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When an antisymmetric tensor potential is coupled to the field strength of a gauge field via aB∧F coupling
and a kinetic term forB is included, the gauge field develops an effective mass. The theory can be made
invariant under a non-Abelian vector gauge symmetry by introducing an auxiliary vector field. The covariant
quantization of this theory requires ghosts for ghosts. The resultant theory including gauge fixing and ghost
terms is BRST invariant by construction, and therefore unitary. The construction of the BRST-invariant action
is given for both Abelian and non-Abelian models of mass generation.@S0556-2821~97!05106-0#

PACS number~s!: 11.15.Bt, 11.10.Hi, 14.70.Pw

I. INTRODUCTION

The free antisymmetric tensor potential has one degree of
freedom, a scalar@1#. This scalar can be coupled to an Abe-
lian gauge field via a ‘‘topological’’B∧F term with a di-
mensionful coupling constantm of mass dimension one. The
resulting theory, which is classically dual to the Goldstone
model~the Abelian Stu¨ckelberg model!, has three degrees of
freedom which can be identified, both classically and quan-
tum mechanically, with the propagating degrees of a massive
gauge field of massm @2–5#. This theory, as well as its
vacuum, is invariant under both U~1! and the vector gauge
symmetryBmn→Bmn1] @mLn# with an arbitrary vector field
Lm . In other words, this model generates vector boson
masses without symmetry breaking and without a residual
Higgs field. The symmetries of the theory ensure that when
fermions are included in the theory, only the transverse com-
ponents of the gauge field couple to the fermionic current.
The generic coupling term of mass dimension four between
the antisymmetric tensor and fermions is of the form
c̄(a1bg5)s

mnBmnc, which is not invariant under the vector
gauge transformations, and therefore cannot be included in
the action if this symmetry is to be maintained. This implies
that there is no three-point coupling, and therefore no loop,
directly involvingBmn . Consequently it is straightforward to
renormalize QED in which photons acquire mass via this
mechanism@4#.

The possibility that a non-Abelian version of this theory
may exist as a consistently quantizable theory is an interest-
ing one. Although many aspects of the standard model have
been experimentally verified, the symmetry-breaking sector
is still mostly unexplored and the source of some unan-
swered questions. So far experiments have not turned up an
elementary scalar in any system of interacting particles, nor
is there any positive evidence of an electroweak Higgs par-
ticle, either elementary or composite, at currently available
energies. On the other hand, various theoretical arguments
set the upper bound of the Higgs boson mass only a little out
of reach of the present generation of accelerators. This sug-

gests that perhaps we should consider alternative descrip-
tions of the symmetry-breaking sector of the electroweak
theory and prepare ourselves for the situation that no Higgs
particle is ever found.

The Higgs sector as it stands has three equally important
roles. One is to break the global SU~2!isospin3U~1!hypercharge
symmetry down to the U~1! symmetry of electromagnetism.
In the standard model the mechanism of symmetry breaking
generates masses for the vector bosonsW6 andZ. In addi-
tion, the Yukawa coupling of the Higgs scalar to fermions
breaks chiral symmetry and contributes to fermion mass gen-
eration. But suppose we consider the possibility that the
three questions may be resolved separately. Then it makes
sense to consider a mechanism to generate masses for vector
bosons via aB`F interaction with an antisymmetric tensor,
and look for the possibility of symmetry breaking and ferm-
ion mass generation in some other interaction in the theory,
possibly as dynamical mechanisms.

But first we have to have a theory that can be consistently
quantized, i.e., one that is both unitary and renormalizable.
Various Higgs-free theories of massive non-Abelian vector
bosons, including the Proca model, the Stu¨ckelberg model,
the gauged nonlinear sigma model, or the Higgs model with
a heavy Higgs boson, are either nonrenormalizable or violate
unitarity. Therefore any other proposed mechanism must
pass these two tests. As far as the antisymmetric tensor is
concerned, the renormalizability of the Abelian theory does
not really provide a pointer, because even a gauge variant
mass term for the photon does not affect the renormalizabil-
ity of QED @6#. However, as was pointed out elsewhere@7#,
it is possible to construct a non-Abelian theory which is
power-counting renormalizable, has unbroken gauge symme-
tries, and has propagators which fall off as 1/k2 at high mo-
mentum, so there are no obvious obstructions to renormaliz-
ability. ~Unlike the Freedman-Townsend model@8# which
does not have a kinetic term forBmn , the model proposed in
@7# is not dual to the nonlinear sigma model.! But unitarity is
another story.

