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The energy condition inequalities for the matter stress energy comprised of the dilaton and Maxwell fields
in the dilaton-Maxwell gravity theories emerging out of string theory are examined in detail. In the simplistic
(111)-dimensional models,R<0 ~whereR is the Ricci scalar! turns out to be the requirement for ensuring
focusing of timelike geodesics. In 311 dimensions, we outline the requirements on matter for pure dilaton
theories—these in turn constrain the functional forms of the dilaton. Furthermore, in charged dilaton gravity a
curious opposite behavior of the matter stress energy with respect to the violation or conservation of the weak
energy condition is noted for the electric and magnetic black hole metrics written in the string frame of
reference. We also investigate the matter that is necessary for creating certain specific nonasymptotically flat
black holes. For the electric and magnetic black hole metrics, strangely, matter satisfies the weak energy
condition in the string frame. Finally, the averaged null energy condition is evaluated along radial null geo-
desics for each of these black hole spacetimes.@S0556-2821~97!01206-X#

PACS number~s!: 04.70.Dy, 04.60.Kz, 11.25.Mj

I. INTRODUCTION

The low-energy effective theory that emerges out of full
string theory by imposing quantum conformal invariance in
the world-sheets model and thereby equating the one-loop
b functions for the metric and matter couplings to zero,
largely resembles general relativity~GR! with some new
‘‘matter’’ fields such as the dilaton, axion, etc.@1#. The field
equations~which are the ones obtained by equating the one-
loop b functions to zero! can, therefore, be solved with dif-
ferentAnsätze for the metrics and matter fields. These solu-
tions thus represent allowed backgrounds for string
propagation—the ‘‘allowance’’ being the fact that quantum
conformal invariance is satisfied on the world sheet. Pres-
ently, there do exist many solutions of these equations rep-
resenting black holes@2#, cosmologies@3–5#, etc.

An important fact about the low-energy theory is that
there exists two different frames in which the features of the
spacetime may look very different. These frames which are
known as the ‘‘Einstein frame’’ and the ‘‘string frame’’ are
related to each other by a conformal transformation
(gmn

E 5e22fgmn
S ) which involves the massless dilaton field as

the conformal factor. The existence of two different frames
is, however, a known feature in certain modifications to Ein-
stein’s theory. In fact, the ‘‘string frame’’ is actually similar
to the Brans-Dicke frame in the well-known Jordan-Brans-
Dicke theory. In the context of string theory one says that the
string ‘‘sees’’ the string metric~which is the metric written
in the string frame!. Several of the important symmetries of
string theory also rely on the choice of the string frame or the
Einstein frame. For instance, the familiarT duality @6# trans-
formation relates metrics in the string frame only, whereas

S duality @7# is a valid symmetry only if the equations are
written in the Einstein frame.

It has been mentioned several times in the literature@8,9#
that the metric in the string frame violates the inequality
Rmnjmjn>0 and hence also the assumption of a local energy
condition. Therefore, it has been argued that the singularity
theorems of GR@10,11# are not valid for the low-energy
theory emerging out of string theory. This is because the
singularity theorems assume an energy condition and such an
assumption essentially leads to the concept of geodesic fo-
cusing, a conclusion resulting out of an analysis of the Ray-
chaudhuri equation@12,13#. The focusing theorem along
with some additional assumptions essentially implies the ex-
istence of spacetime singularities.

In this paper, we explicitly examine several black hole
geometries in two and four dimensions with regard to the
weak energy condition~WEC!, Tmnjmjn>0. We shall point
out the domains of violation of these energy conditions and
also attempt to arrive at some general statements. It will turn
out that there are black holes which require a violation of
these conditions as well as solutions which do not violate
them. Moreover, we shall demonstrate solutions which sat-
isfy the WEC and also check the averaged null energy con-
dition ~ANEC! for several black holes. It will turn out that
there are quite a few geometries for which the ANEC inte-
gral along radial null geodesics is positive definite. With all
these we will try and conclude that it is somewhat premature
to make statements about the nonvalidity of the singularity
theorems for the class of theories emerging out of full string
theory.

