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We study the motion of a spinning test particle in Schwarzschild spacetime, analyzing the Poincare´ map and
the Lyapunov exponent. We find chaotic behavior for a particle with spin higher than some critical value~e.g.,
Scr;0.635mM for the total angular momentumJ54mM ), wherem andM are the masses of a particle and of
a black hole, respectively. The inverse of the Lyapunov exponent in the most chaotic case is about five orbital
periods, which suggests that chaos of a spinning particle may become important in some relativistic astro-
physical phenomena. The ‘‘effective potential’’ analysis enables us to classify the particle orbits into four types
as follows. When the total angular momentumJ is large, some orbits are bounded and the ‘‘effective poten-
tials’’ are classified into two types:~B1! one saddle point~unstable circular orbit! and one minimal point
~stable circular orbit! on the equatorial plane exist for small spin; and~B2! two saddle points bifurcate from the
equatorial plane and one minimal point remains on the equatorial plane for large spin. WhenJ is small, no
bound orbits exist and the potentials are classified into another two types:~U1! no extremal point is found for
small spin; and~U2! one saddle point appears on the equatorial plane, which is unstable in the direction
perpendicular to the equatorial plane, for large spin. The types~B1! and ~U1! are the same as those for a
spinless particle, but the potentials~B2! and ~U2! are new types caused by spin-orbit coupling. The chaotic
behavior is found only in the type~B2! potential. The ‘‘heteroclinic orbit,’’ which could cause chaos, is also
observed in type~B2!. @S0556-2821~97!06806-9#

PACS number~s!: 04.70.Bw, 95.10.Fh

I. INTRODUCTION

Chaos is now one of the most important ideas used to
explain various nonlinear phenomena in nature. Since the
research on the three-body problem by Poincare´, many stud-
ies about chaos in celestial mechanics and astrophysics have
been done and have revealed the important role of chaos in
the Universe@1,2#. Although we know many features of
chaos in Newtonian dynamics, we do not know, so far, so
much about those in general relativity. If gravity is strong,
e.g., a close binary system or a particle near a black hole, we
have to use Einstein’s theory of gravitation. Because the
gravitational field in general relativity is nonlinear, we may
find a new type of chaotic behavior in strong gravitational
fields, which does not appear in Newtonian dynamics@3–5#.
In a previous paper@6#, we studied a criterion for chaos of a
test particle motion around anN-black hole system~or an
N-naked singularity system! and found that a local instability
determined by the Riemann curvature tensor provides us a
sufficient test for chaos. We also found that the existence of
an unstable circular orbit, which guarantees the existence of
a homoclinic or heteroclinic orbit, plays a crucial role for
chaos. However, the relativistic systems analyzed so far by
several authors@6–13#, in which chaotic behavior of a test
particle is found, are rather unrealistic@6–11#, except for the
perturbed spacetimes of the Schwarzschild black hole solu-
tion @12,13#. As for the other interesting cases of systems, for
example, theN-extreme black hole system@7–9# is unstable,
the existence of a strong uniform magnetic field around a
black hole@10# is not likely, and naked singularities@6# may

not exist. We may wonder whether any realistic relativistic
system can be chaotic and when chaos may play an impor-
tant role in such a relativistic astrophysical phenomena.

In astrophysics, rotation of a system plays a quite impor-
tant role. The angular momentum or spin may completely
change the evolution of the system. In a dynamical system,
rotation or spin is one of the most important elements and it
may sometime cause chaotic behavior. We also know that
some spin-orbit interaction induces chaos in Newtonian
gravity. This may also be true in a relativistic system such as
the evolution of a binary system. The motion of coalescing
binary systems of neutron stars and/or black holes is very
important to study because they are promising sources of
gravitational waves, which we are planning to detect by
large-scale laser interferometric gravitational observatories,
such as US LIGO@14#. If we will detect the signal of gravi-
tational waves emitted from these systems and compare it
with theoretical templates, we may be able to determine a
variety of astrophysical parameters of the sources such as
their direction, distance, masses, spin, and so on@15#. In
order to extract exact information about such sources from
the observed signal we need the exact theoretical templates
of the gravitational wave forms. To make such templates, it
is very important to know the exact motion of sources.
Hence, the equations of motion in the post-Newtonian ex-
pansion in terms of a small parametere'(v/c)2;GM/r
have been studied by many authors@16#. Those can be writ-
ten schematically as

d2x

dt2
5aN1aPN

~1!1aSO
~3/2!1a2PN

~2! 1aSS
~2!1aRR

~5/2!1O~a~3!!, ~1.1!

where the subscripts N, PN, SO, 2PN, SS, and RR denote
Newtonian, post-Newtonian, spin-orbit coupling, second
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post Newtonian, spin-spin coupling, and radiation reaction
terms, respectively@17#; and the superscript corresponds to
the order of expansion ine. To make sufficient templates, we
may need at least the third-order post-Newtonian contribu-
tion to obtain the S/N ratio required from the observation
@18–20#. But this is still under investigation in the world.

