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Chaos in Schwarzschild spacetime: The motion of a spinning particle
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We study the motion of a spinning test particle in Schwarzschild spacetime, analyzing the Poiapaaad
the Lyapunov exponent. We find chaotic behavior for a particle with spin higher than some criticale:glyie
S.~0.635uM for the total angular momentudh=4xM), wherexw andM are the masses of a particle and of
a black hole, respectively. The inverse of the Lyapunov exponent in the most chaotic case is about five orbital
periods, which suggests that chaos of a spinning particle may become important in some relativistic astro-
physical phenomena. The “effective potential” analysis enables us to classify the particle orbits into four types
as follows. When the total angular momentunis large, some orbits are bounded and the “effective poten-
tials” are classified into two typesB1) one saddle poinfunstable circular orbjitand one minimal point
(stable circular orbjton the equatorial plane exist for small spin; dB&) two saddle points bifurcate from the
equatorial plane and one minimal point remains on the equatorial plane for large spin.Vi$emall, no
bound orbits exist and the potentials are classified into another two tip&sno extremal point is found for
small spin; and(U2) one saddle point appears on the equatorial plane, which is unstable in the direction
perpendicular to the equatorial plane, for large spin. The tyBd$ and (Ul) are the same as those for a
spinless particle, but the potentigB2) and (U2) are new types caused by spin-orbit coupling. The chaotic
behavior is found only in the typéB2) potential. The “heteroclinic orbit,” which could cause chaos, is also
observed in typdB2). [S0556-282(97)06806-9

PACS numbdps): 04.70.Bw, 95.10.Fh

I. INTRODUCTION not exist. We may wonder whether any realistic relativistic
system can be chaotic and when chaos may play an impor-
Chaos is now one of the most important ideas used tdant role in such a relativistic astrophysical phenomena.
explain various nonlinear phenomena in nature. Since the In astrophysics, rotation of a system plays a quite impor-
research on the three-body problem by Poincareny stud- tant role. The angular momentum or spin may completely
ies about chaos in celestial mechanics and astrophysics haggange the evolution of the system. In a dynamical system,
been done and have revealed the important role of chaos iigtation or spin is one of the most important elements and it
the Universe[1,2]. Although we know many features of may sometime cause chaotic behavior. We also know that
chaos in Newtonian dynamics, we do not know, so far, sgsome spin-orbit interaction induces chaos in Newtonian
much about those in general relativity. If gravity is strong, gravity. This may also be true in a relativistic system such as
e.g., a close binary system or a particle near a black hole, wiée evolution of a binary system. The motion of coalescing
have to use Einstein’s theory of gravitation. Because théinary systems of neutron stars and/or black holes is very
gravitational field in general relativity is nonlinear, we may important to study because they are promising sources of
find a new type of chaotic behavior in strong gravitationalgravitational waves, which we are planning to detect by
fields, which does not appear in Newtonian dynam®s5). large-scale laser interferometric gravitational observatories,
In a previous papdi6], we studied a criterion for chaos of a such as US LIGQ14]. If we will detect the signal of gravi-
test particle motion around aN-black hole systenfor an  tational waves emitted from these systems and compare it
N-naked singularity systenand found that a local instability With theoretical templates, we may be able to determine a
determined by the Riemann curvature tensor provides us ¥ariety of astrophysical parameters of the sources such as
sufficient test for chaos. We also found that the existence dfheir direction, distance, masses, spin, and so[1H]. In
an unstable circular orbit, which guarantees the existence d¢ffder to extract exact information about such sources from
a homoclinic or heteroclinic orbit, plays a crucial role for the observed signal we need the exact theoretical templates
chaos. However, the relativistic systems analyzed so far b9f the gravitational wave forms. To make such templates, it
several author§6—13], in which chaotic behavior of a test IS very important to know the exact motion of sources.
particle is found, are rather unrealisfg—11], except for the Hence, the equations of motion in the post-Newtonian ex-
perturbed spacetimes of the Schwarzschild black hole solueansion in terms of a small parameter (v/c)?~GM/r
tion[12,13. As for the other interesting cases of systems, forhave been studied by many authpt§]. Those can be writ-
example, theN-extreme black hole systefi—9] is unstable, —ten schematically as
the existence of a strong uniform magnetic field around a

black hole[10] is not likely, and naked singulariti¢§] ma d?x
=) Y guanieslmay iz —avt el e al+ad? r0a?), (1.1

*Electronic address: 696L5186@cfi.waseda.ac.jp where the subscripts N, PN, SO, 2PN, SS, and RR denote
"Electronic address: maeda@cfi.waseda.ac.jp Newtonian, post-Newtonian, spin-orbit coupling, second
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post Newtonian, spin-spin coupling, and radiation reactiorduce a sort of “effective potential,” which enables us to

terms, respectively17]; and the superscript corresponds to classify the particle behavior. In Sec. Ill, performing numeri-

the order of expansion ia. To make sufficient templates, we cal integrations, we show that chaos occurs for a highly spin-

may need at least the third-order post-Newtonian contribuning test particle. Summary and some remarks follow in Sec.

tion to obtain the S/N ratio required from the observation!V.

