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We calculate to post3.5-Newtonian order of approximation of general relativity the radiation-reaction part of
the ADM Hamiltonian for a many-body system of nonspinning point masses. The Hamiltonian is applied to the
derivation of the gravitational energy loss of a gravitationally bound two-body system in quasielliptic motion.
Agreement with the known result for the time-averaged energy loss is obtained to order (v/c)7.
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I. INTRODUCTION AND SUMMARY

The calculation of the dynamical evolution of two-body
systems in general relativity is a major challenge in the the-
oretical investigation of the motion of compact astrophysical
binaries. Twenty years of observations of the Hulse-Taylor
binary pulsar PSR 1913116 yielded measurements of the
conservative part of the dynamics as precise as to reach lev-
els two orders of magnitude@O„(v/c)4…# beyond Newtonian
theory, and the leading radiation-reaction part@O„(v/c)5…#,
the quadrupole gravitational radiation damping, was found to
be in agreement with general relativity with a precision of
0.35% @1#. On the other hand, future gravitational-wave as-
tronomy will need theoretical knowledge of the motion of
binary systems to even higher post-Newtonian orders@2#.

Recently, Iyer and Will@3# derived the equations of mo-
tion for nonspinning pointlike binaries at the dissipative
post3.5-Newtonian ~3.5PN! order, i.e., one post-Newtonian
order beyond the leading order in the damping, using a pos-
tulated balance between an instantaneous flux of energy and
angular momentum in the far zone and an instantaneous loss
of energy and angular momentum in the system’s near zone.
In a more recent paper Iyer and Will@4# improved their
derivation of the radiation-reaction force by the two-body
specification and evaluation of Blanchet’s radiation-reaction
potentials obtained by the method of asymptotic matching
@5# and confirmed their previously postulated balance be-
tween instantaneous loss and instantaneous flux expressions.

In this paper we are interested in the dynamics of
n-body point-mass systems. The tool we use is the Arnowitt-
Deser-Misner ~ADM ! Hamiltonian formalism of general
relativity @6#. This formalism has been proved very efficient
in the calculation of the approximate general relativistic dy-
namics to post2.5-Newtonian order@7,8#. The advantage of
the ADM formalism, as of any other Hamiltonian formalism,
is the absence of asymptotic matching by which the near
field, given in a near-zone-defined coordinate system, is in-
terrelated with the far field, given in a far-zone-defined co-

ordinate system. In our calculations only one coordinate sys-
tem is employed, which is defined globally.

In the ADM formalism, there are no natural balance rela-
tions between instantaneous losses and instantaneous fluxes,
even if one assumes quasistationarity in the radiation emis-
sion ~see, e.g.,@9#!. Instantaneous balance between losses
and fluxes can be achieved byad hocconstructions of ap-
propriate expressions only. By choosing total time deriva-
tives judiciously, the expressions for instantaneous losses
and fluxes can gain the property of being invariant against
~infinitesimal! coordinate transformations in, respectively,
the near and far zones@4#.

In the present paper, then-body ADM Hamiltonian is
calculated fully explicitly at the dissipative 3.5PN order. We
apply this Hamiltonian to the derivation of the energy loss of
a two-body system on quasielliptic orbits. The expression
obtained for the energy loss is different from the expression
used and derived by Iyer and Will in their papers; only the
time-averaged expressions coincide.

We use units in which 16pG5c51, whereG is the
Newtonian gravitational constant andc is the velocity of
light. We employ the following notation: x5(xi) denotes a
point in the three-dimensional Euclidean spaceR3 endowed
with a standard Euclidean metric and a scalar product~de-
noted by a dot!. Lettersa,b,... areparticles labels, and so
xaPR3 denotes the position of theath particle. We also de-
fine ra :5x2xa , r a :5urau, na :5ra /r a ; and for aÞb,
rab :5xa2xb , r ab :5urabu, nab :5rab /r ab ; u•u stands here
for the length of a vector. The momentum vector of theath
particle is denoted bypa5(pai), andma denotes its mass
parameter. Indices with round brackets, like inA(4)i j , give
the order of the object in inverse powers of the velocity of
light, in this case, 1/c4. We abbreviated(x2xa) to da . An
overdot, like inẋa , means the total time derivative. The par-
tial differentiation with respect toxi is denoted by] i or by a
comma, i.e.,] if[f ,i .

II. 3.5PN FIELD EQUATIONS

In the ADM formulation of general relativity, the full in-
formation about the motion of isolated bodies and the emit-
ted gravitational radiation results from the reduced Hamil-
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tonianH, which is a functional of the independent degrees of
freedom of the system@6#. The reduced Hamiltonian itself
results from the solution of the four constraint equations of
the Einstein theory. Four metric functions are fixed by im-
posing four coordinate conditions. In this paper we choose
the generalized isotropic coordinate conditions often used in
applications of the ADM formalism@7,8,10#.

