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The conception of the conformal phase transi@fT), which is relevant for the description of nonpertur-
bative dynamics in gauge theories, is introduced and elaborated. The main features of such a phase transition
are established. In particular, it is shown that in the CPT there is an abrupt change of the spectrum of light
excitations at the critical point, though the phase transition is continuous. The structure of the effective action
describing the CPT is elaborated and its connection with the dynamics of the partially conserved dilatation
current is pointed out. The applications of these results to QCD, models of dynamical electroweak symmetry
breaking, and to the description of the phase diagrant3inl)-dimensional SU{.) gauge theories are
considered[S0556-282(197)02008-0

PACS numbgs): 11.15.Ex, 11.30.Qc, 11.30.Rd

[. INTRODUCTION in symmetric and nonsymmetric phases. The standard form
for f(2) is f(2)~(z—zy)", v>0, around z=z,.
The standard framework for the description of continuous The CPT is a very different continuous phase transition.
phase transitions is the Landau-Ginzburg,comodel-like, = We define it as a phase transition in which an order param-
effective action[1]. In particular, in that approach, a phase eterX is given by Eq.(2) wheref(z) has such amssential

transition is governed by the parameter singularity atz=z. that while
d?v lim f(z)=0 ()
M@= Frd , (1) 22,
X=0

as z goes toz, from the side of the nonsymmetric phase,

whereV is the effective potential and in an order param- ; .
eter connected with the phase transition. V\/henhmf(z);to asz—z. from the side of the symmetric phase

M®@>0 (M@<0), the symmetri¢nonsymmetrigphase is (whereX=0). Notice that since relatio(8) ensures that the
realized. The valud(®=0 defines the critical point. order parameteX—0 asz—Z;, the phase transition is con-

tinuous.
(2)
Thus, asM™* changes, one phase smoothly transforms There actually exist well-known models in which such a

Into _another. In particular, masses of I|ght excitations arephase transition is realized. An example of the CPT is the
continuous(though nonanalytic at the critical pojnfunc-

: , hase transition at(?=0 [«(9)= (g(®)?/47 is the bare cou-
'g(tacns of such parameters as coupling constants, temperatur%mg constaritin massless QCD with a small, sayl;<3,

y 2)— (4)— 4 4 number of fermion flavors. In this case, the order parameter
rollef OI\;IM(Z)O,et?e parametekl “=d"V/dX’|_o plays the X, describing chiral symmetry breaking, X6~ A ocp and

In this paper, we will describe a nammodel-like, )
though continuous, phase transition, which is relevant for the X~Aqep~Af(a™), 4)
description of nonperturbative dynamics in gauge field theo-
ries. Because, as will become clear below, this phase transivhere f (a(®)=exg —1/ba(®] (b is the first coefficient of
tion is intimately connected with a nonperturbative break-the QCDg function). The functionf(«(%)) goes to zero only
down of the conformal symmetry, we will call it the if «(9—0 from the side of Re(®>0.
conformal phase transitiofCPT). The above example is somewhat degenerate: the critical
In a o-model-like phase transition, around the critical point a/((:o)zo is at the edge of the physical space with
pointz=z; (wherez is a generic notation for parameters of a 4(%=0. A more regular example of the CPT is given by the

theory, as the coupling constasmf number of particle flavors phase transition a(® =0 in the (1+ 1)-dimensional Gross-
N;, etc), an order parametef is

X=Af(z) 2 IStrictly speaking, Landau and Ginzburg considered the mean-
field phase transition witlhv=1/2. By ao-model-like phase transi-
(A is an ultraviolet cutoff, wheref(z) has such a nonessen- tion, we understand a more general class, when fields may have
tial singularity atz=z_ that limf(z)=0 asz goes toz, both  anomalous dimensiorg].
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Neveu model: in that case both positive and negative valuesritical point z=z. (though they are nonanalytic atz.).

of g are physicalsee Sec. Il Let us show that the situation in the case of the CPT is
There may exist more sophisticated realizations of thalifferent: there is an abrupt change of the spectrum of light

CPT. As will be discussed in Sec. VII, an example of theexcitations, as the critical poit=z is crossed.

CPT may be provided by the phase transition with respect to Let us start from a particular, and important, case of the

the number of fermion flavordl; in an SUN,) vectorlike = CPT connected with dynamical chiral symmetry breaking. In

gauge theory in 31 dimensions, considered by Banks andthis case, in the nonsymmetric phase, amongst I{glith

Zaks long agq3]. In that case, unlike the phase transition atmasses much less than cutdfj excitations, there are mass-

a©=0 in QCD, the critical valud\$" separates two physical less Nambu-Goldston@G) bosons, their chiral partners,

phases, witiN;<N{" andN;=N{". o bosons, and lightwith my,,<A) fermions. The masses of
There may exist other examples of the CPT. Also, therer and fermions are given by scaling relations

may exist phase transitions in §21)-dimensional theories

which “imitate” the CPT (see Sec. Y. M2=C,A%(2), (5)
The main goal of this paper is to reveal the main features
of the CPT(common for its different realizationsand to mgyn: CiA%f(2), (6)

apply the conception of the CPT to concrete models.

. TheCPT ISI’]Otaa-mOdel-llke phase transition, though it Whereco_ and Cf are some positive ConstantS, af-(d) is a
IS continuous. In pal’tICU|aI‘, in the CPT, one cannot |ntr0dUCQJniversa| Sca"ng function. Because of the assump(ﬁ)n
2n) _ 2 2 — . .

the parametersM @M =d?"v/dX*"x_o,n=12,..., gov- M2 and MGy, are indeed much less thar?, whenz is near
erning the phase transition. Another characteristic feature ozc from the side of the nonsymmetric phase.
the CPT is an abrupt change of the number of light excita- * Now, are there lightr ando resonances in the symmetric
tions as the critical point is crosséthough the phase tran- phase, withmy,,=0? Since, as was assumed, ) # 0 as
sition is continuous While evident in QCD and the Gross- ;. in that phase, one should expect that there are no light
Neveu model, it is realized in a more subtle way in theresonances. Let us show that this is indeed the case.
general case. This feature implies a specific form of the ef- 5.4 might think that in the symmetric phase the mass
fective action describing light excitations in theories with the .o |ation for 7 and o is yielded by the analytic continuation
CPT, which will be discussed in this paper. __of the relation(5) for M2 . However this is not the case. The

The paper is organized as folloyvs. In Sec. Il we consider oint is that while in the nonsymmetric phase, and o
the properties of the spectrum of light excitations around th osons are described by Bethe-SalpéBs) equatic,)ns with
gg"?ailspgmc;{ozn:tiﬁa cl)rt]JsthShEa:SeT.tr\él\ﬁwesizggwt;r:a?g tizo:ghattr)]ri pg nonzero fermion mass, in the symmetric phase they are
change of the spectrum of light excita’tions as the critical escrlbed_ by BS equations witig,,=0. Becau_se of that,

intgi ) dpln S " 9 d ibe the chiral ph BS equationgand, more generally, all the Schwinger-Dyson
FO 't's C.OS‘;? D di ec. vlvegtla)sir;f eN € g |r<31 P ase‘(equa’tions for Green’s functionm the symmetric phase are
ransition in theb-dimensiona ( ) ambu-—Jona- yielded by an analytic continuation of the equations in
Lasinio (Gross-Neveumodel. We study the CPT in the two- the nonsymmetric phase
dimensional Gross-Neveu model. This allows one to illus- To overcome these oBstacIes we shall use the following

tSrate tlr\'/e malnt fsatttjrzesglfyf_hg CPT mhadvefry cIO?_ar way. Intrick. In the nonsymmetric phase, besides the stable solution
ec. we study the In quenched four- |men5|onakNith mg,,#0, there is also an unstable solution with

