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We discuss the existence of instantonic decay modes which would indicate a semiclassical instability of the
vacua of 10- and 11-dimensional supergravity theories. Decay modes whose spin structures are incompatible
with those of supersymmetric vacua have previously been constructed, and we present generalizations includ-
ing those involving nontrivial dilaton and antisymmetric tensor fields. We then show that the requirement that
any instanton describing supersymmetric vacuum decay should admit both a zero momentum hypersurface
from which we describe the subsequent Lorentzian evolution and a spin structure at infinity compatible with
the putative vacuum excludes all such decay modes, except those with unphysical energy-momentum tensors
which violate the dominant energy condition.@S0556-2821~97!02508-3#

PACS number~s!: 04.65.1e, 04.60.Gw, 11.25.Mj

I. INTRODUCTION

Supergravity theories exist in all space-time dimensions
d with d<11 and are currently regarded as effective field
theories of superstring~andM ) theories in some appropriate
limit. Classical solutions of the theories can be found by
setting to zero the fermionic fields together with their super-
symmetric variations. We look for a vacuum in which the
space time is of the formB43K, whereB4 is a maximally
symmetric four-dimensional space~de Sitter space, anti-de
Sitter space, or Minkowski space! andK is a compact mani-
fold; such a solution is consistent with the low-energy field
equations, with the dilaton field constant, and all other fields
vanishing. The conditions for finding supersymmetric gen-
erators that leave the vacuum invariant restrictB4 to be flat
Minkowski space andK to be a manifold that admits at least
one covariantly constant spinor field. This in turn constrains
the possible holonomy groups ofK; for ten-dimensional
theories,K must have a holonomy contained in SU~3! @1#,
implying that K must have a covering space that isT6,
T23K3, or a Calabi-Yau spaceKSU(3) . Similarly, for 11-
dimensional supergravity, the holonomy ofK is contained in
Spin~7! and K has a covering space that isT7, T33K3,
KSU(3)3S1, or KSpin(7) @where the latter is a manifold with
the exceptional holonomy group Spin~7!# @2#.

It is important to have some criteria for determining
whetherM43K is a reasonable candidate as the ground state
of supergravity theories, but our incomplete understanding of
string ~andM ) theory dynamics makes this question difficult
to answer in full. The constraints above restrict the vacuum
state to be Ricci flat, with the requisite holonomy; we must,
however, also show that the spectrum of the vacuum is stable
and that there are no instantonic decay modes, i.e., we must
thus impose the conditions thatM43K should be stable at
the classical and semiclassical level, which leads to non-
trivial conditions on the vacuum manifold.

The first test of the stability of a space is to ask whether

the space is stable classically against small oscillations.
Small oscillations aroundM43K will consist of a spectrum
of massless states~the graviton, gauge fields, dilaton, etc.!
and an infinite number of charged massive modes. The mass-
less spectrum of the heterotic string theory, which is the
theory that we will consider principally here, has been exten-
sively discussed~see for example@1,3,4,2#!; there are no
exponentially growing modes with imaginary frequencies.
The same applies to that of 11-dimensional supergravity.

Even if a state is stable against small oscillations, it may
be unstable at the semiclassical level. This can occur if it is
separated by only a finite barrier from a more stable state; it
will then be unstable against decay by semiclassical barrier
penetration. To look for a semiclassical instability of a puta-
tive vacuum state, one looks for a bounce solution of the
classical Euclidean field equations; this is a solution which
asymptotically at infinity approaches the putative vacuum
state. If the solution is unstable, then the Gaussian integral
around that solution gives an imaginary part to the energy of
the vacuum state, indicating an instability.

The stability of Minkowski space at the semiclassical
level as the unique vacuum state of general relativity was
proved by the positive energy theorem of Schoen and Yau
@5#. A completely different proof involving spinors satisfying
a Dirac-type equation on a three-dimensional initial value
hypersurface was given by Witten@6#, and shortly after re-
expressed in terms of the Nester tensor@7#. Witten later dem-
onstrated the instability of theM43S1 vacuum of Kaluza-
Klein theory @8#; the effective four-dimensional vacuum
decays into an expanding bubble of ‘‘nothing.’’ However,
this decay mode is excluded by the existence of~massless!
elementary fermions.

Instabilities of nonsupersymmetric vacua of string theo-
ries were discussed by Brill and Horowitz@9# who demon-
strated that superstring theories admit instantonic decay
modes that asymptotically resemble toroidal compactifica-
tions with constant gauge fields~but are incompatible with
massless fermions!. Mazur @10# showed that toroidal com-
pactifications of multidimensional Minkowski space time are
semiclassically unstable due to topology change of the initial*Electronic address: M.M. Taylor-Robinson@damtp.cam.ac.uk
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data hypersurface, and presented Euclidean Schwarzschild
p branes as possible instantons corresponding to tunneling
between different topologies. However, the instantons dis-
cussed by Mazur do not correspond to vacuum instabilities
since they do not take account of the incompatible spinor
structures of the instantons and~supersymmetric! vacua.
Banks and Dixon@11# used conformal field theory arguments
to show that space-time supersymmetry cannot be continu-
ously broken within a family of classical vacua and that two
supersymmetric vacua are infinitely far away. It was sug-
gested in@12# that if one takes into account target space
duality all topology changing instabilities of toroidal vacua
are impossible in the context of string theory.

More recently, another possible decay mode of the
Kaluza-Klein vacua has been constructed by Dowkeret al.
@13,14#. ‘‘Magnetic’’ vacua in Kaluza-Klein theory — vacua
corresponding to static magnetic flux tubes in four dimen-
sions — may decay by pair creation of Kaluza-Klein mono-
poles, though at a much smaller rate than for decay by
bubble formation; the pair creation decay mode is, however,
consistent with the existence of elementary fermions.

In this paper, we investigate further possible decay modes
of the vacua of supergravity theories. Such instantons cer-
tainly do not preserve the supersymmetry of the vacuum,
however, we cannota priori exclude the possibility of the
vacuum decaying into a state which asymptotically admits
the supersymmetry generators of the vacuum. That is, there
may exist solutions to the Euclidean field equations both
whose geometry is asymptotic to that of the background
vacuum state, and whose spin structure at infinity is compat-
ible with that of the supersymmetric vacuum.

In Sec. II we describe the vacua of ten-dimensional super-
gravity theories and discuss new examples of twisted com-
pactifications which give rise to magnetic vacua in four di-
mensions. In the following section, we discuss Ricci-flat
instantons which describe decay of toroidal vacua by bubble
formation and pair creation of monopoles. In Sec. IV we
consider more general instantons, relaxing the assumption of
Ricci flatness, and construct from five-dimensional charged
black hole solutions decay modes involving nonvanishing
dilaton and antisymmetric tensor fields.

In Sec. V we use extremal black hole solutions with non-
degenerate horizons to describe decay modes whose topol-
ogy is not inconsistent with asymptotically covariantly con-
stant spinors, but whose energy momentum tensors are un-
physical, violating the dominant energy condition.

In Sec. VI we discuss more generally the existence of
instantons describing the decay modes of the supersymmetric
vacuum; we consider the formulation of Witten’s proof of
the positive energy theorem and show how this proof ex-
cludes the existence of physical decay modes of a supersym-
metric vacuum. In Secs. VII and VIII we extend the discus-
sion to the Calabi-Yau vacuum of ten-dimensional
supergravity and to the vacua of 11-dimensional supergrav-
ity. Finally, in Sec. IX we present our conclusions.

Note that contrary to globally supersymmetric Yang-Mills
theories, supergravity is not rnormalizable. This puts the en-
tire subject of instanton calculus in supergravity on a rather
shaky basis; if, however, we regard supergravity theories as
low-energy limits of superstring theories, which are not ex-
pected to suffer from these deficiencies, to the order to which

supergravity theories are formally renormalizable results
from nonperturbative instanton calculations may be consid-
ered as the limiting values of the corresponding exact string
theory results@15#.

Since manifolds of many different dimensions will
abound, we will adhere to the following conventions. The
indices M ,N50, . . . ,9; m,n51, . . . ,9; m,n50, . . . ,3;
i , j54, . . . ,9; a,b51, . . . ,3; a,b50, . . . 4; I ,J55, . . . ,9;
A,B50, . . . ,5; F,G56, . . . ,9; w,x50,10; and
f51, . . . ,16. We use the mostly positive convention for
Lorentzian metrics andG will denote metrics in the string
frame whileg denotes metrics in the Einstein frame.c de-
notes induced metrics on boundaries at spatial infinity, while
ĝ denotes induced metrics on spacelike hypersurfaces. Hat-
ted indices refer to an orthonormal frame while unhatted in-
dices refer to coordinate indices.S denotes the Lorentzian
action andSE denotes the Euclidean action.Gd refers to the
Newton constant ind dimensions.

II. VACUA OF SUPERGRAVITY THEORIES

Our starting point is thed510,N51 action that arises as
a low-energy effective field theory from the heterotic string.
We shall consider heterotic string theory for definiteness but
most of the discussion depends only on the common sector
of the low-energy supergravity theory. For the massless
bosonic fields of the theory~gravitonGMN , dilatonF, anti-
symmetric tensorBMN , 16 vector bosonsAM

f ) the action~in
the string frame! takes the form

S5
1

16pG10
E d10xA2Ge2F

3HR~G!1~]F!22
1

12
H22

1

4
Tr~F2!J . ~1!

As in general relativity, this action will give the correct field
equations but in calculating the action we must also include
the surface terms required to ensure unitarity. The corre-
sponding action in the Einstein framegMN5e2(F/4)GMN is

S5
1

16pG10
E d10xA2gHR2

1

8
~]F!22

1

12
e2~F/2!H2

2
1

4
e2~F/4!Tr~F2!J . ~2!

