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In analyzing the nature of thermal radiance experienced by an accelerated observer~Unruh effect!, an eternal
black hole~Hawking effect!, and in certain types of cosmological expansion, one of us proposed a unifying
viewpoint that these can be understood as arising from the vacuum fluctuations of the quantum field being
subjected to an exponential scale transformation in these systems. This viewpoint, together with our recently
developed stochastic theory of particle-field interaction understood as quantum open systems described by the
influence functional formalism, can be used effectively to address situations where the spacetime possesses an
event horizon only asymptotically, or none at all. Examples studied here include detectors moving at uniform
acceleration only asymptotically or for a finite time, a moving mirror, and a two-dimensional collapsing mass.
We show that in such systems radiance indeed is observed, albeit not in a precise Planckian spectrum. The
deviation therefrom is determined by a parameter which measures the departure from uniform acceleration or
from exact exponential expansion. The methodology illustrated here is expected to be useful for the investi-
gation of nonequilibrium black hole thermodynamics and the linear response regime of back reaction problems
in semiclassical gravity.@S0556-2821~97!07308-6#

PACS number~s!: 04.62.1v, 04.70.Dy, 05.40.1j, 42.50.Lc

I. INTRODUCTION

Particle production@1# with a thermal spectrum from
black holes@2–4#, moving mirrors@5#, accelerated detectors
@6#, observers in a de Sitter universe@7#, and certain cosmo-
logical spacetimes@8# has been a subject of continual discus-
sion since the mid 1970’s because of its extraordinary nature
and its basic theoretical value. The mainstream approaches to
these problems rely on thermodyamic arguments@9,10#,
finite-temperature field theory techniques@11–13#, or geo-
metric constructions~event horizon as a global property of
spacetime! @14# or pairwise combinations thereof.~The sta-
tus of work on quantum field theory in curved spacetimes up
to 1980 can be found in@15#.! The 1980’s saw attempts and
preparations for the back reaction problem@16# ~for cosmo-
logical back reaction problems, see@17#!, i.e., the calculation
of the energy-momentum tensor~see@18# and earlier refer-
ences!, the effect of particle creation on a black hole~in a
box, to ensure quasiequilibrium with its radiation! @14#, and
the dynamical origin of black hole entropy@19#. These in-
quiries are mainly confined to equilibrium thermodynamics
or finite-temperature field theory conditions.1 To treat prob-

lems of a dynamical nature such as the backreaction of
Hawking radiation on black hole collapse, one needs a new
conceptual framework and a more powerful formalism for
tackling nonequilibrium conditions and high-energy~trans-
Planckian! processes. A new viewpoint which stresses the
local, kinematic nature of these processes rather than the
traditional global geometric properties has been proposed
@31–34# which regards the Hawking-Unruh thermal radiance
observed in one vacuum as resulting from exponential red-
shifting of quantum noise of another. This view puts the
nature of thermal radiance in the two classes of spacetimes
on the same footing@35# and empowers one to tackle situa-
tions which do not possess an event horizon at all, as the
examples in this and a companion paper will show.

Such a formalism of statistical field theory has been de-
veloped by one of us and co-workers in recent years@36–
40#. This approach aims to provide the statistical mechanical
underpinnings of quantum field theory in curved spacetime,
and strives at a microscopic and elemental description of the
structure and dynamics of matter and spacetime. The starting
point is the quantum and thermal fluctuations for fields, and
the focus is on the evolution of the reduced density matrix of
an open system~or the equivalent Wigner distribution func-
tions!; the quantities of interest are the noise and dissipation
kernels contained in the influence functional@42#, and the
equation of motion takes the form of a master, Langevin,
Fokker-Planck, or stochastic Schro¨dinger equation describ-
ing the evolution of the quantum statistical state of the sys-
tem, including, in addition to the quantum field effects like
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1Among other notable alternatives, we would like to mention

Sciama’s dissipative system approach@20#, Unruh’s@21# and Jacob-
son’s work on sonic black holes@22#, Zurek and Thorne’s degree of
freedom counts@23#, Sorkin’s geometric or ‘‘entanglement’’ en-
tropy @24,25# ~see also@26#!, the Bekenstein-Page information

theory approach@27,28#, the views expressed by Stephens, ’t Hooft,
and Whiting@29#, and most significantly, the string-theoretical ori-
gin of black hole entropy@30#.
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radiative corrections and renormalization, also statistical dy-
namical effects like decoherence, correlation, and dissipa-
tion. Since it contains the causal~Schwinger-Keldysh! effec-
tive action @43#, it is a generalization of the traditional
scheme of thermal field theory@13# and the ‘‘in-out’’
~Schwinger-DeWitt! effective action@44#, and is particularly
suited for treating fluctuations and dissipation in back reac-
tion problems from semiclassical gravity@40# to mesoscopic
physics@41#.

The foundation of this approach has been constructed re-
cently based on open system concepts and the quantum
Brownian model@45,46#. The method has since been applied
to particle creation and back reaction processes in cosmo-
logical spacetimes@47–49#. For particle creation in space-
times with event horizons, such as for an accelerated ob-
server and black holes, this method derives the Hawking-
Unruh effect@50,46# from the viewpoint of exponential am-
plification of quantum noise@34#. It can also describe the
linear response regime of back reaction viewed in the context
of a fluctuation-dissipation relation@49,52#.

This paper is a continuation of our earlier work@46,50,52#
to presentan approximation schemeto show that near-
thermal radiation is emitted from systems undergoing near-
uniform acceleration or in slightly perturbed spacetimes. We
wish to demonstrate the relative ease to treat such problems
using quantum field theory methods aided by statistical-
mechanical considerations. This approach also highlightsa
unified viewpoint towards thermal particle creation from
spacetimes with and without event horizons based on the
interpretation that the thermal radiance can be viewed as re-
sulting from quantum noise of the field being amplified by an
exponential scale transformation in these systems~in specific
vacuum states! @34#. In contradistinction to viewing these as
global, geometric effects, this viewpoint emphasizes the ki-
nematic effect of scaling on the vacuum in altering the rela-
tive weight of quantum versus thermal fluctuations@35#.

It may appear that this approximation scheme can be
equally implemented by taking the conventional viewpoints
~notably the geometric viewpoint!, and the perturbative cal-
culation can be performed by other existing methods~nota-
bly the thermal field theory method!. But as we will show
here, it is not as easy as it appears.Conceptually, the geo-
metric viewpoint assumes that a sufficient condition for the
appearance of Hawking radiation is the existence of an event
horizon, which is considered as a global property of the
spacetime or the system.2 When the spacetime deviates from
the eternal black hole or that the trajectory deviates from the
uniformly accelerated one, physical reasoning tells us that
the Hawking or Unruh radiation should still exist, albeit with
a nonthermal spectrum. But even if an event horizon exists
for the perturbed spacetime, it may not be so easily describ-
able in geometric terms. And for time-dependent perturba-
tions of lesser symmetry or for situations where uniform ac-

celeration occurs only for a finite interval of time, it is not
easy to deduce the form of Hawking radiation in terms of
purely global geometric quantities~see, however, Wald@53#
and Bonadoset al. @54#!. The concept of an approximate
event horizon, which exists for a finite period of time or only
asymptotically, is difficult to define and, even if it is possible
~by apparent horizons, e.g.,@55#!, rather unwieldy to imple-
ment in the calculation of particle creation and back reaction
effects.

Technicallyone may think calculations via the thermal
field theory are equally possible. Indeed this has been tried
before by one of us and others. One way is to assume a
quasiperiodic condition on the Green function, making it
near thermal@13#. But this is not a good solution, as the
deviation from eternal black hole or uniform acceleration
disables the Euclidean section in the spacetimes~Kruskal or
Rindler!, and the imaginary-time finite-temperature theory is
not well defined any more. Besides, to deal with the statisti-
cal dynamics of the system, one should use an in-in bound-
ary condition and work with causal Green functions. The
lesson we learned from treating the back reaction problems
of particle creation in cosmological spacetimes@36,47# is
that one can no longer rely on methods which are restricted
to equilibrium conditions~like the imaginary-time or ther-
mofield dynamics methods!, but should use nonequilibrium
methods such as the Schwinger-Keldysh~closed time path!
effective action@43# for the treatment of dynamical back
reactions. Its close equivalent, the influence functional
method @42#, is most appropriate for investigating the
quantum-statistical dynamics of matter and geometry, like
the entropy of quantum fields and spacetimes, information
flow, coherence loss, etc.@56#.

