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The Casimir energy or stress due to modes in aD-dimensional volume subject to TM~mixed! boundary
conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included.
Together with earlier results found for scalar modes~TE modes!, this gives the Casimir effect for fluctuating
‘‘electromagnetic’’~vector! fields inside and outside a spherical shell. Known results for three dimensions, first
found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes:
Poles occur in the stress at positive even dimensions, and cusps~logarithmic singularities! occur for integer
dimensionsD<1. Particular attention is given the interesting case ofD52. @S0556-2821~97!04708-5#

PACS number~s!: 11.10.Kk, 11.10.Jj, 11.15.Kc, 12.39.Ba

I. INTRODUCTION

The dependence of physical quantities on the number of
dimensions is of considerable interest@1,2#. In particular, by
expanding in the number of dimensions one can obtain non-
perturbative information about the coupling constant@3–6#.
Useful expansions have also been obtained in inverse powers
of the dimension@7#.

In a previous paper we investigated the dimensional de-
pendence of the Casimir stress on a spherical shell of radius
a in D space dimensions@8#. Specifically, we studied the
Casimir stress~the stress on the sphere is equal to the Ca-
simir force per unit area multiplied by the area of the sphere!
that is due to quantum fluctuations of a free massless scalar
field satisfying Dirichlet boundary conditions on the shell.
That is, the Green’s functions satisfy the boundary condi-
tions

G~x,t;x8,t8!u uxu5a50. ~1.1!

Here, following the suggestion of@9#, we calculate the trans-
verse magnetic~TM! modes~for which Hr50) in the same
situation. The TM modes are modes which satisfy mixed
boundary conditions on the surface@10,11#,

]

]r
r D22G~x,t;x8,t8!u uxu5r5a50, ~1.2!

as opposed to the transverse electric~TE! modes~for which
Er50), which satisfy Dirichlet boundary conditions~1.1! on
the surface, and are equivalent to the scalar modes found in
@8#.

The organization of this paper is straightforward. In Sec.
II we construct the Green’s functions inD-dimensional
space by direct solution of the differential equation, subject
to the boundary condition~1.2!. Then, the Casimir stress is
computed from the vacuum expectation value of the energy-
momentum-stress tensor, expressed as derivatives of the
Green’s functions. The resulting expression for the Casimir
stress on aD-dimensional spherical shell takes the form of

an infinite sum of integrals over modified Bessel functions;
the dimensionD appears explicitly as well as in the orders of
the Bessel functions. By combining the results for the TM
modes found here with those for the TE modes found earlier
@8#, we obtain a general expression for vector modes subject
to perfect conductor boundary conditions on the spherical
shell, which expression agrees with that found long ago for
three dimensions@12#. As a check, in Sec. III we rederive the
same result from the vacuum expectation value of the energy
density of the field. In Sec. IV we examine this expression
for the TM Casimir stress in detail. We show that for
D,1 a constant can be added to the series without effect; a
suitable constant is chosen so that each term in the series
exists ~each of the integrals converges!. We show how to
evaluate the sum of the series numerically for all realD,
using two methods: one involving Riemann zeta functions,
and the second involving continuation in dimension. Both
methods give the same numerical results. WhenD.2 the
TM Casimir stress is real, and finite except whenD is an
even integer. The well-knownD53 result @10,13,14,12# is
reproduced when then50 mode is removed. WhenD<2
the Casimir stress is complex; there are logarithmic singu-
larities in the complex-D plane at D52, 1, 0, 21,
22, . . . . In theAppendix, the important case ofD52 is
discussed@15–17#.

II. STRESS TENSOR FORMALISM

The calculation given in this paper for the Casimir stress
on a spherical shell follows very closely the Green’s function
technique described in@8#, and we will therefore be concise,
and emphasize the significant differences.

