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Exact solution for the metric and the motion of two bodies in(1+1)-dimensional gravity
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We present the exact solution of two-body motion(int+1)-dimensional dilaton gravity by solving the
constraint equations in the canonical formalism. The determining equation of the Hamiltonian is derived in a
transcendental form and the Hamiltonian is expressed for the system of two identical particles in terms of the
LambertW function. TheW function has two real branches which join smoothly onto each other and the
Hamiltonian on the principal branch reduces to the Newtonian limit for a small coupling constant. On the other
branch the Hamiltonian yields a new set of motions which cannot be understood as relativistically correcting
the Newtonian motion. The explicit trajectory in the phase spage) (is illustrated for various values of the
energy. The analysis is extended to the case of unequal masses. The full expression of metric tensor is given
and the consistency between the solution of the metric and the equations of motion is rigorously proved.
[S0556-282197)01108-9

PACS numbg(s): 04.50:+h, 04.20.Cv, 04.20.Jb, 04.25g

I. INTRODUCTION contains the Jackiw-Teitelboim lineal gravity thedd?] as
a special casg6]. The specific form of the coupling of the
One of the oldest and most notoriously vexing problemsilaton field¥ to gravity is chosen so that it decouples from
in gravitational theory is that of determining theelf-  the classical field equations in such a way as to ensure that
consistentmotion of N bodies and the resultant metric they the evolution of the grawtatlonal' field is determined only by
collectively produce under their mutual gravitational influ- the matter stress energgnd rec_lprocally [6.9]. It Fh_ereby
encel1]. In general there is no exact solution to this problemCaptures the essence of classical general relatteity op-

(although approximation techniques exigl) except in the posed to classical scalar-tensor thegrigstwo spacetime
ugh approximat niqu : XCeptin € yimensions, and has (11)-dimensional analogs of many of
caseN=2 for Newtonian gravity, since energy dissipation in

o L its propertied 9,10]. Furthermore, this theory can be under-
th_e form of grawtatlonal_radlatlon obstruct_s attempts to 0b-g;50d as thd — 2 limit of general relativityas opposed to
tain an exactN=2 solution. Only the static sector of the gyme particular solutias)] [13].
Hamiltonian has thus far been determined exaf3ly We consequently find that the motion of the bodies is
Lower dimensional theories of gravity do not contain governed entirely by their mutual gravitational influence, and
gravitational radiation and so offer the possibility of making that the spacetime metric is likewise fully determined by
useful progress on this problem. For example ih2dimen-  their stress energy6,9]. Unlike the (2+1)-dimensional
sions, the absence of a static gravitational potential allowsase, a Newtonian limit exists, and there is a static gravita-
one to generalize the static two-body metric to that of twotional potential. The solution we obtain gives the exact
bodies moving with any spedd]. In 1+ 1 dimensions one Hamiltonian to infinite order in the gravitational coupling
must necessarily consider a dilatonic theory of grayy  constant. Hence the full structure of the theory from the
since the Einstein tensor is topologically trivial in two di- weak field to the strong field limits can be studied. While
mensions. One such theory in this class has been of particgome of the phase-space trajectories we obtain can be viewed
lar interest insofar as it has a consistent Newtonian lj8iit  as relativistic extensions of Newtonian motion, we find that
(a problematic issue for a generic dilaton gravity theldtly,  for sufficiently large values of the total energy a qualitatively
allowing for the formulation of a general framework for de- new set of trajectories arises that cannot be viewed in this
riving a Hamiltonian for a system of particlg8]. In the slow  way.
motion, weak field limit this Hamiltonian coincides with that  The outline of our paper is as follows. In Sec. Il we reca-
of Newtonian gravity in % 1 dimensions. pitulate the derivation of the canonically reduciidbody
Motivated by the above, we consider here the problem oHamiltonian in 1+1 dimensions. In Secs. lll and IV we
the relativistic motion of two point masses under gravity insolve the constraint equation and then derive an expression
1+1 dimensions. We work in the context of the dilatonic for the exact Hamiltonian in the two-body case. In Sec. V we
theory of gravity mentioned aboyé]. Both the classical and analyze the motion in the case of equal masses, and in Sec.
quantum properties of this theorfreferred to asR=T VI we consider the unequal mass case. In Sec. VIl we solve
theory have been extensively investigatggi9—11, and it  for the spacetime metric and in Sec. VIII we investigate the
test-particle limit of our solution. In Sec. IX we consider the
the dependence of the Newtonian limit on dimensionality.
*Electronic address: mann@avatar.uwaterloo.ca We close our manuscript with some concluding remarks and
Electronic address: t-001@ipc.miyakyo-u.ac.jp directions for further work.
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Il. THE CANONICALLY REDUCED where y=g;1, No=(—9°) %2 N;=g40, 7 and I are
N-BODY HAMILTONIAN conjugate momenta tg and¥, respectively, and

First we shall review the outline of the canonical reduc-
tion of (1+1)-dimensional dilaton gravity8]. The action P’
integral for the gravitational field coupled with point par- RO= — k\yym?+ 2 \[ymll + \/—(‘1’ )?— K( \/—>
ticles is 4x y

2

=J dx? zi\/—g \PR+%9’“’VM\I'V,}I’] —Z —+m F0(x—2,(x?), ®
K
& dz; dz;
_ _4 2(y — ! 1
aZ]_ my dTa( g,“,(X) d ] o°(x Za(Ta)) ) Rl:y—ﬁ_ _H\P/_’_zﬂ_r_'_z &5()(_23()(0)), 9
Y Y a 7
(N
where W is the dilaton fieldg,,, is the metric(with deter-  with the overdot and prime denotinig andd,, respectively.
minantg), R is the Ricci scalar, and, is the proper time of The transformation from Eq1) to Eq. (7) is carried out
ath particle, withk=87G/c*. The symbolV,, denotes the by using the decomposition of the scalar curvature in terms
covariant derivative associated wigh,, . of the extrinsic curvatur& via
The field equations derived from the acti@l) are
R-g*'V,V,¥=0, 2) V=gR=—2d5(VyK) + 20, [ V¥ (N*K =y *91Np) ],
1 1
N N
SV YV, ¥ =70, VIWV\W+g,, VIV¥ -V, V,¥ whereK =(2Ngyy) "1(29;N;— vy~ Nyd;y— doy) and chang-
ing the particle Lagrangian into first order form.
=kT,,, ©) The action(7) leads to the system of field equations:
dz/| 1 dz; dz,
q. g,uv(za) ] 59 ,LL( a) =0, (4) . 3 1
dra{ dr, 2 dr, d7'5l 74N, —K\/—’]TZ—%’]TH‘F \/_ (V)2
where the stress energy due to the point masses is Y Brvyy
dzg dzZ,
= 2
,uv maJ dTa g,u,o’ vp d’T d -0 (X Za( Ta)) _E Pa 5(X_Za(xo))

5 a 2
® 272 &erg
Y

Inserting the trace of Eq3) into Eq. (2) yields

R=xT",. (6) +N [ I+ 7+Z —3 8(x—25(x%))
Particle dynamics ifR=T theory may therefore be described
in terms of the equationg}) and (6), which forms a closed , 1 , T
system of equations for the gravity or matter system. +No ZK\/;Y\I' + Nl;

At first sight it may seem that the dynamics is indepen-
dent of the dilaton field, since both Eq4) and Eq.(6) do =0, (10
not include¥. Note, however, that all three components of
the metric tensor cannot be determined from @, since it v
is only one equation. The two extra degrees of freedom are L _ L oN =
related to the choice of coordinates. If the coordinate condi- 4 NO(ZK\/;WT ZK\/;HHNl Y 2N;=0, (19
tions are chosen to be independentiof Eq. (6) determines
the metric tensor completely. However, this need not be the RO=0

. =0, (12
case, and so more generally we need to know the dilaton
field ¥, through which the metric tensor i6ndirectly)
determined—it is this field that guarantees conservation of R'=0, (13
the stress-energy tensor via E§).
In the canonical formalism the actidf) is written in the

form : L —1 —1 ’
[1+0y = —NylT+ =——=Ng¥’'+ —=Ng | =0, (14
. . Y 2K\/; K\/;’
|=f dxer Pazad(X—24(x°))+ my
a
. 5 1\
+H\1I+N0R°+N1Rl” (7) W No(2weyym) = Na| 77 =0, (1
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. Ny [p; No pady Nip 1
Pat —\/— g_—_a____a Too=H=——AV, (22
0Z4 p§+ , 7Y 0z, 0z5 vy K
2+m
2\, M Toy=27" . (23)
N Pa dy (16) In deriving this expression fd¥,,, we made use of the dif-
Y22 0z, ferential forms of the coordinate conditions
5 N Y + &_0 17) As discussed i8], consistency between the integral form
a 0 -V

2 Y
\/&+m§
Y

In the equationg16) and (17), all metric componentsNy,
N4, ) are evaluated at the poirt=z, and

af  af(x)
Jz, o

X:Za

This system of equations is equivalent to the set of equations

(2), (3), and(4).

