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Perturbation theory with a variational basis: The generalized Gaussian effective potential
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The perturbation theory with a variational basis is constructed and analyzed. The generalized Gaussian
effective potential is introduced and evaluated up to second order for self-interacting scalar fields in one and
two spatial dimensions. The problem of the renormalization of the mass is discussed in detail. Thermal
corrections are incorporated. The comparison between the finite temperature generalized Gaussian effective
potential and the finite temperature effective potential is critically analyzed. The phenomenon of the restoration
at high temperature of the symmetry broken at zero temperature is disc[88686-282(97)00306-9

PACS numbses): 11.10.Wx, 11.10.Kk, 11.15.Tk

I. INTRODUCTION the variational basis starting from the trial Gaussian vacuum
wave functional. Section IV is devoted to perturbation theory
In recent years the variational Gaussian approximationvith a variational basis. The generalized Gaussian effective
has played an important role in the nonperturbative study opotential is discussed in Sec. V. The calculations of the sec-
quantum field theories. In particular, to investigate the sponond order corrections to the Gaussian effective potential are
taneous symmetry-breaking phenomenon in scalar quamumesented in Sec. VI where we discuss in detail the mass
field theories, the Gaussian effective potential has been ifenormalization. In Sec. VIl we introduce the finite tempera-
troduced[1]. The main disadvantage of the variational ap-ture generalized Gaussian effective potential and evaluate the
proach is the absence of the control of the approximationlowest order thermal corrections. The second order thermal
Moreover, in quantum field theories the presence of ultraviocorrections are explicitly evaluated in Sec. VIII. Our conclu-
let divergences often makes the variational calculations usesions are drawn in Sec. IX. Several technical details are rel-
less. egated in two Appendixes. In Appendix A we perform the
The aim of this paper is to develop a variational schemdligh temperature expansions which are relevant for the low-
in scalar quantum field theories which allows us to evaluat@st order thermal corrections. In Appendix B we collect
in a systematic manner the corrections to the Gaussian agome well-known result on the thermodynamic perturbation
proximation and, at the same time, to keep under control théheory in the Matsubara’s scheme. Moreover, we present
ultraviolet divergences. To this end, we shall construct a persome useful results on the thermal propagator.
turbation theory with a variational basis. The method we

shall follow is widely used in many-body theory where it is Il. GAUSSIAN APPROXIMATION
known as the method of correlated basis functid@isUsing ) . . . . L
the variational basis we construct a vacuum stét which In this section we discuss the Gaussian approximation in

is adiabatically connected to the Gaussian trial vacuum?calar quantum field theories. In particular we shall focus on
whereupon we introduce the generalized Gaussian effectivi® Gaussian effective potent{dl] for self-interacting scalar
potential V(o) defined as the expectation value of the fields ind=»+1 space-time dimensions. ,
Hamiltonian density or{Q) in the presence of the scalar The Gaussian approximation in quantumfleld theon_es has
condensate,. We shall give an explicit formula for D0€€n widely developed for a long tini@—5]. The Gaussian
V(o) Which is similar to the usual perturbative eXpansionapprquatlon is a vanatlona_l method in which one consid-
of the effective potential by means of Feynman vacuum dia€"s trial Gaussian wave functionals as the ground state of the
grams. Moreover, we shall show that the variational-tN€OTY: _ _ .
perturbation theory developed in this paper offers a solution L€t US consider a real scalar field(x) whose Hamil-

to the ultraviolet divergence problem in the variational ap-tonian is
proaches which is analogous to the usual perturbative renor- M 1 1 \
malization theory. For the sake of simplicity, we perform :f v IO AV 12— 8202 b g
explicit calculations in the case of self-interacting scalarH d"x 2 - 2[V¢>(x)] * 2™ ¢ (X)+4! ¢ (X)}
fields in one and two spatial dimensions. Indeed, these theo- (2.9

ries are superrenormalizable, so that we only need to renor- o ) )
malize the mass. In the second part of the paper we discudd the Schrdinger representation the physical states are

the finite temperature corrections to the generalized Gaussidiave functionals of; the conjugate momentudi(x) acts

effective potential. Moreover, we critically compare our ap-2s @ functional derivative:

proach to the finite temperature effective potential and the

Gaussian potential. . . H(x)|\1'>—>.1 _
The plan of the paper is as follows. In Sec. Il we discuss I 8p(Xx)

the Gaussian approximation in scalar field theories and intro-

duce the Gaussian effective potential. In Sec. Ill we set uf@he inner product is defined by

V] 2.2
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1 -> - - -
(W4 W)= f [dp1Wi[$1W ol &]. 2.3 q’é[d’]ZNex;{—Z f d'xd’y () G(X—y) 7(¥)
. - ) 1 o
The stationary Schobnger equation reads +§ f A" (IR | 2.9
1 52 1. .
A% =5 ——=———+ > [Vo(x)]? where
f 2 5¢(x)5p(x) 2 o
1 A 7(X)= d(X) — o (2.10
+§m2¢2(x)+ﬂ¢4(x) VI¢I=EVL4). (2.4 and NV is fixed by Eq.(2.6). We can easily evaluate the
functional
The analogy with ordinary quantum mechanics is evident. In 1[3]=(Wwd). 219

particular, we would like to apply the variational principle

which has been successfully developed in quantum mechaiwgeed, Eq(2.11) involves a straightforward Gaussian func-

ICS. tional integration. We get
In quantum field theories it is the ground state that deter-

mines the physical properties of the quantum system. The 1 e e
Gaussian approximation amounts to approximating the I[J]=exp3 f d'xd"yI(X)G™H(x—y)d(y)|, (212
vacuum functional with a set of trial Gaussian functionals

centered atpy: where
vol-N e g f d"xdYLG(X) ~ bl G(x,Y) GH(x 37)=J—dVK L iy, 213
0 R V=) @ 290
X[ ()~ ¢ol|, (2.5  Now,we have
(Wol n(x2) - n(%0) [ ¥o) oL (2.14
where the normalization constant is such that ol 7\X1) == Xn)1 F 0 53 8Iy |,
(Wo|Poy=1. (2.6  Equations(2.14 and(2.12 allow us to evaluate the expec-

tation values of monomial im(x) on the Gaussian vacuum
A well-known method to investigate the structure of a quan_funCtiOHa|S. It is now a straightforward exercise to calculate
tum field theory is to use the effective potentifk( ¢q) [6].
In scalar field theories it turns out that the effective potential Eol ¢ g(k)]—< olH[¥o) 2.15
is the expectation value of the Hamiltonian density in a cer- oL (WolPo) '
tain state wherein the expectation value of the scalar field is
&0 [7]. These considerations suggested to introduce the sdVe get
called Gaussian effective potentMk( o). 1 4"k 2 N
The Gaussian effective potenti@GEP is defined by T\1—\/) = J oo o2 M oa

minimizing the Hamiltonian density on the set of wave func- Eol #0.9(K)] V(4 (2 )Vg(k)jL bt g1 %o
tionals, Eq.(2.5):

2 2 A 2

ke+m*+ §¢O

1
1 L1 f
Veed ¢o) = |m|n (WolH[Wo), 2.7 4 g(k)
3\ dk 1 ]2
whereV is the spatial volume. tam 2n)y _g(lZ) : (2.19

Veed @), being a variational quantity, not only goes be-

yond perturbation theory, but often gives a more realisticThe Gaussian effective potential is obtained by minimizing

picture of the qualitative physics than the effective potential - K)1 with respect toa(K). By imposing the extre-
Moreover, the Gaussian effective potential is easily comput- u[rﬁ cgrgd)n]lon P og(k). By imp g

able. To see this, we note that due to the translation invari-
ance of the vacuum we have SE >
O[¢01 ]

) =0, (2.1

o 6g9(k)
_ | X—y
(xy)= f(Z )” 29(k). i we obtain

Let us consider the functional g(K)= VK2 + u1?( o), (2.18
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where u(¢) satisfies the gap equation
A dk 1
4 ) (2m7)" g(lZ) '

Inserting Egs.(2.18 and (2.19 into Eq. (2.16 we get the
Gaussian effective potential

A
p2=m’+ 2 po+ (2.19

N, m* o1 odk o
VGEF(¢O):H¢O+7¢O+§J’(ZT)VQ(|()

A dk 1 )? (2.20
32 ) 2m)" gk)| '
Putting[1]
1 d’k .
_ = 21n—1/2
we rewrite Eq.(2.20 in the more compact form
N, omP N,
Veed ¢o) = ﬂd)o"' 7¢0+ ()= g'o(#)a
(2.22
while the gap equation becomes
A A
pE=mP+ S pot o lo(w). (2.23

For later convenience, it is useful to work in units of
mo=m(do=0). Thus we introduce the dimensionless pa-

rameters

(2.249

(2.29

(2.2

Moreover, we redefine the zero of the energy scale by sub-

tracting inVged ¢o) the (divergeni quantity Veed ¢o=0):

\Y, )—V =0)
V= Vo8OV $070)

(2.27

Ill. THE VARIATIONAL BASIS

In the previous section we introduced the Gaussian effec~ 1 ,
tive potential. The most serious problem of the Gaussiarln"o_i Pl —
effective potential resides in the lack of control on the varia-

4969

Abelian gauge theories the Gaussian approximation breaks
gauge invariancg].

In order to evaluate the corrections to the variational
Gaussian approximation we need to set up a variational-
perturbation theory. To this end we now construct a varia-
tional basis starting from the vacuum wave functional
W[ 7]. To do this we consideW [ ] as the ground state
wave functional of a suitable Hamiltonian.

