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Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems
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We calculate to podP-Newtonian order of approximation of general relativity the radiation-reaction part of
the ADM Hamiltonian for a many-body system of nonspinning point masses. The Hamiltonian is applied to the
derivation of the gravitational energy loss of a gravitationally bound two-body system in quasielliptic motion.
Agreement with the known result for the time-averaged energy loss is obtained to arfie)’. (
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PACS numbgs): 04.25.Nx, 04.30.Db, 97.60.Jd, 97.60.Lf

I. INTRODUCTION AND SUMMARY ordinate system. In our calculations only one coordinate sys-
tem is employed, which is defined globally.

The calculation of the dynamical evolution of two-body  In the ADM formalism, there are no natural balance rela-
systems in general relativity is a major challenge in the thetions between instantaneous losses and instantaneous fluxes,
oretical investigation of the motion of compact astrophysicaleven if one assumes quasistationarity in the radiation emis-
binaries. Twenty years of observations of the Hulse-Taylosion (see, e.g.[9]). Instantaneous balance between losses
binary pulsar PSR 191316 yielded measurements of the and fluxes can be achieved lagl hocconstructions of ap-
conservative part of the dynamics as precise as to reach lepropriate expressions only. By choosing total time deriva-
els two orders of magnitude((v/c)?)] beyond Newtonian tives judiciously, the expressions for instantaneous losses
theory, and the leading radiation-reaction gadi((v/c)®)], and fluxes can gain the property of being invariant against
the quadrupole gravitational radiation damping, was found tdinfinitesima) coordinate transformations in, respectively,
be in agreement with general relativity with a precision ofthe near and far zongd].

0.35%[1]. On the other hand, future gravitational-wave as- In the present paper, the-body ADM Hamiltonian is
tronomy will need theoretical knowledge of the motion of calculated fully explicitly at the dissipative 3.5PN order. We
binary systems to even higher post-Newtonian ord2}s apply this Hamiltonian to the derivation of the energy loss of

Recently, lyer and Wil[3] derived the equations of mo- & two-body system on quasielliptic orbits. The expression
tion for nonspinning pointlike binaries at the dissipative obtained for the energy loss is different from the expression
post->-Newtonian (3.5PN order, i.e., one post-Newtonian used and derived by lyer and Will in their papers; only the
order beyond the leading order in the damping, using a podime-averaged expressions coincide.
tulated balance between an instantaneous flux of energy and We use units in which 18G=c=1, whereG is the
angular momentum in the far zone and an instantaneous lodewtonian gravitational constant ardis the velocity of
of energy and angular momentum in the system’s near zondéght. We employ the following notation: x=(x') denotes a
In a more recent paper lyer and W[l] improved their ~ point in the three-dimensional Euclidean spa@eendowed
derivation of the radiation-reaction force by the two-bodywith a standard Euclidean metric and a scalar proddet
specification and evaluation of Blanchet’s radiation-reactiornoted by a dot Lettersa,b,... areparticles labels, and so
potentials obtained by the method of asymptotic matchingt, R® denotes the position of theth particle. We also de-

[5] and confirmed their previously postulated balance befine ry:=x—x,, ra:=|ro], na:=r,/r,; and for a#b,
tween instantaneous loss and instantaneous flux expressiongy: =Xa—Xp, Tap:=|labls Nab:=Tlab/Tap; || Stands here

In this paper we are interested in the dynamics offor the length of a vector. The momentum vector of #ib
n-body point-mass systems. The tool we use is the Arnowittparticle is denoted by,=(p,;), and m, denotes its mass
Deser-Misner (ADM) Hamiltonian formalism of general parameter. Indices with round brackets, likeAgy;;, give
relativity [6]. This formalism has been proved very efficient the order of the object in inverse powers of the velocity of
in the calculation of the approximate general relativistic dy-light, in this case, I*. We abbreviateS(x—x,) to &,. An
namics to pogt-Newtonian ordef7,8]. The advantage of overdot, like inx,, means the total time derivative. The par-
the ADM formalism, as of any other Hamiltonian formalism, tial differentiation with respect ta' is denoted by, or by a
is the absence of asymptotic matching by which the neacomma, i.e.di¢p=¢ ;.
field, given in a near-zone-defined coordinate system, is in-
terrelated with the far field, given in a far-zone-defined co- Il. 3.5PN FIELD EQUATIONS
In the ADM formulation of general relativity, the full in-

