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Vector Casimir effect for a D-dimensional sphere

Kimball A. Milton”
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The Casimir energy or stress due to modes iD-dimensional volume subject to TNixed boundary
conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included.
Together with earlier results found for scalar mod€E mode$, this gives the Casimir effect for fluctuating
“electromagnetic”(vecto) fields inside and outside a spherical shell. Known results for three dimensions, first
found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes:
Poles occur in the stress at positive even dimensions, and @aggasithmic singularitiesoccur for integer
dimensiondD=<1. Particular attention is given the interesting cas®ef2. [S0556-282(97)04708-5

PACS numbsgs): 11.10.Kk, 11.10.Jj, 11.15.Kc, 12.39.Ba

I. INTRODUCTION an infinite sum of integrals over modified Bessel functions;
the dimensiorD appears explicitly as well as in the orders of
The dependence of physical quantities on the number dhe Bessel functions. By combining the results for the TM
dimensions is of considerable interg$i2]. In particular, by modes found here with those for the TE modes found earlier
expanding in the number of dimensions one can obtain nor-8], we obtain a general expression for vector modes subject
perturbative information about the coupling constg@#6].  to perfect conductor boundary conditions on the spherical
Useful expansions have also been obtained in inverse poweséell, which expression agrees with that found long ago for
of the dimensior7]. three dimensiongl2]. As a check, in Sec. lll we rederive the
In a previous paper we investigated the dimensional desame result from the vacuum expectation value of the energy
pendence of the Casimir stress on a spherical shell of radiugensity of the field. In Sec. IV we examine this expression
a in D space dimensiong3]. Specifically, we studied the for the TM Casimir stress in detail. We show that for
Casimir stresgthe stress on the sphere is equal to the Cab <1 a constant can be added to the series without effect; a
simir force per unit area multiplied by the area of the spheresuitable constant is chosen so that each term in the series
that is due to quantum fluctuations of a free massless scalaxists (each of the integrals convergesVe show how to
field satisfying Dirichlet boundary conditions on the shell. evaluate the sum of the series numerically for all rBal
That is, the Green’s functions satisfy the boundary condiusing two methods: one involving Riemann zeta functions,
tions and the second involving continuation in dimension. Both
methods give the same numerical results. WBen2 the
G(x,t;x",t")] |y =a=0. (1.)  TM Casimir stress is real, and finite except whenis an
even integer. The well-know® =3 result[10,13,14,12 is
Here, following the suggestion 9], we calculate the trans- reproduced when the=0 mode is removed. WheB <2
verse magneti¢TM) modes(for which H,=0) in the same the Casimir stress is complex; there are logarithmic singu-
situation. The TM modes are modes which satisfy mixedarities in the compleX® plane at D=2, 1, 0, —1,
boundary conditions on the surfac0,11], —2,.... In theAppendix, the important case @=2 is
discussed15-17.

9

D-2 v !
—r G(x,t;x’,t _r—a=0, 1.2
ar ( Mix=r=a (1.2 Il. STRESS TENSOR FORMALISM

as opposed to the transverse electfiE) modes(for which The calt_:ulation given in this paper for the Casimir stress
E,=0), which satisfy Dirichlet boundary conditiois.1) on 0N a spherical shell follows very closely the Green’s function
the surface, and are equivalent to the scalar modes found f§chnique described i8], and we will therefore be concise,

[8]. and emphasize the significant differences.
The organization of this paper is straightforward. In Sec.
I we construct the Green’s functions iB-dimensional A. Green’s function

space by direct solution of the differential equation, subject e two-point Green’s functio(x,t;x’,t') satisfies the
to the boundary conditioil.2). Then, the Casimir stress is inhomogeneous Klein-Gordon equat}c;n '
computed from the vacuum expectation value of the energy-

momentum-stress tensor, expressed as derivatives of the 92 5 . )
Green'’s functions. The resulting expression for the Casimir 2~V G EX ) == 8T (x=x") 8(t—1'),
stress on @-dimensional spherical shell takes the form of 2.9

subject to the boundary conditiofil.2) on the surface
*Electronic address: milton@phyast.nhn.uoknor.edu |x|=a. We solve this equation by the standard discontinuity
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method. In particular, we divide space into two regions, re- *

gion 1, the interior of a sphere of radiasand region Il, the Go(r,r',0)=>, r= e HD(kr)+f H? (kr)]
exterior of the sphere. In addition, in region | we will require n=0

that G be finite at the origik=0 and in region Il we will XCUIDR(2) (p'>r>a). 2.7
require thatG satisfy outgoing-wave boundary conditions at "

|X|=c0.