In this paper we shall use these methods to analyze par-
ticle creation in perturbed situations whose background
spacetime possesses an event horizon, such as an asymptoti-
cally uniformly accelerated detector~Sec. II!, or one accel-
erated in a finite time interval~Sec. III!, the moving mirror,
and the asymptotically Schwarzschild spacetime~Sec. IV!.
In a follow-up paper@57# we shall study near-thermal par-
ticle creation in an exponentially expanding universe, a slow-
roll inflationary universe, and a universe in asymptotically
exponential expansion. What ties the problem of thermal ra-
diation in cosmological as well as black hole spacetimes to-
gether is the exponential scale-transformation viewpoint ex-
pressed earlier@31–35#. The stochastic field theory approach
is capable of implementing this view. One can describe all
these systems with a single parameter measuring the devia-
tion from uniformity or stationarity, and show that the same
parameter also appears in the near-thermal behavior of par-
ticle creation in all these systems. This result is relevant to
our exploration of the linear-response regime of the back
reaction problem in semiclassical gravity.

A. Stochastic approach

Consider a particle detector linearly coupled to a quantum
field. The dynamics of the internal coordinateQ of the de-
tector can be described by Langevin equations of the form
@46#

2Note that for an extreme Reissner-Nordstro¨m spacetime this is
not the case, as there exists an event horizon but no radiation. This
example arose in the discussion between Hu and Unruh~private
communication! who shared the somewhat unconventional view
that the exponential redshifting is a more basic mechanism than
event horizons responsible for thermal radiance.
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]L

]Q̇
22E

t i

t

m~ t,s!Q~s!ds5j~ t !, ~1.1!

where j(t) is a stochastic force with correlator
^j(t)j(t8)&5\n(t,t8). The overdot denotes a derivative
with respect tot. The trajectoryxm(s) of the detector, pa-
rametrized by a suitable parameters, will be denoted simply
by x(s) for convenience.

For the special case of linear coupling between a fieldf
and the detector of the formL int5eQf„x(s)…, the kernels
m and n, called thedissipationand noise kernels, respec-
tively, are given by

m~s,s8!5
e2

2
G„x~s!,x~s8!…[2 i

e2

2
^@f̂„x~s!…,f̂„x~s8!…#&,

~1.2!

n~s,s8!5
e2

2
G~1!

„x~s!,x~s8!…[
e2

2
^$f̂„x~s!…,f̂„x~s8!…%&,

~1.3!

whereG and G(1) are the Schwinger and the Hadamard
functions of the free field operatorf̂ evaluated for two
points on the detector trajectory, angular brackets denote the
expectation value with respect to a vacuum state at some
arbitrarily chosen initial timet i , and square and curly brack-
ets denote the commutator and anticommutator, respectively.
This result may be obtained either by integrating out the field
degrees of freedom as in the Feynman-Vernon influence
functional approach@40# or via manipulations of the coupled
detector-field Heisenberg equations of motion in the canoni-
cal operator approach.

It will often be convenient to express the kernelsm and
n as the real and imaginary parts of a complex kernel
z[n1 im, called theinfluence kernel. For linear couplings,
it follows from the above expressions thatz is given by the
Wightman functionG1:

z~s,s8!5e2G1
„x~s!,x~s8!…[e2^f̂„x~s!…f̂„x~s8!…&.

~1.4!

The influence kernel thus admits the mode function represen-
tation

z~s,s8!5e2(
k
uk„x~s!…uk* „x~s8!…, ~1.5!

the uk’s being the mode functions satisfying the field equa-
tions and defining the particular Fock space whose vacuum
state is the one chosen above. Note that this method of evalu-
ating the kernelsm andn is only applicable for linear cou-
pling cases.

An alternative approach@46# consists of decomposing the
field Lagrangian into parametric oscillator Lagrangians at the
very outset, thus converting a quantum-field-theoretic prob-
lem to a quantum-mechanical one. Denoting thekth paramet-
ric oscillator degrees of freedom byqk and their masses and
frequencies bymk and vk , respectively, the detector-field
interaction mentioned earlier is generally given by
L int5(kck(s)Qqk , where the coupling ‘‘constants’’ck now
become time dependent and contain information about the

detector trajectory. In this approach, the influence kernel is
given in terms of the oscillator mode functionsXk as

z~s,s8!5E
0

`

dkI~k,s,s8!Xk~s!Xk* ~s8!, ~1.6!

where theXk’s satisfy the parametric oscillator equations

Ẍk1vk
2~ t !Xk50, ~1.7!

with initial conditionsXk(t i)51 andẊk(t i)52 ivk(t i). The
spectral densityfunction I (k,s,s8) is defined as

I ~w,s,s8!5(
k

d~v2vk!
ck~s!ck~s8!

2mk~ t i !vk~ t i !
. ~1.8!

One may decompose the influence kernel into its real and
imaginary parts, thus obtaining the dissipation and noise ker-
nels:

m~s,s8!5
i

2E0
`

dkI~k,s,s8!@Xk* ~s!Xk~s8!2Xk* ~s8!Xk~s!#,

~1.9!

n~s,s8!5
1

2E0
`

dkI~k,s,s8!@Xk* ~s!Xk~s8!1Xk* ~s8!Xk~s!#.

~1.10!

By expressing the field as a collection of parametric oscilla-
tors, it can be explicitly verified that the two approaches
mentioned above lead to the same result for the influence
kernelz. For the purpose of calculating it in a specific case,
we will find it more convenient to use the second approach.

To study the thermal properties of the radiation measured
by a detector, the influence kernel is compared to that of a
thermal bath of static oscillators each in a coherent state@46#:

z5E
0

`

dkIeff~k,S!@Ck~S!coskD2 isinkD#, ~1.11!

where

S5~ t1t8!/2, D5t2t8,

and for a thermal bath at temperatureT5b21, the function
Ck5coth(\k/2kBT). We will show in the specific cases dis-
cussed below that the unknown functionCk indeed has a
coth form in the leading order, and can then deduce the tem-
perature of the radiation seen by the detector. Here
I eff(k,S) is the effective spectral density, also to be deter-
mined by formal manipulations of Eq.~1.6!. We can always
write z in this way sincen is even inD while m is odd. By
equating the real and imaginary parts of the two forms ofz
and Fourier inverting, we obtain

I effCk5
1

pE2`

`

dDcoskDn~S,D!, ~1.12!

I eff52
1

pE2`

`

dDsinkDm~S,D!. ~1.13!
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We will now consider various examples wherez is evaluated
and shown to have, to zeroth order, a thermal form. Higher-
order corrections toz give anear-thermalspectrum. In prin-
ciple, the real and imaginary parts of the influence kernel
may be substituted in the Langevin equation~1.1! to yield
stochastic near-thermal fluctuations of the detector coordi-
nateQ. This procedure will be demonstrated in the example
of a finite-time uniformly accelerated detector~Sec. III be-
low!.

B. Relation to perturbative approach

The methodology presented above describes astochastic
field theory approachto the problem of detector response, as
opposed to the usual perturbation theory approach~where the
perturbation parameter ise2) in the calculation of detector
transition probabilities. It should be emphasized that Eq.
~1.1! is exact for linear coupling and does not involve a
perturbation expansion ine2 ~for linear systems, such an
expansion is, in fact, unnecessary because they are exactly
solvable!.

However, the relationship~1.4! between the influence ker-
nel z and the Wightman functionG1 allows us to connect
the stochastic approach to usual perturbation theory. In this
case, the quantity of interest is thedetector response function
F(E) @6#, given, to lowest order in perturbation theory, by
the Fourier transform of the Wightman function, and hence
the functionz, as

F~E2E0!5
1

e2E2`

`

dsE
2`

`

ds8e2 i ~E2E0!~s2s8!z~s,s8!,

~1.14!

where s,s8 are proper time parameters along the detector
trajectory. The limits of integration in the above equation
should be modified if the detector is switched on for a finite
time. This function is proportional to the transition probabil-
ity of the detector to excited states of energyE. However, it
has the disadvantage of being a perturbative result, and fur-
thermore, involves an integration over the entire history of
the detector. The stochastic approach, on the other hand,
leads to the evaluation of detector observablesas a function
of proper time, and can be employed to ultimately obtain the
time-dependent density matrix of the detector@42#.