The paper is organized as follows. In Sec. II we analyze
the energy conditions and geodesic focusing for
(111)-dimensional theories of gravity. Section III deals
with the conditions for Einstein-dilaton gravity. Charged di-
laton black holes are discussed in the fourth section. The
ANEC integral is checked in Sec. V. Finally, Sec. VI con-
tains a summary of the main results of the paper.
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The sign conventions followed in this paper are those of
Misner, Thorne, and Wheeler@14#.

II. DILATON GRAVITY IN 1 11 DIMENSIONS

We begin with the simple models of gravity in 111 di-
mensions@9,8# where the first stringy black hole was discov-
ered. Before we explicitly relateRmnjmjn with the quantities
involving the dilaton~using the one-loopb function equa-
tions!, let us look at the focusing conditions emerging out of
an analysis of the Raychaudhuri equation.

The Raychaudhuri equation for timelike geodesic congru-
ences in a (111)-dimensional spacetime, discussed earlier
in @15#, turns out to be given as

du

dl
1u252Rmnjmjn. ~1!

Note that a way to arrive at this equation without starting
from first principles~as is done in@15#! is to substitute ap-
propriate values ofN ~background spacetime dimensions, in
this caseN52) andD ~dimensions of the embedded geo-
metric object, in this caseD51) in the generalized Ray-
chaudhuri equation for families ofD-dimensional surfaces in
anN-dimensional background~for details, see@17#!.

Now, recall that in 111 dimensions, we have

Rmn5
1

2
gmnR. ~2!

Therefore, we can rewrite the above equation as

d2F

dl2 1~ 1
2Rgmnjmjn!F50, ~3!

whereu5F8/F. If the jm are timelike, then we need

R<0 ~4!

in order to have the existence of zeros in a solution of Eq.
~3!. Such zeros essentially imply a divergence inu. Hence, a
converging (u negative! timelike geodesic congruence must
necessarily come to a focus (u→2`) within a finite value
of the affine parameterl. If R50, then, of course, the right-
hand side~RHS! of the Raychaudhuri equation is identically
zero and we always get a focusing effect. Note that for
R50, the Raychaudhuri equation has solutionsF5const and
F5al1b. The former results in an expansion which is ev-
erywhere zero, while with the latter, one can arrive at focus-
ing.

In 111 dimensions null geodesics have a unique behav-
ior. It can be shown thatu is identically equal to zero. This is
largely due to the fact that in 111 dimensions all metrics are
conformally flat and therefore null geodesics are the same as
that for flat (111)-dimensional spacetime. A discussion on
this can be found in@16#.

Let us now go back to timelike geodesics. The question to
ask now is whether the two-dimensional black hole metrics
known to us satisfy the conditionR<0. To see this we have
to investigate some cases explicitly. Note, however, that in
111 dimensions a Weyl rescaling of the metric leaves the
‘‘Brans-Dicke’’ form of the action invariant. Therefore, it is

perhaps not worth referring to the ‘‘Einstein frame’’ as such
because it is essentially defined as a frame in which the
theory is in the canonical form.

In pure dilaton gravity with a cosmological constant we
can show from the field equations that

R54$l22~¹f!2%. ~5!

Therefore, ifl is zero,R is always positive or negative
depending on whatf is functionally. This implies that the
focusing may or may not take place in the solutions of such
a theory.

Let us now concentrate on some examples of black holes
in two-dimensional dilaton gravity.

The two-dimensional black hole metric of Mandal, Sen-
gupta, and Wadia@2# is given by the metric

ds252~12aeQr!dt21
1

~12aeQr!
dr2. ~6!

This is a solution in pure dilaton gravity in 111 dimen-
sions~i.e., without a cosmological constant!. The Ricci sca-
lar for this geometry turns out to be

R5aQ2eQr, ~7!

which is clearly positive. Therefore, even though there is a
singularity atr5`, focusing within a finite value of the af-
fine parameter for an initially converging timelike geodesic
congruence does not occur.