The biggest argument faced by any theory with massive
vector bosons but without a Higgs-like excitation involves
unitarity. Any theory with a Hermitian Hamiltonian operator
is necessarily unitary. However, a gauge theory has several
redundant degrees of freedom which have to be eliminated
by gauge fixing. An explicitly Lorentz-covariant gauge-
fixing term introduces states of negative norm in the theory
which have to be eliminated in turn by introducing ghost
fields. At this point the theory contains non-Hermitian fields
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and states of negative norm, so the unitary of the theory
needs to be checked explicitly. One way of checking whether
a theory unitary is to see if the action including the gauge
fixing and ghost terms is invariant under Becchi-Rouet-
Stora-Tyutin~BRST! transformations@9,10#. If it is invari-
ant, it is possible to define the conserved Noether chargeQ
of the symmetry. This charge is nilpotent,Q250, and defines
a cohomology on the Fock space of the theory. The space of
statesuc& such thatQuc&50 but uc&ÞQux& for any ux& can be
identified with the physical subspace of the Fock space, and
it can be shown that theSmatrix of the theory is unitary in
this physical subspace@11#.

For the antisymmetric tensor potential, the Faddeev-
Popov construction runs into problems because of the need
for ghosts for ghosts@12#. It is well known that the con-
straints of the free antisymmetric tensor form a reducible
system@13#, as do the constraints of the pureB`F action.
What is not so obvious~or well known! is that the constraints
form a reducible system, both in the Abelian and the non-
Abelian models, even when both the kinetic term and the
B`F coupling term are present in the action@14,15#. ~This
is just a restatement of the fact that it is possible to introduce
a kinetic term forBmn without breaking the vector gauge
symmetry, and without introducing extra degrees of free-
dom.! As a result, ghost-for-ghosts are still a necessity,
which causes problems for the Faddeev-Popov construction.
A long time ago a geometric construction was proposed@12#
for the construction of the BRST–anti-BRST–invariant
quantum action for the Freedman-Townsend model. More
recently, a geometric construction was proposed using a
similar ‘‘horizontality condition’’ @16# for the model of vec-
tor boson mass generation with a non-Abelian antisymmetric
tensor. A BRST–anti-BRST–invariant action was found this
way. Therefore it is known that a covariant gauge fixed
quantum action exists for the mass generation mechanism.

In this paper I demonstrate that it is possible to construct
a BRST-invariant tree-level action in a covariant gauge start-
ing from the classical action proposed in@7# and proceeding
in a similar fashion to the textbook construction@6# for the
free Yang-Mills theory. In Sec. II, the BRST-invariant action
for the Abelian model is constructed, both for the sake of
completeness and as a test case. The BRST transformations
of the various fields and their ghosts in the non-Abelian
model can be intuited from the Abelian case. In Sec. III, the
BRST transformations of the non-Abelian fields are given,
following as closely as possible the constructions for the
Abelian model and the free Yang-Mills theory. Section IV
contains a summary and discussion of results and some
speculations.

II. THE ABELIAN MODEL

Let me begin by discussing the construction of a BRST-
invariant quantum effective action for the dynamical Abelian
two-form coupled to a gauge field. The theory under consid-
eration is described by the classical action

S05E d4xS 2
1

4
FmnF

mn2
1

12
HmnlH

mnl

1
m

4
emnlrFmnBrlD . ~2.1!

where Fmn and Hmnl are the respective field strengths
of A and B, Fmn5] [mAn]5]mAn2]nAm , and Hmnl

5] [mBnl]5]mBnl1]nBlm1]lBmn . This action remains in-
variant under the independent gauge transformations

Am→Am1]mx, Bmn→Bmn , ~2.2!

