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We discuss the existence of instantonic decay modes which would indicate a semiclassical instability of the
vacua of 10- and 11-dimensional supergravity theories. Decay modes whose spin structures are incompatible
with those of supersymmetric vacua have previously been constructed, and we present generalizations includ-
ing those involving nontrivial dilaton and antisymmetric tensor fields. We then show that the requirement that
any instanton describing supersymmetric vacuum decay should admit both a zero momentum hypersurface
from which we describe the subsequent Lorentzian evolution and a spin structure at infinity compatible with
the putative vacuum excludes all such decay modes, except those with unphysical energy-momentum tensors
which violate the dominant energy conditidis0556-282(97)02508-3

PACS numbegps): 04.65+¢, 04.60.Gw, 11.25.Mj

[. INTRODUCTION the space is stable classically against small oscillations.
Small oscillations aroun1*x K will consist of a spectrum
Supergravity theories exist in all space-time dimension®f massless statgshe graviton, gauge fields, dilaton, etc.
d with d=<11 and are currently regarded as effective fieldand an infinite number of charged massive modes. The mass-
theories of superstringandM) theories in some appropriate less spectrum of the heterotic string theory, which is the
limit. Classical solutions of the theories can be found bytheory that we will consider principally here, has been exten-
setting to zero the fermionic fields together with their super-sively discussedsee for exampld1,3,4,4); there are no
symmetric variations. We look for a vacuum in which the exponentially growing modes with imaginary frequencies.
space time is of the forlB*x K, whereB* is a maximally ~ The same applies to that of 11-dimensional supergravity.
symmetric four-dimensional spadde Sitter space, anti-de Even if a state is stable against small oscillations, it may
Sitter space, or Minkowski spacandK is a compact mani- be unstable at the semiclassical level. This can occur if it is
fold; such a solution is consistent with the low-energy fieldseparated by only a finite barrier from a more stable state; it
equations, with the dilaton field constant, and all other fieldswill then be unstable against decay by semiclassical barrier
vanishing. The conditions for finding supersymmetric gen-penetration. To look for a semiclassical instability of a puta-
erators that leave the vacuum invariant restBétto be flat  tive vacuum state, one looks for a bounce solution of the
Minkowski space anék to be a manifold that admits at least classical Euclidean field equations; this is a solution which
one covariantly constant spinor field. This in turn constrainsasymptotically at infinity approaches the putative vacuum
the possible holonomy groups df; for ten-dimensional state. If the solution is unstable, then the Gaussian integral
theories,K must have a holonomy contained in @J[1], around that solution gives an imaginary part to the energy of
implying that K must have a covering space thatT§, the vacuum state, indicating an instability.
T2x K3, or a Calabi-Yau spacKgy(s). Similarly, for 11- The stability of Minkowski space at the semiclassical
dimensional supergravity, the holonomylofis contained in  level as the unique vacuum state of general relativity was
Spin(7) and K has a covering space that &, T3xK3, proved by the positive energy theorem of Schoen and Yau
Ksu@X S or Kspinry [Where the latter is a manifold with [5]. A completely different proof involving spinors satisfying
the exceptional holonomy group Spm] [2]. a Dirac-type equation on a three-dimensional initial value
It is important to have some criteria for determining hypersurface was given by Wittd®], and shortly after re-
whetherM#x K is a reasonable candidate as the ground statexpressed in terms of the Nester ter{gfr Witten later dem-
of supergravity theories, but our incomplete understanding obnstrated the instability of th#14x St vacuum of Kaluza-
string (andM) theory dynamics makes this question difficult Klein theory [8]; the effective four-dimensional vacuum
to answer in full. The constraints above restrict the vacuumiecays into an expanding bubble of “nothing.” However,
state to be Ricci flat, with the requisite holonomy; we must,this decay mode is excluded by the existencéno@ssless
however, also show that the spectrum of the vacuum is stablelementary fermions.
and that there are no instantonic decay modes, i.e., we must Instabilities of nonsupersymmetric vacua of string theo-
thus impose the conditions thit*xK should be stable at ries were discussed by Brill and Horowit@] who demon-
the classical and semiclassical level, which leads to nonstrated that superstring theories admit instantonic decay
trivial conditions on the vacuum manifold. modes that asymptotically resemble toroidal compactifica-
The first test of the stability of a space is to ask whethettions with constant gauge fieldsut are incompatible with
massless fermionsMazur [10] showed that toroidal com-
pactifications of multidimensional Minkowski space time are
*Electronic address: M.M. Taylor-Robinson@damtp.cam.ac.uk semiclassically unstable due to topology change of the initial
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data hypersurface, and presented Euclidean Schwarzschidipergravity theories are formally renormalizable results
p branes as possible instantons corresponding to tunnelingom nonperturbative instanton calculations may be consid-
between different topologies. However, the instantons disered as the limiting values of the corresponding exact string
cussed by Mazur do not correspond to vacuum instabilitiegheory result415].
since they do not take account of the incompatible spinor Since manifolds of many different dimensions will
structures of the instantons ang@upersymmetric vacua. ~abound, we will adhere to the following conventions. The
Banks and Dixorf11] used conformal field theory arguments indices M,N=0,...,9; mn=1,....9; wx,»=0,....3;
to show that space-time supersymmetry cannot be contind:i=4---.9; «,=1,...,3; a,b=0,...4;1,J=5,....9;
ously broken within a family of classical vacua and that two”B=0,...,5,  F,G=6,....9;  w,x=0,10; and
supersymmetric vacua are infinitely far away. It was sugS — 1:- - -,16. We use the mostly positive convention for
gested in[12] that if one takes into account target SpaceLorenman metrics an@ W|I_I dgnote mgtncs_ in the string
duality all topology changing instabilities of toroidal vacua fame whileg denotes metrics in the Einstein framede-
are impossible in the context of string theory. notes induced metrics on boundaries at spatial infinity, while
More recently, another possible decay mode of theg denotes induced metrics on spacelike hypersurfaces. Hat-
Kaluza-Klein vacua has been constructed by Dowdeal.  ted indices refer to an orthonormal frame while unhatted in-
[13,14. “Magnetic” vacua in Kaluza-Klein theory — vacua dices refer to coordinate indiceS. denotes the Lorentzian
corresponding to static magnetic flux tubes in four dimen-action andSg denotes the Euclidean actioBy refers to the
sions — may decay by pair creation of Kaluza-Klein mono-Newton constant i dimensions.
poles, though at a much smaller rate than for decay by
bubble formation; the pair creation decay mode is, however, Il. VACUA OF SUPERGRAVITY THEORIES
consistent with the existence of elementary fermions. . o . )
In this paper, we investigate further possible decay modes OUr starting point is thel=10,N=1 action that arises as

of the vacua of supergravity theories. Such instantons ce@ low-energy effective field theory from the heterotic string.
tainly do not preserve the supersymmetry of the vacuumVYve shall consider heterotic string theory for definiteness but

however, we cannoa priori exclude the possibility of the most of the discussion depends only on the common sector
vacuum decaying into a state which asymptotically admit®f the low-energy supergravity theory. For the massless
the supersymmetry generators of the vacuum. That is, thef@sonic fields of the theorfgraviton Gy ,fd|laton®3 anti-

may exist solutions to the Euclidean field equations botrSymmetric tensoByy, 16 vector bosonéy) the action(in
whose geometry is asymptotic to that of the backgroundhe string framgtakes the form

vacuum state, and whose spin structure at infinity is compat-

ible with that of the supersymmetric vacuum. __ 1 f di%/—Ge @
In Sec. Il we describe the vacua of ten-dimensional super- 167mGyo
gravity theories and discuss new examples of twisted com- 1 1
pactifications which give rise to magnetic vacua in four di- X{R(G)+(aP)2— —=H2— ~Tr(F?)|. (1)
mensions. In the following section, we discuss Ricci-flat 12 4

instantons which describe decay of toroidal vacua by bubbl

formation and pair creation of monopoles. In Sec. IV we%‘s in general relativity, this action will give the correct field

; . . . efquations but in calculating the action we must also include
consider more general instantons, relaxing the assumption . o
e surface terms required to ensure unitarity. The corre-

Ricci flatness, and construct from five-dimensional charge di tion in the Einstein f P 77 P
black hole solutions decay modes involving nonvanishingSpon Ing action in the Emsten franggy=¢ MN 1S
dilaton and antisymmetric tensor fields. 1

In Sec. V we use extremal black hole solutions with non- S= 167G
degenerate horizons to describe decay modes whose topol- 310
ogy is not inconsistent with asymptotically covariantly con- 1
stant spinors, but whose energy momentum tensors are un-  — Ze‘(q”‘”Tr(Fz)]. 2
physical, violating the dominant energy condition.

In Sec. VI we discuss more generally the existence ofr find classical solutions of the supersymmetric theory, we
instantons describing the decay modes of the supersymmetrigt to zero the fermion field&gravitino i, dilatino X,
vacuum; we consider the formulation of Witten's proof of gaugino x) together with their supersymmetric variations.
the positive energy theorem and show how this proof exassuming that all fields vanish except the gravitand con-

cludes the existence of physical decay modes of a supersyngant dilatop the conditions for finding a supersymmetric
metric vacuum. In Secs. VIl and VIl we extend the d'SCUS'generatom that leaves the vacuum invariant reduce to

sion to the Calabi-Yau vacuum of ten-dimensional
supergravity and to the vacua of 11-dimensional supergrav- Sy =Dy 7=0. 3
ity. Finally, in Sec. IX we present our conclusions.