A. Green’s function

The two-point Green’s functionG(x,t;x8,t8) satisfies the
inhomogeneous Klein-Gordon equation

S ]2

]t2
2¹2DG~x,t;x8,t8!52d~D !~x2x8!d~ t2t8!,

~2.1!

subject to the boundary condition~1.2! on the surface
uxu5a. We solve this equation by the standard discontinuity*Electronic address: milton@phyast.nhn.uoknor.edu
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method. In particular, we divide space into two regions, re-
gion I, the interior of a sphere of radiusa and region II, the
exterior of the sphere. In addition, in region I we will require
thatG be finite at the originx50 and in region II we will
require thatG satisfy outgoing-wave boundary conditions at
uxu5`.

We begin by taking the time Fourier transform ofG:

Gv~x;x8!5E
2`

`

dte2 iv~ t2t8!G~x,t;x8,t8!. ~2.2!

The differential equation satisfied byGv is

~v21¹2!Gv~x;x8!5d~D !~x2x8!. ~2.3!

To solve this equation we introduce polar coordinates and
seek a solution that has cylindrical symmetry; i.e., we seek a
solution that is a function only of the three variables
r5uxu, r 85ux8u, andu, the angle betweenx andx8 so that
x•x85rr 8cosu. In terms of these polar variables Eq.~2.3!
becomes

S v21
]2

]r 2
1
D21

r

]

]r
1
sin22Du

r 2
]

]u
sinD22u

]

]u D
3Gv~r ,r 8,u!5

d~r2r 8!d~u!G@~D21!/2#

2p~D21!/2r D21sinD22u
. ~2.4!

We solve Eq.~2.4! using the method of separation of
variables. The angular dependence is given in terms of the
ultraspherical~Gegenbauer! polynomial @18#

Cn
~211D/2!~z! ~n50, 1, 2, 3, . . .!, ~2.5!

wherez5cosu. The general solution to Eq.~2.4! is an arbi-
trary linear combination of separated-variable solutions; in
region I the Green’s function has the form~with
n5n211D/2 andk5uvu)

Gv~r ,r 8,u!5 (
n50

`

anr
12D/2Jn~kr !Cn

~211D/2!~z! ~r,r 8,a!

~2.6a!

and

Gv~r ,r 8,u!5 (
n50

`

r 12D/2@bnJn~kr !1cnJ2n~kr !#

3Cn
~211D/2!~z! ~r 8,r,a!. ~2.6b!

@Note thatJn(x) andJ2n(x) are linearly independent so long
asn is not an integer. Thus, in writing Eq.~2.6b!, we assume
explicitly that D is not an even integer. We also assumed
D.2 in writing down Eq.~2.6a!, so thatJ2n is excluded
because it is singular atr50.# The general solution to Eq.
~2.4! in region II has the form

Gv~r ,r 8,u!5 (
n50

`

dnr
12D/2Hn

~1!~kr !

3Cn
~211D/2!~z! ~r.r 8.a! ~2.7a!

and

Gv~r ,r 8,u!5 (
n50

`

r 12D/2@enHn
~1!~kr !1 f nHn

~2!~kr !#

3Cn
~211D/2!~z! ~r 8.r.a!. ~2.7b!

The arbitrary coefficientsan , bn , cn , dn , en , and f n are
uniquely determined by six conditions: namely, the mixed
boundary condition~1.2! at r5a,

SD2 21D @bnJn~ka!1cnJ2n~ka!#

1ka@bnJn8~ka!1cnJ2n8 ~ka!#50 ~2.8a!

and

SD2 21D @enHn
~1!~ka!1 f nHn

~2!~ka!#

1ka@enHn
~1!8~ka!1 f nHn

~2!8~ka!#50, ~2.8b!

the condition of continuity atr5r 8,

anJn~kr8!5bnJn~kr8!1cnJ2n~kr8! ~2.8c!

and

dnHn
~1!~kr8!5enHn

~1!~kr8!1 f nHn
~2!~kr8!, ~2.8d!

and the jump condition in the first derivative of the Green’s
function atr5r 8,

bnJn8~kr8!1cnJ2n8 ~kr8!2anJn8~kr8!5
2nG@~D22!/2#

4~pr 8!D/2k
~2.8e!

and

enHn
~1!8~kr8!1 f nHn

~2!8~kr8!2dnHn
~1!8~kr8!