The arbitrary coefficients,,, b,, c,, d,, e,, andf,, are
uniguely determined by six conditions: namely, the mixed
boundary conditior(1.2) atr=a,

We begin by taking the time Fourier transform @f

gw(x;x’)=f dte ' t"tG(x,t;x/,t"). (2.2

(E_1>[bn‘]v(ka)+cn‘]v(ka)]

The differential equation satisfied I}, is 2

(02+V2)G,(x;x")=8P)(x—x"). (2.3 +ka[byJ;(ka)+c,d" (ka)]=0 (2.8a

To solve this equation we introduce polar coordinates angénd

seek a solution that has cylindrical symmetry; i.e., we seek a

solution that is a function only of the three variables D

r=|x|, r'=|x’|, and 8, the angle betweer andx’ so that (E—1)[enH<Vl)(ka)+an(f)(ka)]

x-X'=rr'cosd. In terms of these polar variables E@.3

becomes +kale,H'"" (ka)+f,H'?"(ka)]=0, (2.8b
# D-14 s oo 4
ar roJr r a6 a6

S(r—r")8(6)I'[(D—1)/2] and,(kr')=bpd,(kr")+cyJ_(kr’) (2.80
XGu(r,r',0)= 27 0-D2D-1gP-24 - (2.9

the condition of continuity at=r",

and

We solve Eq.(2.4) using the method of separation of
variables. The angular dependence is given in terms of the dH P (kr)=e HP(kr)+f,HP(kr"), (2.80
ultrasphericalGegenbaugrpolynomial[ 18]

(—1+D/2) and the jump condition in the first derivative of the Green’s
Cn (2 (n=0,1,2,3,..), (29 function atr=r’,

wherez=cosf. The general solution to E@2.4) is an arbi- 20T T(D - 2)/2
trary linear combination of separated-variable solutions; in b, (Kr')+c,J" (kr’)—a,ﬂ’(kr’)z%z)—]
region | the Green's function has the fornfwith ! Y g 4(mr’)=" K

v=n—1+D/2 andk=|w|) (2.89
< and
Go(r.r',0)= 2, asr* P2y (kn)C " P?(z) (r<r’'<a)
n=0 (1)1 ' (2)r ’ (1) '
(263 el’lHV (kr )+anI/ (kr )_dnHv (kr )
and _ 2T[(D-2)2]

A )Pk (2.80)

’ _ 1-D/2
Go(r.1",0) _ngo ' LBnd,(kr)+cnd_,(kn)] Solving these equations for the coefficients, we easily find

the Green’s function to be, in region I,

XCL PR (z) (r'<r<a). (2.6b

[Note that],(x) andJ_,(x) are linearly independent so long G, (r,r,0)=> ZVF(E/QZ_I %) C(P2-1)(cog)
asv is not an integer. Thus, in writing E¢2.6b), we assume ¢ =0 8(mrr’) sinry "
explicitly that D is not an even integer. We also assumed ,
D>2 in writing down Eq.(2.63, so thatJ_, is excluded XLIkro)d-,(kr=) = B3, (kr)Jd,(kr')],
because it is singular at=0.] The general solution to Eq. (2.99
(2.4) in region Il has the form

" where

gw(r,rr,e):nzo dyr 1 P2H M (k) (D/2—1)J_(ka)+kad_,(ka) (2.9
XCU1PR(z)  (r>r'>a) (2.78 (D/2—-1)J,(ka)+kaJ,(ka) ’ ’

and and, in region I,
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2u1(D/2—1) [see Eq(2.14 of [8]]. As for the radial derivatives, they dre
G (r,1',0)=—i> ———5p—7CP"? Y(cosp)
n=o 16(7rr’) "
V,=r?2PyrP-2  v,=r'2"Pp,r'P72 (217
X[HM (kr )HP (kr)
which, by virtue of Eq.(1.2), implies that theV,V,, term

