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The energy condition inequalities for the matter stress energy comprised of the dilaton and Maxwell fields
in the dilaton-Maxwell gravity theories emerging out of string theory are examined in detail. In the simplistic
(1+1)-dimensional modelR<0 (whereR is the Ricci scalgrturns out to be the requirement for ensuring
focusing of timelike geodesics. In431 dimensions, we outline the requirements on matter for pure dilaton
theories—these in turn constrain the functional forms of the dilaton. Furthermore, in charged dilaton gravity a
curious opposite behavior of the matter stress energy with respect to the violation or conservation of the weak
energy condition is noted for the electric and magnetic black hole metrics written in the string frame of
reference. We also investigate the matter that is necessary for creating certain specific nonasymptotically flat
black holes. For the electric and magnetic black hole metrics, strangely, matter satisfies the weak energy
condition in the string frame. Finally, the averaged null energy condition is evaluated along radial null geo-
desics for each of these black hole spacetif®8556-282(97)01206-X]

PACS numbegps): 04.70.Dy, 04.60.Kz, 11.25.Mj

I. INTRODUCTION S duality [7] is a valid symmetry only if the equations are
written in the Einstein frame.

The low-energy effective theory that emerges out of full It has been mentioned several times in the literaf8r@|
string theory by imposing quantum conformal invariance inthat the metric in the string frame violates the inequality
the world-sheetr model and thereby equating the one-loopR,,,£#£"=0 and hence also the assumption of a local energy
B functions for the metric and matter couplings to zero,condition. Therefore, it has been argued that the singularity
largely resembles general relativifsR) with some new theorems of GR[10,11] are not valid for the low-energy
“matter” fields such as the dilaton, axion, efd.]. The field theory emerging out of string theory. This is because the
equationgwhich are the ones obtained by equating the onesingularity theorems assume an energy condition and such an
loop B functions to zerpcan, therefore, be solved with dif- assumption essentially leads to the concept of geodesic fo-
ferentAnsaze for the metrics and matter fields. These solu-cusing, a conclusion resulting out of an analysis of the Ray-
tions thus represent allowed backgrounds for stringchaudhuri equatior{12,13. The focusing theorem along
propagation—the “allowance” being the fact that quantumwith some additional assumptions essentially implies the ex-
conformal invariance is satisfied on the world sheet. Presistence of spacetime singularities.
ently, there do exist many solutions of these equations rep- In this paper, we explicitly examine several black hole
resenting black holel2], cosmologie§3-5], etc. geometries in two and four dimensions with regard to the

An important fact about the low-energy theory is thatweak energy conditioWEC), T ,,£*£"=0. We shall point
there exists two different frames in which the features of theout the domains of violation of these energy conditions and
spacetime may look very different. These frames which arealso attempt to arrive at some general statements. It will turn
known as the “Einstein frame” and the “string frame” are out that there are black holes which require a violation of
related to each other by a conformal transformationthese conditions as well as solutions which do not violate
(gﬁyze*2¢giv) which involves the massless dilaton field as them. Moreover, we shall demonstrate solutions which sat-
the conformal factor. The existence of two different framesisfy the WEC and also check the averaged null energy con-
is, however, a known feature in certain modifications to Ein-dition (ANEC) for several black holes. It will turn out that
stein’s theory. In fact, the “string frame” is actually similar there are quite a few geometries for which the ANEC inte-
to the Brans-Dicke frame in the well-known Jordan-Brans-gral along radial null geodesics is positive definite. With all
Dicke theory. In the context of string theory one says that thehese we will try and conclude that it is somewhat premature
string “sees” the string metri¢which is the metric written to make statements about the nonvalidity of the singularity
in the string framg Several of the important symmetries of theorems for the class of theories emerging out of full string
string theory also rely on the choice of the string frame or thetheory.

