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Multiflavor correlation functions in non-Abelian gauge theories at finite fermion density
in two dimensions
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We compute vacuum expectation values of products of fermion bilinears for two-dimensional quantum
chromodynamics at finite flavored-fermion densities. We introduce the chemical potential as an external charge
distribution within the path-integral approach and carefully analyze the contribution of different topological
sectors to fermion correlators. We show the existence of chiral condensates exhibiting an oscillatory inhomo-
geneous behavior as a function of a chemical potential matrix. This result is exact and goes in the same
direction as the behavior found in four-dimensional QCD within the |&ggpproximation.
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[. INTRODUCTION sates exhibit an oscillatory inhomogenous behavior depend-
ing on a chemical potential matrix. Our results are exact and,
In order to understand the structure of the QCD vacuuntemarkably, go in the same direction as those revealed in
[1] one should analyze possible mechanisms for chiral symfour dimensions using the NI approximation to QCI}3].
metry breaking and the formation of fermion condensates. To study the effect of finite fermion density in QGPa
The existence of such correlators can be understood as ti§@emical potential may be introduced. Within the path-
result of condensation of pairs of particles and holes and ithtegral approach this amounts to consider a classical back-
can have interesting implications in particle physics and cosdround charge distribution in addition to that produced by
mology. For example, a color nonsinglet condensate may bfePologically nontrivial gauge configurations. Concerning
related to superfluidity and color superconductivity of cold tNiS 1ast point, it is well known that in two space-time dimen-
quark matter at high fermion densitigg. In this respect, the SIons the role of Instantons Is plr_;lyed _b_y vortices. In th_e Abe-
results of Deryagin, Grigoriev, and Rubakfs] are of par- lian case, these vortices are identified with the Nielsen-
ticular importance. Analyzing the largi,, limit of QCD, Olesen solutions of the spontaneously broken Abelian Higgs

these authors have shown that the order parameter for chir odel[8]. Also, in the non-Abelian case, regular solutions
P ith topological charge exist when symmetry breaking is

symmetry, the quark condensdtg:)), is at high quark den-  appropriately achieved via Higgs fielf8,10]. In both cases
sities inhomogeneous and anisotropic so that, regarding th@e associated fermion zero modes have been fpLhe13.
order parameter, the ground state of quark matter has the properties of the vortex solutions and the corresponding
structure of a standing wave. Dirac equation zero modes are summarized in Sec. Il. We
Two-dimensional models such as the Schwinger modejhen describe in Secs. Ill and IV how topological effects can
and two-dimensional QCD provide a natural laboratory tope taken into account within the path-integral formulation
test these phenomena since, although simplified, the basjgading to a compact form for the partition function in the
aspectgchiral symmetry features, nontrivial topological sec- presence of a chemical potential. Our approach, following
tors, etc) are still present and exact calculations can be II'Ref [14], starts by decomposing a given gauge field belong-

many cases performed. ing to thenth topological sector in the form
An analysis of two-dimensional QEDQED,) at finite
density was originally presented i®,5]. More recently, A#(x):A;”)JrAZXtﬁLa#. 1)

studies on this theor}6,7] showed that inhomogeneous chi-
ral condensates do exist as a result of the contribution oIHere,AEf) is a(classical fixed gauge field configuration be-
nontrivial topological sectors. longing to thenth cIass,AiXt is the background charge field
Extending our work on QEP [7], we analyze in the taking account of the chemical potential, amglis the path-
present paper vacuum expectation values of products of locategral variable which represents quantum fluctuations.
bilinears (x) ¥(x), at finite density for two-dimensional Both A}‘iXt anda, belong to the trivial topological sector and
guantum chromodynamics with flavor. Using a path-integrakcan be then decoupled by a chiral rotation with the sole
approach, which is very appropriate to handle non-Abeliarevaluation of a Fujikawa Jacobiah5]. This last calculation
gauge theories, we show that the multipoint chiral condenean be easily performed since it is to be done in the trivial
topological sector.
The complete calculation leading to the minimal non-
*On leave from Universidad Nacional de La Plata and CONICET trivial correlation functions of fermion bilinears is first pre-
Argentina. Electronic address: hugo@cat.cbpf.br sented for multiflavor QED (Sec. Il)) and then extended to
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multiflavor QCD, (Sec. IV). In both cases the oscillatory d

behavior of correlators as a function of the chemical poten- ﬁ¢(”)(|z|)=nA(|z|). (8)
tial is computed, the result showing a striking resemblance

with the QCD, answer obtained within the lardé. approxi-

mation [3]. We summarize our results and conclusions in B. The non-Abelian case
Sec. V. As in the Abelian case, two-dimensional gauge field con-
figurationsA{" carrying a topological chargee Zy can be
Il. ZERO MODES found for the SUN) case. As explained in Ref16], the

. i i . relevant homotopy group is in this cagg and notZ as in
Topological gauge field configurations and the corre-,q 1) case.

sponding zero modes of the Dirac equation play a central cjing ¢ the angle characterizing the direction at infinity,
role_ln c_alcul_atlons _mvolvmg fe_rmlon composites. We SUM- 4 mappingg,(¢) € SU(N) belonging to thenth homotopy
marize in this section the main properties of vortices, the

I logical obi i th del hall id class 6=0,1,... ,N—1) satisfies, when one turns around a
relevant topological objects in the model we shall considerg,se contour,

both for the Abelian and non-Abelian cases. We also present
the corresponding Dirac operator zero modes. in