The spin effect is also important. The spin terms in Eq.
~1.1!, aSO andaSS, induce a precession of the orbital plane
through the spin-orbit or spin-spin coupling, resulting in
modulation of the gravitational wave forms@21,22#. In @22#,
it is also shown that the orbital plane may behave very
strangely due to the spin effects. We cannot verify whether
or not any chaotic behavior occurs in their system. But from
the studies on spin effects in Newtonian dynamics, we know
that a spin effect can make a motion chaotic. We then expect
that a relativistic system such as a coalescing binary pulsar
may also show the similar nonlinear phenomena. The gravi-
tational wave form from the system with chaotic motion will
be different from that from a system with a regular motion,
for example, a regular precession of the orbital plane as
shown in @21#. The chaos might be too strong to make a
complete template of gravitational waves, or rather it might
give us new information about astrophysical parameters from
a time series of the observed wave forms. We will discuss
this problem for a coalescing binary system with highly spin-
ning bodies elsewhere.

Thus, we believe that a study about spin effects on the
orbital evolution of a relativistic system and its gravitational
wave form is very important from the viewpoint of observa-
tions as well as from academic interest. In this paper, to
clarify the spin effect on the orbital motion, especially the
spin-orbit interaction, we study the motion of a spinning test
particle around a Schwarzschild black hole. So far, studies
about a spinning test particle in relativistic spacetime have
been done by many authors since the basic equations were
derived by Papapetrou@23# and reformulated by Dixon@24#.
Corinaldesi and Papapetrou already discussed a spinning test
particle in Schwarzschild spacetime@25#. But, apart from the
supplementary condition, from which they adopted a differ-
ent equation for the present standard one@Eq. ~2.4!#, they
presented the basic equations and discussed some terms with
physical interpretations. They did not analyze the orbits in
detail from a viewpoint of the dynamical system. Kerr or
Kerr-Newman spacetime was also analyzed by several au-
thors@26–34#. In @26–28#, the effective potential of the spin-
ning particle is given and the spin effects on the binding
energy are discussed. In@32,33#, the gravitational waves pro-
duced by a spinning particle falling into a Kerr black hole or
moving circularly around it are discussed and the energy
emission rate from those systems is calculated. But in those
papers they discussed only the case of the orbit in the equa-
torial plane or on the symmetric axis of the black hole. Since
we are interested in chaotic motion induced by spin-orbit
coupling here, we have to discuss the most generic situation,
i.e., the orbital motion off the equatorial plane.

This paper is organized as follows. In Sec. II we shall
briefly review the basic equations, i.e., the equations of mo-
tion for a spinning test particle in relativistic spacetime, a
supplementary condition, and some constants of motion. We
specify the background spacetime to be a Schwarzschild
black hole, then we write down those equations and intro-

duce a sort of ‘‘effective potential,’’ which enables us to
classify the particle behavior. In Sec. III, performing numeri-
cal integrations, we show that chaos occurs for a highly spin-
ning test particle. Summary and some remarks follow in Sec.
IV.

Throughout this paper we use unitsc5G51. We define
the signature of the metric as (2,1,1,1).

II. BASIC EQUATIONS
FOR A SPINNING TEST PARTICLE

A. Pole-dipole approximation

The equations of motion of a spinning test particle in a
relativistic spacetime were first derived by Papapetrou@23#
and then reformulated by Dixon@24#. Those are a set of
equations:

dxm

dt
5vm, ~2.1!

Dpm

Dt
52

1

2
R nrs

m vnSrs, ~2.2!

DSmn

Dt
5pmvn2pnvm, ~2.3!

where t, vm, pm, and Smn are an affine parameter of the
orbit, the four-velocity of the particle, the momentum, and
the spin tensor, respectively.t is chosen as the proper time
of the particle in this paper, thenvmvm521. The multipole
moments of the particle higher than mass monopole and spin
dipole are ignored. It is called the pole-dipole approximation.

We need a supplementary condition which gives a rela-
tion betweenvm andpm, becausepm is no longer parallel to
vm in the present case. The right-hand side~RHS! of Eq.~2.2!
denotes a spin-orbit coupling through a strong gravitational
field. We adopt the condition@24#

pmS
mn50. ~2.4!

This condition is related to how to choose the center of mass
in an extended body, and this choice gives a consistent con-
dition @35#. Using Eq.~2.4! we can write down the relation
betweenvm andpm explicitly, that is,

vm5NFum1
1

2m2D
SmnulRnlrsS

rsG , ~2.5!

where

D511
1

4m2RabgdS
abSgd, ~2.6!

and

N5F12
1

4D2m2SmnulSrsR
nlrsSmaubSgdRabgdG21/2

,

~2.7!

is a normalization constant fixed byvnv
n521. un[pn/m is

a unit vector parallel to the momentumpn, where the mass of
the particlem is defined by
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m252pnp
n. ~2.8!

This system has several conserved quantities. Regardless of
the symmetry of the background spacetime, it is easy to
show thatm and the magnitude of spinS, defined by

S2[
1

2
SmnS

mn, ~2.9!

are constants of motion@31#. If a geometry possesses some
symmetry described by a Killing vectorjm associated with
the symmetry, we can show that

C[jmpm2
1

2
jm;nS

mn ~2.10!

is also conserved@24#.