QED (QED,), which is relevant for the study of the phase Mgyn=0. In that solution,7 and o bosons are tachyons:

transition with respect to fermion flavors in a four- N2 ap2 .
dimensional SU{.) gauge theory. In Sec. V the main fea- M7 =M;=Mi;<0. Since the replacement ofy,,#0 by

tures of the CPT are summarized and the realization of ayn=0 (at fixed _values of t_he parametes) does not
pseudo-CPT in QERIis considered. In Sec. VI the structure chan_ge the ultraviolet properties of the theary, the scallng_
of the effective action in theories with the CPT and the real-r(alaLtlon fordthe.tachyon masses has the same form as that in
ization of the dynamics of the partially conserved diIatationEqs'(5) and(6):
current in these theories are discussed. In Sec. VIl the phase
diagram with respect to the bare coupling const and
the number of fermion flavorld; in an SUN.) gauge theory
is considered. In particular, we suggest a modifigsl com-
pared to that suggested in RE3]) phase diagram. Possibili- _ . : )
ties of the examination of this phase diagrgm in lattice Comphase; the difference betw-een these equations is only in the
puter simulations are discussed. In Sec. VIII we summariz¥alues of z [for convenience, we shall assume that

the main results of the paper. In the Appendix some usefuf~Zc (Z<Z) in the nonsymmetric(symmetri¢ phasg.
relations are derived. Then, in the symmetric phase,

MZ=M2=M{y=—CinA?f(2),Cicn>0. (7)

Since nowmy,,=0, the BS equations for tachyons have the
same form as the BS equations ferando in the symmetric

MZ=M2=—CA%f(2), >0,
Il. PECULIARITIES OF THE SPECTRUM H 7 A f(2), - Ciar=0 ®

OF LIGHT EXCITATIONS IN THE CPT with z<z. andC,, from Eq. (7). Notice that because in the

As was already pointed out in the Introduction, in the casesymmetric phaser ando bosons decay to massless fermions
of the o-model-like phase transition, masses of light excita-and antifermionsL\/IfT andMi are complex, i.e.qr ando are
tions are continuous functions of the parameteasound the  now resonances, if they exist at all.
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Since, by definition, in the CPT, liffz)#0 as
z—z,—0, we conclude from Eq8) that there are no light

CONFORMAL PHASE TRANSITION IN GAUGE THEORIES

5053

and the Lagrangian densitjt0) reproduces Eq(9) upon
application of the constraintéll). The effective action for

resonances near the critical point from the side of the symthe composite fields- and 7 is obtained by integrating over

metric phasefM?2|=|M2|~A? asz—z,— 0.

So far, for concreteness, we have considered the case
dynamical chiral symmetry breaking. But it is clear that
(with minor modification$ this consideration can be ex-

tended to the general case of the CPT connected with spon-

taneous breakdown of other symmetries.

Notice also that the relation in E¢8) can be useful for
general phase transitions and not just for the CPT. The poi
is that the scaling functiofi(z) can be determined from the
gap equation for the order parametanﬁgn, in the case of
chiral symmetry which is usually much simpler than the BS
equation for massive composites. For example, an abru
change of the spectrum at the critical pamt z, have been
revealed in some models: in quenched QE[*,5] and

QED5 [6]. This conclusion was based on an analysis of the

effective action4] and the BS equatiofb,6], considered in

a rather crude approximation. On the other hand, since the

determination of the scaling functidi{z) in these models is
a much simpler task, this conclusion can be firmly estab
lished in the present approatdee Secs. IV and V Thus the

By

fermions in the path integral:

f
° I'(o,m)=—iTrin[iy*d,—(o+iysm)]

— %f dPx(o?+ 7?). (12

'{he low energy dynamics are described by the path integral

rtwith the integrand expl’)] over the fieldso and 7. As

N.—, the path integral is dominated by the stationary
points of the actionsT'/ = 61"/ 57=0.
Let us look at the effective potential in this theory. It is

v _ ANGAP 1 1)\ p?
(™) = GmP2r(D/2) || g~ 9o 2A2

p

A*

2 &

p
"2 DD

N (13

5] -ol ]

where p=(a?+ 7212 ¢, =B(D/2—1,3—-D/2), the dimen-

present consideration yields a simple and general criterion ofjonjess coupling constagtis
such a peculiar behavior of the spectrum of light excitations.

It is clear that the abrupt change of the spectrum discussed

above implies rather peculiar properties of the effective ac
tion for light excitations at the critical point. Below we shall

consider this problem in more detail. We shall also reveal anynq the critical coupling,=D/2—1.
intimate connection between this point and the essential dif- At p~2 one finds thgt
ference of the character of the breakdown of the conformal ’

symmetry in different phases of theories with the CPT.

Ill. D-DIMENSIONAL NAMBU —-JONA-LASINIO
(GROSS-NEVEU) MODEL: THE CPT AT D=2

In this section we consider the dynamics in the
D-dimensional (2D<4) Nambu-Jona-Lasinio/Gross-
Nevey model and, in particular, describe the CPT in the
Gross-NeveudGN) model atD=2. This will allow one to
illustrate main features of the CPT in a very clear way.

The Lagrangian density of tH2-dimensional GN model,
with the U(1) XU(1)g chiral symmetry, is

L

1—. G 2, 2
Sl iy o) dl+ L) + Wiyl (9

where ©=0,1, ... D—1, and the fermion field carries an
additional “color” index «=1,2,...,N;. The theory is
equivalent to the theory with the Lagrangian density

L Lo,
(10

E/

The Euler-Lagrange equations for the auxiliary fietdsind
7 take the form of constraints:

o=—Gyp, w=—Giyst, (11)

. 4N AP 2 s 14
- 9= P2 (D) (14
2 -2
M@= dv ~ ANA® 9o 9 (15)
dp2 (47T)D/2F(D/2) 99

p=0

The sign of M(® defines two different phasedv(?)>0
(g<g.,) corresponds to the symmetric phase an&’<0
(g>g.) corresponds to the phase with spontaneous chiral
symmetry breaking, U(3)XU(1)r—U(1), +r. The value
M@ =0 defines the critical poing=g,,.

Therefore aD>2, ao-model-like phase transition is re-
alized. However the cade =2 is special: nowg,—0 and
ép— asD—2. In this case the effective potential is the
well-known potential of the Gross-Neveu mod8l:

2 2

N Ncp
_ 2_ Ne
=S p2- +1].
V(O’,ﬂ') 277_gp 27 |n;2' 1 (16)
The parameteM ® is now
2 9V
p p=0

Therefore, in this model, one cannot Udé?) as a parameter
governing the continuous phase transitiorgatg.=0: the
phase transition is not@-model-like phase transition in this
case. Indeed, as follows from E(.6), the order parameter,
which is a solution to the gap equatidv/dp=0, is

Azexp<

1

g

—Z_

p (18
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in this model. The functiorf(z), defined in Eq(2), is now M2 8N, &
f(g)=exp(-1/2g), i.e., z=g, and therefore the CPT takes Vio,m)=— p*+ (4m)P2(D/2) (4—D)D p°.
place in this model ag=0: f(g) goes to zero only if (26)
g—0 from the side of the nonsymmetric phase.
Let us discuss this point in more detail. However, sinceM (2= atD =2, thea-model-like form for
At D=2, the spectrum of the- and 7 excitations in the the potential is not available in the Gross-Neveu model.
symmetric solution, witp=0, is defined by the equatidin What are physical reasons of such a peculiar behavior of
leading order in M) [7] the effective potential atD=2? Unlike the case with
D>2, atD=2 the Lagrangian densit{f) defines a confor-
11 -2, ép (—M2)P2-1-0. (19 mal theory in the classical limit. By using the conventional
g O 2—-DJ/2 g e approach, one can derive the following equation for the con-

formal anomaly in this modelsee the Appendix
Therefore atD>2, there are tachyons with
v

4— D) 2/<D—2>( g— gcr> 2/(b-2) D, = 6ﬁ=mﬁ(g)[(ﬂ)2+ (Piysp)?l, @D

(20)
2¢p 99 _ ) ) _
where D, is the dilatation current,¢) is the energy-
atg>g., and atg<g,, there are “resonances” with momentum tensor, and th@ function 8=4dg/JInA. It is
B(g)=—g? both in the nonsymmetric and symmetric
4-D\?P72)/g,—g|?O72 phases. While the nonsymmetric phase corresponds to as-
E 99 ymptotically free dynamics, the symmetric phageith
g<0) defines infrared free dynamics: As—~, we are led
which agrees with Eq. (8). Equation(21) implies that the to a free theory of massless fermions, which is of course
limit D—2 is special. One finds from Eq19) that, at conformal invariant.
D=2, On the other hand, in the nonsymmetric phase the confor-

mal symmetry is broken, even d@s—ce. In particular, Eq.
(24) implies that

M2 M3 M 07|

2= =7 @

1
M§T=M§=M$ch=—A2exp( - 5) (22)

0] 6“|0y=4V(p)= 2Ne—7 0 28
atg>0, and (0| )—4V(p)——7p # (28)

5 ) ) 1 in leading order in M, in that phase.
IMZ[=[MG[=A%ex Tal (23) The physics underlying this difference between the two
phases is clear: while negativg correspond to repulsive
atg<o, i.e., in agreement with the main feature of the CpT,interactions between fermions, attractive interactions at posi-

there are no light resonances in the symmetric phase e g lead to the formation of bound states, thus breaking
D=2. the conformal symmetry.