II. ASYMPTOTICALLY UNIFORMLY ACCELERATED
OBSERVER

As a starter, we first consider the case of a nonuniformly
accelerated monopole detector in 111 dimensions. The spe-
cial case of trajectories which are asymptotically inertial in
the far past and asymptotically uniformly accelerated in the
far future has been analyzed using methods of field quanti-
zation in curvilinear coordinates by Costa@58# and by Per-
coco and Villalba@59#.

For a general detector trajectory„x(t),t(t)… parametrized
by the proper timet, it has been shown@52# that the function
z(t,t8) is

z~t,t8![n1 im

5
e2

2pE0
`dk

k
e2 ik„t~t!2t~t8!…cosk@x~t!2x~t8!#.

~2.1!

Heree is the coupling constant of the detector to a massless
scalar field~initially in its ground state!. The initial state of
the detector is unspecified at the moment and would appear
as a boundary condition on the equation of motion of the
detector. Here, however, we are primarily interested in the
noise and dissipation kernels themselves, as properties of the
field, and not in the state of the detector.

First, we note that the functionz can be separated into
advanced and retarded parts, in terms of the advanced and
retarded null coordinates v(t)5t(t)1x(t) and
u(t)5t(t)2x(t), respectively:

za~t,t8!5
e2

4pE0
`dk

k
e2 ik[v~t!2v~t8!] ,

z r~t,t8!5
e2

4pE0
`dk

k
e2 ik[u~t!2u~t8!] ,

z~t,t8!5za~t,t8!1z r~t,t8!. ~2.2!

In the case when the detector is uniformly accelerated
with accelerationa, its trajectory is given by

v~t!5
1

a
eat, u~t!52

1

a
e2at. ~2.3!

Substitution of the above trajectory into Eqs.~2.2! yields a
thermal, isotropic detector response at the Unruh temperature
a/(2p) @46,52#.

A. Perturbation increasing with time

The above analysis is now applied to the case of near-
uniform acceleration by introducing a dimensionlessh pa-
rameter which measures the departure from exact uniform
acceleration:

h5
ȧ

a2
, ~2.4!

where the overdot indicates a derivative with respect to the
proper time. The trajectory of the detector is now chosen to
be

v~t!5
1

a~t!
expS E a~t!dt D ,

u~t!5
1

a~t!
expS 2E a~t!dt D . ~2.5!

One can expanda(t) in a Taylor series about the accelera-
tion at t50:

a~t!5a01 (
n51

`
tn

n!
a0

~n! , ~2.6!
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wherea0
(n) denotes thenth derivative ofa at t50. We make

the assumption of ignoring second and higher derivatives of
a. This implies

a~t!5a01h0ta0
2 , ~2.7!

whereh05ȧ0/a0
2.

Hereafter, we shall also make the further assumption of
evaluating quantities to first order inh0. In this approxima-
tion, h5h0 to first order inh0. Then there is no distinction
betweenh and h0 (h is essentially constant!, and we can
safely drop the subscript and work withh alone. It should be
noted that expanding quantities to first order inh actually
involves expansion of quantities to first order inhta0, and

hence, for arbitrary trajectories, the final results are to be
considered valid over time scalest such thatt!(ha0)

21.
Alternatively, Eq.~2.7! can be taken to define a family of
trajectories for which this analysis applies.

Using the linearized form ofa(t), one can now obtain the
trajectory explicitly, to first order inh. The result is

v~t!5a0
21ea0tF11hta0S a0t2 21D G ,

u~t!52a0
21e2a0tF12hta0S a0t2 11D G . ~2.8!

One also finds, to first order inh,

e2 ik[v~t!2v~t8!]5expF2
2ik

a0
ea0SsinhS a0D2 D G H 12 ikhea0SF S a0D2

4
1a0S

222S D sinhS a0D2 D1D~a0S21!coshS a0D2 D G J ,
~2.9!

e2 ik[u~t!2u~t8!]5expF2
2ik

a0
e2a0SsinhS a0D2 D G H 11 ikhe2a0SF S a0D2

4
1a0S

212S D sinhS a0D2 D2D~a0S11!coshS a0D2 D G J ,
~2.10!

whereD5t2t8, S5 1
2(t1t8).

Using the identities@50,51#

expF2
2ik

a0
e2a0SsinhS a0D2 D G5

4

pE0
`

dnK2inS 2ka0 e2a0SD @cosh~pn!cos~na0D!2 isinh~pn!sin~na0D!#, ~2.11!

E
0

`

dxxmKin~bx!52m21b2m21GS 11m1 in

2 DGS 11m2 in

2 D , ~2.12!

and

uG~ in!u25
p

nsinhpn
, uG~ 1

2 1 in!u25
p

coshpn
, ~2.13!

one finally obtains, after some simplification,

za~t,t8!5
e2

4pE0
`dk

k FcothS pk

a0
D cos~kD!~11hG1!2 isin~kD!G , ~2.14!

z r~t,t8!5
e2

4pE0
`dk

k FcothS pk

a0
D cos~kD!~11hG2!2 isin~kD!G , ~2.15!

with
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G152ktan~kD!tanh2S pk

a0
D F S a0D2

4
1a0S

222S D sinhS a0D2 D1D~a0S21!coshS a0D2 D G ,

G25ktan~kD!tanh2S pk

a0
D F S a0D2

4
1a0S

212S D sinhS a0D2 D2D~a0S11!coshS a0D2 D G . ~2.16!

The advanced and retarded parts of Re(z) being unequal, the
noise is anisotropic. Adding expressions~2.12! and ~2.13!,
we have

z~t,t8!5
e2

2pE0
`dk

k

3FcothS pk

a0
D cos~kD!~11hG!2 isin~kD!G ,

~2.17!

where

G5
G11G2

2

5kStan~kD!tanh2S pk

a0
D S 2sinha0D2 2a0Dcosh

a0D

2 D .
~2.18!

The noise experienced by the detector is thus identical to the
noise experienced in a heat bath, with a small correctionG.
The accelerated detector, therefore, has a near-thermal re-
sponse at the Unruh temperaturea0 /(2p) with an order-h
correction which increases with time.

B. Perturbation exponentially decreasing with time

We will now consider a trajectory for the accelerated de-
tector which exponentially approaches the uniformly accel-
erated trajectory at late times. This trajectory, in null coordi-
nates, has the form

v~t!5a0
21ea0t~11ae2gt!,

u~t!52a0
21e2a0t~11ae2gt!. ~2.19!

In this case, the magnitude of the proper acceleration is, to
first order ina,

a~t!5a0H 11ae2gtS 11
g2

a0
2D J 1O~a2!. ~2.20!

The influence kernel is obtained in a manner similar to the
treatment of the previous subsection. Here, we get

za~t,t8!5
e2

4pE0
`dk

k

3FcothS pk

a0
D cos~kD!~11aG1!2 isin~kD!G ,

~2.21!

z r~t,t8!5
e2

4pE0
`dk

k

3FcothS pk

a0
D cos~kD!~11aG2!2 isin~kD!G ,

~2.22!

with

G1522ka0
21e2gSsinh

~a02g!D

2
tan~kD!tanh2S pk

a0
D ,

G2522ka0
21e2gSsinh

~a01g!D

2
tan~kD!tanh2S pk

a0
D .
~2.23!

The noise is again seen to be anisotropic. Addingza and
z r , we have

z~t,t8!5
e2

2pE0
`dk

k

3 FcothS pk

a0
D cos~kD!~11aG!2 isin~kD!G ,

~2.24!

where

G5
G11G2

2

522ka0
21e2gSsinh

a0D

2
cosh

gD

2
tan~kD!tanh2S pk

a0
D .

~2.25!

In this case, the correction to the thermal spectrum is expo-
nentially suppressed at late times. This feature will distin-
guish the behavior of quantum fields in the vicinity of a
moving mirror and a collapsing mass, as shown in later sec-
tions.
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III. FINITE-TIME UNIFORMLY ACCELERATED
DETECTOR

In this section, we consider a detector trajectory which is
a uniformly accelerated one for a finite interval of time
(2t0 ,t0). Before and after this interval, the trajectory is
taken to be inertial, at uniform velocity. To ensure continuity
of the proper time along this trajectory, the velocity of the
detector is assumed to vary continuously at the junctions
6t0.