2
gn<2w)=exp( N )gnm). ©

A. The Abelian case
Such a behavior can be achieved just by takipgin the

In two-dimensional Euclidean space-time, topologicallyCartan subaroun of the gauge aroun. For example. in the
nontrivial configurations are available since Nielsen and Ole- group gauge group. pie,

sen[8] presented their statiz-independent vortex. In the SU(2) case one can take

U(1) case the topological charge for such a configuration, i

working in an arbitrary compact surfa¢guch as a sphere or gn(go):ex;{zﬁﬂn((p)}, (10)
a torug, is defined as

1 with
—f d?xe, Fl=neZ. 2)
4 Qn(2m)—Qn(0)=27(2k+n). (11
A representative gauge field configuration carrying topo-Heren=0,1 labels the topological charge aké Z is a sec-
logical chargen can be written as ond integer which connects the topological charge with the
vortex magnetic flux(only for Abelian vortices do both
- X, quantities coincide
Au :nfuva(M), () We can then write a gauge field configuration belonging

to the nth topological sector in the form

with A(|x|) a function which can be calculated numerically
(an exact solution exists under certain conditions on coupling
constant§9]). The adequate boundary conditions are

AL =IA(XDg, 9,90, (12
with the boundary conditions
A(0)=0, limy_.A(|x])=-1. 4 A(0)=0, limy_.A(]x))=—1. (13

There ardn| zero modes associated with the Dirac operatorThese and more general vortex configurations have been
in the background of aA(}? configuration in a suitable com-  thoroughly studied i110-16.

pactified space-timd14]. (For the noncompact case see Concerning zero modes of the Dirac operator in the back-
[11].) For n>0 (n<0), they correspond to right-handed ground of non-Abelian vortices, they have been analyzed in
(left-handedl solutions (7.) which in terms of light-cone  Refs.[12,13. The outcome is that for topological charge
variables,z=x,+ix; andz=x,—ix;, can be written in the Nn>0 (n<0), there areNn (N|n|) square-integrable zero

form modes »n_ (ngr) analogous to those arising in the Abelian
case. Indeed, one has
z"™h(z,2) _
m_ . [Z™n;i(z,
7R ( 0 ) ) 5 77Eqm,l)]z( 'l(() )> , (14)
0
m_ 0
77L_<——m 1 —), (6) mij_| _
z "hi(zz) 7 Z hil(z7) (15
wherem=0,1,...,|n|—-1, with
h(z,z)=exd " (|2])], (7) h(zZ)=exd ™ (|z|)M]. (16)

and and
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M=%diag1,1,. ., 1=-N). 17) Z[Ml"’MNf]:J D@tﬂDAMeXL(—f d*xL|. (20)

Here, i,j=1,2,...,N and m=0,1,...,|n|—1. The pair Since our interest is the computation of fermionic correla-

(m,i) labels theN|n| different zero modes whil¢ corre-  tors, we have to carefully treat nontrivial topological con-

sponds to a color index. Because of the ansatz discussed figurations of the gauge fields which have been seen to be

Refs. [10-16 for the non-Abelian vortex, the function crucial in the obtention of nonvanishing condensates, see

#"(|z|) appearing in Eq(16) coincides with that arising in Refs.[17,18. Then, following the approach of Re{d4,17,

Egs.(7) and(8) for the Abelian vortex. we decompose gauge field configurations belonging to the
As it happens in the Abelian case, the partition func-nth topological sector in the form

tion of two-dimensional quantum chromodynamics only

picks a contribution from the trivial sector because A#(x)zAiL”)(x)Jra#(x), (21

det@[AM])=0 for n#0 [see Eq(77) below]. In contrast,

various correlation functions become nontrivial precisely forwhereAg‘) is a fixed classical configuration carrying all the

n#0, thanks to the “absorption” of zero-mode contribu- topological charger, anda,,, the path integral variable, ac-

tions when Grassman integration is performed. counts for the quantum “fluctuations” and belongs to the
It is our aim to see how these nontrivial correlators aretrivial sectorn=0.

modified when a fermion finite density constraint is intro-  As it is well known[19], the chemical potential term can

duced, comparing the results with those of the unconstrainege represented by a vector ﬁm(;Xt, describing arexternal

(zero chemical potentiatase. As explained in the Introduc- charge density acting on the quantum system. Indeed, taking

tion, we are moti_vated by the re_zsults of Deryagin, Grigoriev,pext 55 times the chemical potential matrfsee Eqs(19)

and Rubakoy3] in four-dimensional QCD. They were able anq(22)]; it corresponds to a uniform charge background for

to show, in the larg&\. and high fermion density limits, the - each fermionic flavor. As explained fi], it is convenient to
existence of oscillatory condensatgise frequency given by ot consider a finite length (2 box and then take the
the chemical potentialwhich are spatially inhomogeneous. | _, o, |imjt. In this way translation symmetry breaking asso-
For QED, the same oscillatory behavior was found approxi-ciated with the chemical potential becomes apparent and si-
mately in[6] and confirmed analytically if7], by examining  mjtaneously, ambiguities in the definition of the finite den-
an arbitrary number of fermion bilinears for which the exactsity theory are avoided. When necessary, we shall follow this

o depe_ndence of fermionic corr(_elators was computed. In Ofprescription(see Ref[4] for a discussion on this issuewe
der to improve our understanding of the larlyg results  gia,t by defining