*Permanent address: Institute of Physics, Warsaw Universitformation about the motion of isolated bodies and the emit-
Branch, Lipowa 41, 15-424 Bialystok, Poland. ted gravitational radiation results from the reduced Hamil-
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55 RADIATIVE 3.5 POST-NEWTONIAN ADM . .. 4713

tonianH, which is a functional of the independent degrees of5TTk' =1[(8,—A" 19, ) (Sj— A‘laj A+ (S—A"19,9,)
freedom of the systerf6]. The reduced Hamiltonian itself L .
results from the solution of the four constraint equations of X (6 —A7709;9) = (6= A" "dkdy)

the Einstein theory. Four metric functions are fixed by im-
posing four coordinate conditions. In this paper we choose
the generalized isotropic coordinate conditions often used in
applications of the ADM formalisni7,8,10.

For a system ofi pointlike bodies with position vectors
X, and moment®, (a=1,...,n), the Hamiltonian reads

X(8;—A15,9))]. (4)

The HamiltonianH can be uniquely decomposed into a
matter partH™ which depends only on the matter vari-
ables, a field part™, which depends only on the field
variables, and an interaction paa™, which depends on

_ TT AT both sets of variables, matter and field, and which vanishes if
H=H[X5,pa;h 1, (1)

I one of the two sets is put equal to zero. Thus the full content

whereh/T denotes the independent part of the gravitationaPf the field-plus-matter dynamics up to the 3.5PN approxi-

field which is transverse and traceless in the flat-space metrfation is included in the Hamiltonian

&j, and='/TT is the canonical conjugate tg]' . In terms of ,
] field int
H<3.5en= HZ3spnt H g s5pnt H S spiy 5

hi', the metricg; of the spacellke hypersurface®=t
=const takes the forng;;=(1+§4)*s;+hj’. The equa- |n what follows we shall only need the field and interaction
tions of motion for the bodies read parts of the Hamiltoniax). They can, up to 3.5PN order, be
M oM , written as[11]
Pa== 5 Xa=g5 2

I B T A E A N
and the field equations for the independent degrees of free-

dom take the form

. 1 1
CsH g SH HZ3 son= f dx hﬂT(zAmnﬁB(em)—g (hi?2 ma5,
O GTT_ _ TTij TT TTKI 3) a
at " K ShiT ot IR L
— T ~ij
where (5---)/(8---) denotes the Fuohet derivative and 4 o (i~ b7y 0
where the TT-projection operator is defined[bge, e.g., Eq.
(2.17) of [8]; A~ 1 is the inverse Laplacian in flat spgce where we used the definitions
|
PaiPaj 1
Awyij = —g ?;1 A s,— 1 b2),iP2),i (8
a

1 alpaj 5 paipaj 1 pa
Be)ij - = 1 ; Ot 3 ¢(2)§ m, Sat+ 6 d><z>,i,-2

el

+4( ;ﬂ)%{gé {pak(é)i_pai(é)’k}

1\? mym, 5
(E) b 2 =+ 52 2@2%2.i%2.- 9

a b#a rabra

K

1677) 77(3) k<82 Pak .~ 2 Pail a ki

The functionse,) andTTi(g), entering Eqs(8) and(9), are The field equations for the field variablta%T and 7177,
equal to valid up to 3.5PN order, are obtained by varying the Hamil-

1 tonian (5) according to Eqgs(3). Combining Egs.(3) and

_ - Ma taking Eqgs.(5)—(9) into account, one obtains
¢(2)—4ﬂ_ E r (10
i _iz -5 i +2| s ! TS ! TT_ STT 1 oo
77(3)_1607 ~ Pak ij la . ik ra ikl v ra . Dh” :5” A(4)k|+ZB(6)kI_ E hkl ; ma5a
) ! !