For a system ofn pointlike bodies with position vectors
xa and momentapa (a51,...,n), the Hamiltonian reads

H5H@xa ,pa ,hi j
TT ,p i j TT#, ~1!

wherehi j
TT denotes the independent part of the gravitational

field which is transverse and traceless in the flat-space metric
d i j , andp i j TT is the canonical conjugate tohi j

TT . In terms of

hi j
TT , the metric gi j of the spacelike hypersurfacex05t

5const takes the formgi j5(11 1
8f)

4d i j1hi j
TT . The equa-

tions of motion for the bodies read

ṗa52
]H

]xa
, ẋa5

]H

]pa
, ~2!

and the field equations for the independent degrees of free-
dom take the form

]

]t
p i j TT52dkl

TTi j dH

dhkl
TT ,

]

]t
hi j
TT5d i j

TTkl dH

dpklTT , ~3!

where (d•••)/(d•••) denotes the Fre´chet derivative and
where the TT-projection operator is defined by@see, e.g., Eq.
~2.17! of @8#; D21 is the inverse Laplacian in flat space#

d i j
TTkl :5 1

2 @~d i l2D21] i] l !~d jk2D21] j]k!1~d ik2D21] i]k!

3~d j l2D21] j] l !2~dkl2D21]k] l !

3~d i j2D21] i] j !#. ~4!

The HamiltonianH can be uniquely decomposed into a
matter partHmat, which depends only on the matter vari-
ables, a field partHfield, which depends only on the field
variables, and an interaction partH int, which depends on
both sets of variables, matter and field, and which vanishes if
one of the two sets is put equal to zero. Thus the full content
of the field-plus-matter dynamics up to the 3.5PN approxi-
mation is included in the Hamiltonian

H<3.5PN5H<3.5PN
mat 1H<3.5PN

field 1H<3.5PN
int . ~5!

In what follows we shall only need the field and interaction
parts of the Hamiltonian~5!. They can, up to 3.5PN order, be
written as@11#

H<3.5PN
field 5E d3xF14 ~hi j ,k

TT !21~p i j TT!2G , ~6!

H<3.5PN
int 5E d3xFhi jTTS 12 A~4!i j1B~6!i j D2

1

8
~hi j

TT!2(
a

mada

2
1

4
f~2!~hi j ,k

TT !22f~2!p̃~3!
i j p i j TTG , ~7!

where we used the definitions

A~4!i j :52(
a

paipa j
ma

da2
1

4
f~2!,if~2!, j , ~8!

B~6!i j :5
1

4 (
a

pa
2paipa j
ma
3 da1

5

8
f~2!(

a

paipa j
ma

da1S 1

16p Df~2!,i j(
a

pa
2

mar a
1S 1

16p D p̃~3!
i j (

a
pakS 1r aD ,k

1
1

2 S 1

16p D p̃~3!,k
i j S 8(

a
pak

1

r a
2(

a
palr a,klD 14S 1

16p D p̃~3!
jk (

a
FpakS 1r aD ,i2paiS 1r aD ,kG

2
3

4 S 1

16p D 2f~2!,i j(
a

(
bÞa

mamb

r abr a
1

5

64
f~2!f~2!,if~2!, j . ~9!

The functionsf (2) and p̃ (3)
i j , entering Eqs.~8! and ~9!, are

equal to

f~2!5
1

4p (
a

ma

r a
, ~10!

p̃~3!
i j 5

1

16p (
a

pakH 2d i j S 1r aD ,k12Fd ikS 1r aD , j1d jkS 1r aD ,i G
2
1

2
r a,i jkJ . ~11!

The field equations for the field variableshi j
TT andp i j TT,

valid up to 3.5PN order, are obtained by varying the Hamil-
tonian ~5! according to Eqs.~3!. Combining Eqs.~3! and
taking Eqs.~5!–~9! into account, one obtains

hhi j
TT5d i j

TTklFA~4!kl12B~6!kl2
1

2
hkl
TT(

a
mada

1~hkl,m
TT f~2!! ,m1

d

dt
~f~2!p̃~3!

kl !G , ~12!
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p i j TT5
1

2 F ddt hi jTT1dkl
TTi j ~f~2!p̃~3!

kl !G , ~13!

whereh is the d’Alembertian in flat space. The expressions
for h(4)i j

TT , h(5)i j
TT , h(6)i j

TT , andh(7)i j
TT can be extracted from Eq.

~12! by the aid of the near-zone expansion of the retarded
solution. We only need those forh(4)i j

TT , h(5)i j
TT , andh(7)i j

TT .
They read

h~4!i j
TT 5D21d i j

TTklA~4!kl , ~14!

h~5!i j
TT 5h ret

21d i j
TTklA~4!kl2h~4!i j

TT 1OS 1c6D , ~15!

h~7!i j
TT 5h ret

21d i j
TTklFA~4!kl12B~6!kl2

1

2
~h~4!kl

TT

1h~5!kl
TT !(

a
mada1~h~4!kl,m

TT f~2!! ,m

1
d

dt
~f~2!p̃~3!

kl !G2@h~4!i j
TT 1h~5!i j

TT 1h~6!i j
TT #1OS 1c8D ,

~16!

where h ret
21 is the retarded inverse d’Alembertian in flat

space. The radiative 2.5PN and 3.5PN Hamiltonians can be
calculated from Eq.~7!. Taking into account the relation

p~6!
i j TT5

1

2 S ddt h~5!i j
TT D , ~17!

which follows from Eq.~13!, one gets

H2.5PN
int 5

1

2 E d3x h~5!i j
TT A~4!i j , ~18!

H3.5PN
int 5E d3xF12 h~7!i j

TT A~4!i j

1h~5!i j
TT SB~6!i j2

1

4
h~4!i j
TT (

a
madaD

2
1

2 S ddt h~5!i j
TT Df~2!p̃~3!

i j G . ~19!