Einstein frame. For instance, the familirduality [6] trans- The paper is organized as follows. In Sec. Il we analyze
formation relates metrics in the string frame only, whereaghe energy conditions and geodesic focusing for
(1+1)-dimensional theories of gravity. Section Ill deals
with the conditions for Einstein-dilaton gravity. Charged di-
*Present address: IUCAA, Post Bag 4, Ganeshkhind, Pun&ton black holes are discussed in the fourth section. The
411007, India. Electronic address: sayan@iucaa.ernet.irANEC integral is checked in Sec. V. Finally, Sec. VI con-
sayan@.iopb.ernet.in tains a summary of the main results of the paper.
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55 STRINGY BLACK HOLES AND ENERGY CONDITIONS 4873

The sign conventions followed in this paper are those operhaps not worth referring to the “Einstein frame” as such

Misner, Thorne, and Wheelgt4]. because it is essentially defined as a frame in which the
theory is in the canonical form.
Il. DILATON GRAVITY IN1 +1 DIMENSIONS In pure dilaton gravity with a cosmological constant we

. ) o . can show from the field equations that
We begin with the simple models of gravity in+11 di-

mensiong9,8] where the first stringy black hole was discov- R=4{\%2—(V¢)2. 5)
ered. Before we explicitly relatR,,,£“£" with the quantities o ) . ,
involving the dilaton(using the one-loogs function equa- Therefore, if\ is zero,R is always positive or negative

tions), let us look at the focusing conditions emerging out ofdepending on whag is functionally. This implies that the
an analysis of the Raychaudhuri equation. focusing may or may not take place in the solutions of such

The Raychaudhuri equation for timelike geodesic congru® theory.
ences in a (¥ 1)-dimensional spacetime, discussed earlier Let us now concentrate on some examples of black holes

in [15], turns out to be given as in two-dimensional dilaton gravity.
’ The two-dimensional black hole metric of Mandal, Sen-

gupta, and Wadif2] is given by the metric

9, o= R, e 1
a - ,uvgg ()

_ _ o _ ds’=—(1—ae?")dt>+ oF

Note that a way to arrive at this equation without starting (1-ae*’)
from first principles(as is done iff15]) is to substitute ap-

propriate values oN (background spacetime dimensions, in

this caseN=2) andD (dimensions of the embedded geo-
metric object, in this cas®=1) in the generalized Ray-

dr2. (6)

This is a solution in pure dilaton gravity in+11 dimen-
sions(i.e., without a cosmological constanThe Ricci sca-
lar for this geometry turns out to be

chaudhuri equation for families @-dimensional surfaces in R=aQ%?", 7)
an N-dimensional backgroun@or details, seg¢17]).
Now, recall that in 1 dimensions, we have which is clearly positive. Therefore, even though there is a
singularity atr =, focusing within a finite value of the af-
1 fine parameter for an initially converging timelike geodesic
RWZEQWR- 2) congruence does not occur.
We now turn to theexactmetric (exact in the sense of full
Therefore, we can rewrite the above equation as string theory due to Dijkgraaf, Verlinde, and Verlindel8]
) (see alsq19)) is given as
vz T(2ROLE1E"F=0, 3) d2=2(k—2)[ - B(r)dt2+dr?], ®)

whered=F'/F. If the & are timelike, then we need where(r) = (cothfr—2/k) " and the dilaton is given as

R<0 (4 ¢:¢0+%In|sinhz%|. 9)

in order to have the existence of zeros in a solution of Eq.
(3). Such zeros essentially imply a divergence&irHence, a
converging @ negative timelike geodesic congruence must
necessarily come to a focug-& —o0) within a finite value

of the affine parametex. If R=0, then, of course, the right-
hand sidgRHS) of the Raychaudhuri equation is identically
zero and we always get a focusing effect. Note that fo
R=0, the Raychaudhuri equation has solutiénsconst and
F=a\+b. The former results in an expansion which is ev-

The quantityk stands for the Kac-Moody level. It is re-
lated to the central charge of the Wess-Zumino-Witten
model based on the group 801) gauged by the subgroup
SQ(1,1) (which is an exact conformal field theory description
of the Witten solution quoted belgwby the relation
=3k/(k—2)—1. k takes the valu€ for a bosonic string
background for whicle=26.
The Ricci scalar turns out to be

erywhere zero, while with the latter, one can arrive at focus- 1 2cschr [2 3

ing. R= 2k=2) 12 E+Zcothzr(1—E”.
In 1+ 1 dimensions null geodesics have a unique behav- (cothzr——)

ior. It can be shown that is identically equal to zero. This is k

largely due to the fact that in1 dimensions all metrics are (10)
conformally flat and therefore null geodesics are the same as o positivity or negativity oR crucially depends on the
that for flat (1+1)-dimensional spacetime. A discussion ony5e ofk. If k=3. thenR is always positive. Fok lying

this can be found if16] L . . between 2 and 3 there is always a domain in whitts
Let us now go back to timelike geodesics. The question t91egative as is easily noticeable from the expression.