1 d ~
-5 ra,”-kJ. (1 + (hmd () m™ g ($27(3) |- (12
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o 1]d - — 1/(d
= g +od (b)), (13 T =5 ( 5t N ) (17
where[] is the d’Alembertian in flat space. The expressions

for h(4)” , h(5)IJ , h(e)u , andhm,] can be extracted from Eq. which follows from Eq.(13), one gets

(12) by the aid of the near-zone expansion of the retarded
TT

_sr(;Iution. (\j/\/e only need those fd)'r(4)IJ » h(syj» and hm”
ey real
Y g]tSPNZZ J'da h;g)u 4)ij » (18)
higy =218 A (14)
hla =0 r8T™MA 4 q—hit +0 ! (15) int 3 T
hiii=Oretdr™ +2Bigp— = (T TT Loor
(7)ij ret A (6)kI 2( (4)kl +h<5)ij B(6)ii_Zh(4)ij§ m,d,
o 1/d .
<5>k|)2 Madat (W2 mB2) m (dt h(5)|])¢( V(s |- (19
d TT TT TT 1
* gt (b@ 7)) | =[Ny + i +hig1+0| )
lll. DERIVATION OF h{});
(16)

The explicit solutions of Eqs(14) and (15) are well
where O, is the retarded inverse d’Alembertian in flat known. We cite them here for the convenience of the reader
space. The radiative 2.5PN and 3.5PN Hamiltonians can bas well as for the future reference. The solution of Bdl)

calculated from Eq(7). Taking into account the relation reads(heres,,:=ra+rp+rap)

1 o . .
4)IJ(X Xaypa Z( ) m.r {[pg_s(na'pa)2]5ij+2paipaj+[3(na'pa)2_5p§]n;n£+6(na'pa)(ni’a\paj"_n{apai)}
a' a
1/ 12 32 (1 1\ . . [rgtr, 12\ .
e Bl N N Y n.ni,
8 677) ; b;a mamb[ Sab rab+sab nabnab+2 _3_+_2_
+162 1 ij+J.i+5 ra(ra1 81+1 P
% E_b (nanab r]anab) Mabl a r_fab E Q P Q NaNg
ra (ra 17 4 8 (1 4
+ 57 |——1]|- — =+ —]|6¢- (20
rab My lapla lalp Sab lab
The solution to Eq(15) can be written as
d
h(TST)ij(t)z at X(a)ij Xa(t),pa(t)), (21)
where
1 2 1 m,m S
2 a''lb
X(4)ij(Xa,Pa):= 507 2 m_a(paéij_Bpaipaj)+E§ ga e (3Nzpnkp— Gij) |- (22
The explicit solution of Eq(16) we decompose into several parts
hiz)ii (X, 1) = Paij (1) + Paij (1) + P3ij () + Qjj (X,1) + Ry (x,1), (23)

where the following definitions were used:

Plij(t):=21 5TTk' fd3x’ Bey(X' 1), (24)
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Poij(t):=— 5TTK'U d3x’ hj;k,(x',t)é maa(x’—xa(t))}, (25)
Paij(t):=4— :tz s fd3x' ¢(2)(x',t)a‘7(k;)(x',t)}, (26)
Qij(x,t):= W' hisy(t) J A [x=x'| 71 ma6<x'—xa<t))}, (27
Ry (x,0)'— 5TTK|U &3’ [x—x'|2 &tg A(4)k|(x’,t) . 28

To compute the integrals which enter E424)—(28), we apply the techniques described in Appendixes A—C. After long
calculations we obtaifheres,pc: =rap+ petlca)

d
Paij (1) = g7 Maij *a(1),Pa(t)), (29

41 Pa 8/ 1\2
M yj(Xa Pa): = (1677)2 3 (~Pa8+3paba) * 5 (1&7) 22 (= 2P33; + 5PaiPaj + P3NapNkn)

15 b=za mar

1/ 1)\2
+5 (m) 22 :{[19<pa Po) ~ 3(Nab- Pa) (Nap Po) 18— 42PaiPy,

—3[5(Pa’ Po) + (Nab- Pa) (Nap* Po) INGpNhp+ B(Nap: Po) (NpPaj+ NhpPai)t

41 1)° mzmb 1 1\3 18 o
( ) a bra 2 (4ii - Snabnab)+ ( )2 > > mgmym, ml(%—%'abnjab)