(20) of the coordinate conditions and the differential form
(24) is assured when one retains the appropriate boundary
conditions for the integral operator/l/and takes a limiting
procedure by introducing a regulator. This,is the Hamil-
tonian density of the system ar@, is the momentum den-
sity.

The action(7) is similarly tranformed and reduces to

| = f dXZ{E paiaﬁ(x—za)—H] . (25)

Thus the reduced Hamiltonian for the system of particles is

The action(7) also shows thaN, and N, are Lagrange
multipliers, and the equationd2) and (13) are constraints.
We may investigate the canonical structure of the theory via
the generator which arises from the variation of the action at

1
Hzf dtz—;j dxA W, (26)

the boundaries:

sz dx[E P.S(X—24) 82y + wSh—WSIL} |, (18)
a

whereW is a function ofz, and p, and is determined by
solving the constraints which are, under the coordinate con-
ditions (24),

1
(W24 2.2 vy SN
whereh=1+ . This form was obtained by adding a total ~ ~¥ ~z (V) +«°7 +K2a Pat M d(x—2,) =0,

time derivative— do(I1W) to the original action(7) and tak-

(27)

ing the constraints into account. Since the only linear terms

in the constraints are¥(’//y)’ and ', we may solve for

these quantities in terms of the dynamical and galige,

coordinate degrees of freedom. Bearing this fact in mind,

we transform the generat6i8) to

=il

sz dx[z Pa8(X—25) 25—

: (19

where 1A is the inverse of the operatak = d%/d9x? with

27+, pad(x—2z,)=0. (28)

The expression of the Hamiltonid@6) is analogous to the
reduced Hamiltonian in (3 1)-dimensional general relativ-
ity. The proof of the consistency of this canonical reduction
was given in[8]: namely, the canonical equations of motion
derived from the reduced Hamiltoni@®6) are identical with
the equationg16) and (17).

IIl. MATCHING CONDITIONS AND THE SOLUTION
TO THE CONSTRAINT EQUATIONS

The standard approach for investigating the dynamics of a
system of particles is to derive an explicit expression for the
Hamiltonian, in which all information on the motion of the

appropriate boundary condition, and we have discarded Sufarticles is included. In this section we solve the constraints

face terms.
Adopting the coordinate conditions
1 K 1 !
Xzﬂh , tZ—Z(\/h—lzl—[ ) (20

(27) and (28) for the system of two particles and determine
the Hamiltonian(28).
Defining ¢ and x by

V=—41In¢|, m=x' (29)

allows the generatofl9) to be expressed in the canonical the constraint§27) and (28) for a two-particle system be-

form
sz dx{E pab‘(x—za)éza—%ﬂé‘x“], (21)
a

where

come
2

A= (2= NPT MEb(z) 5x—21)
+APs+Myh(27) 8(x—25)},  (30)
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X

€
(X+ 2 (P11 P2)

N X

1
AX:—§{p15(x—zl)+p25(x—zz)} : (31 ¢+(x)=A+ex;{

€
+Z(p1+p2) X

. . K
The general solution to E@31) is 4 B+exp{ _ E(

1
y=— Z{pl|x_zl| +Pa|X—2,|} —eXx+eC,. (32

K €
d’o(x):AoeXF{E(X_ Z(pl_p2))x
The factore (e?2=1) has been introduced in the constants
X andC, so that theT-inversion(time reversalproperties of A VP
x are explicitly manifest. By definitions changes sign under *BoeX 2 X 4(p1 P2) |X
time reversal and so, therefore, dogs

Consider first the case, <z, for which we may divide P
spacetime into three regions: ¢(x)=Aexp{§ X—

€
Z(pﬁ'Pz) X

z;<x (+) region,

ZPrp2) |x|. (34

+B “I'x
_eX —E —

For these solutions to be the actual solutions to(B6). with
delta function source terms, they must satisfy the following
matching conditions at=z,,z,:

z,<x<z; (0)region,

X<z, (—)region.

In each regiony’ is constant:

¢+(21) = ¢o(21) = &(21), (353
f —eX— %(pl"'pz) (+) region, b (22)= do(22) = P(22), (35b)
1 .
X'=\ —eXtz(p—py) (Oregion, (33 $.(22) - dy(z)= g DT MEB(z), (350
\ —ex+%(pl+p2) (—) region.

do(22)— P (2)= sz+m2¢(22) (350

General solutions to the homogeneous equation
Ad—(k%14)(x")?>¢=0 in each region are The conditions358 and (350 lead to

o

€
X+ Z(pl+ pz))zl B,

X+ — (p1+p2) A++exp{ 5

Z;

K € K €
=exp 5 X_Z(pl_pz) Z1 |Aptex ) X_Z(pl_p2) z,|B (36)
and
K €
E X+ = (p1+p2) Zy|A, —ex ) X+Z(p1+p2) z,|B
€ €

Vpimi+2 X—Z<p1—pz)) o e pi+mi—2(x—z(p1—pz))

= < ex%§<x_z(p1_pz))zl Aot c
2| X+ Z(pl+p2) 2| X+ Z(pﬁ'Pz)
K €
xexg -5 X_Z(pl_pz) z,|B (37)
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and then
N 2imi+4X+e € v Zimi+e €
A= P1 ! pzex —K—plz1 A+ uex — k| X+ —p2|21|Bo, (38a
4X+ e(py+Ppy) 4 4X+e(p1+py) 4
VPt mi—epy € pi+tmi—4X—ep, (ke
B+“mex’{“ X+Zp2)zl Ao” TaxTe(prtpn A a PraPo (3%

Similarly the conditiong35b) and (350) lead to

z, Z,|B_

K € K €
exp 5 X‘z(pﬁpz) A_+ex -3 X‘z(pﬁpz)

K € K €
=exp 5 X_Z(pl_pz) Zy|Aptex ) X‘z(pl_pz) Z,|Bg (39
and
K € K €
—ex 5 X—Z(p1+p2) Z,|A_+ex -3 X—Z(p1+p2) ZZ_B,
€ €
VPSHm—2| X=2(pmp2) | . Vpz+m3+2 X—Z(pl—pz))
= < eXF{§<X_Z(p1_p2))22_Ao+ c
2| X= 7 (Pat+Pp2) 2\ X=7(pat+p2)
K €
xexp — 5| X= 7(P1=P2) | Z2|Bo (40
and then

Bo, (413

A7:

Jps+ms—4X+ep; [ ke Vp5+m3+ ep; €
- ex 0 — K X_Zpl 22

—_— Zo|Ap— ———eX
4X— e(py+ py) 4 P222) o™ gy (b4 py)

Agt+

Vp5+m;— ep; €
K X_ Zpl Zz

_=——€X
4X—€e(p1+p2)