We now turn to theexactmetric~exact in the sense of full
string theory! due to Dijkgraaf, Verlinde, and Verlinde@18#
~see also@19#! is given as

ds252~k22!@2b~r !dt21dr2#, ~8!

whereb(r )5(coth2r22/k)21 and the dilaton is given as

f5f01
1
2 lnusinh2

2r

b
u. ~9!

The quantityk stands for the Kac-Moody level. It is re-
lated to the central chargec of the Wess-Zumino-Witten
model based on the group SO~2,1! gauged by the subgroup
SO~1,1! ~which is an exact conformal field theory description
of the Witten solution quoted below! by the relation
c53k/(k22)21. k takes the value94 for a bosonic string
background for whichc526.

The Ricci scalar turns out to be

R5
1

2~k22!

2csch2r

S coth2r2
2

kD
2 F2k12coth2r S 12

3

kD G .
~10!

The positivity or negativity ofR crucially depends on the
value of k. If k>3, thenR is always positive. Fork lying
between 2 and 3 there is always a domain in whichR is
negative as is easily noticeable from the expression.

In thek→` limit the metric goes over to the Witten black
hole ~modulo the overall factork22). This is given by the
metric

ds252tanh2r dt21dr2, ~11!
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which is related by a coordinate transformation to the metric
discussed first in this sequence~the Mandal, Sengupta, Wa-
dia black hole!.

The Ricci scalar is given as

R5
4

cosh2r
~12!

which, once again is positive. However, note that the metric
written in the above form does not have a singularity any-
where. The pointr50 is actually a coordinate singularity.
One can, following Witten, do a Kruskal extension of the
geometry and arrive at the form:

ds252
du dv
12uv

, ~13!

where 2u52er 82t, 2v5er 81t, and r 85r1 ln(12e22r).
The denominator in the Ricci scalar now gets replaced by
12uv anduv51 corresponds to the divergence ofR and,
therefore, is a real singularity. However, even if we consider
the maximally extended metric, the Ricci scalar is still posi-
tive definite and timelike geodesic congruences do not focus.
This is in accordance with the discussion regarding focusing
on the Mandal, Sengupta, and Wadia form of this solution
presented earlier in this section.

There do exist a multitude of other solutions in 111 di-
mensions such as the ones derived in@20,21# for which one
can do a similar analysis. Since the basic idea is the same we
refrain from repeating the same exercise here.

III. PURE DILATON THEORIES IN 3 11 DIMENSIONS

A. Energy conditions

Before we embark on an analysis of the matter sector of
dilaton gravity theories let us briefly recall the content of the
various energy conditions which we shall be checking out for
specific solutions. Below,Tmn represents the energy-
momentum tensor for matter andjm represents a timelike or
null vector as specified in the respective conditions.

1. Local energy conditions

(a) Strong energy condition

S Tmn2
1

2
gmnTD jmjn>0 ; timelike jm. ~14!

(b) Weak energy condition

~Tmnjmjn!>0 ; timelike jn. ~15!

(c) Null energy condition

~Tmnk
mkn!>0 ; null km. ~16!

2. Global energy conditions [13]

(a) Averaged weak energy condition

E
2`

`

Tmnjmjndl>0, ~17!

where the integration is over a complete, timelike geodesic
in the spacetime.

(b) Averaged null energy condition

È`

Tmnk
mkndl>0, ~18!

where the integration is now over a complete, null geodesic
in the spacetime.

B. Checking the energy conditions for dilaton gravity

We now check the various energy conditions listed above
for the theory of dilaton gravity in 311 dimensions.

The action integral for the Einstein-dilaton-Maxwell
theory is given as

SEDM5E d4xA2ge22fFR14gmn¹mf¹nf

2
1

2
gmlgnrFmnFlrG . ~19!