found in QCD,, we shall extend in what follows our two-
dimensional approach to the non-Abelian case but before A= i M, 22
that we shall consider the case of flavored QE43 a clari- g "

fying step towards multiflavor QCR so that the Dirac operator

lll. MULTIFLAVOR QED ib+A—i My, (23

We developed in Ref.7] a path-integral method to com-
pute fermion composites for Abelian gauge theories includ
ing chemical potential effects. In this section we briefly de-

can be compactly written as

scribe our approach while extending our treatment so as to o+ A, (24)
include flavor. We then leave for Sec. IV the analysis of the . h
non-Abelian multiflavor QCD model at finite density. wit
_ _ . _ A=A, +A (25)
A. Handling the chemical potential in the Abelian case m #
We start from the Lagrangian We shall now proceed to a decoupling of fermions from

the chemical potential and tre, fluctuations following the

1 o : steps described if7] for the case of only one flavor. In that
L=~z FuwFut vid+ A=iMyo), (18 case, we wrote

wherey is the fermion field isospinor. A chemical potential a,=—€,,0,6+d,n (26)
term has been included by considering the diagonal matrix
M defined as and made a chiral rotation to decouple both #he 7 fields,
together with the chemical potential. In order to include
M=diagpy ... un,), (19 flavors in the analysis, one has to replace §)— (¢, 7)1
and u— M as we shall see below. Then, we can straightfor-
whereN; is the total number of flavors angl, are Lagrange wardly apply what we have learned for one flay@t in the
multipliers carrying a flavor index, so that eakkfermion  multiflavor case. The change of variables accounting for the
number is independently conserved. The corresponding padecoupling of fermions from the,, field, together with the
tition function is defined as chemical potential, is given by
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=exp{ys[ (X)L +iMx]+in(X) L} x, The usual divergency associated with the electromagnetic
energy carried by fermions has to be eliminated by a coun-

I:X—ex vl (X)L +i Mx,]—i 7(x) 14}, (27)  terterm S. [4]. In our approach the divergency manifests
A7s ' ! 4 through the termMx;0¢™ in Eq. (34). Putting the model

a=(—idu)u?, (28) in a finite length box and appropriately adjustiSg, yields
to a finite answer. The counterterm is the Lagrangian coun-
where terpart of the one usually employed in the Hamiltonian ap-
proach to handle this problepd]. In the canonical formula-
U=exd ys(pLi+iMxy)+inl]. (290 tion of quantum field theoryQFT), this is equivalent to a

) _ ) redefinition of creation and annihilation operators which
For notation compactness we have included the external  amounts to a shift in the scale used to measure excitations.
field Afj“ describing the chemical potential term. From here  As we have mentioned, a fermionic chemical potential
on, we choose the Lorentz gauge to work(which in our  amounts to introducing a finitexternal charge(i.e., at the

notation corresponds tg=0). spatial boundarigsnto the theory. In these conditions, it can
After transformation(27), the resulting Dirac operator pe proved that massless QEDand QCD;) at finite density
takes the form remains in the Higgs phase. To show this one may compute
) ) ) the string tension following, for instance, the procedure de-
iD=i+AM+a—is+AM. (30 scribed in Ref[20]: one starts by integrating out the fermion

fields (or, equivalently, the bosons in the bosonized version
in order to derive the effective action for the gauge fields.
One can then compute the Wilson loop to calculate the en-

tr, ergy of a couple of(statig external charges for a theory
J:eXp(_J’ d2(pLi+iMx)O(p+20™) |, (3) containing also dynamical “quarks.” Now, since zero modes

2 kill the contributions of nontrivial topological sectors to the
partition function, screening can be tested using the effective
action in the trivial topological sector. In fact, one can see
that for vanishing fermion masses the string tension van-
ishes. In order to discuss these issues in multiflavor Q&D
finite density, let us note that after integration of fermions in
Eq. (34), the resulting effective action for the gauge field can
be written aq21]

The Jacobian associated with the chiral rotation of the ferm
ion variables can be easily seen to[[g

where ¢(" is defined by
(n_ _
AV=—¢€,,0,6"M1.

Together with Eq(27), we consider the change in the gauge-
field variablesa,, so that

Da,=Arpd( ) DD, (32
m rpd(17)D¢pD7 1 , 1 , i M -
@FM—I— Ea#—trfzf d°x x*Fp1|, (35

with A pp=de] Setr= f d*
FP .

As thoroughly analyzed by Actdn 9], Af}t does not cor-
respond to a pure gauge. Were it not so, the introduction of ahere S, has canceled the divergent term, as explained
chemical potential would not have physical consequenceabove. Then, at this stage there is no divergency to deal with
and this would be the case in any space-time dimensions. land we can perform our calculation in the whole Euclidean
fact, one cannot gauge awdyy,., by means of a bounded space. Choosing the Coulomb gaume=0, appropriate to
gauge transformation. As explained[if], the chiral rotation  derive the static potential between external charges, we ob-
which decouples the chemical potential, although untain from Eq.(35) (after integration by parts using zero-

bounded, can be properly handled by putting the system in Boundary conditions the following effective Lagrangian:
spatial box, then introducing adequate counterterms and fi-

nally taking the infinite volume limit. 1 1, iM
After the decoupling transformation, the partition function Le=57(0180)*+ 5—ag—tri5—ao. (36)
. . 2e 2 2
can be written in the form