—yHP (k) HP (kr")], (2103 does not contribute to the stress on the sphere. In this way,
we easily find the following formula for the contribution to
where the force per unit area for interior modes,
(DI2—1)H? (ka) + kaH?’ (ka) )10 7 Di i
= In + + _
Y= Dl DHU(ka) + kaH D (ka)© 2100 mor2ran D - 12
20X S,(X)
2 _ n
B. Stress tensor X fo X n§=:0 w(n,D)[x*—n(n+D 2)]5"1()() !
For a scalar field, we can calculate the induced force per 2.18

unit area on the sphere from the stress-energy tensor

T#"(x,t), defined by and for exterior modes,

1 i
TEY(X,1)= 0" @(X,1) 3 o(X,1) — Eg’“’ék(p(x,t)&)‘(p(x,t). fiM— OIS0 I (5 = 173]
(2.11

=dX , en(x)
The radial scalar Casimir force per unit afean the sphere ol vy Z w(n,D)[x*=n(n+D—-2)]7—=,
. ; . i 0 X n=0 e (X)
is obtained from the radial-radial component of the vacuum
expectation value of the stress-energy terid@: (219

f=(O|Th ~THdO)l, - @iz "M

To calculate f we exploit the connection between the (2n+D—-2)I'(n+D—-2)
vacuum expectation value of the fields and the Green’s func- w(n,D)= n! , (2.20
tion,

x=ka, and the generalized Ricatti-Bessel functions are
(O|Tp(x, ) p(X',t)|0)=iG(x,t;x',t'), (2.13
Si(0=x>"13,(x), e, =x"?"HP(x).
so that the force density is given by the derivative of the (2.21
Green'’s function at equal time§(x,t;x’,t):

It is a small check to observe that fBr=2 we recover

lia 9 » the known resulf15]
f_ EEWG(XatIX yt)in
J a fM :——z—gi i dxxi l—m2
—(9—rWG(x,t;x’,t)out . (219 D=2 8ma’) o mTw x2

x=x', |x|=a

(2.22

It is a bit more subtle to calculate the force density for the
TM modes. For a given frequency, we write

In(¥)  HPX)
N30 TR () )

i where the half-weight anh=0 is a result of thelimit

(T )= E[V,Vr, +w?>-V,-V,.1G,, (2.15 D—2. In two dimensions, the vector Casimir effect consists
of only the TM mode contribution.

In general, we can combine the TE mode contribution,

en in[8], and the TM mode contribution, found here, into

the simple formula

where, if we average over all directions, we can integrate b)éiv
parts on the transverse derivatives,

) n(n+D—2)

-V, .V, =V 2 ) (2.19 1 . L .
r In the TM mode, the radial derivatives correspond to tangential

components of, which must vanish on the surface. 9é4].

where the last replacement, involving the eigenvalue of the 2We will not concern ourselves with a constant term in the inte-

Gegenbauer polynomial, is appropriate for a given monde grand, which we will deal with in Sec. IV.
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i “ w(nD) (=

fTM+TE_ >
a DT 12D aD+ 14 T[(D—-1)/2] Jo

(2.23

Sa(X) en(X) sp(x)  ep(x)
Sa(X)  en(X)  sp(x)  en(x)

It will be noted that, forD =3, this result agrees with that a

found for the usual electrodynamic Casimir force/area, when f rdrJ,(kr)J_(kr), (3.5

the n=0 mode is properly excludedfiSee Eq.(4.7) of [12] 0

with the cutoff e=0.] Of course, this only coincides with

electrodynamics in three dimensions. The number of electroyhich are given in terms of the indefinite integral

dynamic modes changes discontinuously with dimension,

there being only one ilD=2, the TM mode, and none in ) ,

D=1, in general there being — 1 modes. Equatiof2.23 is X

of interest in a mathematical sense, because significant can- f dXXZ,(x) 2,(X) = E[(l_ F)Zv(x)zv(x)

cellations do occur between TE and TM modes in general.
The integrals in Eq92.18 and(2.19 are oscillatory and

therefore very difficult to evaluate numerically. Thus, it is

advantageous to perform a rotation of 90° in the complex-

o plane. The resulting expression o' is

+Z(X)Z,(X) |, (3.9

valid for any two Bessel functiong, , Z, of orderv. Thus
* D we find for the Casimir energy of the TM modes the formula
oS w(n,D)

= 2D7T(D+l)/2aD+1I‘[(D _ 1)/2]