Varying with respect to the metric, dilaton, and Maxwell
fields, we get the field equations for the theory given as

Rmn522¹m¹nf12FmlFn
l , ~20!

¹n~e22fFmn!50, ~21!

4¹2f24~¹f!21R2F250. ~22!

These equations are also theb function equations for a
world sheets model obtained by imposing quantum confor-
mal invariance and setting theb functions to zero. Note that
without the Maxwell field we have essentially a Brans-
Dicke-type theory with the Brans-Dicke parameter explicitly
set tov521.

Consider the very first equation~without the Maxwell
field! and recast it in the form of the Einstein equation,
Gmn5e2fTmn . This is the generic form of the Einstein equa-
tion for a Brans-Dicke-type theory~for details, see Weinberg
@22#!. The Tmn contains a partTmn

f and a partTmn
M where

M stands for all matter apart from the dilaton. With this, one
can now write down the energy-momentum tensor for the
dilaton field which turns out to be

Tmn
f 5e22f@22¹m¹nf1gmn¹2f#. ~23!

Therefore, the various energy conditions turn out to be
equivalent to the following inequalities.

WEC:

Tmn
f jmjn52e22f@2jmjn¹m¹nf1¹2f#>0. ~24!

For jm along a geodesic curve, the first term inside the
square brackets can be shown to reduce to 2(d2f/ds2).
Since from the field equations we have¹2f52(¹f)2, the
WEC reduces to 2f912(¹f)2<0.

AWEC:

E
2`

`

e22f@2f912~¹f!2#dl<0. ~25!
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NEC:

Tmn
f jmjn522e22fkmkn¹m¹nf. ~26!

For km, a tangent along a null geodesic, we have the re-
quirement

f9<0. ~27!

ANEC:

E
2`

`

Tmn
f kmkndl52E

2`

`

e22ff9dl<0. ~28!

These are the constraints which the dilaton field has to
obey in order to satisfy the respective energy conditions.

In order to understand the constraints onf better we
write down the WEC inequalities explicitly for the general,
static spherisymmetric metric given by:

ds252e2c~r !dt21
dr2

12
b~r !

r

1r 2~du21sin2udf2!,

~29!

whereb(r ) andc(r ) are two unknown functions.
Ther>0, r1t>0, andr1p>0 inequalities turn out to

be

22e22fS 12
b~r !

r D @f822f8c8#>0, ~30!

24e22fS 12
b~r !

r D Ff822
f8

r G>0, ~31!

2e22fS 12
b~r !

r Df8Fc82
1

r G>0. ~32!

The above inequalities are obtained using the expression
for Tmn

f in terms of the scalar field and its derivatives@Eq.
~23!#. These are the constraints onf, c, andb which must
be obeyed if we believe in the WEC. We now analyze a
couple of choices off.

If f is linear inr , i.e.,f(r )5r say, then we find that the
requirements turn out to bec8>1/r , 1/r>1, andc8>1.
Clearly, asr→`, the second condition is violated. Thus,
with a linear dilaton field one always will end up with a
violation asr→`. In contrast, iff5 lnr, then the first and
third inequalities reduce to the requirementc8>1/r , whereas
the second one is identically satisfied@the left-hand side
~LHS! of the second WEC inequality is zero#. Thus with a
logarithmic dilaton, which means a linear string coupling,
the WEC can be satisfied everywhere.

IV. ENERGY CONDITIONS FOR ELECTRIC
AND MAGNETIC BLACK HOLES
IN DILATON-MAXWELL GRAVITY

In this section we focus our attention on the energy con-
dition inequalities for the electric and magnetic black hole
solutions in dilaton-Maxwell gravity@23,24#.

Evaluating the Einstein tensorGmn for the general, static,
spherisymmetric metric quoted in the previous section, we
can write down the expression for the energy conditions.
This is equivalent to looking at the matter energy-momentum
tensor because we are dealing with exact solutions of the
field equations.