The effective potential16) can be rewritten as Notice the following interesting point. As follows from
Eqg. (26), at D>2 the conformal symmetry is broken by a

2 relevant (superrenormalizedmass operator: its dynamical

Ncp2

V(o,m)= 5 Inﬁ—z—l (29 dimension isd=2 at all 2<D<4. On the other hand, at
™ p D=2 the symmetry is broken by a marginanormalized

operator with the dynamical dimensiah=2. This point is
reflected in that, while ab =2, the expression for the order
parametelp has an essential singularity at the critical point
g=g,=0, at D>2, the singularity atlg=g, in p is not
essential: as follows from Eq13), the solution to the gap
9= 1 _ (25  €quationdV/dp=0 is;?_~A.(g—gcr.)l’(‘?*2)_in that case. As
2In(A/p) is known, the essential singularity implies the absence of
fine-tuning for bare parameters. This is another reason why
[see Eq(18)]. But what is the form of the effective potential the CPT is so interesting.
in the continuum limit in the symmetric phase, wigh<0? Thus, the CPT, in accordance with its name, describes the
As Eq. (16) implies, it is infinite asA —«: indeed atg<0, two essentially different realizations of the conformal sym-
there is no way to cancel the logarithmic divergenc&'in ~ metry in the symmetric and nonsymmetric phases.
It is unlike the case wittD>2: in that case, using Eq. If one adds a fermion mass term©yy, in the two-
(15), the potential13) can be put in ar-model-like form: dimensional GN model, the conformal and chiral symmetries
will be, of course, broken in both phases. However, there
remains an essential trace of the CPT also in this case: an
2For our purposes, it is sufficient to calculate the absolute value oibrupt change of the spectrum of light excitations still takes
M2 . Notice that, as follows from Eq19), narrow resonances occur place. While now in the subcriticab g, =0) phase repul-
nearD=4:T'/Mg=mx[(4—D)/)D—2)][M .=Mr—i(['/2)]. sive interactions between massive fermions take placé

[with p given by Eq.(18)] in the nonsymmetric phase. That
is, in this phaseV(o,) is finite in the continuum limit
A — oo after the renormalization of the coupling constant,
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there are no light resonances theren the supercritical . .
(g>9g,=0) phase the PCA@artial conservation of axial-
vector current dynamics, describing interactions between 1
fermions and lightr and o bosons, is realized.

Besides the point that in the two-dimensional GN model
both subcritical and supercritical phases are physical, this
picture is similar to that in QCD. It is hardly surprising: in 05 ]
both models the dynamics in the supercritical phases are as-
ymptotically free. We will however argue that the main fea- s
tures of the CPT found in the GN model will remain valid
(with appropriate minor modificationsn the general case. or 1

IV. THE CPT IN QUENCHED QED ,

In this section we shall describe the main features of the _
CPT in quenched QER The dynamics in this model is rel-
evant for some scenarios of dynamical electroweak symme-
try breaking and has been intensively discussed in the litera-
ture (for a review see Ref{10]). In the present paper the

0.5 .

emphasis of the discussion will be on the points relevant for o 05 1 @
the general CPT in gauge theories. ‘
We shall consider the laddérainbow) approximation in FIG. 1. The phase diagram in the gauged NJL moSeindA

massless QER Since the contribution of fermion 100ps is genote the symmetric and asymmetric phases, respectively.
omitted, the perturbativg@ function equals zero in this ap-
proximation. However, as is well knowfl0-12, beyond  pirg| symmetry[ U, (1)X Ur(1)— U, r(1)]. Each point of

the critical valuea= ac~1, there are nonperturbative diver- {he critical line corresponds to a continuous phase transition.
gences which break the conformal symmetry in the modely distinguish two parts of the critical line:

Moreover, since atv= a., the anomalous dimensiop,, of

the chiral operatorsyys and i ysi is ym=1 [12,13, the GA? 1[1+( a \Y?

2 a
y aC = § ’ (30)

four-fermion operators )2 and (i ysi)? become(mar- =227 g

ginally) relevant: their dynamical dimensiond is

d=d.—2y,=4, whered.=6 is their canonical dimension. atg>3, and
Therefore, it is appropriate to include these four-fermion

operators in the QED action. This leads to the gauged a=ac (3D)

Nambu-Jona-Lasinio modgL3]:

1——

Ac

at g<j. The anomalous dimensiop,, of the operatorsﬁ
and i ys¢ along the critical line i§15]

1 ) 1—

o 1/2
Ym=1+ 1——) . (32

Ac

G — 24 (5 2
+ S L)+ (Y ysP)7l, (29)
In this approximation, the anomalous dimension of the four-
whereD ,=a,—ieA, [for simplicity, we consider the chiral fermion operator () + (i ys)?] equals Z,. There-
symmetry U (1)X Ug(1)]. In this model, the gauge interac- fore while this operator indeed breaks the conformal symme-
tions are treated in the ladder approximation and the fourtry along the part(30) of the critical line, it is a marginal
fermion interactions are treated in the Hartree-Faulean-  (Scale invariant operator along the part of the critical line

field) approximation. with a=a,: its dynamical dimension isl;;,=6—2y,=4
Since the coupling constai@ is dimensional, one may there. - _ _ _
think that the four-fermion interactions in E(29) explicitly Thus the par(31) of the critical line witha= a. is spe-

break the conformal symmetry. The real situation is howeve€gial. In this case the symmetric phase is not only chiral in-
more subtle. In Fig. 1, we show the critical line in this model variant but also conformal invariant. On the other hand, in
[14], dividing the symmetric phase, with the unbrokenthe nonsymmetric phase, both these symmetries are broken:

U, (1)x Ug(1), and thephase with the spontaneously broken while the chiral symmetry is broken spontaneously, the con-
formal symmetry is broken explicitlysee below[13,14].

Unlike the case of the NJL model, where the Lagrangian
3We are of course aware that the exact solution in the nonsymdensity (10) with the auxiliary fieldso and 7= was used to
metric phase of the two-dimensional GN model yields a realizatiorerive the effective actioh[ o, 7], now we will derive an-
of the Berezinsky-Kosterlitz-Thoule$BKT) phase: though chiral Other effective action: generating functional for proper verti-
symmetry is unbroken, the parameferstill defines the fermion ces of the local composite operatatgs and i ysi. The
dynamical mass, and the would-be NG boseitransforms into a  point is that the trick, used in E¢L0), to introduce the fields
BKT gapless excitatiof9]. o and 7 does not work in pure QEDG=0). It is also
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unclear how well this effective action describes the collective S0  — dJ
xcitations ¢ and = in the case of weakly coupling four- W(‘Jl)_f <O|¢¢|0>J5d201 (38)
fermion interactiongwhen QED forces dominateWe shall 0
discuss the connection between these two actions b@gl@v \where
effective action based on using the auxiliary fietdsand 7
was considered in this model [16,17,7).