Note that contrary to globally supersymmetric Yang-Mills As is well known, and was first shown [1] (see alsd3]),
theories, supergravity is not rnormalizable. This puts the enfor a vacuum state of the for®*x K, whereB* is a maxi-
tire subject of instanton calculus in supergravity on a rathemally symmetric four-dimensional space alds a compact
shaky basis; if, however, we regard supergravity theories asix manifold, Eq.(3) implies that the maximally symmetric
low-energy limits of superstring theories, which are not ex-manifold must be flat Minkowski space, afd must be a
pected to suffer from these deficiencies, to the order to whiclRicci-flat compact six manifold, which admits at least one

1 1
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covariantly constant spinor of each chirality. The holonomy & =B'Blp?, 7
group ofK is thus constrained to be a subgroup of the ge-

neric holonomy group of a six-dimensional manifold &1 Bio21—25. . Bial

and hence the covering spacekofmust beT®, T2x K3, or a iS¢ : . ';'2 A

Calabi-Yau space. 4 1+(B")%e

The simplest manifold which satisfies E8) and is Ricci ) _ ) o
flat is the flat torus; we may also consider another class of h€ off-diagonal terms in the internal metric imply that the
toroidal vacua which asymptotically tend to static magnetictorus is not a direct product of circles. The four-dimensional
configurations in four dimensions. Although these solutiondMetric is given by
are nontrivial four-dimensional configurations they are sim-
ply obtained from dimensional reduction of Euclidean spacedsé_ —
with twisted identifications. The construction of a static cy-
lindrically symmetric flux tube in four dimensions by dimen- (8)
sional reduction of five-dimensional Minkowski space in
which points have been identified in a nonstandard way wawhereg,,;is defined by
discussed if16], while more recently the construction was I
1+ 2 (Bi)ZQZ)
1

1/2 -
1+ (Bi)292) [—d?+dZ2+de?]+g,,d¢2,
]

generalized to obtain sets of orthogonal fluxbranes in higher _

dimensional space timg44]. Yyu=
We will now consider a four-dimensional vacuum solu-

tion in which there argp magnetic fields, arising from the The gauge fields in four dimensions are obtained by solving

ten-dimensional metric, associated witlistinct 1) isom-  the p simultaneous equations defined in E@); in the limit

etry groups. We start with ten-dimensional Minkowskianthat only one field is nonzero, the solution reduces to the

space and identify points under combined spatial translationstatic magnetic flux tube. Asymptotically, each gauge field

0*-2 fi,-A';L\ﬂ. ©)

and rotations: i.e., Al (1/pB'); the gauge fields correspond to magnetic fields
which are uniform at infinity.
d=2= — dt2+ d 2+ do2+ 02d P+ dxi)2, 4 We may also dimensionally reduce along the Killing vec-
o+ %yt + 2 (dX)? ()

torsk '=Kk'+(n'/u') g, the corresponding four-dimensional
_ _ _ , , o solution is unchanged, except that the magnetic field is modi-
where we identify points X(,t,z,0,4)~(X'+27u'nt,  fied t0B'=B'+n/ul, and in this way all values of the four-
2,0,¢+2i2wB'u'n'+2mn) and +n,n' are integers. We gimensional magnetic fields associated with each) (d¢an
will usually assume that the' are identical. Sincé/ is al- e obtained. For ever§' #0, the proper length of the circles
ready periodic, changing;u'B' by an integer does not in theith direction grows linearly withp for large o; thus,
change the identifications; thus inequivalent space times aige can view the solution as an approximation to physical
obtained only for—1/2<Z;u'B'<1/2. Changing eacB' by fie|ds which is valid only foro<1/B', in which range the
a multiple of 1f' leads to equivalent space times in three-dimensional space is approximately flat and the inter-
(4+p) dimensions, though the four-dimensional configura-na| circles have approximately constant length. In order for
tions are not equivalent. Geometrically, this space time ighe internal directions to remain unobservable, we must con-
obtained by starting with Eq4) and identifying points along  sjger length scales which are large compared to their size:
the closed orbits of the Killing vectol$=d,i+B'd,. Intro-  p ;i The two restrictions imply a limited range of appli-
ducing a new coordinaté= s+ =;B'x', we may rewrite the  cability of the space tim&'<1/u', which can include large

metric as magnetic fields only if the compactified dimensions are of
) the Planck scale. Since the different dimensional reductions
d?= — dt?+dZ2+de2+ (dx)2+ o2 d%E Bidx‘) _ changeB' by multiples of 1/, for givenu', at most one is
i physically reasonable.
(5) These solutions can be obtained by the action of generat-

ing transformations on the original Kaluza-Klein solution of
Dimensionally reducing along the six Kiling vectors [16]; the required transformations are ari6Dsubgroup of
k'=d,i, the four-dimensional metric in the Einstein frame the 06,22 T-duality group of the four-dimensional theory.

g, Is related to the ten-dimensional metric by The transformation acts as
N i AN =0 Al
€0, t 2 EAA,L X ALE A=A, (10
1) i
= O -,

> Ajyfij &ij
! where() is an Q6)-invariant matrix, and all other fields are
. . , i left invariant. The particular transformation required here is
- I -
W.'th Kgluza K]em gauge fieldsA alnd ¢ the four (assuming that the radii of the compactified directions are
dimensional dilaton defined by=® —zIn(dets;). From i 9 e . i
Eq. (5), we find that identica) Rg(k), a six-dimensional rotation that rotates an
_ arbitrary six-dimensional vector in directidninto a vector
&i=[1+(B"?%p?], of the same magnitude with only one component nonzero.
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Consider a solution for whiclp fields are nonzero and the graviton and théconstank dilaton vanish, implying that

equal toB Run=0. The asymptotic geometry of the instanton is
_ R*X T®; we defer the discussion of Calabi-Yau vacua to Sec.
dsg,=e [ —dt*+dZ2+de?]+ 0%e’dy?, VII. Evidently decay modes cannot preserve all the super-
symmetry; 32 constant spinors requires trivial holonomy, im-

i Bo? plying that the solution admits a flat metric. However, if an

(1) instanton is to describe a possible vacuum decay mode, it

must asymptotically admit the constant spinors of the back-
e 2¢=(1+pB?0?). ground. Vacuum instability — which in many cases will cor-
respond to physical formation processes — will hence result
This has the interpretation of a flux tube along thexis, only from considering nonsupersymmetric states which are
associated witlp magnetic fields, and is the required back- not simple metric products, but rather contain topological
ground for nucleation of monopoles carrying charges withdefects such as monopoles pibranes.
respect tgp U(2) fields. The instantons will usually globally admit a(1)® isom-
Even though these space times are locally flat, the nonetry group, as well as a hypersurface orthogonal Killing vec-
trivial identifications imply that if a vector is parallely trans- tor which we use to Wick rotate the solution to describe the
ported around eacls!, it will return rotated by an angle subsequent Lorentzian evolution. We may also of course
27 u'B'. It follows that for one spin structure, parallel propa- consider instantons which admit sucl1lisometries only
gation of a spinor around thih direction results in the asymptotically, although it is unclear how the effective four-

the Lie algebra of S®,1) (spinor representationFor the points of these isometries will lead to apparent singularities
other spin structure, parallel propagation gives a phas&uch as bubbles and monopoles in the lower-dimensional
—e™BY Eor smallB'. the natural generalization of the space time; the structure of these fixed point sets determines
standard. choice of sp;inor structure for a supersymmetri(‘f"hether the instanton has a spin structure consistent with that

vacuum is the first choice. The magnetic vacua evidentl fthe backgré)_und. ional i he fixed Doi

admit no covariantly constant spinors, whereas for the stam For a ten-. Imensiona mstanto.n, the IXe .p0|_nt set must

dard metric on the torus, 32 constant spinors are admitted. ave d|'men5|on 1.0’ 8 6, 4 2, 0; the' classification of fpur-
Note that the invariance of the low-energy effective actiond'men‘e"on""I graVItatlc_JnaI Instantons In terms .Of the fixed

under the @©6,22 T-duality group, and the invariance of the points sets of a (1_) Isometry was dlscussec_zl in.7] an_d

equations of motion under €2.R) S-duality transformations reviewed in[18]. This work has been generalized to higher

allows us to generate further solutions. We apply a particulag'":fet?;'ci)gsrggtlry ;dnrgi[tigrlb fixed point sets, theraigriori
S-duality transformation ¢—¢=—¢ (corresponding to no obstruction to choosing the spin structure of the instanton

; ; i+6 Fi+6
strong]/W(aijk coupling  intercharge iFuv~T’Fuv to be consistent with that of the background. If, however, the
=e “?¢g;F),, (with F the dual ofF) andF,,—F,,=0. fixed point set of the isometry is eight-dimensional, spinors
Then, rescaling to the string metr@®,,=e¢g,,,, the four-  must be antiperiodic about a closed orbit of the isometry at