For a diagonalTmn[„r(r ),t(r ),p(r ),p(r )…, we find that
the WEC reduces to the inequalities

r>0, r1t>0, r1p>0. ~33!

Note here that the NEC consists of only the second and
third inequalities. From the Einstein equations we, therefore,
end up with the following conditions onb(r ), c(r ) and its
derivatives:

r~r !5
b8

r 2
>0, ~34!

r~r !1t~r !5
b8r2b

r 3
1
2c8

r S 12
b~r !

r D>0, ~35!

r~r !1p~r !5
b1b8r

2r 3
1S 12

b~r !

r D Fc91c821
c8

r

1
b2b8r

2r ~r2b!
c8G>0. ~36!

We have absorbed the factore2f in a redefinition of the
components ofTmn ~i.e., r5e2fr̄ and so on, wherer̄ is the
actual component of the energy-momentum tensor!. This
factor will, however, have to be brought back when we dis-
cuss the averaged versions of the energy conditions. For a
discussion of the local conditions, the overalle2f is irrel-
evant.

We will now choose the explicit functional forms of
b(r ) and c(r ) which correspond to the well-known black
hole solutions in string theory and thereby check out the
WEC inequalities for each of them.

A. Electric black hole

The metric~in the string frame! and matter fields which
solve the dilaton-Maxwell-Einstein field equations@Eqs.
~19!–~21!# to yield the electric black hole, are given as

ds252S 12
2m

r̂
D S 11

2msinh2a

r̂
D 22

dt21
dr̂2

12
2m

r

1 r̂ 2dV2, ~37!

At52
msinh2a

A2@ r̂12msinh2a#
, ~38!

e22f511
2msinh2a

r̂
. ~39!

The geometry has a horizon atr̂52m and a singularity at
r50. Identifying the functionsc andb with the metric co-
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efficients in the above expressions we can now write down
the WEC inequalities for this black hole geometry.

First, note thatr50 becauseb(r )52m which is a con-
stant. The other two inequalities turn out to be

r1t5
4m

r̂ 3

S 12
2m

r̂
D sinh2a

11
2m

r̂
sinh2a

>0, ~40!

r1p5
1

m2

2x3sinh2a

~112xsinh2a!2
$~5x21!1sinh2a2@x~11x!#%

>0, ~41!

where in the last equationx5m/ r̂ . We now have to check
whether these inequalities are satisfied or are violated. It is
easy to comment on the first one, for allr̂>2m it is satisfied.
The nature of the second inequality can be understood as
follows.

First, the prefactor outside the curly brackets is positive.
Therefore, the sign of the full expression depends entirely on
the sign of the term in curly brackets. Note that this is a
quadratic form inx. It can be written as

~x2x1!~x2x2!, ~42!

where x1 ,x2 are the two roots of the function equated to
zero. The explicit forms of the roots are

x1,25
22sinh2a256A~2sinh2a15!218sinh2a

4sinh2a
.

~43!

Therefore,x1 ~1sign! is always positive whilex2 is en-
tirely negative. Hence, in order to have (x2x1)(x2x2)>0,
we require

x>x15
22sinh2a251A~2sinh2a15!218sinh2a

4sinh2a
.

~44!

We also note the following:
~i! Violation occurs in the region of smallx ~i.e., large

r̂ ). However, as one approachesr̂→`, we find that the
amount of violation becomes smaller. In fact, between a cer-
tain x5x0 andx50, there is a point where the LHS of the
full WEC inequality ~including the prefactor! has a mini-
mum. This indicates the maximum negative value it can take.

~ii ! Fora increasing, we note that the domain over which
violation occurs~in x) becomes smaller, therefore, fora
very large it can actually become miniscule inx ~and, there-
fore, very large inr̂ ).

~iii ! The string coupling which is given byef is of the
form

ef5
1

A112xsinh2a
. ~45!

This is a monotonically decreasing function ofx. The
string coupling is large where WEC violation occurs and it is
small in the region where the WEC is satisfied. One cannot,
however, conclude from this that the strength of the coupling
is a sort of measure for WEC violation or satisfaction.

