respectively. Therefore Eqs.
~86! and ~87! assure that the dynamical dimension of the
operatorum

m coincides with its canonical dimension:du52
anddu54 in the two-dimensional GN model and quenched
QED4, respectively. This implies the realization of the
PCDC hypothethis in these models@24–27#: the operator
um

m has the correct transformation properties under dilatation
transformations.

In the renormalization group language, this means that the
conformal symmetry in these models is broken by marginal
~renormalized! operators and not by relevant~super-
renormalized! ones @irrelevant ~nonrenormalized! operators
contribute only small corrections in the infrared dynamics#.

Though these two models are very special, one may ex-
pect that at least some features of this picture will survive in

7However, because of explicit conformal symmetry breaking in
the nonsymmetric phase, there are additional logarithmic factors
~such as@ ln(p/r̄)#c) in Green’s functions in that phase.
8We are aware that there is still a controversy concerning this

result: some authors argue that the generation of a fermion mass
occurs at all values ofNf @22#. For a recent discussion supporting
relation ~85!, see Ref.@23#.
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the general case of theories with the CPT. In particular, one
may expect that in the general case the effective potential has
the form

V~r!5Cr̄DS r

r̄
D D/dr

FS lnr

r̄
D , ~88!

whereC is a dimensionless constant andF(x) is a ~presum-
ably! smooth function.

The contribution ofV(r) ~88! into the conformal anomaly
is of the form

um
m;r̄DS r

r̄
D D/dr

F8S lnr

r̄
D , ~89!

whereF8(x)5dF/dx, i.e., in the general case, logarithmic
factors may destroy the covariance~with respect to dilatation
transformations! of the relation for the conformal anomaly.
Actually this takes place already in quenched QED4 with
a5ac but g, 1

4. Indeed, as follows from Eqs.~76! and~79!,
the logarithmic factors occur in the equation for the confor-
mal anomaly in that case.

Also, one should expect that the conformal invariance of
the kinetic term and terms with higher number of derivatives
may also be destroyed by logarithmic terms.

It is clear that the effective action in theories with the
CPT are very different from that in the four-dimensional lin-
ear s model and Nambu–Jona-Lasinio model, where the
conformal symmetry is broken by relevant operators and the
chiral phase transition is a mean-field one.

This point can be relevant for the description of the low
energy dynamics in QCD and in models of dynamical elec-
troweak symmetry breaking. In particular, as was already
pointed out in Ref.@26#, the low energy dynamics are very
sensitive to the value of the dynamical dimensiondr .

VII. PHASE DIAGRAM IN A SU „Nc… GAUGE THEORY

In this section, we will consider the phase diagram with
respect to the bare coupling constanta (0) and the number of
fermion flavorsNf in a four-dimensional SU4(Nc) vector-
like gauge theory@3#. In particular, we will discuss a recent
suggestion@5# that the phase transition with respect toNf in
that theory resembles the phase transition~with respect to the
coupling constant! in quenched QED4 at a5ac .

A starting point of the analysis of Refs.@3,5# is the pres-
ence of an infrared fixed point in the two-loopsb function of
an SU(Nc) theory, when the number of fermion flavorsNf is
large enough. Recall that the perturbativeb function in that
theory is

b~a!52ba22ca32da42•••. ~90!

In the case of theNf fermions in the fundamental represen-
tation, the first two coefficients are@28#

b5
1

6p
~11Nc22Nf !,

c5
1

24p2 S 34Nc
2210NcNf23

Nc
221

Nc
Nf D . ~91!

While these two coefficients are invariant under change of a
renormalization scheme, the higher-order coefficients are
scheme dependent. Actually, there is a renormalization
scheme in which all the higher-order coefficients vanish@29#.
Therefore there is at least one renormalization scheme in
which the two-loopb function is ~perturbatively! exact. We
will use such a renormalization scheme.

The theory is asymptotically free ifb.0 (Nf,Nf**
[ 11

2Nc). If b.0 andc,0, theb function has a zero, corre-
sponding to a infrared-stable fixed point, at

a5a*52
b

c
. ~92!

WhenNf is close toNf** 5 11
2Nc , the ratioub/cu, and there-

fore the value ofa* , is small. The value of the fixed point
a* increases with decreasingNf , and this fixed point disap-
pears at the valueNf5Nf* , when the coefficientc becomes
positive (Nf* is Nf*.8.05 forNc53).