Let us describe the effective actiggenerating functional W(J1) =w(Jy) J’ d*x (39
for proper verticesfor the local composite operatogay and
i ys¢ in the gauged NJL model. This effective action was
derived in Ref[4]. In the present paper, we will describe in

2 1
more detail those features of the action which are relevant for 2(pPI17). .
understanding the nature of the CPT. Since the functionaW(J;) corresponds to the source

The effective action is constructed in the term withJ;#0J,=0, the condensad|y|0), is related

standard way. First, one introduces a generatind® the gauged NJL model with the bare mas$)=—J.
functional for Green s functions of the operators Now we need to know the following information concern-

and, = E(p2)|pz o. HereX (p?) is the fermion mass func-
tion (the fermion propagator isG(p)= [A(pz)p“‘y#

~ _ _ _ ing the fermion propagator in rainbow QEOfor a review,
pilX), 1=12 (2= dhpr= Ui ys): see, Ref[10]). In the Landau gauge, the functioAgp?) and
Z({JiH) =exdiW({J;})] 3. (p?) satisfy the equations
2 i p?)=1, (40)
=J d<pexp[if d4x(,c(x)+2 Ji(x)pi(x)) ,
=1 ) © d ) qZE(qZ)
(33 (p)=mT _j P+
where theg integration is functionalJ;(x) is the source for 3a (a2, 9 0(p°—q?)
~ - - - Rt B vy 2
pi(x), and £(x) is the Lagrangian densit{29) [the symbol 4 )o g +34(q°) p
¢o(x) represents all fields of the model )
The effective action for the operatoﬁj$(x) is a Legendre +(q——p)}2( 2), (41)
transform of the functionaW({J;}): q°

where g=GA?%/47?, A is an ultraviolet cutoff, and
TUpH=W({I ) - f d%S J(x)pi(x), (34 m@P=-1Jisthe bare mass of fermiofi§q. (41) is written in
i=1 Euclidean spade
i Differentiating Eq.(41) with respect top?, one finds that
where p;(x)=(0|p;(x)|0) (we use “tilde” here in order to 3 (p?) satisfies the differential equation
distinguish this effective action from that for the auxiliary

fields ¢ and 7). From Eqs.(33) and (34) one finds that the zdg(DZ) 3_0‘ 2(p%) ~0 (42)
following relations are satisfied: dap?|P Tdp? | 4w p?320p?)
and two boundary conditions
=pi(X), 35
5300 P 39 4mg| ,dS(p?)
m®=—J=|| 1+ 5 = |p* =g+ 207
~ 3a Cdp? p2:A2’
1 (43
2
~ 2\2 (p ) =0 44
The effective actiod’({p;}) can be expanded in powers m | (p) dp? | (44)

of derivatives of the fieldg;(x): p2_,o

Differentiating Eq.(41) with respect top? at p?=A2, we

f({pi}):f dx —V({pi})+ %Eij({Pi})aupiﬁij+ . find that the chiral condensa{®|4y|)); is
@ TSI W
(O] pp]0) 5= 472), dqzqz_,_zz(qz)

whereV({p;}) is the effective potential.

The calculation of the effective potential is reduced to
finding the Legendre transform of the functional({J;}) T 3ra
with the sourced; independent of coordinates Because of
chiral symmetry, W depends on the chiral invariant  Aswas mentioned above, Eq40) and(41) are written in
J?=J7+J2. Therefore to determine the form W, it is suf-  the Landau gauge. This gauge is preferable in the rainbow
ficient to consider the source term with#0,J,=0. Then, approximation from the viewpoint of satisfying the Ward-
owing to relation(35), one finds that Takahashi identitiegl0]. The transformation to other gauges

dx

i (45)

(P2

p2=A2
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changes the vertex; i.e.,

remain essentially the sami&8].
The function 3(p?), satisfying Egs.(42—(44), has

the following ultraviolet asymptotics (at p2>2(2,
=32(p?)[p2-0):
. o~ 351 1 p2
E(D )—)szsln 2 22+5 (46)
ata<a,=7l3 [o=(1—alay)?],
. o~ 35 (1 p?
2(p )HAW Eln2—3+5 (47
ata=«a., and
5 o~ 351 1 p?
2(p )HAWESI > 224—5 (48)

at a>a, [@=(alac.—1)Y2]. Here A(a) and 8(a) are
known functions ofa.*

We will calculate the effective potential along the critical
line. Our aim is to show that while along the part of the
critical line (30), with g>3,a<a., the potential has the
conventional,c-model-like, form, its form is rather unusual

along the critical line witha= «, where the CPT occurs.

it leads to an approximation beyond 49
the rainbow one. However, the main results of the analysis

5057
+_ — —
Q =w+l P
_ 49
Q =rf—""(1"0), (51
w

andX, has to be considered here as a functiord pfReal-
izing the Legendre transform @¥(J,), we find the effective
potential:

V(Pl):lel_
Az A2
= — 2w
96maw? (1 o’ 4gl+w © (20)
1+a) Eo 20
— 200 —2
(1 w? 4gl (A)

+2(4g—1—-2w?)|, (52)

where now3, has to be considered as a function of the
condensate

A(w—1)
w

p1=(0|y|0); = B gl (0t 32w,

(53

A solution 20=2_0 to the gap equationlV/d3,=0 (or

We begin by considering the potential along the part ofdV/dp,=0) defines the dynamical masg,,=2, as a func-

the critical line (30). From Eqgs.(45) and (46), we find the
chiral condensate in this case:

A2

(Oly4|0),y,= Toraal & (@™ 1) 3,
+e Y (w+1) %H (49

The functionXy(J,) is determined from Eq(43) with
m(®= —J,. Substituting the condensa#9) in Eq. (38), we

find
:&2 g A )20
_ _ + 2w
EO 2w
+(w+1)Qe2w5<X +2(1-49)|, (50
where

“Note that in the so-called linearized approximat[dg] for the
Schwinger-Dysor{SD) equation(which is a good ong the param-
etersA and § are

T 1+ o)(1-w) 12

A= BT o) 2T (3= )2 T [ (1+ @) 2T (1= )/2]
and
1 [T1+w) TE-w)/2T[(1-w)/2]
@)= 5 N =) T3+ ) 2T [(1+ 0)/2]

ata<a.. At a>a;, w is replaced by in these expressions.

tion of A,«, andg:

g-[(w+1)/2]?
g-[(1-w)/2]?

The limit my,,—0 defines the critical lin&(30): g— (w
+1)%/4=0.

Let us show that the potentigh2) can be rewritten as a
conventional,o-model-like, potential.

It is convenient to define the renormalized fieldE/()M
and (fysy), as

S2_ A2.28
mdyn—E =A%e

1w
1+ w } - (54

(1—(»

() .= Z (),

(i ysi) = Z (i ysih), (55)
where the renormalization constant is
Z(M)_127Tawef"’5A_(w_l) el (56)
m Z\(w— 1) K

[see Eq.(53); notice that the renormalized composite fields

(), and (i ys¥), are defined in such a way as to have
canonical dimension equal td.IThen we find that

- 2 2-w
=0\ J0) =1 =) 7
at u<A and <A.

We will express the potential52) through the chiral
invariant _ pW=[(gW)2+ (7W)2]12 [where
7 =(0| (i ys) ,|0)] and the mass parameter
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d2v We begin by considering the critical pointa(g)
M(Z):—V (58)  =(ag,3). Calculating the potential in the same way as po-
u dp(mz . Qc,3)- g P y p
pW=0 tential (52) for a<a., we find that ate= ., aroundg=
l . .
o Itis

It is easy to check that, along the critical lif&0), the pa-

rameterM ?) is ~ Az , 3
V:—W (4g—l)|_ —8g|_+4g+§ s (62)
2) Au? [1-0 2 2w )% ~
M = 18raa? | 114 (1T @) —4g]e M whereL =In(Ae%3). The gap equationlV/d2,,=0 yields
(59)  the dynamical mass a3
— 1
One can see thatl >0 andM{?)<0 from the side of the mﬁynEES=A2e2(5l)exp{ —_—1/4). (63
symmetric and nonsymmetric phases, respectively. As (9 )
A —oo, with MELZ) being fixed, the pOtentldBZ) is At a= ac, the relation betweepr:p(l")|#=2_o andzo is
- 1 (2—w)K2 p(,L) 42— w) _[s 2
— M@ ()2 i N i

(60)
[compare with Eq(57); in this case the renormalization con-
Thus, as was promised, we derived-anodel-like potential:  stant iszgﬁ‘):(—ZWZ/AAM)[In(Ae‘sl,u)—l]‘l]. Taking the
the sign ofM(?) defines two different phases, and the valuecontinuum limitA — in Eq. (62) (with 3, being fixed we
M®=0 corresponds to the critical line with come to the expression for the potential in the nonsymmetric
0<a<ag=m/3. Notice that the paramet&d?) appears in  phase:
V as a result of the dynamical transmutation: in the con- -

2
tinuum limit, A—co, the dimensional parametev(? re- ~ A §p2( )
2 .

