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We compute vacuum expectation values of products of fermion bilinears for two-dimensional quantum
chromodynamics at finite flavored-fermion densities. We introduce the chemical potential as an external charge
distribution within the path-integral approach and carefully analyze the contribution of different topological
sectors to fermion correlators. We show the existence of chiral condensates exhibiting an oscillatory inhomo-
geneous behavior as a function of a chemical potential matrix. This result is exact and goes in the same
direction as the behavior found in four-dimensional QCD within the largeN approximation.
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I. INTRODUCTION

In order to understand the structure of the QCD vacuum
@1# one should analyze possible mechanisms for chiral sym-
metry breaking and the formation of fermion condensates.
The existence of such correlators can be understood as the
result of condensation of pairs of particles and holes and it
can have interesting implications in particle physics and cos-
mology. For example, a color nonsinglet condensate may be
related to superfluidity and color superconductivity of cold
quark matter at high fermion densities@2#. In this respect, the
results of Deryagin, Grigoriev, and Rubakov@3# are of par-
ticular importance. Analyzing the largeNc limit of QCD,
these authors have shown that the order parameter for chiral
symmetry, the quark condensate^c̄c&, is at high quark den-
sities inhomogeneous and anisotropic so that, regarding the
order parameter, the ground state of quark matter has the
structure of a standing wave.

Two-dimensional models such as the Schwinger model
and two-dimensional QCD provide a natural laboratory to
test these phenomena since, although simplified, the basic
aspects~chiral symmetry features, nontrivial topological sec-
tors, etc.! are still present and exact calculations can be in
many cases performed.

An analysis of two-dimensional QED~QED2) at finite
density was originally presented in@4,5#. More recently,
studies on this theory@6,7# showed that inhomogeneous chi-
ral condensates do exist as a result of the contribution of
nontrivial topological sectors.

Extending our work on QED2 @7#, we analyze in the
present paper vacuum expectation values of products of local
bilinears c̄(x)c(x), at finite density for two-dimensional
quantum chromodynamics with flavor. Using a path-integral
approach, which is very appropriate to handle non-Abelian
gauge theories, we show that the multipoint chiral conden-

sates exhibit an oscillatory inhomogenous behavior depend-
ing on a chemical potential matrix. Our results are exact and,
remarkably, go in the same direction as those revealed in
four dimensions using the 1/Nc approximation to QCD@3#.

To study the effect of finite fermion density in QCD2, a
chemical potential may be introduced. Within the path-
integral approach this amounts to consider a classical back-
ground charge distribution in addition to that produced by
topologically nontrivial gauge configurations. Concerning
this last point, it is well known that in two space-time dimen-
sions the role of instantons is played by vortices. In the Abe-
lian case, these vortices are identified with the Nielsen-
Olesen solutions of the spontaneously broken Abelian Higgs
model @8#. Also, in the non-Abelian case, regular solutions
with topological charge exist when symmetry breaking is
appropriately achieved via Higgs fields@9,10#. In both cases
the associated fermion zero modes have been found@11–13#.

Properties of the vortex solutions and the corresponding
Dirac equation zero modes are summarized in Sec. II. We
then describe in Secs. III and IV how topological effects can
be taken into account within the path-integral formulation
leading to a compact form for the partition function in the
presence of a chemical potential. Our approach, following
Ref. @14#, starts by decomposing a given gauge field belong-
ing to thenth topological sector in the form

Am~x!5Am
~n!1Am

ext1am . ~1!

Here,Am
(n) is a ~classical! fixed gauge field configuration be-

longing to thenth class,Am
ext is the background charge field

taking account of the chemical potential, andam is the path-
integral variable which represents quantum fluctuations.
BothAm

ext andam belong to the trivial topological sector and
can be then decoupled by a chiral rotation with the sole
evaluation of a Fujikawa Jacobian@15#. This last calculation
can be easily performed since it is to be done in the trivial
topological sector.

The complete calculation leading to the minimal non-
trivial correlation functions of fermion bilinears is first pre-
sented for multiflavor QED2 ~Sec. III! and then extended to

*On leave from Universidad Nacional de La Plata and CONICET,
Argentina. Electronic address: hugo@cat.cbpf.br

PHYSICAL REVIEW D 15 APRIL 1997VOLUME 55, NUMBER 8

550556-2821/97/55~8!/4920~11!/$10.00 4920 © 1997 The American Physical Society



multiflavor QCD2 ~Sec. IV!. In both cases the oscillatory
behavior of correlators as a function of the chemical poten-
tial is computed, the result showing a striking resemblance
with the QCD4 answer obtained within the largeNc approxi-
mation @3#. We summarize our results and conclusions in
Sec. V.

II. ZERO MODES

Topological gauge field configurations and the corre-
sponding zero modes of the Dirac equation play a central
role in calculations involving fermion composites. We sum-
marize in this section the main properties of vortices, the
relevant topological objects in the model we shall consider,
both for the Abelian and non-Abelian cases. We also present
the corresponding Dirac operator zero modes.

A. The Abelian case

In two-dimensional Euclidean space-time, topologically
nontrivial configurations are available since Nielsen and Ole-
sen @8# presented their staticz-independent vortex. In the
U~1! case the topological charge for such a configuration,
working in an arbitrary compact surface~such as a sphere or
a torus!, is defined as

1

4pE d2xemnFmn
~n!5nPZ. ~2!

A representative gauge field configuration carrying topo-
logical chargen can be written as

Am
~n!5nemn

xn

uxu
A~ uxu!, ~3!

with A(uxu) a function which can be calculated numerically
~an exact solution exists under certain conditions on coupling
constants@9#!. The adequate boundary conditions are

A~0!50, limuxu→`A~ uxu!521. ~4!