[18—20. But this is still under investigation in the world. Throughout this paper we use unitss G=1. We define
The spin effect is also important. The spin terms in Eq.the signature of the metric as-(+,+,+).

(1.1), agp and agg, induce a precession of the orbital plane

through the spin-orbit or spin-spin coupling, resulting in Il. BASIC EQUATIONS
modulation of the gravitational wave formig1,22. In [22], FOR A SPINNING TEST PARTICLE
it is also shown that the orbital plane may behave very A. Pole-dipole approximation

strangely due to the spin effects. We cannot verify whether ) . o o

or not any chaotic behavior occurs in their system. But from 1he equations of motion of a spinning test particle in a
the studies on spin effects in Newtonian dynamics, we knowelativistic spacetime were first derived by Papape{i2gi
that a spin effect can make a motion chaotic. We then expe@nd then reformulated by Dixof24]. Those are a set of

that a relativistic system such as a coalescing binary pulsgduations:

may also show the similar nonlinear phenomena. The gravi- dxc
tational wave form from the system with chaotic motion will — =pH, (2.2
be different from that from a system with a regular motion, dr

for example, a regular precession of the orbital plane as

shown in[21]. The chaos might be too strong to make a DpM:_ ER“ 0'SPT 2.2)
complete template of gravitational waves, or rather it might Dr 2 v ' '
give us new information about astrophysical parameters from

a time series of the observed wave forms. We will discuss st

this problem for a coalescing binary system with highly spin- Dr PV TPV 23

ning bodies elsewhere.

Thus, we believe that a study about spin effects on thavhere 7, v#, p#, and S** are an affine parameter of the
orbital evolution of a relativistic system and its gravitational orbit, the four-velocity of the particle, the momentum, and
wave form is very important from the viewpoint of observa- the spin tensor, respectively.is chosen as the proper time
tions as well as from academic interest. In this paper, t®f the particle in this paper, than‘v,= —1. The multipole
clarify the spin effect on the orbital motion, especially the moments of the particle higher than mass monopole and spin
spin-orbit interaction, we study the motion of a spinning testdipole are ignored. It is called the pole-dipole approximation.
particle around a Schwarzschild black hole. So far, studies We need a supplementary condition which gives a rela-
about a spinning test particle in relativistic spacetime havdion betweerv andp#, becausg” is no longer parallel to
been done by many authors since the basic equations wevé' in the present case. The right-hand siB&1S) of Eq(2.2)
derived by Papapetrdi23] and reformulated by Dixof24]. denotes a spin-orbit coupling through a strong gravitational
Corinaldesi and Papapetrou already discussed a spinning tdigld. We adopt the conditiof24]
particle in Schwarzschild spacetirf@5]. But, apart from the
supplementary condition, from which they adopted a differ- p.S*"=0. 2.4

ep;si%ltj:él?ﬁefg;st?ceepLeast(iaonr:ss;?]rc]id;rsdcl?sﬁs% d(ic?r)r}e ttr:a?%s WT is condition is related to how to choose the center of mass
P q ﬁtl an extended body, and this choice gives a consistent con-

sg%’;‘lcfrlolrgtjp\;g t\i‘/“?)?;' ;hfged(;d ng%iigflgzget?ne Erebrlfso'rndition [35]. Using Eq.(2.4) we can write down the relation
P y Y X betweernv* and p* explicitly, that is,

Kerr-Newman spacetime was also analyzed by several au-

thors[26—-34. In [26—-28, the effective potential of the spin-

ning particle is given and the spin effects on the binding v*=N|u*+

energy are discussed. [[82,33, the gravitational waves pro-

duced by a spinning particle falling into a Kerr black hole or,nere

moving circularly around it are discussed and the energy

emission rate from those systems is calculated. But in those 1

papers they discussed only the case of the orbit in the equa- A=1+ FRaﬁyﬁsaﬁsyav (2.6

torial plane or on the symmetric axis of the black hole. Since H

we are interested in chaotic motion induced by spin-orbitgng

coupling here, we have to discuss the most generic situation,

i.e., the orbital motion off the equatorial plane. I\ po e, By
This paper is organized as follows. In Sec. Il we shall N= 1_WSWUAS’“’R SHUS Ragys|

briefly review the basic equations, i.e., the equations of mo- 2.7

tion for a spinning test particle in relativistic spacetime, a

supplementary condition, and some constants of motion. Wes a normalization constant fixed byv*=—1.u"=p”/u is

specify the background spacetime to be a Schwarzschild unit vector parallel to the momentypfi, where the mass of

black hole, then we write down those equations and introthe particlew is defined by

S**uMR

Z,U,ZA V)\pO'SpU ' (25)