ask now is whether the two-dimensional black hole metrics | thak— s limit the metric goes over to the Witten black
known to us satisfy the conditioR<0. To see this we have 1,16 modulo the overall factok—2). This is given by the
to investigate some cases explicitly. Note, however, that i etric

1+1 dimensions a Weyl rescaling of the metric leaves the

“Brans-Dicke” form of the action invariant. Therefore, it is ds’= —tanifr dt?>+dr?, (11)
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which is related by a coordinate transformation to the metriavhere the integration is over a complete, timelike geodesic
discussed first in this sequentte Mandal, Sengupta, Wa- in the spacetime.

dia black holg. (b) Averaged null energy condition
The Ricci scalar is given as
4 L T,k*k"dN =0, (18
R= Costr (12

where the integration is now over a complete, null geodesic
which, once again is positive. However, note that the metridn the spacetime.
written in the above form does not have a singularity any-
where. The point =0 is actually a coordinate singularity. B. Checking the energy conditions for dilaton gravity
One can, following Witten, do a Kruskal extension of the

) We now check the various energy conditions listed above
geometry and arrive at the form:

for the theory of dilaton gravity in 3 1 dimensions.
du dv The action integral for the Einstein-dilaton-Maxwell
— , (13)  theory is given as

ds?=

1—uv

R+4g,,V*¢V"d

where i=—e""t 2v=e"*", and r’'=r+In(1-e?). SEDM:J dxy—ge™?

The denominator in the Ricci scalar now gets replaced by

1—uv anduv=1 corresponds to the divergence Rfand, T g g"E E

therefore, is a real singularity. However, even if we consider 2g CARNTRY

the maximally extended metric, the Ricci scalar is still posi-

tive definite and timelike geodesic congruences do not focus. Varying with respect to the metric, dilaton, and Maxwell

This is in accordance with the discussion regarding focusindields, we get the field equations for the theory given as

on the Mandal, Sengupta, and Wadia form of this solution

presented earlier in this section. Ruv= _ZV#VV‘JS“LZFMF% (20
There do exist a multitude of other solutions ir1 di- V(e 2%F, )=0 21)

mensions such as the ones derivedd,21] for which one wy '

can do a similar analysis. Since the basic idea is the same we

refrain from repeating the same exercise here.

. (19

4V?2¢p—4(V $)°+R—F?=0. (22)

These equations are also tefunction equations for a

ll. PURE DILATON THEORIES IN 3 +1 DIMENSIONS world sheets model obtained by imposing quantum confor-
mal invariance and setting th# functions to zero. Note that
without the Maxwell field we have essentially a Brans-

Before we embark on an analysis of the matter sector obicke-type theory with the Brans-Dicke parameter explicitly
dilaton gravity theories let us briefly recall the content of theset tow=—1.
various energy conditions which we shall be checking out for  Consider the very first equatiofwithout the Maxwell
specific solutions. Below,T,, represents the energy- field) and recast it in the form of the Einstein equation,
momentum tensor for matter agd represents a timelike or G ,,=e?*T,,. This is the generic form of the Einstein equa-
null vector as specified in the respective conditions. tion for a Brans-Dicke-type theorjor details, see Weinberg
[22)). The T,, contains a par%, and a partT),, where
M stands for all matter apart from the dilaton. With this, one

A. Energy conditions

1. Local energy conditions

(a) Strong energy condition can now write down the energy-momentum tensor for the
dilaton field which turns out to be
1 .
(TMV— EQWT)E‘%@O V timelike ¢*. (14 T, =e 22V, V,$+g,,V?s]. (23

Therefore, the various energy conditions turn out to be

(b) Weak energy condition equivalent to the following inequalities.

(T, E46)=0 V timelike ¢". (15) WEC:
¢ v _ a2 v 2
(c) Null energy condition T Erer=—e 22848V V ¢+ V?¢4]=0. (24
(T, k*k")=0 ¥ null k* (16) For & along a geodesic curve, the first term inside the
y72% .

square brackets can be shown to reduce td?@(ds?).
Since from the field equations we haVé¢$=2(V ¢)?, the

WEC reduces to @"+2(V ¢)?<0.
(a) Averaged weak energy condition AWEC:

2. Global energy conditions [13]

F T, E4E"d\=0, (17 f e 22¢"+2(V¢)?Jdr=<0. (25)
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NEC: Evaluating the Einstein tens@,,, for the general, static,
spherisymmetric metric quoted in the previous section, we
TS £rE"=—2e"2%kHkV V6. (26)  can write down the expression for the energy conditions.
. This is equivalent to looking at the matter energy-momentum
For k¥, a tangent along a null geodesic, we have the regensor hecause we are dealing with exact solutions of the

quirement field equations.
$"<0. 27) For a diagonaII'WE(p(_r),T(r),_p(r),p(r)), we find that
the WEC reduces to the inequalities
ANEC: p=0, p+7=0, p+p=0. (33
fw T k“k”dx=2fw e 2¢¢"d\=<0. (29 Note here that the NEC consists of only the second and
1324 . . .y . . .
- - third inequalities. From the Einstein equations we, therefore,
end up with the following conditions ob(r), r) and its
These are the constraints which the dilaton field has t eriva?iveS' g (1), (1)
obey in order to satisfy the respective energy conditions. '
In order to understand the constraints gnbetter we b’
write down the WEC inequalities explicitly for the general, p(r)=-2=0, (34)
static spherisymmetric metric given by:
r2 _b'r=b 2y b(r)
0=~ Pt ——p ok r(d02 i), pN)+7(N)=—m—+=—|1=—=—|=0. (39
r
1_ R,
r b+b,r b(r) " 12 l’[,,
(29 p(N)+p() =53 +| 1= —— || ¢+ ?+
whereb(r) and (r) are two unknown functions. b—b'r
Thep=0, p+7=0, andp+ p=0 inequalities turn out to +———y'|=0. (36)
be 2r(r—b)
b(r) We have absorbed the factef? in a redefinition of the
—2e‘2¢( 1- T)[cﬁ'z— o' ¢'1=0, (300 components of,, (i.e., p=e?’p and so on, wherg is the
actual component of the energy-momentum tens®his
b(r) o' factor will, however, have to be brought back when we dis-
—4e2‘/’< - _){d,@ —}20, (31)  cuss the averaged versions of the energy conditions. For a
r r discussion of the local conditions, the overef® is irrel-
evant.
2024 1— b(r) &' lﬂ’—} ~0. (32) We will now choose the explicit functional forms of
r r b(r) and (r) which correspond to the well-known black

hole solutions in string theory and thereby check out the
The above inequalities are obtained using the expressiofVEC inequalities for each of them.

for Tfjv in terms of the scalar field and its derivatividsg.

(23)]. These are the constraints @n , andb which must A. Electric black hole
be obeyed if we believe in the WEC. We now analyze a o . . .
couple of choices of. The metric(in the string framg and matter fields which

If ¢ is linear inr, i.e., #(r)=r say, then we find that the SOlve the dilaton-Maxwell-Einstein field equatiori&gs.
requirements turn out to bg'=1fr, 1r=1, and ¢'=1. (19—(21)] to yield the electric black hole, are given as

Clearly, asr—o, the second condition is violated. Thus, om
with a linear dilaton field one always will end up with a dszz_(l_T)
violation asr—~. In contrast, if¢=Inr, then the first and r r
third inequalities reduce to the requiremerit=1/r, whereas r

the second one is identically satisfi¢the left-hand side .

(LHS) of the second WEC inequality is zgrdThus with a +r2dQ?, (37
logarithmic dilaton, which means a linear string coupling,

the WEC can be satisfied everywhere. msinh2«

A=— == , , (38)
V2[r +2msinta]

2msintfa| dr?
+————| dt*+

IV. ENERGY CONDITIONS FOR ELECTRIC
AND MAGNETIC BLACK HOLES
IN DILATON-MAXWELL GRAVITY e 2¢=1+

2msintfa
—_—. (39
r

In this section we focus our attention on the energy con- )
dition inequalities for the electric and magnetic black hole The geometry has a horizonrat 2m and a singularity at

solutions in dilaton-Maxwell gravity23,24]. r=0. Identifying the functions/ andb with the metric co-



4876 SAYAN KAR 55

efficients in the above expressions we can now write down This is a monotonically decreasing function »f The
the WEC inequalities for this black hole geometry. string coupling is large where WEC violation occurs and it is
First, note thaip=0 becausé(r)=2m which is a con- small in the region where the WEC is satisfied. One cannot,
stant. The other two inequalities turn out to be however, conclude from this that the strength of the coupling
is a sort of measure for WEC violation or satisfaction.
2m\| We now turn to an analysis of the WEC inequalities for
am 1- T sinffa the extremal limit of the electric black hole.