With these constraints, the trajectory is chosen to be

x~ t !5x0
21~a222t0t ! ~ t,2t0!

5~a221t2!1/2 ~2t0,t,t0!

5x0
21~a221t0t ! ~ t.t0!. ~3.1!

The trajectory is symmetric under the interchanget→2t.
a is the magnitude of the proper acceleration during the uni-
formly accelerated interval (2t0 ,t0) of Minkowski time and
x0 is the position of the detector at timet0. x0 and t0 are
related byx0

22t0
25a22. Before the uniformly accelerated in-

terval, the detector has a uniform velocity2t0 /x0 ~we have
chosen units such thatc51; if one keeps factors ofc, the
velocity is2c2t0 /x0), and after this interval, its velocity is
t0 /x0. This trajectory thus describes an observer traveling at
constant velocity, then turning around and traveling with the
same speed in the opposite direction. The ‘‘turnaround’’ in-
terval corresponds to the interval of uniform acceleration.
This example could thus be viewed as a quantum description
of the classical twin paradox scenario in special relativity,
where two twins, one on an inertial trajectory and one on a
trajectory which is accelerated for a finite amount of time,
compare their experiences at a future spacetime point where
they meet.

We may also define null coordinatesu5t2x and
v5t1x. In terms of these, the time at which the trajectory
crosses the future horizonu50 of the uniformly accelerated
interval is tH52(a2u0)

21.
If we choose to parametrize the trajectory by the proper

time t, it can be expressed as~with the zero of proper time
chosen att50)

u~t!5u~2t02t!v0$a~t1t0!21%2a21u~t01t!

3u~t02t!e2at1u~t2t0!u0$11a~t02t!%,

~3.2!

v~t!52u~2t02t!u0$a~t1t0!11%1a21u~t01t!

3u~t02t!eat1u~t2t0!v0$12a~t02t!%,

~3.3!

where6t0 is the proper time of the trajectory when it exits
~enters! the uniformly accelerated phase. It satisfies the rela-
tions

v0[t01x05a21eat0,

u0[t02x052a21e2at0. ~3.4!

Another convenient definition is the horizon-crossing proper
time 6tH56(a211t0).

The functionz(t,t8) can be found in a standard way. If
both points lie on the inertial sector of the trajectory, it has
the usual zero-temperature form in two-dimensional
Minkowski space. If both points lie on the uniformly accel-
erated sector, it has a finite-temperature form exhibiting the
Unruh temperature. It is therefore straightforward to obtain
the following. If t,t8.t0 or t,t8,2t0,

z~t,t8!5
e2

2pE0
`dk

k
eik~t82t!. ~3.5!

If 2t0,t,t8,t0,

z~t,t8!5
e2

2pE0
`dk

k H cothS pk

a D cosk~t82t!

1 isink~t82t!J . ~3.6!

Also, if t,2t0 , t8.t0,

z~t,t8!5
e2

2pE0
`dk

k
cosk@~t81t!tanh~at0!#

3eik$t82t12[a21tanh~at0!2t0] %. ~3.7!

Of interest is this function evaluated for one point on the
inertial sector and the other on the uniformly accelerated
sector. We will show that this function has a thermal form if
the point on the inertial sector is sufficiently close to
(t0 ,x0) and departs smoothly from the thermal form away
from it. It is also found that the horizons of the uniformly
accelerated sector~which arenot horizons for the entire tra-
jectory! are the points where the near-thermal expansion
breaks down.

Consider, for example, the case when2t0,t8,t0 and
t,2t0. Then the functionz is expressed as

z~t,t8!5
e2

4pE0
`dk

k
$e2 ik$a21e2at81v0[a~t1t0!21]%

1eik$a21eat81u0[a~t1t0!11]%%. ~3.8!

Introducing the Fourier transforms

e~ ik/a!eat
5

1

2paE2`

`

dveivtGS 2
iv

a D S kaD
iv/a

epv/2a,

k.0,

e~2 ik/a!e2at
5

1

2paE2`

`

dveivtGS iva D S kaD
2 iv/a

epv/2a,

k.0, ~3.9!

we obtain, after some simplification,
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z~t,t8!5
e2

4pE0
`dk

k H coskS t81t01
1

a
ln@12a~t1t0!# D cothS pk

a D1 isinkS t81t01
1

a
ln@12a~t1t0!# D

1coskS t81t02
1

a
lnua~t1tH!u D FcothS pk

a D u~tH1t!1u~2tH2t!G
1 isinkS t81t02

1

a
lnua~t1tH!u D u~tH1t!J . ~3.10!

If we further restrict our attention to the caset.2tH i.e., both points lie inside the Rindler wedge—the above expression
simplifies to

z~t,t8!5
e2

2pE0
`dk

k
cosS k

2a
ln@12a2~t1t0!

2# D H cothS pk

a D coskFt81t01
1

2a
lnS 122

t1t0
t1tH

D G
1 isinkFt81t01

1

2a
lnS 122

t1t0
t1tH

D G J . ~3.11!

It is clear from this expression that an exact thermal spec-
trum is recovered in the limit oft→2t0, as expected. Sup-
pose we now definet1t0[e as the time difference between
the proper timet and the proper time of entry into the ac-
celerated phase,2t0. Then ae will be the appropriate di-
mensionless parameter characterizing a near-thermal expan-
sion. Note thate,0.

From the above expression forz, we find that there is no
correction to the thermal form ofz(t,t8) to first order in
e. This can be understood from the fact that the coordinate
difference between the pointt52t02e and a correspond-
ing point on a globally uniformly accelerated trajectory with
the sameproper time is of ordere2. Indeed, we may define
Rindler coordinates (j,h) on the right Rindler wedge by
v5j21ejh andu52j21e2jh. Then the Rindler coordinates
for the pointt52t02e on the trajectory we consider are
found to bej5a1O(e2) and h52t02e1O(e2), which
are exactly the coordinates, to ordere, of a corresponding
point with the same proper time on a globally uniformly
accelerated trajectory with accelerationa. It is thus no sur-
prise that the spectrum is exactly thermal up to ordere.

Furthermore, it can be shown in a straightforward way
from the above expression that the spectrum is also thermal
up toO(e2), although the above-mentioned coordinate dif-
ference does have terms of ordere2. Then the first correction
to the thermal spectrum is of ordere3 and has the form

z~t,t8!5
e2

2pE0
`dk

k H cothS pk

a D coskS t82t1
a2e3

3 D
2 isinkS t82t1

a2e3

3 D J 1O~e4!. ~3.12!

The validity of such a near-thermal expansion is charac-
terized by the requirement thatuaeu is small. This translates
to 21,a(t1t0) or equivalently,t.2tH . The expansion

thus breaks down fort,2tH , for which case the two-point
function may be called strictly nonthermal. This is the case
when one of the points lies outside the right Rindler wedge
while the other point is still inside it. The two-point function
in such a situation will contain nontrivial correlations across
the Rindler horizon, as was pointed out before@52#.

The response of the detector is governed by the Langevin
equation~1.1!. This equation may be formally integrated to
yield

^Q~t!Q~t8!&5
\

V2E
2`

t

dsE
2`

t8
ds8n~s,s8!e2g~t2s!

3e2g~t82s8!sinV~t2s!sinV~t82s8!,

~3.13!

whereV5(V0
22g2)1/2, V0 is the natural frequency of the

internal detector coordinate, andg5e2/4 is the dissipation
constant arising out of the detector’s coupling to the field.
The double integral in the above equation may be computed
by splitting each integral into a part which lies completely in
the uniformly accelerated sector and parts which lie in the
inertial sectors. For example, suppose we wish to compute
the above correlation function for the case2t0,t,t8,t0;
i.e., both points lie in the uniformly accelerated sector.
Then each integral can be split into two parts (*2`

t

5*
2`
2t01*2t0

t ) and the resulting double integral therefore

has four terms:

^Q~t!Q~t8!&5F11F21F31F4 . ~3.14!

Writing n[Re(z), we obtain, after straightforward manipu-
lations,
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F1[
2\g

pV2ReE
2`

2t0
dsE

2`

2t0
ds8E

0

`dk

k
eik~s82s!e2g~t2s!e2g~t82s8!sinV~t2s!sinV~t82s8!