L In order to analyze the force between charges, let us pass to
Z=N, fDXDXDqSexr(—ng‘f)), (33  Minkowski space-time, makingy—ia, so that the corre-
n sponding effective Lagrangian in Minkowski space reads

whereS( is the effective action in thath topological sec-

¢ 1 , 1, M
or, Ly=— ﬁ(ﬂlao) - Zaoﬂrfzao. (37
_ Ny
S = f d>xx(id+ A(n))X—Ez To determine the electrostatic potential between two external

charges*e’, we may couple to the gauge field the proper
N¢ charge density
xfd2x[(m¢)2+eWF§,{‘35¢]—4—ezf d?x(F)?
p(xhy=e'[s(x'+1)—s(x* 1], (38)

try ) )
__t (n)
2wf IX(PLHIMX)D(GFT2¢ ) +S. (39 so that the complete effective Lagrangian becomes
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L=Ly—pag. (399  chemical potentialg.,. This does not mean that this term
has no physical consequences. In fakt, reappears when

computing correlation functions of fermion fields, onge

The resulting equation of motion takes the form and ¢ are written in terms of the decoupled fielgisand y
through Eq.(55) below. We shall see in the following sec-
2 e? tions how fermionic correlators are changed, exhibiting os-
aiao— ?a0+ Etrf/\/lzp (40 cillatory inhomogeneities in the spatial axes which depend

on M. The fact that zero modes make certain vacuum ex-
pectation valuegVEV’s) not to vanish, leads to a highly
and its solution reads nontrivial dependence on the chemical potentials.

e/
ag(xh)= —2m[exq— m|xt+1])—exp(—m|x = 1|)]+tr;M,
(41 B. The correlation functions

The introduction of a flavor index implies additional de-
wherem=e\N;/#. The energy of the two test charges at agrees of freedom which result iN; independent fermionic
distance 2 each other, is given by field variables. Consequently, the growing number of Grass-
man(numerig differentials calls for additional Fourier coef-
ficients in the integrand.

It is well known that each coefficient is related to the
quantum numbers of the chosen basis, which is normally
built up from the eigenfunctions of the Dirac operator. As we
ave for one flavor, one has thatof these eigenfunctions
re zero modes, implying a vanishing fermionic exponential.

Hence, in order to make Grassman integrals nontrivial, one
has to insert several bilinears depending on the number of
e'? zero modes. When the path-integral measure contéjrin-
V(=5 -[1-exg—2mb], (43 dependent fermionic fields instead of one, the number of
composite insertions is multiplied By in order to saturate
Grassman integration algebra, with some selection rules
with no modification due to the presence of the chemicalwhich will become apparent below.
potential whose contribution trivially cancels. We then con-  For the sake of brevity, let us readily give the result for
clude that in massless multiflavor QEt finite density, any  general correlation functions @ points with arbitrary right
fractional chargee’ is screened by integer massless chargesand left insertions

To get a deeper insight into these results, let us note that,

as is well known, only the trivial topological sector contrib- < N ry S >
: (44)

V()= %J dxp(xh)ag(xh) (42

. - . . . h
and we obtain, at finite fermion density, the usual screening,
potential

utes to the partition function for massless fermiéthe con-  c(w,,w,, ...)=( [ I s<w) [] s€wi)
tribution of nontrivial sectors being killed by zero mogles k=1i=1 j=1'
Then, deriving the potential between external charges as we
did above or computing the Wilson lodfy as well, one finds
that screening is not affected by the presence of the chemicgjhere
potential term(the Wilson loop calculation yield3V=1
[20]). One could argue that, as it happened with the two test
charges, the external charge background associated with the
chemical potential term is itself also screened by massless
dynamical fermions. After all, it is only in the properties of
fermion condensates that topological sectors enter into play
and it is through its contributions that the chemical potential
manifests itself. One can understand this issue as follows: p= 2>, Pk,
The topological structure of the theory is determined at the
boundariegrecall that in order to calculate the topological
charge one just usq&Adeﬂ=2wn) and the corresponding d
n-charge configurations are responsible for the nontrivialityan
of the correlators but not affecting the partition function. It is
then precisely when computing condensates that the charges
at the boundaries associated with the chemical potential Mt Sk= Pk
manifest.

To rephrase this analysis, note that with the choice of the
counterterm discussed above, the effective action written ifis the total number of insertions in the flavor sedtor
terms of the decoupled fermions does not depend on the After the Abelian decoupling, Eq44) results in

S (wh= K (wh g (wh), (45)



55 MULTIFLAVOR CORRELATION FUNCTIONS IN NON- ... 4925

12 N 1
C(Wq,W,, .. '):Zn; qus exp{#f d’xp0(p+ ™) exp{—;j dzx(¢+¢(”))DD(¢+¢(”))1

Ewl EWJ

j=1'

N¢ Ik
xexp[zk; (E (W) — 2 B(W)) )

j=1'

H ex%zhuk

% Sk

f D?DXKH XS wh xS wh TT XEwh)x (wh) exp[ f d2xR(i o+ AM) K],

j=1'

(46)

wherew‘l is the space component @f. We see from Eq(46) that the chemical potential contribution is, as expected,
completely factorized. Concerning the bosonic integral, it can be written as

N¢ Ik Sk
exp[ 22 ( 21 pM(wh— X ¢<wi))

j=1'

B= exp[ f/zwf d’xMO ¢

N¢ Pk Pk’
p[ 23 IS ee0 i),

kk'=11=1i=1
(47)

with
O~ Hw',wh)=Ky(m|w'—wl|) + In(c|w' —w]).