Vp5+ms+4X—ep; [{ Ke
eX

aX—e(pipy) P szzZ) Bo. (410

Since the magnitudes of both and y increase with increasini|, it is necessary to impose a boundary condition which
guarantees that the surface terms which arise in transforming the action vanish and simultaneously preserves the finiteness of

the Hamiltonian.
In the iterative analysis if8] this condition has been shown to be

W2—4k?x?=0 in the regionz; <x andx<z, . (42
Since

—{eX+3 (Pt P)}x+eCy+ 2(p1zi+pyz,)  (+) region 3
X= ;
—{eX=7 (p1+P2)}x+eC,— 1 (P11 +P22o) () region,

the boundary condition implies

A,:BJr:O, (44)
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KE KE K
— InA, — F(plzl_l' p2z;)=InB_+ E(plzl_l' P2zy) = ECX' (45
The condition(44) leads to
Ag VP2 +Mms+ep; XF{ (X E(p 0 ))Z 46
—_— = e — K RN —
Bo  Jp2+mi—4X+ep, 4t P
and
Ao Jpi+mi—4X—ep, F{ (X e( )) ] “
— = exg — ——(p;— Z, .
Bo Vpi+mi—ep; TR s
From Egs.(46) and(47) we have
[ €
(Vp1t+mi—ep,—4X)(Vp3+ms+ep;—4X)=(\p1+mi—epy) (VP2 + M5+ ep,)exp K(X_ Z(pl_pz))(zl_zz)}-
) (48)
On the other hand the conditida5) leads to
\/pi+mi+4x+ep2 KE \/p§+mi+ep1 €
exp — —P121|Agt o—————expg — k| X+ —p>|21|Bg
4X+ e(py+Py) 4 4X+ e(py+py) 4
Vp5+ma— ep, . A Vp5+ms+4X—ep; Ke B l_ Ke
X mex K| X=7P1]Z2 ot AX—e(PLtpa) eXp — 4 P2Z2|Bo( =€x _T(plzl+p222)-
(49
T
Using the notation L\
M]_E Vpi—‘rmi_fpl! 1
M,=\p3+m;+ep,, L,\ 12 «
B_:(M_) eXF(gL_Zz), (54)
L,=4X—ep;— \p5+ms, 2
Lo=4X+ ep,— \pi+my, (500 and then
L, =4X+e(p1+p2),
1 1/2 K
Lo=4X—ep,+ep,, ¢+=<M—l) eXF{§L+(X_Zl))a (55
L_=4X—€e(p1+p2),
) L2 1/2 K
we obtain d):(M_) exp(—gL(x—zz)>, (56)
2
(ML) p( K )
0=—eX __L022
Lo 8
1 Lk, \¥? N K
Ll 1/2L2 K OZL—O Mle (M2L2) 2eX §L0(X_Zl)
= M_]_ L—Oex —gLozl ) (51)
+(M;L,)Y%ex 5 (X—12y) (57)
B _ L2 1/2L1 KL _(MlLl)llz KL 1-1 8 0 2 .
0= M_2 L—OEX g 0Z2 —L—Oex g 0Z1
(52

from Egs. (46), (47), and (49). Substituting Eqs(51) and
(52) into Egs.(38a and(41b) we get

In the case of, <z, we have to interchange the suffices 1
and 2. The equatio8) which determines then general-
izes to
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(VpZ+mi— €p,—4X)(\/pa+ma+ epy—4X)
=(ypit+mi—epy)(Vp5+ms+ep,)

P |

wherer=z,—z, andp,=p,sgnz,—z,).

IV. DETERMINING EQUATION FOR THE HAMILTONIAN
AND THE CANONICAL EQUATIONS OF MOTION

Since the solutions o give

dL(X) €
5.0 2 X+ 7(p1+p2)
and (59
¢’ (x)

3

K €
b_(%) :_E(X_Z(pl+p2)

4729

the HamiltonianH is

1 1
H=——f dxA¥=——[P']%
K K

K

4 {fﬁ;(L) d(—L)
=—lim

PRV ¢_<—L>]:4X (69

L—oe

and so Eq(58) becomes
(Vpi+mi—epp—H)(Vpi+m3+€py—H)
= (Vpi+mi—€py)(Vp+ms+ €py)

<o SIH-eEFl ] @

Equation (61) is the determining equation for the Hamil-
tonian, whose solution yieldd as a function of f,,p,,r).

Expanding Eq(61) in powers ofx yields the perturbative
solution

K K€
H = Jpf+mi+ Vp3+my+ 2 (Vpi+miVp3+m3—pipo)|r|+ - (Vpi+mipo—piyps+ms)(z,—-2,)

2
K
+ oxczz {(VPL+ My pa+ma—2p;py)(Vpi+mi+ P2+ m3) + Vpi-+mi p3+piyps+mor?

K26
+ 55cz2{ ~ 2(PE+ M3+ M5~ pipy) (Py— P2) +Mip,— pima|r (2= 25) - (62

up to O(«?). This is identical with the Hamiltonian derived

in the iterative method if8].
For the case of,<z;, Eq. (61) is

K
L1L2:M1M28XF<ZLO(Z]__22)). (63)

Differentiating Eq.(63) with respect taz; leads to

aHL-l—L —KLL aH-ﬁ-L
(9_21(1 2)—112r(9_z1 0]-

Then we have the canonical equation
K

H 4
0zy

LoLilo
(64)

pP1= pr
L+tLy— ZLlLZ

and similarly

K
Lokl
P2= pr : (65
Ll+ L2_ ZLle

Differentiating Eq.(63) with respect tgp, leads to
L +( dH
o apy

L € +KI’(¢9H )
2 pZemd 4 \op I

( oH p1

a1 JpP+m?

_€)L2

We have also the canonical equation

.Z _ oH — €LOL1 1 (66)
1= ——=€—
J Kr Jp? 2
pl L1+ LZ_TL].LZ pl+m1

and similarly
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+2
1 Y
D C o~ 0.27B 2
e ‘ y ]
:0.278 FIG. 1. Solutions to Eq(71). The points B
G and C represent the extremalandY values of
W~1(1/e)=0.278 on the principal branch.
F -1 B
-2
E A
. Lol 1 =, ~ 8

Kr 2 2"
Lit+lo— 5 Lily VPt
Eq. (69 becomes

It is evident that the Hamiltonian and the total momentum

) Y2e2Y=72¢%2 (71)
P=p,;+p, are constants of motion:

whereZ=(«|r|/8)(\p?+ m?— €p).

Equation(71) has three solutions shown in Fig. 1. The
trivial solution, Y=2Z, yields H=2¢p, which is unphysical
V. HAMILTONIAN OF TWO IDENTICAL PARTICLES because it has no interaction term. The second solution
(curve A-B-O-C-D is represented by

H=0, P=p,;+p,=0. (69)

In this section we shall try to solve E(1) for a system
of two identical particles. We may choose the center of in- Y=W(-2€9), Z<z,=W Ye™!) (72
ertia frame withp,;= —p,=p. Then Eq.(61) becomes

(H—Jp2T M ep)2= (Jp2r P e)?

and the third solutioricurve E-F-QG is represented by
Y=W(Z¢&), Z<0, (73
K —~
X —(H-2 . (69
eXF{4( ep)|r|) €9 whereW(x) is the LamberW function defined via

After setting y-eY=x=y=W(X). (79

W{x)

-1l/e

FIG. 2. The LambertV function.
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FIG. 3. Hamiltonian as a function of momen-
tum p>0 andxr in units of m.

In generalW is complex and multivalued. Whenis real, The correspondence between the curves in Fig. 1 and
the function has two real branches shown in Fi§12]. The those in Fig. 2 is
branch satisfying—1<W(x) (a solid line is denoted by
Wy(x) and is referred to as the principal branch. The branch
satisfying W(x)<—1 (a broken ling is denoted by curve A-B-O-C-B=curve P-Q-O-R-0O,
W_4(x), and is real valued only for- 1/e<x<0. Then for
—1/e<x<0 the function is double valued. The principal
branch is analytic at=0 and has a derivative singularity at curve E-F-G=curve O-Q-P.
x= —1/e beyond whichW(x) becomes complex. The series
expansion of the principal branch is given by

Since the physical domain & is Z=0, the only physical
X (75) solution is Eq.(72), which yields the Hamiltonian

o0

_ -1
Wo(X) = E &

n=1 n!