5
\g

pV2e
2g~t1t812t0!E

0

`dk

k
@~g22k21V2!214g2k2#21$~V21g21k2!cosV~t2t8!1~V22g22k2!

3cosV~t1t812t0!12gVsinV~t1t812t0!% ~3.15!

and

F4[
2\g

pV2ReE
2t0

t

dsE
2t0

t8
ds8E

0

`dk

k
eik~s82s!cothS pk

a De2g~t2s!e2g~t82s8!sinV~t2s!sinV~t82s8!

5
\g

pV2e
2g~t1t812t0!E

0

`dk

k
cothS pk

a D @~V21g22k2!214g2k2#21$~g21k21V2!cosV~t2t8!1~V22g22k2!

3cosV~t1t812t0!12gV@sinV~t1t812t0!2sinV~t1t0!2sinV~t81t0!#

2V2@cosV~t1t0!1cosV~t81t0!21#%, ~3.16!

where ‘‘Re’’ stands for the real part.
The functionsF2 andF3, in which one of the integration variables runs over the inertial sector and the other over the

uniformly accelerated sector, are difficult to evaluate. We shall simply express them here in the form

F25
\g

pV2e
2g~t1t8!ReE

2`

2t0
dsegssinV~t2s!E

0

`dk

k
@eik[au0s1u0~11at0!]A1~k;t8!1e2 ik[av0s2v0~12at0!]A2~k;t8!#,

~3.17!

F35
\g

pV2e
2g~t1t8!ReE

2`

2t0
dsegssinV~t82s!E

0

`dk

k
@e2 ik[au0s1u0~11at0!]A1~k;t!1eik[av0s2v0~12at0!]A2~k;t!#,

~3.18!

where the functionsA1 andA2 are

A1~k;s!5E
2t0

s

ds8eika
21eas8egs8sinV~s2s8!,

A2~k;s!5E
2t0

s

ds8e2 ika21e2as8
egs8sinV~s2s8!.

~3.19!

Similarly, if one wishes to compute the detector correlation
function for two points in the late inertial sector
(t,t8.t0), then one has nine terms similar in form to the
ones displayed above.

A. Response function for the finite-time accelerated detector

The calculation of the response function for the finite-time
accelerated detector is very similar to the previous calcula-
tion of detector correlation functions. We will assume that
the detector is switched onbeforethe uniformly accelerated
phase, at a proper timet52T,2t0, and switched off after
the end of this phase, att5T. Then the response function
separates into the following nine terms:

F~E!5(
i51

9

Ti , ~3.20!

where

T15
1

e2E2T

2t0
dtE

2T

2t0
dt8e2 iE~t2t8!z~t,t8!,

T25
1

e2E2T

2t0
dtE

2t0

t0
dt8e2 iE~t2t8!z~t,t8!,

T35
1

e2E2T

2t0
dtE

t0

T

dt8e2 iE~t2t8!z~t,t8!,

T45
1

e2E2t0

t0
dtE

2T

2t0
dt8e2 iE~t2t8!z~t,t8!,

T55
1

e2E2t0

t0
dtE

2t0

t0
dt8e2 iE~t2t8!z~t,t8!,

T65
1

e2E2t0

t0
dtE

t0

T

dt8e2 iE~t2t8!z~t,t8!,

T75
1

e2Et0

T

dtE
2T

2t0
dt8e2 iE~t2t8!z~t,t8!,
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T85
1

e2Et0

T

dtE
2t0

t0
dt8e2 iE~t2t8!z~t,t8!,

T95
1

e2Et0

T

dtE
t0

T

dt8e2 iE~t2t8!z~t,t8!. ~3.21!

Of all the terms displayed above, onlyT5 is an exact
thermal response, since it is evaluated on the uniformly ac-
celerated sector. The remaining terms constitute the near-
thermal corrections.

We now turn to the simplification of these terms. The
symmetry of the trajectory under reflection about thex axis
is expressed in null coordinates as the relation
u(2t)52v(t), for all t. This relation leads to the identity
z(2t,2t8)5z* (t,t8). Furthermore,z always obeys the
identity z(t8,t)5z* (t,t8). It can be shown in a straightfor-
ward manner that these two identities combine to yield
T45T85T2*5T6* , T75T3* , andT95T1* . Thus we may re-
write the response function as the sum of four independent
terms:

F~E!52ReT112ReT314ReT21T5 , ~3.22!

where ‘‘Re’’ stands for the real part. We have thus mani-
festly shown that the response function is real, as expected

~straightforward changes of the integration variables shows
thatT5 is real!. Now we evaluate each of these four terms.

First,T5 is easy to evaluate because it involves integrating
the two-point function along the uniformly accelerated sec-
tor. We get the result

T554t0E
0

`

dk
1

k~k1E!

1

e2pk/a21

sin2t0~k2E!

p~k2E!
.

~3.23!

As t0→`, this contribution reduces to the usual thermal
result:

T5→
2t0
E2

1

e2pE/a21
. ~3.24!

The terms involvingT1 and T3 involve integration of the
two-point function over purely inertial sectors of the trajec-
tory. Therefore, they can also be easily evaluated to yield

2ReT15
2

p
~T2t0!E

0

`

dk
1

k~E1k!
sin@~T2t0!~E1k!#

~3.25!

and

2ReT35
4

pE0
`dk

k

1

~E1k!22k2tanh2~at0!
cos@E~T1t0!1k~T2t0!12ka21tanh~at0!#

3sin
1

2
„~T2t0!$E1k@11tanh~at0!#%…sin

1

2
„~T2t0!$E1k@12tanh~at0!#%…. ~3.26!

The 2ReT1 term above represents correlations on each of the inertial sectors. As expected, it vanishes in the limiting cases
T→t0 andT→` @in the latter case, we use the identity sin(Ta)/(pa)→d(a) asT→`, and the factE.0#. The second term
above, 2ReT3, represents correlationsbetweenthe two asymptotically inertial sectors. As expected, it also vanishes in the
limits T→t0 andT→` ~using the samed function representation in the latter case, andE.0, t0.0). Thus, if the detector
is switched on for a sufficiently long time, there is no contribution to the response function from the purely inertial sectors of
the trajectory. It should also be noted that the dependence of the two terms above on the proper time differenceT2t0 may be
exploited to develop a near-thermal expansion of the response function, withT2t0 being a small parameter. This would
correspond to the case of the detector being switched on~off! just before~after! the uniformly accelerated phase of the
trajectory.

The calculation of the remaining term 4ReT2 is the crux of this analysis. This term represents correlations between the
inertial and accelerated sectors. From the definition ofT2, we can write it as

T25E
2t0

t0
dt8eiEt8E

2T

2t0
dtE

0

` dk

4pk
e2 iEt

„exp$2 ika21e2at81 ikv0@12a~t1t0!#%1exp$ ika21eat81 iku0@11a~t1t0!#%….

~3.27!

In the above expression, we may explicitly perform the integration overt and rescale the variablet8 in order to extract the
dependence onT andt0. Then we get

T25 i t0E
21

1

dyeiEt0yE
0

` dk

4pk Fexp@2 ika21e2at0y2 ikv0~at021!#

~kv0a1E!
$ei ~kv0a1E!t02ei ~kv0a1E!T%

2
exp@ ika21eat0y1 iku0~at011!#

~ku0a2E!
$e2 i ~ku0a2E!t02e2 i ~ku0a2E!T%G . ~3.28!
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We see from the above expression thatT2 vanishes, as expected, in the limitst0→0 ~because the slope of the trajectory is
stipulated to vary continuously in the setup of the problem, this limit actually corresponds to the everywhere-inertial trajectory
x5a21) andT→t0.

In order to examine the limitT→`, we first take the real part of the above expression. Then the required limit gives rise
to d functions in theT-dependent terms, which do not contribute to the integral. The remaining terms give, asT→`, the
nonzero result

4ReT2→t0E
21

1

dyE
0

`dk

k H sin@Et0~11y!1ka21eat0y1ku0#

p~ku0a2E!
2
sin@Et0~11y!2ka21e2at0y1kv0#

p~kv0a1E! J . ~3.29!