B. Spinning particle in Schwarzschild spacetime

As for the background spacetime, we assume a Schwarzs-
child spacetime: i.e.,

ds252 f ~r !dt21 f ~r !21dr21r 2~du21sin2udf2!,
~2.11!

where

f ~r !512
2M

r
, ~2.12!

with M being the mass of the black hole. Because the space-
time is static and spherically symmetric, there are two Kill-
ing vector fields,j (t)

m andj (f)
m . From Eq.~2.10!, we find the

constants of motion related with those Killing vectors as

E[2C~ t !52pt2
M

r 2
Str , ~2.13!

Jz[C~f!5pf2r ~Sfr2rSufcotu!sin2u. ~2.14!

E andJz are interpreted as the energy of the particle and the
z component of the total angular momentum, respectively.
Because the spacetime is spherically symmetric, thex and
y components of the total angular momentum are also con-
served. Then, we have two additional constants of motion as

Jx52pusinf2pfcotucosf1r 2Sufsin2usinf

1rSfrsinucosusinf1rSrucosf, ~2.15!

Jy5pucosf2pfcotusinf1r 2Sufsin2ucosf

1rSfrsinucosucosf2rSrusinf. ~2.16!

Because the background is spherically symmetric, without
loss of generality we can choose thez axis in the direction of
total angular momentum as

~Jx ,Jy ,Jz!5~0,0,J!, ~2.17!

whereJ.0. Three constraint equations~2.14!–~2.16! with
Eq. ~2.17! are reduced to

Suf5
J

r 2
cotu, ~2.18!

Sru52
pu

r
, ~2.19!

Sfr5
1

r S 2J1
pf

sin2u D . ~2.20!

Sti( i5r ,u,f) are fixed from Eq.~2.4! with Eqs.~2.18!–
~2.20! as

Str52
1

rpt
S pu

21
pf
2

sin2u
2JpfD , ~2.21!

Stu5
1

rpt
S prpu1

Jpf

r
cotu D , ~2.22!

Stf52
1

rpt
S Jpr2 prpf

sin2u
1
Jpu

r
cotu D . ~2.23!

The energy conservation equation~2.13! is now

E52pt1
1

ptr
3 S pu

21
pf
2

sin2u
2JpfD . ~2.24!

The procedure to give initial conditions for calculating the
orbital evolution of the particle is as follows. First, we give
constants of motionS, J, andE with which the motion of the
particle is bounded to a compact region of the spacetime. We
will discuss how to do it in detail in the next subsection. We
set the particle on the equatorial planeu5p/2 with r5r 0
andf50. Next, we give the spatial components of the spin
tensorS5(Suf,Sfr ,Sru). Suf vanishes atu5p/2 from Eq.
~2.18!, which means that the initial spin is perpendicular to
the radial direction. The last parameter we need to choose
initially is,

a[arctan
Sru

Sfr , ~2.25!

which determines the direction of the spin. Note thata50
andp denote the spin anti-parallel and parallel to the posi-
tive z direction, respectively. In this case the orbit of the
particle is always restricted to the equatorial plane and chaos
never occurs. We assumep/2<a<3p/2, which corresponds
to the case that thez component of spin points to the same
direction as that of the total angular momentum. Otherwise,
since the particle cannot get into any relativistic region, the
spin-orbit interaction@RHS of Eq. ~2.2!# can be neglected.
Then, the motion of the particle becomes same as that of a
spinless particle, which is completely integrable, and chaos
never occurs.

From Eq.~2.9! with Eqs.~2.18!–~2.25!, we find that
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Sfr52
ptS

AJ2sin2a1m2r 0
2
cosa,

Sru52
ptS

AJ2sin2a1m2r 0
2
sina. ~2.26!

Inserting Eqs.~2.19! and~2.20! with these equations into Eq.
~2.24! ~at u5p/2), we get the quadratic equation forut .
Solving it and inserting the result into Eq.~2.26!, we find the
initial values forpt , S. pu , pf , andS

ti are determined from
Eqs.~2.19!–~2.23! andpr is given by use of Eq.~2.8!.

C. Contour of zero meridian momentum
as an ‘‘effective potential’’

Since we are interested in chaotic behavior of a particle
orbit, we analyze a test particle which does not escape to
infinity and does not fall into a black hole. Therefore, we
have to choose appropriate parameters of the particle,E, J,
and S. If we have an effective potential, such a choice is
easy. For example, for a spinless particle traveling around a
Schwarzschild black hole with the orbital angular momen-
tum L, whose motion is restricted to a plane~e.g., the equa-
torial planeu5p/2), the effective potential of the particle is
given as

V2~r ;L !5S 12
2M

r D S m21
L2

r 2 D . ~2.27!

Since the region where the particle with the energyE can
move is given byV2(r ),E2, it is easy to choose the energy
E such that the particle will move in a compact region.