To find classical solutions of the supersymmetric theory, we
set to zero the fermion fields~gravitino cM , dilatino l,
gauginox) together with their supersymmetric variations.
Assuming that all fields vanish except the graviton~and con-
stant dilaton! the conditions for finding a supersymmetric
generatorh that leaves the vacuum invariant reduce to

dcM5DMh50. ~3!

As is well known, and was first shown in@1# ~see also@3#!,
for a vacuum state of the formB43K, whereB4 is a maxi-
mally symmetric four-dimensional space andK is a compact
six manifold, Eq.~3! implies that the maximally symmetric
manifold must be flat Minkowski space, andK must be a
Ricci-flat compact six manifold, which admits at least one
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covariantly constant spinor of each chirality. The holonomy
group ofK is thus constrained to be a subgroup of the ge-
neric holonomy group of a six-dimensional manifold SO~6!,
and hence the covering space ofK must beT6, T23K3, or a
Calabi-Yau space.

The simplest manifold which satisfies Eq.~3! and is Ricci
flat is the flat torus; we may also consider another class of
toroidal vacua which asymptotically tend to static magnetic
configurations in four dimensions. Although these solutions
are nontrivial four-dimensional configurations they are sim-
ply obtained from dimensional reduction of Euclidean space
with twisted identifications. The construction of a static cy-
lindrically symmetric flux tube in four dimensions by dimen-
sional reduction of five-dimensional Minkowski space in
which points have been identified in a nonstandard way was
discussed in@16#, while more recently the construction was
generalized to obtain sets of orthogonal fluxbranes in higher
dimensional space times@14#.

We will now consider a four-dimensional vacuum solu-
tion in which there arep magnetic fields, arising from the
ten-dimensional metric, associated withp distinct U~1! isom-
etry groups. We start with ten-dimensional Minkowskian
space and identify points under combined spatial translations
and rotations: i.e.,

ds252dt21dz21d%21%2dc21(
i

~dxi !2, ~4!

where we identify points (xi ,t,z,%,c);(xi12pm ini ,t,
z,%,c1( i2pBim ini12pn) and 1n,ni are integers. We
will usually assume that them i are identical. Sincec is al-
ready periodic, changing( im

iBi by an integer does not
change the identifications; thus inequivalent space times are
obtained only for21/2,( im

iBi<1/2. Changing eachBi by
a multiple of 1/m i leads to equivalent space times in
(41p) dimensions, though the four-dimensional configura-
tions are not equivalent. Geometrically, this space time is
obtained by starting with Eq.~4! and identifying points along
the closed orbits of the Killing vectorsl i5]xi1Bi]c . Intro-
ducing a new coordinatec̄5c1( iB

ixi , we may rewrite the
metric as

ds252dt21dz21d%21~dxi !21%2S dc̄1(
i
Bidxi D 2.

~5!

Dimensionally reducing along the six Killing vectors
ki5]xi, the four-dimensional metric in the Einstein frame
gmn is related to the ten-dimensional metric by

gMN5S ewgmn1(
i , j

j i j Am
i An

j (
i
Am
i j i j

(
j
An
j j i j j i j

D , ~6!

with Kaluza-Klein gauge fieldsAi and w the four-
dimensional dilaton defined byw5F2 1

2ln(detj i j ). From
Eq. ~5!, we find that

j i i5@11~Bi !2%2#,

j i j5BiBj%2, ~7!

Ac̄
i

5
Bi%2@122( jÞ iB

jAc̄
j
#

11~Bi !2%2 .

The off-diagonal terms in the internal metric imply that the
torus is not a direct product of circles. The four-dimensional
metric is given by

dsEin
2 5S 11(

i
~Bi !2%2D 1/2@2dt21dz21d%2#1gc̄ c̄dc̄2,

~8!

wheregc̄ c̄ is defined by

gc̄ c̄5S 11(
i

~Bi !2%2D 1/2F%22(
i , j

j i j Ac̄
i
Ac̄
j G . ~9!

The gauge fields in four dimensions are obtained by solving
the p simultaneous equations defined in Eq.~7!; in the limit
that only one field is nonzero, the solution reduces to the
static magnetic flux tube. Asymptotically, each gauge field
Ai→(1/pBi); the gauge fields correspond to magnetic fields
which are uniform at infinity.

We may also dimensionally reduce along the Killing vec-
tors k̃ i5ki1(ni /m i)] c̄ ; the corresponding four-dimensional
solution is unchanged, except that the magnetic field is modi-
fied to B̃i5Bi1ni /m i , and in this way all values of the four-
dimensional magnetic fields associated with each U~1! can
be obtained. For everyBiÞ0, the proper length of the circles
in the i th direction grows linearly with% for large%; thus,
we can view the solution as an approximation to physical
fields which is valid only for%!1/Bi , in which range the
three-dimensional space is approximately flat and the inter-
nal circles have approximately constant length. In order for
the internal directions to remain unobservable, we must con-
sider length scales which are large compared to their size:
%@m i . The two restrictions imply a limited range of appli-
cability of the space timeBi!1/m i , which can include large
magnetic fields only if the compactified dimensions are of
the Planck scale. Since the different dimensional reductions
changeBi by multiples of 1/m i , for givenm i , at most one is
physically reasonable.

These solutions can be obtained by the action of generat-
ing transformations on the original Kaluza-Klein solution of
@16#; the required transformations are an O~6! subgroup of
the O~6,22! T-duality group of the four-dimensional theory.
The transformation acts as

Ãm
i 5V i j Am

j , ~10!

j̃5VTjV,

whereV is an O~6!-invariant matrix, and all other fields are
left invariant. The particular transformation required here is
~assuming that the radii of the compactified directions are
identical! R6(kW ), a six-dimensional rotation that rotates an
arbitrary six-dimensional vector in directionkW into a vector
of the same magnitude with only one component nonzero.
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Consider a solution for whichp fields are nonzero and
equal toB

dsein
2 5e2w@2dt21dz21d%2#1%2ewdc̄2,

Ac̄
i

5
B%2

~11pB2%2!
, ~11!

e22w5~11pB2%2!.

This has the interpretation of a flux tube along thez axis,
associated withp magnetic fields, and is the required back-
ground for nucleation of monopoles carrying charges with
respect top U~1! fields.

Even though these space times are locally flat, the non-
trivial identifications imply that if a vector is parallely trans-
ported around eachS1, it will return rotated by an angle
2pm iBi . It follows that for one spin structure, parallel propa-
gation of a spinor around thei th direction results in the
spinor acquiring a phaseepm iBig, whereg is a generator of
the Lie algebra of SO~9,1! ~spinor representation!. For the
other spin structure, parallel propagation gives a phase
2epm iBig. For small Bi , the natural generalization of the
standard choice of spinor structure for a supersymmetric
vacuum is the first choice. The magnetic vacua evidently
admit no covariantly constant spinors, whereas for the stan-
dard metric on the torus, 32 constant spinors are admitted.

Note that the invariance of the low-energy effective action
under the O~6,22! T-duality group, and the invariance of the
equations of motion under SL~2,R! S-duality transformations
allows us to generate further solutions. We apply a particular
S-duality transformation w→w̃52w ~corresponding to
strong/weak coupling interchange!, Fmn

i16→F̃mn
i16

5e22wj i j F̄mn
j ~with F̄ the dual ofF) and Fmn

i →F̃mn
i 50.

Then, rescaling to the string metricGmn5ew̃gmn , the four-
dimensional solution becomes

dsstr
2 5e2w̃~2dt21dz21d%2!1%2dc̄2,

F̃tz
i165

2B

~11B2%2p!1/2
, ~12!

e2w̃5~11B2%2p!.

Thus, the only nonvanishing gauge fields are those originat-
ing from the off-diagonal componentsBm i of the two form in
ten dimensions. The solution describes an ‘‘electric’’ flux
tube, associated withp gauge fields; each gauge field asymp-
totically approaches zero.

By applying a general O~6,22! generating transformation,
we can obtain four-dimensional solutions describing tubes of
magnetic flux associated with the U~1! 28 gauge group of the
heterotic theory; these are the required backgrounds for
nucleation of other topological defects, such asH mono-
poles.

III. RICCI-FLAT INSTANTONS

We first consider instanton solutions of the Euclidean
field equations in ten dimensions, in which all fields except

the graviton and the~constant! dilaton vanish, implying that
RMN50. The asymptotic geometry of the instanton is
R43T6; we defer the discussion of Calabi-Yau vacua to Sec.
VII. Evidently decay modes cannot preserve all the super-
symmetry; 32 constant spinors requires trivial holonomy, im-
plying that the solution admits a flat metric. However, if an
instanton is to describe a possible vacuum decay mode, it
must asymptotically admit the constant spinors of the back-
ground. Vacuum instability — which in many cases will cor-
respond to physical formation processes — will hence result
only from considering nonsupersymmetric states which are
not simple metric products, but rather contain topological
defects such as monopoles orp branes.

The instantons will usually globally admit a U~1! 6 isom-
etry group, as well as a hypersurface orthogonal Killing vec-
tor which we use to Wick rotate the solution to describe the
subsequent Lorentzian evolution. We may also of course
consider instantons which admit such U~1! isometries only
asymptotically, although it is unclear how the effective four-
dimensional solution can be interpreted in this case. Fixed
points of these isometries will lead to apparent singularities
such as bubbles and monopoles in the lower-dimensional
space time; the structure of these fixed point sets determines
whether the instanton has a spin structure consistent with that
of the background.