III. DERIVATION OF h
„7… i j
TT

The explicit solutions of Eqs.~14! and ~15! are well
known. We cite them here for the convenience of the reader
as well as for the future reference. The solution of Eq.~14!
reads~heresab :5r a1r b1r ab!

h~4!i j
TT ~x,xa ,pa!5

1

4 S 1

16p D(
a

1

mar a
$@pa

225~na•pa!
2#d i j12paipa j1@3~na•pa!

225pa
2#na

i na
j 16~na•pa!~na

i pa j1na
j pai!%

1
1

8 S 1

16p D 2(
a

(
bÞa

mambH 2
32

sab
S 1

r ab
1

1

sab
Dnabi nabj 12S r a1r b

r ab
3 1

12

sab
2 Dnai nbj

116S 2

sab
2 2

1

r ab
2 D ~na

i nab
j 1na

j nab
i !1F 5

r abr a
2

r a
r ab
3 S r ar b 13D2

8

sab
S 1r a 1

1

sab
D Gnai naj

1F5 r a
r ab
3 S r ar b21D2

17

r abr a
1

4

r ar b
1

8

sab
S 1r a 1

4

r ab
D Gd i j J . ~20!

The solution to Eq.~15! can be written as

h~5!i j
TT ~ t !5

d

dt
x~4!i j „xa~ t !,pa~ t !…, ~21!

where

x~4!i j ~xa ,pa!:5
1

60p F(
a

2

ma
~pa

2d i j23paipa j!1
1

16p (
a

(
bÞa

mamb

r ab
~3nab

i nab
j 2d i j !G . ~22!

The explicit solution of Eq.~16! we decompose into several parts

h~7!i j
TT ~x,t !5P1i j ~ t !1P2i j ~ t !1P3i j ~ t !1Qi j ~x,t !1Ri j ~x,t !, ~23!

where the following definitions were used:

P1i j ~ t !:5
1

2p

d

dt
d i j
TTklF E d3x8 B~6!kl~x8,t !G , ~24!
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P2i j ~ t !:52
1

8p

d

dt
d i j
TTklF E d3x8 h~4!kl

TT ~x8,t !(
a

mad„x82xa~ t !…G , ~25!

P3i j ~ t !:5
1

4p

d2

dt2
d i j
TTklF E d3x8 f~2!~x8,t !p̃~3!

kl ~x8,t !G , ~26!

Qi j ~x,t !:5
1

8p
d i j
TTklFh~5!kl

TT ~ t !E d3x8ux2x8u21(
a

mad„x82xa~ t !…G , ~27!

Ri j ~x,t !:5
1

24p
d i j
TTklF E d3x8ux2x8u2

]3

]t3
A~4!kl~x8,t !G . ~28!

To compute the integrals which enter Eqs.~24!–~28!, we apply the techniques described in Appendixes A–C. After long
calculations we obtain~heresabc :5r ab1r bc1r ca!

P1i j ~ t !5
d

dt
P1i j „xa~ t !,pa~ t !…, ~29!

P1i j ~xa ,pa!:5
4

15 S 1

16p D(
a

pa
2

ma
3 ~2pa

2d i j13paipa j!1
8

5 S 1

16p D 2(
a

(
bÞa

mb

mar ab
~22pa

2d i j15paipa j1pa
2nab

i nab
j !

1
1

5 S 1

16p D 2(
a

(
bÞa

1

r ab
$@19~pa•pb!23~nab•pa!~nab•pb!#d i j242paipb j

23@5~pa•pb!1~nab•pa!~nab•pb!#nab
i nab

j 16~nab•pb!~nab
i pa j1nab

j pai!%

1
41

15 S 1

16p D 3(
a

(
bÞa

ma
2mb

r ab
2 ~d i j23nab

i nab
j !1

1

45 S 1

16p D 3(
a

(
bÞa

(
cÞa,b

mambmcH 18

r abr ca
~d i j23nab

i nab
j !

2
180

sabc
F S 1

r ab
1

1

sabc
Dnabi nabj 1

1

sabc
nab
i nbc

j G1
10

sabc
F4S 1

r ab
1

1

r bc
1

1

r ca
D2

r ab
2 1r bc

2 1r ca
2

r abr bcr ca
Gd i j J , ~30!

P2i j ~ t !5
d

dt
P2i j „xa~ t !,pa~ t !…, ~31!

P2i j ~xa ,pa!:5
1

5 S 1

16p D 2(
a

(
bÞa

mb

mar ab
$@5~nab•pa!