It is convenient to considerNf as a continuous parameter
and to study the dynamics asNf is varied. Note that since
Nf appears analytically in the path integral of the theory, one
can give a nonperturbative meaning to the theory with non-
integerNf .

Unlike ultraviolet-stable fixed points, defining dynamics
at high momenta, infrared-stable fixed points~defining dy-
namics at low momenta! are very sensitive to nonperturba-
tive dynamics leading to the generation of particle masses.
For example, if fermions acquire a dynamical mass, they
decouple from the infrared dynamics. Then, only gluons will
contribute to theb function, and as a result, the perturbative
infrared-stable fixed point in theb function will disappear.

Thus the crucial question is the interplay between the
value a* of the infrared-stable fixed point and the chiral
dynamics.

In Fig. 2, the phase diagram suggested in Ref.@3# is

FIG. 2. The phase diagram in an SU(Nc) gauge model sug-
gested by Banks and Zaks.S and A denote the symmetric and
asymmetric phases, respectively.
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shown. The authors considered the Hamiltonian lattice gauge
theories with Kogut-Susskind fermions. The main features of
this diagram are the following. The vertical line~with
Nf,Nf*,Nf** 511Nc/2) corresponds to a first-order phase
transition, dividing a weak-coupling phase, possessing a con-
tinuum limit L→`, from a strong-coupling phase. Notice
that there is spontaneous chiral symmetry breaking in both
these phases: the chiral order parameter jumps without van-
ishing at this phase transition.

Note the following points@3#.
~a! The vertical line occurs because the chiralb function

is positive for largeg(0) and negative for smallg(0), where it
coincides with the perturbativeb function. Thus theb func-
tion has an infrared-stable zero at some intermediateg(0).
The line of these zeros is the vertical line at which the first-
order phase transition occurs~it cannot be second order be-
causeb has no ultraviolet-stable zeros!;

~b! The numberNf refers to the number of fermion fields
in the formal continuum theory which is twice the number of
single-component lattice fields. Therefore the minimal~non-
zero! value of Nf is Nf52. The vertical line ends at this
value since in pure gluodynamics there is apparently no
phase transition between weak-coupling and strong-coupling
phases@30#.

The right-hand portion of the curve on the diagram, sepa-
rating symmetric and nonsymmetric phases occurs due to the
following reason. At large enough values of the coupling,
spontaneous chiral symmetry breaking takes place for any
numberNf of Kogut-Susskind fermions. Then the authors of
Ref. @3# argue that it is not reasonable to allow spontaneous
chiral symmetry breaking to persist below some finite
gc
(0)(Nf). As a result they suggest the existence of that right-
hand portion of the curve on the diagram, describing a chiral
first-order phase transition. The form of this curve reflects
the fact that polarization screening effects become stronger
with increasingNf , and therefore the value ofg

(0), at which
the first-order chiral phase transition occurs, increases with
Nf . Note that it is called a bulk phase transition in the lit-
erature.

At last, the left-hand portion of the curve, separating sym-
metric and nonsymmetric phases, coincides with the line of
the infrared-stable fixed pointsa* (Nf) in Eq. ~92!. It sepa-
rates the symmetric, Coulomb, phase describing interactions
of massless gluons and fermions, and the nonsymmetric~and
confinement! phase. Since it is a line of infrared-stable fixed
points, it describes a first-order phase transition.

Thus, in the Banks-Zaks picture, spontaneous chiral sym-
metry breaking and confinement occur in the weak-coupling
phase at allNf,Nf** 511Nc/2. Notice that the left-hand part
of the curve in the phase diagram describes a rather unusual
situation: atNf*,Nf,Nf** spontaneous chiral symmetry
breaking and confinement disappear withincreasingthe bare
coupling constantg(0).

As we shall show, the phase diagram changes dramati-
cally if one adopts the suggestion of Ref.@5# concerning the
dynamics of chiral symmetry breaking in this model. The
suggestion is that since the value of the infrared-stable fixed
point a* is small atNf.Nf** 511Nc/2, one should expect
that there is a critical value ofNf , Nf5Nf

cr , above which the
chiral symmetry is restored.

In order to estimate the critical valueNf
cr , the authors of

Ref. @5# use the dynamical picture of chiral symmetry break-
ing corresponding to the rainbow~ladder! approximation. As
in known @10#, in an SU(Nc) gauge theory, this picture co-
incides with that in quenched QED4, with the replacement
the coupling constanta by aeff5@(Nc

221)/2Nc#a.
Therefore, in this approximation, spontaneous chiral sym-

metry occurs when the gauge coupling exceeds a critical
value ac52Nc /(Nc

221)•p/3. Then, the estimate for the
critical valueNf

cr is

a* ~Nf !uNf5N
f
cr5ac , ~93!

where a* (Nf) is a* (Nf)52b/c with b and c from Eq.
~91!.