We now turn to an analysis of the WEC inequalities for
the extremal limit of the electric black hole.

The extremal limit is obtained by taking the following
limit for the parameters appearing in the electric black hole:

m→0, a→` but mcosh2a fixed. ~46!

The line element turns out to be

ds252S 11
2M

r̂
D 22

dt21dr̂21 r̂ 2dV2, ~47!

with mcosh2a5M.
The WEC inequalities~only r1t>0, r1p>0 because

r50) turn out to be equivalent to

r1t5
4M

r̂ 3
1

11
2M

r̂

>0, ~48!

r1p52
2M

r̂ 3

12
2M

r̂

S 11
2M

r̂
D 2 . ~49!

Notice that the third inequality is violated everywhere
~i.e., ; r̂.2M ), whereas the second one is satisfied every-
where. The lower bound of the domain of WEC violation has
now shifted fromr5r 0.2M to r52M .

B. Magnetic black hole

In the string frame the dual solution known as the mag-
netic black hole is obtained by multiplying the electric metric
in the Einstein frame by a factore22f ~note the sign of
f). In a more generalized sense, this is theS-duality trans-
formation which changesf→2f and thereby inverts the
strength of the string coupling. Also recall that the magnetic
and electric solutions are the same if looked at from the
Einstein frame.

Therefore, the magnetic black hole metric is given by

ds252

12
2M

r

12
Q2

Mr

dt21
dr2

S 12
2M

r D S 12
Q2

Mr D
1r 2dV2.

~50!

Using the same methods as before, we write down the
three energy condition inequalities for the metric given
above. These turn out to be

r5
2Q2

r 4
>0, ~51!
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r1t5
2Q2

Mr 3 S 2Mr 21D>0, ~52!

r1p5
Q2

2Mr 3S 12
2M

r

12
Q2

Mr

11D >0. ~53!

It is easily seen that the second inequality is now violated
for all r.2M , whereas the third is satisfied for allr.2M .
Note that this is exactly opposite to what happened to the
energy conditions for the electric black hole. This opposite
behavior is shown in Table I given below.

However, one cannot actually make a general statement
about the relation between electric-magnetic solutions
~which are dual to each other!, the violation of the energy
condition inequalities, and the strength of the string cou-
pling.

Finally, before we move on to other black hole geom-
etries, let us look at the extremal limit of the magnetic black
hole solution.

The metric for the solution in the extremal limit is given
as

ds252dt21
dr2

S 12
2M

r D 2 1r 2dV2. ~54!

The energy condition inequalities turn out to be

r5
4M2

r 4
>0, ~55!

r1t5
4M

r 3 S 2Mr 21D>0, ~56!

r1p5
2M

r 3
>0. ~57!

Therefore, the first and the third inequalities are satisfied
for all values ofr , whereas the second one is violated only if
r.2M . The geometry has spacelike slices resembling an
infinite horn extending from infinity tor52M . There is no
singularity here.

C. Other black hole metrics

We now move on towards analyzing the energy condition
inequalities for certain recently derived nonasymptotically
flat black hole solutions in dilaton-Maxwell gravity due to
Chan, Mann, and Horne@25#. Here, we have a surprise in
store for us. We will see that for the electric solution the

energy condition inequalities are satisfied in both the string
as well as the Einstein frame of reference.

Let us first look at the solution in the Einstein frame. The
metric is given as

ds252
1

g4 ~r 224g2M !dt21
4r 2

r 224g2M
dr21r 2dV2,

~58!

with the dilaton and Maxwell fields as

f~r !52
1

2
ln2Q21 lnr , ~59!

Ftr5
Qe2f

g2r
. ~60!

Note that the dilaton rolls from2` to 1` as r changes
its value from 0 tò .