. Pr .
places the dimensionless coupling consgnt V= 1672 In§ 1 (65)

__Note also that, because the anomalous dimengjgrof °
Y and i ysi is ym=1+ w [see Eq.(32)], the dynamical Butwhat is the form of the potentiéin the continuum limit
dimension of these operators, and therefore pbf), is  from the side of the symmetric phase? Let us show that there
d,y=3— ¥m=2— . Therefore the second term in potential the potentialV goes to infinity as\ —».% Indeed Eq.(62)
(60) has a dynamical dimension equal to 4, i.e., it preservesmplies that to get a finit& as A — =, the coupling constant
the conformal symmetry. The first, massive, term in the pog must have the behavior
tential breaks this symmetry. L

One can cheqk that, taking= mdynE.EO, the potential in 4g—1~ E>O; (66)
the nonsymmetric phase can be rewritten as L

i.e., itmustgo to the critical valug.= 3 from the side of the

4(2- w) 2

V= 5 A 5 ES (2— ) Pr —92 Pr , nonsymmetric phase. In the symmetric phase the potential
167°w(1l— w°) o 20 V—o asA—oo,

(61) What is the physical meaning of this result? As in the case

of the Gross-Neveu model, it implies that there are no com-

wherep,Ep(")l#:{O. posite light resonances in the symmetric phase at

As shown in Refs[4,17], the kinetic term and terms with @=a¢,g<d.= 7. Indeed, relation§3) and(63) imply that in
a larger number of derivatives in the effective action are alsghe symmetric phase
finite in the continuum limiE A heuristic explanation of this
factis _simple: the most severe ultraviolet dive_rg_ences always |M127| —| M§|~A2ex;{
occur in the effective potential; therefore the finiteness of the
potential implies the finiteness of other terms in the action. ) ) ) ) )
This implies that around the critical lin€80), both in the This conclusion correlates with the point that, unzllke the
symmetric and nonsymmetric phase, the light excitations incase with the critical line witlw< e, the parametei () is
clude, besides fermions and a photon, compositand 7  not well defined at §,9)=(ac,7): it is MZ)—+x and
particles. M@ _ —c in the symmetric and nonsymmetric phase, re-
Let us now turn to the part of the critical line with spectively[see Eq.(59)].
a=a., Where the CPT takes place, and show that the char- Thus the CPT takes place at,g) = (ag,3).
acter of the phase transition is essentially different there.

1/4_9)>A2. (67)

5There was an attempt to make the effective potential finite at
SActually, as was shown in Ref17], all these terms are confor- a=a, in the A—o limit [7]. This may define a different con-
mal invariant. tinuum theory than that discussed in this paper.
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Let us show that a similar situation takes place along the s .o

whole critical line witha=a,, where the CPT takes place. Mg=2=A"exp 25+
Around the critical line witha=«a., the condensate

(0yy|0), is

2(1+4g) 20
1-4g &b _(a 1)12

ac
(74
— Zng(sinhe ) £ i i - =
0 0)= — —costy 68 xpression (74) is valid at (1-4g)>w<1l. At
(Olyw10), 2m? S (68 (1-4g)<w<1, we find from Eq.(71) that

at a<ag, (the symmetric phageand

AS2A ( sing ~)

mgyn= AZGXF(25— 3)6‘X4 - W) . (75)
(O] g 0)y=— 2 | 0¥

(69) -
In the continuum limitA—o, with 3, being fixed (i.e.,

, s lim wL— 7 asA —o andw—0), we find the expression for
at a>a, (the nonsymmetric phaseHere 6= wIn(Ae’/2) iV

and 6=@In(Ae%3,), and Eqs(45), (46), and(48) were used

in the derivation of expressior(§8) and (69). _ A2y 1
Now the effective potential can be derived in the same V= Lfr) 8(__g>|n220(_13r) +4|n20(_p’) _11‘
way as before. It is 16m 4 2 %
- (76)
~ A%} 1-w\(Ae’\?® , _ . . ,
V= raa? 1—w2—4ng S Here 3., is considered as a function of a renormalized field
Taw @/t <o p,=(o?+7?) which is defined in the following way. One
1+w\[ 30 \% finds from Eq.(69) that, in the continuum limit, the conden-
+ 1—w2—4gm m) sate is
_ ZE%A 1-4¢g 20
—_ —_ 2 = o—
+49-1-20 (Olwwl0)s= 49_1)( R
K224 3 . . . . .
_ 0 [(49—1)L2—89L+4g+ S (70 Therefore |t_|§ approprlate to define the renormallzed fields
24ma 2 (i), and{yi ys¢p), with the renormalization constant
1
at a<a, andw<1 (g<jy), and 72(4g—1) =
~ Z,=—=——A""3;". (78
~  A%sS A
V= —[1-49— 2%~ (1+@°)cog 2wl )
48raw Then one finds that
+4gcog 2wl —2arctaiw) | (71
2 (Olg0)=325, Y 14 1280 (79
ata>a, ando<1 (g<3). 071 =Zn(0l410)3=256%¢ 2 n2=0 - (19

Notice that ata= a.= /3, expressior(70) for V coin-
cides with expressio(62). Therefore we conclude thatin the The function(p,) in Eq. (76) is defined from Eq(79),
symmetric phase, along the whole critical line with+ «., with o, replaced byp, .
the collectiveo and excitations decouple from the infrared  potential(76) describes composite and 7 particles in
dynamics. In this phase, the conformal dynamics of masslegge nonsymmetric phase.
fermions and photons is realized. Thus there is an abrupt change of the number of light

Let us now consider the potentidll) in the nonsymmet-  excitations and the character of the dynamics, as the critical
ric phase. The gap equatiofv/dX,=0 yields the following line is crossed, along the whole critical line with= a.,

solutions forYy at (1-4g)>w<1: where the CPT takes place.
It is instructive to compare the effective actiégenerat-
Gl=mn—o 1+4g7 n=12, .., (72) m functionql for proper v_ertices of thg oper_ato,hﬂ/ and
1-4g Yiys) considered here with the effective actibrfor aux-

3 iliary fields, whose derivation in the gauged NJL model was
T ° _ considered in Ref4.16,17,7. The actionl’ (o, ) is derived
ob=mn+ 2@ N L2, (73 by rewriting the Lagrangian densitp9) as
whereL =In(Ae”3,). One can check that while all the solu- 1 , 1 — —

7 = — — — M _

tions (72) correspond to minima o¥, solutions(73) corre- £ 4(F“V) * 2[1#’(I VDYl Plotiysmy
spond to maxima of the potential. Actually, only the global
minimum, corresponding to=1, defines the stable vacuum.

1
(g% 2
Therefore the dynamical mass is 2G (o=, (80)
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and then integrating out both the fermion and photon fields. _ = Ba)
In the mean-field approximation, the path integral avemnd = limlim=——=F, F*, (83
7 is dominated by the stationary points of": A=ma—ac

o'/ 8m=6'180=0.

It is clear, however, that the trick of introducing the fields
o and 7 in Eq. (80) cannot be applied to pure QED
(G=0). It is also unclear how well the mean-field approxi-
mation is around the part of the critical line with= «a,
where the QED dynamics dominate. _

Comparing the expression for the potentalvith that for
the potentialV, derived in Refs[16,17,7, one finds that
while they coincide around pafB80) of the critical line, with

where 8(g) = dg/dInA=—2(g—3)? is determined from Eq.
(63), and B(a)=daldinA=—%(ala.—1)%? is determined
from Eq. (75). As was pointed above, aty(g) =(a.,3) the
dynamical dimension of the operatdny) 2+ (i ysih)?] is
d=4 and, therefore, it is indeed a marginal operdthe
operatorF , ,F#” in Eq. (83) is also of course margingl

At a=a, and g<j3, the equation for the conformal
anomaly is(see the Appendix

a<a, andg>3 (where the four-fermion interactions domi- B(a)
nate, they are different around the critical line with JD,=0= lim ——F,F", (84)
a=«a., Where the CPT takes place. In particular, the coun- A—®,a—ag da

terpart of expression&?2) and(76) for v are[16,7]

_ where B(a)=——3(ala,—1)%? is determined from Eq.
Azzg 49-1\ 5 (74). Here, againg”“D , is a marginal operator. In the next

V=-35—2 [(T)L —2L+ 5 (81)  section, we shall summarize the main features of the CPT.