52
2nG@~D22!/2#

4~pr 8!D/2k
. ~2.8f!

Solving these equations for the coefficients, we easily find
the Green’s function to be, in region I,

Gv~r ,r 8,u!5 (
n50

`
2nG~D/221!

8~prr 8!D/221sinpn
Cn

~D/221!~cosu!

3@Jn~kr,!J2n~kr.!2bJn~kr !Jn~kr8!#,

~2.9a!

where

b5
~D/221!J2n~ka!1kaJ2n8 ~ka!

~D/221!Jn~ka!1kaJn8~ka!
, ~2.9b!

and, in region II,
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Gv~r ,r 8,u!52 i(
n50

`
2nG~D/221!

16~prr 8!D/221Cn
~D/221!~cosu!

3@Hn
~1!~kr,!Hn

~2!~kr.!

2gHn
~1!~kr !Hn

~1!~kr8!#, ~2.10a!

where

g5
~D/221!Hn

~2!~ka!1kaHn
~2!8~ka!

~D/221!Hn
~1!~ka!1kaHn

~1!8~ka!
. ~2.10b!

B. Stress tensor

For a scalar field, we can calculate the induced force per
unit area on the sphere from the stress-energy tensor
Tmn(x,t), defined by

Tmn~x,t ![]mw~x,t !]nw~x,t !2
1

2
gmn]lw~x,t !]lw~x,t !.

~2.11!

The radial scalar Casimir force per unit areaf on the sphere
is obtained from the radial-radial component of the vacuum
expectation value of the stress-energy tensor@12#:

f5^0uTin
rr2Tout

rr u0&ur5a . ~2.12!

To calculate f we exploit the connection between the
vacuum expectation value of the fields and the Green’s func-
tion,

^0uTf~x,t !f~x8,t8!u0&5 iG~x,t;x8,t8!, ~2.13!

so that the force density is given by the derivative of the
Green’s function at equal times,G(x,t;x8,t):

f5 F i2 ]

]r

]

]r 8
G~x,t;x8,t ! in

2
]

]r

]

]r 8
G~x,t;x8,t !outGU

x5x8, uxu5a

. ~2.14!

It is a bit more subtle to calculate the force density for the
TM modes. For a given frequency, we write

^Trr &5
i

2
@¹ r¹ r 81v22“'•“'8#Gv , ~2.15!

where, if we average over all directions, we can integrate by
parts on the transverse derivatives,

2“'•“'8→“'
2→2

n~n1D22!

r 2
, ~2.16!

where the last replacement, involving the eigenvalue of the
Gegenbauer polynomial, is appropriate for a given moden

@see Eq.~2.14! of @8##. As for the radial derivatives, they are1

¹ r5r 22D] r r
D22, ¹ r 85r 822D] r 8r 8

D22, ~2.17!

which, by virtue of Eq.~1.2!, implies that the¹ r¹ r 8 term
does not contribute to the stress on the sphere. In this way,
we easily find the following formula for the contribution to
the force per unit area for interior modes,

f in
TM52

i

p~D11!/22DaD11G@~D21!/2#

3E
0

`dx

x (
n50

`

w~n,D !@x22n~n1D22!#
sn~x!

sn8~x!
,

~2.18!

and for exterior modes,

f out
TM52

i

p~D11!/22DaD11G@~D21!/2#

3E
0

`dx

x (
n50

`

w~n,D !@x22n~n1D22!#
en~x!

en8~x!
,

~2.19!

where

w~n,D !5
~2n1D22!G~n1D22!

n!
, ~2.20!

x5ka, and the generalized Ricatti-Bessel functions are

sn~x!5xD/221Jn~x!, en~x!5xD/221Hn
~1!~x!.