[

© d _
X fo dx xgn{x* 3" PIxPETIK (3]’ B == 22T D D & "D
<O L1 ) 229 <[ e-ninio-2
0o X

lIl. ENERGY DERIVATION (sn(x) en(x)

Sh(X)  ep(x)

+(2—-D)x

. (3.7

As a check of internal consistency, it would be reassuring
to derive the same result by integrating the energy density
due to the field fluctuations. The latter is computable from ) ) ) o
the vacuum expectation value of the stress tensor, which iMVe obtain the stress on the spherical shell by differentiating

turn is directly related to the Green’s functia@, : this expression with respect @ [which agrees with Egs.
(2.18 and(2.19, apart from the constant in the integrand
i (= do followed again doing the complex frequency rotation, which
Tad=5| S+ V-Gl (D yields
Again, because we are going to integrate this over all space, 1 o
we can integrate by parts, replacing, in effect, ™
9 yp placing 5 r(D—1)nZo w(n,D)Q,, (3.9
V.V - -V25 02 (3.2

which uses the Green’s function equati@?3). (Point split-  where the integrals are

ting is always implicitly assumed, so théfunctions may be

omitted) Then, using the area of a unit spherelindimen- . q

sions, Qn= —f dx x==Inq(x), (3.9
0 dx

27TD/2
ADZW, (33)
where

we find the Casimir energy to be given by

- D
rD—ldr gw(r’r). (34) Q(X): (5_1)|y(x)+g[lv+l(x)+lv1(X)]

0

~ W

3 27?2 (= dw ZJ
I'(D2)) _.2m
o D X
So, from the form for the Green’s function given in Egs. X 5—1 KV(X)—E[KVH(X)JrK,,,l(x)]
(2.93 and(2.109, we see that we need to evaluate integrals
such as (3.10
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This agrees with the form found directly from the force den-terms in the Id expansion, derived from E@4.3), identify-

sity, Egs.(2.24), again, apart from a constant in tkeinte-  ing those summed subtractions with Riemahfunctions:
grand.
N
™ o D-1
IV. NUMERICAL EVALUATION OF THE STRESS P~ o Q0+F(D 1) 2 {W(”’D)Qn n

We now need to evaluate the formal expres<i@®) for K
arbitrary dimensiorD. We implicitly assumed in its deriva- 2 _'E T L[g(l_ D)
tion thatD>2 and thatD was not an even integer, but we k=1n I'(D-1)
will argue that Eq(3.8) can be continued to ab. K+1 N
+ > bl(k+1-D)—by E H
A. Convergent reformulation of Eq. (3.8 k=1 n=
First of all, it is apparent that as it sits, the integ@y| in (4.9

Eq. (3.9 does not exist{The form in Eq.(2.24 does exist - ) ) )
for the special case dd=3.] As in the scalar casgs], we  Hereby are the coefficients in the asymptotic expansion of

argue that since the summand in Eq3.8), of which the first two are

= _(D-2)(D-1)

n§=‘,0 w(n,D)=0 for D<1, (4.2) by=—73—, (4.53
we can add an arbitrary term, independenhpfo Q,, in Eq. b | 81-448D +456D%~ 176D%+24D* @5
(3.8 without effect as long aB < 1. In effect then, we can 2 192 ' |

multiply the quantity in the logarithm in Eq3.9 by an

arbitrary power ok without changing the value for the force In Eq. (4.4 we keepK terms in the asymptotic expansion,
for D<1. We choose that multiplicative factor to be2/x  and, afteN terms in the sum, we approximate the subtracted
because then a simple asymptotic analysis shows that thetegrand by the next term in the large expansion. The
integrals converge. Then, we analytically continue the resultseries converges fdd<K+1, so more and more terms in
ing expression to aID. The constant-2 is, of course, with- the asymptotic expansion are requiredCasncreases.

out effect in Eq.(3.9), but allows us to integrate by parts,  There is a second method which gives identical results,
ignoring the boundary terms. The result of this process is thaind is, in fact, more convergent. The results giver{8h
the expression for the Casimir force is still given by Eq.were, in fact, first computed by this procedure, which is
(3.8), but with Q,, replaced by based on analytic continuation in dimension. Here, we sim-
ply subtract fromQ,, the first two terms in the asymptotic
expansion(4.3), and then argue, as a generalization of Egs.