There areunu zero modes associated with the Dirac operator
in the background of anAm

(n) configuration in a suitable com-
pactified space-time@14#. ~For the noncompact case see
@11#.! For n.0 (n,0), they correspond to right-handed
~left-handed! solutionshR (hL) which in terms of light-cone
variables,z5x01 ix1 and z̄5x02 ix1, can be written in the
form

hR
m5S zmh~z,z̄!

0 D , ~5!

hL
m5S 0

z̄ 2mh21~z,z̄ !
D , ~6!

wherem50,1, . . . ,unu21,

h~z,z̄!5exp@f~n!~ uzu!#, ~7!

and

d

duzu
f~n!~ uzu!5nA~ uzu!. ~8!

B. The non-Abelian case

As in the Abelian case, two-dimensional gauge field con-
figurationsAm

(n) carrying a topological chargenPZN can be
found for the SU(N) case. As explained in Ref.@16#, the
relevant homotopy group is in this caseZN and notZ as in
the U~1! case.

Callingw the angle characterizing the direction at infinity,
a mappinggn(w)PSU(N) belonging to thenth homotopy
class (n50,1, . . . ,N21) satisfies, when one turns around a
close contour,

gn~2p!5expS 2p in

N Dgn~0!. ~9!

Such a behavior can be achieved just by takinggn in the
Cartan subgroup of the gauge group. For example, in the
SU~2! case one can take

gn~w!5expF i2s3Vn~w!G , ~10!

with

Vn~2p!2Vn~0!52p~2k1n!. ~11!

Heren50,1 labels the topological charge andkPZ is a sec-
ond integer which connects the topological charge with the
vortex magnetic flux~only for Abelian vortices do both
quantities coincide!.

We can then write a gauge field configuration belonging
to thenth topological sector in the form

Am
~n!5 iA~ uxu!gn

21]mgn , ~12!

with the boundary conditions

A~0!50, limuxu→`A~ uxu!521. ~13!

These and more general vortex configurations have been
thoroughly studied in@10–16#.

Concerning zero modes of the Dirac operator in the back-
ground of non-Abelian vortices, they have been analyzed in
Refs. @12,13#. The outcome is that for topological charge
n.0 (n,0), there areNn (Nunu) square-integrable zero
modeshL (hR) analogous to those arising in the Abelian
case. Indeed, one has

hR
~m,i ! j5S zmhi j ~z,z̄ !

0 D , ~14!

hL
~m,i ! j5S 0

z̄ 2mhi j
21~z,z̄ !

D , ~15!

with

h~z,z̄ !5exp@f~n!~ uzu!M #. ~16!

and
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M5
1

N
diag~1,1, . . . ,12N!. ~17!

Here, i , j51,2, . . . ,N and m50,1, . . . ,unu21. The pair
(m,i ) labels theNunu different zero modes whilej corre-
sponds to a color index. Because of the ansatz discussed in
Refs. @10–16# for the non-Abelian vortex, the function
f (n)(uzu) appearing in Eq.~16! coincides with that arising in
Eqs.~7! and ~8! for the Abelian vortex.

As it happens in the Abelian case, the partition func-
tion of two-dimensional quantum chromodynamics only
picks a contribution from the trivial sector because
det(D” @A(n)#)50 for nÞ0 @see Eq.~77! below#. In contrast,
various correlation functions become nontrivial precisely for
nÞ0, thanks to the ‘‘absorption’’ of zero-mode contribu-
tions when Grassman integration is performed.

It is our aim to see how these nontrivial correlators are
modified when a fermion finite density constraint is intro-
duced, comparing the results with those of the unconstrained
~zero chemical potential! case. As explained in the Introduc-
tion, we are motivated by the results of Deryagin, Grigoriev,
and Rubakov@3# in four-dimensional QCD. They were able
to show, in the largeNc and high fermion density limits, the
existence of oscillatory condensates~the frequency given by
the chemical potential! which are spatially inhomogeneous.
For QED2 the same oscillatory behavior was found approxi-
mately in@6# and confirmed analytically in@7#, by examining
an arbitrary number of fermion bilinears for which the exact
m dependence of fermionic correlators was computed. In or-
der to improve our understanding of the largeNc results
found in QCD4, we shall extend in what follows our two-
dimensional approach to the non-Abelian case but before
that we shall consider the case of flavored QED2 as a clari-
fying step towards multiflavor QCD2.

III. MULTIFLAVOR QED 2

We developed in Ref.@7# a path-integral method to com-
pute fermion composites for Abelian gauge theories includ-
ing chemical potential effects. In this section we briefly de-
scribe our approach while extending our treatment so as to
include flavor. We then leave for Sec. IV the analysis of the
non-Abelian multiflavor QCD2 model at finite density.

A. Handling the chemical potential in the Abelian case

We start from the Lagrangian

L52
1

4e2
FmnFmn1c̄~ i ]”1A”2 iMg0!c, ~18!

wherec is the fermion field isospinor. A chemical potential
term has been included by considering the diagonal matrix
M defined as

M5diag~m1 . . .mNf
!, ~19!

whereNf is the total number of flavors andmk are Lagrange
multipliers carrying a flavor index, so that eachk-fermion
number is independently conserved. The corresponding par-
tition function is defined as

Z@m1•••mNf
#5E Dc̄DcDAmexpS 2E d2xLD . ~20!

Since our interest is the computation of fermionic correla-
tors, we have to carefully treat nontrivial topological con-
figurations of the gauge fields which have been seen to be
crucial in the obtention of nonvanishing condensates, see
Refs.@17,18#. Then, following the approach of Refs.@14,17#,
we decompose gauge field configurations belonging to the
nth topological sector in the form

Am~x!5Am
~n!~x!1am~x!, ~21!

whereAm
(n) is a fixed classical configuration carrying all the

topological chargen, andam , the path integral variable, ac-
counts for the quantum ‘‘fluctuations’’ and belongs to the
trivial sectorn50.