~2.21!

It is a small check to observe that forD52 we recover
the known result@15#

f D52
TM 52

i

8p2a3E2`

`

dx x (
m52`

` S 12
m2

x2 D
3S Jm~x!

Jm8~x!
1

Hm
~1!~x!

Hm
~1!8~x!

D , ~2.22!

where the half-weight atn50 is a result of thelimit
D→2. In two dimensions, the vector Casimir effect consists
of only the TM mode contribution.

In general, we can combine the TE mode contribution,
given in @8#, and the TM mode contribution, found here, into
the simple formula2

1In the TM mode, the radial derivatives correspond to tangential
components ofE, which must vanish on the surface. See@11#.
2We will not concern ourselves with a constant term in the inte-

grand, which we will deal with in Sec. IV.
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f TM1TE5
i

p~D11!/22DaD11(
n50

`
w~n,D !

G@~D21!/2#
E
0

`

dx xH sn8~x!

sn~x!
1
en8~x!

en~x!
1
sn9~x!

sn8~x!
1
en9~x!

en8~x! J . ~2.23!

It will be noted that, forD53, this result agrees with that
found for the usual electrodynamic Casimir force/area, when
the n50 mode is properly excluded.@See Eq.~4.7! of @12#
with the cutoff e50.# Of course, this only coincides with
electrodynamics in three dimensions. The number of electro-
dynamic modes changes discontinuously with dimension,
there being only one inD52, the TM mode, and none in
D51, in general there beingD21 modes. Equation~2.23! is
of interest in a mathematical sense, because significant can-
cellations do occur between TE and TM modes in general.

The integrals in Eqs.~2.18! and~2.19! are oscillatory and
therefore very difficult to evaluate numerically. Thus, it is
advantageous to perform a rotation of 90° in the complex-
v plane. The resulting expression forf TM is

f TM52 (
n50

`
w~n,D !

2Dp~D11!/2aD11G@~D21!/2#

3E
0

`

dx x
d

dx
ln$x2~32D !@xD/221Kn~x!#8

3@xD/221I n~x!#8%. ~2.24!

III. ENERGY DERIVATION

As a check of internal consistency, it would be reassuring
to derive the same result by integrating the energy density
due to the field fluctuations. The latter is computable from
the vacuum expectation value of the stress tensor, which in
turn is directly related to the Green’s function,Gv :

^T00&5
i

2E2`

` dv

2p
~v21“•“8!Gvur5r8. ~3.1!

Again, because we are going to integrate this over all space,
we can integrate by parts, replacing, in effect,

“•“8→2¹2→v2, ~3.2!

which uses the Green’s function equation~2.3!. ~Point split-
ting is always implicitly assumed, so thatd functions may be
omitted.! Then, using the area of a unit sphere inD dimen-
sions,

AD5
2pD/2

G~D/2!
, ~3.3!

we find the Casimir energy to be given by

E5
i2pD/2

G~D/2!
E

2`

` dv

2p
v2E

0

`

r D21dr Gv~r ,r !. ~3.4!

So, from the form for the Green’s function given in Eqs.
~2.9a! and~2.10a!, we see that we need to evaluate integrals
such as

E
0

a

rdr Jn~kr !J2n~kr !, ~3.5!

which are given in terms of the indefinite integral

E dx xZn~x!Zn~x!5
x2

2 F S 12
n2

x2DZn~x!Zn~x!

1Zn8~x!Zn8~x!G , ~3.6!

valid for any two Bessel functionsZn , Zn of ordern. Thus
we find for the Casimir energy of the TM modes the formula

ETM52
i

2pG~D21!a (
n50

`

w~n,D !

3E
0

`dx

x F @x22n~n1D22!#

3S sn~x!

sn8~x!
1
en~x!

en8~x! D 1~22D !xG . ~3.7!