_5 E rab 167 a b#a c#ab
180[(1 1 ) R 10 11 1)\ ri4ritrd,
- —+—|nl,nl, +— ni.nl +—{4(—+—+— - Sii (30)
Sabc [ \Fab  Sabc ab'ab Sabc ab'be Sabc Fab Tbc Teca Fablbel ca .
d
PZIJ(t) H2|](Xa(t) pa(t)) (31)
11 2 2 2 2940 i
HZij(Xavpa)-:g 6 g ;ﬁ ol ot — P2l 6ij = 2PaiPaj+ [5P5 — 3(Nap Pa) “INapNap— 6(Nap- Pa)
1)\3 mZm, 1 3
X + + = =8+ — | ——
(nabpaj nabpal)} 1677) éga _rgb_(snabnab 5!]) 10 1677) ~ cz,b MyMpMe
2
rca) 13 40 [ rab  The 5 40 (1 1 ) i
5+ -—— |+ - 5 +—a— —+ n..n’
[ gb Moc lablca labSabe Z I'abrca lablca Sabc \lab Sabc ab’ab
raptr 1 1 88| . .
+[2M—16<T+T v n'ab”f:a]v (32
Mbe lab  Teca abc
d2
P3|](t) 7 H3|J(Xa(t) pa(t)) (33)
. 1 1 2 i i i j
Mgy (XaPa) = £ | 752 | 2 22 Mol —5(Nap* Pa) & + (Nap Pa) Naothp* 7(NhpPaj+ NapPai) ], (34
a b#a

1
Qij(x,t)= (16 )2 [2h(5)|]+6(n' nshs, o)k F Nk I nkh{sy) —58;nsnsh(g q +3nanknknih e 1, (35
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2
TW)E . {[5P2—4(Na: Pa)*]8ij ~ 11paiPaj— 4PZNa; +6(Na* Pa) (NaPaj + NiPai)}

4 r2e 2

mambHZT ZT 5
#a lab lab lab

2

r 2
5 +4—n n‘+17

—+I’ab
lab

Rj(X0= =3 {
2

i
NabNab

105
( a b+#
3

6—2—+17ra>(n nl,+ninl,)

] : (36)
IV. 2.5PN AND 3.5PN INTERACTION HAMILTONIANS

The symmetric and trace-fré&TF) part of a tensof;; is defined as

T = 3 (T +T) =356 Tik- (37)

If the tensorT;; does not depend on the space variabléise., it is a function of time only), then from Eq(C3) of Appendix
C, with «=0, and Eq.(37) one immediately gets

5iTI:Tk|TkI(t) STF(t) (38)

To compute the 2.5PN interaction HamiltoniékB), we must perform the integration

my . .
-~ (Ngnhn— 8)- (39

a

PaiPaj 1 1 m
3 o L

J X Awy=- 2 Tt (1&7)2 s
Comparing Eq(39) with Eq. (22), one can get

J' dSX A(4)Ij 107TX(4)IJ , (40)

which enables us to write the Hamiltoni&hg) in the known form[8,12]

|nt

HZ'5pn Xa P t) = 57X (4)ij (1) X (4)ij (Xa Pa)- (41

Integrations involved in the 3.5PN Hamiltonidh9) are much more demanding. We start with the observation that the
following integrals can be calculated immediately by means of(B§). together with Eqs(24), (26) and Eqgs.(29), (33):

f d*x h(5>|JB<6>ij:X(4)ij(t)f dx B(SeT)'i:j:Sﬂnlij(xavpa)).((ﬂij(t)a (42)

d )
f dsx(dt (5>|J)¢(2)Tf(3) 4)ij(t)fd3X b(2) T (5= 107 T (Xa . Pa) X (ayij (1) (43

The integral oveh(TI)ij >.m, 8, can also be easily calculated by means of €€). To do it one must remember that at this
stage it is necessary to distinguish the particle positions and momenta inside and outside the TT variables. The result is

de x hig;( )Za ML 8(X—Xg) = — 201l (X, 1), (44)

where(heres, i =r a2 +ap T2 @and primes denote quantities entering TT variables
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~ 1(1)\2
HZij(Xavt):zg(E) ; {[S(naa’ pa) _pz’]EIJ 2pa Ipaj+[5pa’ 3(naa’ pa) ]naarnaar 6(naa’ pa)

a’ ma/r
1 32 1 1 - ;
X(n Par +n Pari)}+ 75 z E 2 MaMg: My + Narp Ny 16 2
aa g aa 10 16 a’ b'#a’ Saa’p’ \Fa’p’ Saa’b’ a’b’"a’b ra’b’
2 C o I aa T ap 12\ . laa’ [Faa 5
= | (M + My M) =2 =5+ | N Ny | =3 T3
Saa’b’ ra’b’ aa’b’ ra'b’ rab’ ra’b’raa’
8 (1 1], | Faw Faw 17 4 8 [1 4
+ + NaaNag 7[5 73— | 1— + - - +—18ij;-
Saa’p’ \lMaa’ Saa’b’ ra’b’ lap larp'Taar Taa’Tap’ Saa’p’ \laa’ larp’