As it is well known@19#, the chemical potential term can
be represented by a vector fieldAm

ext, describing anexternal
charge density acting on the quantum system. Indeed, taking
Am
ext as i times the chemical potential matrix@see Eqs.~19!

and~22!#, it corresponds to a uniform charge background for
each fermionic flavor. As explained in@7#, it is convenient to
first consider a finite length (2l ) box and then take the
l→` limit. In this way translation symmetry breaking asso-
ciated with the chemical potential becomes apparent and si-
multaneously, ambiguities in the definition of the finite den-
sity theory are avoided. When necessary, we shall follow this
prescription~see Ref.@4# for a discussion on this issue!. We
start by defining

An
ext52 iMdn0 , ~22!

so that the Dirac operator

i ]”1A”2 iMg0 ~23!

can be compactly written as

i ]”1A” 8, ~24!

with

Am8 5Am1Am
ext. ~25!

We shall now proceed to a decoupling of fermions from
the chemical potential and theam fluctuations following the
steps described in@7# for the case of only one flavor. In that
case, we wrote

am52emn]nf1]mh ~26!

and made a chiral rotation to decouple both thef2h fields,
together with the chemical potential. In order to includeNf
flavors in the analysis, one has to replace (f,h)→(f,h)1f
andm→M as we shall see below. Then, we can straightfor-
wardly apply what we have learned for one flavor@7# in the
multiflavor case. The change of variables accounting for the
decoupling of fermions from theam field, together with the
chemical potential, is given by
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c5exp$g5@f~x!1f1 iMx1#1 ih~x!1f%x,

c̄5x̄exp$g5@f~x!1f1 iMx1#2 ih~x!1f%, ~27!

a”5~2 i ]”U !U21, ~28!

where

U5exp@g5~f1f1 iMx1!1 ih1f #. ~29!

For notation compactness we have included ina” the external
field Am

ext describing the chemical potential term. From here
on, we choose the Lorentz gauge to work in~which in our
notation corresponds toh50).

After transformation~27!, the resulting Dirac operator
takes the form

iD” 5 i ]”1A” ~n!1a”→ i ]”1A” ~n!. ~30!

The Jacobian associated with the chiral rotation of the ferm-
ion variables can be easily seen to be@7#

J5expS trf2pE d2x~f1f1 iMx1!h~f12f~n!! D , ~31!

wheref (n) is defined by

Am
~n!52emn]nf~n!1f .

Together with Eq.~27!, we consider the change in the gauge-
field variablesam so that

Dam5DFPd~h!DfDh, ~32!

with DFP5deth.
As thoroughly analyzed by Actor@19#, Am

ext does not cor-
respond to a pure gauge. Were it not so, the introduction of a
chemical potential would not have physical consequences
and this would be the case in any space-time dimensions. In
fact, one cannot gauge awayLchem by means of a bounded
gauge transformation. As explained in@7#, the chiral rotation
which decouples the chemical potential, although un-
bounded, can be properly handled by putting the system in a
spatial box, then introducing adequate counterterms and fi-
nally taking the infinite volume limit.

After the decoupling transformation, the partition function
can be written in the form

Z5N(
n
E Dx̄DxDfexp~2Seff

~n!!, ~33!

whereSeff
(n) is the effective action in thenth topological sec-

tor,

Seff
~n!5E d2xx̄~ i ]”1A” ~n!!x2

Nf

2e2

3E d2x@~hf!21emnFmn
~n!hf#2

Nf

4e2E d2x~Fmn
~n!!2

2
trf
2pE d2x~f1f1 iMx1!h~f12f~n!!1Sc . ~34!

The usual divergency associated with the electromagnetic
energy carried by fermions has to be eliminated by a coun-
terterm Sc @4#. In our approach the divergency manifests
through the termiMx1hf (n) in Eq. ~34!. Putting the model
in a finite length box and appropriately adjustingSc , yields
to a finite answer. The counterterm is the Lagrangian coun-
terpart of the one usually employed in the Hamiltonian ap-
proach to handle this problem@4#. In the canonical formula-
tion of quantum field theory~QFT!, this is equivalent to a
redefinition of creation and annihilation operators which
amounts to a shift in the scale used to measure excitations.

As we have mentioned, a fermionic chemical potential
amounts to introducing a finiteexternalcharge~i.e., at the
spatial boundaries! into the theory. In these conditions, it can
be proved that massless QED2 ~and QCD2) at finite density
remains in the Higgs phase. To show this one may compute
the string tension following, for instance, the procedure de-
scribed in Ref.@20#: one starts by integrating out the fermion
fields ~or, equivalently, the bosons in the bosonized version!
in order to derive the effective action for the gauge fields.
One can then compute the Wilson loop to calculate the en-
ergy of a couple of~static! external charges for a theory
containing also dynamical ‘‘quarks.’’ Now, since zero modes
kill the contributions of nontrivial topological sectors to the
partition function, screening can be tested using the effective
action in the trivial topological sector. In fact, one can see
that for vanishing fermion masses the string tension van-
ishes. In order to discuss these issues in multiflavor QED2 at
finite density, let us note that after integration of fermions in
Eq. ~34!, the resulting effective action for the gauge field can
be written as@21#

Seff5E d2xS 1

4e2
Fmn
2 1

1

2p
am
22trf

iM
2p E d2x x1F01D , ~35!

where Sc has canceled the divergent term, as explained
above. Then, at this stage there is no divergency to deal with
and we can perform our calculation in the whole Euclidean
space. Choosing the Coulomb gaugea150, appropriate to
derive the static potential between external charges, we ob-
tain from Eq. ~35! ~after integration by parts using zero-
boundary conditions!, the following effective Lagrangian:

Leff5
1

2e2
~]1a0!

21
1

2p
a0
22trf

iM
2p

a0 . ~36!