We shall also discuss the phase transition in QED
and[17]
Z224 201 s s V. GENERAL FEATURES OF THE CPT:
_ 16770 E(Z_g)ln2§=0+4lng=o_l @ A PSEUDO-CPT IN QED,
0 0 Now we are ready to summarize the main features of the

. . . ~ _ CPT.
rgspectlvely. Unlike expression§2) and (76) for V, V is There is an abrupt change of the spectrum of light exci-
singular atg=0 (pure QED. tations, as the critical poirg=z. is crossed, in the CPT. As

. ; ~ 1

hTh's Eestwte of\/t_ reflegts t.hetpoi?]t that atf— Clydc 9<%  \as shown in Sec. I, this property is general and reflects the
when QED interactions dominate, the mean-fie d approXimay, . asence of an essential singularityzat z, in the scaling
tion is not good enough and one has to consider quantu linction f(2)

fluctuations of the fieldsr and 7. On the other hand, the The CPT is (though continuousa none-model-like

generating functional” adequately describes the dynamics yhase transition. This implies a specific form of the effective
along the whole critical line. o action, in particular, the effective potential, for the light ex-

A similarity between the dynamics in quenched QED (itation neaz=z,. While the potential does not exist in the
and theD-dimensional GN model considered in Sec. Il is ¢ontinyum limit in the symmetric phase, it has infrared sin-
evident. Ate<a.=m/3 (D>2) ag-model-like phase tran- g jarities atp=0 in the nonsymmetric phase s a generic
sition is realized in quenched QEOGN mode); ata=ac  notation for fields describing the light excitationés a re-
(D=2) the CPT takes place in these models. However, thergyt unlike theo-model-like phase transition, one cannot
is an essential difference between the CPT phase transitionsoduce parameters! (2n):d2nV/dp2n|p:0 which would
in these two models. While in the GN model, the symmetricyoyern the phase transition: all of them are equal either to
phase, withg<0, is infrared free, the symmetric phase in ;o1 or to infinity.
quenched QED is a Coulomb phase, describing interactions The infrared singularities in the effective potential imply
between massless fermions and photons. _ the presence of long range interactiongas0. This is con-

As was indicated in Sec. Ill, a marginal operator iS ré-pecied with an important role of the conformal symmetry in
sponsible for the breakdown of the conformal symmetry in\e CpT. In the examples considered in Secs. Il and IV,
the nonsymmetric phase in the two-dimensional GN mode|yhile the symmetric phase is conformal invariant, there is a
[see Eq.(27)]. This leads to an essential singularity in the conformal anomaly in the nonsymmetric phase: the confor-
expression for the order parametef18). This in turn cures | symmetry is broken by a marginal operator. The latter
the fine-tuning problem which takes place[at-2, where  gjiows one to get rid of the fine-tuning problem in such a
relevant(superrenormalizedoperators break the conformal dynamics. We shall return to the problem of the effective
symmetry. _ _ action in the CPT in the next section.

A similar situation takes place in quenched QEDVhile Because of the abrupt changing of the spectrum of light
ata<ag, the(relevani mass operator breaks the conformal eycitations atz=z,, the very notion of the universality class
symmetry[see Eq.(60)], at a=«c, it is a broken(in non-  for the dynamics with the CPT seems rather delicate. For
symmetrig phase by a marginal operator. Actually, as ShOW”exampIe, in both GN model and QCD, at the critical point
in the Appendix, the equation for the conformal anomaly ha?g=0 anda(©=0, respectively, and at finite cutoffA, the

the following form at ,g) = (. 3): theories are free and their infrared dynamics are very differ-
G Blg) — o ent from the infrared dynamics in the nonsymmetric phases
MD,=0= lim - _g[(¢¢)2+(¢i ysih)?] of these theorieéat g>0 anda(?)>0, respectively. This is

A—o0,g— 1/4 2 g a common feature of the CPT: around the critical point, the
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infrared dynamics in the symmetric and nonsymmetricthe lines used in Sec. Il. In agreement with the result of Ref.
phases are very different. However, in the nonsymmetri¢6], where the BS equation was used, one concludes that
phase, the hypothesis of universality has to be applied to thihere are no light resonancgsith (M?< a3)] in the sym-
region of momentg satisfying p<p<A, wherep is an  metric phase of QEB and that there is an abrupt change of
order parameter. In that region, critical indic@omalous the spectrum of light excitations &t=Ny,.

dimension$ of both elementary and composite local opera- |t is appropriate to call the phase transition in QEBR

tors in near-critical regions of symmetric and nonsymmetricpseudo-CPT: in the nonsymmetric phaseNat N, a new,
phases are nearly the same: the critical indices are continwonperturbative, source of the breakdown of the conformal
ous functions ofz aroundz=zc.7 On the other hand, since symmetry occurs.

the infrared dynamics(with p~p and p<p) abruptly
changes as the critical point=z; is crossed, the low energy
effective actions in the symmetric and nonsymmetric phases
are different.

VI. THE EFFECTIVE ACTION IN THE THEORIES
WITH THE CPT AND THE DYNAMICS

One can consider deformations of theories with the CPT, OF THE PARTIALLY
by adding relevant operators in their Lagrangians, such as CONSERVED DILATATION CURRENT

fermion mass terms, which break explicitly the conformal |n this section we shall discuss the properties of the effec-

symmetry. Also if there is a perturbative running of the cou-tive action in theories with the CPT in more detail. In par-

pling in the symmetric phase, it will lead to perturbative ticular, we shall consider a connection of the dynamics of the

violation of the conformal symmetrisee Sec. VIl In many  CPT with the hypothesis of the partially conserved dilatation

cases, the deformations do not change the most characterisgjgrrent(pCDQ [24-27.

point of the CPT: the abrupt change of the spectrum of light The effective potentials derived in the two-dimensional

excitations az=z. discussed above. The reason is that thergzN model[see Eqgs(16) and(24)] and in quenched QEP

is an additional, nonperturbative, source of the breakdown ofith («,g)=(a.,2) [see Eqs(62) and (65)] have a similar

the conformal symmetry in the nonsymmetric phase, whiclgrm.

provides the creation of light composites. 3 Moreover, one can show that the kinetic term and terms
The conception of the CPT, in a slightly modified form, with higher number of derivatives in both the GN model and

can be also useful for a different type of dynamics. As anyyenched QEDR are conformal invarian{8,17]. In other

example, let us consider QEDwith massless four- \ords, the conformal anomaly comes only from the effective

component fermiongl9]. It is a super-renormalizable theory potential in both these models.

where qltraviolet dynamics plays rather a minor _role. AsWwas  Thijs point is intimately connected with the PCDC dynam-

shown in Refs[20,21], when the number of fermion flavors ics, In order to see this, let us determine the divergence of the

Ny is less thanN,, with 3<N.<4, there is dynamical dilatation current in these models. Equati@4) implies that
breakdown of the flavor U(9;) symmetry in the model, and

fermions acquire a dynamical mass: 2N
9D, = 0"=— W°p2 (86)
l{ 2 1 (85
Mgyn™~ @3eXH — ———x|,
" VN /Ng—1 in the GN model, and Eq65) yields
where the coupling constant;=e?/4w is dimensional in A2 )
QED3 (9’U'D,u: 0ﬁ= - mmdynpz (87)

Though this expression resembles expressiai for the
dynamical mass in quenched QEDwvhereA plays the role
of a3 and a plays the role ofN;, the phase transition at in quenched QER with o= a., where the CPT takes place
N;= Ny, is, strictly speaking, not the CPT. Indeed, because of Mayn=20). Now, recall that the dynamical dimensidp of
super-renormalizability of QER the ultraviolet cutoffA is  the field p is d,=1 andd,=2 in the GN model and in
irrelevant for the dynamics leading to relatig@5). Also, quenched QED (with a=a,), respectively. Therefore Egs.
since as is dimensional, the conformal symmetry is broken (86) and (87) assure that the dynamical dimension of the
in both symmetric N;>N) and nonsymmetricN{<N,) operator ¢4, coincides with its canonical dimensiody=2
phases. andd,=4 in the two-dimensional GN model and quenched
Nevertheless, the consideration of the spectrum of lighQED,, respectively. This implies the realization of the
[with (M?< a%)] excitations in this model can be done along PCDC hypothethis in these mod€lg4—-27: the operator
¢, has the correct transformation properties under dilatation
transformations.