We obtain the stress on the spherical shell by differentiating
this expression with respect toa @which agrees with Eqs.
~2.18! and ~2.19!, apart from the constant in the integrand#,
followed again doing the complex frequency rotation, which
yields

FTM5
1

2pa2G~D21! (
n50

`

w~n,D !Qn , ~3.8!

where the integrals are

Qn52E
0

`

dx x
d

dx
lnq~x!, ~3.9!

where

q~x!5F SD2 21D I n~x!1
x

2
@ I n11~x!1I n21~x!#G

3F SD2 21DKn~x!2
x

2
@Kn11~x!1Kn21~x!#G .

~3.10!
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This agrees with the form found directly from the force den-
sity, Eqs.~2.24!, again, apart from a constant in thex inte-
grand.

IV. NUMERICAL EVALUATION OF THE STRESS

We now need to evaluate the formal expression~3.8! for
arbitrary dimensionD. We implicitly assumed in its deriva-
tion thatD.2 and thatD was not an even integer, but we
will argue that Eq.~3.8! can be continued to allD.

A. Convergent reformulation of Eq. „3.8…

First of all, it is apparent that as it sits, the integralQn in
Eq. ~3.9! does not exist.@The form in Eq.~2.24! does exist
for the special case ofD53.# As in the scalar case@8#, we
argue that since

(
n50

`

w~n,D !50 for D,1, ~4.1!

we can add an arbitrary term, independent ofn, toQn in Eq.
~3.8! without effect as long asD,1. In effect then, we can
multiply the quantity in the logarithm in Eq.~3.9! by an
arbitrary power ofx without changing the value for the force
for D,1. We choose that multiplicative factor to be22/x
because then a simple asymptotic analysis shows that the
integrals converge. Then, we analytically continue the result-
ing expression to allD. The constant22 is, of course, with-
out effect in Eq.~3.9!, but allows us to integrate by parts,
ignoring the boundary terms. The result of this process is that
the expression for the Casimir force is still given by Eq.
~3.8!, but withQn replaced by

Qn5E
0

`

dx lnF2
2

x
q~x!G , ~4.2!

q(x) being given by Eq.~3.10!.
Now the individual integrals in Eq.~3.8! converge, but the

sum still does not. We can see this by making the uniform
asymptotic approximations for the Bessel functions in Eq.
~3.10! @19#, which leads to

Qn;
pn

2 S 11
2101180D216D2

64n2

1
25861111152D27680D212304D32256D4

16384n4

1••• D ~n→`!. ~4.3!

@Note that the coefficients in this expansion depend on the
dimensionD, unlike the scalar case, given in Eq.~3.17! of
@8#.# Because of this behavior, it is apparent that the series
diverges for all positiveD, except forD51, where the series
truncates.

There were actually two procedures which were used to
turn the corresponding sum in the scalar case into a conver-
gent series, and to extract numerical results, although only
one of those procedures was described in the paper@8#. In
that procedure, we subtract from the summand the leading

terms in the 1/n expansion, derived from Eq.~4.3!, identify-
ing those summed subtractions with Riemannz functions:

FTM'
1

2pa2 HQ01
1

G~D21! (
n51

N Fw~n,D !Qn2pnD21

3S 11 (
k51

K
bk
nkD G1

p

G~D21! F z~12D !

1 (
k51

K11

bkz~k112D !2bK11 (
n51

N

nD2K22G J .
~4.4!

Herebk are the coefficients in the asymptotic expansion of
the summand in Eq.~3.8!, of which the first two are

b15
~D22!~D21!

2
, ~4.5a!

b25
812448D1456D22176D3124D4

192
. ~4.5b!

In Eq. ~4.4! we keepK terms in the asymptotic expansion,
and, afterN terms in the sum, we approximate the subtracted
integrand by the next term in the largen expansion. The
series converges forD,K11, so more and more terms in
the asymptotic expansion are required asD increases.