In order to analyze the force between charges, let us pass to
Minkowski space-time, makinga0→ ia0 so that the corre-
sponding effective Lagrangian in Minkowski space reads

LM52
1

2e2
~]1a0!

22
1

2p
a0
21trf

M
2p

a0 . ~37!

To determine the electrostatic potential between two external
charges6e8, we may couple to the gauge field the proper
charge density

r~x1!5e8@d~x11 l !2d~x12 l !#, ~38!

so that the complete effective Lagrangian becomes
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L5LM2ra0 . ~39!

The resulting equation of motion takes the form

]1
2a02

e2

p
a01

e2

2p
trfM5r ~40!

and its solution reads

a0~x
1!5

e8

2m
@exp~2mux11 l u!2exp~2mux12 l u!#1trfM,

~41!

wherem5eANf /p. The energy of the two test charges at a
distance 2l each other, is given by

V~ l !5
1

2E dx1r~x1!a0~x
1! ~42!

and we obtain, at finite fermion density, the usual screening
potential

V~ l !5
e82

2m
@12exp~22ml!#, ~43!

with no modification due to the presence of the chemical
potential whose contribution trivially cancels. We then con-
clude that in massless multiflavor QED2 at finite density, any
fractional chargee8 is screened by integer massless charges.

To get a deeper insight into these results, let us note that,
as is well known, only the trivial topological sector contrib-
utes to the partition function for massless fermions~the con-
tribution of nontrivial sectors being killed by zero modes!.
Then, deriving the potential between external charges as we
did above or computing the Wilson loopW as well, one finds
that screening is not affected by the presence of the chemical
potential term~the Wilson loop calculation yieldsW51
@20#!. One could argue that, as it happened with the two test
charges, the external charge background associated with the
chemical potential term is itself also screened by massless
dynamical fermions. After all, it is only in the properties of
fermion condensates that topological sectors enter into play
and it is through its contributions that the chemical potential
manifests itself. One can understand this issue as follows:
The topological structure of the theory is determined at the
boundaries~recall that in order to calculate the topological
charge one just usesRAm

ndxm52pn) and the corresponding
n-charge configurations are responsible for the nontriviality
of the correlators but not affecting the partition function. It is
then precisely when computing condensates that the charges
at the boundaries associated with the chemical potential
manifest.

To rephrase this analysis, note that with the choice of the
counterterm discussed above, the effective action written in
terms of the decoupled fermions does not depend on the

chemical potentialsmk . This does not mean that this term
has no physical consequences. In fact,M reappears when
computing correlation functions of fermion fields, oncec̄
andc are written in terms of the decoupled fieldsx̄ andx
through Eq.~55! below. We shall see in the following sec-
tions how fermionic correlators are changed, exhibiting os-
cillatory inhomogeneities in the spatial axes which depend
onM. The fact that zero modes make certain vacuum ex-
pectation values~VEV’s! not to vanish, leads to a highly
nontrivial dependence on the chemical potentials.

B. The correlation functions

The introduction of a flavor index implies additional de-
grees of freedom which result inNf independent fermionic
field variables. Consequently, the growing number of Grass-
man~numeric! differentials calls for additional Fourier coef-
ficients in the integrand.

It is well known that each coefficient is related to the
quantum numbers of the chosen basis, which is normally
built up from the eigenfunctions of the Dirac operator. As we
have for one flavor, one has thatn of these eigenfunctions
are zero modes, implying a vanishing fermionic exponential.
Hence, in order to make Grassman integrals nontrivial, one
has to insert several bilinears depending on the number of
zero modes. When the path-integral measure containsNf in-
dependent fermionic fields instead of one, the number of
composite insertions is multiplied byNf in order to saturate
Grassman integration algebra, with some selection rules
which will become apparent below.

For the sake of brevity, let us readily give the result for
general correlation functions ofp points with arbitrary right
and left insertions

C~w1 ,w2 , . . . !5K )
k51

Nf

)
i51

r k

s1
k ~wi ! )

j518

sk

s2
k ~wj !L , ~44!

where

s6
k ~wi ![c̄6

k ~wi !c6
k ~wi !, ~45!

p5 (
k51

Nf

pk ,

and

r k1sk5pk

is the total number of insertions in the flavor sectork.
After the Abelian decoupling, Eq.~44! results in

4924 55H. R. CHRISTIANSEN AND F. A. SCHAPOSNIK



C~w1 ,w2 , . . . !5
1

Z(
n51

` E Df expF Nf

2pE d2xfh~f1f~n!!GexpF2
1

e2E d2x~f1f~n!!hh~f1f~n!!G
3expF2(

k51

Nf S (
i51

r k

f~wi !2 (
j518

sk

f~wj !D G)
k51

Nf

expF2imkS (
i51

r k

w1
i 2 (

j518

sk

w1
j D G

3E Dx̄kDxk)
i51

r k

x̄1
k ~wi !x1

k ~wi ! )
j518

sk

x̄2
k ~wj !x2

k ~wj ! expF2E d2xx̄k~ i ]”1A” ~n!!xkG , ~46!

wherew1
i is the space component ofwi . We see from Eq.~46! that the chemical potential contribution is, as expected,

completely factorized. Concerning the bosonic integral, it can be written as

B5expFNf /2pE d2xf~n!hf~n!GexpF22(
k51

Nf S (
i51

r k

f~n!~wi !2 (
j518

sk

f~wj !D GexpF22 (
k,k851

Nf

(
i51

pk

(
i51

pk8

eiejO
21~wi ,wj !G ,

~47!

with

O21~wi ,wj !5K0~muwi2wj u!1 ln~cuwi2wj u!.