-1/2
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2=—p,p”. 2.8 J
a PP &9 Sﬂf/’:r—z—cota, (2.18
This system has several conserved quantities. Regardless of
the symmetry of the background spacetime, it is easy to
show thatu and the magnitude of spi§, defined b
o g p y Sl— % (2.19
1
S’= 585", (2.9
. st _gp Pe . (2.20
are constants of motiof81]. If a geometry possesses some r sirfe
symmetry described by a Killing vect@® associated with
the symmetry, we can show that Sl(i=r,0,¢) are fixed from Eq(2.4) with Egs.(2.18-
1 (2.20 as
CEfﬂpM_Eéﬂ;vS/” (21@
S P P -J (2.2
is also conservefl4]. P, PoTSireg ~ VPs ) :

B. Spinning particle in Schwarzschild spacetime

Py
As for the background spacetime, we assume a Schwarzs- Sw:r_pt( PrPst TCOW) : (2.22
child spacetime: i.e.,

ds?=—f(r)dt®+f(r) " 1dr2+r?(d 6>+ sirfod ¢?) 1 PPy JIP
’ th— _ L L
(2.12) S rpt(‘] r sin20+ . cotﬂ). (2.23
where
The energy conservation equati¢hl13 is now
2M
f(ry=1— —, (2.12
' L[ o P
. . E:_pt+_r§ p0+SW_0_Jp¢ . (2.29
with M being the mass of the black hole. Because the space- Pt
time is static and spherically symmetric, there are two Kill-
ing vector fieldsgﬁ) and 5&) . From Eq.(2.10, we find the The procedure to give initial conditions for calculating the

constants of motion related with those Killing vectors as ~ orbital evolution of the particle is as follows. First, we give
constants of motios, J, andE with which the motion of the
_ . particle is bounded to a compact region of the spacetime. We
E=—Cp=—P— r_ZS ’ (.13 will discuss how to do it in detail in the next subsection. We
set the particle on the equatorial plafies /2 with r=r,
= —=p,—r(S —rgf® i and ¢=0. Next, we give the spatial components of the spin
I=Cly=py=r (S —rsMeot)simy. (214 tensorS=(S%?,S%",5'%). S?¢ vanishes at= /2 from Eq.
E andJ, are interpreted as the energy of the particle and thé2.18), which means that the initial spin is perpendicular to
z Component of the total angu|ar momentum, respective|y-th.e- radi_al direction. The last parameter we need to choose
Because the spacetime is spherically symmetric,xtrend  initially is,
y components of the total angular momentum are also con-

served. Then, we have two additional constants of motion as S
a=arctangy, (2.29
Jy= —Pgsing — p scotdcosp+ r2S?sir? fsing
i i 0
+rS¥sinfcosgsing +rS'‘cosp, (219 \hich determines the direction of the spin. Note that0
) 2bgir? and 7 denote the spin anti-parallel and parallel to the posi-
Jy=P4C0Sp— pycotfsing +r°S7sin" dcosp tive z direction, respectively. In this case the orbit of the
+rS% sinfcosicosp— S ’sing. (2.16 particle is always restricted to the equatorial plane and chaos

never occurs. We assumé2< o< 37/2, which corresponds

Because the background is spherically symmetric, without0 the case that the component of spin points to the same

total angular momentum as since the particle cannot get into any relativistic region, the
spin-orbit interactiofRHS of Eq.(2.2)] can be neglected.
(Jx.Jy.J,)=(0,0,0), (2.17  Then, the motion of the particle becomes same as that of a

spinless particle, which is completely integrable, and chaos
whereJ>0. Three constraint equatiorf2.14—(2.16 with never occurs.
Eq. (2.17) are reduced to From Eq.(2.9) with Egs.(2.189—(2.25, we find that
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S 12
Sd’r = — % cos,
VI%sirfa+ u ro
1.15
PS .
Sfl=— —————sina. (2.26
\stin2a+,u2rg 11
Inserting Egs(2.19 and(2.20 with these equations into Eq. 3 4/V(+)
(2.24 (at 6=m/2), we get the quadratic equation far. S 105
Solving it and inserting the result into E@.26, we find the
initial values forp,, S. p,, p,, andS" are determined from
Eqgs.(2.19—(2.23 andp' is given by use of Eq(2.9). i
C. Contour of zero meridian momentum
as an “effective potential” 095 \
Since we are interested in chaotic behavior of a particle Vz_)
orbit, we analyze a test particle which does not escape to 09
infinity and does not fall into a black hole. Therefore, we 0 5 10 15 20 25 30
have to choose appropriate parameters of the partgld, r[M]

and S. If we have an effective potential, such a choice is _ _ _

easy. For example, for a spinless particle traveling around a FIG. 1. The “effective potentialV(.., on the equatorial plane
Schwarzschild black hole with the orbital angular momen-for J=4uM andS=1uM. We see that the particle M_) moves
tum L, whose motion is restricted to a plafeg., the equa- in the region closer to the event horizon=2M) than that in
torial planed= m/2), the effective potential of the particle is V(+)-

given as
where
V3(r:L) (1 M 2+ Lz) (2.2 M sinhX
rnL=\l——/u"* =] . sinhX 4
r r Vi) (r,60;,5) = u| Y2CoSK (+\+ mp———
(=) 7§12 costK )