Let us consider the operators

dx e iPx
vl2 >
(2" 2g(p)

wl 5
X(fd yzG(x,y)n(yHM;)), (3.1

a(p)=

d’x el

(2m)"™ 2g(p)

<[ [ evze0upm-

a'(p)=

6

). (3.2
on(X)

It is easy to see that the only nontrivial commutator is

[a(py),a(p2)]=8(p1—P2).

Moreover, we have

3.3

a(p)¥o[ 7]=0.

Now we rewrite the annihilation and creation operators,
Egs.(3.1) and(3.2), by means of the Fourier transform of the

fluctuation fieldsn(i):

(3.9

. d’x N
ﬂ(p)=JWef'p'xﬂ(X), (3.5
5 _f e (36
sp(p) I 2m"T spx)’ '
We get
- /g(ﬁ)( .1 4 )
a(p)=\/ —2| n(—p)+— ——|, 3.7)
(p) 5 7(—p) o(5) 37F) (
. gp)f . 1 )
al(p)= (p)——= —|. (3.8
P 2 \np a(p) 8n(—p)

Consider, now, the Hamiltonian

~ —+g%(p) 7(p) —3},
57(B) om—p) g (p)n(p)n(—p

. e " : 3.9
tional approximation. For these reasons it is desirable to deal 3.9
with a generalization of the Gaussian effective potentialwhich can be rewritten as

which allows us to compute in a systematic way the correc-

tions to the Gaussian approximatif8l. The problem we are ~ BT

interested in is not an academic one. Indeed, it is well known Ho= | d"pg(p)a’(p)a(p)+Eo, (3.10

that the Gaussian approximation does not take into account
all the two-loop contributions. As a consequence in noniwhere
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IV. PERTURBATION THEORY
WITH THE VARIATIONAL BASIS

In this section we use the variational basis to set up a

Let |0) be the vacuum oH, in the abstract ket formalism. perturbation theory for the ground state energy. To this end

From Eq.(3.4) it follows

which is V[ 7] is the vacuum oﬂo in the Schrdinger

we split our Hamiltonian, Eq(2.1), into two pieces:
H:H0+H|, (41)

whereH, will be the free Hamiltonian andH, the perturba-

representation. Starting frof®) we can set up the many tion. We defineHo andH, as

particle states by acting on the vacuum with the creation
operatorsa’(p). In the Schrdinger representation we have,

for instance,

¥4 7]=(nlp)=(nla’(p)|0)

_ [ _dx P
(2m)"™ \2g(p)
v, L __ 0
<[ @y 3 tynm - 2wy
_ [ d’xdy gip X GV (V)T ],
f(zw)y/zm (X y)’?(Y) 0[77]
(3.13
Obviously we also have
Holp)=[Eo+9(p)1Ip) (3.14
and
(P1lp2)=8(p1—p2)(0]0). (3.19

In this way we construct the orthonormal $Ebck basig of
wave functional{¥ [ ]}, whereW [ 7] is obtained by ap-
plying n times the creation operator ohg[ 7].

(Ho)nm={(n[HolmM) = SnmHnn, 4.2
(H)am=(n[H|[m)= (1= &) Hnm, 4.3
where
Hnm=<nﬁﬂﬁvzzf[anPE[nﬁ4(—iiz,n)Wm[nl
om
(4.9

Equations(4.2) and (4.3) show that the perturbatioH, is
given by the off-diagonal elements of the full Hamiltonian
H with respect to the variational basis. If the wave functional
V[ 7] is close to the true ground stateldf then we expect
that the H,),, are small with respect toHg),,, i-€., that
H, is a genuine perturbation.

We recall that in Sec. Il we fixed the wave functional

W[ 7] by minimizing E[q&o,g(IZ)]: H o On the class of trial
Gaussian functionals, E42.5. In this way we get an opti-
mized perturbation expansion. Moreover, we stress that in
our scheme it is unnecessary to start with a small parameter
in H. Thus our method goes beyond the usual perturbation
theory.

We now address ourselves in the determinatioll gand
H,. We evaluate, firstly, the diagonal elementstbfwith
respect to the Fock variational bagi¥ [ 7]}. To this end
we rewrite the Hamiltoniari2.1) in terms of the annihilation

It should be emphasized that the Fock basis is univocalljnd creation operator8.7) and (3.8). A rather lengthy but

determined by the vacuum function®#y[ n]. As we will

discuss in the next section, the vacuum functional will be
fixed with a variational procedure. For this reason the Fock

basis{V¥,(7)} will be referred to as a variational basis.

A A
H<1>={m2¢o+ €¢8+ Zd’of

H@_l p2+m2+(N2) 2

d’k

otherwise straightforward calculation shows that

= | d*pla(p)+ =
TS

+— - =
4 J (2m)" g(p)g(k)

p2+ m2+()x/2)¢>§+()\/4)f[d”p’/(271')3]L

H=HO+HO+H@ L+ HE+H@ (4.5
where
H©O=E[ ¢0,9(K)], (4.6
d’k i fd” . -~ (47)
—(277),, g(E) x:np(X):, .
a'(pa(p)
9P | at(p)at(—p)+aBla— )], (9

1 .
+Zfd% —g(p)+

a(p)
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3 A 3w

H >=§¢0 d"x: 73(x):, 4.9
4 A 4.0

H ):E dx:7%(x):, (4.10

where the colons mean normal ordering with respect to the

vacuumwy [ #].

In the ket formalism then-particle wave functionals are

given by

R R (277_)1//2 o
IN)=[pav1:Pava- - ) =11 VI (TR "i(p;)]0),

| (4.1)

with Z;v;=n. A straightforward calculation gives

(N[H@|n)=E[ ¢p,9(k)], (4.12

(n[H®[n)=(n|H®|n)=0, (4.13

P+ M2+ (\/2) 2
a(pi)

1 -
(nlHZIn)=5 3 vi[g<pi>+

LNk 1
- 7 = Vi > .
8 J (2m)"g(k) T g(p)

(4.19

H|:f dVX

2 Nogl e N g
M (¢o)¢o_§¢o -7](X)-+§¢0-77 (x):

(4.19

We stress once again that our perturbation is given by the
off-diagonal elements of the full Hamiltoniah with respect

to the variational basi§¥ [ 7]}. This means that the pertur-
bation expansion that we will discuss in the next section is
not a weak coupling expansion. In other words, our varia-
tional procedure, which selects the Fock bags,[ 7]},
minimizes the off-diagonal elementd,,, so that even
though the quartic self-coupling is strong, the perturbative
expansion gives sensible results. Finally, it is worth mention-
ing that the simple results, Eg4.19, for the perturbation
Hamiltonian rely on Eq(4.19 which is valid only for quan-
tum systems with an infinite number of degrees of freedom.

V. GENERALIZED GAUSSIAN EFFECTIVE POTENTIAL

In the previous section we were able to split the Hamil-
tonianH into two pieces: the free Hamiltoniad, and the

As concerndH®, a rather lengthy but elementary calculation interactionH, . If we neglectH,, we see that the ground

shows that in the thermodynamic limit— oo, we also have

(n[H®|n)y=0. (4.15

Now, if we select the variational basis by minimizing
Hoo=Eo[ #0.9(K)], i.e., if we impose the extremum condi-

tion, Eq.(2.17), we find thatH® reduces to

HE= [ dpgpal(Bracp). (4.16

Moreover,

<n|H|n>=E[¢o,g<E>]+2ivig<5i>, (4.17)

where g(k) = Vk®+ u?(¢o) and u(sp,) satisfies the gap

equation(2.19.

Equation(4.16 tells us thatH® is the normal-ordered
Hamiltonian of a free scalar field with magg ¢). More-

state ofH, is the wave functionall'y[ »] and the Gaussian
effective potential, Eq(2.22), is the ground state energy den-
sity. In other wordsYged ¢o) is the lowest order term of the
vacuum energy density in the perturbation expansion gener-
ated byH,. Thus the corrections to the Gaussian effective
potential can be readily obtained by means of the standard
perturbation expansion for the ground state energy. For the
ground state energy we may use the well-known Brueckner-
Goldstone formuld10]

Eas( $0) =Eo(¢o,9(K))

+§:O{<0|H|(ﬁm)n|o>} . (5.

conn

For instance, up to second orderhh and using Eqs(4.2)
and (4.3), we have

Ecs(¢o)=Eo+ nZO (Hoo—Hnn) “H(n[H[0)|%. (5.2

over, it is now clear that the off-diagonal elements of the f“"Higher order terms can be analyzed by means of the so-