22pa
2#d i j22paipa j1@5pa

223~nab•pa!
2#nab

i nab
j 26~nab•pa!

3~nab
i pa j1nab

j pai!%1
6

5 S 1

16p D 3(
a

(
bÞa

ma
2mb

r ab
2 ~3nab

i nab
j 2d i j !1

1

10 S 1

16p D 3(
a

(
bÞa

(
cÞa,b

mambmc

3H F5 r car ab
3 S 12

r ca
r bc

D1
13

r abr ca
2

40

r absabc
Gd i j1F3 r abr ca

3 1
r bc
2

r abr ca
3 2

5

r abr ca
1

40

sabc
S 1

r ab
1

1

sabc
D Gnabi nabj

1F2 ~r ab1r ca!

r bc
3 216S 1

r ab
2 1

1

r ca
2 D 1

88

sabc
2 Gnabi ncaj J , ~32!

P3i j ~ t !5
d2

dt2
P3i j „xa~ t !,pa~ t !…, ~33!

P3i j ~xa ,pa!:5
1

5 S 1

16p D 2(
a

(
bÞa

mb@25~nab•pa!d i j1~nab•pa!nab
i nab

j 17~nab
i pa j1nab

j pai!#, ~34!

Qi j ~x,t !5
1

8 S 1

16p D(
a

ma

r a
@2h~5!i j

TT 16~na
i na

kh~5! jk
TT 1na

j na
kh~5!ik

TT !25d i j na
kna

I h~5!kl
TT 13na

i na
j na

kna
l h~5!kl

TT #, ~35!
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Ri j ~x,t !5
]3

]t3 H 4

105 S 1

16p D(
a

r a
2

ma
$@5pa

224~na•pa!
2#d i j211paipa j24pa

2na
i na

j 16~na•pa!~na
i pa j1na

j pai!%

1
2

105 S 1

16p D 2(
a

(
bÞa

mambF S 2 r a
4

r ab
3 22

r a
2r b

2

r ab
3 25

r a
2

r ab
D d i j14

r a
2

r ab
na
i na

j 117S r a2r ab1r abDnabi nabj
1S 6 r a

3

r ab
2 117r aD ~na

i nab
j 1na

j nab
i !G J . ~36!

IV. 2.5PN AND 3.5PN INTERACTION HAMILTONIANS

The symmetric and trace-free~STF! part of a tensorTi j is defined as

Ti j
STF:5 1

2 ~Ti j1Tji !2 1
3d i j Tkk . ~37!

If the tensorTi j does not depend on the space variablesx ~i.e., it is a function of timet only!, then from Eq.~C3! of Appendix
C, with a50, and Eq.~37! one immediately gets

d i j
TTklTkl~ t !5 2

5Ti j
STF~ t !. ~38!

To compute the 2.5PN interaction Hamiltonian~18!, we must perform the integration

E d3x A~4!i j52(
a

paipa j
ma

1
1

2 S 1

16p D(
a

(
bÞa

mamb

r ab
~nab

i nab
j 2d i j !. ~39!

Comparing Eq.~39! with Eq. ~22!, one can get

E d3x A~4!i j
STF 510px~4!i j , ~40!

which enables us to write the Hamiltonian~18! in the known form@8,12#

H2.5PN
int ~xa ,pa ,t !55pẋ~4!i j ~ t !x~4!i j ~xa ,pa!. ~41!

Integrations involved in the 3.5PN Hamiltonian~19! are much more demanding. We start with the observation that the
following integrals can be calculated immediately by means of Eq.~38! together with Eqs.~24!, ~26! and Eqs.~29!, ~33!:

E d3x h~5!i j
TT B~6!i j5ẋ~4!i j ~ t !E d3x B~6!i j

STF 55pP1i j ~xa ,pa!ẋ~4!i j ~ t !, ~42!

E d3xS ddt h~5!i j
TT Df~2!p̃~3!

i j 5ẍ~4!i j ~ t !E d3x f~2!p̃~3!
i j 510pP3i j ~xa ,pa!ẍ~4!i j ~ t !. ~43!

The integral overh(4)i j
TT (amada can also be easily calculated by means of Eq.~20!. To do it one must remember that at this

stage it is necessary to distinguish the particle positions and momenta inside and outside the TT variables. The result is

E d3x h~4!i j
TT ~ t !(

a
mad~x2xa!5220pP̃2i j ~xa ,t !, ~44!

where~heresaa8b8 :5r aa81r ab81r a8b8 and primes denote quantities entering TT variables!
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P̃2i j ~xa ,t !:5
1

5 S 1

16p D 2(
a

(
a8

ma

ma8r aa8
$@5~naa8•pa8!

22pa8
2

#d i j22pa8 i pa8 j1@5pa8
2

23~naa8•pa8!
2#naa8

i naa8
j

26~naa8•pa8!