In the case of a spinning particle, because the spin-orbit
coupling ~2.2! is not a potential force and an additional dy-
namical variable, i.e., the direction of the spin, exists, we
cannot find any effective potential in the two-dimensional
r -u plane. To know the region where the particle can move,
however, we do not need to find an effective potential itself.
Rather, we need to know only the boundary of such a region,
i.e., a curve in ther -u plane where bothpr andpu vanish.
From Eq.~2.19!, Sru also vanishes there, which means that
the spin lies in the meridian plane and there remains no free-
dom of the spin direction (a50 or p). From Eq.~2.8! with
pr5pu50, we can set

pt52m f 1/2coshX,

pf5mrsinusinhX, ~2.28!

whereX(r ,u) is an unknown function. Inserting this into Eq.
~2.9! with Eqs.~2.18!–~2.20!, we find the equation forX as

~m2r 22S2f !sinh2X22mJrsinusinhX

1~J22S2! f1
2M

r
J2sin2u50. ~2.29!

Finally, from Eq.~2.13!, we obtain the equation for such a
curve as

E5V~6 !~r ,u;J,S!, ~2.30!

where

V~6 !~r ,u;J,S!5mF f 1/2coshX~6 !1
MsinhX~6 !

f 1/2rcoshX~6 !

3S Jsinumr
2sinhX~6 !D G , ~2.31!

and

sinhX~6 ![
mJrsinu

m2r 22S2f
6F m2J2r 2sin2u

~m2r 22S2f !2

2

~J22S2! f1
2M

r
J2sin2u

m2r 22S2f
G 1/2. ~2.32!

The subscript (6) corresponds to the direction of the spin,
i.e., if thez component of the spin is in the same direction as
that of the total angular momentum (Sfr,0, i.e.,
p/2,a,3p/2), we takeV(2) , while if it is the opposite
(Sfr.0, i.e., 2p/2,a,p/2), V(1) should be applied.
Note thatSfr never changes its signature during the evolu-
tion. ImposingS50 and u5p/2, V(6) is reduced to the
conventional effective potential for a spinless particle in a
Schwarzschild black hole, i.e., Eq.~2.27!. The derivation
also shows that the particle with energyE can move in the
region of ther -u plane such thatV(6)

2 (r ,u;J,S),E2. Then,
we shall callV(r ,u;J,S) the ‘‘effective potential’’ of a spin-
ning particle in Schwarzschild spacetime.

The typical shape of the potential on the equatorial plane
is shown in Fig. 1. From this figure, we can see that the
particle in the potentialV(2) can move closer to the event
horizon (r52M ) than that in the potentialV(1) . This is

FIG. 1. The ‘‘effective potential’’V(6) on the equatorial plane
for J54mM andS51mM . We see that the particle inV(2) moves
in the region closer to the event horizon (r52M ) than that in
V(1) .
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because the spin-orbit interaction is a repulsive force if the
spin is parallel to the orbital angular momentum and it will
balance with the gravity, so that a stable periodic orbit closer
to the event horizon becomes possible without falling into
the black hole. If the direction of the spin is opposite, we find
the reverse. Such a spin-orbit interaction is induced through
the gravitational interaction as the RHS of Eq.~2.2!, which
breaks the integrability of the particle motion. Since we are
interested in chaotic behavior, a large spin-orbit interaction
may be more interesting. Hence, in this paper, we study only
particle motion in a strong gravitational field, i.e., in the
potential V(2) . In what follows, we drop the subscript
(2).

OnceJ andS are given, we can depict a contour map of
V(r ,u;J,S), with which we find an allowed region where a
particle withE can move. We find that the ‘‘effective poten-
tial’’ V is classified into four types depending onJ andS.
These are given in Fig. 2. In Fig. 2~a!, the potential has one
saddle and one minimal point on the equatorial plane, which
appears whenS is small compared withJ. Since the spin

effect is small, the shape of the potential is similar to that for
a spinless particle. We call this potential type~B1!. The orbit
in this case never becomes chaotic. Figure 2~b! shows the
potential which has two saddle points off the equatorial plane
and one minimal point on the equatorial plane. The saddle
points are located symmetrically on opposite sides of the
equatorial plane. We call this potential type~B2!. For fixed
J, asS gets larger, type~B1! changes into type~B2!. This
happens because a repulsive spin-orbit interaction is angle
dependent. The ‘‘effective potentials’’ shown in both Figs.
2~c! and 2~d! have no bound region, although the latter case
has a saddle point on the equatorial plane. The particle will
eventually fall into a black hole. We call those potentials
type ~U1! and ~U2!, respectively. These potentials appear
when J is small enough, i.e., the centrifugal force is too
small to balance with the gravity. The type~U1! potential is
similar to that for a spinless particle. In the case of type~U2!,
however, the situation is slightly different. Because the
saddle point marked by a cross in Fig. 2~d! is minimal in the
r direction and maximal in theu direction, a particle will

FIG. 2. Four different types of the ‘‘effective potential’’V. The saddle point of the potential is marked by a cross.~a! Only one saddle
point exists on the equatorial plane. This potential is similar to that for a spinless particle. Chaos never occurs in this case.~b! Two saddle
points are found on both sides of the equatorial plane. The orbit can be chaotic.~c! WhenJ is very small, the centrifugal force is too small
to balance with the gravity and then no bound region is found. This potential is also similar to that for a spinless particle.~d! This also has
no bound region. But its shape is different from that of~c!. There exists a saddle point on the equatorial plane. This point is locally minimal
in the r direction but maximal inu direction. The particle will eventually fall into the black hole after leaving the equatorial plane.
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gradually depart from the equatorial plane and fall into a
black hole. There is a potential barrier on the equatorial
plane from the repulsive spin-orbit interaction.

