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Dynamical non-Abelian two-form: BRST quantization
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When an antisymmetric tensor potential is coupled to the field strength of a gauge fielB M eoupling
and a kinetic term foB is included, the gauge field develops an effective mass. The theory can be made
invariant under a non-Abelian vector gauge symmetry by introducing an auxiliary vector field. The covariant
guantization of this theory requires ghosts for ghosts. The resultant theory including gauge fixing and ghost
terms is BRST invariant by construction, and therefore unitary. The construction of the BRST-invariant action
is given for both Abelian and non-Abelian models of mass generdt®656-282197)05106-0

PACS numbses): 11.15.Bt, 11.10.Hi, 14.70.Pw

[. INTRODUCTION gests that perhaps we should consider alternative descrip-
tions of the symmetry-breaking sector of the electroweak
The free antisymmetric tensor potential has one degree ¢heory and prepare ourselves for the situation that no Higgs
freedom, a scaldrl]. This scalar can be coupled to an Abe- Particle is ever found. )
lian gauge field via a “topologicalBOF term with a di- The Higgs sector as it stands has three equally important

mensionful coupling constam of mass dimension one. The rsolr?]s;hgrne dlgvxfg g?ﬁle( Hl])esgIr?#r?étr&)%é?sgilrg(cﬁglrﬁ]épeﬁcehﬁrsg?n
resulting theory, which is classically dual to the Goldston y y y y 9 :

e . i
: . In the standard model the mechanism of symmetry breaking
model(the Abelian Staokelberg modeg| has three degrees of generates masses for the vector bosafisand Z. In addi-

freedom which can be identified, both classically and quantjon, the Yukawa coupling of the Higgs scalar to fermions
tum mechanically, with the propagating degrees of a massivBreaks chiral symmetry and contributes to fermion mass gen-
gauge field of massn [2-5]. This theory, as well as its eration. But suppose we consider the possibility that the
vacuum, is invariant under both(l) and the vector gauge three questions may be resolved separately. Then it makes
symmetryB,,—B,,+d,A,; with an arbitrary vector field sense to consider a mechanism to generate masses for vector
A,. In other words, this model generates vector bosorP0osons via &/\F interaction with an antisymmetric tensor,
masses without symmetry breaking and without a residug®nd look for the possibility of symmetry breaking and ferm-
Higgs field. The symmetries of the theory ensure that wherP? Mass generation in some other interaction in the theory,
fermions are included in the theory, only the transverse Compossmly as dynamical mechanisms. .

) - But first we have to have a theory that can be consistently
ponents of the gauge field couple to the fermionic current

h . i ¢ di on f b guantized, i.e., one that is both unitary and renormalizable.
The generic coupling term of mass dimension four between o5 Higgs-free theories of massive non-Abelian vector