The fermionic path integral determines the topological sectors contributing to Eq.~44!. More precisely, once the correlator to
be computed has been chosen, Grassman integration leads to a nonzero answer only when the number of right insertions minus
the number of left insertions is the same in every flavor sector. It means thatr k2sk5t;k, wheret is the only topological flux
number surviving the leading sumatory in Eq.~46!. ~Notice that mixed flavor indices in the elementary bilinear are avoided;
i.e., we are not including flavor-violating vertices, in accordance with QED4 interactions.! It is important to stress that each
term explicitly including the classical configuration of the flux sector cancels out. Consequently, classical configurations only
appear through by means of their global~topological! properties, namely, through the difference in the number of right- and
left-handed bilinears@14#.

To conclude, we give the final result for the general correlator defined in Eq.~44!, making use of the explicit form of
Abelian zero modes

K )
k51

Nf

)
i51

r k

s1
k ~wi ! )

j518

sk

s2
k ~wj !L 5S 2

meg

4p D pexpF2i(
k51

Nf

mkS (
i51

r k

w1
i 2 (

j518

sk

w1
j D G )

k.k851

Nf

3expF24(
i51

pk

(
j51

pk8

eiej ln~cuwi2wj u!GexpF2(
k,k8

Nf

(
i51

pk

(
j51

pk8

eiejK0~muwi2wj u!G ~48!

~see Refs.@7,22# for details!.
In order to clearly see the meaning of this expression, let us show the result for the simplest non-trivial-flavored correlation

functions including mixed right- and left-handed insertions

(
n

^c̄1c1~x!c̄1c1~y!c̄1c1~z!c̄2c2~w!&n52cos@m1~z12x12y1!2m2w1#^s1
1 ~x!s1

1 ~y!s2
1 ~z!s1

2 ~w!&1

12cos@m1~y12x12z1!2m2w1#^s1
1 ~x!s2

1 ~y!s1
1 ~z!s1

2 ~w!&1

12cos@m1~x12z12y1!2m2w1#^s2
1 ~x!s1

1 ~y!s1
1 ~z!s1

2 ~w!&1 , ~49!

(
n

^c̄1c1~x!c̄1c1~y!c̄2c2~z!c̄2c2~w!&n52cos@m1~x12y1!2m2~z12w1!#^s1
1 ~x!s2

1 ~y!s2
2 ~z!s1

2 ~w!&0

12cos@m1~x12y1!1m2~z12w1!#^s1
1 ~x!s2

1 ~y!s1
2 ~z!s2

2 ~w!&0

12cos@m1~x11y1!1m2~z11w1!#^s1
1 ~x!s2

1 ~y!s2
2 ~z!s1

2 ~w!&2 . ~50!
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These expressions make the following issues apparent.~i!
How the topological structure of the theory exhibits itself
through the existence of nontrivial vacuum expectation val-
ues of fermionic bilinears.~Notice that those on the right-
hand side are the only surviving terms of the whole summa-
tory.! ~ii ! In the multiflavor case, the path integrals are
nonzero only when the number of right insertions minus the
number of left insertions are identical in every flavor sector.
~iii ! The sum over spatial coordinates dramatically exhibits
the translation symmetry breaking discussed above.~iv! The
fixing of various fermion densities implies a somehow richer
spatial inhomogeneity of the results with respect to the one-
flavor case that we have analyzed in@7#, in the sense that
now the ‘‘angles’’ depend on various chemical potentials.~v!
Another difference with respect to the one-flavor case con-
cerns the trivial cancellation of logarithms coming from
bosonic and fermionic integration, respectively. Now, this
cancellation occurring for one flavor, does not take place
anymore, see Eq.~48!.

IV. MULTIFLAVOR QCD 2

In the present section we consider two-dimensional
SU(Nc) Yang-Mills gauge fields coupled to massless Dirac
fermions in the fundamental representation. Because of the
non-Abelian character of the gauge symmetry, gluons are
charged fields that preserve color flux at each vertex. Since a
colored quark density is not a quantity to be kept constant,
no chemical potential related to color should be considered
but only that associated with the global symmetry that yields
fermion number conservation. Hence, we first include one
chemical potential term and then consider a different
Lagrange multiplier for each fermionic flavor.

Let us stress that once the topological effects arising from
vortices are taken into account and the chemical potential
behavior of fermion correlators is identified, we do not pur-
sue calculations in the bosonic sector~nor do we consider the
inclusion of Higgs scalars, necessary at the classical level for
the existence of regular vortex solutions!. As we shall see,
the boson contribution to the fermion condensate just factor-
izes and all the chemical potential effects can be controlled
by calculations just performed within the fermionic sector.

A. Handling the chemical potential in QCD2

We start from the massless QCD2 ~Euclidean! Lagrangian

L5c̄q~ i ]mgmdqq81Am,ata
qq8gm2 img0d

qq8!cq8

1
1

4g2
Fmn
a Fmn

a , ~51!

where we have included a chemical potential term in the
form

Lchem52 imc†c, ~52!

in order to take care of the fermion density constraint. Here,
a51...Nc

221, andq51...Nc . The partition function reads

Z@m#5E Dc̄DcDAmexpS 2E d2xLD . ~53!

Again, one can decouple the chemical potential by perform-
ing an appropriate chiral rotation for the fermion variables.
Indeed, under the transformation

c5exp~ img5x1!x,

c̄5x̄exp~ img5x1!, ~54!

the fermion Lagrangian becomes

L5c̄D” @A,m#c→x̄D” @A#x, ~55!

so that the chemical potential completely disappears from the
fermion Lagrangian. As we have seen, chiral transformations
may generate a Fujikawa Jacobian which has to be computed
using some regularization procedure. For example, using the
heat-kernel regularization, one introduces a resolution of the
identity of the form

15 limM→`exp@2D” ~a!2/M2#, ~56!

whereDm(a) @aP(0,1)# is an interpolating Dirac operator
such thatDm(a50)5Dm@A,m# andDm(a51)5Dm@A#.