Hamiltonian are due tdH®), H®) and H). As a conse-

guence we can writéusing again the gap equation

Ho=HO+H@=E[¢,g(k)]+H?,  (4.18

called Goldstone diagranj40,11].
However, in order to show thd&gs in Eq. (5.1 gives
correctly the correction to the Gaussian effective potential,

we must ascertain that it exists in a stéE) such that
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(Q[H|Q) Hi(t)=e'Ho'H e ot (5.12
Ees($0)= 5707} (5.3
and that then! possible time orderings give identical contri-
with the constraint butions, we get
0 0
Q Q —E)MW=(—j)n —e(ty]+---+ta])
Q[ n(x)| >_0. 5.4 (E—Eg)™W=(—1i) L}Ooltl fﬁwdtne 1
(0|0)
iHgt —iHg(t—ty) . ..
To do this, we use the Gell-Mann—Low theorem on the X(0[H,e"olaH e Mot 1,
ground statd¢12]. Let us consider the Hamiltonian x e Molt-1=tH e~ Hotn| Oy . (5.13
Ho=Ho+He , e-0". (5.5 By changing variables to relative times,
Next, we introduce the temporal evolution operator Xi=ty, Xo=to—ty, ... X,=t,—t,_1, (5.14
— n t . .
Utit)= 2 ( II) j dt,. - f dt et +lta) one finally obtains
=0 N to
1
_E M= - H...
XTLH(t) -+ Hy(t)], (5.6 (E-Eo)™=(0[Hi g cHiH

whereH,(t) is the perturbation Hamiltonian in the interac-
tion representation. The Gell-Mann—Low theorem says that ><EO—H0+iL=I_|'|0>‘:°””' .19
if the following quantity exists to all order in perturbation
theory, Because of the limitation to connected contributions, the

limit e—0" is harmless. Hence we get
U(0—=)[0) _ [Q)

lim (5.7 o
{0[U(0,—=)[0) — (02" "
—07 E_EOZnZo <O|HI ?HOH |0>conna (5.16
then
a Q which shows that indeeB=Egs.
2) — 2) _ (5.9 We can finally write down the generalization of the
(0]9Q) (0]9) Gaussian effective potential we are looking f8#:
Note that the denominator in Eg&.7) and(5.8) is crucial, 1 (Q[H|Q)
for the numerator and the denominator do not separately ex- V(o) = RO (5.17
ist ase—07.
From Eq.(5.8) it follows that with the constraint
(Q[H[Q) -
= (5.9 (Q]n(x)[Q)
<Q|Q> WZO. (5.18)

Now we show thaBqs=E. Indeed, from Eqs(5.8) and(5.5 10 ¢ Eq(5.18 assures that the expectation value of the

we get -
scalar fieldg(x) on the statdQ) is ¢,.
(O[H,|Q) Several remarks are in order. Equati@l16 shows that
E- ozw- (5.10 E reduces tdE in the zeroth order due to the normal order-
ing of the interaction Hamiltonian. Thus, in that approxima-
where we have taken into account thg|0) = E|0). tion Vg(¢g) coincides with the Gaussian effective potential.
Now a standard manipulatidd 1] shows that Higher order contributions to the generalized Gaussian
effective potential Vg(¢o) can be evaluated by the
(— )” Brueckner-Goldstone formula, E¢5.16). In this case one

(O[H[Q)= (OIQ>E

deals with an expansion in terms of the Goldstone diagrams
[11]. However, one can do better if one uses E§sLO and

0 0 ]
Xf dtl...f dtne[fe(t1+...+tn)] (5.11):

1 (=" 0
(O TIHI(OH () - -Hi(t) ] O)eomny (51D Vo( @0 =Vaed b0+ 2 — f_mdtn“'f_wdtn

©

where the subscript means that we need to take into account X (O T[H(0)H,(t1)- - - Hi(t1)1]0)conns (5.19
only the connected terms. In order to carry out the time in-

tegrations, we consider theth order contribution in Eq. where we have performed the harmless limit 0*. Indeed
(5.11). Observing that a given term in Eq(5.19 can be easily evaluated by means
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of the standard Feynman diagrams. It is evident that the fregl. CORRECTION TO THE GAUSSIAN APPROXIMATION
Feynman propagator coincides with the propagator of a sca-
lar field with massu(¢g).

It should be stressed that it is convenient to analyze the
expansion(5.19 by means of the Feynman diagrams. In-
deed, it is well known that a Feynman diagram witlver-
tices containk! Goldstone diagrams, corresponding to the
number of permutations of the times, . . . ty.

The expansion, Eg5.19), gives rise to a set of vacuum
Feynman diagrams. Let us consider the term of ordém
Eq. (5.19. In the time-ordered product there are-1 inter-
action Hamiltonians. This means that, unlike the usual
vacuum diagrams the factorial factot is canceled by the .

: . ) ’ .with
number of permutations of the independent integration vari-
ables. As a consequence, E§.19 allows a diagrammatic
expansion of the higher order corrections which is amenable i o
to a.diagrammati.c resumma_tion. _ AV( o) = v f dt(O] TH,(0)H,(1)|0)conn- (6.2

Finally, we point out that in terms of Feynman diagrams, —o
the constraint, Eq(5.18, sets to zero the tadpolelike dia-
grams that are due to the linear term in the interaction Hamil-
tonian. Taking into account Eqg5.18 and(4.19 we get

In the previous section we introduced the generalized
Gaussian effective potential which allows us to compute in a
systematlc way the corrections to the Gaussian approxima-
tion. Presently we focus on the second order corrections. Let
us consider the first nontrivial term in the perturbative ex-

pansion, Eq(5.19. We have

V(o) =Veed ¢o) + AVs( o), (6.1

AVg(®g) f dtfd rxdvy

( ) OITCR 00 7%(y)0)] 0>+( OTC7* 007 (y)2)] 0)} (6.3

Wherex=(0,>2) andy=(t,§). Therefore we havésee Fig. 1

_ 242 2
¢O . 3 A . 4
AVg(¢o) = dt d"xd"y| = [IGr(X.Y) "+ 77 [IGE(X I, (6.9
where the Feynman propagator is
dv+lk e ik(x—y)
GF(va):f (2,”)1/-*—1 k2_M2+i€' (65)

Inserting Eq.(6.5) into Eq. (6.4 and performing the time and spatial integrations we recast{f&4). into

AVl N2 g2 f 3 d’k;  (2m)"8(Ky+Ko+Ks) A2 f 4 d’k; (27) " 8(Ky + Ko+ K3+ Ky)
e @)=~ = > > N = > > = N
3! =1 (2m)"2g(ki) g(k) +a(kp)+g(ks) 4 J =1 (2m)"2g(ki) g(ky)+9(Kp) +9(Ks) +g(Ks) 68
6.6
|
Note that the lowest order contribution in the loop expansiorwhere
is the two-loop diagranfdiagram(a) in Fig. 1] which was
lost in the Gaussian approximation. In non-Abelian gauge iodk 1
theories this diagram is crucial in order to maintain the gauge lo(p)= , (6.9
invariance in the variational Gaussian approximafigh 2 ) .27 \/g(k)
Now we discuss the second order corrections in the case
of scalar fields inv=1,2 spatial dimensionsl3].
lh(p)=5 J Jg(k (6.9

A. Scalar fields in 1+1 dimensions

To start with, we consider the Gaussian effective potentialntroducing an ultraviolet cutoff\, it is not difficult to see
in one spatial dimension=1: that the integral$6.8) and (6.9) display quadratic and loga-
) rithmic divergences. Subtracting the energy density of the

_ 2, Mg T $o=0 vacuumVged ¢o=0), one is left with a logarithmic
Ve $o) $ot grdothiw) = glolw), (6.7 divergence which can be corrected by renormalizing the
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()

1+1
GEP

FIG. 1. Second order corrections to the Gaussian effective po- ~
tential.

mass. In the Gaussian approximation the renormalized mass

is defined ag1] =4
IV e bo) A T 1
GE 0
= |  =m’+lo(uo)=pi,  (6.10
ddg B 2
$o=0

where we recall thaju,=u(po=0). However, we shall o4 1
see that once we consider the corrections to the Gaussian ‘ ‘ ‘ ‘
approximation the prescription E@6.10 needs modifica- 0 0.5 L 1.5
tion. ®,

A serious problem of the variational approximation in
quantum field theories is due to the presence of ultraviolet FIG. 2. The Gaussian effective potential in one spatial dimen-
divergences[14]. The variational-perturbation theory dis- sion for three different values o.
cussed in this paper offers a natural solution to the ultraviolet
divergence problem which parallels the perturbative re- 3 N
normalization theory. As a matter of fact, we showed that X—1+ ;Inx:12)\<bo. (6.15
the generalized Gaussian effective potentigl ¢o) is the
energy density of the vacuuff)) with scalar condensate These results have been obtained for the first time by Chang
bo={(Q|$|Q)/(Q]Q). Observing that only the energy dif- [15]. In Fig. 2 we displayVgs(Po) as a function ofb, for

ferences are of importance, our renormalization prescriptiogarious values of the dimensionless couplfngSeveraI fea-
will be to reabsorb the ultraviolet divergences in the fieldtures are worth mentioning. Firsh,=0 is always a local
theory without scalar condensate. Moreover, #&=0 the | inimum of Veed o). For A<h., with A.=2.5527, the

. . . (o) (o} . H
Hamiltonian, Eqgs(4.18 and (4.19), reduces to the one of g _q yacuum is the true ground state. On the other hand,

a scalar field with massy, and normal-ordered quartic ~ 2 )
self-interaction. In the case of one and two spatial dimenlcor A> A the ground state is fobg#0. As a consequence,

sions that theory is superrenormalizable and we only need first order phase transition occursigt. However, Chang
to renormalize the mass. We define the renormalized madd6] pointed out that the Simon-Griffiths theordi] rules

'@ (p: o=0): dimensionak ¢* field theory. Moreover, Chan{d.6] showed

that there is no contradiction between the existence of a sec-
m2R= —T@(0;¢¢=0). (6.11 ond order transition and the Simon-Griffiths theorem.
Remarkably, it turns out that the two-loop correction, dia-

In the Gaussian approximation thigg=0 Hamiltonian coin-  gram(a) in Fig. 1, gives rise to a second order phase transi-
cides with the free Hamiltonian of a scalar field with masstion. Indeed that correction is finite:
Mo, SO that Eq(6.11) gives
R2
M= 15, (6.12 AVg(Po) = —a—-Dus, (6.16

which agrees with Eq(6.10. In one spatial dimension Eq.