We show in Fig. 3 what values ofJ and S belong to
which types. Because types~B2! and ~U2! never appear in
the case of a spinless particle, we conclude that such strange
behavior in those potentials is induced by a spin effect. As
we will show later, we find that it is only for the type~B2!
that the particle motion can be chaotic. Note that the value of
S at the bottom end of the~U2! region is slightly smaller
than 1mM , i.e., atS;0.987mM . Hence, the type~U2! still
appears with physically meaningful values ofS andJ, as we
will discuss soon.

III. NUMERICAL RESULTS

A. Chaos in Schwarzschild black hole

Using the Bulirsch-Stoer method@36#, we integrate the
equations of motion numerically for various values of pa-
rametersE, J, and S and various initial configurations of
r 0 anda. As for the dynamical variables, we solve all com-
ponents of the position vectorxm, of the momentumpm, and
of the spin tensorSmn, and use the constraint equations
~2.4!,~2.8!,~2.9!, ~2.13!–~2.16! to check the accuracy of our
numerical integration. After 103 orbital periods, which is the
end of our numerical calculation, the relative errors are
smaller than 10211 for each constraint. The methods with
which we analyze the chaotic behavior are the Poincare´ map
and the Lyapunov exponent. To make the Poincare´ map, we
adopt the equatorial plane (u5p/2) as a Poincare´ section
and plot the point (r ,v r) when the particle crosses the Poin-
caré section withvu,0. If the motion is not chaotic, the
plotted points form a closed curve in the two-dimensional
r -v r plane, because a regular orbit will move on a torus in
the phase space and the curve is a cross section of the torus.
If the orbit is chaotic, some of those tori will be broken and
the Poincare´ map does not consist of a set of closed curves

but the points will be distributed randomly in the allowed
region. From the distribution of the points in Poincare´ map,
we can judge whether or not the motion is chaotic. The
Lyapunov exponent is another method to judge the occur-
rence of chaos and it also gives a naive estimation of the
strength of chaos quantitatively. This denotes how fast the
close orbits in the phase space will diverge in future. The
Lyapunov exponentl is defined by

l[ lim
t→`

1
t
lnU d~ t !

d~0!
U , ~3.1!

whered(t) is the distance at timet between two neighboring
points in the phase space. If the orbit is chaotic, thenl will
converge to some positive value, which means that the dis-
tance will diverge exponentially with a typical time scale
tl[l21. For a particle moving along a geodesic, we can
calculate the Lyapunov exponent by integration of the equa-
tion of geodesic deviation;

D2nm

Dt2
52R nrs

m vnnrvs, ~3.2!

wherenm is a deviation vector. In the present case, however,
because a spinning test particle does not move along a geo-
desic as discussed in Sec. II, we need another way to esti-
mate the Lyapunov exponent. Here, we have adopted the
method developed by Sano and Sawada@37# to estimate the
Lyapunov exponent. We prepare a time series ofr(t),
z(t), vr(t), and vz(t), where r and z are defined by
r[rsinu and z[rcosu, and calculate the Lyapunov expo-
nent from such a set of data. The way to calculate the
Lyapunov exponent is as follows. Let$xi u i50,1,2, . . .% de-
note a set of points on some orbit in the four-dimensional
phase space, i.e.,xi5@r( iDt),z( iDt),vr( iDt),vz( iDt)#
whereDt is a small time interval. A set of ‘‘deviation vec-
tors’’ $yi% at a pointxi is defined by

$yi%5$xki2xi u 0,ixki2xi i,e%, ~3.3!

wheree is a small constant chosen appropriately. After the
evolution of a time intervalmDt, the orbital pointxi will
proceed toxi1m and neighboring pointsxki to xki1m . The

deviation vectorsyi are thereby mapped to

yi
~m!5xki1m2xi1m , ~3.4!

where transformation is described by a matrixAi
(m) . Then,

the Lyapunov exponentl is calculated by

l5 lim
n→`

1
nmDt (

i51

n
lniAi

~m!ni i , ~3.5!

where$nj% is a set of arbitrary unit vectors. If the system is
chaotic,l will be positive and will not depend on choice of
Dt, e, m, and$ni%.