A= 1+ pB%Y)"

dimensional solution becomes infinity and the spin structure is incompatible with that of the

~ - (supersymmetricvacuum. The twisted boundary conditions
ds2,=e?¢(—dt?+dZ+de?) + e2dy?, break supersymmetry and, although this supersymmetry
breaking can be made arbitrarily weak by taking the compac-

_ 2B tified directions to be arbitrarily large, the action of the in-
Flfiﬁzmr' (12 stanton diverges as the radii approach infinity, implying that

the rate of decay of the vacuum goes to zero.
The obvious example is the five-dimensional Euclidean
Schwarzschild solution crossed with a flat tori@s decay

Thus, the only nonvanishing gauge fields are those originat':nOde first considered if6]):

ing from the off-diagonal componeni,; of the two form in

ten dimensions. The solution describes an “electric” flux @ dy AN dr 2402

tube, associated with gauge fields; each gauge field asymp- ds*=dxdx+| 1 2 dr +m+r ,

totically approaches zero. (13
By applying a general (8,22 generating transformation,

we can obtain four-dimensional solutions describing tubes of o )

magnetic flux associated with the(1J?¢ gauge group of the Where the periodicity ofr is Ar=2\/u and the range of

heterotic theory: these are the required backgrounds fdr is r=yu. Since the topology of the solution is

nucleation of other topological defects, such lsmono- ~R?XS*XT°, the spin structure is incompatible with that of
poles. the supersymmetric vacuum. The action for this instanton is

obtained from the boundary term

e2¢=(1+B%0?p).

2

lll. RICCI-FLAT INSTANTONS

We first consider instanton solutions of the Euclidean Se=— 16736 fﬁdgx\/E{IC—ICO}, (14)
10

field equations in ten dimensions, in which all fields except
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with K the trace of the second fundamental form of thealongdy+[(a/u)+(1/R)]d,, which has a six-dimensional
boundary at infinity, andC, the corresponding term in the fixed point set, leads to decay by monopole pair production.

background. The action is, hence, In the latter case, the four-dimensional field
T Bz(a/,u)Jr(l_/R), apq for (a/,u_)~—(1/R), we obtain
Se=—= (15)  fields of physical validity. The pair creation decay mode has
8G, ; : : )
a spin structure consistent with that of the magnetic vacuum
and thus the rate of vacuum decay does indeed vanish as tfgd the action for the instantdag) is
radii of the compactified directions increase, that is, as the s mR?
supersymmetry breaking becomes arbitrarily weak. Further- ET8G,[1-R(alpw)?]’ 17)

more, the decay rate is small\fu > Planck length and it is
only in this case that the semiclassical calculation is reliableso for physicaB<1/R the decay rat& ~e ™ is very small.

If the fixed point set of the isometry has dimension less |n Sec. Il, we showed that by applying a generating trans-
than eight, the spinors need not necessarily be antiperiodi@rmation to a solution in which there was a single nonzero
about a closed orbit of the isometry at infinity. As an ex- magnetic field in four dimensions we could obtain a solution
ample, we may consider dimensional reduction of B  in which there were several nonzefmetric U(1) fields in
along the Killing vectok= 4.+ (1/R)d, [13] (whereR is the  four dimensions. Using the same generating techniques here,
radius of the circle at infinity which describes monopole we expect to obtain more general solutions describing the
pair creation in a background field. It is possible to choosepair creation of monopoles carrying charge with respect to
the spin structure to be consistent at infinity with that of thep U(1) gauge fields in a background gfU(1) gauge fields
solution describing the background figl®), but the magni-  (p,q=<6). Monopoles carrying several different charges
tude of the magnetic field lies far outside the physical rangeave recently been constructf20] within heterotic string

of validity. _ o theory by the supersymmetric uplifting of four-dimensional
As also discussed ifi13], we may consider instantons monopole solutions; we now discuss their nucleation.
which are a product oT® and the five-dimensional Euclid-  The most general solution Ricci-flat solutions will be ob-
ean Kerr-Myers-Perry solution tained from the three parameter five-dimensional Euclidean
ds2= (dxF)2+ dx2+ dy2+sirPa(r2— a?)(d )2 Kerr-Myers-Perry solutiorficonstructed in21]) crossed with

a flat five torus by first applying an () transformation to
p & and A and then identifying points along closed orbits of
+ mdrzﬂ’zd 6%+ r?cos'odr? di+B'y, where theB' are chosen so that the action of the
isometry is periodic. We present an illustrative solution, de-
scribing pair creation of monopoles carrying two identical
U(1) charges within twdequa) background fields. We iden-
tify points along closed orbits of,+Bd, and dy+Bd, in
where the indeX runs over the coordinates of the remaining gq. (16) and then introduces= y— B(x+y). The required
T* andp?=r?—a?cos 0. The most general such solution is generating transformation is
labeled by one mass parameter and two angular momentum
parameters(associated with thgS02)]>x O(2) isometry 0= R, 0
group), but for simplicity we take only the mass parameter Lo o1,
p and one angular momentum parameteto be nonzero.
Reduction alongdy+(a/u)d,, which has an eight- where() acts oné andA as in Sec. Il A, andR; generates a
dimensional fixed point set, leads to decay of the fourtwo-dimensional transformation by/4. The resulting solu-
dimensional vacuum by bubble formation, while reductiontion is

2

- gz[dx+ asirto(dy) 12, (16)

(18

w(1+ a\2Bsir6)?
2p?

w(1+ a\/2Bsir9)?
2p°

ds?=(dx")2+| 1 +B?(r2—a?)sirf | dx?+2| —

w(1+ a/2Bsir?6)?
2p
wasir?(0)(1+ a2Bsir?)y2
2p?

1

+Bz(r2—a2)sin20)dxdy+ Bz(rz—ozz)sinze)dy2

+

B2(r2— a?)sirf6y2—

)dxol@r B2(r2— o?)sir?6\2

Sir?(0)(1+ a\2Bsir?0)\2| — 2
B z;!zf )()dyd¢+r‘2—_22—_ﬂdr2+p2d92+rzcoszﬂdfz

+

(r2—a?)sirto— E52 “;n‘lg) dy?, (19
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where p?=r2— a?cog 6. The four-dimensional solution ob- carrying (1,1) charges is approximately half as large as the
tained by dimensional reduction along closed orbitg,cind  rate of decay by creation of monopoles carrying (1,0)
dy is charges(of the same magnitugieas we would expect, the
higher the charge, the smaller the rate of decay.

By applying a more general (6,22 transformation to
these solutions, we might expect to obtain instantons describ-
ing the pair creation of other types of monopoles, such as H

2002 2 i 2 monopoles, within the backgrounds discussed in Sec. Il. Al-
+e2(r= o= wsin'f | dy?}, 0 though a large class of solutions can be obtained by gener-
ating transformations, most of them will be singular and in-
complete; the nature of the “dual” geometry depends on the

2
dsﬁ=e"" TZCOS’)'HdTZ‘FrZ_Z—Z_MdFZ‘FpZdQZ

e 2=1- 55 (1+ a\2Bsir?0)2+ 28212~ a?)sirfy,

p° fixed points of the isometry with respect to which we dualize
and fixed points of the isometry in the original solution ge-
@ @ —_é é — nerically become singular pomts in the.dual solution.
AXJ:W For example, the solution appropriate -monopole

nucleation is given by théBuschey transformatior(see[22]

AAaA for a review of T duality in string theory
gxxgydx_ gxygx://

A=
4 3 55— 1/gss,
whereé=e"2¢ is the determinant of the metric on the torus; Al_0 (23)
l// ’

the ten-dimensional solution is complete and nonsingular. If
we takeB= a/ /2, then the metric is singular over all the
horizon rﬁ=a2—,u; the solution describes a generalized
bubble decay mode of the vacuum.

_ 1
BswﬁAW

o : . with all other fields invariant. Dualization with respect to the
We may also takeB=a/y2u+n/\2R, in which case isometry d, which has a fixed point set at=R, 6=0,7

€ .vanlshes. qnly at the pc_>les of the horizon; this 'S.theleads to a solution which is singular at these poiimisboth
solution describing pair creation of monopoles. The horizon

is a line, which is smooth provided that we take +1: for string and Einstein framgsthus, we cannot interpret the

[n|>1, the singularities at the poles are joined by a string.somtIOn as describing pair creation.