42 (4), that

2
—QQ(X) ,

Qn=f dxIn
0

q(x) being given by Eq(3.10. “ I'(n+D-2)

Now the individual integrals in Eq3.8) converge, but the Z — 7 0 forD<2,
sum still does not. We can see this by making the uniform -
asymptotic approximations for the Bessel functions in Eq.

(3.10 [19], which leads to PR ””*D 2) 2_0 for D<0. 6
Ty —101+ 80D — 16D?
Qn~ 7( 1+ 6412 Therefore, by continuing from negative dimension, we argue
that we can make the subtraction without introducing any
s —5861+ 1115D — 7682+ 230D % — 256D * additional terms. Thus, if we define
16384/
8.=0 771/(1+ —101+80D—16D2) @
+.-+] (n—>x). 4.3 n nT o 64,2 )
we have
[Note that the coefficients in this expansion depend on the
dimensionD, unlike the scalar case, given in E®.17) of 1 * R
[8].] Because of this behavior, it is apparent that the series FTM=m2 w(n,D)Q,
diverges for all positivdd, except forD =1, where the series & n=0
truncates. 1 N
There were actually two procedures which were used to 2—( 2 w(n,D)Q,,
turn the corresponding sum in the scalar case into a conver- 2maT(D—1) | n=

gent series, and to extract numerical results, although only o )
4.9

; : I'(n+D-2)
one of those procedures was described in the pgglern + D
that procedure, we subtract from the summand the leading o )n:2+1 n!v? ’
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whereg(D) is the coefficient ofv# in Eq. (4.3. The last
sum in Eq.(4.8) can be evaluated according to

o T(n+ta) @° T(al2) 1

“onl(n+al22 2 T(1-al2) sifmal2’

4.9

The approximation given in Eq4.8) converges foD <4.

B. Casimir stress for integerD<1

The case of integersc1 is of special note, because, for
those cases, the series truncates. For exampl® $a0 only

then=0, 2 terms appear, where the integrals cancel by vir-

tue of the symmetry of Bessel functions,

In(X)=1_n(x), (4.10

for n an integer. However, using the first proced(#e), we
have a residual zeta function contribution:

K (X)=K_,(x),

™ 1 1
FD:o:m(Qo_Qﬂ‘ﬂ'):ﬁy (4.1
because botli(1—D) andI'(D — 1) have simple poles, with
residue—1, atD=0. This result folD =0 is the negative of
the result found in the scalar case, E822) of [8], which is
a direct consequence of the fact that tife 2 term in the
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20

Fd

-1.0

FIG. 1. A plot of the TM Casimir stress™ for —2<D<4 on
a spherical shell, compared wifd'5, taken from[8]. For D<2
(D<0) the stresss™ (FTE) is complex and we have plotted
ReF.

The integrals become complex fdd<2 because the
function gq(x), Eqg. (3.10, occurring in the logarithm devel-
ops zeros(This phenomenon started Bt=0 for the scalar

asymptotic expansion cancels when the TE and TM modegase). COI‘I’eSponding|y, thel’e are |Ogarithmic Singularities,

are combinedcompare Eq.(4.58 with the corresponding
term in Eq.(3.23 of [8]]. The continuation inD method
gives the same result, because then

FDM o= 5-2(Qo+ DO~ Q)
D=0 2,n.a2 0 1 2

1

B 101 101
=522 -

64 64

1

2a°’

(4.12

where a limiting procedurd) —0, is employed to deal with
the singularity which occurs fan=1, wherev—0.

and cusps, occurring at 2,1, 6,1, —2, ..., rather than just
at the nonpositive even integers.

The sign of the Casimir force changes dramatically with
dimension. Here this is even more striking than in the scalar
case, where the sign was constant between the poles for
D>0. For the TM modes, the Casimir force vanishes for
D=2.60, being repulsive for2D<2.60 and attractive for
2.60<D<4.

Also in Fig. 1, the results found here are compared with
those found in the scalar or TE caf&]. The correspondence
is quite remarkable. In particular, fdd<2 the qualitative
structure of the curves are very similar when the scale of the

For the negative even integers we achieve a similar candimensions in the TE case is reduced by a factor of 2; that is,
cellation between pairs of integers, with no zeta functionthe interval 6<D<2 in the TE case corresponds to the in-

residual because thefunctions no longer have poles there.

For example, foD = -2 we have

1
Fpl_p=5—2(Q—2Q1+2Q;-Qx)=0 (413

becauseQ,=Q, and Q;=Qs. Again, the other method of
regularization gives the same result when a careful limit i
taken.