There is a second method which gives identical results,
and is, in fact, more convergent. The results given in@8#
were, in fact, first computed by this procedure, which is
based on analytic continuation in dimension. Here, we sim-
ply subtract fromQn the first two terms in the asymptotic
expansion~4.3!, and then argue, as a generalization of Eqs.
~4.1!, that

(
n50

`
G~n1D22!

n!
50 for D,2,

(
n50

`
G~n1D22!

n!
n250 for D,0. ~4.6!

Therefore, by continuing from negative dimension, we argue
that we can make the subtraction without introducing any
additional terms. Thus, if we define

Q̂n5Qn2
pn

2 S 11
2101180D216D2

64n2 D , ~4.7!

we have

FTM5
1

2pa2G~D21! (n50

`

w~n,D !Q̂n

'
1

2pa2G~D21! S (
n50

N

w~n,D !Q̂n

1pg~D ! (
n5N11

`
G~n1D22!

n!n2 D , ~4.8!
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whereg(D) is the coefficient ofn24 in Eq. ~4.3!. The last
sum in Eq.~4.8! can be evaluated according to

(
n50

`
G~n1a!

n! ~n1a/2!2
5

p2

2

G~a/2!

G~12a/2!

1

sin2pa/2
. ~4.9!

The approximation given in Eq.~4.8! converges forD,4.

B. Casimir stress for integerD<1

The case of integers<1 is of special note, because, for
those cases, the series truncates. For example, forD50 only
then50, 2 terms appear, where the integrals cancel by vir-
tue of the symmetry of Bessel functions,

Kn~x!5K2n~x!, I n~x!5I2n~x!, ~4.10!

for n an integer. However, using the first procedure~4.4!, we
have a residual zeta function contribution:

FD50
TM 5

1

2pa2
~Q02Q21p!5

1

2a2
, ~4.11!

because bothz(12D) andG(D21) have simple poles, with
residue21, atD50. This result forD50 is the negative of
the result found in the scalar case, Eq.~3.22! of @8#, which is
a direct consequence of the fact that thenD22 term in the
asymptotic expansion cancels when the TE and TM modes
are combined@compare Eq.~4.5a! with the corresponding
term in Eq. ~3.23! of @8##. The continuation inD method
gives the same result, because then

FD50
TM 5

1

2pa2
~Q̂01DQ̂12Q̂2!

5
1

2a2 S 12
101

64
1
101

64 D5
1

2a2
, ~4.12!

where a limiting procedure,D→0, is employed to deal with
the singularity which occurs forn51, wheren→0.

For the negative even integers we achieve a similar can-
cellation between pairs of integers, with no zeta function
residual because thez functions no longer have poles there.
For example, forD522 we have

FD522
TM 5

1

2pa2
~Q022Q112Q32Q4!50 ~4.13!

becauseQ05Q4 andQ15Q3. Again, the other method of
regularization gives the same result when a careful limit is
taken.

For odd integers<1, truncation occurs without cancella-
tion, becauseI nÞI2n . For example, forD51,

FD51
TM 5

1

2p
~Q01Q1!520.262110.6032i . ~4.14!

C. Numerical results

We have used both methods described above to extract
numerical results for the stress on a sphere due to TM fluc-
tuations in the interior and exterior. Results are plotted in
Fig. 1. Salient features are the following.

As in the scalar case, poles occur for positive even dimen-
sion.

The integrals become complex forD,2 because the
function q(x), Eq. ~3.10!, occurring in the logarithm devel-
ops zeros.~This phenomenon started atD50 for the scalar
case.! Correspondingly, there are logarithmic singularities,
and cusps, occurring at 2, 1, 0,21,22, . . . ,rather than just
at the nonpositive even integers.

The sign of the Casimir force changes dramatically with
dimension. Here this is even more striking than in the scalar
case, where the sign was constant between the poles for
D.0. For the TM modes, the Casimir force vanishes for
D52.60, being repulsive for 2,D,2.60 and attractive for
2.60,D,4.