Since
IV. MORE GENERAL INSTANTONS
R= k__H 1) We have so far discussed only Ricci-flat instantons; evi-
Va?+ u a’ dently, more general decay modes of the vacuum involving

nonzero gauge, antisymmetric tensor, and dilaton fields
to obtain four-dimensional magnetic fields of physical mag-should also be taken into account. Consistency with the
nitude we need eithew/n negative, close to—1/R and  background requires that all fields are asymptotically con-

n=1 or o/ u positive, close to R andn=—1. stant; these solutions were considered to some exte®]in
Consider the spin structure of the transformed solution. Aand we suggest generalizations here.
spinor parallely transported about an orbit of The decay modes presented in Sec. Il involved five-

I =dy+ a/\/i,u,&,/, can be shown to pick up a phase of dimensional Euclidean black-hole solutions, with a nontrivial
— e R2(e/\21)7, the same phase is picked up by a spinortopologyR?x S*x T and in looking for generalizations it is
transported about an orbit of= 3, + a/ \/EM%_ The four- natural to consider electrically charged black-hole solutions
dimensional magnetic fields aB$=BY= a/+/2u, so this de- in five dimensiong. In the following two sections, we work

cay mode by bubble nucleation is incompatib|e with theWrth the effective five-dimensional action and Imp|ICIt|y take
vacuum spin + structure, defined by phases of the product of the five-dimensional solution with a flat torus.

e™RVZ(alZu)y Following the general prescription for dimensional reduction
If we take B*=BY= a/ \/§M+1/\/§R and dimensionally given in[23], we obtain from Eqg(1) an action in the string

reduce along;=1,+1/y2R and l,=1,+1/J2R, then the frame containing the terms
phase change about an orbit o¢f is found to be

—e™R(B\Z-1R)y— g7RB2Y \which is consistent with the S= f d5x/—Ge ¢
vacuum. 167Gs
The action for this decay mode can be compared to Eq. 1 1
(17); the transformation does not change the action, but after X{R(G)+(d¢)2— 1_2H2_ZF2 , (24)
ensuring that the unit of charge is the same in each case, we
find that
Se(1,1)=25¢(1,0), (22 IFive-dimensional black holes may carry a magnetic charge with

respect to the three-form field strength, but the latter takes the form
where the notation specifies the charges carried by the moné+=Pe;, and does not asymptotically vanish, so we need not con-
poles. Thence, the rate of decay by creation of monopolesider such solutions here.
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with F deriving from the left current algebra and wherex=(1-c0s5)/2 and we have added a pure gauge term
Gs=Gyo/V, whereV is the volume of thel®. Rescaling to  to the potential so thaf? is nonsingular ar =+/u.2 The

the Einstein frame,,=e 2?3G,,, we obtain an action coordinate is now restricted to= /u and we must identify
1 . 1 7 with period Ar=2m(1— k) \/ﬁ The limit k=0 corre-

S= f d5x\/§[ R—=(9¢)2— —e (4#B3H2 sponds to an uncharged solution, while in the limit 1 the
167Gy 3 12 solution becomes singular. Sinces&< 1, the radius at in-

finity becomes smaller ag approaches its maximum value.

— Ee<2</>/3)|:2)_ (25) By rotating one of the coordinates on the sphere, we ob-
4 tain
We may now invoke Poincarstring-particle duality in five [1—(u/r?))] dr2
dimensions to relate the three form field strength to its dual,dsgtrzm 24 m+rzcosﬁt(dﬂg)
e $Habe= €abcd€F_ ' 26 —r2dt?. (32)
21 \/z de ( )

. . . . .. Since there are no terms of order 1 the fields, this solu-
which gives us the following action in terms of the axionic jon has zero mass and charge, which is consistent with the

field strengthF: fact that it results from the decay of a vacuum which cer-
1 1 1 o tainly hao zero mass and chorge. Since the topology of the
S= deX\/ﬁ[ R—= (d¢h)%— ~ el 4432 solution is R2x S, and the Killing vectord, has a fixed
167Gs 3 4 point set of dimension three at= \/x, spinors must be anti-

1 periodic about the imaginary time direction, which prevents
— Ze—(2¢/3>|:2]_ (270 the solution from describing the decay of a supersymmetric
vacuum.
It is straightforward to calculate the Euclidean action for
s solution; this is most easily done in the string frame,
since we can convert the volume tef@¥) to a surface term
[9] using the dilaton field equation

In Sec. V we shall consider more general solutions with boﬂ}hi
of these gauge fields nontrivial but we begin with a particu-
larly simple five-dimensionalelectrically charged black-

hole solution:
_ 2 2 1
FIESN G Uk 2 TR P Y Se=— oo  dCl(nie ¢ e HK—e tai)

ku [1—(u/r9)] 5
K where we now include the appropriate surface tefarsd
e b=|1+ r_’z‘ , (28) :{r)]o is the asymptotic value of the dilaton figldhe action is

us

PN L L Se=ote (6x+1 33
——Em t, E_8_G4( k+1), (33

wherek=[cosh() —1]/2, andA is the gauge potential as- with Gs=G,/A 7; this is consistent with the Schwarzschild
sociated with the field strength. Such a solution was first action given in Sec. Ill wher=0 as required. Reexpressing
constructed if24], and the Euclidean section was discussecthis in terms of the radius at infinity,
in [9]. We define the charge as

7R? (6k+1)

[ +F @9 86, (107

(34
Qs =167

As before, the decay ralé~e ™ E goes to zero as the super-
symmetry breaking becomes arbitrarily small and, for given
radius R, the vacuum decay described by this solution is
slower than decay via the Ricci-flat solutions of Sec. lll. If
we letk— 1, with the radiusR finite, the action diverges and
the radius of the “horizon” approaches infinity. Letting
[1—(u/r?)] , r2 k—1 with u constant gives a finite action, decreasing radius

— 2
A P e IF e TR
(30

and, with this conventionQ;= (1/2/8)7usinhs. We now
look for a Euclidean section on which all the fields are real,
by rotatingt—ir. To obtain a real gauge potential on the
Euclidean section, we must also rot@e— —iQ; and hence
sinh6— —i(sind), giving the solution

2Evidently the potential approaches a nonzero constant at infinity
1 sin5(r2—,u) and, hence, dpurely gaugg Maxwell potential must exist in the

Am— ——— "7 dr background also; this presents no problem since the most general

\/E (1= r)(rP—xu) supersymmetric vacua may have constant gauge potentials.
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at infinity, and an unstable horizasince the horizon is sin-
gular for k=1). In the limit of small charge€;<u it is
straightforward to show that

1s

with the radius at infinity approximately.
We obtain the effective four-dimensional solution using
the procedure given if23] a
e‘Pg[LV+GTTAMAV GTTAV
G'TTAI/ GTT ’

whereg,,, is the metric in the Einstein frame ang= ¢—
2InG_,. Then the four-dimensional metric in the Einstein
frame is

2
f

48Q
2

P

T

Se= 8G, (35

Gap= ( (36)

2
dsi, = ew([l_?ﬁ +r2cosHt(dQ3)— rzdtzl ,
e‘2‘P=<1— ri;) 37
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_ (2—w) 2 r2 2 pcose 5
ds=3 A dT+(p2—a2—,u)+d0+ 3 dy
masirt 6
—T(1+cosé)drd¢
ifo
+SIT[A—azsin20(2+,ucosﬁ)]d¢2 ,
A=(3—kp)?,
A
e =53, (39)
sind  X—u

A=————— ",
V2(1— k) A

wasindsin’ o
N J2A12
where3 = (p2— a?cog6), « is defined as previously and we

have included a pure gauge termAn so thatA? is nonsin-
gular at the poles of the horizopﬁz,u+ a?. The charge

=

The solution describes the formation and subsequent expagy, — (,/2/8)rusins using the same conventions as previ-

sion of a hole at=0, and differs from Witten's original
decay mod¢6] only by the presence of an additional scalar
field in four dimensiondgoriginating fromA).

ously.
To avoid a conical singularity at the horizon, we choose
the radius at infinity to beR=(1—«)/p;; the Euclidean

As in Sec. IIl, we can also consider dimensional reductionyngylar velocity i) = a/ u(1— ). The action is easily cal-

along the Killing vectord.+Bd,,, whereB=n/R. The four-
dimensional fields obtained are

d 2
o5 = gy - codoa)
+e2<P(r2—/_4,)Sin20dlﬂ2],
2
e—z<p:{(1_rfz + 1—%5) Bzrzsinzﬁ], (38

2
K
Al—g2e| 1 22 B2r2sirtg,
# 2

_ sing r2—pu
V2(1- k) o kp”

T

describing the pair creation of monopoles within a back-

ground magnetic field® and background scalar fieldsand
¢ (which are asymptotically constantHowever, the mag-
netic field B=n/R once again lies outside the range of va-

culated from Eq.32), with the background subtraction fa-
cilitated by the flatness of the=0 solution for all values of
«; then

_mu(1+6k) 7R?(1+6k)
 8G,;  8G4(1-k)(1-0°R%"

£ (40)

As usual, we rotate a coordinate on the sphgreit to
obtain the subsequent Lorentzian evolution. Then, dimen-
sional reduction along=4.+(d, leads to a bubble decay
mode and reduction alonf =4+ (2+n/R)J, describes
monopole pair production, with the decay rate of the latter
suppressed since the action is greater. For the latter, mag-
netic fields of physical magnitude and avoidance of conical
singularities in the four-dimensional solution require
n==*1 and|Q|~1/R.