(6.12 eliminates completely the ultraviolet divergences, forW'th

the higher order corrections are finite. 3 [t 1
From Eq.(6.12 and the gap equation we get a=— f dxdy
) e VOC+1)(Y?+ D[ (x+y)*+1]
2 2 Mo
m?=mg— = lo(Mg). (6.13 1

X
214+ YA+ 1+ (x+y) 2+
Inserting Eq.(6.13 into Eq. (6.7) and using Eqs(2.24)- [+ 14y + 1+ (x+y)*+ 1

(2.27 and(2.22 one obtaing1] =0.7136, (6.17
. x—1 3N x—1 so that in this approximation we get
Vaid(do)=—2hdi+—— |1+ —+——|,  (6.14
24\ ™ 2 Vo(® K2
%(i)zv“l(q)o)—a—qﬂ. (6.18
with the gap equation Mo GEP x 0
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FIG. 3. The two-loop Gaussian effective potential for 1 and
three different values of.

In Fig. 3 we display Eq(6.18. We see that now there is a

second order phase transition\at= 1/y/2a=0.8371. This is
confirmed by considering the mass gap of tig=0
vacuum:

Monys= 4o+ 2(0), (6.19
whereX,(p) is the proper self-mass of the,=0 theory. In

the second order approximaticn(p) is given by the so-
called setting sun diagrafi8]. It is easy to show that

)\2
2(0)=-75; f d>X[Ge(x) ],
whereGg(x) is the Euclidean Feynman propagator:

Ge(x)
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A straightforward calculation gives
3(0)=—2aN?u3. (6.22
Thus, from Eqgs(6.19 and(6.22 we get
2 £2
mg, A
o1 A—z). (6.23
Mo Ao
One can easily check that in this case
V(o)
ShysZT (6.24
0 d)o:o

A remarkable consequence of E@.24) is that the mass
renormalization of the Gaussian effective potential extends
to Vg(¢g) in the two-loop approximation. Equatidi®.23

tells us that thep,=0 vacuum is stable fox<\,. More-
over, near the critical coupling we have

m ~ A
—E(Re—R)*2 6.25
Mo
so that the correlation lengtf= 1/m,, s diverges as
E~(e—N)7Y v=1 (6.26

Our results are in agreement with previous studies
[16,19,2Q. However, our generalized Gaussian effective po-
tential relies on a firm field-theoretical basis which allows us
to take care of the higher order corrections. Moreover, in our
scheme there are no ambiguities in the renormalization of the
ultraviolet divergences.

Let us consider now the contribution due to diagrdmnin

b — f dxd
“16m2 | %X

(620 Fig. 1. We have
A2 G
d2k ik AVg(¢o)=—a—dgue—b—-, (6.27)
) WKZT'“S (620 where
+ oo 1 1
Y T D2 D (Zr Dl y T 225 1] Yt LNy er IV Ly s 025 120'0509-( -

We would like to stress that now E@6.24) is no longer

A few comments are in order. The order of the transition

valid. In the present case this does not matter due to the fats not modified by the three-loop second order correction.
that the second order corrections are ultraviolet finite. How+Moreover, the critical couplinglczl.1486 is quite close to

ever, in the case of two spatial dimensions these correctionsur previous value. As a matter of fact, in the critical region
are divergent. Thus, adopting the renormalization prescripf ~1 the effects of the three-loop correction do not substan-

tion, Eq. (6.29), instead of Eq.(6.11), it may lead to an
incongruous result.

tially change the shape of the potential. Therefore we can
safely conclude that the most important contributions in the

In Fig. 4 we contrast the generalized Gaussian effectiveritical region are given by the two loop term. This suggests

potential in the two-loop approximatiosolid lineg and in
the full second order approximatiqdashed lines

that higher order corrections do not modify the order of the
transition.
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(o)

1+1

FIG. 4. The two-loop(solid lineg and second ordefdashed
lines) generalized Gaussian effective potentials #or 1 and three

different values of\.

B. Scalar fields in 2+1 dimensions

0.4 ‘ ;
TN
(=
<
p—a
&b
>
0.2 A=1 B
A
0 -
A=3.5
_02 — -
| L |
0 0.5 1
b,

FIG. 5. The Gaussian effective potential in two spatial dimen-
sions for three different values af

(I) _
VGEP(<I>0)— +>\q>4 ([477)

9.
1+ —N+2x]|.
21

In the case of two spatial dimensions the Gaussian effec- (6.39

tive potential is

m N, N,
VGEP(¢0):7¢o+ﬂ¢o+|1(l’«)_§|o(,u«), (6.29

where, now,
lo(u)= f( ﬂ_) g(k) (6.30
1 d’k .
|1(M)=§fwg(k)- (6.31)

Subtracting the energy density of tilg=0 vacuum we get

m N,
VGEF(¢O)_VGEF(O):7¢O+H(ﬁo—i_ll(ﬂ)_ll(ﬂo)

A 2 2
— gllolm) =To(ko)l, (6.32

which is still affected by ultraviolet divergences.
Introducing the renormalized mass

2V A
2= M =m?+ Slo(ug) =g (6.33
‘99[)0 ¢o=0 2

and using the gap equation

w3 (o) = m2+ d’o o(M) (6.39

we get the finite resull]

Similarly we can rewrite the gap equation E§.34 as
~ , 3.
x=1+12APd2- ;x(&— 1), (6.36

whose explicit positive solution is

3\
JX=——+ \/
2w

In Fig. 5 we show3LE(d,) versus®, for three different
values ofx. Again we find a first order phase transition at the
critical couplingh =3.0784[1]. Note that in two spatial di-
mensions there are no rigorous results which could exclude a
first order transition. Nevertheless, it is important to investi-
gate the effects of the second order corrections to the Gauss-
ian effective potential. From Ed6.4) we have

2

A S HR2
1+——| +12802.  (6.37

2

242

AVg(Pg)=—i f_oocdxf dzz[ )\3(!1)0[icap(z)]2

)\2
+ E[iGF(Z)][l]a (6.38

wherez= (t,x). Now, observing that the Feynman propaga-
tor is an even function and performing the Wick rotation, we
obtain

1 )\2¢2 )\2
AVe(®o) == | d3zE{ - °G§<zE>+EGé<zE>],
(6.39

where[21]
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d3ke e ike-zg w we rewrite Eq.(6.39 as
Ge(zg)= J 2 2.3 2 K12(1z), 5,2 2
2m? KZ+u? (2m) P (u2) N2 A
(6.40 AVe(do) == —5 Ja(u) = zgdaln).  (6.49
withl.z= |zg| andK 4, is the modified Bessel function of or- From Eqs.(6.43 and(6.44 we see thafl; andJ, are diver-
der 3: gent. We regularize the integrals by means of an ultraviolet
- cutoff e~1/A [22]:
Kl/z(x): Zeix. (64]) 1 oo e*3,u.Z
Ja(u, €)= 1672 J dz 7
Thus we get, for the Euclidean Feynman propagator, ‘
1
e M =— ——[In(ne)+In3+ y]+0O(e), (6.46
= 1672
Ge(zg) ypup (6.42
i J _ 1 fwde4ﬂz— ! 14I
Introducing a(p, €)= am? |, 957 = Gae +4ulIn(ue)
s 3 d3zg e 3#2
33(“):f F2eGelze)= | s 7+ 69 +In4+y—1]{ +0(e), (6.47)

—AMZ

Ja(p)= jdszEGE(ZE) j(477)4 .

(6.44) wherevy is the Euler-Mascheroni constant.
Putting it all together we obtain

242

1 ,, N 4 N, 2 Ao
VG(¢O)_VG(O)=§m ot m¢’o+|1(ﬂ«)_|1(#o)_g[b(#)"o(#o)]"‘ W['n(ﬂf)ﬂrﬁ"‘ ]
2 2
~ 76a,3 (# T rollind+ y—1]— Zos[ uIn(ue) ] - moln(uoe)]. (6.48

Now we show that the logarithmic divergences are cured by renormalizing the mass. To this end, we obsglye that

3 2 2 2
300~ = (W2 iDolrio) ~ | 2 N (2 Z_S_l”’ (6.49
2
lo(w)=tomo) == 52| \5z]. (6.50

Inserting Eqs(6.49 and (6.50 into Eq.(6.48, and using the gap equatidf.34), we rewrite Eq.(6.48 as

1 mo [ [u? |2 u NS w2
V(o) —Va(0)=5 udhd+ ¢> ~1] |2 —1)- M ~1
G\ Po G 2 0 0 (I 247T ;g ;g 12&72 0 ;g
)\2 2 2

¢
+T27702[|n(,u6)+|n3+ Y1~ 7gg3L(k— mo)(INd+ y=1)+ uin(ue) — uoln(uoe) . (65D

As we have already discussed, the renormalized mass is

m&=—T'(0,4o=0)=u3+=(0). (6.52
|

In the lowest order Gaussian approximation we have G

, 3(0)=6m?+ 96W2[|n(,u06)+|n3+ y]+0(e). (6.5
A
20=6m2——Jd3x G(xg), 6.5
©) 3! eGE(Xe) (653 We fix the mass counterterm by imposing that

where the second order term is due to the ‘“setting-sun” mé=u%. (6.55

diagram. Explicitly, by using the previous regularization, we
find This results in
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Finally, using Eq.(6.56 we get

v v 2
0 0 (a) — _ 4 +
(@) (b)
2
FIG. 6. Mass counterterm contributions to the generalized 1 _
Gaussian effective potential in the second order approximation. G 76&73[|n(”°6)+|n3+7] Arre 'U“} (6.63