p+7= - ——— =0, (40) _ '_I'he extremal limit is obtain_ed by taking th_e following
r3 2m limit for the parameters appearing in the electric black hole:
1+ —sintfa
r m—0, a— but mcostfa fixed. (46)
. 1 2x%sinffa ((5x—1) + SinfRa2[x(1+)]) The line element turns out to be
= - X— sin X X
pTP m? (1+2xsmﬁzoz)2 “« )

2M ny A

=0, (42) ds?=—| 1+ —| dt?+dr?+r2dQ? (47
r

where in the last equatior=m/r. We now have to check with mcosRa=M.

whether these inequalities are satisfied or are violated. It is The WEC inequalitiegonly p+ =0, p+p=0 because
easy to comment on the first one, for e 2m it is satisfied.  p=0) turn out to be equivalent to

The nature of the second inequality can be understood as

follows. AM 1
First, the prefactor outside the curly brackets is positive. ptT=—7 =0, (48)
. . . r 2M
Therefore, the sign of the full expression depends entirely on 1+ —
the sign of the term in curly brackets. Note that this is a r
guadratic form inx. It can be written as
2M
— — , 42 e
(X=X1)(X—X2) (42 oM ;
. ptp=— =3 . (49)
where x4,X, are the two roots of the function equated to r 2M
zero. The explicit forms of the roots are 1+ T

—2sinffa—5=* y(2sinffa+5)?+8sinfa
4sinFfa '

X120~
(43
Therefore,x; (+sign) is always positive whilex, is en-

tirely negative. Hence, in order to have-{x;)(x—x,)=0,
we require

" 2sinffa—5+ /(2sinfa+5)?+8sinfa
X=X 4sinffa '
(44)

We also note the following:
(i) Violation occurs in the region of smaX (i.e., large

F). However, as one approaché&w we find that the

amount of violation becomes smaller. In fact, between a cer-
tain X=X andx=0, there is a point where the LHS of the

full WEC inequality (including the prefactgrhas a mini-

mum. This indicates the maximum negative value it can take.
(i) For a increasing, we note that the domain over which

violation occurs(in x) becomes smaller, therefore, far
very large it can actually become minisculexifand, there-
fore, very large irr).

(iii) The string coupling which is given bg? is of the
form

N — (45)

J1+2xsinffa

Notice that the third inequality is violated everywhere

(i.e., VF>2M), whereas the second one is satisfied every-
where. The lower bound of the domain of WEC violation has
now shifted fromr =r,>2M tor=2M.

B. Magnetic black hole

In the string frame the dual solution known as the mag-
netic black hole is obtained by multiplying the electric metric
in the Einstein frame by a factoe™ 2¢ (note the sign of
¢). In a more generalized sense, this is Sduality trans-
formation which changegp— — ¢ and thereby inverts the
strength of the string coupling. Also recall that the magnetic
and electric solutions are the same if looked at from the
Einstein frame.

Therefore, the magnetic black hole metric is given by

2M
o dr?
__ 2 2402
ds? ) QZdt+1 oM 2 +r2d02,
~ Mr EAET]

(50

Using the same methods as before, we write down the
three energy condition inequalities for the metric given
above. These turn out to be

2 2
p= 1420,

. (51)
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TABLE I. WEC and electric, magnetic solutions.

Black hole WEC2 WEC3 e? atr=0 e’ atr—oo
Electric Satisfied Violated/r =ry=2m Weak Strong
Magnetic Violated Satisfied Strong Weak
2Q?%(2M energy condition inequalities are satisfied in both the string
ptr=y3| 7 ~1=0 (52 as well as the Einstein frame of reference.

Let us first look at the solution in the Einstein frame. The
metric is given as

1 2M
Q2 _T 1 2 2 2 4r2 2 2 2
p+p—m 74‘1 =0. (53) dsz——7(r —4y°M)dt +mdr +r<dQ*,
1_W (58

It is easily seen that the second inequality is now violated/\”th the dilaton and Maxwell fields as

for all r>2M, whereas the third is satisfied for ai2M. 1
Note that this is exactly opposite to what happened to the o(r)y=— Eln2Q2+Inr, (59
energy conditions for the electric black hole. This opposite
behavior is shown in Table | given below. Qe2é