After some standard calculation@23#, one ends with a
Jacobian of the form

J5expS i emn/4pE
0

1

d2xda trc@mx1Fmn~a!# D , ~57!

where trc is the trace with respect to color indices and

Fmn~a!5Fmn
a ~a!ta, a51,2, . . . ,Nc

221. ~58!

Now, the color trace in Eq.~57! vanishes and then the
chiral Jacobian is, in fact, trivial:

J51. ~59!

We can then write the partition function~53! after the ferm-
ion rotation defined in Eq.~27! in the form

Z@m#5E DAmDx̄DxexpS 2E d2xLD . ~60!

As we have seen in the Abelian case, althoughm is absent
from the right-hand side~RHS! of Eq. ~60!, one should not
conclude that physics is independent of the chemical poten-
tial. For correlation functions of composite operators which
are not chiral invariant, the chemical potential will reappear
when rotating the fermion variables in the fermionic bilin-
ears. As in the Abelian case, this happens when computing
VEV’s of productsc̄(x)c(x).

B. Correlation functions in QCD 2 with chemical potential

Our main interest is the computation of fermionic correla-
tors containing products of local bilinearsc̄c(x) for which
nontrivial topological gauge-field configurations, and the as-
sociated Dirac operator zero modes, will be crucial to the
obtention of nonvanishing results as explained in Refs.
@7,14,17,18,22#.

As in Sec. III, we start by writing a gauge field belonging
to thenth topological sector, in the form
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Am
a ~x!5Am

a~n!~x!1am
a ~x!, ~61!

whereAm
a(n) is a fixed classical configuration~as described in

Sec. II B!, carrying all the topological chargen, andam
a will

be the actual integration variable which belongs to the trivial
sectorn50. Then, we decouple theam field from the fermi-
ons through an appropriate rotation~the calculation of the
Fujikawa Jacobian being standard since the decoupling cor-
responds to the topologically trivial sector!. Now, it will be
convenient to choose the background so that

A1
a~n!50. ~62!

In this way, the Dirac operator takes the form1

D” @A~n!1a#5S 0 ]11a1

]21A2
~n!1a2 0 D , ~63!

and we are left with the determinant of this operator once
fermions are integrated out:

Z@m#5(
n
E DamexpF 1

4g2
Fmn
2 @A~n!1a#GdetD” @A~n!1a#.

~64!

As before, we have introduced a sum over different topologi-
cal sectors. Now, we shall factor out the determinant in the
classical background so as to control the zero-mode problem.
Let us start by introducing group-valued fields to represent
A(n) andam :

a15 iu21]1u, ~65!

a25 id~v]2v
21!d21, ~66!

A2
~n!5 id]2d

21. ~67!

Consider first the light-cone-like gauge choice@24#

A25A2
~n! , ~68!

implying

v5I . ~69!

In this gauge the Dirac operator~63! reads

D” @A~n!1a#u lc5S 0 ]11 iu21]1u

]21A2
~n! 0 D , ~70!

where subscriptlc means that we have used the gauge con-
dition ~68!. One can easily see~for example, by rotating the
1 sector withu21 while leaving the2 sector unchanged!
that

detD” @A~n!1a#u lc5NdetD” @A~n!#exp~W@u,A~n!# !. ~71!

Here,W@u,A(n)# is the gauged Wess-Zumino-Witten action
which in this case takes the form

W@u,A~n!#5W@u#1
1

4p
trcE d2x~u21]1u!~d]2d

21!

~72!

andW@u# is the Wess-Zumino-Witten action

W@u#5
1

2p
trcE d2x]mu

21]mu

1
ei jk

4p
trcE

B
d3y~u21] iu!~u21] ju!~u21]ku!.

~73!

Note, that in writing the fermion determinant in the form
~71!, the zero-mode problem has been circumscribed to the
classical background fermion determinant.

One can easily extend the result~71! to an arbitrary
gauge, in terms of the group-valued fieldsu andv defined by
Eqs. ~65! and ~66!, by repeated use of the Polyakov-
Wiegmann identity@25#

W@pq#5W@p#1W@q#1
1

4p
trcE d2x~p21]1p!~q]2q

21!.

~74!

The answer is

detD” @A~n!1a#5NdetD” @A~n!#exp~Seff@u,v;A
~n!# !,

~75!

Seff@u,v;A
~n!#5W@u,A~n!#1W@v#

1
1

4p
trcE d2x~u21]1u!d~v]2v

21!d21

1
1

4p
trcE d2x~d21]1d!~v]2v

21!. ~76!

Once one has the determinant in the form~75!, one can work
with any gauge-fixing condition. The gauge choice~68! is, in
principle, not safe since the corresponding Faddeev-Popov
determinant isD5detD2

adj@A(n)#, implying the possibility of
new zero modes. A more appropriate choice would be, for
example,A150, having a trivial FP determinant. In any
case, one ends with a partition function showing the structure

Z5(
n

det~D” @A~n!# !E DamDd~F@a# !

3expS 2Seff@A
~n!,am#2

1

4g2E d2xFmn
2 @A~n!,am# D .

~77!

Concerning the divergency associated with the external
charge distribution, we have learned from the Abelian case
that one has to carefully handle this term in order to define
excitations with respect to the external background. In Sec.
III we have seen that it came from the interaction ofAext with
Fmn
(n) , appearing in the fermionic Jacobian. Performing a

similar calculation in the present case, we would find the
non-Abelian analogue of this term with trc acting on it. As1We are usingg05s1 andg152s2 .
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we have mentioned above, this color trace operation implies
the vanishing of the corresponding divergency so that no
counterterm might be added in QCD2, meaning that the rel-
evant vacuum is properly defined.