Am→Am , Bmn→Bmn1] [mLn] . ~2.3!

This theory has three degrees of freedom@14#, one of
which couples toAm in a fashion similar to the Goldstone
mode in the Higgs mechanism. The interaction between the
gauge field and the antisymmetric tensor has a two-point
vertex operator proportional to the momentum. The ‘‘physi-
cal’’ propagator—so called because it couples to external
fermion currents—can be calculated by summing over all
gauge propagators with insertions of antisymmetric tensor
propagators@4#. The physical propagator has a pole at
k25m2, i.e., this theory can be thought of as a~gauge-
invariant! theory of a massive Abelian gauge field, with no
other degree of freedom.

In this section I shall give a straightforward construction
of the BRST-invariant action for the Abelian model~2.1!.
Starting with the free actionS0, the gauge-fixing terms in the
covariant Lorentz gauge are added, and the Faddeev-Popov
ghost terms are computed so as to cancel exactly the varia-
tion of the gauge fixing terms. The notation used in this
section and the next one follows that of@6#. The BRST trans-
formations ofAm andBmn are given by their gauge transfor-
mations with Grassmann-valued gauge parametersv and
vm , respectively:

dAm5]mvdl, dBmn5~]mvn2]nvm!dl. ~2.4!

As is obvious, there is a further symmetry under whichvm is
shifted by the gradient of a scalar. This implies that the ef-
fective action needs to be gauge-fixed forvm as well, other-
wise the ghost propagator does not exist. This introduces a
commuting ghostb for vm . I can now choose the gauge-
fixing part of the effective action to be

LGF52
1

2j
~F1!

22
1

2h
F2

mF2m2
1

2z
~F3!, ~2.5!

where the fields are fixed in covariant gauges,

F15]mA
m, F2

m5]nB
mn, F35~]mv̄m!~]nvn!. ~2.6!

The BRST transformations of the ghost fields can now be
written down along the lines of the standard procedure for
gauge theories:

dv50, dv̄5
1

j
]mA

mdl,

dvm5]mbdl, dv̄m5
1

h
]nBmndl,

db50, db̄52
1

z
~]mv̄m!dl. ~2.7!
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The ghost terms in the action are chosen to compensate for
the variation in the gauge-fixing terms, and are, therefore,

LFP5]mv̄]mv2]mv̄n~]mvn2]nvm!1]mb̄]mb. ~2.8!

The total action

S5S01E d4xLGF1E d4xLFP ~2.9!

is now fully gauge fixed but is invariant under the BRST
transformations as given in Eq.~2.7!.

Under a BRST transformation the variation in the action
can be written as a total divergence:

dS5E ]mY
m50,

Ym5
m

2
emnlrvnFlr2

1

j
~]nA

n!]mv

1
1

h
~]lBnl!~]mvn2]nvm!2

1

z
~]nv̄n!]mb.

~2.10!

The conserved Noether current for the BRST symmetry is
thus

j m5(
dL

d]mf

df

dl
2Ym

52Fmn]nv1
m

2
emnlr]nvBlr2

1

j
~]nA

n!]mv

2~]mv̄n2]nv̄m!]nb2
1

2
Hmnl~]nvl2]lvn!

1
1

h
~]sBns!~]mvn2]nvm!1

1

zh
~]nvn!~]lB

ml!

2
1

z
~]nv̄n!]mb2

m

2
emnlrvnFlr . ~2.11!

The BRST charge constructed from this current,
QBRST5*j 0d3x, is nilpotent,QBRST

2 50. More explicitly,

d2

dl2 $Am ,Bmn ,v,vm ,b,v̄,v̄m ,b̄%50, ~2.12!

where the last three fields satisfy the equality on shell, as is
the case withv̄ in free Maxwell theory. Off shell their third
variations vanish:

d3

dl3 $v̄,v̄m ,b̄%50. ~2.13!

III. THE NON-ABELIAN MODEL

The non-Abelian model@7# starts with a naı¨ve non-
Abelianization of the action~2.1! to a compact gauge group,
which I shall choose to be SU(N) for convenience. To begin

with, the field strengthFmn is now defined as the curvature of
an SU(N) gauge connection:

Fmn
a 5S 2

i

g
@Dm ,Dn# D a5]mAn

a2]nAm
a2g fabcAm

bAn
c .