Figure 4 shows the Poincare´ maps for the total angular
momentumJ54 mM and for several values of the spinS
5 0.421.4mM. As for the spin of a particle with massm, we
usually expect thatS<O(m2). In fact, for a rotating Kerr
black hole with massM and angular momentumJ, we have
the inequalityJ<M2, where the equality holds in the ex-

FIG. 3. The types of the ‘‘effective potential’’ are classified by
J andS. The value ofS at the bottom end of the type~U2! region
is slightly smaller than 1mM .
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treme limit. Therefore, for the present case,
S/mM5(S/m2)•m/M<O(m/M ) should be much smaller
than unity for a test particle, for which we assume that
m!M . However, if we would extend our analysis to the case
of a relativistic binary system with massesm1 andm2, we
may find thatS/mM;1 as follows.m and M should be
regarded as the reduced and total masses, i.e.,m5m1m2/

(m11m2), M5m11m2, and for the spin of the first relativ-
istic star 1, S1 /mM5S1 /m1m25(S1 /m1

2)•m1 /m2. Then,
we haveS1 /mM5S1 /m1

2<O(1) for the case ofm15m2.
Therefore,S1 /mM can be large as unity. Because the value
of S51mM is not a mathematical special bound@38#, we
will analyze the case ofS.1mM as well in order to see the
spin effect more clearly.

FIG. 4. The Poincare´ maps for various values ofS. All orbits have the total angular momentumJ54.0mM . We setpr50 initially. ~a!
S50.4mM andE50.976 983 96m: The initial position for each torus isr 053.8, 6.0, and 8.0M . ~b! S50.6mM , E50.967 309 99m, and the
initial position is r 053.6, 5.5, 8.0, and 12.0M . ~c! S50.8mM , E50.958 155 68m, and r 053.7, 4.2, 6.0, and 8.0M . ~d! S51.0mM ,
E50.947 381 62m, and~1! r 055M , ~2! 3.9M ~chaotic!, ~3! 3.72M . The orbits in two-dimensional configuration space are shown in Fig. 5.
~e! S51.2mM , E50.935 455 65m, andr 053.86, 4.2, 5.2, and 6.0M . ~f! S51.4mM , E50.922 929 41m, andr 054.5, 5.0, 5.7, and 7.6M .
Very strong chaos occurs in this case, although it may be unrealistic.
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From Figs. 4~a! and 4~b!, which correspond to the type
~B1! potential, we find that the tori are not appreciably bro-
ken. Therefore, chaos is quite limited. On the other hand, in
the case of the type~B2! potential, which is shown in Figs.
4~c!–4~f!, we see that some tori are broken, which means
that chaos occurs for such orbits. This is the first example of
chaotic behavior in the motion of a test particle in a
Schwarzschild spacetime. The sea of chaos spreads in these
Poincare´ sections asS increases. We conclude that this cha-
otic behavior is induced by the spin effect.

Figure 5 shows the orbit in the two-dimensional configu-
ration space corresponding to each torus@~1!–~3!# in Fig.
4~d! (S51mM ). The orbit~1! is almost perpendicular to the
equatorial plane. The initial position is near the minimum
point of the ‘‘effective potential.’’ The orbit~2! is chaotic
and the particle approaches the saddle points. The orbit~3! is
constrained in the very narrow area near the equatorial plane
contrary to the orbit~1!. The initial positions are located near
the edge of the ‘‘effective potential.’’ In Fig. 6, we present
the Lyapunov exponentsl for orbits ~1!–~3! in Fig. 5.
tl /TP is also given, whereTP is the mean orbital period
averaged after 102 rotations around a black hole.tl /TP gives
a naive estimation for how many rotations we expect before
the chaotic behavior becomes distinct. We may justify that
the orbit~2! is strongly chaotic because of the large positive
value of its Lyapunov exponent.

Is there any critical value of the spin for occurrence of
chaos? If it is determined by the potential type, we obtain
Scr50.635mM for J54mM from Fig. 3. To confirm this,
we plot the Lyapunov exponentl in terms of the value of the
spin S in Fig. 7. After S reaches the critical valueScr , l
increases remarkably, which supports our conclusion.

From our numerical investigation, we find several condi-
tions for the occurrence of chaos when setting up the initial
data: A particle must move in the type~B2! potential; the
particle must be bounded in a compact region, i.e.,

E,E sp, whereE sp5V(r sp) is the potential energy at the
saddle pointr sp; the particle must have energyE;E sp and
the positionr 0, and the angle of the spina must be appro-
priately chosen in order for the particle to approach the
saddle point.

B. Transition from regular to chaos

Here, we shall briefly discuss a mechanism for the occur-
rence of chaos.

Figure 8 shows the Poincare´ map of five orbits with
J53.81mM , S51mM , and E50.923m. Note that
E sp50.9288m for this case. When the value ofE is small
enough, the system becomes approximately integrable and
we cannot see the chaotic orbit but four different types of
orbits.

FIG. 5. The orbit in the two-dimensional configuration space
corresponding to each torus in Fig. 4~d! @~1!–~3!#. ~1! This orbit is
almost perpendicular to the equatorial plane. The initial position is
near the minimum point of the ‘‘effective potential.’’~2! The cha-
otic orbit. The particle approaches the saddle points marked by a
cross.~3! Contrary to the orbit shown in~1!, this orbit is constrained
in the very narrow area near the equatorial plane. The initial posi-
tion is located near the edge of the ‘‘effective potential.’’