However, one cannot actually make a general statement Fir=—3 (60)
about the relation between electric-magnetic solutions yr

(which are dual to each otherthe violation of the energy

condition inequalities, and the strength of the string COU=ic value from O towe.

pling. As in the previous cases, we first write down the string

Finally, before we move on to other black hole 9€0m- - o tric by performing the usual conformal transformation on

etries, let us look at the extremal limit of the magnetic bIathhe metric. This turns out to be

Note that the dilaton rolls from-c0 to + asr changes

hole solution.
The metric for the solution in the extremal limit is given r2 2./2+2M 2./2+2M\ 1
as d32=——4(1—\/——7>dt2+(1—\/——7> dr?
4 Qr Qr
dr? 2402
A= —dt*+ s +12d02 (54) Fredos. (61)
(1—7) For the Einstein metric one can check that the energy

conditions are satisfied. What about the inequalities for the
string metric? Note that since(r) is a constant we have

The energy condition inequalities turn out to be 4 | o
p=0 straightaway. The other two inequalities turn out to be

aM?
=— =0, 55 2 A
P 9 p+7‘=r—2(1—?)>0, (62)
aM [ 2M 120 56 A 1
=—|—=-1|=
p+T r3 r ! ( ) p+p=F+—2>0, (63)
rsr
rp= M o (57  WhereA=2y2y°M/Q.
p r3 ' Surprisingly, for allr=A, all three inequalities are satis-

fied. The string couplingg? changes from 0 toc as one
Therefore, the first and the third inequalities are satisfied/ariesr from 0 to «.
for all values ofr, whereas the second one is violated only if  In a similar way, let us look at the string metric for the
r>2M. The geometry has spacelike slices resembling amagnetic black hole which is given as
infinite horn extending from infinity to =2M. There is no

- : 2Q? 4M 2Q? 4M\ 1
singularity here. ds?= — % (1_ )dt2+ iz 1— _) dr2
¥ r r r
C. Other black hole metrics +2Q2d92. (64)

We now move on towards analyzing the energy condition
inequalities for certain recently derived nonasymptotically ~Since the coefficient aii)? is a constant, here we cannot
flat black hole solutions in dilaton-Maxwell gravity due to straightaway use the formulas for the WEC in terms of the
Chan, Mann, and Horng25]. Here, we have a surprise in b(r) and y(r). After some simple algebra, we find that the
store for us. We will see that for the electric solution the WEC inequalities reduce to
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TABLE Il. WEC and nonasymptotically flat electric, magnetic solutions.

Black hole WEC1 WEC2 WEC3
Electric Satisfied Satisfiedr=A Satisfiedv'r
Magnetic SatisfiedY(r) Satisfied SatisfiedY(r=2M)
p= 1520 (65)  IANEC= r e2¢Gmkﬁk3dxzr(p+r)e2¢2¢d—)‘dr
2Q°" e w » dr =
(70)
pt+7=0, (66)
oM wherer, is the horizon radius.
( _T) All we need to do now is to use the expressions for
=0 (67)  p+ 7 (implicitly assuming that the*? factor is removed by

ptp=—F5z—=0 > : .
Q a further redefinition and the corresponding functional

o o L forms for the dilaton for each of the black holes discussed
Note that thg first mquahty is satlsfled for all values of previously and evaluate the integral.
r wherer =4M is the location of the horizon. In contrast, the | ot s look at the values of the ANEC integrals for the

third inequality is satisfied for ai>2M. Thus the WEC is  glectric and magnetic asymptotically flat black holes. These
satisfied for all values of =2M. These conclusions are 4

shown in a tabular form in Table II.

V. THE STATUS OF THE ANEC | ANEC_ sinifa £+Esinﬁa> 71)
FOR STRINGY BLACK HOLES elec 2 3 ’
For each of the geometries discussed in the previous sec-
tion we shall now evaluate the ANEC integral along radial Q? | Q2
null geodesics. To do this we need to know the tangent vec- |m50:_3(_2_ 1) (72)
tors along radial null geodesics in the general, static, spheri- 4M*16M

symmetric metric quoted in Sec. Ill. A choice fat in the

coordinate frame is Notice that the first of these is a positive quantity while

dt dr b(r) the other one is negative for a)?<4M?2. The extremal
ku;(_, _7070) = ( e 2Y e ¥ [1— _,o,o)_ limits of both these black holes exhibit the same behavior as
di " dA r their nonextremal counterparts.
(68) The values of ANEC for all these black holes are quoted in
Table IlI.