~3.1!

In order to keep theB`F term invariant under SU(N) gauge
transformations,Bmn has to transform in the adjoint represen-
tation of the gauge group. This implies that in the kinetic
term forBmn the derivative operator]m should be replaced by
the gauge covariant derivative operatorDm , and the field
strengthHmnl should be defined asHmnl5D [mBnl] . The
resulting action

S5E d4xS 2
1

4
Fmn
a Famn2

1

12
Hmnl
a Hamnl

1
m

4
emnrlBmn

a Flr
a D , ~3.2!

is invariant under SU(N) gauge transformation, but does not
contain a natural generalization of the vector gauge symme-
try in Eq. ~2.3! under which one expects to find
Bmn→Bmn1D [mLn] , with Lm an arbitrary vector field trans-
forming homogeneously under the gauge group. Even
though this is a symmetry of the last term of the action, the
second term is not invariant under this transformation. The
absence of this symmetry shows up starkly when one tries to
find the propagating degrees of freedom in this theory by
restricting the fields to the constraint surface according to
Dirac’s prescription. The matrix of Poisson Brackets of the
constraints turn out to be field dependent. As a result, it is
not possible to find local coordinates of the reduced phase
space, or a Hamiltonian that keeps the degrees of freedom on
the constraint surface. A detailed analysis of constraints will
be presented elsewhere@15#, but it turns out that the simplest
way to construct a reduced phase space is to introduce an
auxiliary vector fieldCm , also transforming in the adjoint
representation of the gauge group, so as to compensate for
the variation of the action~3.2! under the non-Abelian vector
gauge symmetry. This does not introduce any new propagat-
ing degrees of freedom, asCm turns out to be fully con-
strained. The need for this auxiliary field also shows up in
the covariant quantization of the Freedman-Townsend model
@12#, but here its essential purpose@15# is to enforce the
constraint [Fnl ,H

mnl]50.
Let me therefore define the compensated field strength

H̃mnl :

H̃mnl
a 5~D [mBnl] !

a2 ig@F [mn ,Cl] #
a

5] [mBnl]
a 2g fabcA[m

b Bnl]
c 1g fabcF [mn

b Cl]
c . ~3.3!

As is obvious, this field strength is invariant under the com-
bined transformations

Bmn→Bmn1D [mLn] , Cm→Cm1Lm , ~3.4!

whereL m
a are real vector fields. It should also be noted that

the last term in the definition ofH̃mnl vanishes in the case
where the gauge group is Abelian, so thatH̃mnl is an allowed
generalization of the Abelian field strength. Now I can write
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down an action which is invariant both under the gauge
group and the vector transformations~3.4!:

S05E d4xS 2
1

4
Fmn
a Famn2

1

12
H̃mnl
a H̃amnl

1
m

4
emnrlBmn

a Flr
a D . ~3.5!

It should be noted that this action is invariant under the non-
Abelian vector gauge symmetry given in Eq.~3.4! without
any modification of the interaction term as long as the fields
vanish sufficiently rapidly at infinity. Also, the auxiliary field
Cm is nondynamical—there is no quadratic term correspond-
ing to it in the action, and the propagator is zero at tree level.
From now on I shall work only with the compensated field
strengthH̃mnl and not refer to the naı¨ve field strengthHmnl ,
so I can drop the tilde and writeHmnl whenever I mean
H̃mnl .

It can be shown by an analysis of constraints that there are
three degrees of freedom for each gauge index in this theory.
The quadratic terms in this theory are identical, for each
gauge index, to the Abelian action. As a result, the tree-level
effective propagator for the gauge field can be computed
exactly in the same fashion and leads to a pole atk25m2.
And there is no residual scalar.

The construction of the BRST-invariant action will follow
those for the Abelian model above and Yang-Mills theory,
and also that for the pureB∧F topological field theory. The
gauge-fixing terms are easy to write down,

LGF52
1

2j
~]mA

am!22
1

2h
~]nB

amn!2

2
1

z
~]mv̄am!~]nvan!, ~3.6!

as are the Faddeev-Popov ghost terms,

LFP52v̄a
d

dl
~]mA

am!2v̄am
d

dl
~]nBmn

a !