WhenT is finite, a near-thermal expansion of the term 4ReT2 will be obtained by expressing it as a sum over Rindler
modes, rather than the Minkowski mode sum in Eq.~3.28!. We will therefore take Eq.~3.28! and reexpress it in Rindler modes
using the Fourier transform relations~3.9!, and then try to perform the integral overy andk. This procedure, after carrying out
the y integration, yields

T25
i t0
4p2aE2`

`

dvE
0

`dk

k
epv/2a

sin@~E1v!t0#

~E1v!
FG~ iva21!~ka21!2 iva21

~kv0a1E!
$ei ~Et01kv0!2ei $ET1kv0[11a~T2t0!] %%

2
G~2 iva21!~ka21! iva

21

~ku0a2E!
$ei ~Et01ku0!2ei $ET1ku0[12a~T2t0!] %%G . ~3.30!

In order to accomplish the integral over Minkowski modesk in the above expression, we will now use the following
integral formulas:

E
0

`dk

k
eika

~ka21!2 iva21

~kv0a1E!
5~a2v0!

iva21
E2 iva2121e2 i ~E/v0a!aG~2 iva21!G„12 iva21,2 iE~v0a!21~a1 i e!…, ~3.31!

and, similarly,

E
0

`dk

k
eika

~ka21! iva
21

~2ku0a1E!
5~2a2u0!

2 iva21
Eiva2121ei ~E/u0a!aG~ iva21!G„11 iva21,iE~u0a!21~a1 i e!…, ~3.32!

whereG(,) is the incomplete gamma function. This function is multivalued in its second argument with a branch cut along the
imaginary axis, which is why it is necessary to introduce a small positive quantitye to make the function well defined. The
equalities in the above expressions therefore hold in the limite→01.

These formulas may be used to carry out thek integration inT2. One then obtains

T25
i t0
4pEE2`

` dv

v

epv/2a

sinh~pva21!

sin@~E1v!t0#

~E1v!

3F S E

a2v0
D 2 iva21

$eiE~t02a21!G„12 iva21,2 iEa21~11 i e!…2eiE~2T2tH!G„12 iva21,2 iEa21@11 i e1a~T2t0!#…%

1S E

2a2u0
D iva21

eiEtH$G„11 iva21,iEa21~12 i e!…2G„11 iva21,iEa21@12 i e2a~T2t0!#…%G . ~3.33!

This accomplishes the task of expressingT2 as a sum over Rindler modes. We readily see from the above expression that the
quantities in both curly brackets vanish in the limitT→t0, and hence the entire expression vanishes in that limit. This will
facilitate an expansion of the above quantity in (T2t0). To do so, however, it will be convenient to consider the limiting cases
of the above exact expression in the high- and low-energy regimes.

Firstly, at high energiesEa21, ET@1, we may use the asymptotic resultG(x,y);yx21e2y for large values ofuyu. Then
we may simplify the above expression to yield

4 ReT2;
t0
E E2`

` dv

pv

1

sinh~pva21!

sin@~E1v!t0#

~E1v!
†22cos@2va21ln~Ea21!#sin@~E1v!t0#1sin„2ET1~v2E!t0

2va21ln$~Ea21!2@11a~T2t0!#%…1sin„ET1vt01va21ln$E2a21utH2Tu%…@u~tH2T!1epv/au~T2tH!#‡.

~3.34!
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The last term in the above equation points to a qualitatively different behavior of the response function according to whether
T is less than or greater thantH , i.e., whether the detector is switched on after or before crossing the horizon. This is also seen
at the more primitive level of the Wightman function, Eq.~3.10!, where theu function dependence ontH1t is displayed.

The above expression may be simplified even further if one assumes that the detector is switched on after crossing the
horizon, i.e.,tH.T. This is consistent with the limiting near-thermal behavior asT→t0, which we wish to finally obtain. It
is then convenient to define the dimensionless parametera5a(T2t0), which is chosen to be small. We thus get the
near-thermal result, to first order ina, and at high energies, as

4 ReT2;a
t0
a E2`

` dv

pv

1

sinh~pva21!

sin@~E1v!t0#

~E1v!

3H cosF ~E1v!t022
v

a
lnSEa D G12S 12

v

ED cos@~E1v!t0#cosF2v

a
lnSEa D G J 1O~a2!. ~3.35!

To obtain the low-energy behavior ofT2, we consider the following series representation of the incomplete gamma function

G~x,y!5G~x!2 (
n50

`
~21!nyx1n

n! ~x1n!
, ~3.36!

whereG(x) is the ordinary gamma function. This may be used to express the incomplete Gamma functions inT2 as follows:

G„16 iva21,7 iEa21~16 i e!…5G~16 iva21!2 (
n50

`
~21!n~Ea21!11n6 iva21

e7 i ~p/2! ~11n6 iva21!

n! ~11n6 iva21!
~3.37!

and

G„11 iva21,2 iEa21@11 i e1a~T2t0!#…

5G~11 iva21!2 (
n50

`
~21!n$Ea21@11a~T2t0!#%

11n1 iva21
e2 i ~p/2!~11n1 iva21!

n! ~11n1 iva21!
, ~3.38!

G„12 iva21,iEa21@12 i e2a~T2t0!#…

5G~12 iva21!2 (
n50

`
~21!n~EuT2tHu!11n2 iva21

n! ~11n2 iva21!
@ei ~p/2!~11n2 iva21!u~tH2T!1e2 i ~p/2!~11n2 iva21!u~T2tH!#.

~3.39!

All of the above expressions are exact, and again show a qualitatively different behavior of the response function according to
whether the detector is switched on before or after the horizon crossing time2tH , at all energies.

To extract the low-energy behavior we will keep the leading term (n50) in the above expansions, and substitute back into
the expression forT2, Eq. ~3.33!. This will yield the low-energy result. However, since this expression is rather lengthy and
not very illuminating, we will further restrict ourselves to the near-thermal approximation. That is, we switch off the detector
before horizon crossing (T,tH), and expand to first order ina. This procedure yields, after much simplification, the following
result, valid at low energies:

4 ReT2;a
2t0
a E

2`

` dv

pv

1

sinh~pva21!

sin@~E1v!t0#

~E1v! F12epv/2a$G~12 iva21!expi @~E1v!t02Ea212va21ln~Ea21!#

1G~11 iva21!exp2 i @~E1v!t02Ea212va21ln~Ea21!#%1cos@~E1v!t0#cos@Ea
2112va21ln~Ea21!#

2
Ea21

11v2a22 $sin@~E1v!t02Ea2122va21ln~Ea21!#1va21cos@~E1v!t02Ea2122va21ln~Ea21!#%G
1O~a2!. ~3.40!
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To summarize, in this subsection we have simplified each
term in the response function of a detector accelerated for a
finite time, and expressed the individual terms as appropriate
mode sums. The most complicated of these terms, 4 ReT2,
involving correlations between the inertial and accelerated
sectors of the detector’s trajectory, can be expressed analyti-
cally as a sum over Rindler modes@Eq. ~3.33!#, and facili-
tates a near-thermal expansion at high and low excitation
energies, in terms of the dimensionless parameter
a(T2t0), which measures how long the detector remains
switched on beyond the uniformly accelerated regime. We
have displayed results to leading order in this parameter.
These results could be used as a starting point towards fur-
ther numerical and analytical studies of this system, includ-
ing a more detailed investigation of various limiting cases
offered by the three independent time scales in this problem,
namely,a21, t0, andT.

IV. MOVING MIRROR AND COLLAPSING MASS

A. Moving mirror in Minkowski space

The relation between radiance from a moving mirror and
a black hole is well known. As a warm-up preparation, let us
first study the motion of a mirror following a trajectory
z(t) in Minkowski space. A massless scalar fieldf is
coupled to the mirror via a reflection boundary condition. It
obeys the Klein-Gordon equation

]2f

]t2
2

]2f

]x2
50, ~4.1!

subject to the boundary condition

f„t,z~ t !…50. ~4.2!

For a general mirror path this equation is difficult to solve;
however, we can exploit the invariance of the wave equation
under a conformal transformation to change to simpler coor-
dinates. We follow the treatment of@5#. To this end, we
introduce a transformation between the null coordinates
u,v and ū,v̄ defined as

u5t2x, v5t1x,

u5 f ~ ū!, v5 v̄. ~4.3!