Note that these choices fait/d\ anddr/d\ satisfy the
geodesic equations and also maintain the null character %Is
the geodesic. In the proper franfee need to go to the
proper frame because ti@,, used earlier in this paper are
evaluated in this frame, it is entirely a matter of chojdhis
tangent vector is transformed to

The fact to note here is that apart from the magnetic,
ymptotically flat black holes and their extremal limit, all
the other solutions satisfy the ANEC.

VI. SUMMARY AND OUTLOOK

kt=(e ?,e%,0,0), (69) The above analysis of the WEC inequalities for the well-
known black hole metrics in low-energy stringy gravity in-

where the hat is used to distinguish between the two frameslicate a few essential facts. We now list them here.
The ANEC integral, therefore, becomes (i) In (1+1)-dimensional dilaton gravity theories, the

TABLE lll. Stringy black holes and the ANEC.

Black hole Value of ANEC integral Status of ANEC
Electric, AF (sinRa/m)(3+ 3sintfa) Satisfied
Extremal, electric o0 Satisfied
Magnetic, AF S Q2 Violated
(Q14M )(Wfl)

Extremal, magnetic - %,u Violated
Electric, N-AF Q?%y2IA% Satisfied
Magnetic, N-AF 0 Satisfied
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R=<0 condition on the Ricci curvature is the analogue of theknown dilaton-Maxwell black hole solutions in low-energy

usual energy condition which has to be obeyed in order t@ffective string theory. Classical matter which may collapse
ensure focusing of timelike geodesics. We have illustratedo form such black holes must necessarily satisfy the WEC
this with a couple of well-known black hole metrics in or some other energy condition. But, if matter violates the
(1+1)-dimensional theories which includes the exact metricenergy conditions, we cannot conclude that singularities do

due to Dijkgraaf, Verlinde, and Verlinde. not exist. In fact, examples of singular metrics with WEC-
(if) For (3+1)-dimensional theories with just a dilaton violating matter do exisf26.
field we have outlined the conditions af which must be How does one justify the presence of singularities with

satisfied if matter has to satisfy an energy condition. Specifithe violation of the energy conditions within the context of
choices of the dilaton are used to illustrate the violation orthe singularity theorems? One can take the attitude that these
conservation of the WEC. theorems are not valid. This is perhaps not entirely correct
(iii) In charged dilaton gravity in 31 dimensions, an because there have been attempt&xtendthe singularity
explicit evaluation of these inequalities reveals interestingheorems by furtheweakening or changinthe assumptions
features. The electric black hole and its magnetic counterpadn matter. A step towards this is the proposal for global
(in the string frame of referengeexhibit quite an opposite energy conditions. Singularity theorems with such global
behavior as far as violation or conservation of the WEC isconditions have been proved by Ronj&id] and Bordg 28].
concerned. For the electric solution, violation occurs awaySome of the geometries discussed in this paper do satisfy the
from the horizon and extends up to infinity, in this region theANEC along radial null geodesics. However, for those
string coupling is, of course, strong. Moreover, it is thestringy black holes which violate the local as well as the
p+p inequality which is violated. On the contrary, for the global energy conditions, one should try and extend the sin-
magnetic hole, the violation is present near the horizon andularity theorems with some assumption on matter which is
occurs only for thep+ 7 inequality. These features persist if different from the known ones.
one takes the extremal limit in these metrics. On the other hand, we also seem to have some solutions
(iv) For certain nonasymptotically flat black hole solu- which satisfy the WEC without any problems. For such so-
tions discovered recently, the electric black holes do not viotutions the original singularity theorems are obviously valid.
late the WEC even in the string metric. Their magnetic coun- Therefore, we might perhaps conclude by saying that it is
terparts also satisfy the weak energy condition. somewhat premature to arrive at a general statement on the
(v) Several of the stringy black holes seem to satisfy thevalidity or nonvalidity of the singularity theorems in string-
ANEC evaluated along radial null geodesics in the spaceinspired gravity theories. Until we can prove a no-go theo-
time. Only the asymptotically flat magnetic black hole andrem stating that there iao general assumption on matter
its extremal limit are the two exceptions. which can be used to arrive at the existence of singularities
Our aim in this paper has been to analyze in some detaih stringy generalizations of GR, we should leave this as an
the nature of the “matter” that is required to create the well-open issue worth future investigation.
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