Also in Fig. 1, the results found here are compared with
those found in the scalar or TE case,@8#. The correspondence
is quite remarkable. In particular, forD,2 the qualitative
structure of the curves are very similar when the scale of the
dimensions in the TE case is reduced by a factor of 2; that is,
the interval 0,D,2 in the TE case corresponds to the in-
terval 1,D,2 in the TM,22,D,0 for TE corresponds
to 0,D,1 for TM, etc.

Physically, the most interesting result is atD53. The TM
mode calculated here has the valueFD53

TM 520.022 04/a2.
However, if we wish to compare this to the electrodynamic
result @12#, we must subtract off then50 mode, which is
given in terms of the integralQ050.411 2335p2/24, which
displays the accuracy of our numerical integration. Similarly
removing then50 mode (52p/24) from the result quoted
in Eq. ~3.24! of @8#, FD53

TM 50.002 816 8/a2, gives agreement
with the familiar result@10,13,14,12,9#:

Fn.0
TM1TEuD535

0.0462

a2
. ~4.15!

To conclude, this paper adds one more example to our
collection of known results concerning the dimensional and
boundary dependence of the Casimir effect. Unfortunately,
we are no closer to understanding intuitively the sign of the
phenomenon. We should, however, remark on the relevance
of this work for generalD, since only integer dimensions
D>2 would seem of physical significance. In fact, the ana-

FIG. 1. A plot of the TM Casimir stressFTM for 22,D,4 on
a spherical shell, compared withFTE, taken from@8#. For D,2
(D,0) the stressFTM (FTE) is complex and we have plotted
ReF.
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lytical dependence of the stress on dimension is of great
interest, not only for the general reasons alluded to in the
Introduction, but specifically because the ultimate develop-
ment of a physical understanding of the Casimir effect must
explain, and may even be motivated by, this dimensional
dependence. Further, it is not inconceivable that theD50
and D51 cases, and even those for noninteger values of
dimension, could be realized in some condensed-matter ex-
periment.
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APPENDIX: TOWARD A FINITE D52 CASIMIR EFFECT

The truly disturbing aspect of our results here and in@8#
are the poles in even dimensions. In particular, many very
interesting condensed-matter systems are well approximated
by being two dimensional. Are we to conclude that the Ca-
simir effect does not exist in two dimensions?

One trivial way to extract a finite answer from our expres-
sions, which have simple poles atD52 ~I will set aside the
logarithmic singularity there in the TM mode, because that
only occurs in one integral,Q0), is to average over the sin-
gularity. If we do so for the scalar result in@8#, we obtain

FD52
TE 52

0.013 04

a2
, ~A1!

while for the TM result here, we find

FD52
TM 52

0.340

a2
, ~A2!

which numbers, incidentally, are remarkably close to the
leadingQ0 term, as stated

3 in @15#, which are20.0140 and
20.254. But, there seems to be no reason to have any belief
in these numbers.

However, something remarkable does happen in the scalar
case. If we use the first procedure, Eq.~4.4!, we note that the
poles can arise both from the integrals and from the explicit
zeta functions. For the latter, let the dependence onD be
given byr (D)/(D22) which has a pole atD52. When we
average over the pole, we obtain

lim
e→0

1

2 S r ~21e!

e
2
r ~22e!

e D5r 8~2!, ~A3!

where the prime denotes differentiation. For the scalar modes
it is easy to verify thatr 8(2)50. Thus, there is no contribu-
tion from those subtracted terms. In other words, they might
just as well be omitted, which is what we would do if we
inserted a cutoff and simply dropped the divergent terms.
~This procedure does give the correctD53 results.! This
provides some evidence for the validity of the procedure
which yields Eq.~A1!.

Unfortunately, the same effect does not occur for the TM
modes,r 8(2)Þ0. Nor does it occur for higher dimensions,
D54, 6, . . . ,even for scalars. And, even for scalars, it is not
clear how the divergences of a massive~211! theory can be
removed. So we are no closer to solving the divergence prob-
lem in even dimensions.4 It is clear there is much more work
to do on Casimir phenomena.
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