3~naa8
i pa8 j1naa8

j pa8 i !%1
1

10 S 1

16p D 3(
a

(
a8

(
b8Þa8

mama8mb8 H 32

saa8b8
S 1

r a8b8
1

1

saa8b8
Dna8b8i na8b8

j
116S 1

r a8b8
2

2
2

saa8b8
2 D ~naa8

i na8b8
j

1naa8
j na8b8

i
!22S r aa81r ab8

r a8b8
3 1

12

saa8b8
2 D naa8i nab8

j
1F r aa8r a8b8

3 S r aa8r ab8
13D2

5

r a8b8r aa8

1
8

saa8b8
S 1

r aa8
1

1

saa8b8
D Gnaa8i naa8

j
1F5 r aa8

r a8b8
3 S 12

r aa8
r ab8

D1
17

r a8b8r aa8
2

4

r aa8r ab8
2

8

saa8b8
S 1

r aa8
1

4

r a8b8
D Gd i j J .

~45!

Now we have to perform the integration over the producth(7)i j
TT A(4)i j . Applying Eq. ~23!, one can write

E d3x h~7!i j
TT A~4!i j5@P1i j ~ t !1P2i j ~ t !1P3i j ~ t !#E d3x A~4!i j1E d3x Qi j ~x,t !A~4!i j1E d3x Ri j ~x,t !A~4!i j . ~46!

The first term on the right-hand side of Eq.~46! is easy. By means of Eqs.~40!, ~29!, ~31!, and~33!, we have

@P1i j ~ t !1P2i j ~ t !1P3i j ~ t !#E d3x A~4!i j510p@Ṗ1i j ~ t !1Ṗ2i j ~ t !1P̈3i j ~ t !#x~4!i j ~xa ,pa!. ~47!

The next two terms on the right-hand side of Eq.~46! we split using definition~8! of theA(4)i j :

E d3x Qi j ~x,t !A~4!i j52
1

2 (
a

paipa j
ma

E d3x Qi jd~x2xa!2
1

8 E d3x Qi jf~2!,if~2!, j , ~48!

E d3x Ri j ~x,t !A~4!i j52
1

2 (
a

paipa j
ma

E d3x Ri jd~x2xa!2
1

8 E d3x Ri jf~2!,if~2!, j . ~49!

These integrals in Eqs.~48! and ~49! which containd can be computed immediately. The result is

2
1

2 (
a

paipa j
ma

E d3x Qi j ~ t,x!d~x2xa!5Qi j8 ~xa ,pa ,t !ẋ i j ~ t !, ~50!

2
1

2 (
a

paipa j
ma

E d3x Ri j ~ t,x!d~x2xa!5
]3

]t3
R8~xa ,pa ,t !, ~51!

where

Qi j8 ~xa ,pa ,t !:52
1

16 S 1

16p D(
a

(
a8

ma8
mar aa8

@2paipa j112~naa8•pa!naa8
i pa j25pa

2naa8
i naa8

j
13~naa8•pa!

2naa8
i naa8

j
#,

~52!

R8~xa ,pa ,t !:5
2

105 S 1

16p D(
a

(
a8

r aa8
2

mama8
@25pa

2pa8
2

111~pa•pa8!
214~naa8•pa8!

2pa
214~naa8•pa!

2pa8
2

212~naa8•pa8!~naa8•pa!~pa•pa8!#2
1

105 S 1

16p D 2(
a

(
a8

(
b8Þa8

ma8mb8
ma

F S 2 r aa8
4

r a8b8
3 22

r aa8
2 r ab8

2

r a8b8
3 25

r aa8
2

r a8b8
D pa2

14
r aa8
2

r a8b8
~naa8•pa!

2117S r aa82

r a8b8
1r a8b8D ~na8b8•pa!

212S 6 r aa8
3

r a8b8
2 117r aa8D ~naa8•pa!~na8b8•pa!G . ~53!

The integrals in Eqs.~48! and ~49! with gradients off (2) after integration read

2
1

8 E d3x Qi j ~x,t !f~2!,if~2!, j5Qi j9 ~xa ,t !ẋ i j ~ t !, ~54!
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2
1

8 E d3x Ri j ~x,t !f~2!,if~2!, j5
]3

]t3
R9~xa ,t !, ~55!

where~heresaba8 :5r ab1r aa81r ba8!

Qi j9 ~xa ,t !:5
1

32 S 1

16p D 2(
a

(
bÞa

(
a8

mambma8H 32

saba8
S 1

r ab
1

1

saba8
Dnabi nabj 1F3 r aa8

r ab
3 2

5

r abr aa8
1

r ba8
2

r ab
3 r aa8

1
8

saba8
S 1

r aa8
1

1

saba8
D Gnaa8i naa8

j
22S r aa81r ba8

r ab
3 1

12

saba8
2 D naa8i nba8

j
132S 1

r ab
2 2

2

saba8
2 D nabi naa8j J , ~56!

R9~xa ,t !:5
1

105 S 1

16p D 2(
a

(
bÞa

(
a8

mamb

ma8
F S 5 r aa82

r ab
12

r aa8
2 r ba8

2

r ab
3 22

r aa8
4

r ab
3 D pa82 217S r aa82

r ab
1r abD ~nab•pa8!

2

24
r aa8
2

r ab
~naa8•pa8!