Since the region where the particle with the eneEjgan Jsing
move is given byW2(r)<E?, it is easy to choose the energy < —sinhx(ﬂﬂ, (2.31
E such that the particle will move in a compact region. -

In the case of a spinning particle, because the spin-orbit
coupling (2.2) is not a potential force and an additional dy- an
namical variable, i.e., the direction of the spin, exists, we
cannot find any effective potential in the two-dimensional ) 212, 2617
r-6 plane. To know the region where the particle can move, SinkX . = pdrsing | pJ7r7sing
however, we do not need to find an effective potential itself. ()7 12r2—SPf — | (u?r?—Sf)2
Rather, we need to know only the boundary of such a region,

i.e., a curve in the -0 plane where botlp" and p? vanish. (P2-R)f+ 2—Mstin20 2
From Eq.(2.19, S"? also vanishes there, which means that r
the spin lies in the meridian plane and there remains no free- B wlr’—sf - (232
dom of the spin direction¢=0 or 7). From Eq.(2.8) with
p'=p’=0, we can set The subscript £) corresponds to the direction of the spin,
i.e., if thez component of the spin is in the same direction as
pe=— uf%costX, that of the total angular momentumS{ <0, i.e.,
o m2<a<3m/2), we takeV_, while if it is the opposite
Py = ursingsinhX, (228  (st'>0, ie., —wl2<a<ml2), V(4 should be applied.

Note thatS?" never changes its signature during the evolu-
tion. ImposingS=0 and #=m/2, V(- is reduced to the
conventional effective potential for a spinless particle in a
Schwarzschild black hole, i.e., E§2.27). The derivation
also shows that the particle with enerBycan move in the
) 2™, region of ther-6 plane such thav(zi)(r,a;J,S)<E2. Then,
+(I7T=SH+ ——J sin9=0. (229 e shall callv(r, 8;J,S) the “effective potential” of a spin-
ning particle in Schwarzschild spacetime.
Finally, from Eq.(2.13, we obtain the equation for such a  The typical shape of the potential on the equatorial plane
curve as is shown in Fig. 1. From this figure, we can see that the
particle in the potential/_y can move closer to the event
E=V(+\(r,6,3,9), (2.30 horizon {=2M) than that in the potentia¥/(,y. This is

whereX(r, #) is an unknown function. Inserting this into Eq.
(2.9 with Egs.(2.18—(2.20, we find the equation foX as

(u?r2—S2f)sink?X — 2 wJrsindsinhX
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FIG. 2. Four different types of the “effective potentiaV. The saddle point of the potential is marked by a cré@sOnly one saddle
point exists on the equatorial plane. This potential is similar to that for a spinless particle. Chaos never occurs in thjsToasesaddle
points are found on both sides of the equatorial plane. The orbit can be cliapti¢hend is very small, the centrifugal force is too small
to balance with the gravity and then no bound region is found. This potential is also similar to that for a spinless (@hriibis.also has
no bound region. But its shape is different from that@f There exists a saddle point on the equatorial plane. This point is locally minimal
in ther direction but maximal ird direction. The particle will eventually fall into the black hole after leaving the equatorial plane.

because the spin-orbit interaction is a repulsive force if theeffect is small, the shape of the potential is similar to that for
spin is parallel to the orbital angular momentum and it will a spinless particle. We call this potential tyil). The orbit
balance with the gravity, so that a stable periodic orbit closein this case never becomes chaotic. Figute) Zhows the
to the event horizon becomes possible without falling intopotential which has two saddle points off the equatorial plane
the black hole. If the direction of the spin is opposite, we findand one minimal point on the equatorial plane. The saddle
the reverse. Such a spin-orbit interaction is induced througpoints are located symmetrically on opposite sides of the
the gravitational interaction as the RHS of Eg.2), which  equatorial plane. We call this potential ty@2). For fixed
breaks the integrability of the particle motion. Since we arel, asS gets larger, typg€B1) changes into typ€B2). This
interested in chaotic behavior, a large spin-orbit interactiorhappens because a repulsive spin-orbit interaction is angle
may be more interesting. Hence, in this paper, we study onlgependent. The “effective potentials” shown in both Figs.
particle motion in a strong gravitational field, i.e., in the 2(c) and Zd) have no bound region, although the latter case
potential V(. In what follows, we drop the subscript has a saddle point on the equatorial plane. The particle will
(—). eventually fall into a black hole. We call those potentials
OnceJ andS are given, we can depict a contour map oftype (U1) and (U2), respectively. These potentials appear
V(r,0;3,S), with which we find an allowed region where a when J is small enough, i.e., the centrifugal force is too
particle withE can move. We find that the “effective poten- small to balance with the gravity. The tyfg1) potential is
tial” V is classified into four types depending drand S. similar to that for a spinless particle. In the case of tiig2),
These are given in Fig. 2. In Fig(&, the potential has one however, the situation is slightly different. Because the
saddle and one minimal point on the equatorial plane, whiclsaddle point marked by a cross in FigdRis minimal in the
appears whers is small compared withl. Since the spin r direction and maximal in the direction, a particle will
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Type(U2) but the points will be distributed randomly in the allowed
region. From the distribution of the points in Poincanep,