As we have seen, the Lagrangian for QCD2 at finite den-
sity can be written in terms ofm-rotated fields which hide the
chemical potential from the partition function. This result,
however, does not exhaust the physics of the theory in the
sense that correlation functions do depend onm. Actually, it
will be shown that the chemical potential dependence ap-
pears as a factor multiplying the result for correlators of the
unconstrained theory. For this reason, we shall first describe
the computation of vacuum expectation values of fermion
bilinears in them50 case and then consider how this result
is modified at finite fermion density. Hence, we proceed with
the analysis of VEV’s of products of bilinears such asx̄x.
Let us start by noting that with the choice~62! for the clas-
sical field configuration, the Dirac equation takes the form

D” @A~n!1a#S x1

x2
D 5S 0 u21i ]1

dvd21D2@A~n!# 0 D S z1

z2
D ,
~78!

wherez is defined as

x15dvd21z1 ,

x25u21z2 , ~79!

so that the Lagrangian in thenth flux sector can be written as

L5x̄D” @a1A~n!#x5z2* i ]1z21z1* D” 2@A~n!#z1

[z̄D̃@A~n!#z. ~80!

In terms of these new fields, the bilinearsx̄x take the form

x̄x5z2* udvd
21z11z1* dv

21d21u21z2 . ~81!

We observe that the Jacobian associated with Eq.~79! is
nothing else but the effective action defined in the previous
section by Eq.~76!. Hence, an explicit expression for the
non-Abelian correlators reads

^x̄x~x1!•••x̄x~xl !&

5(
n
E DamDd~F@am#!exp@2Seff~A

~n!,a!#E Dz̄DzexpF z̄S 0 i ]1

D2@A~n!# 0 D zG
3@Bq1p1~x1!•••Bqlpl~xl !z2

* q1z
1

p1~x1!•••z2
* qlz

1

pl~xl !1Bq1p1~x1!•••B21qlpl~xl !z2
* q1z

1

p1~x1!•••z1
* qlz

2

pl~xl !

1Bq1p1~x1!•••B21ql21pl21~xl21!B21qlpl~xl !z2
* q1z

1

p1~x1!•••z1
* ql21z

2

pl21~xl21!z1
* qlz

2

pl~xl !1•••#, ~82!

where the group-valued fieldB is given by

B5udvd21.

For brevity, we have written the gauge-field measure in
terms of the original fieldsam , although for actual calcula-
tions in the bosonic sector one has to work usingu and v
variables and proceed to a definite gauge fixing. That is, the
measure should be written according to

Dam→DuDvJB~u,v,d!

and then the gauge condition and Faddeev-Popov determi-
nant should be included~for example, in the light-cone
gaugea150, u51 and the FP determinant is trivial!. Fi-
nally, notice that we have obtained a general and completely
decoupled result, from which one sees that because of color
degrees of freedom, the simple product that one finds in the
Abelian case becomes here an involved summatory.

Now, that we have an expression for correlators in the
unconstrained case, let us include the chemical potential in
our results. Recall that in this theory the partition function is
@see Eq.~60!#

Z5E DAmDx̄DxexpS 2E d2xF x̄~ i ]”1A” !x

1
1

4g2
FmnFmnG D , ~83!

wherex̄,x represent the fermion fields after the chiral rota-
tion ~54! which eliminated the chemical potential from the
Lagrangian. Since fermionic bilinears can be written as

c̄c5c̄1c11c̄2c2 ,

one has

^c̄c&5exp~2imx1!^x̄1x1&1exp~22imx1!^x̄2x2&. ~84!

It can be easily seen that the same factorization occurs
when flavor is introduced. The corresponding transformation
for the fermion field isospinor is now

c5exp~ iM1cg5x1!x,

c̄5x̄exp~ iM1cg5x1!, ~85!

and the bilinear VEV takes in this case the form
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^c̄c&5exp~2iM1cx1!^x̄1x1&1exp~22iM1cx1!^x̄2x2&.
~86!

We shall then include from here on flavor degrees of free-
dom with the corresponding constraint on each fermion den-
sity. Since in this case one deals withNf fermions coupled to
the gauge field, we can use the fermionic Jacobian we have
computed for one flavor to the powerNf while the bosonic
measure remains untouched. In the light-cone gauge it can be
easily seen that the effective bosonic sector now involves
Nc21 massive scalars, their mass depending on flavor and
color numbers by means of a factor (2Nc1Nf)

1/2 with re-
spect to the Abelian counterpart~there is also the same num-
ber of unphysical massless particles@26#!.

As we have previously explained, the Dirac operator has
unuNc zero modes in thenth topological sector, this implying
that more fermion bilinears are needed in order to obtain a
nonzero fermionic path integral. Moreover, since the flavor
index implies a factorNf on the number of Grassman coef-
ficients, the minimal nonzero product of fermion bilinears in
thenth sector requiresunuNcNf insertions.

Since the properties of the topological configurations are
dictated by those of the torus of SU(Nc), one can easily
extend the results already obtained for QED2. In particular,
the chirality of the zero modes is dictated by the same index
theorem found in the Abelian theory, this implying that in
sectorn.0 (n,0), every zero mode has positive~negative!
chirality. In this way, the right~left! chiral projections of the
minimal nonzero fermionic correlators can be easily com-
puted. One gets

K)
k

Nf

)
q

Nc

)
i

unu

c̄1
q,kc1

q,k~xi
q,k!L

n

5
1

Z~0!E
GF
DuDv JB e

2SBeff
~n!

~u,v,d!

3)
k

Nf

)
q

Nc

)
i

unu

(
pi ,l i

Nc

B8k
q,pi l i~xi

q,k!