2b̄a
d

dl
~]nvan!. ~3.7!

These terms were written down simply by generalizing the
Abelian case, and the ghost fields are also defined as gener-
alizations of the Abelian model. Now, however, an interest-
ing difference shows up. The fieldsb,b̄ were needed in the
Abelian case in order to compensate for the gauge fixing of
the ghostvm . In the non-Abelian model,v m

a needs a gauge
fixing term for the same reason, namely that the propagator
cannot be defined until that has been done. In the Abelian
model, this showed up as the symmetry of the action under
vm→vm1]mu. Alternatively, the need for this ghost of ghost
was a consequence of a symmetryLm→Lm1]mx, with x an
arbitrary scalar, which is hidden in the vector gauge trans-
formation~2.3!. In the non-Abelian model, it is still not pos-
sible to define the ghost propagator and the ghosts need
gauge fixing. One can try to implement a similar symmetry
transformation,Lm→Lm1Dmx, whereLm andx are now in

the adjoint representation of the gauge group. However, this
leads to the following set of transformations:

dBmn
a 52g fabcFmn

b xc, dCm
a5~Dmx!a, ~3.8!

unlike in the Abelian case, wheredBmn50 under such a
transformation. This implies that there has to be a ghost field
corresponding to this transformation, as was found by the
authors of@12# in the context of the Freedman-Townsend
model. The complete set of BRST transformations can now
be written down, simply by generalizing the Abelian case,
remembering that all the fields and the ghosts transform in
the adjoint representation, and including this extra ghost:

dAm
a5~Dmv!adl

dva52
1

2
g fabcvbvcdl

dv̄a5
1

j
~]mA

am!dl

dBmn
a 5@2g fabcBmn

b vc1~D [mvn] !
a2g fabcFmn

b uc#dl

dCm
a5@2g fabcCm

bvc1vm
a1~Dmu!a#dl

dvm
a5@2g fabcvm

bvc1~Dmb!a#dl

dv̄m
a5

1

h
~]nBmn!dl

dba52g fabcbbvcdl

db̄a52
1

z
]mv̄amdl

dua5~2g fabcubvc2ba!dl

dūa50. ~3.9!

This set of transformations has the correct limits—ifva is
the only nonvanishing ghost, these would be the transforma-
tions corresponding to an SU(N) symmetry, whereas iff abc

andCm are set to zero, the Abelian BRST transformations
~2.7! are recovered. It is straightforward to check that this set
of transformations is nilpotent in a manner similar to the
Abelian case:

d2

dl2 $Am
a ,Bmn

a ,Cmn
a ,va,vm

a ,ba,ua%50. ~3.10!

It is also straightforward to show that the set of the BRST
transformations as posited above leaves the sum of the
gauge-fixing and ghost Lagrangians invariant:

d

dl
~LGF1LFP!50. ~3.11!

The total BRST-invariant action can now be written as a sum
of three terms, the gauge term, the gauge fixing term, and the
ghost contribution:
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S5E d4x~L01LGF1LFP!, ~3.12!

with

L052
1

4
Fmn
a Famn2

1

12
H̃mnl
a H̃amnl1

m

4
emnrlBmn

a Flr
a ,

LGF52
1

2j
~]mA

am!22
1

2h
~]nB

amn!2

2
1

z
~]mv̄am!~]nvan!,

LFP5]mv̄a~Dmv!a2g fabc]nv̄amBmn
b vc1]nv̄am~D [mvn] !

a

2g fabc]nb̄avbnvc1]mb̄a~Dmb!a. ~3.13!