We have considered only the most simple charged rotat-
ing solution; the prescription for obtaining the most general
decay modes is as follows. Starting from the most general
five-dimensional Lorentzian rotatingelectrically) charged
black-hole solutiorj25], we look for a Euclidean section on

which all fields can be chosen to be real. If such a section

exists, then by Witten rotating a coordinate on the sphere, we

lidity B<1/R and we need to consider rotating black holes tocan obtain a vacuum decay mode. Dimensional reduction

obtain magnetic fields of physical magnitude.
For simplicity, we consider a five-dimensional black hole
solution with only one electric chard@; , and one rotational

along a Killing vector with fixed point set of dimension three
leads to decay by bubble formation, a decay process lying in
a different superselection sector of the Hilbert space to the

parametera nonzero. Such a solution may be obtained fromsupersymmetric vacuum, while dimensional reduction along
boosting the(Lorentziar) Myers-Perry solution; the most a Killing vector with a fixed point set of dimension one leads
general such solutions are discussed [BB]. Rotating to decay by monopole pair production, a decay process con-
t—ir, a—»—ia, andQ;— —iQ;, we obtain the Euclidean sistent with the spin structure of the background. Finally, by
section(in the string framg rotating the torus coordinatéallowing for nontrivial angles
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between the generating circjesve obtain the generaliza- We now attempt to analytically continue the Lorentzian
tions of the solutions discussed in Sec. Ill. All such decaysolution into the Euclidean regime, by rotatiagrit; now,
modes do not describe the decay of the supersymmetritie gauge fields in the original solution are

vacuum, are incomplete at null infinity, and have actions

greater than the action of the original decay mode of Witten - 16,5 “134¢ Ay
described in Sec. Ill. = 77473r3Qf f rs
V. EXTREMAL BLACK HOLES AS INSTANTONS 8 13203
szQf Tdt/\dr (45)

The discussion in the previous sections has been based
around five-dimensional black hole solutions of topologyWhen we rotate—i7, if we impose the requirements that
R?x %, whose asymptotic geometry is that of the back-the dilaton field and?2 are real, bottQ; andQ7 remain real
groundR*x S'. However, extremal black holes are believed and positive, so that the gauge fields become pure imaginary.
to have the topologys* x Rx S%, with the Killing vector in  If, however, we impose the requirements that the gauge
the circle direction having no fixed point sd6]. In con-  fields are real on the Euclidean section, thgnbecomes
trast to the choice for nonextremal solutions we must chooseomplex and the metric is not real. Thence, a Euclidean sec-
a spin structure such that spinors are periodic in this direction on which all the fields are purely real does not exist.
tion and there is, hence, no obstruction to the analytically If we take(electrig field strengths that are pure imaginary
continued solutions asymptotically admitting the covariantlyon the Euclidean section, our solution takes the form
constant spinors of the background.

To illustrate this, we consider a particular five- ro\2l? ro\?]7, . .,
dimensional extremal black-hole solution to the equations of ~dSen=| 1~ T) dr?+ 1_(7) drotrodQs,
motion which follow from Eq.(27), carrying electric charges
with respect to both gauge fields where — 16 1

F:iWQ?"*Qf— dr/\dr, (46)

1 [
Q=72 f * e, (41)

8
F=i F’e’l’_sQfl/S i_/sdT/\dr

Qf:if * e~ (263
16m As before, we need to includ@ure imaginary gauge terms

For a spherically symmetric solution we have to the Maxwell potentialé\ andA to ensure that botA? and
_ A? are nonsingular at the horizon. There is no naturally de-
*e* P =2Qtes, (42)  fined periodicity ofr and we define the periodicity at spatial
infinity as B; the actiorl of the Euclidean solutiori32) is
re-Comp -8R then
m 2 2
7TI'0,3 7Tr0
and there exist solutions with constant dilaton such that Se= Yok (47)
8G; 8G,
2
e2¢=2( 7Qt . (43 which implies a vanishing entropy in the semiclassical ap-
4Q¢ proach[28] since
The field equations then imply that the metric takes the S=(Bdz—1)Se=0, (48)

Reissner-Nordstra form
p1_2 (although string theory calculations give a nonzero answer
1— (r_O) } dr2+r2d02 and it is believed that string corrections as the length of the
r ' imaginary time direction approaches the string scale lead to a
nonvanishing entropy as well as perhaps changing the topol-

2

dsg=— dt?+

ein™

e,

8Q7Q?\ Ve ogy to that of nonextremal solutiofig9]).
o= 2 : (44) For comparable values of the parametegsand u, the
decay rate by this mode is similar to that in Sec. Ill; the

We consider these extremal solutiofsith both charges range of validity of the semiclassical calculation requires that
nonzerg since extremal solutions with only one charge non-rq is much larger than the Planck length and, hence, the rate
zero have degenerate horizons with zero area and thus tled vacuum decay is necessarily slow. However, sigces
Euclidean sections have naked singularities and cannot beot fixed by the solution, we can choose a radius at infinity
interpreted as instantons. The above solution is the simplest

extremal black hole with a nondegenerate horizon and for—

this reason the corresponding dual solution in IIA theory S3Since the metric is of the Reissner-Nordstrom form, the subtleties
compactified orkK3x T2 was recently discussed in the con- in calculating the boundary terms considered26] do not arise
text of the microscopic description of the entro®7]. here.
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consistent with a Kaluza-Klein interpretati¢anlike the so- In the previous sections, starting from a Lorentzian space
lutions in the previous whose internal directions are too largeime we constructed Euclidean solutions by rotating
for such interpretations (t,x™—(i7,x™M). Even if the original Lorentzian solution

As in [6], we construct a bubble decay mode of thedid not admit a hypersurface of constant time of zero mo-
vacuum by rotating a coordinate on the sphere. The mass anentum we could find a Euclidean section on which the
the initial value hypersurface vanishes, since the perturbatiometric was real, but only by analytically continuing a mo-
falls off faster than X/, as do the charges of the fields; hence,mentum parameter in the solution. When we look for a
the solution may describe the decay of the vacuum state. Thieorentzian section of a Euclidean solution, to describe the
decay mode again involves the formation and subsequemsiubsequent evolution from an initial value hypersurface, we
expansion of a bubble of radiug, with null infinity incom-  cannot analytically continue momentum parameters and such
plete. a section will only exist if there is a zero momentum hyper-

Since there is no obvious obstruction to finding asymp-surface.
totically constant spinors in this solution, it may seem at first Starting from a ten-dimensional Euclidean solutijgy
sight as though the instanton represents a possible decaghich admits a nine-dimensional complete hypersurface
mode of the supersymmetric vacuum. However, the gauggith induced metriayyy, we analytically continue back to a
fields remain imaginary in the Lorentzian continuation and,| orentzian signature by rotatingr&™ — (—it,x™). We
hence, violate the dominant energy condition on the energynoose the zero-vector to be orthogonalStoand, on the
momentum tensor. Although the total charge is actually zero, grentzian section, we have a unit timelike normal 3o

there are nonvanishing pure imaginary Maxwell potentialsyien pyt,, = /J=a— with the induced metric bein
That is, although the solution has the requisite asymptotig Y= 0om Joo g

spin structure for it to contribute to the decay of the vacuum,
it is excluded by the unphysical behavior of the energy mo-
mentum tensor. _ _ and the second fundamental form ®fbeing
More generallyany analytically continued extremal solu-

tion which asymptotically admits the constant spinors of the
vacuum on a hypersurface of zero mass and charge must
havg an energy mOme.”F“m tenspr vyhlch'does not sat!sfy thl-e{eality of the metric on the Lorentzian section requires that
dominant energy condition. We justify this statement in th

. . L . ; terms  vanish, which  implies that
following section by considering the formulation of Witten’s ~ Yom P

proof of the positive energy theorem in higher dimensions. 9om=Xoo=Kom=0 and

Ivn=Omn— tuty (49)

KMN:HRQﬁaéﬁ- (50

1
Kon=——==9 . (51
VI. THE POSITIVE ENERGY THEOREM mn nm,0
2V—0doo

In the examples that we have discussed so far, the instan- ) )
tons have fallen into three categories. First, extremal blaci he surfacer= 7, of the Euclidean solution must match that
hole instantons admitting isometries with no fixed point setdhe surface=t,=i 7, of the analytically continued solution;
have spin structures consistent with the background, but th@ necessary condition is thgg,ol;,= 0. Hence, if an instan-
energy momentum tensors of the analytically continued soton is to describe the decay of the vacuum, it must admit a
lutions do not satisfy the dominant energy conditianleast  surface with zero extrinsic curvature from which we can ana-
in the example we gaye Secondly, in nonextremal black lytically continue the solution. We usually find such a sur-
hole instantons, if we consider dimensional reduction along &ce by looking for a hypersurface orthogonal Killing vector
Killing vector admitting an eight-dimensional fixed point set, in the Euclidean solution and Wick rotating.
spinors must be antiperiodic about an orbit at infinity of this  Now, if one has such a hypersurface of constant time,
isometry and hence the solution lies in a different superseWitten's proof of the positive energy theorem can be applied
lection sector of the Hilbert space to the vacuum. Third,unless there is some obstruction such as a black hole. Sup-
again in nonextremal black hole instantons, if we considepose that we have an instanton for which the fixed point sets
dimensional reduction along a Killing vector admitting a six- of the isometries do not prevent us from finding asymptoti-
dimensional fixed point set, we obtain a solution consistentally constant spinors; the solution then lies in the same su-
with the decay of a magnetic vacuum in four dimensions. Weperselection sector as the vacuum. However, the absence of
now discuss more generally the existence of instantons anahy obstruction on the initial value hypersurface allows us to
show that there are no decay modes consistent both with thgrove the positivity of the mass by Witten's method; that is,
dominant energy condition and with the supersymmetric spirif the solution is not flat, the mass must be positive, and the
structure of the background. vacuum cannot decay into this state.