222S 6r aa83

r ab
2 117r aa8D ~nab•pa8!~naa8•pa8!G

1
1

210 S 1

16p D 3(
a

(
bÞa

(
a8

(
b8Þa8

mambma8mb8F2 r aa8
2

r abr a8b8
3 ~r aa8

2
2r ab8

2
!12

r aa8
2

r ab
2 r a8b8

~r aa8
2

2r ba8
2

!14
r abr aa8

2

r a8b8
3

25
r aa8
2

r abr a8b8
22S r ab

3

r a8b8
3 1

r ab
r a8b8

D 24
r abr aa8r bb8

r a8b8
3 ~naa8•nbb8!117S r ab

r a8b8
1
r a8b8
r ab

1
r aa8
2

r abr bb8
D ~nab•na8b8!

2

16
r aa8
4

r ab
2 r a8b8

2 ~nab•na8b8!134r aa8
2 S 1

r ab
2 1

1

r a8b8
2 D ~nab•na8b8!G . ~57!

Using the results~42!–~57!, the 3.5PN interaction Hamiltonian~19! can be written as

H3.5PN
int ~xa ,pa ,t !55px~4!i j ~xa ,pa!@Ṗ1i j ~ t !1Ṗ2i j ~ t !1Ṗ3i j ~ t !#15px~4!i j ~ t !@P1i j ~xa ,pa!1P̃2i j ~xa ,t !#

25pẍ~4!i j ~ t !P3i j ~xa ,pa!1ẋ~4!i j ~ t !@Qi j8 ~xa ,pa ,t !1Qi j9 ~xa ,t !#1
]3

]t3
@R8~xa ,pa ,t !1R9~xa ,t !#.

~58!

We stress that the Hamiltonian~58! has been obtained by
the aid of a well-defined post-Newtonian near-zone expan-
sion of the retarded solution of Eq.~12! to the needed order
@Eq. ~23!#. Also, the integrals which represent the Hamil-
tonian are well defined at spacelike infinity@Eq. ~19!#. Only
for calculational reasons have long-range divergent integrals
been employed; see the Appendixes B and C.

V. ENERGY LOSS OF A TWO-BODY SYSTEM

Let us denote byH̃<3.5PN the Hamiltonian which coin-
cides with the HamiltonianH<3.5PNof Eq. ~5! after dropping
its field part. So, by definition, we have

H̃<3.5PN:5H<3.5PN
mat 1H<3.5PN

int . ~59!

The HamiltonianH̃<3.5PNcan be decomposed into conserva-
tive and dissipative parts

H̃<3.5PN~xa ,pa ,t !5H<3PN
cor ~xa ,pa!1H<3.5PN

diss ~xa ,pa ,t !,
~60!

where

H<3PN
con :5HN

mat1H1PN
mat1~H2PN

mat1H2PN
int !1~H3PN

mat1H3PN
int !,

~61!

H<3.5PN
diss :5H2.5PN

int 1H3.5PN
int . ~62!

The total time derivative ofH̃<3.5PN is equal to its partial
time derivative, and because only the dissipative part of
H̃<3.5PN depends explicitly on time, we get

d

dt
H̃<3.5PN~xa ,pa ,t !5

]

]t
H̃<3.5PN~xa ,pa ,t !

5
]

]t
H<3.5PN
diss ~xa ,pa ,t !. ~63!

The instantaneous energy loss of the matter system due to
the gravitational wave emission is defined as

L<3.5PN~ t !:52
d

dt
H̃<3.5PN~xa ,pa ,t !. ~64!
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The task is now to calculateL<3.5PN for a system of two
pointlike bodies with massesm1 and m2 . We start from
rewriting the right-hand side of Eq.~64! in the form @by
means of Eqs.~62! and ~63!#

L<3.5PN52
]

]t
~H2.5PN

int 1H3.5PN
int !. ~65!

We next substitute Eqs.~41! and~58! into Eq.~65!. Then we
use the following relation, valid up to 1PN order, to express
the particles momentapa in terms of the particle coordinate
velocitiesva @see, e.g., Eq.~4.1! of @13##:

p15m1v11
1

2
m1v1

2v11
m1m2

32pr 12
@6v127v22~n12•v2!n12#,

~66!

and the analogous relation holds forp2 . After that, we per-
form the time differentiation and simultaneously we elimi-
nate the time derivatives of the coordinate velocities by
means of the 1PN equations of motion@see, e.g., Eq.~1.5! of
@10##:

v̇152
m2

16pr 12
2 n121

m2

16pr 12
2 H @4~n12•v1!23~n12•v2!#

3~v12v2!1F2v1
222v2

214~v1•v2!1
3

2
~n12•v2!

2

1
1

16pr 12
~5m114m2!Gn12J ~67!

~we omit the analogous equation forv̇2!. In the final step, we
identify positions and velocities of particles inside and out-
side the TT variables~i.e., we identify primed and unprimed
quantities!. For this goal we must apply Hadamard’s regular-
ization procedure described in Appendix A.