For a ten-dimensional instanton, the fixed point set must
have dimension 10, 8, 6, 4, 2, 0; the classification of four-
dimensional gravitational instantons in terms of the fixed
points sets of a U~1! isometry was discussed in@17# and
reviewed in@18#. This work has been generalized to higher
dimensions in@14# and @19#.

If the isometry admits no fixed point sets, there isa priori
no obstruction to choosing the spin structure of the instanton
to be consistent with that of the background. If, however, the
fixed point set of the isometry is eight-dimensional, spinors
must be antiperiodic about a closed orbit of the isometry at
infinity and the spin structure is incompatible with that of the
~supersymmetric! vacuum. The twisted boundary conditions
break supersymmetry and, although this supersymmetry
breaking can be made arbitrarily weak by taking the compac-
tified directions to be arbitrarily large, the action of the in-
stanton diverges as the radii approach infinity, implying that
the rate of decay of the vacuum goes to zero.

The obvious example is the five-dimensional Euclidean
Schwarzschild solution crossed with a flat torus~a decay
mode first considered in@6#!:

ds25dxIdxI1S 12
m

r 2Ddt21
dr2

@12m/r 2!]
1r 2dV3

2 ,

~13!

where the periodicity oft is Dt52pAm and the range of
r is r>Am. Since the topology of the solution is
R23S33T5, the spin structure is incompatible with that of
the supersymmetric vacuum. The action for this instanton is
obtained from the boundary term

SE52
1

16pG10
R d9xAc$K2K0%, ~14!
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with K the trace of the second fundamental form of the
boundary at infinity, andK0 the corresponding term in the
background. The action is, hence,

SE5
pm

8G4
~15!

and thus the rate of vacuum decay does indeed vanish as the
radii of the compactified directions increase, that is, as the
supersymmetry breaking becomes arbitrarily weak. Further-
more, the decay rate is small ifAm @ Planck length and it is
only in this case that the semiclassical calculation is reliable.

If the fixed point set of the isometry has dimension less
than eight, the spinors need not necessarily be antiperiodic
about a closed orbit of the isometry at infinity. As an ex-
ample, we may consider dimensional reduction of Eq.~13!
along the Killing vectork5]t1(1/R)]c @13# ~whereR is the
radius of the circle at infinity! which describes monopole
pair creation in a background field. It is possible to choose
the spin structure to be consistent at infinity with that of the
solution describing the background field~5!, but the magni-
tude of the magnetic field lies far outside the physical range
of validity.

As also discussed in@13#, we may consider instantons
which are a product ofT5 and the five-dimensional Euclid-
ean Kerr-Myers-Perry solution

ds25~dxF!21dx21dy21sin2u~r 22a2!~dc!2

1
r2

r 22a22m
dr21r2du21r 2cos2udt2

2
m

r2
@dx1asin2u~dc!#2, ~16!

where the indexF runs over the coordinates of the remaining
T4 andr25r 22a2cos2u. The most general such solution is
labeled by one mass parameter and two angular momentum
parameters„associated with the@S0~2!# 23 O~2! isometry
group…, but for simplicity we take only the mass parameter
m and one angular momentum parametera to be nonzero.

Reduction along]x1(a/m)]c , which has an eight-
dimensional fixed point set, leads to decay of the four-
dimensional vacuum by bubble formation, while reduction

along ]x1@(a/m)1(1/R)#]c , which has a six-dimensional
fixed point set, leads to decay by monopole pair production.
In the latter case, the four-dimensional field
B5(a/m)1(1/R), and for (a/m);2(1/R), we obtain
fields of physical validity. The pair creation decay mode has
a spin structure consistent with that of the magnetic vacuum
and the action for the instanton~16! is

SE5
pR2

8G4@12R2~a/m!2#
, ~17!

so for physicalB!1/R the decay rateG;e2SE is very small.
In Sec. II, we showed that by applying a generating trans-

formation to a solution in which there was a single nonzero
magnetic field in four dimensions we could obtain a solution
in which there were several nonzero~metric! U~1! fields in
four dimensions. Using the same generating techniques here,
we expect to obtain more general solutions describing the
pair creation of monopoles carrying charge with respect to
p U~1! gauge fields in a background ofq U~1! gauge fields
(p,q<6). Monopoles carrying several different charges
have recently been constructed@20# within heterotic string
theory by the supersymmetric uplifting of four-dimensional
monopole solutions; we now discuss their nucleation.

The most general solution Ricci-flat solutions will be ob-
tained from the three parameter five-dimensional Euclidean
Kerr-Myers-Perry solution~constructed in@21#! crossed with
a flat five torus by first applying an O~6! transformation to
j andA and then identifying points along closed orbits of
]xi1Bic, where theBi are chosen so that the action of the
isometry is periodic. We present an illustrative solution, de-
scribing pair creation of monopoles carrying two identical
U~1! charges within two~equal! background fields. We iden-
tify points along closed orbits of]x1B]c and ]y1B]c in
Eq. ~16! and then introducec̄5c2B(x1y). The required
generating transformation is

V5SR2 0

0 I 4
D , ~18!

whereV acts onj andA as in Sec. II A, andR2 generates a
two-dimensional transformation byp/4. The resulting solu-
tion is

ds25~dxF!21S 12
m~11aA2Bsin2u!2

2r2
1B2~r 22a2!sin2u D dx212S 2

m~11aA2Bsin2u!2

2r2

1B2~r 22a2!sin2u D dxdy1S 12
m~11aA2Bsin2u!2

2r2
1B2~r 22a2!sin2u D dy2

1SB2~r 22a2!sin2uA22
masin2~u!~11aA2Bsin2u!A2

2r2 D dxdc̄1SB2~r 22a2!sin2uA2

2
masin2~u!~11aA2Bsin2u!A2

2r2 D dydc̄1
r2

r 22a22m
dr21r2du21r 2cos2udt2

1S ~r 22a2!sin2u2
masin4u

r2 D dc̄2, ~19!
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wherer25r 22a2cos2u. The four-dimensional solution ob-
tained by dimensional reduction along closed orbits of]x and
]y is

ds4
25e2wH r 2cos2udt21

r2

r 22a22m
dr21r2du2

1e2w~r 22a22m!sin2u Ddc̄2%, ~20!

e22w512
m

r2
~11aA2Bsin2u!212B2~r 22a2!sin2u,

Ac̄
x

5
ĝyyĝxc̄2ĝxyĝyc̄

j
,

Ac̄
y

5
ĝxxĝyc̄2ĝxyĝxc̄

j
,

wherej5e22w is the determinant of the metric on the torus;
the ten-dimensional solution is complete and nonsingular. If
we takeB5a/A2m, then the metric is singular over all the
horizon r h

25a22m; the solution describes a generalized
bubble decay mode of the vacuum.

We may also takeB5a/A2m1n/A2R, in which case
e22w vanishes only at the poles of the horizon; this is the
solution describing pair creation of monopoles. The horizon
is a line, which is smooth provided that we taken561; for
unu.1, the singularities at the poles are joined by a string.
Since

R5
m

Aa21m
,

m

a
, ~21!

to obtain four-dimensional magnetic fields of physical mag-
nitude we need eithera/m negative, close to21/R and
n51 or a/m positive, close to 1/R andn521.

Consider the spin structure of the transformed solution. A
spinor parallely transported about an orbit of
l x5]x1a/A2m]c can be shown to pick up a phase of
2epRA2(a/A2m)g; the same phase is picked up by a spinor
transported about an orbit ofl y5]y1a/A2m]c . The four-
dimensional magnetic fields areBx5By5a/A2m, so this de-
cay mode by bubble nucleation is incompatible with the
vacuum spin 1 structure, defined by phases of
epRA2(a/A2m)g.

If we take Bx5By5a/A2m11/A2R and dimensionally
reduce alongl x85 l x11/A2R and l y85 l y11/A2R, then the
phase change about an orbit ofl 8 is found to be
2epR(BA221/R)g5epRBA2g which is consistent with the
vacuum.

The action for this decay mode can be compared to Eq.
~17!; the transformation does not change the action, but after
ensuring that the unit of charge is the same in each case, we
find that

SE~1,1!52SE~1,0!, ~22!

where the notation specifies the charges carried by the mono-
poles. Thence, the rate of decay by creation of monopoles

carrying (1,1) charges is approximately half as large as the
rate of decay by creation of monopoles carrying (1,0)
charges~of the same magnitude!; as we would expect, the
higher the charge, the smaller the rate of decay.

By applying a more general O~6,22! transformation to
these solutions, we might expect to obtain instantons describ-
ing the pair creation of other types of monopoles, such as H
monopoles, within the backgrounds discussed in Sec. II. Al-
though a large class of solutions can be obtained by gener-
ating transformations, most of them will be singular and in-
complete; the nature of the ‘‘dual’’ geometry depends on the
fixed points of the isometry with respect to which we dualize
and fixed points of the isometry in the original solution ge-
nerically become singular points in the dual solution.

For example, the solution appropriate toH-monopole
nucleation is given by the~Buscher! transformation~see@22#
for a review ofT duality in string theory!

g55→1/g55,

Ac̄
1→0, ~23!

B5c̄→Ac̄
1
,

with all other fields invariant. Dualization with respect to the
isometry ]x which has a fixed point set atr5R, u50,p
leads to a solution which is singular at these points~in both
string and Einstein frames!; thus, we cannot interpret the
solution as describing pair creation.

IV. MORE GENERAL INSTANTONS

We have so far discussed only Ricci-flat instantons; evi-
dently, more general decay modes of the vacuum involving
nonzero gauge, antisymmetric tensor, and dilaton fields
should also be taken into account. Consistency with the
background requires that all fields are asymptotically con-
stant; these solutions were considered to some extent in@9#
and we suggest generalizations here.