The fermionic path integral determines the topological sectors contributing tG8qgMore precisely, once the correlator to
be computed has been chosen, Grassman integration leads to a nonzero answer only when the number of right insertions minus
the number of left insertions is the same in every flavor sector. It means,that=tVk, wheret is the only topological flux
number surviving the leading sumatory in Ed6). (Notice that mixed flavor indices in the elementary bilinear are avoided;
i.e., we are not including flavor-violating vertices, in accordance with Qlieractions, It is important to stress that each
term explicitly including the classical configuration of the flux sector cancels out. Consequently, classical configurations only
appear through by means of their glolfpologica) properties, namely, through the difference in the number of right- and
left-handed bilinear$14].

To conclude, we give the final result for the general correlator defined in(42y. making use of the explicit form of
Abelian zero modes

N¢ 1y me”\ P Ni¢ Ko Sk . N¢
<H I st T1 o <wj>> ——) exp[zlz | 3w S wa) Il
k=11i=1 j=1' A i=1 j=1' k>k'=1

Pk Pk’
xex;{—42 > eegjin(clw —wl|)
=

Nt Pk Py
ex;{ > 2 E eieKo(mwi—wi|) | (48

kk' =1 ]=1

(see Refs[7,22] for detail9.
In order to clearly see the meaning of this expression, let us show the result for the simplest non-trivial-flavored correlation
functions including mixed right- and left-handed insertions

> (OO PRI Y) PP (2) YRYR(W) ) = 2C08 (23— Xg— Y1) — oWy 1(sE ()L (y)sE (2)S2 (W),

+2c0§ p1(y1—X1—21) — oWy I(Sh (X)ST (y)S} (2)S7 (W),

+2c0§ p1 (X, — 23— Y1) — paWq (St (X)S} (y)S} (2)S5 (W), (49

2 (A0 P (Y) PP PP(2) PR (W) )= 2C08 w1 (Xg — Y1) — pa(Zy — W) (S (X)SE (y)S2 (2)52 (W) )o

+200§ pa(X1— Y1)+ pa(za— W) I(ST (08 ()82 (2)$% (W))g

+2c0§ pg(Xg+y1) + pa(zy + W) (s} (X)L (y)$% (2)85 (W) . (50
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These expressions make the following issues appali¢nt. Again, one can decouple the chemical potential by perform-
How the topological structure of the theory exhibits itselfing an appropriate chiral rotation for the fermion variables.
through the existence of nontrivial vacuum expectation valindeed, under the transformation
ues of fermionic bilinears(Notice that those on the right-

hand side are the only surviving terms of the whole summa- =expli LysX1) X,
tory,) (i) In the multiflavor case, the path integrals are —
nonzero only when the number of right insertions minus the = xexp(i uysXa), (54

number of left insertions are identical in every flavor sector. ) )
(i) The sum over spatial coordinates dramatically exhibitdn€ fermion Lagrangian becomes

the translation symmetry breaking discussed abGve.The — —

fixing of various fermion densities implies a somehow richer L=yD[A n]y—xD[Alx, (55)
spatial inhomogeneity of the results with respect to the one
flavor case that we have analyzed[if], in the sense that
now the “angles” depend on various chemical potentials.

so that the chemical potential completely disappears from the
fermion Lagrangian. As we have seen, chiral transformations
. : may generate a Fujikawa Jacobian which has to be computed
Another difference with respect to the one-flavor case Conhsing some regularization procedure. For example, using the

Eerns _the tdm;'al <_:an_ce|_latt|on t(')f Ioganthmt_s ﬁomll\Tg f“t’r:‘_‘ heat-kernel regularization, one introduces a resolution of the
osonic and fermionic integration, respectively. Now, 'Sidentity of the form

cancellation occurring for one flavor, does not take place
anymore, see Ed48). 1=1limy _.exd —D(a)?M?], (56)

IV. MULTIFLAVOR QCD whereD (@) [a¢<(0,1)] is an interpolating Dirac operator
) ) ) _such thaD ,(a=0)=D,[A,u] andD ,(a=1)=D [A].

In the present section we consider two-dimensional after some standard calculatidi23], one ends with a
SU(N,) Yang-Mills gauge fields coupled to massless Diracjacobian of the form
fermions in the fundamental representation. Because of the
non-Abelian character of the gauge symmetry, gluons are ) 1., .
charged fields that preserve color flux at each vertex. Since a J:exr{ i EW/47TJO d*xda tr{ ux;F,(a)]|, (57)
colored quark density is not a quantity to be kept constant,

no chemical potential related to color should be consideregnere t€ is the trace with respect to color indices and
but only that associated with the global symmetry that yields

fermion number conservation. Hence, we first include one F, (a)=F2 (a)t?, a=1,2,... N>-1. (58)
H H . . mv Mmv 1 149 1'NC
chemical potential term and then consider a different
Lagrange multiplier for each fermionic flavor. Now, the color trace in Eq(57) vanishes and then the