The estimate~93! leads to the critical value

Nf
cr5NcS 100Nc

2266

25Nc
2215 D . ~94!

For Nc53, for example,Nf
cr is just below 12.9

WhenNf
cr<Nf,Nf** 511Nc/2, the value of the infrared-

stable fixed pointa* is less than the critical valueac and
there is no chiral symmetry breaking. There are two possi-
bilities: the bare coupling constanta (0) is a (0)<a* or
a (0).a* .

Let us first consider the case witha (0)<a* . Then, if
a (0)5a* , the running gauge couplinga(m) is equal to the
valuea* for all m<L. Then, asL→`, one gets a confor-
mal theory describing interactions of massless fermions and
gluons.

On the other hand, ifa (0),a* , the running coupling
a(m) changes from a(m)5a (0) at m5L through
a(m)5a* at m50. Nonperturbative effects, such as chiral
symmetry breaking, are now absent, though the conformal
symmetry is broken by ordinary perturbative contributions
leading to running ofa(m). Thus, in this case, an interacting
non-Abelian Coulomb phase of massless quarks and gluons
is still realized.

Let us now consider the case witha (0).a* .
If the value ofa (0) is close toa* , then the interactions

are still weak, and chiral symmetry is unbroken. Therefore
there is still an interacting Coulomb phase in this case,
though, unlike the case witha (0),a* , the running coupling
decreases withm, anda(m)→a* asm→0. As L→`, we
recover the conformal theory, witha(m)5a* for all m, dis-
cussed above.

As a (0) becomes sufficiently large, one comes again to
the first-order chiral~bulk! phase transition. The above con-
sideration leads us to suggesting the phase diagram shown in
Fig. 3.

Notice that, as before, the form of the right-hand part of
the curve, describing the bulk phase transition, reflects the

9As to a justification of this approximation, a computation of the
next-to-leading term in the gap equation shows that it yields a cor-
rection toac of approximatelye51/6(121/Nc

2) @31#. For Nc53,
the factore is e50.19. Therefore, if this factor reflects the contri-
bution of higher order, the estimate~93! may be reliable.
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point that the polarization screening effects becomes stronger
with increasingNf . In particular, the rainbow approxima-
tion, used atNf.Nf

cr , ceases to be good at largerNf .
The left-hand portion of the curve in Fig. 3 still coincides

with the line of the infrared-stable fixed pointsa* (Nf) in
Eq. ~92!. However, now it separates two symmetric~with
unbroken chiral symmetry! phases, and, besides that, its
lower end point isNf5Nf

cr and notNf5Nf* as in Fig. 2: at
Nf,Nf

cr the infrared-stable fixed point is washed out by gen-
erating a dynamical fermion mass. These two symmetric
phases are distinguished by their dynamics at short distances:
while the dynamics of one phase is asymptotically free, an-
other is not. On the other hand, their long distance dynamics,
governed by the infrared-stable fixed point, are similar.

At last, the horizontal,Nf5Nf
cr , line describes the CPT-

like phase transition in this model. Relation~74! suggests the
following scaling law formdyn

2 :

mdyn
2 ;L2expS 2

C

@a* ~Nf !/ac21#1/2D , ~95!

whereC is some constant@C52p in Eq. ~74!#.
The dynamics in an SU(Nc) gauge theory withNf.Nf

cr

may be relevant for the realization of the scenario of
‘‘walking’’-like technicolor for electroweak symmetry
breaking @32#: the ‘‘walking’’ coupling constant
a(m).a*.ac governs the chiral symmetry breaking dy-
namics. In this case the effective action in quenched QED4,
considered in Sec. IV, should be relevant for the description
of this dynamics.

Let us now turn to data of lattice computer simulations of
an SU(Nc) gauge theory.

Lattice computer simulations of the SU~3! theory with
Nf58 andNf512 of staggered fermions in Ref.@33# show
the presence of the first-order, bulk transition separating
strong- and weak-coupling phases. While atNf512 there is
a clear signature of the chiral phase transition at which the

order parameter jumps to zero, atNf58 the situation is less
clear. More recent, and refined, simulations of this theory
with Nf58 indicates that in this case there is a first-order
phase transition at which the order parameter jumps without
vanishing@34#.