FIG. 6. The Lyapunov exponent of each orbit shown in Fig. 5.
We find that the orbit~2! is strongly chaotic. The ratio of the in-
verse Lyapunov exponent 1/l[tl to the average orbital period
TP is also shown.

FIG. 7. The Lyapunov exponentl in terms of the value of spin
S. WhenS becomes larger than the critical valueScr;0.635mM ,
beyond which we find chaos,l increases rapidly. This supports the
notion of a critical value of the spin for occurrence of chaos.
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Type~i!. The stable orbits which form a closed curve near
the center of the Poincare´ map.

Type ~ii !. The stable orbits which form a closed curve at
the edge of the Poincare´ map.

Type ~iii !. The stable orbits which form a closed curve in
the upper or lower part of the Poincare´ map.

Type ~iv!. The separatrix of the above three types of or-
bits. Two hyperbolic fixed points in this Poincare´ section
exist.

It is plausible that the type~iv! orbit plays an important
role for the occurrence of chaos. In Fig. 8 we can see that the
unstable manifold departing from one hyperbolic fixed point
seems to join smoothly to the stable manifold of another
hyperbolic fixed point. However, most probably, the two
curves intersect at an infinity of ‘‘heteroclinic points.’’ As
E increases from this state, the sea of chaos appears around
the hyperbolic fixed points and spreads into whole Poincare´
map. Its behavior is shown in Fig. 9. The chaos observed
here may be caused by a ‘‘heteroclinic tangle,’’ although we
need further detailed analysis.

The next question is what causes the existence of type~iv!
orbits. Although we do not have a definite answer now, we
find some correlation between an appearance of such an orbit
and the type of ‘‘effective potential.’’ AsS decreases, the
type ~ii !, and then types~iii ! and ~iv!, will vanish and only
the type~i! orbit remains. This transition is seen in Fig. 4.
For the case ofS50.8mM @Fig. 4~c!#, we cannot find the
type ~ii ! orbit, and in the cases ofS50.6 and 0.4mM @Figs.
4~a! and 4~b!#, all orbits belong to the type~i!. The latter case
belongs to the type~B1! potential. Hence, it seems that there
exists some relation between the type of ‘‘effective poten-
tial’’ and an appearance of types~ii !–~iv! orbits. We can find
some criterion for chaos using the ‘‘effective potential.’’

IV. SUMMARY AND DISCUSSION

In this paper, using the pole-dipole approximation, we
study the motion of a spinning test particle near a Schwarzs-
child black hole to clarify its dynamical properties such as a
chaos. We find that the motion of the particle can be chaotic
under some appropriate conditions. Because the motion of a
spinless particle in this spacetime is never chaotic because of
its integrability, this chaotic behavior is purely induced by
the spin-orbit interaction. The ‘‘effective potential’’ of the
particle is also introduced to classify the dynamical behav-
iors. The ‘‘effective potentials’’ are classified into four dif-
ferent types depending on the total angular momentumJ and
the spinS. WhenJ is large, some orbits are bounded and the
‘‘effective potentials’’ are classified into two types: for type
~B1! one saddle point~unstable circular orbit! and one mini-
mal point~stable circular orbit! on the equatorial plane exist
for small spin; and for~B2! two saddle points bifurcate from
the equatorial plane and one minimal point remains on the
equatorial plane for large spin. IfJ is small, no bound orbits
exist and the potentials are classified into another two types:
for type ~U1! no extremal point is found for small spin; and
for type ~U2! one saddle point appears on the equatorial
plane, which is unstable in the direction perpendicular to the
equatorial plane, for large spin. The types~B1! and~U1! are

FIG. 8. The classification of the orbits forJ53.81mM ,
S51mM , andE50.923m. We find two separatrix@type~iv!# which
divide three types of stable orbits@types ~i!–~iii !#. There exists a
heteroclinic orbit starting from one hyperbolic fixed point to the
other fixed point, which may cause the present chaotic behaviors.

FIG. 9. When the energy increases from that in Fig. 8, the torus gradually spreads out around the heteroclinic orbit in the Poincare´ map.
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the same as those for a spinless particle, but the types~B2!
and ~U2! are new potentials which appear through a spin-
orbit coupling. The chaotic behavior is found only in the type
~B2! potential. We believe that the appearance of saddle
points is important, because we find chaos only for the orbits
which approach the saddle points.

The critical value of the spin beyond which chaos in-
creases abruptly isS;0.635mM for J54mM . We also
present the Lyapunov exponent, which increases rapidly af-
ter the spinS gets larger than the above critical value. This
supports the use of the ‘‘effective potential’’ as a criterion
for chaos. The typical value of the Lyapunov exponent is
about several orbital periods of the particle, which may be-
come important in some relativistic astrophysical phenom-
ena.