W — §(|r|\/p7+ m?— spr)exp(§(|r|\/pz+ m2— epr)”

]r]

H=p?+m?+epsgr(r)—8 (76)

This Hamiltonian is exact to infinite order in the gravitational coupling constant. We can thus view the whole structure of the
theory from the weak field to the strong field limits.
The weak field expansion has already been given in the general case (@B2Edhe smallp expansion is

FIG. 4. H in the nonrelativistic limit com-
pared with the Newtonian Hamiltonian.
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FIG. 5. Both branches of the Hamiltonian.

_ mkfr[—8w  mk|r|+2mk|riw+8w _ 1 —8mk|r|—8mk|r|w?+64w+m’k?r|*w 2, .
o «r] me[r[(1+w) " 16 m2x[r](1+w)3 (77
|
where Heo +1 2, 1 —4+«krp ,
“PTEM™M T T e M
2,212
mx|r| mx|r| 1 16-4krpteTpt o

WEW[— 8 ex% 5 +128 o5 m°+ . (78)

The «-independent terms are equivalent to those obtained for

The leading term is simply the mass plus a static gravitatwo free relativistic particles of equal mass in the small mass
tional correction, which isn?|r| to lowest order inc. The  limit. We see that the effects of gravity modify the Hamil-
term linear inp is due to purely to gravity, since it vanishes tonian to include interaction terms whose strength grows
in the limit x—0. The argument of the function must be  with increasing separation, as one might expect from the
larger than —1/e. This translates into the limit basic structure of two-dimensional gravity.
mxr <W(1/e) which means that imxr is sufficiently large, The Hamiltonian(76) describes the surface ir,p,H)
there is no smalp expansion—i.e., there is some minimum space of all allowed phase-space trajectories. Skhde a
value of p below which the Hamiltonian is no longer real. constant of the motion, a trajectory in the,|§) plane is
This situation is shown in Fig. 3. uniquely determined by settirtd=H in Eq.(76). However,

The smallm expansion(which is the same as the large there are two distinct sets of trajectories which correspond to
p expansionis also easily obtained. For example in the re-the two real branches AV function which join smoothly
gion p>0,r>0 with e=1 we find onto each other.

FIG. 6. A slice ofH at constanp.
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FIG. 7. A comparison of the Hamiltonian
with a surface of constant energy. The flat black
surface corresponds to a value ld§=5. Note
that it intersects both branches of the Hamil-
tonian.

For H sufficiently small, the Hamiltonian is given by the Newtonian theory are included for comparison. Under time
principal branchW, and reduces to the Newtonian limit for reversal, the trajectory for a given valueldf is obtained by
small x. Figure 4 shows the Hamiltonian for smély. The  reflection in thep=0 axis.
darker surface denoté$(r,p) =H, and the lighter surface is One of the characteristics of the trajectories is that as
the Newtonian Hamiltonian. Hy increases the trajectory becomes m8rghaped. Suppose

OnceH, becomes sufficiently large, there appears a qualithe particles start out at the same place Q) with positive
tatively new set of trajectories which are not connected withp. r will increase ang will slowly decrease. This continues
the Newtonian Hamiltonian in smak. Figure 5 demon- until maximum separation with some positive value mf

Strates two bl’anCheS Of the Hamiltonian in the region\Nhere the Ve'ocitY:O_ After thatr undergoes a rapid de_

—2<r<-1, —2<p<-1. The whole surface off con-  crease, whilep is still positive. At some value of, p be-

tinues SmOOtth from one branch to the other. This Structur%omes zero and then it goes negative_ The partides continue

is seen in Fig. 6 where the slice dff at constant to be pulled together andreaches 0, wherp has its maxi-

p (p=0) is drawn. mum negative value. The particles then overshoot the mark
ForHy in the intermediate range the constant energy surand start the reverse motion with interchanged positions.

face intersects both branches shown in Fig. 7. The trajectory The main reason why the trajectories &shaped is the

in (r,p) plane moves over both branches. It analytically con-appearance of thp-linear term in the Hamiltonian. The ca-

tinues from one branch to the other. Figure 8 shows also thifonical equation$66) and (67) [or directly the Hamiltonian
structure from another point of view. (77)] leads to

For a given initial condition the energy, of the system
is fixed and the trajectory inr(p) plane is given as the slice : mk|r|+2mx|r|w+ 8w
of H=H, through the two-dimensional surfa¢#(r,p) in r=e mx[r[(1+w)
(r,p,H) phase space. Two characteristic plots are shown in
Figs. 9 and 10 where the corresponding trajectories in th&he first term on right-hand sidéRHS) comes from the

+(p termg. (79

FIG. 8. A slice of both branches dfl at
r=1. The horizontal line corresponds to
Hy,=15.
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FIG. 9. Nonrelativistic(Newtonian and rela-

p-linear term inH andr=0 does not correspond {=0.

This relation between and p resembles the relation in the
theory with charged particles

;
+eA.

p:

:

—r2

In this sense the first term on RHS of E@9) can be said to
be purely gravitational.

VI. THE UNEQUAL MASS HAMILTONIAN

For unequal masses we set

_pTrmE p3ems e
B 2 2

— 8
(P1—p2)— WY (80)

so that Eq.(61) becomes

(YZ_DZ)GZY:(SZ_DZ)GZS, (81)

tivistic trajectories forHy=2.2. The undistorted
oval is the nonrelativistic trajectory.

where S=(k|r|/16)(M;+M,) and D=(«|r|/16)(M,
~M,) with M;=\p>+m?—¢ep; and M,=p2+m3
+ €p,. For equal masse§=2Z, D=0 and Eq.(81) reduces
to Eq.(71). Solving Eq.(81) for Y in terms ofS andD yields
the Hamiltonian in the unequal mass case.

To obtain the solution, consider the equation

(y>—a?)e?=(x’—a?)e?, a>0. (82
This equation also has three solutions shown in Fig. 11: the
trivial solution y=x, the curve H-1-J-K-L denoted by
W(x;a), and the curve S-T-U denoted By(x;a). To our
knowledge, discussion of the function¥)(x;a) and
WI(x;a) have never appeared in the literature. We shall refer
to W as the generalized Lambert function since
lim,_ W(x;a)=W(—x€"). In general} is also complex
and multivalued, and whenr is real, the function has two
real branches shown in Fig. 11. The principal branch is ana-
Ilytic at x=0 and has a derivative singularity at

x=W Y —1(1+ 1+4a?) beyond which it becomes com-
plex. The other branch satisfies<—%(1+ y1+4a?) and

FIG. 10. Nonrelativistic (Newtonian and

relativistic trajectories forH,=3. The undis-
torted oval is the nonrelativistic trajectory.
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+2

FIG. 11. A plot of solutions to E¢(82). The
curve HIJKL is the generalized Lambert function.

joins smoothly onto the first branch. The full function is (rest-maspvalue of 1+m and compare this to Newtonian

double valued fora<x<W (—3(1+1+4a?). The

third solution(x;a) is a generalization ofW(x€*) in the
regionx<<0.

As in the equal mass case, the trivial solutdds S again
yields the unphysical Hamiltoniald = e(p; —p,). Since the
physical domain ofs is S=0, the only physical solution is

Y=W(S;D), (83

which leads to the Hamiltonian

_ Vpi+mi+pa+m;

€ _

5 +§(p1—p2)
LRy LI LA DTV I IR v v
~& F( 1t 2%@( 1—My)|. (84

The expansion i for this Hamiltonian is given by Eq62).

theory in Fig. 12. The trajectory is almost exactly the same
as Newtonian theory, since it is the equal mass case. For
larger m the separation between particles cannot get to be
very large and the trajectory becomes more compact as
shown in Fig. 13. The trajectories for smaller valuesmoére
shown in Fig. 14, where the innermost line is the=0.9
case and the outermost is the=0.1 case.