"However, because of explicit conformal symmetry breaking in  In the renormalization group language, this means that the
the nonsymmetric phase, there are additional logarithmic factorsonformal symmetry in these models is broken by marginal
(such agIn(p/p)]9 in Green’s functions in that phase. (renormalizedl operators and not by relevanfsuper-

8We are aware that there is still a controversy concerning thigenormalizedl ones[irrelevant (nonrenormalized operators
result: some authors argue that the generation of a fermion masontribute only small corrections in the infrared dynarhics
occurs at all values dfl; [22]. For a recent discussion supporting  Though these two models are very special, one may ex-
relation (85), see Ref[23]. pect that at least some features of this picture will survive in
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the general case of theories with the CPT. In particular, one
may expect that in the general case the effective potential has n,
the form

p D/d, p
- F(I =, (88 s

P P

V(p)=CpP

whereC is a dimensionless constant aR(x) is a(presum-
ably) smooth function.

The contribution oV (p) (88) into the conformal anomaly
is of the form N, A

o D/d, p A
polt el e
P P

whereF’(x) =dF/dx, i.e., in the general case, logarithmic

factors may destroy the covarian@eith respect to dilatation

transformations of the relation for the conformal anomaly.

Actually this takes place already in quenched QEWIth go

a=a. butg<j. Indeed, as follows from Eq$76) and(79),

the logarithmic factors occur in the equation for the confor- FIG. 2. The phase diagram in an SU)) gauge model sug-

mal anomaly in that case. gested by Banks and ZakS and A denote the symmetric and
Also, one should expect that the conformal invariance ofasymmetric phases, respectively.

the kinetic term and terms with higher number of derivatives

may also be destroyed by logarithmic terms. While these two coefficients are invariant under change of a
It is clear that the effective action in theories with the renormalization scheme, the higher-order coefficients are

CPT are very different from that in the four-dimensional lin- scheme dependent. Actually, there is a renormalization

ear o model and Nambu—Jona-Lasinio model, where thescheme in which all the higher-order coefficients vaf$j.

conformal symmetry is broken by relevant operators and th&herefore there is at least one renormalization scheme in

chiral phase transition is a mean-field one. which the two-loopg function is (perturbatively exact. We
This point can be relevant for the description of the lowwill use such a renormalization scheme.

energy dynamics in QCD and in models of dynamical elec- The theory is asymptotically free ib>0 (N;<Nf*

troweak symmetry breaking. In particular, as was already=3N,). If b>0 andc<0, theB function has a zero, corre-

pointed out in Ref[26], the low energy dynamics are very sponding to a infrared-stable fixed point, at

sensitive to the value of the dynamical dimensén

2 r 4

VII. PHASE DIAGRAM IN A SU (N,) GAUGE THEORY a=at=—r. (92

In this section, we will consider the phase diagram with
respect to the bare coupling consta?) and the number of WhenNj is close toNf* = N, the ratio|b/c|, and there-
fermion flavorsN; in a four-dimensional SU4Y,) vector-  fore the value ofa™, is small. The value of the fixed point
like gauge theory3]. In particular, we will discuss a recent a* increases with decreasimy, and this fixed point disap-
suggestion5] that the phase transition with respectNpin  pears at the valubl;=N7f , when the coefficient becomes
that theory resembles the phase transitisith respect to the  positive (N is Nf =8.05 forN.=3).
coupling constantin quenched QEDR at a= a. . It is convenient to consideM; as a continuous parameter
A starting point of the analysis of Reff3,5] is the pres- and to study the dynamics & is varied. Note that since
ence of an infrared fixed point in the two-loopdunction of  N; appears analytically in the path integral of the theory, one
an SUN.) theory, when the number of fermion flavd¥g is  can give a nonperturbative meaning to the theory with non-
large enough. Recall that the perturbat@dunction in that integerN;.
theory is Unlike ultraviolet-stable fixed points, defining dynamics
) 3 4 at high momenta, infrared-stable fixed poirtiefining dy-
Bla)=—ba—ca’~da"—---. 90 npamics at low momenjaare very sensitive to nonperturba-
tive dynamics leading to the generation of particle masses.
For example, if fermions acquire a dynamical mass, they
decouple from the infrared dynamics. Then, only gluons will
1 contribute to theB function, and as a result, the perturbative
b= 6—(11NC—2Nf), infrared-stable fixed point in thg function will disappear.
™ Thus the crucial question is the interplay between the
> value o* of the infrared-stable fixed point and the chiral

34N2— 1ONN;—3—=—N;|. (91  dynamics.
Nc In Fig. 2, the phase diagram suggested in R8}. is

In the case of thé&l; fermions in the fundamental represen-
tation, the first two coefficients af@8]

C= 242
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shown. The authors considered the Hamiltonian lattice gauge In order to estimate the critical valué{', the authors of
theories with Kogut-Susskind fermions. The main features oRef.[5] use the dynamical picture of chiral symmetry break-
this diagram are the following. The vertical lingvith ing corresponding to the rainboffadde) approximation. As
N;<Nf <N§* =1IN./2) corresponds to a first-order phasein known[10], in an SUN.) gauge theory, this picture co-
transition, dividing a weak-coupling phase, possessing a corincides with that in quenched QEDwith the replacement
tinuum limit A—c, from a strong-coupling phase. Notice the coupling constank by aeq=[(NZ—1)/2N.]e.

that there is spontaneous chiral symmetry breaking in both Therefore, in this approximation, spontaneous chiral sym-
these phases: the chiral order parameter jumps without vametry occurs when the gauge coupling exceeds a critical

ishing at this phase transition. value ac=2Nc/(N§—1)~7-r/3. Then, the estimate for the
Note the following pointg3]. critical valueN{' is
(a) The vertical line occurs because the chigafunction .

is positive for largeg®) and negative for smatj(”), where it o (Ng) | =ner= atc, (93)

coincides with the perturbativ@ function. Thus thes func- ) )
tion has an infrared-stable zero at some intermedigte ~ Where a*(Ny) is @”(Ny)=—b/c with b and ¢ from Eq.
The line of these zeros is the vertical line at which the first-92: . .
order phase transition occufis cannot be second order be- ~ The estimaté93) leads to the critical value
causeB has no ultraviolet-stable zenps 2
(b) The numbeN; refers to the number of fermion fields NCT—= (100\16_66)
in the formal continuum theory which is twice the number of f ¢ 25N§— 15/°
single-component lattice fields. Therefore the minirfradn-
zerg value of N; is Ny=2. The vertical line ends at this For N.=3, for exampleN{" is just below 12
value since in pure gluodynamics there is apparently no WhenN{'<N;<Nf* =11N./2, the value of the infrared-
phase transition between weak-coupling and strong-couplingtable fixed pointz* is less than the critical value,. and
phaseg 30]. there is no chiral symmetry breaking. There are two possi-
The right-hand portion of the curve on the diagram, sepabilities: the bare coupling constant(?) is a(@<a* or
rating symmetric and nonsymmetric phases occurs due to thg0) > *
following reason. At large enough values of the coupling, | et us first consider the case with®<a*. Then, if
spontaneous chiral symmetry breaking takes place for any (0= 4*  the running gauge coupling(x) is equal to the
numberN; of Kogut-Susskind fermions. Then the authors of,31ue o* for all u<A. Then, asA —, one gets a confor-

Ref.[3] argue that it is not reasonable to allow spontaneousna| theory describing interactions of massless fermions and
chiral symmetry breaking to persist below some finitegyons.