In a real astrophysical system such as a binary system, the
symmetry of the system is lower than that of the present
case. There may be other important effects, in addition to the
spin-orbit interaction, which make the motion more compli-
cated. Then, we may expect that chaos occurs even in the
real system, or that the other effects stabilize the system and
chaos will never be found. We need further analysis taking
into account the other effects such as the spin-spin interac-
tion or a force due to multipole moments, even if we adopt a
test particle analysis@39#. As for the spin-spin interaction,
we can analyze a spinning test particle in a rotating Kerr
black hole. In our preliminary analysis by the ‘‘effective po-
tential’’ near the equatorial plane, the critical value of the
spin for chaos gets smaller as the angular momentum of the
black hole becomes larger. The detailed analysis is under
investigation.

Another important point is whether or not such a chaotic
behavior, if it exists, affects any realistic astrophysical or
physical phenomena. One of the important targets for such
an investigation is a coalescing binary system, where we
need general relativity, in particular relativistic dynamics of
compact objects as we mentioned in Sec. I. To examine it,
since we have studied here only the condition for occurrence
of chaos, then we next have to know the evolution of the
system including emission of gravitational waves. The par-
ticle traveling around a black hole emits the gravitational
waves, extracting the energy and the angular momentum
from the system. This will tell us whether or not the evolu-
tionary path will get into the region of parameter space
where chaos will take place. We then have to calculate the
emission rates of the energy and the angular momentum,Ė

and J̇ for the present system@32,33#, and follow the evolu-
tion.
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APPENDIX: THE BASIC EQUATIONS BY USE
OF SPIN VECTOR

In the text, we have used a spin tensorSmn. However, it
may be sometimes more convenient or more intuitive to de-
scribe the basic equations by use of a spin vectorSm , which
is defined by

Sm52
1

2
emnrsu

nSrs, ~A1!

which gives the constraint

pmSm50. ~A2!

The equations of motion~2.1!–~2.3! are now

dxm

dt
5vm, ~A3!

Dum

Dt
52

1

m
R nrs* m vnurSs, ~A4!

DSm

Dt
52

1

m
um~Rabgd* SavbugSd!, ~A5!

where

R gd* ab [
1

2
Rabrsersgd . ~A6!

The relation between the four-velocity and the momentum is

vm5NS um2
1

m2*R bg* ma Sau
bSgD , ~A7!

where

*Rmnrs* [
1

2
emnabR rs* ab 5

1

4
emnabR

abgdegdrs ,

~A8!

and N is the normalization constant determined from
vmv

m521. The supplementary condition to fix the center of
mass is

vmS
m50. ~A9!

The spin vector is perpendicular to the four-velocity as we
expected. Note thatvmS

mnÞ0. Equation~2.9! is just

S25SmSm . ~A10!

In what follow, we assume a Schwarzschild black hole as
the background spacetime. We write down explicitly the re-
lation ~A1! betweenSmn andSm as

St52r 2sinu@urSuf1uuSfr1ufSru#, ~A11!

Sr5r 2sinu@utSuf2uuStf1ufStu#, ~A12!

Su5r 2sinu@utSfr2ufStr1urStf#, ~A13!

Sf5r 2sinu@utSru2urStu1uuStr #. ~A14!
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Conversely, Eqs.~A11!–~A14! with Eqs. ~2.4! and ~A11!,
give

Suf52
ut

r 2sinu
S̃r , ~A15!

Sfr52
ut

r 2sinu
S̃u , ~A16!

Sru52
ut

r 2sinu
S̃f , ~A17!

where

S̃m[Sm2
St
ut
um . ~A18!

Using Eqs.~2.18!–~2.23!, Eqs.~A11!–~A14! are now

S̃r5
J

ut
@2~11 f ur

2!cosu#, ~A19!

S̃u5
r

ut
FJS sinu2 f ur

uu

r
cosu D2

pf

sinuG , ~A20!

S̃f5
r

ut
S pusinu2J fur

uf

r
cosu D , ~A21!

St5JS 2 f urcosu1
uu

r
sinu D . ~A22!

This expression already includes the constants of motion for
the angular momentum.

The initial direction of the spin vector atr5r 0 ,
u5p/2, f50 is given by the equations

S̃r50, ~A23!

S̃u5
r

ut
~J2pf!, ~A24!

S̃f5
r

ut
pu . ~A25!

As for the angle of the spina, we find that

a5arctan
S̃f

S̃u

. ~A26!

Using this definition with~A10!, we have

S̃u5
mSr0

2

Am2r 0
21J2sin2a

cosa, ~A27!

S̃f5
mSr0

2

Am2r 0
21J2sin2a

sina. ~A28!

uu ,uf are then some functions ofut through Eqs.~A24! and
~A25!. Inserting them into the energy conservation equation
~2.24!, we obtain the quadratic equation forut . We also have
Eq. ~2.8! for ur . Solving them, we can finally set up the
initial data ofum andSm.

Setting pr5pu50 and using Eqs.~2.8! and ~A10!, we
find the ‘‘effective potential’’~2.30!. After giving J, S, and
E and setting initial data, we can solve the dynamical equa-
tions ~A3! and ~A4! with algebraic equations~A7!, ~A19!–
~A22!, although here we have solved for all variables using
the dynamical equations in order to estimate the accuracy by
the constraint equations.
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