The function f is chosen such that the mirror trajectory is
mapped toz̄50. To do this, we relate the two sets of coor-
dinates as follows:

t5 1
2 @ v̄1 f ~ ū!#,

x5 1
2 @ v̄2 f ~ ū!#. ~4.4!

On the mirror path, settingz̄50 means that the trajectory can
be expressed as

1
2 @ t̄2 f ~ t̄ !#5z„ 1

2 @ t̄1 f ~ t̄ !#…, ~4.5!

which allows f to be implicitly determined. In the new co-
ordinates the wave equation is unchanged; however, it now
has a time-independent boundary condition, meaning the

mirror is static, while the detector moves along some more
complicated path. Thus the wave equation with boundary
condition can easily be solved to give the mode solutions

uk
in~ t̄,x̄!.sinv x̄e2 iv t̄ , ~4.6!

where the mode functions are orthonormal in the Klein-
Gordon inner product. In these barred coordinates,z is pro-
portional to the two-point function in the presence of astatic
reflecting boundary atx̄50.

Also, in these coordinates, the time-dependent modes of
the field are just exponentials. That is, the field can be de-
scribed by simple harmonic oscillators with unit mass. This
can be obtained most simply by expanding the field as

f~ t̄,x̄!5A2

L
( 8
k

qk~ t̄ !sinkx̄, ~4.7!

where(k8 indicates that the summation is restricted to modes
k.0, and identifyingqk as the oscillator degrees of freedom
of the field.

We then find thatXk( t̄) is a solution to the oscillator
equation ~1.4!, and by satisfying the initial conditions
Xk(0)51, Xk8(0)52 ik we obtain

Xk~ t̄ !5e2 ik t̄ . ~4.8!

We now consider a detector placed in the vicinity of the
mirror. The spectral density functionI is determined by the
path of the detector and its coupling to the field. Denoting
the detector position byr (t) and the field modes byqk(t)
and assuming the monopole interaction

L int52E eQf~ t̄,x̄!d~ r̄2 x̄!dx̄

52eQf~ t̄, r̄ !

52A2

pE eQqk~ t̄ !sinkr̄dk, ~4.9!

we have

I ~k, t̄, t̄8!5E dkn
2kn

d~k2kn!e
2sinknr̄ ~ t̄ !sinknr̄ ~ t̄8!

5
e2

pk
sinkr̄~ t̄ !sinkr̄~ t̄8!. ~4.10!

Defining ū5 t̄2 r̄ (t) and v̄5 t̄1 r̄ , we can now express the
function z as

z52
e2

4pE0
`dk

k
@eik~ ū82ū!2eik~ ū82 v̄ !2eik~ v̄ 82ū!

1eik~ v̄ 82 v̄ !#. ~4.11!

Since only the outgoing modes have reflected off the mirror,
only the outgoing part of the correlationsz will give appro-
priate thermal behavior. Thus, from now on, we focus on the
correlation
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zuu52
e2

4pE0
`dk

k
eik~ ū82ū!. ~4.12!

It remains to evaluate the above function. To do this, we
specify the functionf by considering a specific mirror tra-
jectory. A convenient choice of the mirror path is

z~ t !52t2Ae22kt1B ~4.13!

for A, B, k positive. This path possesses a future horizon in
the sense that there is a last ingoing ray which the mirror will
reflect; all later rays never catch up with the mirror and so
are not reflected. It is this aspect which enables the moving
mirror to emulate a black hole. Equation~4.5! can now be
solved to give

f ~ t̄ !52 t̄2
1

k
ln
B2 t̄

A
. ~4.14!

In the late time limit (t̄.B), f21 has the behavior

f21~x!.B2Ae2k~B1x!1a, ~4.15!

wherea is taken to be small in the sense that terms of order
a2 are ignored. In this approximation, one finds

a52kA2e22k~B1x! ~4.16!

and the transformation from barred to unbarred coordinates
becomes

ū5B2Ae2k~B1u!2kA2e22k~B1u!, ~4.17!

plus terms of higher powers ine2k(B1u).
We now need an explicit form for the detector trajectory

u(t) since this is what appears in the functionz. Choosing it
to be inertial, we have r (t)5r *1wt, which gives
u(t)5t(12w)2r * . In terms of the proper time of the de-
tector, this becomesu(t)5tA@(12w)/(11w)#2r * .

Defining the sum and differenceS5 1
2 (t1t8) and

D5t2t8, andz5A@(12w)/(11w)#, we obtain

ū82ū522Ae2k~B1r
*

1Sz!sinhS kzD

2 D
22kA2e22k~B1r

*
1Sz!sinh~kzD!. ~4.18!

This is substituted inzuu , and, after some simplification we
obtain the near-thermal form

zuu~t,t8!52
e2

4pE0
`dk

k

3FcothS pk

kzD cos~kD!~11G!2 isin~kD!G ,
~4.19!

with

G522kz21Ae2k~B1r
*

1Sz!tanh2S pk

kzD tankDsinh~kzD!.

~4.20!

Thus a thermal detector response, at the temperaturek/2p,
Doppler shifted by a factorz depending on the speed of the
detector, is observed, with a correction that exponentially
decays to zero at late times.

B. Collapsing mass in two dimensions

We now study radiance from a collapsing mass, using the
analogy of the moving mirror model. We essentially follow
the method of@15#, but using stochastic analysis, and gener-
alizing it to include higher-order terms in the various Taylor
expansions involved, thus exhibiting the near-thermal prop-
erties of detector response.

We will exploit the conformal flatness of two-dimensional
spacetime in the subsequent analysis. Outside the body the
metric is expressed as

dso
25C~r !dudv, ~4.21!

whereu, v are the null coordinates,

u5t2r *1R0* ,

v5t1r *1R0* , ~4.22!

and r * is the Regge-Wheeler coordinate:

r *5E r dr8

C~r 8!
, ~4.23!

with R0* being a constant. The metric outside the body is thus
assumed to be static in order to mimic the four-dimensional
spherically symmetric case~for which Birkhoff’s theorem
holds!. The point at which the conformal factorC50 repre-
sents the horizon, and the asymptotic flatness condition is
imposed byC→1 asr→`.

On the other hand, the metric inside the ball is for now
assumed to be a completely general conformally flat metric:

dsi
25A~U,V!dUdV, ~4.24!

with

U5t2r1R0 ,

V5t2r2R0 , ~4.25!

andR0 andR0* are related in the same way asr andr * . The
surface of the collapsing ball will be taken to follow the
world line r5R(t), such that, fort,0, R(t)5R0. Thus, at
the onset of collapse,t5t50, U5V5u5v50 on the sur-
face of the ball.

We will let the two sets of coordinates be related by the
transformation equations

U5a~u!,

v5b~V!. ~4.26!

The functionsa and b are not independent of each other
because one coordinate transformation has already been
specified by the definition ofr * in Eq. ~4.23!.

Without as yet determining the precise form ofa and
b, we will consider a massless scalar fieldf propagating in
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this spacetime subject to a reflection condition
f(r50,t)50. Such a field propagates in a similar fashion to
the field in the vicinity of a moving mirror. To make this
explicit, we introduce a new set of barred coordinates

ū5b@a~u!22R0#,

v̄5v. ~4.27!

In terms of these, we also define the coordinates

r̄5 1
2 ( v̄2ū), and t̄5 1

2 ( v̄1ū).
These new coordinates have the properties~a!

r50⇒ r̄50 and~b! the field equations have incoming mode
solutions of the formeikv. Thus the left-moving parts of the
correlation functions of the ‘‘in’’ vacuum defined in terms of
barred coordinates are identical to those of the vacuum de-
fined with respect to unbarred coordinates.