the antisymmetric tensor and fermions is of the formpgogons, including the Proca model, the Gelberg model,
y(a+bys)o”’B,, ¥, which is not invariant under the vector the gauged nonlinear sigma model, or the Higgs model with
gauge transformations, and therefore cannot be included ia heavy Higgs boson, are either nonrenormalizable or violate
the action if this symmetry is to be maintained. This impliesunitarity. Therefore any other proposed mechanism must
that there is no three-point coupling, and therefore no looppass these two tests. As far as the antisymmetric tensor is
directly involvingB ,,. Consequently it is straightforward to concerned, the renormalizability of the Abelian theory does
renormalize QED in which photons acquire mass via thighot really provide a pointer, because even a gauge variant
mechanisni4]. mass term for the photon does not affect the renormalizabil-
The possibility that a non-Abelian version of this theory ity of QED [6]. However, as was pointed out elsewhfrg
may exist as a consistently quantizable theory is an interestt 1S possible to construct a non-Abelian theory which is
ing one. Although many aspects of the standard model havROWer-counting renormalizable, has unbroktzen gauge symme-
been experimentally verified, the symmetry-breaking sectolfi€S; and has propagators which fall off a&"1at high mo-
is still mostly unexplored and the source of some unan.NeNtum, so there are no obvious obstructions to renormaliz-
swered questions. So far experiments have not turned up og';yhcgﬁ?g\ljg ;hlgng{iietgrprr??gow?hs:rrzﬁjo&?%?c])pvggé%hin
glementary scala'lr' In-any system of interacting partl_cles, n 7] is not dual to the nonlinear sfévma moddBut unitarity is
is there any positive evidence of an electroweak Higgs pa another story.
ticle, _e|ther elementary or composite, at curre_ntly available The biggest argument faced by any theory with massive
energies. On the other hand, various theoretical argumen{z.cior hosons but without a Higgs-like excitation involves
set the upper bound of the Higgs boson mass only a little oYjnjtarity. Any theory with a Hermitian Hamiltonian operator
of reach of the present generation of accelerators. This sugs necessarily unitary. However, a gauge theory has several
redundant degrees of freedom which have to be eliminated
by gauge fixing. An explicitly Lorentz-covariant gauge-
*Electronic address: lahiri@bose.ernet.in fixing term introduces states of negative norm in the theory
Present address: S.N. Bose National Centre for Basic Scienceshich have to be eliminated in turn by introducing ghost
Block JD, Sector Ill, Salt Lake, Calcutta 700 091, W.B. India. fields. At this point the theory contains non-Hermitian fields
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and states of negative norm, so the unitary of the theorwhere F,, and H,,, are the respective field strengths
needs to be checked explicitly. One way of checking whetheof A and B, F, =d;,A,;=d,A,—d,A,, and H,,,

a theory unitary is to see if the action including the gauge=4;,B,,;=43,B,,+3,B,,+d,B,, . This action remains in-
fixing and ghost terms is invariant under Becchi-Rouet-variant under the independent gauge transformations
Stora-Tyutin(BRST) transformationg9,10]. If it is invari-

ant, it is possible to define the conserved Noether ch@rge A,—A,+d.x, B,,—B,,, (2.2
of the symmetry. This charge is nilpote@?=0, and defines
a cohomology on the Fock space of the theory. The space of A,—A,, B,,—B,+d,A,. (2.3

states ) such thatQ|)=0 but|4)#Q|x) for any|x) can be
identified with the physical subspace of the Fock space, and This theory has three degrees of freedpid], one of
it can be shown that th& matrix of the theory is unitary in  which couples toA, in a fashion similar to the Goldstone
this physical subspadd i]. mode in the Higgs mechanism. The interaction between the
For the antisymmetric tensor potential, the Faddeevgauge field and the antisymmetric tensor has a two-point
Popov construction runs into problems because of the neegertex operator proportional to the momentum. The “physi-
for ghosts for ghost$12]. It is well known that the con- cal” propagator—so called because it couples to external
straints of the free antisymmetric tensor form a reduciblefermion currents—can be calculated by summing over all
system[13], as do the constraints of the puBg\F action. gauge propagators with insertions of antisymmetric tensor
What is not so obviougor well known is that the constraints propagators[4]. The physical propagator has a pole at
form a reducible system, both in the Abelian and the nonk?=m?, i.e., this theory can be thought of as(gauge-
Abelian models, even when both the kinetic term and thenvariany theory of a massive Abelian gauge field, with no
B/\F coupling term are present in the actipk¥,15. (This  other degree of freedom.
is just a restatement of the fact that it is possible to introduce In this section | shall give a straightforward construction
a kinetic term forB,,, without breaking the vector gauge of the BRST-invariant action for the Abelian mod@.1).
symmetry, and without introducing extra degrees of free-Starting with the free actioB,, the gauge-fixing terms in the
dom) As a result, ghost-for-ghosts are still a necessity,covariant Lorentz gauge are added, and the Faddeev-Popov
which causes problems for the Faddeev-Popov constructioghost terms are computed so as to cancel exactly the varia-
A long time ago a geometric construction was propds&]  tion of the gauge fixing terms. The notation used in this
for the construction of the BRST-anti-BRST—invariant section and the next one follows that[6]. The BRST trans-
quantum action for the Freedman-Townsend model. Mordormations ofA, andB,,, are given by their gauge transfor-
recently, a geometric construction was proposed using gations with Grassmann-valued gauge parameterand
similar “horizontality condition” [16] for the model of vec- w,, respectively:
tor boson mass generation with a non-Abelian antisymmetric
tensor. A BRST—anti-BRST—invariant action was found this 6A,=d,wdé\, 6B,,=(d,w,—d,w,)0N. (2.4
way. Therefore it is known that a covariant gauge fixed
guantum action exists for the mass generation mechanism.As is obvious, there is a further symmetry under whighis
In this paper | demonstrate that it is possible to constructhifted by the gradient of a scalar. This implies that the ef-
a BRST-invariant tree-level action in a covariant gauge startfective action needs to be gauge-fixed &gy as well, other-
ing from the classical action proposed[ifi and proceeding wise the ghost propagator does not exist. This introduces a
in a similar fashion to the textbook constructifl for the ~ commuting ghosiB for w,. | can now choose the gauge-
free Yang-Mills theory. In Sec. I, the BRST-invariant action fixing part of the effective action to be
for the Abelian model is constructed, both for the sake of
completeness and as a test case. The BRST transformations 1 )
of the various fields and their ghosts in the non-Abelian EGF:_Z_g (F1) _ﬂ FgFZM_Z_g (Fa), (29
model can be intuited from the Abelian case. In Sec. lll, the
BRST transformations of the non-Abelian fields are given,yhere the fields are fixed in covariant gauges,
following as closely as possible the constructions for the
Abelian model and the free Yang-Mills theory. Section IV Fi=d,A% F5=9,B*, F3=(d,0")(d,0"). (2.6
contains a summary and discussion of results and some