Finally in Fig. 15 the trajectories of different values of
m both large and small are compared.

VII. SOLUTION OF THE METRIC TENSOR

To determine the Hamiltonian and derive the canonical
equations of motion, we had only to solve the constraints
(12) and(13) of the system of the field equatioX&0)—(17).

In this section we shall solve the remaining equations to
determine the metric and to confirm directly the consistency
of Euler-Lagrange equatiori6) and(17) with the canonical

Choosing also the center of inertia frame with equations derived from the Hamiltonian, though formal

p;=—p,=p and settingm=m,/m;, we shall look at the
trajectories. First, take a value fbk, just above the minimal

proof of the consistency was already giver .
Under the coordinate conditior{24) the field equations

FIG. 12. Nonrelativistic (Newtonian and
relativistic trajectories forHy=2.01 in the un-

equal mass case with=1. The undistorted oval
is the nonrelativistic trajectory.
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FIG. 13. Nonrelativistic (Newtonian and
relativistic trajectories forHy=6.01 in the un-
equal mass case witm=5. The narrow oval in
the middle is the relativistic trajectory.

(10, (11), (14), and(15) become (—) region:
3 1 p2 N (ALZ 5L (x=2p) |1
: SK 2l T g2l S o Pa s y0 1=~ €Ay e — gL-(x=2) |-
7T+N0[ >t g (V) ; zm‘” Zo(x ))) 2
=—e(A¢2 - 1), (92)
1
+N; 7r’+§a: Pad(x—24(x%)) +ZNO\P’+N1W (0) region:
:0, 85 L1L2 L2 K
( ) Nl(o)ZeAL—g(M—leXF<2L0(X_Zl))
No+Ni=
#mNo+N; =0, (86) L, <L we Ll
L —M—zex -7 o(X—2,) to L X+ €Cy,
W= — 2N+ NP’ (89) where we chose the integration constantsNg.,, and
= ot N %

Ny_) to be (—€) ande, respectively. In general we obtain

arbitrary constant€, and C_ in the expressions for Eqs.

(91) and (92). However, a lengthy calculation reveals that

C.=%e€ and so for simplicity we shall se€, =—¢€ and

C_=¢€ from the outset. In derivingN; o) we used Eq(63).
The continuity condition ak=z,,

In the following we shall carry out our calculations as-
sumingz,<z,;—the case; <z, is completely analogous and
will not be presented. The solution to E®7) is

A¢>  (+) region

No=Ae 12¥=pp2={ AgZ (0)region (89 Na(1y(21) =Ny0)(21), (94)
Ad?  (—) region, leads to
whereA is an integration constant anl. and ¢, are given B Ly Ly(L—=My)  «Lil,
in Egs.(55), (56), and(57). Equation(86) becomes Co=—1+A M_l— LoM, ) Lo zy(, (99
Ni=—kAx' ¢°. (900 where Eq.(63) and the relatior_,+M ;=L are used. The

continuity condition ax=z,,
The solution in each region is

(+) region: Ny(—)(Z2)=Ny0)(Z2), (96)

similarly leads to

Ll K 2
N1(+)_5[AM_1eXF<ZL+(X_21))_1]—E(A¢+_1)' Com1-A Ly La(Li—Mp)  kLil,

— + = Zo1 . 9
©1 M, LM, 2L 2 ©F
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FIG. 14. Relativistic trajectories for several

5 values ofm, whereH,=2.
From the consistency of Eq€@5) and(97) the constanA is For (+) and (—) regions it is straightforward to show that
determined as the LHS of Eq.(85) vanishes, by substituting the explicit
solutions ofr=x',V'=—-4¢'/$,Ny, andN;. For the(0)
A Lo (98) region the solutions of the metric and the dilaton field are
Kr
- €
L1+L2 4 L1L2 ﬂ_:_ZLO, 7TI:0,
and . €. € . . . 1.
« == 7Lo=— 7(4X—ep1+epz) = 5Py,
M1—Mz— Z(Zl+ z3)L4L,
= ¢,
Co P ' %9 V=-4-2 No=Ad3,
L1+L2_ZL1L2 ¢0
KE€E
Now we are ready to check E@5). First we treat three No=2Adodyg, NizTLOAqSS.
regions(+), (0), and (=) separately, and next consider the
matching conditions at=z;,z,. The LHS of Eq.(85) becomes
2 mn=.5

FIG. 15. Relativistic trajectories for several
values ofm, whereHy=4.
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1. kA , 2A 1 , ,
LHS of Eq.(89)= 51+ 55 (Lodo)”— — (o) m=x'=— 7{Palx—za|" +palx—2o| "} — X,
1
1. « LoLqL, 7' == 5{P18(x—21) + P28(x— 25)},
:§p1+ 8 Kr ' .1 :
Li+Lo= 5Ll 7= 5{P1218(X=21) + P2228(x— 22)}

1. .
_Z{p1|x_21|'+P2|X_Zz|/}:
which vanishes due to E@64).
Consider next thed-function part atx=z,. Since we have

2

. 1. 1 P2 1
[ 5-function part of Eq(11) atx=2,]= Eplzlé(x—zl)— ENO(Zl)m S(x—z1)+ §N1(21)p15(X—21)
1 . ELOLl 1
= §p15(x_21) z;+

Kr 2 me
Li+lo— 5 Lily Vpi+my

which also vanishes due to the canonical equat&). Similarly, the 5-function part of Eq.(11) at x=z, is zero. We thus
conclude that Eq(85) is satisfied exactly.

As we investigated in the iterative meth@8l], for the consistency of Eq88) we need to introduce ar-independent
function f(t) into W:

T =—41n¢|+f(t) . (100

Since in the system of the original equatiqd§)—(17) all other equations except E(L4) contain only spatial derivatives of
V¥, f(t) does not contribute to either the Hamiltonian or to the equations of motion. Equ88pbecomes
¢ . ¢'
—4$+ f(t)+2mrNo+4EN1=0. (101

We must check this equation in the three regions separately,f\itithcommon to all regions.
For the(+) region, after substituting the solutions éf. ,7,Nq,y, andN; 4, Eq. (10D yields

f t—2.L1M1_L1'\./Il LG 102
+( )_ L]_M]_ 2 +(Zl 6)' ( )

This ensures thdt, is x independent. Using the canonical equatié®d), (65), (66), and(67) we get

K
: 2 P1 p2
Fo(t)= {Ll e+t Ly e =2 |} (103
" KT pi+mg Vp3+m3

Li+L,— TLle

For the () region the calculation is quite analogous to the above and leddgtp=f . (t). For the(0) region the calculation
is rather lengthy and complicated, especially flgy, which is expressed as

KI

o L0+ Ll n L2 n K€ 4 LOLlLZ n LO - E(Ml_Mz) ,
o=\ ", T2, 2, B p Pot [ XPo KT 0
L1+L2_ZL1L2 L1+ LZ_TL].LZ

K LO L2 1/2 K Ll 1/2 K
_t-o w2l | =2 s _ =t _z _
8 L, (LiL>) ( ( Ml) ZleXF{ 3 Lo(x Zl)) ( M2> ZzeXF< 3 Lo(x Zz)) ] .