To write the final formula for the energy loss in a more
compact way, we introduce the total massM :5m11m2 of

the system, its reduced massm:5m1m2 /M , and the param-
etern:5m/M . Then the individual masses of the objects can
be expressed in terms of the parametersm andn :

m15
m

2n
~11A124n!, m25

m

2n
~12A124n!, ~68!

where we assumedm1>m2 . We also want to express the
velocities of the bodies by their relative velocityv:5v1
2v2 and their relative positionr , v5 ṙ . To do this we need
the following relations linking the positions of the individual
bodies with their relative position valid up to 1PN order@see,
e.g., Eq.~2.4! of @14##:

r15F m

m1
1

m~m12m2!

2M2 S v22 M

16pr D G r , ~69!

r25F2
m

m2
1

m~m12m2!

2M2 S v22 M

16pr D G r , ~70!

where r5ur u. We differentiate Eqs.~69! and ~70! with re-
spect to time, and then we eliminate the time derivatives
using the Newtonian equation of the relative motion:v̇5
2M /(16pr 2)n, wheren:5r /r . The result is

v15
2nv

11A124n
1
1

2
A124nFnv2v2

m

16pr
@v1~n•v!n#G ,

~71!

v25
22nv

12A124n
1
1

2
A124nFnv2v2

m

16pr
@v1~n•v!n#G .

~72!

After eliminating the coordinate velocitiesv1 and v2 by
means of Eqs.~71! and ~72!, the instantaneous energy loss
L<3.5PN can be written as

L<3.5PN5
4

15 S 1

16p D 2 Mm2

r 3 H 2S M

16pr D
2

1@11v229~n•v!2#
M

16pr
1@11v4260~n•v!2v2145~n•v!4#J

1
1

105 S 1

16p D 2 Mm2

r 3 H 2~97252n!S M

16pr D
3

14@~24231215n!v21~3771254n!~n•v!2#S M

16pr D
2

1@2~137811267n!v418~25971547n!~n•v!2v223~65181971n!~n•v!4#
M

16pr

1@2~20611253n!v613~38012507n!~n•v!2v4215~1981413n!~n•v!4v21105~282n!~n•v!6#J . ~73!
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VI. CONCLUDING REMARKS

The comparison of expression~73! for the instantaneous
gravitational energy loss with the known instantaneous far-
zone-flux expression@see Eq.~51! of @15# corrected by an
erratum and equation below Eq.~3.40! of @16## shows that
the two expressions are different. This is to be expected as
general expressions for the instantaneous gravitational en-
ergy loss of a matter system are as well coordinate as repre-
sentation dependent; e.g., the representation of the
post3.5-energy loss as@H<1PN,H<3.5PN#, where@•,•# denotes
the Poisson brackets, yields an expression which differs from
both other expressions. Iyer and Will@4#, particularly, would
have obtained similar results if they would not have forced
their constantsR1 ,...,R10,,S1 ,...,S10 in Eqs.~2.16! of @4# to
fit to those energy and angular momentum flux expressions
in the far zone which are invariant against~infinitesimal!
coordinate transformations. Averaging the formula~73! over
one period of quasielliptic motion of the binary, using the
method by Blanchet and Scha¨fer ~see Sec. 4 of@16#!, yields
the known result for the averaged energy loss@see Eqs.
~4.20! and ~4.21! of @16##.
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APPENDIX A: HADAMARD’S REGULARIZATION

Let f be a real-valued function defined in a neighborhood
of a pointx0PR3, excluding this point. Atx0 , the function
f is assumed to be singular. We define a family of auxiliary
complex valued functionsf n ~labeled by unit vectorsn! in
the following way:

f n :C{«° f n~«!:5 f ~x01«n!PC. ~A1!

We expandf n into Laurent series around«50:

f n~«!5 (
m52N

`

am~n!«m. ~A2!

Coefficientsam of this expansion depend on the unit vector
n. We define the regularized value of the functionf at x0 as
the coefficient at«0 in the expansion~A2! averaged over all
unit vectorsn:

f reg~x0!:5
1

4p R dV a0~n!. ~A3!

We use Eq.~A3! to compute all integrals which contain
Dirac d distribution. It means that we define

E d3x f~x!d~x2xa!:5 f reg~xa!. ~A4!

APPENDIX B: RIESZ’S FORMULA

The following formula, first derived by Riesz@see Eqs.
~7! and~10! in Chap. 2 of@17##, can serve as a tool to regu-
larize a class of divergent integrals using the analytic con-
tinuation arguments~hereaÞb; a andb are complex num-
bers!:

E d3x ra
ar b

b

5p3/2
G„a13)/2…G„~b13!/2…G„2~a1b13!/2…

G~2a/2!G~2b/2!G„~a1b16!/2…

3r ab
a1b13. ~B1!

In the calculation ofh(7)i j
TT in Sec. III we used the following

regularized values of integrals which follows directly from
the above formula:

E d3x
1

r ar b
522pr ab , E d3x

r a
r b

52
p

3
r ab
3 ,

E d3x rar b52
p

45
r ab
5 .

APPENDIX C: INVERSE LAPLACIAN TECHNIQUE

The inverse Laplacian operatorD21 is an integral opera-
tor which is defined as

~D21f !~x!:52
1

4p E d3x8
f ~x8!

ux2x8u
. ~C1!