3F E Dz̄DzexpS E z̄D”̃ @A~n!#z D z̄
1

piz
1

l i ~xi
q!G

k

, ~87!

where

B8k
q,pi l i~x!5exp~2imkx1!u

piq~x!~dvd21!qli~x!, ~88!

z̄15z2* , and D̃@A(n)# stands for the Dirac operator in the
RHS of Eq. ~80!. We have used the notationZ(0) for the
partition function since it is completely determined within
the n50 sector, see Eq.~77!. We have showed every color
and flavor index explicitly indicating sum and product opera-
tions. The GF label stands for the gauge fixing. The action
SBeff
(n) (u,v,d)5NfSWZW(u,v,d)1SMaxwell(u,v,d) is given by
the full gluon fieldA(n)(d)1a(u,v), and yields a high-order
Skyrme-type Lagrangian@27#.

Let us considerNc52 andNf52 in order to present the
simplest illustration for the last expression. The minimal fer-
mionic correlator then looks like

(
n

^c̄1
1,1c1

1,1~x1!c̄1
1,2c1

1,2~x2!c̄1
2,1c1

2,1~y1!c̄1
2,2c1

2,2~y2!&n

5
1

Z~0! (
p,q,r ,s

Nc52

)
k51

2

exp@2imk~x11y1!
k#

3E
GF
DuDvJBe2SBe f f

~1!
~u,v,d!Bk

1,pq~xk!Bk
2,rs~yk!

3E Dz̄kDzk

3expS E z̄kD̃@A~1!#zkD
3 z̄1

p,kz1
q,k~xk!z̄1

r ,kz1
s,k~yk!. ~89!

The fermionic path integration can be easily done, result-
ing in the product of eigenfunctions discussed in the sections
above, as follows:

E Dz̄kDzkexpS E z̄kD̃@A~1!#zkD z̄1
p,kz1

q,k~xk!z̄1
r ,kz1

s,k~yk!

5det8~D̃@A~1!# !

3@2h̄1
~0,1!p,kh1

~0,1!q,k~xk!h̄1
~0,2!r ,kh1

~0,2!s,k~yk!

1h̄1
~0,1!p,kh1

~0,2!q,k~xk!h̄1
~0,2!r ,kh1

~0,1!s,k~yk!

2h̄1
~0,2!p,kh1

~0,1!q,k~xk!h̄1
~0,1!r ,kh1

~0,2!s,k~yk!

1h̄1
~0,2!p,kh1

~0,2!q,k~xk!h̄1
~0,1!r ,kh1

~0,1!s,k~yk!#. ~90!

Here, det8(D̃@A(1)#) is the determinant of the Dirac operator
defined in Eq. ~80! omitting zero modes and, e.g.,
h (0,1)q,k(xk) is a non-Abelian zero mode as defined in Sec. II,
with an additional flavor indexk. Concerning the bosonic
sector, the presence of theFmn

2 ~Maxwell! term crucially
changes the effective dynamics with respect to that of a pure
Wess-Zumino model. One then has to perform approximate
calculations to compute the bosonic factor, for example, lin-
earizing theU transformation, see@27#. In any case, once
this task is achieved for them50 model, the modified~finite
density! result can be obtained in an exact way.

V. SUMMARY

We have presented the correlation functions of fermion
bilinears in multiflavor QED2 and QCD2 at finite fermion
density, using a path-integral approach which is particularly
appropriate to identify the contributions arising from differ-
ent topological sectors. Analyzing correlation functions for
an arbitrary number of fermionic bilinears, we have been
able to determine exactly their dependence on the chemical
potentials associated with different flavor indices. As
stressed in the Introduction, our work was prompted by re-
cent results by Deryagin, Grigoriev, and Rubakov@3# show-
ing that in the largeNc limit, condensates of QCD in four
dimensions are inhomogeneous and anisotropic at high ferm-
ion density.

Two-dimensional models are a favorite laboratory to test
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phenomena which are expected to happen in QCD4. In fact,
an oscillatory inhomogeneous behavior in^c̄c& was found
in the Schwinger model@6#, using operator bosonization and
then the analysis was completed by finding the exact behav-
ior of fermion bilinear correlators in@7#. Here, we have ex-
tended this analysis in order to include flavor and color de-
grees of freedom within a path-integral scheme which makes
apparent how topological effects give rise to the nontriviality
of correlators.

Remarkably, the oscillatory behavior related to the chemi-
cal potential that we have found with no approximation, co-
incides exactly with that described in@3# for QCD4 within
the largeNc approximation~apart from the anisotropy that,
of course, cannot be tested in one spatial dimension!. In par-
ticular, the structure of the multipoint correlation functions,
given by Eqs.~48! and ~87!, shows a nontrivial dependence
on spatial coordinates. This makes apparent that the ground
state has, at finite density, an involved structure which is a
superposition of standing waves with respect to the order
parameter. Our model being two dimensional, we were able
to control the chemical potential matrix behavior in anexact
way so that we could discard the possibility that the forma-
tion of the standing wave is a by-product of some approxi-
mation. This should be considered when analyzing the re-
sults of Ref.@3# in d54 dimensions, where one could argue
that use of a ladder approximation as well as the fact of
neglecting effects subleading in 1/Nc , play an important role
in obtaining such a behavior.

Several interesting issues are open for further investiga-

tion using our approach. One can, in particular, study in a
very simple way the behavior of condensates at finite tem-
perature. The chiral anomaly is independent of temperature
and plays a central role in the behavior of condensates
through its connection with the index theorem. Therefore,
one should expect that formulas such as~48! or ~87! are valid
also forT.0. Of course, VEV’s atm50 in the RHS of this
equation should be replaced by those computed at finite tem-
perature and hence the issue of zero modes in a toroidal
manifold should be carefully examined~see, e.g.,@22#!. In
the light of recent results concerning QCD2 with adjoint fer-
mions@20,28#, it should be of interest to extend our calcula-
tion so as to consider adjoint multiplets of fermions.

Finally, it should be worthwhile to consider massive fer-
mions and compute fermion correlation functions at finite
density, via a perturbative expansion in the fermion mass
following the approach of@29#. We hope to report on these
problems in a future work.
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