speculations. The BRST transformations of the ghost fields can now be
written down along the lines of the standard procedure for
gauge theories:

Let me begin by discussing the construction of a BRST-

Il. THE ABELIAN MODEL

invariant quantum effective action for the dynamical Abelian Sw=0. So= E 9 ARSN
two-form coupled to a gauge field. The theory under consid- ' & '
eration is described by the classical action
1 1 Sw,=d,B0\, Odw, ! 3"B,, O\
v v, w,= ! W= v !
sozf d*X| = 7 Fu P = 5 HunHA™ w I R
m — 1 —
+ 7 " F B\ |- (2.1 6B=0, 6B=-— 7 (9, 0™)ON. (2.7
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The ghost terms in the action are chosen to compensate favith, the field strengtli ,, is now defined as the curvature of
the variation in the gauge-fixing terms, and are, therefore, an SUN) gauge connection;

Lep= 0,00 0— 3,0, 0" — " o)+ 3,808, (2.8 i :
FP Mw w ,uwu( w w ) Mﬁ ,8 ( ) FZV:(_E[D,U«’DV]) :aﬂAi_avAZ_gfabcAzAi'
The total action 3.0
In order to keep th&/\F term invariant under SU{) gauge

S=5t j d*x Lot f d*xLep (2.9 transformationsB,,, has to transform in the adjoint represen-
tation of the gauge group. This implies that in the kinetic

is now fully gauge fixed but is invariant under the BRST term forB ,, the derivative operatat, should be replaced by

transformations as given in EQ.7). the gauge covariant derivative operafr,, and the field
Under a BRST transformation the variation in the actionstrengthH,,,, should be defined asl,,,=Dy,B,,;. The
can be written as a total divergence: resulting action
S= d4X _ E Fa Fap.v_ i Ha Ha,uvk
6S= &MY’U':O, - 4w 12 ' mvA
m 1 + m uvphga pa (3.2
Yi=Z M0, Fy = 5 (0,470 4 Pwaw) '