The decay modes presented in Sec. III involved five-
dimensional Euclidean black-hole solutions, with a nontrivial
topologyR23S33T5 and in looking for generalizations it is
natural to consider electrically charged black-hole solutions
in five dimensions.1 In the following two sections, we work
with the effective five-dimensional action and implicitly take
the product of the five-dimensional solution with a flat torus.
Following the general prescription for dimensional reduction
given in @23#, we obtain from Eq.~1! an action in the string
frame containing the terms

S5
1

16pG5
E d5xA2Ge2f

3HR~G!1~]f!22
1

12
H22

1

4
F2J , ~24!

1Five-dimensional black holes may carry a magnetic charge with
respect to the three-form field strength, but the latter takes the form
H5Pe3, and does not asymptotically vanish, so we need not con-
sider such solutions here.
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with F deriving from the left current algebra and
G55G10/V, whereV is the volume of theT5. Rescaling to
the Einstein framegab5e22f/3Gab , we obtain an action

S5
1

16pG5
E d5xAgHR2

1

3
~]f!22

1

12
e2~4f/3H2

2
1

4
e2~2f/3!F2J . ~25!

We may now invoke Poincare´ string-particle duality in five
dimensions to relate the three form field strength to its dual,

e2fHabc5
1

2!A2G
eabcdeF̄de , ~26!

which gives us the following action in terms of the axionic
field strengthF̄:

S5
1

16pG5
E d5xAgHR2

1

3
~]f!22

1

4
e~4f/3!F̄2

2
1

4
e2~2f/3!F2J . ~27!

In Sec. V we shall consider more general solutions with both
of these gauge fields nontrivial but we begin with a particu-
larly simple five-dimensional~electrically! charged black-
hole solution:

dsstr
2 52

@12~m/r 2!#

S 11
km

r 2 D 2 dt21
dr2

@12~m/r 2!#
1r 2dV3

2 ,

e2f5S 11
km

r 2 D , ~28!

A52
1

A2
msinhd

~r 21km!
dt,

wherek5@cosh(d)21#/2, andA is the gauge potential as-
sociated with the field strengthF. Such a solution was first
constructed in@24#, and the Euclidean section was discussed
in @9#. We define the charge as

Qf5
1

16pE * F ~29!

and, with this convention,Qf5(A2/8)pmsinhd. We now
look for a Euclidean section on which all the fields are real,
by rotating t→ i t. To obtain a real gauge potential on the
Euclidean section, we must also rotateQf→2 iQ f and hence
sinhd→2 i (sind), giving the solution

dsstr
2 5

@12~m/r 2!#

@12~km/r 2!#2
dt21H dr2

@12~m/r 2!#
1r 2dV3

2J ,
~30!

A52
1

A2
sind~r 22m!

~12k!~r 22km!
dt,

wherek5(12cosd)/2 and we have added a pure gauge term
to the potential so thatA2 is nonsingular atr5Am.2 The
coordinater is now restricted tor>Am and we must identify
t with period Dt52p(12k)Am. The limit k50 corre-
sponds to an uncharged solution, while in the limitk51 the
solution becomes singular. Since 0<k,1, the radius at in-
finity becomes smaller ask approaches its maximum value.

By rotating one of the coordinates on the sphere, we ob-
tain

dsstr
2 5

@12~m/r 2!#

@12~km/r 2!#2
dt21

dr2

@12~m/r 2!#
1r 2cosh2t~dV2

2!

2r 2dt2. ~31!

Since there are no terms of order 1/r in the fields, this solu-
tion has zero mass and charge, which is consistent with the
fact that it results from the decay of a vacuum which cer-
tainly has zero mass and charge. Since the topology of the
solution isR23S3, and the Killing vector]t has a fixed
point set of dimension three atr5Am, spinors must be anti-
periodic about the imaginary time direction, which prevents
the solution from describing the decay of a supersymmetric
vacuum.

It is straightforward to calculate the Euclidean action for
this solution; this is most easily done in the string frame,
since we can convert the volume term~24! to a surface term
@9# using the dilaton field equation

SE52
1

8pG5
R d4xAc$~n]e2f!1e2fK2e2f0K0%,

~32!

where we now include the appropriate surface terms~and
f0 is the asymptotic value of the dilaton field!. The action is
thus

SE5
pm

8G4
~6k11!, ~33!

with G55G4 /Dt; this is consistent with the Schwarzschild
action given in Sec. III whenk50 as required. Reexpressing
this in terms of the radius at infinity,

SE5
pR2

8G4

~6k11!

~12k!2
. ~34!

As before, the decay rateG;e2SE goes to zero as the super-
symmetry breaking becomes arbitrarily small and, for given
radiusR, the vacuum decay described by this solution is
slower than decay via the Ricci-flat solutions of Sec. III. If
we letk→1, with the radiusR finite, the action diverges and
the radius of the ‘‘horizon’’ approaches infinity. Letting
k→1 with m constant gives a finite action, decreasing radius

2Evidently the potential approaches a nonzero constant at infinity
and, hence, a~purely gauge! Maxwell potential must exist in the
background also; this presents no problem since the most general
supersymmetric vacua may have constant gauge potentials.
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at infinity, and an unstable horizon~since the horizon is sin-
gular for k51). In the limit of small chargesQf!m it is
straightforward to show that

SE5
pm

8G4
S 11

48Qf
2

p2m2D , ~35!

with the radius at infinity approximatelym.
We obtain the effective four-dimensional solution using

the procedure given in@23# a

Gab5S ewgmn1GttAmAn GttAn

GttAn Gtt
D , ~36!

wheregmn is the metric in the Einstein frame andw5f2
1
2lnGtt . Then the four-dimensional metric in the Einstein
frame is

dsein
2 5e2wH dr2

@12~m/r 2!#
1r 2cosh2t~dV2

2!2r 2dt2J ,
e22w5S 12

m

r 2D . ~37!

The solution describes the formation and subsequent expan-
sion of a hole att50, and differs from Witten’s original
decay mode@6# only by the presence of an additional scalar
field in four dimensions~originating fromAt).

As in Sec. III, we can also consider dimensional reduction
along the Killing vector]t1B]f , whereB5n/R. The four-
dimensional fields obtained are

dsein
2 5e2wH dr2

@12~m/r 2!#
1r 2~du22cos2udt2!

1e2w~r 22m!sin2udc2J ,
e22w5H S 12

m

r 2D1S 12
km

r 2 D 2B2r 2sin2uJ , ~38!

Af
15e2wS 12

km

r 2 D 22

B2r 2sin2u,

A[At52
sind

A2~12k!

r 22m

r 22km
,

describing the pair creation of monopoles within a back-
ground magnetic fieldA1 and background scalar fieldsA and
w ~which are asymptotically constant!. However, the mag-
netic fieldB5n/R once again lies outside the range of va-
lidity B!1/R and we need to consider rotating black holes to
obtain magnetic fields of physical magnitude.

For simplicity, we consider a five-dimensional black hole
solution with only one electric chargeQf , and one rotational
parametera nonzero. Such a solution may be obtained from
boosting the~Lorentzian! Myers-Perry solution; the most
general such solutions are discussed in@25#. Rotating
t→ i t, a→2 ia, andQf→2 iQ f , we obtain the Euclidean
section~in the string frame!

dsstr
2 5SH ~S2m!

D
dt21

dr2

~r22a22m!
1du21

r2cos2u

S
dx2

2
masin2u

D
~11cosd!dtdc

1
sin2u

D
@D2a2sin2u~S1mcosd!#dc2J ,

D5~S2km!2,

e22f5
D

S2 , ~39!

At52
sind

A2~12k!

S2m

D1/2 ,

Ac52
masindsin2u

A2D1/2
,

whereS5(r22a2cos2u), k is defined as previously and we
have included a pure gauge term inAt so thatA2 is nonsin-
gular at the poles of the horizonrh

25m1a2. The charge
Qf5(A2/8)pmsind using the same conventions as previ-
ously.

To avoid a conical singularity at the horizon, we choose
the radius at infinity to beR5(12k)/rh ; the Euclidean
angular velocity isV5a/m(12k). The action is easily cal-
culated from Eq.~32!, with the background subtraction fa-
cilitated by the flatness of them50 solution for all values of
a; then

SE5
pm~116k!

8G4
5

pR2~116k!

8G4~12k!2~12V2R2!
. ~40!

As usual, we rotate a coordinate on the spherex→ i t to
obtain the subsequent Lorentzian evolution. Then, dimen-
sional reduction alongl5]t1V]c leads to a bubble decay
mode and reduction alongl 85]t1(V1n/R)]c describes
monopole pair production, with the decay rate of the latter
suppressed since the action is greater. For the latter, mag-
netic fields of physical magnitude and avoidance of conical
singularities in the four-dimensional solution require
n561 anduVu'1/R.

We have considered only the most simple charged rotat-
ing solution; the prescription for obtaining the most general
decay modes is as follows. Starting from the most general
five-dimensional Lorentzian rotating,~electrically! charged
black-hole solution@25#, we look for a Euclidean section on
which all fields can be chosen to be real. If such a section
exists, then by Witten rotating a coordinate on the sphere, we
can obtain a vacuum decay mode. Dimensional reduction
along a Killing vector with fixed point set of dimension three
leads to decay by bubble formation, a decay process lying in
a different superselection sector of the Hilbert space to the
supersymmetric vacuum, while dimensional reduction along
a Killing vector with a fixed point set of dimension one leads
to decay by monopole pair production, a decay process con-
sistent with the spin structure of the background. Finally, by
rotating the torus coordinates~allowing for nontrivial angles
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between the generating circles!, we obtain the generaliza-
tions of the solutions discussed in Sec. III. All such decay
modes do not describe the decay of the supersymmetric
vacuum, are incomplete at null infinity, and have actions
greater than the action of the original decay mode of Witten
described in Sec. III.