we can judge whether or not the motion is chaotic. The
Lyapunov exponent is another method to judge the occur-
rence of chaos and it also gives a naive estimation of the
strength of chaos quantitatively. This denotes how fast the
close orbits in the phase space will diverge in future. The
Lyapunov exponenk is defined by

14 ¢
12
1.0
038
r=lim Lin

am
t—o t ‘d(O) ' 3.

S[uM]

06 |

whered(t) is the distance at timebetween two neighboring

points in the phase space. If the orbit is chaotic, themill

converge to some positive value, which means that the dis-

tance will diverge exponentially with a typical time scale

o . m=\"1. For a particle moving along a geodesic, we can

3.5 4.0 4.5 5.0 calculate the Lyapunov exponent by integration of the equa-
JuM] tion of geodesic deviation;

04 |
i Type(B1)
02 |

FIG. 3. The types of the “effective potential” are classified by D2n* .
J andS. The value ofS at the bottom end of the typ&2) region D2
is slightly smaller than &M.

—R*,,,v"nv7, (3.2

wheren* is a deviation vector. In the present case, however,

gradually depart from the equatorial plane and fall into abecause a spinning test particle does not move along a geo-
black hole. There is a potential barrier on the equatoriadesic as discussed in Sec. Il, we need another way to esti-
plane from the repulsive spin-orbit interaction. mate the Lyapunov exponent. Here, we have adopted the

We show in Fig. 3 what values af and S belong to  method developed by Sano and Sawg@ig to estimate the
which types. Because typéB2) and (U2) never appear in Lyapunov exponent. We prepare a time series p¢f),
the case of a spinless particle, we conclude that such strangét), v”(t), and v*(t), where p and z are defined by
behavior in those potentials is induced by a spin effect. Ap=rsind and z=rcos, and calculate the Lyapunov expo-
we will show later, we find that it is only for the typ@2) nent from such a set of data. The way to calculate the
that the particle motion can be chaotic. Note that the value okyapunov exponent is as follows. Lt;|i=0,1,2, .. .} de-
S at the bottom end of théU2) region is slightly smaller note a set of points on some orbit in the four-dimensional
than 1uM, i.e., atS~0.987uM. Hence, the typgU2) stil  phase space, i.e.x=[p(iAt),z(iAt),v?(iAt),v*(iAt)]
appears with physically meaningful values®andJ, as we whereAt is a small time interval. A set of “deviation vec-
will discuss soon. tors” {y;} at a pointx; is defined by

{yi}={x —xi| 0<[x —xil<e}, (3.3
ll. NUMERICAL RESULTS
where e is a small constant chosen appropriately. After the
evolution of a time intervaimAt, the orbital pointx; will

Using the Bulirsch-Stoer method6], we integrate the proceed tox; ., and neighboring point, to X, .. The
equations of motion numerically for various values of Pa-yaviation vectorg; are thereby mapped tb '
I

rametersk, J, and S and various initial configurations of
ro anda. As for the dynamical variables, we solve all com- y-(m)=xk . (3.4
ponents of the position vectar, of the momentunp#, and ' i e
of the spin tensorS*”, and use the constraint equations
(2.4),(2.8),(2.9), (2.13—(2.16 to check the accuracy of our
numerical integration. After f0orbital periods, which is the
end of our numerical calculation, the relative errors are _ 1 ,

smaller than 10™ for each constraint. The methods with A= lim et 2 Inf| Af™n', (3.5
which we analyze the chaotic behavior are the Poinozap . =t

and the Lyapunov exponent. To make the Poincaap, we  where{n'} is a set of arbitrary unit vectors. If the system is
adopt the equatorial planed€ m/2) as a Poincarsection chaotic,\ will be positive and will not depend on choice of
and plot the pointi(,v") when the particle crosses the Poin- At, €, m, and{n'}.

care section withv?<0. If the motion is not chaotic, the Figure 4 shows the Poincaraaps for the total angular
plotted points form a closed curve in the two-dimensionalmomentumJ=4 uM and for several values of the spi
r-v" plane, because a regular orbit will move on a torus in= 0.4—1.4 uM. As for the spin of a particle with mags, we
the phase space and the curve is a cross section of the torusually expect that< O(u?). In fact, for a rotating Kerr

If the orbit is chaotic, some of those tori will be broken andblack hole with mas$/ and angular momentuid, we have
the Poincaremap does not consist of a set of closed curveghe inequalityJ<M?, where the equality holds in the ex-