2 Now, it is easy to see thatV{®) eliminates the ultraviolet

W['”(Mo€)+|n3+ pat (6.56 divergences of the two-loop second order correction,
whereassV®) makes finite the three-loop second order cor-

As a consequence, we must introduce the following counterrection. Thus we are left with the finite result

term Hamiltonian in thepy=0 theory:

SmP= —

1 ,U«o /Mz 2
. == 22+ ~
5H:%5m2f d2X¢2()Z). (657) VG( ¢0) VG(O) 21“‘0¢0 ¢0 2471. M(Z) 1
2
. - - . . M N e
After writing ¢(X) = ¢o+ n(X) and using the constraint, Eq. X2 5—1|— 5 LG s—1
Mo 128w Mo

(5.18, it turns out thatsH adds to the second order gener-
alized Gaussian effective potential the further contributions

depicted in Fig. 6: N5 ( 2 [ ( ,u)
+-——In ————u|1—In| —
1,202 192 76877 Mo
V@ =1g26m?, (6.58
I 4 N 1-1 4 (6.69
1 d2k 1 —INg|— =g 3 M0| L INZ]|. .
5\/(b)_ Sm2 (6.59 3 768 3

(2m)% 2g(k)
In terms of the scaled variables, E¢2.23 and (2.24), we

Now, observing that rewrite Eq.(6.64 as
1 +edkg 1 i1 3\% 3
m f—oc > k2+—gz(k) (6.60 VG((I)O)—V(3|5p((1’o)+?CDOM\&Jr m(\/;— 1)
4 3.
we have (f—>0) X 1—In§ - 4—77_3,)\2\/;In\/; (6.695

1 1 1
(0) —— sm?2 = — Sm? —/— —
oV 25m Ge(e) 87T5m [4776

+0(e). (661 It is worthwhile to study separately the effects of the two
second order corrections. If we take into account the two-
loop correction we get

382
v5§>(q>0)=végg,(q>o)+?q>g|n&. (6.66

Ve (o)

In Fig. 7 we display Eq(6.66) for A\=1, 3, and 5. As is

4 evident there is no spontaneous symmetry breakitf).
Comparing Fig. 7 with Fig. 5, we see that the two-loop cor-
rection adds to the Gaussian effective potential a positive
contribution which is important in the regio®,~1 and
overcomes the negative minimum displayed\té@é((bo) in

that region. On the other hand, considering the three-loop
second order correction, we have

VE~§’><<I>0>=Vé*Eé<<I>o>+ 3<& 1)( |n‘-‘)

3 .
¢° - m)\z\/;m\/; (667)

FIG. 7. The generalized Gaussian effective potentialifer2
and three different values of with the two-loops correction. From Fig. 8, where display Eq6.67) for three different
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0.01 ‘ ‘ ‘ ‘ couplingic=3.0959 differs from that of the Gaussian effec-
tive potential by less than 1%. We feel that the only sound
conclusion we can draw is the exclusion of a first order phase
transition. Note that unlike what is stated in RE#4], the
absence of a broken phase is not in contradiction with the
analysis by Magrud€25] and Chang and Magrudé26].

We would like to conclude this rather technical section by
stressing the most important achievements of our analysis.
Our analysis of the ultraviolet divergences in two spatial di-
mensions showed that our renormalization procedure works
up to second order. However, it is clear that our renormal-
ization can be extended to higher orders by the usual renor-
malization procedure. Thus we feel that our results put the
=0.005 - o 1 generalized Gaussian effective potential on the same level as
A> A, the effective potential.

VO (b,)

0.005 -

VIl. THERMAL CORRECTIONS TO THE GENERALIZED

_ . i . I . ] .
0.01 005 oq oTs o0 GAUSSIAN EFFECTIVE POTENTIAL

&,

The aim of this section is to study the thermal corrections
to the generalized Gaussian effective potential. For the read-
FIG. 8. The generalized Gaussian effective potentialifer2 er's convenience, let us first recall the essential points of the
and three different values of with the three-loops correction. finite temperature effective potentif27—29 and the finite
temperature Gaussian effective potenfz0,31.
values of\, we deduce that the most important effects of the ~ Following the classical paper by Dolan and JackRe]

three-loop second order correction are near the origin whertéhe finite temperature effective potential in the one-loop ap-
one gets proximation is given by

P—0 18 4 A3 1 d’k
(b) o I 1 1 loop, I - 2 2
AVP (D) 133 1+3>§/2wq)°' (6.69 V"R o) 25 ; f (Zﬂ),,ln(E +w?), (7.0

Indeed, Fig. 8 shows that(b)(d)o) undergoes a continuous wherew,=2mgn, B=1/T, are the Matsubarasfrequenmes

phase transition dt,=3.0959. This feature persists even for [32], and E?=k*+M?(¢), M?(¢o) =m?+(\/2)¢3. Per-
the full second order generalized Gaussian effective potentidrming the sum oven one finds[29]
Eq. (6.65 (see Fig. 9. Our result is in qualitative agreement 4’k E 1 47k

with Refs.[23] and[24]. However, from Fig. 9 we see that /1 loop ) = — In[1-e fE]. (7.2

the condensation energy is very small. Moreover, the critical * 0 (2m)” 2" B (2m)’
0.02 — ‘ ‘ ‘ ‘ On the right-hand of Eq(7.2) the first term is the one-loop
zero temperature effective potential, while the second term
= gives the one-loop thermal corrections.
®  ooisf _ As concerns the Gaussian effective potential at finite tem-
> perature, we shall follow Hajj and StevensfB0]. Let us
consider a system in thermal equilibrium; this means that our
0.01 . system has minimized its free energy,
1
0.005 |- _ F = - Elnz, (73)
whereZ is the partition function:
0
Z=Tr(e #H). (7.9
—0.005 1 7 In order to evaluate the thermal corrections to the Gaussian
effective potential, the authors of R¢B0] split the Hamil-
tonian as
—0.01 1 | s | 1 1 1 | 1
0 0.05 0.1 0.15 0.2 0.25
H = H0+ H| y (75)

whereH is the Hamiltonian of a scalar field with variational
FIG. 9. The second order generalized Gaussian effective potermassM 2, while H, comprises the remainder. The variational
tial for v=2 and three different values af mass is fixed by minimizing the free energy, E£6.3). To do
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this one uses the thermodynamic perturbation theory t¢33]. In the remainder of this section we focus on the lowest
evaluate the free energy in the lowest order in the perturbasrder thermal corrections and compare with the one-loop

tion Hamiltonian. Writing thermal effective potential corrections and the finite tempera-
— B(Hg+HY) e BH ture Gaussian effective potential. The higher order thermal
e PHoT =g Pro(1—BH)), (7.6)  corrections will be discussed in the next section.

In the lowest order in the perturbation we writg4]
we get

Z=Tre PHo[1- B(H,)"], (7.7) F=— %|nTr(e—ﬁHo)+<H,>B, (7.16

where(O)# means the thermal average with respecttp
where, nowHy is given by Eq.(4.18 andH, by Eq.(4.19.

B_Tr(e*ﬁHOO) Observing that the eigenstatestdf are the statefn), Eq.

(0)F= Tr(e PHo) - (7.8 (4.11), with eigenvalue€,, given Eq.(4.17), we have
From Egs.(7.3 and(7.7) we obtain H ﬁ_Tfe_ﬁH°H| e #5n(n[H|n) 21
. < |> - Tre*,BHo - EnefﬂEn ( : 7)
= _ —BH B
F BInTr(e 2)+(H)". (7.9 According to our definition Eq(4.3) we have(n|H,|n)=0,

and so we end up with
Now observing that the thermal average involves a summa-

tion over the eigenstates #f, it is not too difficult to find (H,)#=0. (7.18
[30]
The calculation of the partition functiod,=Tre AHo is
F A m? A straightforward:
Vaed do) = =11+ 15— g (lo+16)%+ b5+ 77 4o,
(7.10 Zo:TreﬁH°=eBE0Trexr( -8 g(K)a'kag
where “
1
1 d’k - = *BEOH L —e BEg
= | 2~ _ o~ Bak) € | a0 €
17 ﬂf(zw)yln(l e ), (7.11 o 1—e Ik
dk 1 1 X vf d’k In[1 *Bg(lz)] (7.19
v exp — ——In[1—e , .
5= — , (7.12 (2m)
(2m)" g(k) ef9k—1

whereg(k) = VK2 + u?( o), n2(po) satisfies the zero tem-
perature gap equatiof2.19, and Eq=E[¢o.9(k)], Eq.
(4.6). The insertion of Eqs(7.18 and(7.19 into Eq.(7.16
leads to

with g(k) = Vk?+M?2. It turns out that the mad¥l satisfies
the thermal gap equation:

A
M2=m?+ §[|0+|§+¢§]. (7.13

F 1 d’k -
\Y =—=V +—J’—In 1—e AIk)y,
A remarkable consequence of E.10 is that the finite ol $0) =i = Veer o) B J (2m)¥ ( :
temperature Gaussian effective potential can be obtained (7.20

from Veer(¢o) with the substitution rule: Note that Eq.(7.20 differs from the finite temperature

lo—lo+1E, (7.14  Gaussian effective potential E¢7.16). The difference re-
sides in the different use of the gap equation. In our scheme
L=l +15. (7.15  the gap equatiof2.19 is fixed once and for all. In particular

it does not depend on the temperature. On the other hand, in
The main drawback of the Hajj-Stevenson approach is thahe finite temperature Gaussian effective potential approach
the splitting of the Hamiltonian in Eq7.5) is not natural, for  the gap equation includes the thermal effects. The gap equa-
the variational mas#, which is fixed by minimizing the tion fixes the basis to sum over in the thermal average, so
free energy, depends on the approximation adopted in evaldhat different gap equations lead to inequivalent basis. In fact
ating perturbatively the free energy. Moreover, the calculathe discrepancy between our results, §g20, and the finite
tions of the thermal corrections beyond the Gaussian apemperature Gaussian effective potential comes from the
proximation are very difficult. On the other hand, as we havehermal average of the interaction Hamiltonian. In our ap-
already discussed in Sec. IV, in our approach the Hamilproach Eq(7.18 holds, whereas in Ref30] (H,)#+0. Note
tonian is split into two pieces, the free Hamiltonian and thethat the possibility of a nonequivalent basis is a peculiar
interaction, in a natural manner. feature of quantum systems with an infinite number of de-

As a consequence the thermal corrections to the generagrees of freedom.

ized Gaussian effective potential can be evaluated easily by It is worthwhile to compare the one-loop thermal correc-
means of the familiar thermodynamic perturbation theorytion to the effective potential with our finite temperature gen-
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3
o 73
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>
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FIG. 10. The generalized Gaussian effective potential with the FIG- 11. The generalized Gaussian effective potential with the

lowest order thermal corrections for=1 andA=4. Dashed lines lowest order thermal corrections for=2 andA=4. The critical
refer to the high temperature expansion. temperature i§ .= 1.60.

eralized Gaussian effective potential, £§.20. Comparing . 11 N Bx
Eq. (7.2) with Eq. (7.20 we see that the former agrees with Vo(Po)=Veep(Po) — =5+ =+ —In| ———

. 2B% 2B 4 41
the latter if

3) .. 5) . A
B egz(m)?' XBe+ %B4X3+O(BG), (7.23

A
MZ( o) =m?+ = ¢5— (o). (7.29

where {(z) is the Riemann’s zeta function. In Fig. 10 we
Now w?( ) satisfies the gap equatié®.19 which, froma  also show the high temperature expansion, £f23
diagrammatic point of view, is obtained by summing the (dashed lines as we can see, the high temperature expansion
infinite set of the superdaisy graphs in the zero temperaturi @ very good approximation even near the critical tempera-
propagator. In other words, if in the thermal corrections ofture. Indeed, foh =4, Eq.(7.23 predicts a critical tempera-
the effective potential we replace the tree level mass of théure which differs by less than 1% from the numerically es-
shifted theory with the masg?(¢,) obtained by summing timated value.
the superdaisy graphs at=0 in the propagator, then we The case of two spatial dimensions can be dealt with in a
obtain again a free energy density. Up to now this remarksimilar way. We have
able result in thermal scalar field theories holds for the one-

loop approximation. In the next section we will show that it 1 o

extends to higher order thermal corrections too. VE(@O)zvéEé(dbo)vL f dttin(1—e~ V74 By |
Let us analyze the lowest order thermal corrections, Eq. 2m /3

(7.20), in the caser=1,2[34]. In one spatial dimension Eq. (7.24

(7.20 reads

In Fig. 11 we display Egq.(7.24 [we subtract the

— temperature-dependent constaﬂé(O)] for three different

ACHE claEéJr f dinf1-e ¥*F%) (722 values of the temperature and=4. Again the thermal cor-
rections lead to the expected symmetry restoration at high
temperatures. As in the previous case we performed the high

where B=Buo. In Fig. 10 we showg(do)—VE(0) (in  temperature expansion of the integral in £424. We find
units of,uo) versus®d for )\>)\C. As we can see, the sym- (see Appendix A&
metry broken aff=0 gets restored foﬁ'>'T’C. Obviously

the critical temperature depends an For A=4 we find V(D)= V2L D) + X }_ X In( /32 + 1A In3?

- N GEP
T.=1.27. It turns out thal; can be estimated, within a few B 8w ™
percent, by means of the high temperature expansion of the 3 A,

integral in Eq.(7.22. From the results of the Appendix A WX -1 B(x*-1) (7.29

[see Eq(A16)] we find the high temperature expansion 127 927
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2 . T 1 bation theory. Presently we would like to calculate the higher
s order thermal corrections. To do this the usual thermody-
namic perturbation theory is useless. Instead we may follow
Matsubara’'s methodg32,33. In Matsubara’s scheme one
deals with scalar fields which depend on the fictitious imagi-
nary timer varying in the interval (@3). If the Hamiltonian
of the system in thermal equilibrium can be written as
H=Hy+H,, then one can show that the corrections to the
thermodynamic potential are given lisee Appendix B

1 B8 B
AQ:—E|H<TTGXP[—L H|(7)dr]> , (8.1

05 whereH,(7) is the interaction Hamiltonian in Matsubara’'s
interaction representatiofl.. is the r-ordering operator and
the thermal averages are done with respect to the free field
partition function. Moreover, it turns out that only the con-

S5 1 1.25 15 175 > nected diagrams contribute foQ):

FIG. 12. The critical temperature versus the couplinépr the
one-loop effective potentia(dotted ling, the Gaussian effective S{(T.TH B 8.2
potential (dashed ling and the generalized Gaussian effective po- (TAHi(2) (7m) 1o 8.2

tential (solid line) in two spatial dimensions. In our case. if we write

However, we would like to stress that the expansion param-

eter in the above-mentioned integral #x, so that in the V(o) =Veed o) + 3 j(z )V|n(1 e Bg(k))
region ®,~1 wherex>1 the high temperature expansion
Eq._(7.25) brea_ks down. I_n Appendix A we d_gvelop an alter- +AVL(d), (8.3
native expansion which is useful in the regiBAx=1.
To conclude this section, it is worthwhile to perform a we readily get
guantitative comparison of our generalized Gaussian effec-
tive potential with the finite temperature Gaussian effective - 1 & (=)™ (8
potential and the one-loop thermal effective potential. For AVe(¢o) =~ 5y < TJ Ty T
definiteness we focus on the critical temperature as a func-
tion of the coupling constant in the case of two spatial X{TIH (7)) -H (T DB o (8.9
dimensions. In this case the one-loop thermal effective po-
tential readgassuming unit mags Note that, due to Eq.7.18), the sum in Eq(8.4) starts from
m=2. The thermal average of the time-ordered products is
V:[Lgloop((bo): 1¢3+X¢04+i(1+ 12}”\@(2))_ i evaluated by means of the Wick’s theorem for thermal fields

[35]. In this way we obtain the thermal corrections to the
generalized Gaussian effective potential by means of the
X (1— 128 D2)¥2— L 151+ 128 D2). connected thermal vacuum diagrams. For instance, the sec-
24 ond order thermal corrections are displayed in Fig. 13. The
(7.26 vertices can be extracted from the interaction Hamiltonian,
Eq. (4.19. The solid lines in Fig. 13 are the thermal propa-
As concerns the finite temperature Gaussian effective potemyators of the free scalar fields with masée,):
tial, the critical temperature can be extracted from Egs.
(7.10, (7.11), and(7.12 with »=2. In Fig. 12 we compare GB(X Y, 71— T) = (Tﬂ?(X ) 7Y, 7))P
the critical temperature as a function)ofin units of ) for
the three different potentials. We see that our finite tempera-
ture generalized Gaussian effective potential leads to a criti- ,8 n_foc (2m)” wﬁ+92(|2)
cal temperature which increases more slowly than for the
other two potentials. This is due to our choice of the varia- (8.9
tional basis which impliegH,)#=0 .

d’k ek (x=y)=an(ry =72

wherew,=2mngB. Note that the thermal propagator is peri-
odic in the time variable with period28.
A distinguishing feature of the graphical expansion of Eq.
(8.4) with respect to Eq(5.19 stems from the fact that the
In the previous section we evaluated the lowest ordefactor (m!) ~! coming from themth order term is not com-
thermal corrections by means of the thermodynamic perturpletely canceled by the number of different Wick contrac-

VIIl. FINITE TEMPERATURE DIAGRAMMATIC
EXPANSION
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[ dk 1 1Bg(K)
GB(O)—J(ZW),,ZQ(E)VOW{ > } (8.11)

Finally, performing the limit8— o in Eq. (8.11) we recover
Eq. (8.8.
Using Eq.(8.11) we rewrite Eq.(8.7) as

d’k

vaslotion)+
(ZW)VZQ(E){cotr(Zg(m 1. 812

aﬁ(o)zf

Note thatG4(0) is free from ultraviolet divergences in any
spatial dimensions. This means that the ultraviolet diver-
gences due to the tadpa®;(0) are cured by normal order-
ing the Hamiltonian aff=0, in accordance with the well-
known result that the thermal corrections in quantum field
eories are ultraviolet finitE37].
We are now in the position of extending the result implied
Eq.(7.21) to the higher order thermal corrections. To this
end we observe that the higher order thermal corrections to
tions corresponding to a given graph. Consequently, a grapige effective potential are given by E(L.9) of Ref. [29].
Observing that in the imaginary time formalism the interac-
'rPO” Lagrangian agrees with the interaction Hamiltonian and
hat the Gaussian functional integrations with periodic
boundary conditions in Ref29] correspond to the thermal