V. EXTREMAL BLACK HOLES AS INSTANTONS

The discussion in the previous sections has been based
around five-dimensional black hole solutions of topology
R23S3, whose asymptotic geometry is that of the back-
groundR43S1. However, extremal black holes are believed
to have the topologyS13R3S3, with the Killing vector in
the circle direction having no fixed point sets@26#. In con-
trast to the choice for nonextremal solutions we must choose
a spin structure such that spinors are periodic in this direc-
tion and there is, hence, no obstruction to the analytically
continued solutions asymptotically admitting the covariantly
constant spinors of the background.

To illustrate this, we consider a particular five-
dimensional extremal black-hole solution to the equations of
motion which follow from Eq.~27!, carrying electric charges
with respect to both gauge fields where

Q f̄ 5
1

4p2E * e4f/3F̄, ~41!

Qf5
1

16pE * e2~2f/3!F.

For a spherically symmetric solution we have

* e4f/3F̄52Q f̄ e3 , ~42!

* e2~2f/3!F5
8Qf

p
e3

and there exist solutions with constant dilaton such that

e2f52S pQ f̄

4Qf
D 2. ~43!

The field equations then imply that the metric takes the
Reissner-Nordstro¨m form

dsein
2 52F12S r 0r D 2G2dt21F12S r 0r D 2G22

dr21r 2dV3
2 ,

r 05S 8Q f̄ Qf
2

p2 D 1/6. ~44!

We consider these extremal solutions~with both charges
nonzero! since extremal solutions with only one charge non-
zero have degenerate horizons with zero area and thus the
Euclidean sections have naked singularities and cannot be
interpreted as instantons. The above solution is the simplest
extremal black hole with a nondegenerate horizon and for
this reason the corresponding dual solution in IIA theory
compactified onK33T2 was recently discussed in the con-
text of the microscopic description of the entropy@27#.

We now attempt to analytically continue the Lorentzian
solution into the Euclidean regime, by rotatingt5 i t ; now,
the gauge fields in the original solution are

F̄5
16

p4/3r 3
Qf
4/3Q

f̄

21/3
dt`dr;

F5
8

p1/3r 3
Qf
1/3Q

f̄

2/3
dt`dr. ~45!

When we rotatet→ i t, if we impose the requirements that
the dilaton field andr 0

2 are real, bothQf andQ f̄ remain real
and positive, so that the gauge fields become pure imaginary.
If, however, we impose the requirements that the gauge
fields are real on the Euclidean section, thenr 0 becomes
complex and the metric is not real. Thence, a Euclidean sec-
tion on which all the fields are purely real does not exist.

If we take~electric! field strengths that are pure imaginary
on the Euclidean section, our solution takes the form

dsein
2 5F12S r 0r D 2G2dt21F12S r 0r D 2G22

dr21r 2dV3
2 ,

F̄5 i
16

p4/3r 3
Qf
4/3Q

f̄

21/3
dt`dr, ~46!

F5 i
8

p1/3r 3
Qf
1/3Q

f̄

2/3
dt`dr.

As before, we need to include~pure imaginary! gauge terms
to the Maxwell potentialsA andĀ to ensure that bothA2 and
Ā2 are nonsingular at the horizon. There is no naturally de-
fined periodicity oft and we define the periodicity at spatial
infinity as b; the action3 of the Euclidean solution~32! is
then

SE5
pr 0

2b

8G5
5

pr 0
2

8G4
, ~47!

which implies a vanishing entropy in the semiclassical ap-
proach@28# since

S5~b]b21!SE50, ~48!

~although string theory calculations give a nonzero answer
and it is believed that string corrections as the length of the
imaginary time direction approaches the string scale lead to a
nonvanishing entropy as well as perhaps changing the topol-
ogy to that of nonextremal solutions@29#!.

For comparable values of the parametersr 0 andm, the
decay rate by this mode is similar to that in Sec. III; the
range of validity of the semiclassical calculation requires that
r 0 is much larger than the Planck length and, hence, the rate
of vacuum decay is necessarily slow. However, sinceb is
not fixed by the solution, we can choose a radius at infinity

3Since the metric is of the Reissner-Nordstrom form, the subtleties
in calculating the boundary terms considered in@26# do not arise
here.
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consistent with a Kaluza-Klein interpretation~unlike the so-
lutions in the previous whose internal directions are too large
for such interpretations!.

As in @6#, we construct a bubble decay mode of the
vacuum by rotating a coordinate on the sphere. The mass on
the initial value hypersurface vanishes, since the perturbation
falls off faster than 1/r , as do the charges of the fields; hence,
the solution may describe the decay of the vacuum state. The
decay mode again involves the formation and subsequent
expansion of a bubble of radiusr 0, with null infinity incom-
plete.

Since there is no obvious obstruction to finding asymp-
totically constant spinors in this solution, it may seem at first
sight as though the instanton represents a possible decay
mode of the supersymmetric vacuum. However, the gauge
fields remain imaginary in the Lorentzian continuation and,
hence, violate the dominant energy condition on the energy
momentum tensor. Although the total charge is actually zero,
there are nonvanishing pure imaginary Maxwell potentials.
That is, although the solution has the requisite asymptotic
spin structure for it to contribute to the decay of the vacuum,
it is excluded by the unphysical behavior of the energy mo-
mentum tensor.

More generally,anyanalytically continued extremal solu-
tion which asymptotically admits the constant spinors of the
vacuum on a hypersurface of zero mass and charge must
have an energy momentum tensor which does not satisfy the
dominant energy condition. We justify this statement in the
following section by considering the formulation of Witten’s
proof of the positive energy theorem in higher dimensions.

VI. THE POSITIVE ENERGY THEOREM

In the examples that we have discussed so far, the instan-
tons have fallen into three categories. First, extremal black
hole instantons admitting isometries with no fixed point sets
have spin structures consistent with the background, but the
energy momentum tensors of the analytically continued so-
lutions do not satisfy the dominant energy condition~at least
in the example we gave!. Secondly, in nonextremal black
hole instantons, if we consider dimensional reduction along a
Killing vector admitting an eight-dimensional fixed point set,
spinors must be antiperiodic about an orbit at infinity of this
isometry and hence the solution lies in a different superse-
lection sector of the Hilbert space to the vacuum. Third,
again in nonextremal black hole instantons, if we consider
dimensional reduction along a Killing vector admitting a six-
dimensional fixed point set, we obtain a solution consistent
with the decay of a magnetic vacuum in four dimensions. We
now discuss more generally the existence of instantons and
show that there are no decay modes consistent both with the
dominant energy condition and with the supersymmetric spin
structure of the background.

Yang-Mills instantons do not indicate a possible decay
mode of the vacuum since there does not exist a surface of
constant time from which we can continue them as real
Yang-Mills fields in Minkowski space. The analogue for ten-
dimensional supergravity would be a nine-dimensional sur-
face with zero second fundamental form; such a surface acts
as a ‘‘turning’’ point at which the instanton matches the
space into which the vacuum decays.

In the previous sections, starting from a Lorentzian space
time we constructed Euclidean solutions by rotating
(t,xm)→( i t,xm). Even if the original Lorentzian solution
did not admit a hypersurface of constant time of zero mo-
mentum we could find a Euclidean section on which the
metric was real, but only by analytically continuing a mo-
mentum parameter in the solution. When we look for a
Lorentzian section of a Euclidean solution, to describe the
subsequent evolution from an initial value hypersurface, we
cannot analytically continue momentum parameters and such
a section will only exist if there is a zero momentum hyper-
surface.

Starting from a ten-dimensional Euclidean solutiongMN
which admits a nine-dimensional complete hypersurfaceS

with induced metricĝMN , we analytically continue back to a
Lorentzian signature by rotating (t,xm)→(2 i t ,xm). We
choose the zero-vector to be orthogonal toS and, on the
Lorentzian section, we have a unit timelike normal toS
given by tM5g0M /A2g00 with the induced metric being

ĝMN5gMN2tMtN ~49!

and the second fundamental form ofS being

KMN5t ~P;Q!ĝM
Q ĝN

P . ~50!

Reality of the metric on the Lorentzian section requires that
the g0m terms vanish, which implies that
ĝ0m5K005K0m50 and

Kmn5
1

2A2g00
gnm,0 . ~51!

The surfacet5t0 of the Euclidean solution must match that
the surfacet5t05 i t0 of the analytically continued solution;
a necessary condition is thatgnm,0u t050. Hence, if an instan-
ton is to describe the decay of the vacuum, it must admit a
surface with zero extrinsic curvature from which we can ana-
lytically continue the solution. We usually find such a sur-
face by looking for a hypersurface orthogonal Killing vector
in the Euclidean solution and Wick rotating.

Now, if one has such a hypersurface of constant time,
Witten’s proof of the positive energy theorem can be applied
unless there is some obstruction such as a black hole. Sup-
pose that we have an instanton for which the fixed point sets
of the isometries do not prevent us from finding asymptoti-
cally constant spinors; the solution then lies in the same su-
perselection sector as the vacuum. However, the absence of
any obstruction on the initial value hypersurface allows us to
prove the positivity of the mass by Witten’s method; that is,
if the solution is not flat, the mass must be positive, and the
vacuum cannot decay into this state.