Substitution of the expressions &k, ¢4, $o.m,No, andN, g into Eqg. (10J) in the (0) region leads to
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K
. . . =L,
: Lo L L2 ) Lil> 2 P1 P2
f t=4(——+—+— +2KeA = Lyl e+ ——=—=|+L,| e~ ——=—]|{, (104
e R T T T Lo r |t o Jokrme) [+ 108
L1+ L2_ ZLlLZ
|
which is equivalent to Eq(103. Hencef(t) is common in K
all regions _ —zLolilo
. . . p1: Kr ’ (113)
fo(t)=~f_(t)="fu(t) (109 Li+Lo——LqL,
4

and the solution is self-consistent.
Finally we shall directly check the Euler-Lagrange equa-which is identical to Eq(64). For particle 2, Eqs(106) and
tions (16) and (17) which under the coordinate conditions (107) also reproduce the canonical equati@@5) and (67).

(24) become Thus the consistency of the solution has been completely
proved.
: Pa B
Za™ No(Za) [pZ+m? TN1(22) =0, (106 VIIl. TEST-PARTICLE APPROXIMATION

As an interesting limiting case of E¢61) let us try to get
= N the Hamiltonian in the test-particl imati
P2+ m2— P.=0 . (107) e Hamiltonian in the test-particle approximation.
N Setting particle 1 to be a test partigleand particle 2 to
be a static source at the origin, namely,

N,
9z,

Pat

SinceNy andN; are continuous at=z,,z,, we have

z
Lo L, 1=z, my=p, Pp1=p, P1=P=P,
No(z1) =Ad% (21) = — ' ' ' T
Litly— L, -
S B 2,=0, my=m, p,=0, p,=0,
Lo L, the defining equatiof6l) for the Hamiltonian becomes
Nl(Zl)Ze . __1 . - -
L1+L2—KZrL1L2 M (Vp?+ u?=H)(m+€ep—H)=(Vp*+ u’~ ep)m
K -
Then for particle 1, say, Eq106) is Xexr{z(H—Gp)|Z|>- (114
- €loly 1 ExpandingH in a power series in/p?+u? and €p and
21—6_ (108)

Kr \/piJr mi taking only the linear terms we obtain
L1+ L2_ ZL]_LZ

Km z Km
H=m+ Jp?+u? exp —|z| |- il expg —lz| | -1
This is identical with the canonical equati¢s6). P F{ 4 | |) P 2] '{ 4 | l) }

On the other handiN,/dx anddN, /dx are discontinuous (115

atx=2,,2,. The natural definition 0bNo/9z, is for the Hamiltonian in the test-particle approximation. This

Ny 1 (N, N, Hamiltonian is expressed in terms of the metric tensor of the
7 =31 — (109  static source as
2 X x=2,+0 x=2,—0
H=m+yp?+ u? Ng(2)—pNi(2), (119
k L
— AL, +L,—My} (110  where
8 M,
. KM z KM
and similarly NozeXP(T|Z|), N,=e El eXF{T|Z|> _1}
My L[] Ny a1 (“7)
dzy 2| ox x=2,+0 x=2,-0 The canonical equations are
KE€ Ll : p
_Ke 1 z=——=Np—N (119
8 AMl(L++L0). (112 ,—p2+M2 o— N1

For particle 1, Eq(107) is and
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test particle

Newtonian

FIG. 16. Relativistic trajectory for a test par-

z ticle compared to the Newtonian case.
. ANy INg v
PZ—VPZﬁLMZE—DE:O- (119 p(0)= \/';Lﬁo, Ho=m+p(0)%+u? (122
—vZ
Equation(118) is inversely solved as From Eqgs.(116) and (122 p is given by
: 1
- '“(N1+_Z) _ (120 p= W{VD(0)2+MZN1
[NG—(Ny+2)%]" o1

+ 7. 2 N2_ND 2
We set the initial condition =NoVP(0)*+ 1* = (Ng— ND ). (123

We can draw a trajectory in phase space, an example of

z=0, z=v, att=0. (121)  which is shown in Fig. 16. The trajectory is ag&rshaped
due to relativistic gravitational effects.
Then the initial momenturp(0) and the total energh are From Egs.(120 and (123 we get

No[N;+Ngy1—(N5—N)(1—-vd)]

z= —Nj. (1249
VINZ=ND)2(1-08) +[N1+No1— (N3 N2)(1-v2)]?
|
Denoting the RHS a&(z), the solution is given by xm

G(2)=\Jve— 517 (126)

t—fz o2 (125 d

~JoG(2) an
KM

z=— —1t2+ut (127

To lowest order ink we obtain 8
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which is the Newtonian motion of a test body ir-1 dimen- 1
sions. Lo=— E{(?Ah‘”(?“hw—(9"h“ur9)\h”y—2(9ﬂh“”a”h)w
We shall add one comment on the form of the line ele-
ment. In our canonical reduction we chose the coordinate +29,h*79,hN}=2(3"h,,,— 3" ) 3" P+ 0" pd i
conditions(24), under which the line element of space-time L
° =32 (bt WD) (139

ds’=—(N2—N?)dt*+ 2N, dtdx+dx®. (128

for the free Lagrangian density following from E¢L34).

For the case of a single static source with andN, given ~ Redefining the dilaton field
by Eq.(117), we find the coordinate transformations

Y=y+h* — i (137
_ 2¢ Km A S B
t=t—¢|x|+ —In|2 ex T|X| -1, (129
km allows us to express Eq4136) as
~ 4 X KM _ 1 JIAZZNN A v LV g\
X=mm ex T|X| -1y, (130 LO__E{a)\h J hMV—(? h ,u,a)\h V_2(9Mh d*hy,
v N 12 _ v A M A
which leads to the line elemeft5] +29,0%79, 0"} = ("0, = 9,07,) (070" = 0#h%)
~ ~ 1
s TP 52 (G bat MEBD). (139
ds?=—a(X)dt?+ ——dx?, (131 2

a(X ~
) The field s decouples from the Lagrangian and we shall not
with consider it further.

The free Lagrangian density of the graviton is obtained by
Km simplifying the first two terms above
a(X)=1+ 7|§|. (132

1
Log= = 5{ah*"d"h,,,+ I*h¥,a\h", = 24,h""d,h*\}
In this coordinate frame the Hamiltonian for the test particle

IS 1
+d"h,,B*+ ZBMB“, (139

H(ZP)=Va(@Z)p?+a(Z)’p*+m. (133
where we added gauge fixing terms in the form of a
Lagrange multiplier field,, .

Eliminating B,, from its field equation leaves us with the
Lagrangian

IX. CORRESPONDENCE WITH NEWTONIAN GRAVITY
IN (d+1) DIMENSIONS

In this section we illustrate how a Newtonian limit generi- 1
cally arises in the (+1)-dimensional theory we consider. " _ _ ~ s huvsd\y 4 g n# 5 h" — 29 h“'g h
We compare this with the emergence of a Newtonian limitin % A e w20, 00,0}
(d+1) dimensions. We shall compute the Newtonian lim-
it(s) by considering the one graviton exchange potential
(keeping in mind that there are no propagating gravitons i
two spacetime dimensions

We begin by extending the theory in Ed) tod+1=n
dimensions and coupliny scalar fields, which yields Oh,,+7,,0 h, — 77/1.1/07)\5ph)\p_&,uauh}\)\—’_&,ua)\hv)\

—3"h,,d\h, (140

TWwhose canonical guantization we shall now undertake.
Temporarily setting the scalar fields to zero, we obtain

2 1 + 3,0, = (141
L=—5\=g| WR+ 5g"'V, ¥V, ¥ g
K for the graviton field equation. Its trace is

1
— _ nv 242 n-2
52 V=0(8" ba et midd), (139 At =2 5 (142

where k?=327G. Defining the graviton fielch,, and the implying that Eq.(141) becomes
dilaton field ¢ via
2
_ Ap _ N
9uv=Nuvthy,, Y=1+xki (139 B, nn’”a“%h P ud

gives +d,0M,\+3,0*,,=0. (143
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Taking theg” derivative of Eq.(143) leads to Nr™=Npvt D000 (151
Oo"h,,=0. (144

This, along with the D'Alembertians of Eqel42) and(143, 1€ proof of this relation is given in the Appendix.
respectively, lead to The solution to Eq(146) is