As in the previous cases, we first write down the string
metric by performing the usual conformal transformation on
the metric. This turns out to be

ds252
r 2

g4 S 12
2A2g2M

Qr D dt21S 12
2A2g2M

Qr D 21

dr2

1r 2dV2. ~61!

For the Einstein metric one can check that the energy
conditions are satisfied. What about the inequalities for the
string metric? Note that sinceb(r ) is a constant we have
r50 straightaway. The other two inequalities turn out to be

r1t5
2

r 2 S 12
A

r D>0, ~62!

r1p5
A

2r 3
1

1

r 2
>0, ~63!

whereA52A2g2M /Q.
Surprisingly, for allr>A, all three inequalities are satis-

fied. The string couplingef changes from 0 tò as one
variesr from 0 to`.

In a similar way, let us look at the string metric for the
magnetic black hole which is given as

ds252
2Q2

g4 S 12
4M

r Ddt21 2Q2

r 2 S 12
4M

r D 21

dr2

12Q2dV2. ~64!

Since the coefficient ofdV2 is a constant, here we cannot
straightaway use the formulas for the WEC in terms of the
b(r ) andc(r ). After some simple algebra, we find that the
WEC inequalities reduce to

TABLE I. WEC and electric, magnetic solutions.

Black hole WEC2 WEC3 ef at r50 ef at r→`

Electric Satisfied Violated;r5r 0>2m Weak Strong
Magnetic Violated Satisfied Strong Weak
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r5
1

2Q2>0, ~65!

r1t50, ~66!

r1p5

S 12
2M

r D
2Q2 >0. ~67!

Note that the first inequality is satisfied for all values of
r wherer54M is the location of the horizon. In contrast, the
third inequality is satisfied for allr.2M . Thus the WEC is
satisfied for all values ofr>2M . These conclusions are
shown in a tabular form in Table II.

V. THE STATUS OF THE ANEC
FOR STRINGY BLACK HOLES

For each of the geometries discussed in the previous sec-
tion we shall now evaluate the ANEC integral along radial
null geodesics. To do this we need to know the tangent vec-
tors along radial null geodesics in the general, static, spheri-
symmetric metric quoted in Sec. III. A choice forkm in the
coordinate frame is

km[S dtdl
,
dr

dl
,0,0D 5S e22c,e2cA12

b~r !

r
,0,0D .

~68!

Note that these choices fordt/dl anddr/dl satisfy the
geodesic equations and also maintain the null character of
the geodesic. In the proper frame~we need to go to the
proper frame because theGmn used earlier in this paper are
evaluated in this frame, it is entirely a matter of choice!, this
tangent vector is transformed to

km̂[~e2c,e2c,0,0!, ~69!

where the hat is used to distinguish between the two frames.
The ANEC integral, therefore, becomes

IANEC5E
2`

`

e22fGm̂n̂k
m̂kn̂dl5E

rH

`

~r1t!e22c22f
dl

dr
dr,

~70!

wherer H is the horizon radius.
All we need to do now is to use the expressions for

r1t ~implicitly assuming that thee2f factor is removed by
a further redefinition! and the corresponding functional
forms for the dilaton for each of the black holes discussed
previously and evaluate the integral.

Let us look at the values of the ANEC integrals for the
electric and magnetic asymptotically flat black holes. These
are

I elec
ANEC5

sinh2a

m S 121
1

3
sinh2a D , ~71!

Imag
ANEC5

Q2

4M3 S Q2

6M2 21D . ~72!

Notice that the first of these is a positive quantity while
the other one is negative for allQ2<4M2. The extremal
limits of both these black holes exhibit the same behavior as
their nonextremal counterparts.

The values ofIANEC for all these black holes are quoted in
Table III.

The fact to note here is that apart from the magnetic,
asymptotically flat black holes and their extremal limit, all
the other solutions satisfy the ANEC.

VI. SUMMARY AND OUTLOOK

The above analysis of the WEC inequalities for the well-
known black hole metrics in low-energy stringy gravity in-
dicate a few essential facts. We now list them here.