Putting it this way makes it sound as though the decay
modes of the supersymmetric vacuum must be trivial; if a
black-hole type of obstruction is present, the positive energy
theorem does not apply but the instanton does not lie in the
same superselection sector of fermions as the vacuum. In the
absence of an obstruction the positive energy theorem ap-
plies and prevents the existence of instantonic decay modes
unless the Witten proof fails in another~unphysical! way
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such as the dominant energy condition breaking down, which
we discussed in Sec. V. We now discuss the formulation of
the positive energy theorem for space times asymptotic to
M43T6.

We consider an asymptotically flat solution to the Euclid-
ean field equations derived from the Einstein frame action in
ten dimensions~2!; the graviton field equation gives

RMN2
1

2
RgMN58pG10TMN , ~52!

where the energy momentum tensor includes contributions
from the dilaton, antisymmetric tensor, and gauge fields. The
field configuration must also be consistent with the other
constraint equations derived from the action.

We then analytically continue the solution to obtain a
Lorentzian solution, imposing the condition that the energy
momentum tensor satisfies the dominant energy condition
@30#; that is, the local energy densityT00 is positive~or zero!
at each point in the Lorentzian space time and in each local
Lorentz frame. The total energy momentum tensor is

TMN5
1

8 H ~]MF!~]NF!2
1

2
~]F!2gMNJ 1

1

4
e2~F/2!

3H gNN8HMPQH
N8PQ2

1

6
H2gMNJ 1

1

2
e2~F/4!

3H gNN8FMP
~ f ! F ~ f !

NP2
1

4
Tr~F2!gMNJ . ~53!

It is well known that each of the contributions to the energy
momentum tensor obey the required condition, provided that
the fields are real. Since this condition is critical to the proof,
we include a short discussion of the dominant energy condi-
tion in the Appendix.

Evidently reality of the fields is a nontrivial constraint
when we consider analytic continuation of Euclidean solu-
tions. F will be real in Lorentzian spacetime provided that
Ftm is pure imaginary andFmn is pure real; that is, the mag-
netic field must be real and the electric field imaginary on the
Euclidean section. Similarly, the reality ofH in the Lorent-
zian spacetime is ensured byHtmn being pure imaginary and
Hmnp being pure real.

We choose to work in the Einstein frame since the energy
momentum tensor in the string frame does not satisfy the
dominant energy condition@24,31#; the graviton field equa-
tion obtained from the string frame action~1! is

RMN~G!2
1

2
R~G!GMN58pG10TMN

str , ~54!

where the total energy momentum tensor is defined as

TMN
str 522H ~]MF!~]NF!2

1

2
~]F!2GMNJ

1
1

4 HGNN8HMPQH
N8PQ2

1

6
H2GMNJ

1
1

2 HGNN8FMP
~ f ! F~ f !N8P2

1

4
Tr~F2!GMNJ . ~55!

Hence, the dilaton contribution to the energy momentum ten-
sor no longer satisfies the dominant energy condition, be-
cause of the change of sign of the (]F)2 term in the action.

Since the solution is asymptotically flat, we can decom-
pose the metric at spatial infinity as

gM̂N̂5S 2d 0̂0̂1h0̂0̂~x
p! h0̂m̂~xp!

hn̂0̂~x
p! dm̂n̂1hm̂n̂~x

p!
D , ~56!

where theh0̂m̂ terms vanish ifS has zero momentum. We
use asymptotically flat coordinates, and work in an orthonor-
mal frame. If the perturbation to the flat metric is of order
(1/r k), derivative terms are of order 1/r k for ] i terms and of
order 1/r (k11) for ]m terms.

For a solution admitting a hypersurface of asymptotic ge-
ometry R33T6 the Arnowitt-Deser-Misner~ADM ! energy
can be expressed as@32#

EADM5
1

16pG10
R̀ dSm~]nhnm2]mhnn!, ~57!

where the integral is taken over a boundary at infinity of
S; the ADM momentum is given by

Pm̂5
1

16pG10
R̀ dS n̂~] n̂h0̂m̂2] 0̂hn̂m̂1d n̂m̂] 0̂hp̂p̂

2d n̂m̂] p̂h0̂p̂!. ~58!

Expanding the expression for the ADM energy in terms of
the torus coordinatesxi and the external coordinatesxa,

EADM5
1

16pG10
R̀ dSa$]bhba2]ahii2]ahbb%,

~59!

where the] ihia terms vanish when we consider a solution
admitting a global U~1! 6 isometry group. Since the volume
element is of orderr 2, the energy is only well defined when
the integrand is of order 1/r 2 which requires thathab ,hii are
of order 1/r . Since the functionshia must be periodic in the
coordinatesxi , even if they are not independent of the torus
coordinates, the expression for the ADM energy in Eq.~59!
is valid even when the metric perturbations are dependent on
the torus coordinates.

To prove the positive mass theorem for solutions which
tend to the required background we consider spinors obeying
a Dirac-type equation on the nine-dimensional hypersurface.
Our discussion follows closely that of@33#, and although we
are interested in zero momentum hypersurfaces for general-
ity we do not impose the requirement thatK50, since it is
not required by the proof. Projecting the ten-dimensional co-
variant derivativeDM onto the hypersurface,

Dm̂e5S ¹m̂1
1

2
Km̂n̂g

n̂g 0̂D e, ~60!

where¹ is the covariant derivative on the hypersurface, the
g matrices are constructed from the 32-dimensional spinor

4832 55MARIKA M. TAYLOR-ROBINSON



representation of SO~9,1! and DM5]M1GM with GM the
spin connection matrices. Then, multiplying bygm̂, we ob-
tain the Witten equation

gm̂¹m̂e52
1

2
Kg 0̂e, ~61!

with K the trace of the second fundamental form. If we mul-
tiply by e* , act on the result withgm̂¹m̂ and use the Ricci
identity, we obtain

¹m~e*Dme!5~Dme!* ~Dme!1
1

4
e* $R1K22KmnKmn

12¹m~Kmn2ĝmnK!gng
0̂%e, ~62!

whereR is the Ricci scalar onS of the induced metric. The
field equations are

R1K22KmnKmn516pG10T0̂0̂ , ~63!

¹m~Kmn2hmnK!58pG10T
0̂n,

and since the total stress energy tensor satisfies the dominant
energy condition implying thatT0̂0̂>uTm̂n̂u:

¹m~e*Dme!>~Dme!* ~Dme!. ~64!

Upon integrating this over the initial value hypersurface, we
obtain

R̀ e*DmedSm2rHe*DmedSm>E
S
~Dme!* ~Dme!dS,

~65!

where we integrate over the region ofS bounded by an inner
surfaceH and a surface at infinity. In the following, we shall
assume that the inner surface term vanishes; this is certainly
true if H is an apparent horizon or a minimal surface in a
maximal hypersurface~since the proofs given in@33# are
easily generalized to ten dimensions!. This covers all cases
of inner boundaries in which we are interested.

Let the surface term at infinity beS; since the right-hand
side is positive semidefinite,S is also positive semidefinite
and is an invariant of the initial value hypersurface. The
contributing terms to the integrand are of order 1/r 2, with the
1/r contributions vanishing as

R̀ dxi~] ihmn!5 R̀ dxi] ie50, ~66!

even whenhmn is x
i dependent, since any such dependence

must be periodic inxi . In fact, if we assume that there are no
Kaluza-Klein-type charges arising from the torus, then
] ihmn andhm i fall off as 1/r

2 and the leading order deviation
will be independent of these terms in any case.

We now demonstrate the relationship betweenS and the
energy by considering solutions to Witten’s equation; we
omit much of the analysis since it follows as a direct gener-
alization of that in@8#. Now, no nonzero spinor satisfying
Witten’s equation on the initial value hypersurface vanishes
as r→`. This follows directly from Eq.~65! since if we

assume that a solution to Witten’s equation which vanishes
at infinity exists, the left-hand side of Eq.~65! vanishes, as
such a solution must decay at least as fast as 1/r 2 ~for
asymptotic geometryR33T6). The energy-momentum ten-
sor then vanishes, andDme[0; if, however,Dme[0 and
eÞ0, thene does not vanish at infinity, thus completing the
proof.

We consider a solution to the Witten equation asymptoti-
cally approaching a constant spinore0; the asymptotic geom-
etry constrainse2e05 ẽ(u,f,xi)/r . The existence of such
solutions is nontrivial even in the four-dimensional case, and
was the subject of@34# and@35#. Here, however, such spinors
exist by assumption, since we are only interested in solutions
lying in the same superselection sector of the Hilbert space
as the vacuum, requiring that the constant spinors of the
vacuum are asymptotically admitted. Sincee is a solution of
the Witten equation~61!, we find that

ẽ5 limr→`$r 2g rgmGme01rg r~ga]a!ẽ%, ~67!

where we use only the 1/r 2 terms inGm . Then substituting
e in the expression forS,

S5 R̀ dSaH e0*Gae01e0* ]aS ẽ

r D J , ~68!

where we again retain only terms of order 1/r 2 in the inte-
grand. Using Eq.~67!, we find that

R̀ dS re0*
ẽ

r 2
5 R̀ dS r H e0* g rgmGme01e0*

g r

r 3
~ga]a!ẽJ .

~69!

In the limit of spatial infinity only the first term contributes
to Eq. ~68! and hence

S5 R̀ dSâe0* ~Gâ2gâg n̂G n̂!e0 , ~70!

where we retain only terms of order 1/r 2 in Gm̂ . Now the
linearized spin connection matrices are defined by

Gm5
1

16
$]NhMm2]MhNm%@gM,gN#, ~71!

and hence substituting forG and comparing with the expres-
sions for the ADM energy and momentum, we obtain the
relationship

S54pG10e0* ~EADM1Pm̂gm̂g 0̂!e0 . ~72!