%
SOHOES

FIG. 13. Thermal Feynman diagrams contributing to the secon(sh
order thermal corrections to the generalized Gaussian effective p%-
tential. y

evaluating the contribution due to a given graph one shoul

take care of the normal-ordering prescription in the interac-"", . -
gp P Wick theorem, we obtain the desired result. There are, how-

tion Hamiltonian. In turns out that normal ordering ki ; ) ) )
modifies the so-called anomalous diagrams, i.e., the dia€Ve" two further points which need to be discussed. First,

grams which vanish at zero temperat[86]. For instance, in our mteracuonlHamllltonlan_ls normal orderedTat 0. How-

Fig. 13 diagramgb), (c), and(e) are anomalous. To see this, gver, our previous discussion tells us that the normal order-
we note that normal ordering iH, is ineffective when we Ing does not affect the thermal corrections, ®g(0) and
consider a thermal contraction of two scalar fields belonginﬁﬁ(o) differ by a temperature-independent term. Second, in
to different vertices. Therefore, normal ordering comes intdXef. [29] there is not the linear term in the shifted scalar
play when we contract two fields which belong to the samdield. This means that our substitution rule, E¢.21), holds

vertex. In this case we get the thermal average for the physically relevant on-shell thermal effective poten-
tial.

G (0)=(T,:9(X, ") (X,7): ) (8.6) Let us now explicitly evaluate the second order thermal
B (X T) (X, T))", . . . . . -

corrections in the case of one spatial dimension. From Eqg.
instead ofG4(0). Taking into account canonical commuta- (8.4) we have
tion relations between the creation and annihilation operators

it is straightforward to show that 1 *
g AV(T;(ff’o): - Z,STV fo d71d72<TTHI(Tl)HI(72)>€onn’

- dk 1
G4(0)=G o—f—vf. 8. (8.13
which gives rise to the diagrams depicted in Fig. 13.
Now we observe that It is easy to see that gragh) is temperature independent.
) So it does not contribute tavg(qso) due to the stability
f _dk ;: lim G 4(0). 8.9 condition(Q|7|Q)=0. As concerns graptb) we get
(2m)" 29(K)  pow
Neo[ . N G\ (**
Indeed, from Eq(8.5) it follows that (b=~ apv|* bo=3z%b0| | dxdy
cion § f d’k 1 - B 5
B0=5 2. | Goy vtrgy Y x fo drd (T, 70X, 71) 0y, 72))
By using the well-known identity21] X(T,:m(X,m2) (Y, 72)1)P. (8.149
1 2x = 1 According to our previous discussion we obtain
COtI”(X)ZR'F?nElm, (8.10 )\¢2 .
—_ 70 T 42lG
we rewrite Eq.(8.9) as (b) 4 (1 3u’ d)o)GB(O)' (819
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In a similar way we find

)\2¢2 1 _
(c)=— 80762(0). (8.16
For the graphd) we have
N2h2 B2 o
(d)=— 120 j_Blszf_ dxGi(x,7).  (8.17)

Using Eq.(8.5 and the resulfsee Appendix B, Eq(B32)]

—g(k)|7] .
e 1 [eg(k)’f

eimnT

— = — + =
w2+g?(k)  2g(k)  2g(k)

1
52

-9k~
+e ]eﬁg(k)—l’ (8.18

we get

N2gd (B2 (+=  dkgdk,
(D=~ 2822 Jo de . 9k 9(K)g(ks)

e k)4 (8.19

@9k 7 o= 9k~
efalk) _ 1 '

3
<]1
i=1

whereE?:lkizo. Finally, using again Eq8.18 we find

NC BI2 +oo
~ 322m) Gﬁ(o)fo dr f
_g(k)T eg(k)TJ,_ efg(k)T 2
e + R | (8.20

()=

X

g°(k)

(f)=-

T

A2V BI2
3842m)* f 0
dk;dkydks

% f .. 9(kD9(Ky)a(ka)g(ky)

4
<1
=1

e9(kD7_4 o= 9(k)T

—okp)ry — -
e Yt Bk 1

}, (8.2)

with =*_k;=0.
Some comments are in order. In E¢8.19—(8.21) the
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0 0.2 0.4 0.6 0.8 1
o

FIG. 14. Contributions due to the second order thermal correc-
tions to the generalized Gaussian effective potential #et1,

A=4, andB=1.

B—0 )\2 1

(e ~ _2_56,83 s (8.22
B—0 )\2 1

f) ~ — 1536,33,41,5- (8.23

Therefore, in the intermediate temperature regionl we
expect that the main contribute mé(%) comes from
graphs(d), (e), and(f). This is indeed the case as shown in
Fig. 14 where we display the contributions due to the second
order graphs fop=1.

In Fig. 15 we display the finite temperature generalized
Gaussian effective potenti@h units of ,ué) for three differ-

ent values ofl andA>X.. We see that the symmetry bro-
ken at T=0 gets restored by increasing the temperature
through a continuous phase transition.

We have also performed the analysis of the second order
thermal corrections in two spatial dimensions. The calcula-
tion are very similar to the previous case. Moreover, we find
that the contributions to the second order thermal corrections

7 integration can be performed explicitly, while the remain-pahaye similarly to the ones of the one-dimensional case. So
ing integrations over the momenta must be handled numerize 4o not discuss any further this matter.

cally. In the limit 8—«(T—0) the anomalous graph®¥),

(©), and (e) go exponentially to zero due to the factor
Gg(0). On theother hand, graph&) and (f) reduce to the

IX. CONCLUSIONS

zero temperature second order generalized Gaussian effec-In this paper we have developed a perturbation theory

tive potential. Indeed, in that limit in Eq§3.19—(8.21) only
the factorse™ 97 survive. Performing the elementaryin-

with a variational basis for self-interacting scalar quantum
field theories. Our aim was to evaluate in a systematic man-

tegration we obtain the zero temperature contributions. As aer the corrections to the variational Gaussian approxima-

consequence the zero temperature Iimit\/@f(dm) reduces

to Vg(¢o)-

In the high temperature limit we find that grapfe and

(f) dominate:

tion. In particular we introduced the generalized Gaussian
effective potential which allowed us to determine the correc-
tions to the Gaussian effective potentiaB].

Our method has been illustrated in the case of self-
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of the effective potential provided we use, Eg.21).

o ‘ Let us conclude by briefly discussing the more realistic
—~ case of scalar fields in three spatial dimensions. There is
\ei growing evidence that quartic self-interacting scalar field
=>  03F 7 theories are trivial in four-dimensional spacetifdé]. How-

ever, recently Consoli and Stevenson proposed that the
vacuum of the X ¢*), theory is not trivial[41]. More pre-

] cisely, within the Gaussian variational approximation they
argued that the elementary excitations behave as free fields
while the vacuum resembles a Bose condensate.

Recently, this triviality and spontaneous symmetry break-
ing scenario found some evidence in the lattice approach
T=0 ] [42,43. If this turns out to be the case, we expect that the
symmetry broken at zero temperature gets restored by in-
creasing the temperature. Thus our approach to the calcula-
tion of the thermal corrections may be useful to investigate
the nature of the thermal phase transition. In particular it is
. ‘ ‘ important to ascertain if the phase transition is first order or
0.1 0.2 0.3 0.4 COﬂtinUOUS.

b,

0.2

0.1

APPENDIX A
FIG. 15. The generalized Gaussian effective potential with sec-

ond order thermal corrections for=1, A\=4, and three different
values of the temperature.

We are interested in the high temperature expansion
B—0 of the integral

interacting scalar fields. However, we feel that there are no h(a?) = LA fwdtln[l—e“/m], (A1)
problems in extending our method to scalar fields with con- wB% Jo
tinuous internal symmetry. As a matter of fact, recently our
approach has been applied to scalar fields wit®)@ternal ~ wherea?= 3?x. Following Ref.[29] we consider
symmetry[39].

One of the most serious problems of the variational ap- ho(a?) ah 1 o dt

roximation in quantum field theories is due to the apparency Q%)= o= f — .

gf the uItravioI?at divergences. The variational-pert?ﬁbation gas 2mp? o k2 y a2Vt o)
theory developed in the present paper offers a solution to the ) _ o
ultraviolet divergence problem which is similar to the well- TO perform the high temperature expansion of &) it is
known perturbative renormalization theory. Indeed, starting'Seful to deal with
from the fact that the generalized Gaussian effective poten-

(A2)

tial by definition is the vacuum energy density in the pres- h 2 " dt e (A3)
ence of a scalar condensate, we showed that the divergences w(€a’)= N NEY) '
are corrected by the counterterms of the underlying field t"+a’(e -1
theory without scalar condensate. . 4 . . .
We would like to stress that, to our knowledge, there areWIth e—07. Using the identity21]
no rigorous results on the problem of ultraviolet divergences B
. o : . : y 1 =
in the variational approach to quantum field theories. For this > ——=——+= cothmwy), (A4)
reason we focused on scalar field theories in one and two n=1 y°+n 2y 2

spatial dimensions, where one only needs to renormalize the

mass. In one spatial dimension we showed that the lowed¥e rewrite Eq.(A3) as
order renormalization of the mass assures that the higher o
order corrections are finite. In the case of two spatial dimen- h (" te 3 [ t+a’ 1
sions we find that the our mass renormalization procedure 1(€'a)_f0 dt J2taZ|nZe Vit*+at+ An’n? 2
works up to second order. However, it should be clear that

our prescription can be extended to higher orders without =1M(a?)+1?(a?). (A5)
problems.