3

1 1 is invariant under SUY) gauge transformation, but does not
+ = ("B, (0" " o) — = (d,0")I*B. contain a natural generalization of the vector gauge symme-
n ¢ try in Eg. (2.3 under which one expects to find
(2.10 B,,—B,,T DA, with A, an arbitrary vector field trans-
forming homogeneously under the gauge group. Even
The conserved Noether current for the BRST symmetry ighough this is a symmetry of the last term of the action, the

thus second term is not invariant under this transformation. The
absence of this symmetry shows up starkly when one tries to

"‘—2 oL %_ u find the propagating degrees of freedom in this theory by
"= 83,¢ O\ restricting the fields to the constraint surface according to

Dirac’s prescription. The matrix of Poisson Brackets of the
constraints turn out to be field dependent. As a result, it is
not possible to find local coordinates of the reduced phase
space, or a Hamiltonian that keeps the degrees of freedom on
the constraint surface. A detailed analysis of constraints will
be presented elsewhdrEs], but it turns out that the simplest
way to construct a reduced phase space is to introduce an
+ i (87B,,)(Hw"— 9" ™) + i (9,0")(3,B*) auxiliary ve_ctor fieIdCM, also transforming in the adjoint
7 {7 representation of the gauge group, so as to compensate for
the variation of the actiofB.2) under the non-Abelian vector
_ E (9,0")3"B— m Ny Fy (2.12) gauge symmetry. This does not introduce any new propagat-
4 2 P ing degrees of freedom, &, turns out to be fully con-
] strained. The need for this auxiliary field also shows up in
The BRST charge constructed from this current,the covariant quantization of the Freedman-Townsend model

— MY T MVAp _E v\ gM
=—F*d, 0+ 5 € d,0B,, (9,A")*w

3

B 1
—(*w”—0"w™)d,B— > H*(3,0) — d\w,)

Qgrst=/1°d%, is nilpotent,Qfrs7=0. More explicitly, [12], but here its essential purpo$i5] is to enforce the
5 constraint F,, ,H***] =0.
5—2{A B, o.w, B 0w, ﬁ_}=0 (2.12 __ Let me therefore define the compensated field strength
5)\ wr = uy [t /RN e [T} y . .
MU\ "

where the last three fields satisfy the equality on shell, as is ﬁivx:(D[qux])a_ig[F[uv ,Cn 12
the case withw in free Maxwell theory. Off shell their third

variations vanish: =d1,B% —9f%°A}, B, + g2, CF . (33
58 _ As is obvious, this field strength is invariant under the com-
N3 {0,0,,8}=0. (2.13 bined transformations

By —Bu, DAy, Cu—=Cut Ay, (3.4
Il. THE NON-ABELIAN MODEL )
whereA? are real vector fields. It should also be noted that
The non-Abelian model7] starts with a nale non- the last term in the definition dfi ,,, vanishes in the case
Abelianization of the actiori2.1) to a compact gauge group, where the gauge group is Abelian, so thgt,, is an allowed
which | shall choose to be SBI) for convenience. To begin generalization of the Abelian field strength. Now | can write
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down an action which is invariant both under the gaugethe adjoint representation of the gauge group. However, this
group and the vector transformatio(&4): leads to the following set of transformations:

8B2,=—gf®F> ¢, 8Ci=(D,x)? (3.8
4 kY 12 » S :
unlike in the Abelian case, wheréB,,=0 under such a
transformation. This implies that there has to be a ghost field
7 E”V”}‘B‘;,,Fip)- (3.5  corresponding to this transformation, as was found by the
authors of[12] in the context of the Freedman-Townsend
model. The complete set of BRST transformations can now
be written down, simply by generalizing the Abelian case,
gemembering that all the fields and the ghosts transform in
the adjoint representation, and including this extra ghost:

SO: J d4X< _ E Fa Faxr_— i ﬁa )\ﬁa,uv}\
m

It should be noted that this action is invariant under the non
Abelian vector gauge symmetry given in E&.4) without
any modification of the interaction term as long as the field
vanish sufficiently rapidly at infinity. Also, the auxiliary field
C, is nondynamical—there is no quadratic term correspond- SA2=(D a
. Y ; . )?ON
ing to it in the action, and the propagator is zero at tree level. ® m