Yang-Mills instantons do not indicate a possible decay Putting it this way makes it sound as though the decay
mode of the vacuum since there does not exist a surface afiodes of the supersymmetric vacuum must be trivial; if a
constant time from which we can continue them as reablack-hole type of obstruction is present, the positive energy
Yang-Mills fields in Minkowski space. The analogue for ten- theorem does not apply but the instanton does not lie in the
dimensional supergravity would be a nine-dimensional sursame superselection sector of fermions as the vacuum. In the
face with zero second fundamental form; such a surface acebsence of an obstruction the positive energy theorem ap-
as a “turning” point at which the instanton matches the plies and prevents the existence of instantonic decay modes
space into which the vacuum decays. unless the Witten proof fails in anothéunphysical way
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such as the dominant energy condition breaking down, whicldence, the dilaton contribution to the energy momentum ten-
we discussed in Sec. V. We now discuss the formulation oor no longer satisfies the dominant energy condition, be-
the positive energy theorem for space times asymptotic taause of the change of sign of thedf)? term in the action.

M4x TS, Since the solution is asymptotically flat, we can decom-

We consider an asymptotically flat solution to the Euclid-pose the metric at spatial infinity as
ean field equations derived from the Einstein frame action in
ten dimensiong2); the graviton field equation gives — 8po+ hap(xP) hom(xP)

1 Jun hio®)  Saathano®) 20
RMN_ERgMN:877610TMN- (52
where thehg;, terms vanish i3, has zero momentum. We
where the energy momentum tensor includes contributiongSe asymptotically flat coordinates, and work in an orthonor-
from the dilaton, antisymmetric tensor, and gauge fields. Théhal frame. If the perturbation to the flat metric is of order
field configuration must also be consistent with the othelL/r*), derivative terms are of orderri/for 4; terms and of
constraint equations derived from the action. order 1+ D for 9, terms.

We then analytically continue the solution to obtain a For a solution admitting a hypersurface of asymptotic ge-
Lorentzian solution, imposing the condition that the energyometry R®xT® the Amouwitt-Deser-MisneADM) energy
momentum tensor satisfies the dominant energy conditiofan be expressed §32]

[30]; that is, the local energy densilyy is positive(or zerg

at each point in the Lorentzian space time and in each local 1 m
Lorentz frame. The total energy momentum tensor is Eaom= 167Gy Jw d="(GnNnm= dmhinn), (57

1 1 1 : . o

Tun=51 (P (D) —= (dD)2gyni + - (P72 where the integral is taken over a boundary at infinity of
8 2 4 2; the ADM momentum is given by
, 1 1
X{ g HupoHN PO— ZH2gyy (+ 57 1 ;
{ @ 6 2 " 167Gy f}; d2"(d5hom— daNam+ Srmdahpp
(f) =NP 1 2 3 " Jafran
X gNN’FMPF(f)_ZTr(F JIMN ( - (53 — Simdphop)- (58

It is well known that each of the contributions to the energyExpanding the expression for the ADM energy in terms of

momentum tensor obey the required condition, provided thahe torus coordinates and the external coordinates,

the fields are real. Since this condition is critical to the proof,

we include a short discussion of the dominant energy condi- 1 N

tion in the Appendix. Enom= 167Gy, fﬁm dXdghpa—dahii —daNgg},
Evidently reality of the fields is a nontrivial constraint (59)

when we consider analytic continuation of Euclidean solu-

tion;. F WiII_be rgal in Lorent_zian spacetime provided that where thed;h;, terms vanish when we consider a solution
F.m is pure imaginary ané rn is pure real; that is, the mag- admitting a global (1)® isometry group. Since the volume
Euclidean section. Similarly, the reality éf in the Lorent-  the integrand is of order 87 which requires thakh,z,h;; are
zian spacetime is ensured b, being pure imaginary and of order 1f . Since the functions;,, must be periodic in the
Hmnp being pure real. o . coordinates<', even if they are not independent of the torus
We choose to work in the Einstein frame since the energy,pordinates, the expression for the ADM energy in E59)

momentum tensor in the string frame does not satisfy thgs valid even when the metric perturbations are dependent on
dominant energy conditiof24,31]; the graviton field equa- the torus coordinates.

tion obtained from the string frame acti¢h) is To prove the positive mass theorem for solutions which
1 tend to the required background we consider spinors obeying
Run(G) — ER(G)GMN=87TG10T§}|rN, (54)  a Dirac-type equation on the nine-dimensional hypersurface.

Our discussion follows closely that §83], and although we
are interested in zero momentum hypersurfaces for general-

where the total energy momentum tensor is defined as ity we do not impose the requirement that=0, since it is

1 not required by the proof. Projecting the ten-dimensional co-
Tﬁr,\,z _2[ (@) (D) _E(aq))ZGMN] variant derivativeD,, onto the hypersurface,
L N'Po_ 142 Diem| Vit 2hazyif | e (60)
+Z GNN'HMPQH _EH GMN m m 2 mnY Y ’
1

whereV is the covariant derivative on the hypersurface, the
v matrices are constructed from the 32-dimensional spinor

1
G FiipF(HN P—ZTr(FZ)GMN]. (55)

N
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representation of S@,1) and Dy=dy+I'y with I'y the  assume that a solution to Witten'’s equation which vanishes
Spin connection matrices. Then7 mu|t|p|y|ng W* we ob- at |nf|n|ty eXiStS, the left-hand side of E(:ﬁ5) VaniSheS, as
tain the Witten equation such a solution must decay at least as fast ag (for
asymptotic geometrR3x T%). The energy-momentum ten-
sor then vanishes, and,e=0; if, however,D,e=0 and
€#0, thene does not vanish at infinity, thus completing the
proof.
with K the trace of the second fundamental form. If we mul-  We consider a solution to the Witten equation asymptoti-
tiply by €*, act on the result with/™V;, and use the Ricci cally approaching a constant spingy; the asymptotic geom-
identity, we obtain etry constrainse— eg=¢€(6,¢,x")/r. The existence of such
solutions is nontrivial even in the four-dimensional case, and
was the subject di34] and[35]. Here, however, such spinors

o - 1.5
Y Vm6=—§/C7 €, (61

— 2
V(€ D™e)=(Dme)* (D™e) + Zf*{RHC — Knnk™ exist by assumption, since we are only interested in solutions
i lying in the same superselection sector of the Hilbert space
+2V (K™= g™"C) yny't e, (620  as the vacuum, requiring that the constant spinors of the

vacuum are asymptotically admitted. Sincés a solution of
whereR is the Ricci scalar o of the induced metric. The the Witten equatiori61), we find that
field equations are

e=lim,_.{r*y"y"Tmeo+rvy (y*d.) e}, (67
R+ K2 — Kyl K™"'= 167G 10T 55 » (63
A where we use only the 9 terms inT",,. Then substituting
V(K™= M) = 87rGoTO", € in the expression fos,
and since the total stress energy tensor satisfies the dominant _ . . [€
energy condition implying thatss=|Tqal: S= fﬁm dz [EOF €0t €0 ’ (68)

Vin(€*D™e)=(Dye)* (D™e). 64 \where we again retain only terms of order?.in the inte-

Upon integrating this over the initial value hypersurface, Wegrand. Using Eq(67), we find that

obtain Y
% dErEO 2= § dzr( €Y YT meot €5 r—g('y“&aﬁ] .
3§ E*DmedEm—fﬁHe*DmedEmzf (Dme)* (DMe)d, (69)
o] 2
(69) In the limit of spatial infinity only the first term contributes

where we integrate over the region®fbounded by an inner 1 Ed-(68) and hence

surfaceH and a surface at infinity. In the following, we shall

assume that the inner surface term vanishes; this is certainly § dE“e (Ta—vyay Fn)EOa (70
true if H is an apparent horizon or a minimal surface in a

maximal hypersurfacdsince the proofs given if33] are _ _

easily generalized to ten dimensionghis covers all cases Where we retain only terms of orderri/in I';,. Now the

of inner boundaries in which we are interested. linearized spin connection matrices are defined by
Let the surface term at infinity b&; since the right-hand 1
side is positive semidefinite§ is also positive semidefinite = 9hu——auh M N 71
and is an invariant of the initial value hypersurface. The " 16{ P~ It 7%, 77, (79
contributing terms to the integrand are of ordar®Livith the o _ )
1/r contributions vanishing as and hence substituting fdr and comparing with the expres-
sions for the ADM energy and momentum, we obtain the
. _ relationship
% dxl(aihmn): § dxlﬁifzo, (66)
S=47G €5 (Eapmt Py ) €o. (72