For odd integers<1, truncation occurs without cancella-
tion, becausé ,#1_,. For example, foD=1,

1
FB'\ilzz(QonL Q;)=—0.26210.6032. (4.14

C. Numerical results

terval 1<D<?2 in the TM, —2<D<0 for TE corresponds
to 0<D<1 for TM, etc.

Physically, the most interesting result istat 3. The TM
mode calculated here has the valBg" ;= —0.022 0442.
However, if we wish to compare this to the electrodynamic
result[12], we must subtract off the=0 mode, which is

Sgiven in terms of the integraD,=0.411 233= 7%/24, which

displays the accuracy of our numerical integration. Similarly
removing then=0 mode & — w/24) from the result quoted
in Eq. (3.24 of [8], F[ ;=0.002 816 842, gives agreement
with the familiar resulf10,13,14,12,9

0.0462

FTM+TE a2 ) (4.15

n>0

|D:3:

To conclude, this paper adds one more example to our

We have used both methods described above to extracbllection of known results concerning the dimensional and
numerical results for the stress on a sphere due to TM flucboundary dependence of the Casimir effect. Unfortunately,
tuations in the interior and exterior. Results are plotted inwe are no closer to understanding intuitively the sign of the

Fig. 1. Salient features are the following.

phenomenon. We should, however, remark on the relevance

As in the scalar case, poles occur for positive even dimenef this work for generalD, since only integer dimensions

sion.

D=2 would seem of physical significance. In fact, the ana-
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lytical dependence of the stress on dimension is of greawhich numbers, incidentally, are remarkably close to the
interest, not only for the general reasons alluded to in théeadingQ, term, as statetin [15], which are—0.0140 and
Introduction, but specifically because the ultimate develop— 0.254. But, there seems to be no reason to have any belief
ment of a physical understanding of the Casimir effect musin these numbers.
explain, and may even be motivated by, this dimensional However, something remarkable does happen in the scalar
dependence. Further, it is not inconceivable that BheO case. If we use the first procedure, E44), we note that the
and D=1 cases, and even those for noninteger values gboles can arise both from the integrals and from the explicit
dimension, could be realized in some condensed-matter exeta functions. For the latter, let the dependenceDohe
periment. given byr(D)/(D—2) which has a pole & =2. When we
average over the pole, we obtain
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where the prime denotes differentiation. For the scalar modes

it is easy to verify that ' (2)=0. Thus, there is no contribu-
APPENDIX: TOWARD A FINITE D=2 CASIMIR EFFECT tion from those subtracted terms. In other words, they might

The truly disturbing aspect of our results here andigh Just as well be omitted, which is what we would do if we
are the poles in even dimensions. In particular, many very Se.”ed a cutoff and S'!“p'y drapped the divergent t.erms.
interesting condensed-matter systems are well approximatéa— h's. procedure dges give the corre[lat':S results) This
by being two dimensional. Are we to conclude that the CaprOVIdes some evidence for the validity of the procedure

simir effect does not exist in two dimensions? WhShfy'fldStEﬁ'('?hl)' ftect d ¢ for the TM
One trivial way to extract a finite answer from our expres- niortunat€ly, the same €fiect does not occur for the

sions, which have simple poles Bt=2 (I will set aside the modes,r’(2)#0. Nor does it occur for higher d|mens!ons,
logarithmic singularity there in the TM mode, because thaP:4' 6,... .even for scalars. And, even for scalars, it is not
only occurs in one integral),), is to average over the sin- clear how the divergences of a massﬁiZeLl) th(_eory can be
gularity. If we do so for the scalar result 8], we obtain remqved. So We are no clpser to solvmg the divergence prob-
lem in even dimensiorfslt is clear there is much more work

to do on Casimir phenomena.
TE 0.01304
Fp=o=— —az (AL)
3The integral in Eq(A12) of [15] was not evaluated very accu-
rately there. The value, good to six figures, should be in our nota-
tion, — Q5*¥*=0.088 013 7. Similarly- Q)™=1.5929. These num-

bers agree with those found j8].

while for the TM result here, we find

FTM _ _ 0.340 (A2) “For a discussion of the inadequacies of the dubious procedure of
D=2 a? attempting to extract a finite result [15] see[9].
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