Inverting the obvious identityDr a
a5a(a11)r a

a22, one
can write~r a

a is treated here as analytic function in the com-
plex a plane!

D21r a
a5

1

~a12!~a13!
r a

a12. ~C2!

Using the above formula and definition~4! of the TT-
projection operator, we calculate the TT part ofr a

a :

d i j
TTklr a

a5
r a

a

2~a13!~a15!
$a~a22!na

i na
j na

kna
l 1a~a16!~d i j na

kna
l 1dklna

i na
j !2a~a14!~d ikna

j na
l 1d i l na

j na
k1d jkna

i na
l

1d j l na
i na

k!1@~a11!~a15!11#~d ikd j l1d i ld jk!2@~a11!~a15!21#d i jdkl%. ~C3!

BecauseD(1/r a)524pd(x2xa), applying several times Eq.~C2!, one can easily derive that, for any positive
integern,

D2nd~x2xa!52
1

4p~2n22!!
r a
2n23. ~C4!
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Now we show two families of inverse Laplacians which we used to compute some integrals. The first family is

D21
1

r ar b
5 ln~r a1r b1r ab!, ~C5!

D22
1

r ar b
5

1

36
~2r a

213r ar ab1r ab
2 23r ar b13r abr b2r b

2!1
1

12
~r a

22r ab
2 1r b

2!ln~r a1r ab1r b!, ~C6!

D23
1

r ar b
5

1

28800
~263r a

41150r a
3r ab1126r a

2r ab
2 290r ar ab

3 263r ab
4 290r a

3r b190r a
2r abr b190r ar ab

2 r b290r ab
3 r b22r a

2r b
2

190r ar abr b
21126r ab

2 r b
2290r ar b

31150r abr b
3263r b

4!1
1

960
~3r a

426r a
2r ab

2 13r ab
4 12r a

2r b
226r ab

2 r b
213r b

4!

3 ln~r a1r ab1r b!, ~C7!

and the second one reads

D21
r a
2

r b
52

1

6
r b
31

1

4
~r a

21r ab
2 !r b , ~C8!

D21
r a
4

r b
5

4

45
r b
52

2

9
~r a

21r ab
2 !r b

31
1

6
~r a

41r a
2r ab

2 1r ab
4 !r b ,

~C9!

D21~r a
2r b!5

1

180
~10r a

215r ab
2 24r b

2!r b
3. ~C10!

Applying a Laplacian operator~maybe several times! to
the right-hand sides of Eqs.~C5!–~C10!, one can immedi-
ately check that we obtain the correct arguments of the in-
verse Laplacian operators from the left-hand sides of these
equations. Moreover, the right-hand sides of Eqs.~C5!–
~C10! are unique in the following sense. Let us, for example,
look for the double inverse Laplacian of 1/(r ar b), Eq. ~C6!.
It means that we are looking for a solutionf of the partial
differential equationD2f51/(r ar b). Let us now restrict our-
selves to thef belonging only to the family of functions of
type W1(r a ,r b ,r ab)1W2(r a ,r b ,r ab)ln(ra1rb1rab), where
W1 andW2 are polynomials of indicated variables consisting
only of quadratic terms in these variables~i.e., the most gen-
eral polynomial of this type isa1r a

21a2r b
21a3r ab

2 1a4r ar b
1a5r ar ab1a6r br ab). This particular form can be guessed
easily from the dimensional reasons if we already know the
first inverse Laplacian of 1/(r ar b), Eq. ~C5!. So we assume
we know the general form off , all we need is to fix the

values of 12 coefficients~in fact, less because of symmetry
with respect to the interchanging the labelsa andb of the
particles!, defining the polynomialsW1 andW2 . To do this
we require that the following equations must be satis-
fied: ~1! D2f51/(r ar b), ~2! D f5 ln(ra1rb1rab), and ~3!
Daf5r a /(2r ab), whereDa contains differentiations with re-
spect toxa . The first two requirements are obvious. The
third one follows from applying the operatorD22Da to both
sides of the equationD2f51/(r ar b) ~in the general, nonsym-
metric case, e.g., that of Eqs.~C8!–~C10!, we also need the
requirement which follows from applying the operator
D2nDb). The requirements~1!–~3! fix the 12 coefficients of
polynomialsW1 andW2 uniquely. A similar reasoning can
be applied to all inverse Laplacians from Eqs.~C5!–~C10!.

As an example of how inverse Laplacians can be used to
compute divergent integrals, let us consider the following
integral, needed to compute, e.g., the integral on the left-
hand side of Eq.~55! ~herebÞa andcÞa,b!:

E d3x ra
2S 1r bD ,i S

1

r c
D
, j

5] i
~b!] j

~c!E d3x
r a
2

r br c

524p] i
~b!] j

~c!S Dc
21

r a
2

r b
D

524p] i
~b!] j

~c!F2
1

6
r bc
3 1

1

4
~r ac

2 1r ab
2 !r bcG ,

where Eq.~C8! was employed and] i
(b) stands for differen-

tiation with respect toxb
i .
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