0%h,,—d,0,0n",=0 and O?h*,=0 (145
which finally implies _ —
yimp hw(x):—f A" 1z2D™(x—2) 33N ,,(2)
0°%h,,=0 (146

a relation characteristic of=3 Lagrangians. —j d" 12D (x—2) 5200 h,.(2)
The conjugate momentum is

Y= goh#V + pH¥(goh™, + dyhy) —f d”‘lzls(”)(x—z)a_éﬂzhw(z), (152

1
4 77,u.0 Eﬁ”h}‘)\—&)\h’”‘ 4 771)0

1
Eaﬁh”x—ath),

whereD®™, D™ andD™ are defined via

(147
which implies .
i _
L Dx) =~ oy | dkelko)o(k)ER,
&ohoozi 70+ Eaihm ,
1,1 1 1 ~ i .
ﬁOhOi:_Eﬂ- +Zaih00—zaihjj+§ajhij ) (148) D(n)(X):_—(Zﬂ_)n,lJ’ dnkE(kO)ér(kz)elkx,
&ohij:’ﬂlj_#’ﬁkk‘f' ﬁ&khOK . N | .
D(n)(x): _ WJ dnké(ko) g/(kZ)elkX,
The equal-time commutation relations are (2m)
i B —
[hW(X),WXP(Y)]eq=§(5Z5ﬁ+ 8,8,) 6" V(x~y), and the symbob? denotes

[h,uv(x) rh)\p(y)]eq: [7#7(X), 71')\p(y)]eq: 0, (149

implying that the commutators betweér), and dgh,, be- fc?_ozg:f

ag of
0
come z

P a0

i1
[h V'a hKO’] ) _( K VO'+ o VK)

oo 2|2 ne? We next need to express all df,,, doh,,, Tdgh,,,
R S 0O%h,,, and O%jsh,, in terms of the canonical variables
+ 5( Nk MvoT MuoMox) — 0 77”,,7;,“,] and calculate commutators at equal time. This rather lengthy

and complicated calculation is given in the Appendix.
x S D(x—y), (150 From Eq.(152) and the equal-time commutators, the com-
mutator among the components bf,, at two arbitrary

where space-time points can be calculated:

i 2 i
[h,uv(x)vh)\p(y)]: E 77,u)\ 7]Vp+ 7’;14)7)1/)\_ ﬁ nﬂvﬂ)\p) D(n)(X_Y) + Z - n,u,)\avap_ nupavﬁ)\_ nvkaﬂap_ 77fo7,u5)\
4 ~n i 2 2 )
+ ﬁ( 77,u1/‘9)\ap+ nhp‘?/ﬂ?v) D™ (x—y)+ E 1- ﬁ &Mav&)\apD (X_Y) . (153)

This expression is valid even wher=2. The graviton propagator is
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(O[TLh,,(x)hy,(y)]|0)= - f d"ke ) Yo (159
i TN 2(2 )" KZ—ie’
where
2 1 4
XMV )\p T un nvp+ 7],up77v)\ nuvn)\p+ W - n,u)\kvkp nﬂpkvk)\_ 7]V)\kp,kp 77Vpk,u,k)\+ ﬁ( ﬂMVk)\kp+ 7])\pk,uky)
2\ K, K kK,
{135 (159

We turn now to the scalar fields, whose Lagrangian density to lowest order in the graviton coupling is

11 -
Lin== 51 57" (¢ o+ M*¢*) =+ h,, . (156
The one graviton exchange diagram yields 8matrix element

47iG

= (ZWT_nz(p‘fpgng

g)—llz p5<n)( 1T P2—0d1—0z),

1
a5 =5 7" (P Az mz)

KV 1 v 2 A
plQl_Eﬂ“ (p1-di+m3)|| p2

wherep4, g4, andk* are the four-momenta of the initial By identifying the gravitational constants as
particles, the final particles, and the transferred graviton, re-
spectively. This result is valid fon=2 also. In the lowest

. o : . 4 3
order and the static approximatidiamatrix element is Gno=G,, Gns= §G3, Gna= 5(34, (164
1 G, mm, . L . .
To=—4|1—— oz )@ (157  we get the correct Newtonian potentials in each dimension.
n/(2m) The above results are in strong contrast with

(d+1)-dimensional general relativity, whose free Lagrang-

whose associated potentiaNis= fd"ke **T(k) in n dimen- | ki
ian density is

sions.
The T-matrix elements fon=2, 3, and 4 are 1

2G,m;m, Log=— E{ﬂxh””&”hw— a*h* a\h”,—20,h#"3*h,,

To=— Kz (158
+29,h#*"9,h" }+| 9"h —Ea h* B“+EB B~
T_8G3m1m2 159 # Vi PR 4 H~"
3™ (277) k2 ’ ( )
where gauge fixing terms have been added. A computation

3G, mm, analogous to the one above gives

Ts4= T2 K (160
i . .
and the corresponding potentials are (0|Th,,(x)hy,(y)[0)=— mf d'k ek Y)E;__ig,
V2=27TG2m1m2I’, (161)
where
4
V3=2(§Gg>m1mzlnr, (162 2
X,uv,)\pz /NN 7]Vp+ NupTox— m NuvMp -

3 Gymim,
Vy=— 5 ———. (163 . . . .

2 r The S-matrix element of one graviton exchange diagram is

A7iG, v 1 1 op
(2 ) z(Plpz%%) pra;— 277 Y(py- Gy +m?) szz_Eﬂ (P2- Gp+m3)

X,uvvaﬁ
k2

S (p1+pPa—d1—0y),
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which in turn yields theT-matrix element

4G, n—-3 mm,
(2m)"?n-2 K°

T:

in the static appoximation in dimensions.

The potential fom=4 is

G,mm,
r

VA =—

in agreement with Eq(163. However the potential for
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APPENDIX: COMMUTATION RELATIONS

We use the notation

(169 — —
Npuv= n,u,v+ 7107700 a,u: ‘9;/,+ 77,u0‘90 '
The general form of the equal time commutation relations is
[hMV(X)IW)\p(y)]eq: hﬂv(x),aohﬂV_f_ ﬂﬂv(aohx)\—’— akh)\o)
(166

+ 77'“0

1
E&Vh)\)\_a)\h]))\)

n=3 vanishes, and the potential for=2 diverges. This lat-

ter situation can be dealt with by settirig,=(1—n/2)G,
and taking then—2 limit [13], which yields the two-

dimensionalT-matix element

2G,mim,
——

and potential

V(z) = 2’7TG2mlm2r .

Unlike general relativity, three-dimensional dilaton grav-

1
+ 77V0 E(?’“’h)\}\—(?)\h’u')‘)

€q

i
:5(5;55+57;5§)5<“*1>(x—y) (A1)

(167)
from which we shall now deduce various commutators of
interest.
(168 Taking the trace of EqA1) implies the relations
[h,uv 1n50haa_ (n_ 2)07ahoa]eq: I 77,”5(“71)()(_)/),

ity includes the Newtonian potential in any dimension, once 2

the gravitational constant is appropriately rescaled. In this [hw,aoh“a—&aho“]eqzﬁ[hw,(7Ohoo]eq
sense the theory of gravitfl) we consider is a relativistic

extension of Newtonian gravity id+ 1 dimensions. General

i
relativity, on the other hand, does not include Newtonian te 7,,0" V(x=-y), (A2)
gravity in 2+1 dimensions and is empty in+11 dimen-
sions. In the latter case an appropriate rescaling of Newton’s 2-n i
constant yields the theor§l) in the n—2 limit [13]. [y 190h®eJeq= [y doNooleqt ﬁmﬁ(n_l)(X—Y),

X. CONCLUSIONS

We have obtained an exact self-consistent solution to the
two-body problem in a (* 1)-dimensional theory of gravity
with a Newtonian limit. To our knowledge, this is the only

from which it follows that

hMV ’&OhKO'_i_

2
[ o™ 77K07lao) dohoo— 7.0d0ho,

exact relativistic two-body solution of this type. We are able

to explore all possible limits of this solution, including large - %oﬁohok}
and small gravitational coupling and/or mass and/or mo-

menta.