From now on | shall work only with the compensated field 1

strengthH ,,, and not refer to the nee field strengtH uoh Swd=— = gfaPCwPutoN
so | can drop the tilde and writél ,,, whenever | mean 2

H V}\ .
Mlt can be shown by an analysis of constraints that there are Soi= E (9, A% S\
three degrees of freedom for each gauge index in this theory. 3

The quadratic terms in this theory are identical, for each
gauge index, to the Abelian action. As a result, the tree-level B3, =[—gf2*B) 0+ (D,0,))2—gf3*F> 616N
effective propagator for the gauge field can be computed

exactly in the same fashion and leads to a pol&Zatm?. 8C2=[ —gfe*C> w’+ w? +(D,0)7] S\
And there is no residual scalar.
The construction of the BRST-invariant action will follow Sl =[— gfab°w2w°+ (D B3N

those for the Abelian model above and Yang-Mills theory,
and also that for the puBUF topological field theory. The 1

o . Swt=—(4"B,,) 6\
gauge-fixing terms are easy to write down, Wy 7 uv

1 1 S5B%= — abcpb c
— _ a2 _ aur)2 ,8 gf B w O\
1
1 8B%=—— 0,06\
=2 (3,0™)(3,0%), (3.6 Bo= =7 Oue”

86°=(—gfP°Pw~ B?) o\
as are the Faddeev-Popov ghost terms,

562=0. (3.9

— —a 5 a —a, 5 vpa
Lrp= — 0% 50 (9, AY) =0 2= (078 ,) This set of transformations has the correct limits-eff is
the only nonvanishing ghost, these would be the transforma-
3.7) tions corresponding to an SNj symmetry, whereas if2°°
andC, are set to zero, the Abelian BRST transformations
(2.7) are recovered. It is straightforward to check that this set
These terms were written down simply by generalizing theof transformations is nilpotent in a manner similar to the
Abelian case, and the ghost fields are also defined as genéekbelian case:
alizations of the Abelian model. Now, however, an interest-
ing difference shows up. The fielg&B were needed in the 2 (pa e ca
Abelian case in order to compensate for the gauge fixing of SN2 Puvr v
the ghostw,,. In the non-Abelian modelrpf} needs a gauge
fixing term for the same reason, namely that the propagatdt is also straightforward to show that the set of the BRST
cannot be defined until that has been done. In the Abeliatransformations as posited above leaves the sum of the
model, this showed up as the symmetry of the action undegauge-fixing and ghost Lagrangians invariant:
w,—~w,+d,0. Alternatively, the need for this ghost of ghost
was a consequence of a symmety—A ,+4d,x, with x an
arbitrary scalar, which is hidden in the vector gauge trans-
formation(2.3). In the non-Abelian model, it is still not pos-
sible to define the ghost propagator and the ghosts neethe total BRST-invariant action can now be written as a sum
gauge fixing. One can try to implement a similar symmetryof three terms, the gauge term, the gauge fixing term, and the

transformation A ,—A ,+D ,x, whereA, and y are now in  ghost contribution:

__a i av
B 5A (&Vw )'

2
003 ,B%6%=0. (3.10

1)
SN (Lot Lep)=0. (3.1)
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4 taking into account their equations of motion. Off shell, their
S= J d**(Lo+ Lort Lep), (312 third variations vanish,
with ——
533 (0%, 8%,6%=0, (3.15

1 1~ ~ m
[:O: T2 FZVFaMV— 1 H/i.iLV)\HaMV)\dl_ n GMVP)\B,?LVFipl
4 12 4 just as in the case ob? in the case of pure Yang-Mills

theory. It is now possible to construct the BRST-invariant

Lor=— i (9, AR#)2— i (9,B2#)2 Noether current for this action in the same manner as in the
Y73 v