9®(Ny). As a result they suggest the existence of that right- On the other hand, ifx(®<a*, the running coupling
hand portion of the curve on the diagram, describing a chiral,(,,) changes from a(u)=a!® at u=A through
first-order phase transition. The form of this curve reflectsy(,)=o* at 4 =0. Nonperturbative effects, such as chiral

the fact that polarization screening effects bgcome strong&fymmetry breaking, are now absent, though the conformal
with increasingN; , and therefore the value gf”, at which  symmetry is broken by ordinary perturbative contributions
the first-order chiral phase transition occurs, increases Witfeading to running ofr(«). Thus, in this case, an interacting
Nf . Note that it is called a bulk phase transition in the lit- non-Abelian Coulomb phase of massless quarks and g|u0n5

erature. _ _ is still realized.
At last, the left-hand portion of the curve, separating sym- | et us now consider the case with®> o* .

metric and nonsymmetric phases, coincides with the line of |t the value ofa(© is close toa™* . then the interactions

the infrared-stable fixed points* (Ny) in Eq. (92). It sepa-  gre still weak, and chiral symmetry is unbroken. Therefore
rates the symmetric, Coulomb, phase describing interactiongiere js still an interacting Coulomb phase in this case,
of massless gluons and fermions, and the nonsymmnietnit though, unlike the case with(®< a*, the running coupling
confinementphase. Since it is a line of infrared-stable fixed yocreases withe, and a(u)— a* aspu—0. As A —o, we

points, it _describes a first—ordgr phase transition. _ recover the conformal theory, with(x) = o* for all 4, dis-
Thus, in the Banks-Zaks picture, spontaneous chiral Symg ,ssed above.

metry breaking and confinement occur in the weak-coupling  aq (9 pecomes sufficiently large, one comes again to
** _ B 1

phase at alN;<N{™ =11N./2. Notice that the left-hand part e first-order chiralbulk) phase transition. The above con-

of the curve in the phase diagram describes a rather unusugheration leads us to suggesting the phase diagram shown in

situation: atNf <N;<Nf* spontaneous chiral symmetry Fig. 3.

breaking and confircl)ement disappear witbreasingthe bare Notice that, as before, the form of the right-hand part of

coupling constang®. the curve, describing the bulk phase transition, reflects the
As we shall show, the phase diagram changes dramati-

cally if one adopts the suggestion of RE§] concerning the

dynamics of chiral symmetry breaking in this model. The 9xs to a justification of this approximation, a computation of the

suggestion is that since thf*value of the infrared-stable fixefext-to-leading term in the gap equation shows that it yields a cor-

point a* is small atN;=N{” =11N./2, one should expect rection toe, of approximatelye=1/6(1—1/N2) [31]. For N.=3,

that there is a critical value ®¢, N;=N{', above which the the factore is e=0.19. Therefore, if this factor reflects the contri-

chiral symmetry is restored. bution of higher order, the estimat@3) may be reliable.

(94)
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; order parameter jumps to zero, =8 the situation is less
clear. More recent, and refined, simulations of this theory
with N;=8 indicates that in this case there is a first-order
phase transition at which the order parameter jumps without
s vanishing[34].
Thus the data of both these simulations seem to indicate
s on the presence of the vertical lifat least alN;=8) shown
N7 in Figs. 2 and 3. It is still impossible at present to discrimi-
nate between these two phase diagrams.
A Note that since the bulk phase transition is a lattice arti-
fact, the form of the phase diagram can depend on the type of
fermions used in the simulations. The simulations of the
SU(3) theory with Wilson fermiong35] show that theories
which satisfy both quark confinement and spontaneous chiral
symmetry breaking in the continuum limit exist only for
N;<6. When 16=N;=7, the theory is nontrivialinteract-
ar | ing), however, without quark confinement. Moreover, at
. N;=7, chiral symmetry is unbroken at all values of the bare
© 4 coupling a(?.
These data seem to favor the phase diagram in Fig. 3 in

FIG. 3. The modified phase diagram in an $lJY gauge model ~ which the right-hand part of the curve is replaced by the
discussed in the texg andA denote the symmetric and asymmetric horizontal lineN;=N{'=7.
phases, respectively. It is clear that more data are needed in order to establish

) o ] firmly the phase diagram in an SNf) gauge theory.
point that the polarization screening effects becomes stronger

with increasingN; . In particular, the rainbow approxima-
tion, used alN;=Nf{', ceases to be good at largé.

The left-hand portion of the curve in Fig. 3 still coincides  |n this paper we introduced the conception of the confor-
with the line of the infrared-stable fixed points®(N¢) in  mal phase transitiolCPT) which provides a useful frame-
Eq. (92). However, now it separates two symmet(igith  work for studying nonperturbative dynamics in gauged
unbroken chiral symmetjyphases, and, besides that, its also other field theories. We described the general features
lower end point iQ\lf=N?r and notN¢= N;‘ as in Fig. 2: at  of this phase transition.

N;<Nf{" the infrared-stable fixed point is washed out by gen- The CPT is intimately connected with the nonperturbative
erating a dynamical fermion mass. These two symmetribreakdown of the conformal symmetry, in particular, with
phases are distinguished by their dynamics at short distancettte PCDC dynamics. In the nonsymmetric phase the confor-
while the dynamics of one phase is asymptotically free, anmal symmetry is broken by marginal operators. This in turn
other is not. On the other hand, their long distance dynamicgjields constraint on the form of the effective action in theo-
governed by the infrared-stable fixed point, are similar. ries with the CPT.

VIIl. CONCLUSION

At last, the horizontalN;=N{", line describes the CPT- In all the examples of the CPT considered in this paper,
like phase transition in this model. Relati6f) suggests the the conformal symmetry was explicitly broken by the con-
following scaling law formgyn; formal anomaly in the phase with spontaneous chiral sym-

metry breaking. Is it possible to realize dynamics with both
) ) C chiral and conformal symmetries being broken spontane-
Mgy~ A%exg — [a* (N[ ag— 1772 (99 ously? Although at present this question is still open, we
would like to note that long ago arguments had been given
whereC is some constanftC= 27 in Eq. (74)]. against the realization of such a possibili86].
The dynamics in an SUN.) gauge theory witiN;=N{" The conception of the CPT can be useful for strong-

may be relevant for the realization of the scenario ofcoupling gauge theories, in particular, for QCD and models

“walking”-like technicolor for electroweak symmetry of dynamical electroweak symmetry breaking.
breaking [32]: the “walking” coupling constant In connection with that, we note that the effective action

a(u)=a*=a, governs the chiral symmetry breaking dy- considered in Sec. VI may be relevant for the description of
namics. In this case the effective action in quenched QED ao mesor| f°(400-1200)] [37,38. If it is rather light(with
considered in Sec. IV, should be relevant for the descriptiotM ,=600 MeV) as some authors conclufigg], it can domi-

of this dynamics. nate in the matrix elements of the operajrin low energy

Let us now turn to data of lattice computer simulations ofdynamics, i.e., it can be considered as a massive dilaton, as
an SUN.) gauge theory. was already suggested some time f2,26.2°

Lattice computer simulations of the $8) theory with It is also clear that the conception of PCDC and massive

N;=8 andN;=12 of staggered fermions in Rdf33] show

the presence of the first-order, bulk transition separating—

strong- and weak-coupling phases. Whild\gt=12 there is For a recent application of this conception in nuclear physics,
a clear signature of the chiral phase transition at which thaee Ref[39].
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dilaton can be useful for the description of the dynamics of<0|¢9/’j|0).ll Then, because of the Lorentz invariance,

composite Higgs boson. (0]6%|0)=4(0|65|0)=4ey , whereey is the vacuum energy
Another application of the CPTor pseudo-CPfmay be  density. It has the form

connected with nonperturbative dynamics in condensed mat-

ter. Here we only mention the dynamics of a non-Fermi lig- eV=A4f({gi(°)}), (A1)

uid which might be relevant for high-temperature surpercon- ) ) ) ) )

ductivity: some authors have suggested that QEDay where f is some function of dimensionless coupling con-

serve as an effective theory of such a dynartg. stantsg{?). Let us assume that the renormalizationgb?’
There has recently been a breakthrough in understandirigads to a finiteey in the continuum limit. This implies that

nonperturbative infrared dynamics in supersymmetric

(SUSY) theories(for a review see Refl41]). It would be ﬂ:46\/+ A4E (9{0) ,Bi({gﬁo)})=0, (A2)
worth considering the realization of the CPT, if any, in dinA e
SUSY theories, thus possibly establishing a connection be- 0)
tween SUSY and non-SUSY dynamics. whereg;=dg; ™"/ dInA. Therefore

of
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APPENDIX " : _
We defined’; as (64)can— (0|(6%)cal0)o, Where @%)can is the

In this appendix the relation for the conformal anomaly iscanonical expression for the trace of the energy-momentum tensor
derived. Since the relation for the conformal anomaly is anand(0|(6%)..]0)o is its vacuum expectation value in the perturba-
operator one, one can consider its realization for any matrixive (masslessvacuum. For the models in question, this definition
element. guarantees the finiteness (f| 6%,|0) in the continuum limit, after

We will consider the vacuum expectation value renormalizations of coupling constants.
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