The non-negativity ofS then implies thatEADM>uPm̂u;
thence, the mass is positive semidefinite, vanishing if and
only if Dme50 and the energy momentum tensor is null.
The integrability condition on the spinors and the existence
of a basis of such covariantly constant spinors then imply
that RmnMN50, with Einstein’s equations leading to
TMN50 and thusRMNPQ50. That is, the mass vanishes if
and only if the space time is flat and there is no state with the
requisite spin structure into which the vacuum can decay. As
usual, by replacing the covariant derivative with a modified
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derivative dependent on the gauge fields, Bogomolnyi
bounds relating the mass and charges may be derived.

We next discuss the ways in which the solutions given in
the previous sections ‘‘evade’’ the positive energy theorem.
Suppose that we consider a metric on the hypersurface with a
leading order perturbation of 1/r k from the flat metric with
k.1; then the energy~and momentum! defined in Eq.~59!
necessarily vanishes. If massless Witten spinors are admitted
on the hypersurface and the energy momentum tensor satis-
fies the dominant energy condition, Eq.~62! must be satisfied
and thus

E
S
$~Dme* !~Dme!14pG10e* ~T0̂0̂1T0̂mgmg 0̂!e%dS50.

~73!

This integral over the hypersurface will vanish if and only if
Dme[0 and the energy momentum tensor is null, which
implies that the space time is flat. Hence, if we have a metric
on the hypersurface which approaches the background faster
than 1/r and the dominant energy condition is satisfied by the
~nonflat! solution, we will not be able to find asymptotically
constant solutions to Witten’s equation; the topology change
implicit in these perturbations implies an obstruction pre-
venting the existence of such spinors.

The five-dimensional black hole solutions considered in
Secs. III and IV evade the positive energy theorem in this
way; the masses of the analytically continued solutions van-
ish, but there exist no asymptotically constant spinors on the
initial value hypersurfaces.

We are now able to justify the statement in Sec. V that the
positive energy theorem implies that there exists no Euclid-
ean section of certain extreme black-hole solutions on which
all fields are real. Suppose we have an analytically continued
solution admitting a hypersurface whose mass and charges
vanish as the fields decay at infinity as 1/r 2. The horizon in
the original solution must be nonsingular, so that this hyper-
surface is nonsingular. There is no topological obstruction to
finding solutions to the Witten equation on the initial value
hypersurface and we can show that

R̀ ~e*Dme!dSm2 R
H

~e*Dme!dSm50, ~74!

where we must take account of the inner boundaryH. Fol-
lowing @33#, we choosee to satsify the constraint equation
g 0̂g 1̂e5e ~with the one direction normal toH) and thus
restrict the freedom ofe onH by half, as required. We may
then show that the only contributing inner boundary term is

2 R
H

~e*Dme!dSm522 R
H

~e* e!JdSh , ~75!

whereJ is the trace of the second fundamental form ofH
embedded in the hypersurfaceS. Now for any such extremal
black hole solution the second fundamental form ofH in the
hypersurface vanishes and hence the inner boundary term
must vanish.

However, Eq.~74! contradicts Eq.~65!, whose right-hand
side is positive definite for a nonflat solution. Since the deri-
vation assumed that the energy momentum tensor satisfies

the dominant energy condition we conclude that this condi-
tion must break down and hence the gauge field strengths
must be imaginary in this Lorentzian continuation. That is,
although the solution has the requisite asymptotic spin struc-
ture for it to contribute to the decay of the vacuum, it is
excluded by the nonphysical behavior of the energy-
momentum tensor. Hence, if an extremal black hole solution
with nondegenerate horizon admits a Euclidean section
whose topology is consistent with asymptotically constant
spinors, it is impossible to find an analytic continuation on
which all fields are real.

Another class of solutions which evade the positive en-
ergy theorem are those obtained from taking the product of
Euclidean blackp branes of topologyR21p3S2 with a flat
time direction~and flat circle directions! @14#. The effective
four-dimensional solutions describe either a static bubble or
a static monopole pair within background fields and are ex-
cluded from the proofs of the positive energy theorem by
spin structure arguments. It is, however, easy to show that
the resultant configurations are unstable~because of the
negative modes of the Euclideanp brane solutions! and in
any case such decay modes are excluded by their spin struc-
tures.

Therefore, to contribute to the decay of the vacuum, a
Euclidean instanton must have a section on which the metric
may be analytically continued to the Lorentzian regime. A
necessary and sufficient condition is the existence of a hy-
persurface of zero second fundamental form. If the hypersur-
face does not admit the same number of asymptotically con-
stant spinors as the vacuum, it will not describe the decay of
the supersymmetric vacuum. If the hypersurface does admit
asymptotically constant spinors, they must be covariantly
constant in order that the mass is zero. If we have the re-
quired number of constant spinors, the hypersurface must be
preciselyR33T6.

There are, hence, no instantons contributing to the decay
rate of the supersymmetric vacuum.Bubbledecay modes are
inconsistent with the background spin structure;monopole
decay modes describe the decay of an~unphysical! magnetic
vacuum andextremal black holeinstantons are inconsistent
with the dominant energy condition.

VII. CALABI-YAU COMPACTIFICATION

The discussions in the previous sections applied to toroi-
dal compactifications of the heterotic string theory; compac-
tification on a Calabi-Yau space gives rise to a theory with
~more realistically! N51 supersymmetry in four dimensions.
The spectrum of the theory is certainly stable since there are
no modes with imaginary frequencies@1# and the semiclas-
sical stability of the vacuum will be determined by whether
instanton solutions to the classical field equations exist.

We may immediately exclude the possibility that the
Calabi-Yau vacuum can decay into another supersymmetric
state; the supersymmetry will require that on an initial value
hypersurface two covariantly constant spinors are admitted
on the compact space and four are admitted on the external
space. If, however, such spinors are admitted globally
throughout the hypersurface, the hypersurface must be pre-
ciselyR33KSU(3) , and the space time must be the vacuum.
One might imagine that there exist instantons corresponding
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to the tunneling between differentKi ; however, cobordism
theory requires that theKi must have the same characteristic
Stiefel-Whitney and Chern numbers@10# and, thence, are
topologically indistinct. Thus vacuum instability can again
result only from the consideration of nonsupersymmetric
states which are not simple metric products but rather con-
tain topological defects.

An instanton will only describe a possible decay mode of
the vacuum if it admits a nine-dimensional hypersurface of
zero second fundamental form whose geometry asymptoti-
cally approaches that ofR33KSU(3) . At infinity one would
want there to be two asymptotically covariantly constant
spinors on the Calabi-Yau and four on theR3 as for the
vacuum. The most general decay modes may have nonvan-
ishing antisymmetric tensor and dilaton fields which are as-
ymptotically constant; the energy momentum tensor again
satisfies the dominant energy condition provided that the
fields are real on the Lorentzian section.

Now, the generalized expression for the ADM energy of a
solutiongMN with respect to a background solution °gMN is
@32#

EADM5
1

16pG10
R̀ dSm$°Dngmp2°Dmgnp%°g

np,

~76!

where °Dm is the covariant derivative in the background. We
assume thatgMN is an analytically continued solution to Eq.
~52!, with the energy-momentum tensor satisfying the domi-
nant energy condition, and the field configuration consistent
with the other constraint equations. We decompose the met-
ric at spatial infinity as

gMN5S °g001h00~x
p! h0m~xp!

hn0~x
p! °gmn1hmn~x

p!
D , ~77!

with hMN decaying as 1/r and h0m terms vanishing for a
zero-momentum hypersurface. Then we can rewrite the
ADM energy as

EADM5
1

16pG10
R̀ dSa$]bhab2]ahbb1°gi j ~°Diha j !

2°gi j ]ahi j %. ~78!

We consider solutions to the Witten equation~61! on the
hypersurface now approachingcovariantlyconstant spinors;
that is, we look for a solutione approachinge0, where

°Dme050 ~79!

ande approachese0 as 1/r
2. For such a solution, it follows

from the dominant energy condition that

R̀ e*Dme>E
S
~Dme!* ~Dme!, ~80!

where we assume the only boundary is at infinity. Sincee
satisfies the Witten equation, it is straightforward to show
that the only contributing terms to the invariantS give

S5 R̀ dSae0* ~Ga2gagmGm!e0 , ~81!

where we linearize the covariant derivative about the back-
ground asDm5°Dm1Gm , and

Gm5
1

16
~°DNhmM2°DmHMN!@gM,gN#. ~82!

Substituting into Eq.~81!, and following the same steps as in
@8#, we find that

S5 R̀ dSae0* e0$~°Dmhan!°g
mn2~°Dahmn!°g

mn%

516pG10e0* e0EADM , ~83!

where we assume that the hypersurface has zero second fun-
damental form. SinceS is positive semidefinite, the ADM
energy of any solution asymptotically approaching this back-
ground is also constrained to be positive semidefinite with
respect to the background. Vanishing of the energy requires
that the energy momentum tensor vanishes andDme050.
Since the background admits a basis of covariantly constant
spinors ande0 is an arbitrary element of the basis, zero en-
ergy requires the existence of the full number of covariantly
constant spinors on the hypersurface, forcing the hypersur-
face to be preciselyR33KSU(3) .

Even if we assume that the perturbations fall away suffi-
ciently quickly that the energy vanishes, then the vanishing
of S implies that the requisite solutions to Witten’s equation
~61! are only admitted ifDme[0, again implying that the
solution is precisely the background. Even if other solutions
of zero energy with respect to the background exist, they
cannot have the required asymptotic spin structure. Obstruc-
tions on the hypersurface may allow the evasion of the posi-
tive energy theorem, but also imply either an incompatible
spin structure at infinity or a violation of the dominant en-
ergy condition. Since the instanton cannot contribute to the
decay rate unless one has asymptotically the requisite
spinors, we conclude that there can be no instantonic decay
modes of the Calabi-Yau vacuum. It is similarly straightfor-
ward to prove the absence of decay modes of theK33T2

vacuum using the basis of 16 covariantly constant spinors.