2§ 27y Abelian case. The variation of the action vanishes:
=2 (0,5 (0% o 4
M v ’ — S= M=
4 Y S f d*xa,Y*=0, (3.1
_ bc v b v
Lrp= ama(D#w_)a—gfa % E_a”BWanLa (Do)t
— g%, B’ wt+ d*B*(D ,B)%. (3.13
m 1 1
This action is fully gauge fixed with respect to the SU)( Yi=3 e wlFR,— z [9,A%(D"w)%]— 7 (B3))
gauge transformations, as well as the vector gauge transfor-
mations(3.4), but it is invariant under the BRST transforma- X[ g faPBPHY »° — (DI )2+ g fAPeFPAY 4°]
tions given in Eq.(3.9). This action also implies the nilpo-
tence of the BRST transformation @n »,,, 8 and ¥, _ % (9, 0™)[ — gfaPwb 0w+ (D B)2]. (3.17
52 —
_ _fTaca a pay —
SN2 {o% @), 5% 67 =0, (3.14 The Noether current is, therefore,
_ oL 8¢
=2 5 b N
)73

m 1
— _I:a,u,v_i_E EMV)\pBip_Egﬂv(a)\Aa}\)_gfabCCchMw\ (Dv(x))a
1 VAN abcpb ¢ a abcgeb g 1 Apa abcpbuv, c m,v v, pya
—EH [—gf®B),0°+(D,w\—D\w,)?—gf®F ), 0 ]-I—;(r? B[ —9f*B** v+ (D*w”—D"w*)?]
1 1 b —ay,.b —a —a bc b
+a (c?)\wa)‘)(ﬂ”Ba””)—E gf*PY( " 0?) 0 0w’ — (0™ - 0" 0®)[ — gf**°w,w°+(D,B)?]

— 1
TP B 2 (@™~ g Wt + (DB, (3.19

Just as in the Abelian case, the BRST charge constructefibelian mass generation mechanism. The transformations in
from this current, the Abelian case were then generalized to the non-Abelian
mechanism. The non-Abelian BRST transformations reduce
N to those for the Abelian case or for the free Yang-Mills case
QBRS#J Jdx (3.19 in the appropriate limits. The gauge fixed effective Lagrang-
ian was constructed by including the appropriate ghost terms
is nilpotent, Q3rs7=0, and implements the BRST transfor- which leave the total action invariant under the BRST trans-
mations on the fields, as can be explicitly checked by writingformations. This invariance leads to a conserved BRST
out the charge in terms of the canonically conjugate mocharge which is nilpotent on the Fock space. The cohomol-
menta to the fields and the ghosts. ogy of the BRST charge can be identified with the physical
subspace of the Hilbert space, and the unitarity of the
S-matrix is guaranteed on the physical states.
It is possible to compute the Slavnov-Taylor identities for
Let me first summarize what has been done so far. First the non-Abelian theory starting from the BRST-invariant ef-
constructed a BRST-invariant gauge fixed action for thefective action of Eq.3.12. It is outside the scope of this

IV. DISCUSSION
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paper to do that, or to construct counterterms and prove pepling breaks the vector gauge symmetry. In the non-Abelian
turbative renormalizability of the theory, which will be done model, the vector gauge symmetry is enforced by the intro-
elsewhere. It should be noted that no kinetic teion any  duction of the auxiliaryC,. As a result it is possible to
other quadratic terjnfor C,, was required for the nilpotence couple the non-Abelian antisymmetric tensor to fermions,
of the BRST transformations, i.e., for the construction of athe general term for minimal coupling being/(a
BRST-invariant quantum action for the theory. THOgre-  +py) o"*(B,,—D,C, ). This term is invariant under
mains a nondynamical auxiliary field at tree level even aftehoth the continuous symmetries, but breaks chiral symmetry.
quantization. It is plausible that fermion mass is generated as a dynamical
Does anything change when fermions are coupled to theffect as a result of chiral symmetry breaking via this term.
theory? If the fermions are minimally coupleuhly to the
gauge fieldA ,, it is easy to see that the resulting theory can ACKNOWLEDGMENTS
be made BRST invariant in the same way as before after
adding in the usual BRST transformations of fermions in This work was supported by a grant from the Particle
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