Let us stress that once the topological effects arising fronthiral Jacobian is, in fact, trivial:
vortices are taken into account and the chemical potential
behavior of fermion correlators is identified, we do not pur- J=1. (59
sue calculations in the bosonic secfoor do we consider the
inclusion of Higgs scalars, necessary at the classical level fofVe can then write the partition functiaq®3) after the ferm-
the existence of regular vortex solutionés we shall see, ion rotation defined in Eq27) in the form
the boson contribution to the fermion condensate just factor-

izes and all the chemical potential effects can be controlled Z[M]:J DA D)TD)(EX[{ _f dle_)_ (60)
by calculations just performed within the fermionic sector. K

As we have seen in the Abelian case, althougls absent
from the right-hand sidéRHS) of Eq. (60), one should not
We start from the massless QGILEuclidean Lagrangian  conclude that physics is independent of the chemical poten-
tial. For correlation functions of composite operators which

A. Handling the chemical potential in QCD,

L:ﬁ(iaﬂyﬂéqq}Aﬂlath’yﬂ—iMOW’)po’ are not chiral invariant, the chemical potential will reappear
when rotating the fermion variables in the fermionic bilin-
i a ra ears. As in the Abelian case, this happens when computing
+—Fa Fa,, (51) =
49 VEV’s of productsy(x) ¢(x).

where we have included a chemical potential term in the

form B. Correlation functions in QCD , with chemical potential

Our main interest is the computation of fermionic correla-
Lehen= — i, (52)  tors containing products of local bilineagay(x) for which
nontrivial topological gauge-field configurations, and the as-
in order to take care of the fermion density constraint. Heresociated Dirac operator zero modes, will be crucial to the
a=1..N2—1, andg=1...N.. The partition function reads  obtention of nonvanishing results as explained in Refs.
[7,14,17,18,2p
As in Sec. lll, we start by writing a gauge field belonging

' (53 to thenth topological sector, in the form

Z[,u]=J Dﬁ)lpDAMex%—j d?xL
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a _ aa(n) a
A% () =AS"(x) +a%(x), (61) WL AM =W+ %trcf dx(u-td, u)(da_d- )
whereAZ(”) is a fixed classical configuratiqas described in (72)
Sec. II B, carrying all the topological charge andaj will _ . _ _
be the actual integration variable which belongs to the trivial@nd W[ u] is the Wess-Zumino-Witten action
sectorn=0. Then, we depouple tf;ne# field from t'he fermi- 1
ons through an appropriate rotatigihe calculation of the W[u]= Etrcf dZXaMu—la u

Fujikawa Jacobian being standard since the decoupling cor- H
responds to the topologically trivial sectoNow, it will be ik
i 3y(1—1 -1 -1
convenient to choose the background so that +Etr°f3d y(u™Lgu)(u™tgu)(u L)
A¥M =0, (62

(73

In this way, the Dirac operator takes the fdrm Note, that in writing the fermion determinant in the form

(71), the zero-mode problem has been circumscribed to the
, (63) classical background fermion determinant.
One can easily extend the resuyltl) to an arbitrary

gauge, in terms of the group-valued fieldandv defined by

and we are left with the determinant of this operator oncaEqs (65 and (66), by repeated use of the Polyakov-
fermions are integrated out: Wieémann identit;[éS]

0 dy+ay

D[AM+a]=
[ ! o_+AM+a_ 0

— 1 2 n n 1
24-3 | Da“exr{WFW[A( ral|de@IAT F Al wppg)—wipl+wWial+ ot | dx(p ., p)ad 0 .

64 (74)
As before, we have introduced a sum over different topologiThe answer is

cal sectors. Now, we shall factor out the determinant in the
classical background so as to control the zero-mode problem.  de@[A™ +a]=NdeD[ A™]exp S u,v;A™M]),

Let us start by introducing group-valued fields to represent (75)
A™ anda,,:
Ser U, v; AM]=W[u,AM]+W[v]
a,=iu"to_ u, (65)
+itr d’>x(u™t9,u)d(va_v Hd !
a_=id(va_v Hd %, (66) 4a° rEve-v
(n) _j -1 1
AlV=ido_d™~. (67) +Etrcf d2x(d~ta.d)(va_v~Y). (76)

Consider first the light-cone-like gauge cho[@#]
Once one has the determinant in the fdifB), one can work
A_=A", (68  with any gauge-fixing condition. The gauge choié8) is, in
principle, not safe since the corresponding Faddeev-Popov
implying determinant isA = deD® A7, implying the possibility of
new zero modes. A more appropriate choice would be, for
v=lI. (69) example,A. =0, having a trivial FP determinant. In any

In this gauge the Dirac operaté3) reads case, one ends with a partition function showing the structure

0 dy+iu~to u zZ=>, de(m[Am)])f Da,AS(F[a])
D[AM+a]|,.= 5+ AD 0 . (70 n H”
1
where subscripkc means that we have used the gauge con- Xex;{ ~Se A2, ] 4—ng d*F2 [AM,a,]].
dition (68). One can easily sedor example, by rotating the
+ sector withu™* while leaving the— sector unchangéd (77)

that . . . .
Concerning the divergency associated with the external

de®d[A™+a]|,.=NdeD[A™M]expW[u,A™]). (71)  charge distribution, we have learned from the Abelian case
that one has to carefully handle this term in order to define
Here,W[u,A(“)] is the gauged Wess-Zumino-Witten action €Xxcitations with respect to the external background. In Sec.
which in this case takes the form [l we have seen that it came from the interactiorA8 with
FE:B appearing in the fermionic Jacobian. Performing a
similar calculation in the present case, we would find the
We are usingy,=0; andy;=—o,. non-Abelian analogue of this term with®tacting on it. As
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we have mentioned above, this color trace operation impliesvhere( is defined as
the vanishing of the corresponding divergency so that no
counterterm might be added in QGPmeaning that the rel- y.=dvd 1z,
evant vacuum is properly defined.