Thus the data of both these simulations seem to indicate
on the presence of the vertical line~at least atNf>8) shown
in Figs. 2 and 3. It is still impossible at present to discrimi-
nate between these two phase diagrams.

Note that since the bulk phase transition is a lattice arti-
fact, the form of the phase diagram can depend on the type of
fermions used in the simulations. The simulations of the
SU~3! theory with Wilson fermions@35# show that theories
which satisfy both quark confinement and spontaneous chiral
symmetry breaking in the continuum limit exist only for
Nf<6. When 16>Nf>7, the theory is nontrivial~interact-
ing!, however, without quark confinement. Moreover, at
Nf>7, chiral symmetry is unbroken at all values of the bare
couplinga (0).

These data seem to favor the phase diagram in Fig. 3 in
which the right-hand part of the curve is replaced by the
horizontal lineNf5Nf

cr57.
It is clear that more data are needed in order to establish

firmly the phase diagram in an SU(Nc) gauge theory.

VIII. CONCLUSION

In this paper we introduced the conception of the confor-
mal phase transition~CPT! which provides a useful frame-
work for studying nonperturbative dynamics in gauge~and
also other! field theories. We described the general features
of this phase transition.

The CPT is intimately connected with the nonperturbative
breakdown of the conformal symmetry, in particular, with
the PCDC dynamics. In the nonsymmetric phase the confor-
mal symmetry is broken by marginal operators. This in turn
yields constraint on the form of the effective action in theo-
ries with the CPT.

In all the examples of the CPT considered in this paper,
the conformal symmetry was explicitly broken by the con-
formal anomaly in the phase with spontaneous chiral sym-
metry breaking. Is it possible to realize dynamics with both
chiral and conformal symmetries being broken spontane-
ously? Although at present this question is still open, we
would like to note that long ago arguments had been given
against the realization of such a possibility@36#.

The conception of the CPT can be useful for strong-
coupling gauge theories, in particular, for QCD and models
of dynamical electroweak symmetry breaking.

In connection with that, we note that the effective action
considered in Sec. VI may be relevant for the description of
as meson@ f 0(40021200)# @37,38#. If it is rather light~with
Ms.600 MeV! as some authors conclude@38#, it can domi-
nate in the matrix elements of the operatorum

m in low energy
dynamics, i.e., it can be considered as a massive dilaton, as
was already suggested some time ago@24,26#.10

It is also clear that the conception of PCDC and massive

10For a recent application of this conception in nuclear physics,
see Ref.@39#.

FIG. 3. The modified phase diagram in an SU(Nc) gauge model
discussed in the text.S andA denote the symmetric and asymmetric
phases, respectively.
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dilaton can be useful for the description of the dynamics of
composite Higgs boson.

Another application of the CPT~or pseudo-CPT! may be
connected with nonperturbative dynamics in condensed mat-
ter. Here we only mention the dynamics of a non-Fermi liq-
uid which might be relevant for high-temperature surpercon-
ductivity: some authors have suggested that QED3 may
serve as an effective theory of such a dynamics@40#.

There has recently been a breakthrough in understanding
nonperturbative infrared dynamics in supersymmetric
~SUSY! theories~for a review see Ref.@41#!. It would be
worth considering the realization of the CPT, if any, in
SUSY theories, thus possibly establishing a connection be-
tween SUSY and non-SUSY dynamics.
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APPENDIX

In this appendix the relation for the conformal anomaly is
derived. Since the relation for the conformal anomaly is an
operator one, one can consider its realization for any matrix
element.

We will consider the vacuum expectation value

^0uum
mu0&.11 Then, because of the Lorentz invariance,

^0uum
mu0&54^0uu0

0u0&54eV , whereeV is the vacuum energy
density. It has the form

eV5L4f ~$gi
~0!% !, ~A1!

where f is some function of dimensionless coupling con-
stantsgi

(0) . Let us assume that the renormalization ofgi
(0)

leads to a finiteeV in the continuum limit. This implies that

deV
dlnL

54eV1L4(
i

] f

]gi
~0! b i~$gi

~0!% !50, ~A2!

whereb i5]gi
(0)/] lnL. Therefore

^0uum
mu0&54eV52L4(

i

] f

]gi
~0! b i~$gi

~0!% !

52(
i

]eV
]gi

~0! b i~$gi
~0!% !. ~A3!

Then, using the path integral representation foreV , we ob-
tain the relations for the conformal anomaly considered in
Secs. III and IV.
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