In the second part of the paper we studied the thermal . he ch . o t
corrections to our effective potential. In particular in our Performing the change of variablg= ———= we
method the Hamiltonian is split into a free piece and an a“+4mn
interaction in a natural way. This allows us to directly use

rewrite the first term on the right-hand of E@A5) as

the well-developed thermodynamic perturbation theory to +oo _

. . 1 © y €
evaluate the thermodynamic potential. A remarkable conse- 1M (a2)= E f dy——.
quence of our analysis is that the thermal corrections to the ¢ no (a%+4min?) IR o Ty

generalized Gaussian effective potential agree with the ones (AB)
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The last integration can be performed to yighi]

T 1
I(el)(az)IE—W l+e+22 (2 n)1+e
COSz €

2

1

+22 (27Tn)l+e 2 aror 1
1+4772n2
(A7)

Using the definition of Riemann’s zeta function we get

|(1)(a)— 4+ 1€ ’fg(l—l-e)-i-l(a)
1 T ~
=5+ £+2(7 In2m)+1(a),  (A8)
where
1 o 1 a2 1/2
@3 20| v 1 0

As concern the integrdf®)(a?) in Eq. (A5) we have[21]

1 (= X €
|2 azz__j dx
E( ) 2

0 Jx?+a?

1 1 T(1-e)T(el2) 1 1
=——a f— =——+—Ina,
2 217¢ T(1-¢€/2) 2¢ 2

(A10)

so that in the limite—0" we obtain

T 1
lim hl(ea)——+ Ina+[y- Indm+1(a?)].

e—0"

(A11)
Finally we perform the Taylor expansion E@az):
~ {(3) 34(5)
2y — _ 2 4 6
I(a%)= 16n2a 256”4a +0(a®). (A12)
Putting it all together we obtain
o™ 1 1o _ 13
h,(a%) 2a+ 5 Ina+ 5 (y—Inda) 1672 a
35 ,
+2567T4a +0(a), (A13)
whence
hA(a?) = " L nat 2 (y—Ina
(a)— >a 2na (y—In4m)
{3) , 345 , 3
— 16772a 256774a +0(a®). (A149)
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In order to recoveh(a®) we integrateh”(a?) in a? with the
boundary condition

h(0)= —— qu (1—e = — (A15)
=—= nl—-e )=——
wB% Jo 6,3°
We get
1 (72 a® a’° Y
2 - - a2
(a%)= 277,82 +7ra 7 + In(4w + 2a

1
- W&(B)a‘“r 55677 {(5)a%+ O(aa)]. (A16)

Let us now evaluate the high temperature expansion

(a—0) of the integral

© 1 ©
J(az):f dtt|n(1—e—“2+az)=§f dyln(1—eW*a%).
0 0

(A17)
To this end, we evaluate
J'(a?) d) f d ! ! (A18)
a%)=——=— / .
da2 4 Jo y\/y_|_a2 ef\/eraz_l
Using the identity, Eq(A4), we write
J'(a%)= lim [Ki(a®) +KZ(@)], (A19)
e—0
where
2 0 yy+ a2+4772n2’ (A20)
1 (= y~
K%(a?)=—— f dy . (A21)
8Jo “y+a?

To evaluatek (Y(a?) we proceed as we did fof?(a?). We
obtain

KM(a?)= —g(ze)—z—azeaz)
4 aZE (477_2)6 (47T2)l+6
a2
=—3 Ina+ mg(Z) +0O(e). (A22)
As concernK ?)(a?) we find
1-2¢ a
K?(a?)=- B(1-ee—3)=7+0(e).  (A23)
Using ¢(2)= 7%/6 we obtain
J'(a%)= | .2 & A24
(a%)=—3lna+ 7 - 7= (A24)
Integrating ina? we are led to
J(a%)=J(0 1212| G A25
(a%)=J( )+Za 22 na+€ 96" (A25)
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where 1
Qo=-— EInTr(e‘BHO), (B9)
= _pt = —
3(0) JO dttin(1—e Y =—¢(3). (A28) o e
It is useful to perform also the low temperature expansion Qe Qe — 1 Tre #MoS(B)
) ! 0=~ =In——p (B10)
(a—) of J(a®). To do this we note that B Tre Fro
e ny+a? whence
J(az)——— f dy—. (A27) 1
251 B
AQ=—ZIn(S(B))". (B11)

Changing the integration variable we get ) _
Using Eq.(B6) we rewrite(B11) as

J(a2)=——2 J dte ¥l 1, < (=" JB
2 = = — — DRI
AQ 3 |nm§=)l s dry---dm,
e “e
:_angl n? _ngl n® (A28) X<TT[H|(71)"'H|(Tm)]>B]- (B12)
This last expression can be used to approxinde#) for One can show the[135]
a=1.
=" 1)m
APPENDIX B AQ=- ,Bm J dry--
For the reader’s convenience we briefly discuss the ther- X(T.[H,(7y) (r) 1)E (B13)
Tl m conn

modynamic perturbation theory in Matsubara’s scheme
[11,35. Let us suppose that the Hamiltonian of our thermo-This last equation has been used in Sec. VIII.

dynamic system can be written as We would like now to discuss the thermal propagator of a
free scalar field with mass. From the well-known expan-
We are interested in evaluating the thermodynamic potentials . 1 . i
perturbatively inH, . To this end we introduce th& matrix #(x,00= W 2 [e"PXaz+e P¥a;]  (Bl4)
p
el'=5"1(r)eo7, o=<r<g. (B2)

we readily obtain
Let us consider the field operators in the Matsubara’s inter- 1

action representation: H(X,7)= W E [aﬁeiﬁ-i* Ep7y a‘ée—iﬁxw Epr],
- - P
b(x,7)=€""p(x)e" Mo, (B3) (B15)
In this representation the interaction Hamiltonian reads ~ whereE,= Vp 2+m?, and we used
H,(7)=e"oH,e Ho7, (B4) efora e Hor=a5e 57, (B16)
while eHOTaEe*Hofz age* Ep7, (B17)
Ho(7)=Hy. (B5)  We are interested in the thermal propagator
The solution of Eq(B2) is well known: (T,(X,7)$(0))P=G4(X,7). (B18)
- Using Eq.(B15) and
S(7)=T, exp{—f H|(T')d7”} (B6) 5
0 PP
. <35 ag >ﬁ=—i;|51 (Blg)
Let us evaluate the thermodynamic potenfial 1R 1-e F&nm
e Al=Tr(efM). (B7) . , 85,5,
(a'Paag,)= g2 —. (B20)

From Egs.(B2) and(B7) we get

1 we obtain
Q=-— EInTr[e*BHOS(,B)]. (B8)

Gy(X,7)= (B21)

1
— —+
Defining VS 2Ep[1-eFF effe-1
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Im z and performing the change of variables> — p, w,— — o,
in the second term on the right-hand side of E8R4), we
- get
- Re z . 1 d3p e—iwnr+iﬁ~>2
—— B2
Gp(x,7) B % f (2m)° Ei+ o) 625
In the following we need to evaluate the sum
1 E eiwnT
=2 . B26
Im z B4 wﬁ+ ErzJ ( )
! To do this, we use the Sommerfeld-Watson transfpfdi
+ .
1 , 1 [+
—~_| ~ fo —nzz_m f(z=|wn)=ﬁf_im dzf(z)
1 +icc+te 1
to _im+€[f(2)+f(—2)]epz—_1
=A;+A,. (B27)
FIG. 16. The contour§ andI'’ in the complexz plane.
In our case
Now we observe that o2
e Ep7 J~ dz e 27 (822) f(Z) = 22_ E'2J . (828)
1—e P  |.2xi(1—e PO (z—E.)"
1=e ™ r2mi (1-e P (z=Ep) Let us consider, firstA;. We have
where the integral in the complexplane is on the contour 1 Yoo ez’
I' shown in Fig. 16. The integrand in E@B22) goes to zero Aj=— > | dzﬁ. (B29
—joo -

exponential whenz|— <. Thus we deform the contodr in P

I'" (see Fig. 16 Applying the Cauchy’s integral theorem we |t >0, we close the integration contour in the semiplane
get Rez<0, while for 7<0 the contour is closed in the semiplane
Rez>0. In this way, by applying the residue theorem we

—E,7 —iw
e =p 1 e '¢n” .
I —_ obtain
1-e %% B ; Ep—iw,’ (B23
P e Epl
wherew,=27np. The other term in Eq(B21) can be dealt A= (B30)
with in a similar way. Thus we obtain: P
L L In the same way we get
1 1 1 elp-X—IwnT e—lp-X+ImnT
Gu(X, == — > — — : _ efprte BT 1
B n V7§ 2By Ep—iw, Ep—iw, A,= 2E, FE 1 (B31)
(B24)
. . Combining Eqs(B30) and (B31) we obtain the desired re-
Finally, observing that sult
1 f de 1 eiwnf e Ep|1'| eEpT+ e Epr 1
il o =" + _
v % (2m)" B 2 wI+E2T 2B, ' 2§, &% 1 (B32)
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