A. Chaos in Schwarzschild black hole

where transformation is described by a mat#¥"” . Then,
the Lyapunov exponent is calculated by
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FIG. 4. The Poincarenaps for various values @&. All orbits have the total angular momentuiw4.0uM. We setp"=0 initially. (a)
S=0.4uM andE=0.976 983 9%.: The initial position for each torus i5,=3.8, 6.0, and 88I. (b) S=0.6uM, E=0.967 309 9%, and the
initial position isry=3.6, 5.5, 8.0, and 12M. (c) S=0.8uM, E=0.958 155 68, andr,=3.7, 4.2, 6.0, and 8M. (d) S=1.0uM,
E=0.947 381 62, and(1) ro=5M, (2) 3.9M (chaotig, (3) 3.72M. The orbits in two-dimensional configuration space are shown in Fig. 5.
(e) S=1.2uM, E=0.935 455 6, andr,=3.86, 4.2, 5.2, and 6M. (f) S=1.4uM, E=0.922 929 4L, andry,=4.5, 5.0, 5.7, and 7\8.
Very strong chaos occurs in this case, although it may be unrealistic.

treme limit. Therefore, for the present case,(m;+m,), M=m;+m,, and for the spin of the first relativ-
SuM=(Su?) - u/M<O(u/M) should be much smaller istic star 1, Sll,uMzsl/mlmzz(sllmf)-mllmz. Then,
than unity for a test particle, for which we assume thatwe haveS;/uM=S;/mi<0O(1) for the case ofn;=m,.
n<<M. However, if we would extend our analysis to the caseTherefore,S;/uM can be large as unity. Because the value
of a relativistic binary system with masseg andm,, we  of S=1uM is not a mathematical special bouf@8], we
may find thatS/uM~1 as follows.u and M should be will analyze the case d&>1uM as well in order to see the
regarded as the reduced and total masses,d.em;m,/  spin effect more clearly.
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3 5 7 9 11 13 FIG. 6. The Lyapunov exponent of each orbit shown in Fig. 5.
PIM] We find that the orbi(2) is strongly chaotic. The ratio of the in-

verse Lyapunov exponent Xl r, to the average orbital period
FIG. 5. The orbit in the two-dimensional configuration spaceTp is also shown.
corresponding to each torus in Figd#[(1)—(3)]. (1) This orbit is
almost perpendicular to the equatorial plane. The initial position i5E<Esp, whereE 4= V(r & is the potential energy at the
near the minimum point of the “effective potential(2) The cha-  saddle point ,; the particle must have energy~E ¢, and
otic orbit. The particle approaches the saddle points marked by g, positionr », and the angle of the spia must be appro-

pross.(s) Contrary to the orbit shown i(ﬂ.),this orbit is cons.,tr.a.ined priately chosen in order for the particle to approach the
in the very narrow area near the equatorial plane. The initial POSig44dle point

tion is located near the edge of the “effective potential.”

From Figs. 4a) and 4b), which correspond to the type B. Transition from regular to chaos
(B1) potential, we find that the tori are not appreciably bro- . . .
ken. Therefore, chaos is quite limited. On the other hand, in Here, we shall briefly discuss a mechanism for the occur-
the case of the typ&2) potential, which is shown in Figs. rence of chaos. L . . .
4(c)-4(f), we see that some tori are broken, which means Figure 8 shows the Poincamap of five orbits with
that chaos occurs for such orbits. This is the first example of ~ 3-8WM, S=1uM, and E=0.923. Note that
chaotic behavior in the motion of a test particle in a £ sp= 0.928% for this case. When the.value E is small
Schwarzschild spacetime. The sea of chaos spreads in the%@ough' the system becqmes _approxmate.ly integrable and
Poincaresections as increases. We conclude that this cha- W& ¢annot see the chaotic orbit but four different types of
otic behavior is induced by the spin effect. orbits.

Figure 5 shows the orbit in the two-dimensional configu-
ration space corresponding to each tof(§—(3)] in Fig.

4(d) (S=1uM). The orbit(1) is almost perpendicular to the 0.006

equatorial plane. The initial position is near the minimum e

point of the “effective potential.” The orbi{2) is chaotic

and the particle approaches the saddle points. The @i 0.005

constrained in the very narrow area near the equatorial plane

contrary to the orbifl). The initial positions are located near 0.004

the edge of the “effective potential.” In Fig. 6, we present g

the Lyapunov exponenta for orbits (1)—(3) in Fig. 5. >
,<

. /Tp is also given, wherél, is the mean orbital period 0.003

averaged after Forotations around a black hole, /Tp gives

a naive estimation for how many rotations we expect before 0002 |-
the chaotic behavior becomes distinct. We may justify that ;
the orbit(2) is strongly chaotic because of the large positive ’ ’
value of its Lyapunov exponent.