€q

i 2
A natural extension of what we have done would be to =§( Nk Moot Mo Mox™ ﬁ”w’l:«r) "D (x—y).

attempt to solve théN body problem. It would also be of
interest to couple other matter fields.g., electromagne- (A3)

tism), and to investigate the extent to which our methods ar
applicable to other dilaton theories of gravity.

She (x,0)=(0,0) component gives

Finally, and what is perhaps most interesting, is to quan- i
tize the degrees of freedom of the two-body system we corthy., ,dohosleq=7 (70700 + Nuo0) 0" V(X=y), (A4
sider based on the Hamiltonian given in E§1). The quan-
tum theory based on E¢61) is a quantum theory of gravity which yields in turn the commutation relation

coupled to matter whose slow-motion weak field limits
should be straightforwardly comparable to that of the nonrel-
ativistic mechanics of two particles in a linear confining po-

i1
[h,uv idohkrr]quE{ E( 77/u<77v0'+ 77,u(r77w<)

tential. As such it should offer interesting insights into the

behavior of quantum gravity.
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Odoh,,, O%h,,, and O%h,, in terms of h,, and
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doh,, (or equivalently the canonical variabjeghe compo-  and
nents of the first-order field equatiof41) give 1 1
&Sh()o:i&i&jhij + Ahoo_ EAhii y

1 1
DhOOZEAhii_ E&iﬁjhij '

1 1 1

1 1 1 1 3gh0i:_§‘9iaohjj+Eajaohij+(9iajh01+§Ah0ia
DhOiZE&iﬁohjj_Eajaohij_zaiajhoj'f'EAhOi, A
A 3Shij=ﬁ5ijf9kf90h0k—3if90hjo_l9jc70hio
Dhij:_ﬁ6ijak(90h0k+ai(gohj0+(9ja0hi0 1
1 - ﬁ5ij(3aka|hk|+2Ahoo_Ahkk)‘i‘aiﬁjhoo
+ =6 (3 I h+2Ahgg— Ah

n % (3% 0o k) — 39Nt didkhj+ d;okhy + Ahy; . (A7)
—ﬁiﬁjh00+ 5iajhkk_ &i&khjk—&jakhik, (AG) From EQS(AB) and (A?) we get

1 1
|jl?ohoo:EAaohii 5019 dohij »

O 00h0i = AﬁohOi +

4 2
1_ﬁ 0')|ajaoh0]+ ﬁ_l Aaihoo+

1

3

1 1 1
D(?Ohij :ﬁ 5”' (A(?Ohkk'f‘ (9k(9|070hk| +2A ﬁOhOO_ AN akhOK) - (9i (9J‘ ﬁohoo_ E(}]i akaohjk_ _&j ﬁkﬁohik

2
1 1
+did; okt 5 Adihoj+ 5 Adjhg (A8)
whereas Eq(145 implies
2 2 2 1 2 3
I:‘ hoo= 1_ﬁ _ZA(?i[?OhOi+A hOO_EA h“+§A(})|&Jh” ’
) 2 1 1
D hOi: 1_ﬁ ﬁi Aﬁohoo‘l‘ EAﬁoh“_ZA(ylhOJ‘l‘Eﬁlakaohjk ’
) 2 1 3
O hlj =|1- ﬁ (9|(91 - 2(7k(70h0k+ Ahoo— EAhkk+ E(?k(?|hk| y (Ag)
and
2 2 2 1 2 1 2
O 50h00: 1—- ﬁ A 0"0h00+ EA aOhii + E&,&] aohij - ZA &ihOi y
2 2 2 1 2 3
D ‘90h0i: l_ﬁ &i —ZA&]50h0]+A hOO_EA h”‘i‘zA&Jﬁkh]k )
) 2 1 1
D 0Ohij = 1_ ﬁ (9|&J Aé’ohoo+ EAaohkk"_ Eak&| &0hk|_ ZA é’khOk . (AlO)

To calculate the commutatéh,,,(x),h,,(y)] at two arbitrary space-time points, we first exprags(y) as

h)\p(y):_f dnilZD(n)(y_Z)a_éh)\p(z)_f dnilZB(n)(y_z)&_éDh)\p(z)_J'dnilzs(n)(y_z)&_émzh)\p(z)v (All)
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[hu(X),hp(Y) = — J d" 22D (y~2)[N,,,(X), 9N (2) Jeq 3D (Y= 2)[1,1,(X), 1 ,(2) Jeq T DM (y ~2)

X[0,,,(%),900hy ,(2)Teq— 30D ™ (y—2)[,,,(x),Thy  Jeqt Dy —2)[N,,,(X), 3601%h, ,(2) ]eq
— 30D ™ (y=2)[h,,, 02, ,(2)]eq: (A12)

We shall refer to the six terms on the RHS as term 1, teyrm 2, term 6, respectively. From the commutat@b0), terms 1
and 2 are

[ N
<term D: Z[ 77,u.h 771/p+ 77/.LP77V)\+ 77,u.)\ 771/p+ 77p.p771/)\_ ﬁ 77;/.1/77)\p} D(n)(X_y), < term 320 (A13)

For terms 3 and 4 we shall calculate the equal-time commutflgrgx),dol1h, ,leq and[h,,,(x),00h, ,(2) Jeq by using the
expressiongA6) and (A8). Putting terms 3 and 4 together gives

i _ _ _ _ 4 _
<term 3+ term ‘9: Z[ - 7];/,)\‘91/(9;)_ nupava)\_ 771/}\(9,11,(9;)_ nvpa,u(?)\+ ﬁ( nuva)\ap_*— 7]}\‘0(9/4(91/) - 277,11,0 nvoa)\ﬁp_ 277)\077;)0(9/4(91/

4 S
- ( 1- H) ( e 7])\0(91/‘9/3_’_ 7],11,077/30(91/’9)\+ 771/077)\0‘9;/,‘9;)—"_ 7]1/07];)0‘9,(1,‘9)\)] D(n)(X_Y)

4

i — _ _ _ _ _
ﬁ( 710 7]V07])\p+ 77)\077/3077#1/) - ( 7]M07])\077Vp+ w0 p0 v + 77V07])\077,u,p+ 70 77p077;L)\)

"2

xDM(x—y), (A14)
where we used the relation
- o
ADMW=gD™+DM.

Similarly by calculating the equal-time commutatdts,,, ,do012hy,]eq and [h,,(x),02h, ,(2)]eq [Making use of the
expressiongA9) and (A10)], we have

i 2 ~ i 2
<term Stterm @ = E( 1- ﬁ) aﬂ(gvﬁ)\apD(n)(X_y) + E 1- ﬁ){ﬂﬂomoﬁvap‘F 77/1077,00(91)(9)\_‘— 7]1/077}\0(9;1,(9;)_‘— 7v0 77p0(9,u,(9}\
+ 7,017,000 p T M 0709 w0 2( 17,070 M09, T 7,407,009\ T 17,0700 70909F M0 0070907 )

~ i
+49,07,0 07,008 DM (X—y) + 5

2
1- ﬁ) 7,07,0M07,0D ™ (X—Y), (A15)
where we used
ABO = 250 4 FO

Summing up all the terms we get

i 2 i
[h,u,v(x)lh)\p(y)]z E 77,u)\ 7]Vp+ 77;/4)7]1/)\_ ﬁ Wﬂvﬂxp) D(n)(x_y) + Z - ﬂukavap_ 7],1;;)(91/(9)\_ 7]1})\(9;/,5,0_ ﬂvpa,ua)\

4 - i 2 -
+ ﬁ( Npvdndp+ mpaﬂav)} DM(x—y)+ 5( 1- ﬁ> 9,9,3,3,D™M(x=y). (A16)
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