As we have seen, the Lagrangian for QCat finite den- 1
sity can be written in terms qf-rotated fields which hide the X-=u"{-, (79
chemical potential from the partition function. This result,
however, does not exhaust the physics of the theory in theo that the Lagrangian in theh flux sector can be written as
sense that correlation functions do dependuorictually, it
will be shown that th(_e chemical potential dependence ap- L=xD[a+AM]x=7%id, ¢+ 5D _[AM]L,
pears as a factor multiplying the result for correlators of the .
unconstrained theory. For this reason, we shall first describe =¢D[AM]¢. (80)
the computation of vacuum expectation values of fermion
bilinears in thew=0 case and then consider how this result
is modified at finite fermion density. Hence, we proceed with
the analysis of VEV's of products of bilinears such yag. — ., o a1
Let us start by noting that with the choi¢82) for the clas- xx=¢tudvd "f +Gdvd T (8D
sical field configuration, the Dirac equation takes the form

In terms of these new fields, the bilinegrg take the form

1 We observe that the Jacobian associated with (£6) is
X+ _ 0 Uid.) (4 nothing else but the effective action defined in the previous
X- dvd D_[AM] 0 I section by Eq.(76). Hence, an explicit expression for the
(78 non-Abelian correlators reads

DA™ +a]

(oxoh-- xx(x))

_ 0 id,
-3 f Da,Ab(F[a,])exd — Su(A™,a)] f DéDéexﬁD_[Nm] 0 H

X [BIP1(xY) . - - BUPI(x!) F R (xY) - - XN (X)) + BUPa(xY) - - BT P TR () - TP

+BIP1(xY) - BTHA-Poa(x! THB TR () gt Bty AP T AP () ] (82)

where the group-valued field is given by _ o |—
Z=j DAMD)(DXeXF{—f dox| x(id+A)x
B=udvd L. 1
+4_92F/U/F/Lv )! (83)

For brevity, we have written the gauge-field measure in

terms of the original fields,, , although for actual calcula- \herey,y represent the fermion fields after the chiral rota-
tions in the bosonic sector one has to work usingndv tjon (54) which eliminated the chemical potential from the

variables and proceed to a definite gauge fixing. That is, thgagrangian. Since fermionic bilinears can be written as
measure should be written according to

W=

Da,—DuDvJg(u,v,d) one has

and then the gauge condition and Faddeev-Popov determizysy) =exp(2i ux1) (x+ x+)+exp(— 2i ux){(x_x_). (84
nant should be includedfor example, in the light-cone

gaugea, =0, u=1 and the FP determinant is trivialFi- It can be easily seen that the same factorization occurs
nally, notice that we have obtained a general and completelwhen flavor is introduced. The corresponding transformation
decoupled result, from which one sees that because of coldor the fermion field isospinor is now

degrees of freedom, the simple product that one finds in the

Abelian case becomes here an involved summatory. P=exp(i M1.ysXq1) X,
Now, that we have an expression for correlators in the -
unconstrained case, let us include the chemical potential in = xexpi M1, ysXy), (85)

our results. Recall that in this theory the partition function is
[see Eq(60)] and the bilinear VEV takes in this case the form
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<llfl/f>:eXHZiMch1)<X+X+>+eXp(—2iM1CX1)<X7X(78>6-) ; (PR P22 x2) g2 g2y ) 22 22y2)),

We shall then include from here on flavor degrees of free- 1 Ne
dom with the corresponding constraint on each fermion den- :Z(_
sity. Since in this case one deals with fermions coupled to

the gauge field, we can use the fermionic Jacobian we have W
computed for one flavor to the powdk while the bosonic X | DuDvJgeSser v DBLPY(X)BE S (y¥)
measure remains untouched. In the light-cone gauge it can be GF

easily seen that the effective bosonic sector now involves _

N.—1 massive scalars, their mass depending on flavor and X f DDl

color numbers by means of a factorN2+ N;)*2 with re-

2
1] expl 21 (%, +y1)"]

"M

spect to the Abelian counterpdthere is also the same num- A
ber of unphysical massless partic[@$]). xex f {DLA™ ]k
As we have previously explained, the Dirac operator has — —
In|N, zero modes in thath topological sector, this implying X LR LY. (89

that more fermion bilinears are needed in order to obtain a
nonzero fermionic path integral. Moreover, since the flavor The fermionic path integration can be easily done, result-
index implies a factoN; on the number of Grassman coef- ing in the product of eigenfunctions discussed in the sections
ficients, the minimal nonzero product of fermion bilinears inabove, as follows:
the nth sector requirefn|N:N; insertions.