Is there any critical value of the spin for occurrence of ~
chaos? If it is determined by the potential type, we obtain 0 2o
S¢=0.635uM for J=4uM from Fig. 3. To confirm this, 05 T()j 09 11 13 15
we plot the Lyapunov exponeitin terms of the value of the
spin S in Fig. 7. After S reaches the critical valu,, \ Ser S [uM]
increases remarkably, which supports our conclusion.

From our numerical investigation, we find several condi- FIG. 7. The Lyapunov exponeitin terms of the value of spin
tions for the occurrence of chaos when setting up the initiak, WhenS becomes larger than the critical valGg,~0.635M,
data: A particle must move in the tyg®2) potential; the beyond which we find chaos, increases rapidly. This supports the
particle must be bounded in a compact region, i.e.notion of a critical value of the spin for occurrence of chaos.

0.001
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01 The next question is what causes the existence of (iype
|~ Hyperbolic Fixed Point  orpjts. Although we do not have a definite answer now, we
find some correlation between an appearance of such an orbit
and the type of “effective potential.” ASS decreases, the
type (ii), and then typesiii) and (iv), will vanish and only
the type(i) orbit remains. This transition is seen in Fig. 4.
For the case 0o6=0.8uM [Fig. 4(c)], we cannot find the
type (ii) orbit, and in the cases &=0.6 and 0.4M [Figs.
4(a) and 4b)], all orbits belong to the typ@). The latter case
o . . . belongs to the typ€B1) potential. Hence, it seems that there
35 45 55 65 75 exists some relation between the type of “effective poten-
riM] tial” and an appearance of typéis)—(iv) orbits. We can find
some criterion for chaos using the “effective potential.”

005

fU’V
o
T

-0.05

FIG. 8. The classification of the orbits fod=3.81uM,
S=1uM, andE=0.923u. We find two separatriktype (iv)] which IV. SUMMARY AND DISCUSSION

divide three types of stable orbifsypes (i)—(iii)]. There exists a ) ) ) ) )
heteroclinic orbit starting from one hyperbolic fixed point to the !N this paper, using the pole-dipole approximation, we

other fixed point, which may cause the present chaotic behaviors Study the motion of a spinning test particle near a Schwarzs-
child black hole to clarify its dynamical properties such as a

Type (i). The stable orbits which form a closed curve nearchaos. We find that the motion of the particle can be chaotic
the center of the Poincaraap. under some appropriate conditions. Because the motion of a
Type (ii). The stable orbits which form a closed curve atspinless particle in this spacetime is never chaotic because of
the edge of the Poincareap. its integrability, this chaotic behavior is purely induced by
Type (iii ). The stable orbits which form a closed curve in the spin-orbit interaction. The “effective potential” of the
the upper or lower part of the Poincameap. particle is also introduced to classify the dynamical behav-
Type (iv). The separatrix of the above three types of or-iors. The “effective potentials” are classified into four dif-
bits. Two hyperbolic fixed points in this Poincasection ferent types depending on the total angular momentwand
exist. the spinS. WhenJ is large, some orbits are bounded and the
It is plausible that the typéiv) orbit plays an important “effective potentials” are classified into two types: for type
role for the occurrence of chaos. In Fig. 8 we can see that théB1) one saddle poinfunstable circular orbjitand one mini-
unstable manifold departing from one hyperbolic fixed pointmal point(stable circular orbjton the equatorial plane exist
seems to join smoothly to the stable manifold of anothefor small spin; and fofB2) two saddle points bifurcate from
hyperbolic fixed point. However, most probably, the two the equatorial plane and one minimal point remains on the
curves intersect at an infinity of “heteroclinic points.” As equatorial plane for large spin. Jfis small, no bound orbits
E increases from this state, the sea of chaos appears arouggist and the potentials are classified into another two types:
the hyperbolic fixed points and spreads into whole Poincaréor type (U1) no extremal point is found for small spin; and
map. Its behavior is shown in Fig. 9. The chaos observedor type (U2) one saddle point appears on the equatorial
here may be caused by a “heteroclinic tangle,” although weplane, which is unstable in the direction perpendicular to the

need further detailed analysis. equatorial plane, for large spin. The typ@il) and(U1) are
E=09234p E =0.92388571
0.1 01
.88, opete .
~%° ) c-o:"&':';,‘
005 ! Vo 005
A ~ Pl - * L =
2o :""-::.../ N s
[ - - \ﬁ l \ ‘%
S el IR |
: I ;
A '\Q“‘,_ ‘pt"" il / s
005 | AL ,.).e'.'-"' 005
RN e
A?'.--'::'.,..'-“'&-: +
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35 45 55 65 75 35 45 55 65 75
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FIG. 9. When the energy increases from that in Fig. 8, the torus gradually spreads out around the heteroclinic orbit in therRgincare
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the same as those for a spinless particle, but the t{p2s APPENDIX: THE BASIC EQUATIONS BY USE

and (U2) are new potentials which appear through a spin- OF SPIN VECTOR

Oéglt couplln_gl. che Cgaﬁtlc beanor: is found only in t?e tﬁpdel In the text, we have used a spin ten&". However, it
(B2) potential. We believe that the appearance of sa ay be sometimes more convenient or more intuitive to de-

points is important, because we find chaos only for the orbit§(ihe the basic equations by use of a spin veSjarwhich
which approach the saddle points.