even wherh,,,, is X dependent, since any such dependence
must be periodic ix'. In fact, if we assume that there are no The non-negativity ofS then implies thatEADM>|P l;
Kaluza-Klein-type charges arising from the torus, thenthence, the mass is positive semidefinite, vanishing if and
dihmn andh ,; fall off as 142 and the leading order deviation only if D,,e=0 and the energy momentum tensor is null.
will be independent of these terms in any case. The integrability condition on the spinors and the existence
We now demonstrate the relationship betweeand the of a basis of such covariantly constant spinors then imply
energy by considering solutions to Witten's equation; wethat R,,,un=0, with Einstein’'s equations leading to
omit much of the analysis since it follows as a direct gener-Ty,y=0 and thusRynpg=0. That is, the mass vanishes if
alization of that in[8]. Now, no nonzero spinor satisfying and only if the space time is flat and there is no state with the
Witten's equation on the initial value hypersurface vanishesequisite spin structure into which the vacuum can decay. As
asr—oo. This follows directly from Eq.(65) since if we  usual, by replacing the covariant derivative with a modified
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derivative dependent on the gauge fields, Bogomolnythe dominant energy condition we conclude that this condi-
bounds relating the mass and charges may be derived.  tion must break down and hence the gauge field strengths
We next discuss the ways in which the solutions given inmust be imaginary in this Lorentzian continuation. That is,
the previous sections “evade” the positive energy theoremalthough the solution has the requisite asymptotic spin struc-
Suppose that we consider a metric on the hypersurface withtare for it to contribute to the decay of the vacuum, it is
leading order perturbation of rff from the flat metric with excluded by the nonphysical behavior of the energy-
k>1; then the energyand momentumdefined in Eq.(59)  momentum tensor. Hence, if an extremal black hole solution
necessarily vanishes. If massless Witten spinors are admittetith nondegenerate horizon admits a Euclidean section
on the hypersurface and the energy momentum tensor satighose topology is consistent with asymptotically constant
fies the dominant energy condition, E§2) must be satisfied spinors, it is impossible to find an analytic continuation on
and thus which all fields are real.
Another class of solutions which evade the positive en-
m % % L 0m. D _ ergy theorem are those obtained from taking the product of
L{(D €*)(Dme) +4mGoe™ (Too+ T ymy") €}d% =0. Euclidean blackp branes of topologyR?*Px S? with a flat
(73)  time direction(and flat circle directions[14]. The effective
four-dimensional solutions describe either a static bubble or
This integral over the hypersurface will vanish if and only if a static monopole pair within background fields and are ex-
Dne=0 and the energy momentum tensor is null, whichcluded from the proofs of the positive energy theorem by
implies that the space time is flat. Hence, if we have a metrigpin structure arguments. It is, however, easy to show that
on the hypersurface which approaches the background fastéite resultant configurations are unstalfleecause of the
than 1f and the dominant energy condition is satisfied by thenegative modes of the Euclideanbrane solutionsand in
(nonflap solution, we will not be able to find asymptotically any case such decay modes are excluded by their spin struc-
constant solutions to Witten’s equation; the topology changeures.
implicit in these perturbations implies an obstruction pre- Therefore, to contribute to the decay of the vacuum, a
venting the existence of such spinors. Euclidean instanton must have a section on which the metric
The five-dimensional black hole solutions considered inmay be analytically continued to the Lorentzian regime. A
Secs. Il and IV evade the positive energy theorem in thimecessary and sufficient condition is the existence of a hy-
way; the masses of the analytically continued solutions vanpersurface of zero second fundamental form. If the hypersur-
ish, but there exist no asymptotically constant spinors on théace does not admit the same number of asymptotically con-
initial value hypersurfaces. stant spinors as the vacuum, it will not describe the decay of
We are now able to justify the statement in Sec. V that thehe supersymmetric vacuum. If the hypersurface does admit
positive energy theorem implies that there exists no Euclidasymptotically constant spinors, they must be covariantly
ean section of certain extreme black-hole solutions on whiclzonstant in order that the mass is zero. If we have the re-
all fields are real. Suppose we have an analytically continueduired number of constant spinors, the hypersurface must be
solution admitting a hypersurface whose mass and chargeseciselyR3x T®.
vanish as the fields decay at infinity as?/The horizon in There are, hence, no instantons contributing to the decay
the original solution must be nonsingular, so that this hyperrate of the supersymmetric vacuuBubbledecay modes are
surface is nonsingular. There is no topological obstruction tanconsistent with the background spin structunegnopole
finding solutions to the Witten equation on the initial value decay modes describe the decay oflamphysical magnetic
hypersurface and we can show that vacuum ancextremal black holénstantons are inconsistent
with the dominant energy condition.

§ (e*De)dxm— é (e*Dpe)d2m=0, (74
* H VII. CALABI-YAU COMPACTIFICATION

where we must take account of the inner boundaryfol- The discussions in the previous sections applied to toroi-
lowing [33], we choosee to satsify the constraint equation qa| compactifications of the heterotic string theory; compac-
y°y'e=€ (with the one direction normal té1) and thus tification on a Calabi-Yau space gives rise to a theory with
restrict the freedom o€ on H by half, as required. We may (more realistically N=1 supersymmetry in four dimensions.
then show that the only contributing inner boundary term isThe spectrum of the theory is certainly stable since there are
no modes with imaginary frequencigs| and the semiclas-
_ * m_ _ * sical stability of the vacuum will be determined by whether
\(j; (€"Dpe)d2™=—2 ﬁ.(e €)Jd%n, (75) instanton solutions to the classical field equations exist.

We may immediately exclude the possibility that the
where 7 is the trace of the second fundamental formtbf Calabi-Yau vacuum can decay into another supersymmetric
embedded in the hypersurfake Now for any such extremal state; the supersymmetry will require that on an initial value
black hole solution the second fundamental fornHoin the  hypersurface two covariantly constant spinors are admitted
hypersurface vanishes and hence the inner boundary teran the compact space and four are admitted on the external
must vanish. space. If, however, such spinors are admitted globally

However, Eq.(74) contradicts Eq(65), whose right-hand throughout the hypersurface, the hypersurface must be pre-
side is positive definite for a nonflat solution. Since the dericisely R3x Ksu(s), and the space time must be the vacuum.
vation assumed that the energy momentum tensor satisfi@ne might imagine that there exist instantons corresponding
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to the tunneling between differelt; ; however, cobordism
theory requires that thi; must have the same characteristic 5= fﬁ dX €5 (I'y= 7oy 'm) €0, (81)
Stiefel-Whitney and Chern numbef40] and, thence, are ”
topologically indistinct. Thus vacuum instability can againyhere we linearize the covariant derivative about the back-
result only from the consideration of nonsupersymmetricyround asD,,=°D,,+ I, and
states which are not simple metric products but rather con-
tain topological defects. 1. . MON

An instanton will only describe a possible decay mode of 1ﬂm:1_6( Dnhmm = “DmHun) [y 77 (82)
the vacuum if it admits a nine-dimensional hypersurface of
zero second fundamental form whose geometry asymptotiSubstituting into Eq(81), and following the same steps as in
cally approaches that d®3x Ksu)- At infinity one would  [8], we find that
want there to be two asymptotically covariantly constant
spinors on the Calabi-Yau and four on tRé as for the
vacuum. The most general decay modes may have nonvan-
ishing antisymmetric tensor and dilaton fields which are as-
ymptotically constant; the energy momentum tensor again = 16mG10€5 €0Eapm » (83
satisfies the dominant energy condition provided that the
fields are real on the Lorentzian section. where we assume that the hypersurface has zero second fun-

Now, the generalized expression for the ADM energy of gdamental form. Siqcé‘ is positiye semidefinite,_ the ADM
solutiong,,y with respect to a background solutiog,Sy is energy of any solution asymptotically approaching this back-
[32] ground is also constrained to be positive semidefinite with

respect to the background. Vanishing of the energy requires
1 that the energy momentum tensor vanishes Brg,=0.
EADMZW Eﬁ d2™°DnGmp— °*Dmnpy°9"" Since the background admits a basis of covariantly constant
10 Je= spinors andeg is an arbitrary element of the basis, zero en-
(76) ergy requires the existence of the full number of covariantly
constant spinors on the hypersurface, forcing the hypersur-

5= % d% €5 €o{(°*Dmhan) °9™" = (°D o) ° g™}

where D, is the covariant derivative in the background. Weface to be preciselR3x K
assume thagy is an analytically continued solution to Eq. SU(3)-

) o . Evenifw me that th rturbations fall aw ffi-
(52), with the energy-momentum tensor satisfying the domi- © e assume that the perturbations fall away su

2 ) ! . . iently quickly that the energy vanishes, then the vanishin
nant energy condition, and the field configuration c0n3|sten§f S i%glies t%at the requisitgysolutions to Witten's equationg

with the other constraint equations. We decompose the me 5

ric. at spatial infinity as 1) are only admitted ifD,e=0, again implying that the

solution is precisely the background. Even if other solutions

of zero energy with respect to the background exist, they
), 77) cannot have the required asymptotic spin structure. Obstruc-
tions on the hypersurface may allow the evasion of the posi-

tive energy theorem, but also imply either an incompatible

with hyy decaying as %/ and hg,, terms vanishing for a spin structure at infinity or a violation of the dominant en-
zero-momentum hypersurface. Then we can rewrite thergy condition. Since the instanton cannot contribute to the
ADM energy as decay rate unless one has asymptotically the requisite
spinors, we conclude that there can be no instantonic decay

1 u o riifo modes of the Calabi-Yau vacuum. It is similarly straightfor-

Eaom= 167G, i dX{ghap—dahgp+°g" (*Dihy) ward to prove the absence of decay modes ofi8e< T2
vacuum using the basis of 16 covariantly constant spinors.