This action is fully gauge fixed with respect to the SU(N)
gauge transformations, as well as the vector gauge transfor-
mations~3.4!, but it is invariant under the BRST transforma-
tions given in Eq.~3.9!. This action also implies the nilpo-
tence of the BRST transformation onv̄, v̄m , b̄ and ū,

d2

dl2 $v̄a,v̄m
a ,b̄a,ūa%50, ~3.14!

taking into account their equations of motion. Off shell, their
third variations vanish,

d3

dl3 $v̄a,v̄m
a ,b̄a,ūa%50, ~3.15!

just as in the case ofv̄a in the case of pure Yang-Mills
theory. It is now possible to construct the BRST-invariant
Noether current for this action in the same manner as in the
Abelian case. The variation of the action vanishes:

d

dl
S5E d4x]mY

m50, ~3.16!

with

Ym5
m

2
emnlvn

aFlr
a 2

1

j
@]nA

an~Dmv!a#2
1

h
~]lBnl

a !

3@g fabcBbmnvc2~D [mvn] !a1g fabcFbmnuc#

2
1

z
~]lv̄al!@2g fabcvbmvc1~Dmb!a#. ~3.17!

The Noether current is, therefore,

j m5(
dL

d]mf

df

dl
2Ym

5S 2Famn1
m

2
emnlrBlr

a 2
1

j
gmn~]lA

al!2g fabcCl
bHcmnlD ~Dnv!a

2
1

2
Hamnl@2g fabcBnl

b vc1~Dnvl2Dlvn!a2g fabcFnl
b uc#1

1

h
~]lBnl

a !@2g fabcBbmnvc1~Dmvn2Dnvm!a#

1
1

zh
~]lval!~]sBams!2

1

2
g fabc~]mv̄a!vbvc2~]mv̄an2]nv̄am!@2g fabcvn

bvc1~Dnb!a#

1g fabc]mb̄abbvc2
1

z
~]lv̄al!@2g fabcvbmvc1~Dmb!a#. ~3.18!

Just as in the Abelian case, the BRST charge constructed
from this current,

QBRST5E j 0d3x ~3.19!

is nilpotent,QBRST
2 50, and implements the BRST transfor-

mations on the fields, as can be explicitly checked by writing
out the charge in terms of the canonically conjugate mo-
menta to the fields and the ghosts.

IV. DISCUSSION

Let me first summarize what has been done so far. First I
constructed a BRST-invariant gauge fixed action for the

Abelian mass generation mechanism. The transformations in
the Abelian case were then generalized to the non-Abelian
mechanism. The non-Abelian BRST transformations reduce
to those for the Abelian case or for the free Yang-Mills case
in the appropriate limits. The gauge fixed effective Lagrang-
ian was constructed by including the appropriate ghost terms
which leave the total action invariant under the BRST trans-
formations. This invariance leads to a conserved BRST
charge which is nilpotent on the Fock space. The cohomol-
ogy of the BRST charge can be identified with the physical
subspace of the Hilbert space, and the unitarity of the
S-matrix is guaranteed on the physical states.

It is possible to compute the Slavnov-Taylor identities for
the non-Abelian theory starting from the BRST-invariant ef-
fective action of Eq.~3.12!. It is outside the scope of this
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paper to do that, or to construct counterterms and prove per-
turbative renormalizability of the theory, which will be done
elsewhere. It should be noted that no kinetic term~or any
other quadratic term! for Cm was required for the nilpotence
of the BRST transformations, i.e., for the construction of a
BRST-invariant quantum action for the theory. ThusCm re-
mains a nondynamical auxiliary field at tree level even after
quantization.

Does anything change when fermions are coupled to the
theory? If the fermions are minimally coupledonly to the
gauge fieldAm , it is easy to see that the resulting theory can
be made BRST invariant in the same way as before after
adding in the usual BRST transformations of fermions in
gauge theories. In the Abelian model, fermions cannot
couple to the antisymmetric tensor because the minimal cou-

pling breaks the vector gauge symmetry. In the non-Abelian
model, the vector gauge symmetry is enforced by the intro-
duction of the auxiliaryCm . As a result it is possible to
couple the non-Abelian antisymmetric tensor to fermions,
the general term for minimal coupling beingc̄(a
1bg5)s

mn(Bmn2D [mCn]c). This term is invariant under
both the continuous symmetries, but breaks chiral symmetry.
It is plausible that fermion mass is generated as a dynamical
effect as a result of chiral symmetry breaking via this term.
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