VIII. 11-DIMENSIONAL SUPERGRAVITY

Our discussions so far have been restricted to 10-
dimensional supergravity but the same arguments can be ap-
plied to 11-dimensional supergravity. The bosonic sector of
the action ofN51 supergravity in 11 dimensions is given by
@36#

S5E d11xEH 14R~E!2
1

48
F2

1
2

~12!4
ex1•••x11Fx1•••x4Fx5•••x8Ax9•••x11J , ~84!

whereE is the elfbein andFwxyz54] [wAxyz] . The conjec-
tured duality between 11-dimensional supergravity compac-
tified on a circle and strongly coupled type-IIA superstring
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theory @37# ~as well as other related dualities! suggests that
the absence of instantonic decay modes of the former should
for consistency imply the absence of such decays for the
latter.

The equations of motion derived from Eq.~84! ~assuming
that the gravitino vanishes! are

Ryz2
1

2
Rgyz5

1

3 HFyx1x2x3Fzx1x2x32 1

8
gyzF2J ,

DyFyx1x2x352
1

576
ex1•••x11Fx4•••x7Fx8•••x11. ~85!

Now, if we require a vacuum state in which the three form
vanishes, the solution must admit at least one covariantly
constant spinor in order to preserve some supersymmetry. In
the context of compactification to four dimensions, this im-
plies that the holonomy of the compact space must be a
subgroup of Spin~7! @2#. We usually take the compact space
to be T7, K33T3, KSU(3)3S1, or KSpin(7) for which the
eleven dimensional vacuum admits 32, 16, 8, or 4 covari-
antly constant spinors, respectively.

We consider the existence of instantons by, as usual,
looking for solutions to the Euclidean equations of motion
whose asymptotic geometry is that of the background. The
most general such solution may have a nonzero three form
field which is asymptotically constant and consistent with the
field equations.

Such a solution only contributes to the vacuum decay rate
if it both admits an initial value hypersurface from which we
can describe the subsequent Lorentzian evolution and also
asymptotically admits the requisite number of covariantly
constant spinors of the vacuum on this hypersurface. In ad-
dition, we require that the analytic continuation of the four
form field strengthF is real; that is, on the Euclidean section,
the ‘‘electric’’ part of F is imaginary and the ‘‘magnetic’’
part is real. Then, the energy momentum tensor satisfies the
dominant energy condition~see the Appendix! and the spino-
rial proofs of the positive energy theorem may be applied.

However, if all of these requirements are satisfied, the
methods of Sec. VI can be used to show that the energy of
the solution with respect to the background is positive
semidefinite and only vanishes if the solution is identical to
the background. That is, there are no states into which the
vacuum can decay, consistent with asymptotically admitting
the covariantly constant spinors of the vacuum. For compac-
tifications admitting at least one circle factor, we will of
course be able to find bubble and monopole decay modes of
a nonsupersymmetric vacuum.

IX. CONCLUSIONS

We conclude by recapitulating the arguments by which
we exclude decay modes of a supersymmetric vacuum solu-
tion of supergravity theories in 10 and 11 dimensions. To
contribute to the decay of the vacuum, a Euclidean instanton
must have a section on which the metric can be analytically
continued to the Lorentzian regime. A necessary and suffi-
cient condition is the existence of a hypersurface of zero
second fundamental form. If this hypersurface does not ad-
mit the same number of asymptotically constant spinors of

the vacuum, it will not describe the decay of the supersym-
metric vacuum. If the hypersurface does admit asymptoti-
cally constant spinors, they must be covariantly constant in
order that the mass is zero~unless we allow the energy-
momentum tensor to be unphysical and violate the dominant
energy condition!. If we have the required number of cova-
riantly constant spinors, the hypersurface must be precisely
the vacuum state. Thence, there is no state into which the
vacuum can decay.

All instantons ‘‘evade’’ the positive energy theorem ei-
ther by violating the dominant energy condition, or by hav-
ing an incompatible spin structure, or by describing the de-
cay of a four-dimensional magnetic vacuum. The latter decay
modes are consistent with fermions, but involve unphysical
fields, and unconventional identifications on the internal
torus. In addition the sizes of the internal directions are fixed
by the solutions and are necessarily too large for a clear
Kaluza-Klein interpretation.

Although we have restricted our discussions to the het-
erotic string theory and 11-dimensional supergravity, similar
arguments apply to the low-energy effective actions of the
other string theories. We can exclude, for example, super-
symmetric decay modes of type-II theory compactified on a
Calabi-Yau manifold,T23K3, or a torus by the analysis of
Secs. VI and VII.

As an aside, it is interesting to consider the implications
of the dualities between theories; the heterotic string com-
pactified to onT4 is dual to the IIA string onK3, and the
toroidal vacuum admits a decay mode by metric field
charged brane formation while theK3 vacuum admits no
decay modes. Now the duality relates the heterotic and IIA
six-dimensional fields via@38#

Fh52F II , GAB
h 5e2Fh

GAB
II ,

AA
h5AA

II , Mh5M II , ~86!

Hh5e2FH̃ II ,

where the heterotic metric in the string frame isGAB
h and the

IIA metric in the string frame isGAB
II ; F, A, H are the

six-dimensional dilaton, 24 Abelian gauge fields, and anti-
symmetric tensor field strength, respectively.H̃ is the ~con-
formally invariant! dual tensor toH and theM fields are the
matrix valued scalar field representing elements of O~4,20!/
@O~4! 3 O~20!#. Then, the solution in type-II theory dual to
that in the heterotic theory is

dsstr
2 5eF IIH dr2

@12~m/r 2!#
1dx21dy21r 2du22r 2cos2udt2

1e22F II
~r 22m!dc̄2J , ~87!

e2F II
5S 12

m

r 2
1B2r 2sin2u D ,

which corresponds to a solution which is not asymptotically
flat in ten dimensions and is singular at the ‘‘horizon’’
r5Am. That is, the dualized solution does not represent an
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instantonic decay mode of even a nonsupersymmetric
vacuum of the dual theory, as we would expect.

Instabilities of vacua of supergravity theories of the type
M43K exist only if we include instanton solutions in which
the topology is changed. Even in general relativity, the ne-
cessity of including varying topologies is not obvious, since
cluster decomposition cannot be used to prove the hypothesis
~unlike in Yang-Mills theory!.

It has been suggested that target space duality in string
theory may be used to exclude solutions of different topol-
ogy @12#. In the string theory, the winding numbers about
each of the compactified directions are conserved quantum
numbers. As the radii of the compactified directions increase,
each of the winding numbers disappears and it is impossible
to change the global space topology. SinceT duality implies
an equivalence relation between small and large radii of
compactified directions, this suggests that decompactification
instability of compactified directions is not possible either,
and thus that no semiclassical instability of the vacuum ex-
ists. However, the arguments given do not apply to the
Calabi-Yau vacua, since their duality groups do not generally
relate small and large volume compactifications. We might
expect that topology change should in any case be consid-
ered in a wider context than string~perturbation! theory.

In considering the semiclassical stability of the vacua of
string theories, we have shown that instantons of different
topology to the putative vacuum are excluded by the incom-
patibility of their asymptotic spin structure with that of the
vacuum. Any instantonic decay modes must lie in a different
superselection sector of the Hilbert space of states and do not
contribute to the decay rate of the supersymmetric vacuum.
Although one would expect that the structure of the super-
symmetry algebra at infinity would prevent the existence of
even nonsupersymmetric decay modes, it is reassuring that
there is a natural way of excluding such instantons by semi-
classical arguments.
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APPENDIX: DOMINANT ENERGY CONDITION

A generic energy momentum tensorTMN satisfies the
dominant energy condition provided that for any future di-
rected timelike or nullv the associated energy momentum
flux j52Tv satisfies the inequalities

j 2<0

and

2v j<0. ~A1!

Now, for ap-form fieldB with associated (p11)-form field
strengthH, the energy-momentum tensor is

TMN5H gNN8HMP1•••Pp
HN8P1•••Pp2

1

2~11p!
H2gMNJ .

~A2!

It is a standard algebraic exercise to show that such an en-
ergy momentum tensor satisfies the required condition, as-
suming that the fields are real. We refer the reader to@39#
and @31# for further details.

Furthermore, Eq.~A1! hold as strict inequalities except in
special circumstances, when eitherv or the field strengths
are null; that is, the only conditions under which they hold as
strict equalities are as follows:

j 250↔H250

or

v250, ~A3!

2 jv50↔ j`v50

and

v250,

with the latter condition implying thatv must be a principle
null vector ofH.

If we assume that the components ofH are real and that
H2,0, there exists a frame in which only the components
H0P1•••Pp

are nonzero, i.e., the field is purely ‘‘electric.’’ It

is then straightforward to show thatj 2}H4v2 and 2 jv
}2H2v2, implying j satisfies the dominant energy condi-
tion. However, for a purely imaginary ‘‘electric’’ field,
H2.0 and the energy momentum flux vector does not sat-
isfy the dominant energy condition. This is a general state-
ment;H will satisfy the dominant energy condition only if
the components are real. Since the energy-momentum ten-
sors considered in Secs. VI and VIII are of the form~A2!
~with positive definite conformal prefactors!, the dominant
energy condition is satisfied provided that the fields are real
on the Lorentzian section.
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