°Goot Noo(XP) Rom(XP)

un= hnO(Xp) ogmn+ hmn(xp)

—°gg,h;}. (78)
VIIl. 11-DIMENSIONAL SUPERGRAVITY
We consider solutions to the Witten equatiil) on the
hypersurface now approachimgvariantly constant spinors;
that is, we look for a solutior approachingey, where

Our discussions so far have been restricted to 10-
dimensional supergravity but the same arguments can be ap-
plied to 11-dimensional supergravity. The bosonic sector of

°D,€p=0 (79 the action oN=1 supergravity in 11 dimensions is given by
[36]
and e approaches, as 1f2. For such a solution, it follows 1 1
from the dominant energy condition that S= f d“xg[ ZR(S)— yT: 2
* * m
éwe Dme= fE(Dme) (D), (80 +Wexl"'Xllfxl~~x4.7:x5~.‘x8u4x9~~~xll , (84

where we assume the only boundary is at infinity. Siace where¢ is the elfbein andF,.,,=4d;,.Axy 4. The conjec-
satisfies the Witten equation, it is straightforward to showtured duality between 11-dimensional supergravity compac-
that the only contributing terms to the invariasigive tified on a circle and strongly coupled type-l1IA superstring



4836 MARIKA M. TAYLOR-ROBINSON 55

theory[37] (as well as other related dualitiesuggests that the vacuum, it will not describe the decay of the supersym-
the absence of instantonic decay modes of the former shoulahetric vacuum. If the hypersurface does admit asymptoti-
for consistency imply the absence of such decays for theally constant spinors, they must be covariantly constant in

latter. order that the mass is zera@nless we allow the energy-
The equations of motion derived from E@4) (assuming momentum tensor to be unphysical and violate the dominant
that the gravitino vanishgsre energy condition If we have the required number of cova-

riantly constant spinors, the hypersurface must be precisely
VI § the vacuum state. Thence, there is no state into which the
Ry~ 5RG,=3 FyxpraFs 20— §9yz]:2]’ vacuum can decay.
All instantons “evade” the positive energy theorem ei-
ther by violating the dominant energy condition, or by hav-
(85 ing an incompatible spin structure, or by describing the de-
cay of a four-dimensional magnetic vacuum. The latter decay
modes are consistent with fermions, but involve unphysical
fields, and unconventional identifications on the internal
rus. In addition the sizes of the internal directions are fixed
by the solutions and are necessarily too large for a clear
galuza—Klein interpretation.
Although we have restricted our discussions to the het-

1
Dy]:yxlxzxsz — — A XuLE,

8 X1’

Now, if we require a vacuum state in which the three form
vanishes, the solution must admit at least one covariantl
constant spinor in order to preserve some supersymmetry. |
the context of compactification to four dimensions, this im-
plies that the holonomy of the compact space must be

subgroup of Spif¥) [2]. We usually take the compact space erotic string theory and 11-dimensional supergravity, similar

to be T7, K3XT3, Kgy3XSt, or Kgpin7y for which the ; ;
eleven dimensional vSaLljéiJ)um admitss\%gmlG 8,0r4 covari-arg'“'men.tS apply to the low-energy effective actions of the
antly constant spinors, respectively e other string theories. We can exclude, for example, super-

We consider the existence of instantons by, as usua ymmetric decay modes of type-Il theory compactified on a

.- . 2 .
looking for solutions to the Euclidean equations of motion :Lib'vr?n;nf‘/“'mldn_ X K3, or a torus by the analysis of
whose asymptotic geometry is that of the background. Thg ' o . . o
most general such solution may have a nonzero three form As an aside, it is interesting to consider the implications

field which is asymptotically constant and consistent with theOf the dualities between theories; the heterotic string com-

field equations. pact_ified to onT# is du_al to the IIA string orK3, and_ thg
Such a solution only contributes to the vacuum decay ratéOrOIOIaI vacuum admllts a Qecay mode by metrlc field

if it both admits an initial value hypersurface from which we charged brane formation Wh'le the3 vacuum adm'ts no

can describe the subsequent Lorentzian evolution and als%eca_y mod_es. N(.)W the_duallty relates the heterotic and IIA

asymptotically admits the requisite number of covariantlys'x'd'mens'onaI fields vig3g]

constant spinors of the vacuum on this hypersurface. In ad-

h
dition, we require that the analytic continuation of the four PN=—ol, GRB:e ® GI/LB’
form field strengthF is real; that is, on the Euclidean section, . o |
the “electric” part of F is imaginary and the “magnetic” Ap=Ap, M'=M7, (86)
part is real. Then, the energy momentum tensor satisfies the _
dominant energy conditio(see the Appendixand the spino- Hh=e K",

rial proofs of the positive energy theorem may be applied.

However, if all of these requirements are satisfied, thavhere the heterotic metric in the string frame3%; and the
methods of Sec. VI can be used to show that the energy afA metric in the string frame ingB; ®, A, H are the
the solution with respect to the background is positivesix-dimensional dilaton, 24 Abelian gauge fields, and anti-
semidefinite and only vanishes if the solution is identical tosymmetric tensor field strength respective}'@.is the (con-
the background. That is, there are no states into which thgyymaiy invarian) dual tensor tH and theM fields are the
vacuum can decay, consistent with asymptotically admitting,,5trix valued scalar field representing elements 4,20/

t_h_e cqvariantly constant spinors of the vacuum. For COMpPagy(4) x O(20)]. Then, the solution in type-Il theory dual to
tifications admitting at least one circle factor, we will of tl?at in the heterotic theory is

course be able to find bubble and monopole decay modes o
a nonsupersymmetric vacuum. o dr2 ) A i
dsﬁtrIe (m"’dx +dy +redoc—r C0520dt

IX. CONCLUSIONS

We conclude by recapitulating the arguments by which +e‘2‘1’”(r2—,u)d¢2], (87
we exclude decay modes of a supersymmetric vacuum solu-

tion of supergravity theories in 10 and 11 dimensions. To

contribute to the decay of the vacuum, a Euclidean instanton e20" =
must have a section on which the metric can be analytically

continued to the Lorentzian regime. A necessary and suffi-

cient condition is the existence of a hypersurface of zergvhich corresponds to a solution which is not asymptotically
second fundamental form. If this hypersurface does not adflat in ten dimensions and is singular at the *horizon”
mit the same number of asymptotically constant spinors of = /. That is, the dualized solution does not represent an

1— :—é+ Bzrzsin26>,
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instantonic decay mode of even a nonsupersymmetric j’<o0
vacuum of the dual theory, as we would expect.

Instabilities of vacua of supergravity theories of the typeand
M#x K exist only if we include instanton solutions in which
the topology is changed. Even in general relativity, the ne- —-vj=<0. (A2)
cessity of including varying topologies is not obvious, since
cluster decomposition cannot be used to prove the hypothesiéow, for ap-form field B with associatedg+ 1)-form field
(unlike in Yang-Mills theory. strength’, the energy-momentum tensor is

It has been suggested that target space duality in string
theory may be used to exclude solutions of different topol- N'Pe.. P 1 )
ogy [12]. In the string theory, the winding numbers about  TMN=] 9NN Hmp,...p T 72 TP — 2(1—+p)H CIVIN
each of the compactified directions are conserved quantum (A2)
numbers. As the radii of the compactified directions increase,
each of the winding numbers disappears and it is impossiblg is a standard algebraic exercise to show that such an en-
to change the global space topology. Sificduality implies  ergy momentum tensor satisfies the required condition, as-
an equivalence relation between small and large radii oguming that the fields are real. We refer the read€i3&]
compactified directions, this suggests that decompactificatioand[31] for further details.
instability of compactified directions is not possible either, Furthermore, Eq(A1) hold as strict inequalities except in
and thus that no semiclassical instability of the vacuum exspecial circumstances, when eitheror the field strengths
ists. However, the arguments given do not apply to theare null; that is, the only conditions under which they hold as
Calabi-Yau vacua, since their duality groups do not generallgtrict equalities are as follows:
relate small and large volume compactifications. We might
expect that topology change should in any case be consid- j2=0-H?=0
ered in a wider context than stririgerturbation theory.

In considering the semiclassical stability of the vacua ofor
string theories, we have shown that instantons of different

topology to the putative vacuum are excluded by the incom- v?=0, (A3)
patibility of their asymptotic spin structure with that of the
vacuum. Any instantonic decay modes must lie in a different —jv=0jAv=0

superselection sector of the Hilbert space of states and do not

contribute to the decay rate of the supersymmetric vacuumgnd

Although one would expect that the structure of the super-

symmetry algebra at infinity would prevent the existence of v2=0,

even nonsupersymmetric decay modes, it is reassuring that

there is a natural way of excluding such instantons by semiwith the latter condition implying tha: must be a principle

classical arguments. null vector of A.
If we assume that the components7gfare real and that
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