Keeping these properties in mind, we may expand the
field in terms of standard modes obeying the reflection
boundary condition~by conformal invariance of the massless
scalar field equation! as

f~ r̄ , t̄ !5A2

L(
k.0

q̄k~ t̄ !sinkr̄, ~4.28!

just as in the moving mirror case.
We now consider a detector placed outside the collapsing

ball at fixedr ~or r * ), namely,r5r 0 ~or r *5r 0* ). The in-
teraction between detector and field is described by the in-
teraction Lagrangian

L int52eQf~ s̄, r̄ !, ~4.29!

where

r̄5 1
2 $v2b@a~u!22R0#%

5 1
2 $t1r 0*2R0*2b@a~ t2r 0*1R0* !22R0#%,

s̄5 1
2 $t1r 0*2R0*1b@a~ t2r 0*1R0* !22R0#%,

~4.30!

andQ is the internal detector coordinate.
The influence kernelz, due to a reflection condition at

r̄50, has the same form as the moving mirror case, in
barred coordinates. Its outgoing part is therefore given by

zuu5
e2

4pE0
`dk

k
eik~ ū82ū!, ~4.31!

where

ū5 s̄2 r̄5b@a~ t2r 0*2R0* !22R0# ~4.32!

and ū8 is the same function oft8.
We will now determine the functionsa andb and show

that, to zeroth order in an appropriate parameter,ū is an
exponential function oft, and thuszuu has a thermal form.
The correction to the exponential form, obtained by includ-
ing higher-order terms, will lead to a near-thermal spectrum.

To determinea andb we match the interior and exterior
metrics at the collapsing surfacer5R(t). Then we have3

a8~u![
dU

du
52C

~12Ṙ!

Ṙ
F11S 11

AC

Ṙ2
@12Ṙ2# D 1/2G21

,

~4.33!

b8~V![
dv
dV

5C21
Ṙ

11Ṙ
F12S 11

AC

Ṙ2
@12Ṙ2# D 1/2G ,

~4.34!

whereṘ5dR/dt.
Now we expand these quantities about the horizon. We

recall the definition of the horizon radiusRh asC(Rh)50.
We may further defineth asR(th)5Rh . Then we obtain the
Taylor expansions

R~t!5Rh1n~th2t!1b~th2t!21•••, ~4.35!

wheren52Ṙ(th), b5 1
2 R̈(th), and

C5
]C

]r U
Rh

~R2Rh!1
1

2

]2C

]r 2 U
Rh

~R2Rh!
21•••

52kn~th2t!1~2kb1gn2!~th2t!21•••,

~4.36!

where k5 1
2 ]C/]r uRh, the surface gravity, and

g5 1
2 ]2C/]r 2uRh. Since the ball is collapsing,n.0.

Substituting the above expansions in the expression for
a8(u), we obtain, to order (th2t)2,

dU

du
5a~R02Rh1th2U !1b~R02Rh1th2U !2,

~4.37!

where

a5~n11!k, ~4.38!

b5
k

n H ~31n!b1~11n!
gn2

2k
2
1

2
Ak~12n2!~11n!J .

~4.39!

Note that, for a slowly collapsing ball,n!1, and hencea
reduces to the surface gravityk.

Also, to order (th2t),

dv
dV

5c1d~th1Rh2R02V!, ~4.40!

where

3Note that the formulas fora8 and b8 do not agree with the
corresponding formulas in Ref.@15# @Eqs. ~8.17! and ~8.18!#. The
formulas in @15# have sign errors for the quantities within square
brackets.
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c5
A~11n!

2n
, ~4.41!

d5
A

n2 S b2
Ak

4
~12n2!~11n! D . ~4.42!

We consider a regime in which (th2t)d!c so that we may
ignore the second term in Eq.~4.40!. Then we can integrate
this equation to give

v~V![b~V!5c11cV, ~4.43!

wherec1 is an integration constant.
Similarly to lowest order inb/a2 ~which turns out to be

the appropriate dimensionless parameter describing devia-
tions from exact exponential scaling or exact thermal behav-
ior!, we integrate Eq.~4.37! to give

U~u![a~u!

5R02Rh1th1a21e2a~u2c2!S 11
b

a2
e2a~u2c2!D ,

~4.44!

c2 being another integration constant.
We are now in a position to obtain explicitly the transfor-

mation between barred and unbarred coordinates, to lowest
order inb/a2. Thus we have

ū5b@a~u!22R0#

5M11M2e
2a~u2c2!S 11

b

a2
e2a~u2c2!D , ~4.45!

where

M15c12c~R01Rh2th!, ~4.46!

M25
c

a
. ~4.47!

At the positionr 0* of the detector,u5t2r 0* . Therefore, de-
fining D5u82u andS5 1

2 (u81u)1r 0* , we may perform
the above transformation to obtain

ū82ū522M2e
ac2H e2a~S2r0* !sinh

aD

2

1
b

a2
e22a~S2r0*2c2/2!sinhaDJ . ~4.48!

Invoking the identities~2.11! and~2.13!, the functionzuu can
now be simplified to yield the near-thermal form

zuu5
e2

4pE0
`dk

k H cothS pk

a D coskD~11G!2 isinkDJ ,
~4.49!

where

G52
2bk

a3
ea~c22S2r0* !tanh2S pk

a D tankDsinhaD.

~4.50!

The functionG vanishes at late times (S→`). Thus the
exact thermal spectrum is recovered at the Hawking tempera-
ture redshifted by the velocity of the surface of the ball, on a
time scale defined by the surface gravitya.

V. DISCUSSION

We now summarize our findings and discuss their impli-
cations. There are four main points made or illustrated here

~1! This paper givesa stochastic field theoretical deriva-
tion of particle creationin the class of spacetimes which
possess an event horizon in some limit. This approach gen-
eralizes the established methods of quantum field theory and
thermal field theory~in curved spacetimes! to statistical and
stochastic field theory. The exact thermal radiance cases aris-
ing from an exact exponential scale transformation such as is
found in a uniformly accelerated detector, the Schwarzschild
black hole and the de Sitter universe, have been treated in the
stochastic theoretical method before@46,50#. Here we give
the treatment of the moving mirror and the collapsing mass
as further examples.~Thermal radiation in certain classes of
cosmological spacetimes including the inflationary universe
will be studied in a following paper@57#.!

~2! We have shown that in all the examples considered in
this class of spacetimes, i.e., accelerated observers, moving
mirrors, and collapsing masses~black holes!, those which
yield a thermal spectrum of created particles all involve an
exponential scale transformation. Thermal radiance ob-
served in one vacuum arises from the exponential scaling of
the quantum fluctuations~noise! in another vacuum. This
view espoused by one of us@31–35# is illustrated in the
examples treated here.

~3! A practical aim of this paper is to show how one can
use quantum field theory techniques aided by statistical-
mechanical concepts to calculate particle creation in the
near-exponential cases, yielding near-thermal spectra. These
cases are not so easy to formulate conceptually using the
traditional methods: The geometric picture in terms of the
properties of the event horizons as global geometric entities
works well for equilibrium thermodynamics~actually ther-
mostatics! conditions, so does thermal field theory which as-
sumesa priori a finite-temperature condition~e.g., periodic
boundary condition on the imaginary time!. However, they
cannot be easily generalized to nonequilibrium dynamical
conditions. In the stochastic theory approach we used, the
starting point is the vacuum fluctuations of quantum fields
subjected to kinematical or dynamical excitations. There is
no explicit use of the global geometric properties of space-
times: The event horizons arise from exponential scaling.
~Thus, for example, this method can describe the situations
where a detector is accelerated only for a short duration,
whereas one cannot easily describe in geometric terms the
scenario of an event horizon appearing and disappearing.!
There is also noa priori assumption of equilibrium condi-
tions: The concept of temperature is neither viable nor nec-
essary, as is expected in all nonequilibrium conditions. Ther-
mal or near-thermal radiance is a result of some specific
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conditions acting on the vacuum fluctuations in the system.
~4! We restrict our attention in this paper to near-thermal

conditions because of technical rather than conceptual limi-
tations. In the near-thermal cases treated here, we want to
add that the stochastic theoretical method is not the only way
to derive these results. One can alternatively approach with
the global geometric or thermal field methods, say, by work-
ing with generalized definitions of event horizons or quasip-
eriodic Green functions. However, we find it logically more
convincing and technically more rigorous to use the stochas-
tic field theory method to define and analyze field theoretical
and statistical concepts like fluctuations and dissipation, cor-
relation, and coherence. We believe that in the fully dynami-
cal and nonequilibrium cases, such as will be encountered in
the full back reaction problem~not just confined to the linear
response regime!, this method is more advantageous than the
existing ones. Even though the technical problems will likely
be grave~just the built-in balance between dissipation and

fluctuations alone requires a self-consistent treatmentab ini-
tio!, there are no conceptual pitfalls or intrinsic shortcom-
ings.
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