Since the properties of the topological configurations are = —= gy —
dictated by tEospe of the torus gf Sgl((), one c?an easily f ngngexp{ f ng[A(l)]gk)ﬁkﬂk(xk)glk ¥
extend the results already obtained for QEM particular, -
the chirality of the zero modes is dictated by the same index =det (D[A])

theorem found in the Abelian theory, this implying that in X[~ —m1>p K (01q k(xk)_m 2r.k (OZSk(y")
sectorn>0 (n<0), every zero mode has positieegative
chirality. In this way, the rightleft) chiral projections of the ;(0 Dp, k,}(02q k(xk)—ro 2r, k,](+0 Ds, k(yk)
minimal nonzero fermionic correlators can be easily com-
puted. One gets ;(“O ,2p, k77(0 ,1q, k(xk)_(“O Dr, k77(+023 k(yk)

Ng Ne Il + AP Ky DBy Ty OISy ] (90)
(T o | )

koq n Here, det (D[A(M]) is the determinant of the Dirac operator

defined in Eg. (80) omitting zero modes and, e.g.,

:Z<°>f DuDy Jg € ~Sgun(uo,d) 7O9K(xK) is a non-Abelian zero mode as defined in Sec. II,
with an additional flavor indeX. Concerning the bosonic
Ny Ng [n| Ng sector, the presence of th"efw (Maxwell) term crucially
XH H H 2 B,q Pili (XK k changes the effective dynamics with respect to that of a pure
P Wess-Zumino model. One then has to perform approximate

calculations to compute the bosonic factor, for example, lin-

87) earizing theU transformation, se€27]. In any case, once
this task is achieved for the=0 model, the modifiedfinite
density result can be obtained in an exact way.

X fDE)gexp(fZﬁ[Am)]é)é_Té'i(Xf‘)
k

where
V. SUMMARY

rdPili g ik pid —1ql;
BT (%) = exp(2i ux)uP(X) (dvd ) Ti(X), - (88) We have presented the correlation functions of fermion

bilinears in multiflavor QEDR and QCD; at finite fermion

¢,=¢*, andD[A™] stands for the Dirac operator in the density, using a path-integral approach which is particularly
RHS of Eq.(80). We have used the notatiaf® for the  appropriate to identify the contributions arising from differ-
partition function since it is completely determined within ent topological sectors. Analyzing correlation functions for
then=0 sector, see Eq77). We have showed every color an arbitrary number of fermionic bilinears, we have been
and flavor index explicitly indicating sum and product opera-able to determine exactly their dependence on the chemical
tlons The GF label stands for the gauge fixing. The actiorpotentials associated with different flavor indices. As
SB «(U,v,d)=N¢Spyzw(u,v,d) + Syawen(U,v,d) is given by  stressed in the Introduction, our work was prompted by re-
the full gluon fieldA(™(d)+a(u,v), and yields a high-order cent results by Deryagin, Grigoriev, and Rubak8y show-
Skyrme-type Lagrangiaf7]. ing that in the largeN, limit, condensates of QCD in four

Let us consideN.=2 andN;=2 in order to present the dimensions are inhomogeneous and anisotropic at high ferm-
simplest illustration for the last expression. The minimal fer-ion density.
mionic correlator then looks like Two-dimensional models are a favorite laboratory to test
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phenomena which are expected to happen in Q@B fact, tion using our approach. One can, in particular, study in a
an oscillatory inhomogeneous behavior(igiy) was found  very simple way the behavior of condensates at finite tem-
in the Schwinger moddkb], using operator bosonization and perature. The chiral anomaly is independent of temperature
then the analysis was completed by finding the exact behawand plays a central role in the behavior of condensates
ior of fermion bilinear correlators ifi7]. Here, we have ex- through its connection with the index theorem. Therefore,
tended this analysis in order to include flavor and color de-one should expect that formulas such48) or (87) are valid
grees of freedom within a path-integral scheme which makealso forT>0. Of course, VEV’s au =0 in the RHS of this
apparent how topological effects give rise to the nontrivialityequation should be replaced by those computed at finite tem-
of correlators. perature and hence the issue of zero modes in a toroidal
Remarkably, the oscillatory behavior related to the chemimanifold should be carefully examinddee, e.g.[22]). In
cal potential that we have found with no approximation, co-the |ight of recent results concerning QGmith adjoint fer-
incides exactly with that described [8] for QCD, within  mions[20,28, it should be of interest to extend our calcula-
the largeN. approximation(apart from the anisotropy that, tion so as to consider adjoint multiplets of fermions.
of course, cannot be tested in one spatial dimensiorpar- Finally, it should be worthwhile to consider massive fer-
ticular, the structure of the multipoint correlation functions, mions and compute fermion correlation functions at finite
given by Eqs(48) and (87), shows a nontrivial dependence density, via a perturbative expansion in the fermion mass

on spatial coordinates. This makes apparent that the groungjiowing the approach of29]. We hope to report on these
state has, at finite density, an involved structure which is groblems in a future work.

superposition of standing waves with respect to the order
parameter. Our model being two dimensional, we were able
to control the chemical potential matrix behavior in@ract
way so that we could discard the possibility that the forma-
tion of the standing wave is a by-product of some approxi- The authors would like to thank Centro Brasileiro de Pes-
mation. This should be considered when analyzing the reguisas Fisicas of Rio de Janei(6BPP and CLAF-CNPq,
sults of Ref[3] in d=4 dimensions, where one could argue Brazil, for warm hospitality and financial support. H.R.C.
that use of a ladder approximation as well as the fact ofwishes to thank J. Stephany for helpful discussions. F.A.S.
neglecting effects subleading inNl/, play an important role was partially supported by CiCBA and Fundacion Antor-
in obtaining such a behavior. chas, Argentina and by Commission of the European Com-
Several interesting issues are open for further investigamunities Contract No. C11*-CT93-0315.
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