~i! In (111)-dimensional dilaton gravity theories, the

TABLE II. WEC and nonasymptotically flat electric, magnetic solutions.

Black hole WEC1 WEC2 WEC3

Electric Satisfied Satisfied;r>A Satisfied;r
Magnetic Satisfied (;r ) Satisfied Satisfied (;r>2M )

TABLE III. Stringy black holes and the ANEC.

Black hole Value of ANEC integral Status of ANEC

Electric, AF (sinh2a/m)( 121
1
3sinh

2a) Satisfied
Extremal, electric ` Satisfied
Magnetic, AF

~Q2/4M3!S Q2

6M221D Violated

Extremal, magnetic 2
1
3m Violated

Electric, N-AF Q2g2/A4 Satisfied
Magnetic, N-AF 0 Satisfied
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R<0 condition on the Ricci curvature is the analogue of the
usual energy condition which has to be obeyed in order to
ensure focusing of timelike geodesics. We have illustrated
this with a couple of well-known black hole metrics in
(111)-dimensional theories which includes the exact metric
due to Dijkgraaf, Verlinde, and Verlinde.

~ii ! For (311)-dimensional theories with just a dilaton
field we have outlined the conditions onf which must be
satisfied if matter has to satisfy an energy condition. Specific
choices of the dilaton are used to illustrate the violation or
conservation of the WEC.

~iii ! In charged dilaton gravity in 311 dimensions, an
explicit evaluation of these inequalities reveals interesting
features. The electric black hole and its magnetic counterpart
~in the string frame of reference! exhibit quite an opposite
behavior as far as violation or conservation of the WEC is
concerned. For the electric solution, violation occurs away
from the horizon and extends up to infinity, in this region the
string coupling is, of course, strong. Moreover, it is the
r1p inequality which is violated. On the contrary, for the
magnetic hole, the violation is present near the horizon and
occurs only for ther1t inequality. These features persist if
one takes the extremal limit in these metrics.

~iv! For certain nonasymptotically flat black hole solu-
tions discovered recently, the electric black holes do not vio-
late the WEC even in the string metric. Their magnetic coun-
terparts also satisfy the weak energy condition.

~v! Several of the stringy black holes seem to satisfy the
ANEC evaluated along radial null geodesics in the space-
time. Only the asymptotically flat magnetic black hole and
its extremal limit are the two exceptions.

Our aim in this paper has been to analyze in some detail
the nature of the ‘‘matter’’ that is required to create the well-

known dilaton-Maxwell black hole solutions in low-energy
effective string theory. Classical matter which may collapse
to form such black holes must necessarily satisfy the WEC
or some other energy condition. But, if matter violates the
energy conditions, we cannot conclude that singularities do
not exist. In fact, examples of singular metrics with WEC-
violating matter do exist@26#.

How does one justify the presence of singularities with
the violation of the energy conditions within the context of
the singularity theorems? One can take the attitude that these
theorems are not valid. This is perhaps not entirely correct
because there have been attempts toextendthe singularity
theorems by furtherweakening or changingthe assumptions
on matter. A step towards this is the proposal for global
energy conditions. Singularity theorems with such global
conditions have been proved by Roman@27# and Borde@28#.
Some of the geometries discussed in this paper do satisfy the
ANEC along radial null geodesics. However, for those
stringy black holes which violate the local as well as the
global energy conditions, one should try and extend the sin-
gularity theorems with some assumption on matter which is
different from the known ones.

On the other hand, we also seem to have some solutions
which satisfy the WEC without any problems. For such so-
lutions the original singularity theorems are obviously valid.

Therefore, we might perhaps conclude by saying that it is
somewhat premature to arrive at a general statement on the
validity or nonvalidity of the singularity theorems in string-
inspired gravity theories. Until we can prove a no-go theo-
rem stating that there isno general assumption on matter
which can be used to arrive at the existence of singularities
in stringy generalizations of GR, we should leave this as an
open issue worth future investigation.
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