" : i . is defined by
The critical value of the spin beyond which chaos in-
creases abruptly i$~0.63%uM for J=4uM. We also 1 oo
present the Lyapunov exponent, which increases rapidly af- Su=" zewp(,u 7, (A1)

ter the spinS gets larger than the above critical value. This

supports the use of the “effective potential” as a criterion Which gives the constraint
for chaos. The typical value of the Lyapunov exponent is us —0 A2)
about several orbital periods of the particle, which may be- PTo, =Y.

come important in some relativistic astrophysical phenom- e equations of motiof2.1)—(2.3) are now

ena.

In a real astrophysical system such as a binary system, the dx*
symmetry of the system is lower than that of the present szﬂ' (A3)
case. There may be other important effects, in addition to the
spin-orbit interaction, which make the motion more compli- Du* - b pec
cated. Then, we may expect that chaos occurs even in the Dr ;R vpol "U"S”, (A4)
real system, or that the other effects stabilize the system and
chaos will never be found. We need further analysis taking DS* ok B yes
into account the other effects such as the spin-spin interac- Dr Y (RG5y5S"0PU”SY), (A5)

tion or a force due to multipole moments, even if we adopt a

test particle analysi§39]. As for the spin-spin interaction, where

we can analyze a spinning test particle in a rotating Kerr

black hole. In our preliminary analysis by the “effective po- R*@B — ERaﬁpU&_

tential” near the equatorial plane, the critical value of the 78

spin for chaos gets smaller as the angular momentum of th

black hole becomes larger. The detailed analysis is unde

investigation. 1
Another important point is whether or not such a chaotic vH= N( u¥— —*R* ““ﬁysauﬁsy , (A7)

behavior, if it exists, affects any realistic astrophysical or M

physical phenomena. One of the important targets for Sucalhere

an investigation is a coalescing binary system, where we

need general relativity, in particular relativistic dynamics of 1 1

compact objects as we mentioned in Sec. I. To examine it, *RvaoEEfuvaﬁR* “Bp(,zzew,aﬁR“B’/ﬁeww,

since we have studied here only the condition for occurrence (A8)

of chaos, then we next have to know the evolution of the

system including emission of gravitational waves. The parand N is the normalization constant determined from

ticle traveling around a black hole emits the gravitational,, ,~=_1. The supplementary condition to fix the center of
waves, extracting the energy and the angular momenturfass is

from the system. This will tell us whether or not the evolu-

tionary path will get into the region of parameter space v,S=0. (A9)
where chaos will take place. We then have to calculate the ' . _ '
emission rates of the energy and the angular momengm, The spin vector is perpendicular tq the foqr-yelomty as we
andJ for the present systefi82,33, and follow the evolu- expected. Note that,, S*"#0. Equation(2.9) is just

tion. P=9s,. (A10)

payd: (A6)

he relation between the four-velocity and the momentum is

In what follow, we assume a Schwarzschild black hole as
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Conversely, Eqs(A11)—(A14) with Egs. (2.4 and (All),
give

TR
06—
r2sing ="’ (A15)
o _ LIS
S 2550, (A16)
o _ 3 (A17)
r2sing =%’
where
S,=S,~ —u,. (A18)

Ut

Using Eqs.(2.18—(2.23, Egs.(A11)—(Al14) are now

~ J
o r_ 2
Sf_ut[ (1+fuy)cos], (A19)
- T u
S”:u_t J(sina—furTacosﬁ) —% , (A20)
~ T . Uy
S‘/’:u_t p63|n0—qurTc039 , (A21)
Up .
S;=J| —fu,cos+ Tsma . (A22)
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S, =0, (A23)
r
So—u—t(J—pd,), (A24)
~ T
t
As for the angle of the spia, we find that
S,
a=arctan=—. (A26)
Sy
Using this definition with(A10), we have
2
—~ ,LLSrO
= Cow, A27)
\/Mer+JZSin2a (
- sr?
i’ sina. (A28)

S, =
¢ \/Mzrg-i-JZSinza

Ug,u, are then some functions af through Eqs(A24) and
(A25). Inserting them into the energy conservation equation
(2.24), we obtain the quadratic equation for. We also have
Eq. (2.8 for u,. Solving them, we can finally set up the
initial data ofu* and S*.

Setting p,=p,=0 and using Eqs(2.8) and (A10), we
find the “effective potential”’(2.30). After giving J, S, and
E and setting initial data, we can solve the dynamical equa-

This expression already includes the constants of motion fations (A3) and (A4) with algebraic equationéA7), (A19)—

the angular momentum.
The initial direction of the spin vector at=ry,
0=ml2, $=0 is given by the equations

(A22), although here we have solved for all variables using
the dynamical equations in order to estimate the accuracy by
the constraint equations.
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