(45)

Now we have to perform the integration over the produ@ijAM)ij . Applying Eqg.(23), one can write

J d®x N7 A4y =[Paij (1) + Py (1) + P3lj(t)]f d®x Ay j d®x Qij(xvt)A(4)ij+f d* Rj(X,D A . (46)
The first term on the right-hand side of Eg6) is easy. By means of Eq§40), (29), (31), and(33), we have
[P (1) + Py (1) + P3ij(t)]f d3X A= 10W[ﬂlij(t)+ﬁzij(t)+ﬁ3ij(t)]X(4)ij(Xavpa)- (47)

The next two terms on the right-hand side of E46) we split using definition(8) of the A4y;;

1 PaiPai 1
f d® Qi (X, ) A=~ > ; % f d®x Qi 8(x—xa) — 3 f d* Q2.1 bw2), (48)
a
1 PaiPai 1
J d3x Rij(xvt)A(4)ij:_§ é %:J J d3x Rij5(X—Xa)—§ J d*X Rjd2).id2),- (49)

These integrals in Eq$48) and (49) which contains can be computed immediately. The result is

1 PaiPaj , .
32 T f A% Qij(t,X) 8(X— %) = Qf} (Xa ,Pa 1) X (1), (50
a
1 paipaj f 3 _ 03 '
-5 ; m—a d3x Rij(t,x)(S(x—xa)—F R'(X4,Pa,t), (52
where
1 m,;
Qu(xavpaut) == 1677 é mar [Zpalpa]+12(naa’ pa)naarpaj_Sp aa’ aar+3(naa’ pa) naarnaar]
a’ al aa’
(52)

2
2 1 ra
R,(Xaapa:t)::ﬁ;’(ﬁ>z 2 [ Spapal+11(pa'pa')2+4(naa"pa’)2p§+4(naa"pa)2pz/

a g’ mama
4 2 2 2
Mg My raa' raal’rab’ raa’ 2
12(naa’ Pa )(naa’ pa)(pa Pa’ )] 105( ) E ; bga m, 2 z’b’—z ri’b’ _sra,b, a

2

r 2

’ r ’
a 2 aa
(naa’ : pa) +17] r

a ’

rarbr

3
+4

/bl) (na/b/' pa)2+ 2( 6

a’b’

)(naa"pa)(na’b"pa)]- (53)
The integrals in Eqs48) and (49) with gradients of¢,) after integration read

1 .
-3 f d® Qij(X,) B2),i b(2),j=Qf; (Xa,t) xij (1), (54
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3

! fd3 IR 55
8 XRij(Xat)d’(Z),id’(Z),j_Eﬁ (Xa 1), (59

where(heres,py : =rap+aa +Mpar)

1 32 (1 1 faw 5 (2,
Ql(Xg )= == E m,MyMy —+ ni.nl +|3
jhra 32 16’/7 a b#a g a a Sapar \lab  Sapa ab’‘ab Z;slb lapl aa’ rgbraar

raa/+rba/ 12 i
3 +— aa’nba’+32 =
ab Saba’

i
aa’ naa’

8 1 1
+ + n
Saba’ \laa’ Saba’

2 i A
— —— | NapNga [ (56)

ab  Sapa

1/ 1)2 a
R0 0= 105 162) S 2,3 o

2 2 2 4 2
r r..r r
’ r b/ !
(5 4225 a—2—r2a>p 17( +ap
lab

n
7 67a < My Fab rab 3 ( ab’ pa)
2
aa’
-4 r (naa"pa (nab Par )(naa"pa )
ab
2 2
1 ( ) raa/ r abr !
2 2 aa
+ 2 E m,myMmg My | 2 = (r )+22—(r —r2 )+4
210167/ 7 b7a a’ b'#a ’ : Fabl 4/ aa’ ab’ labla’b’ aa’ ba! I’ a’'b’
2 3 2
I . r r [P PPV ™Y | P |
aa ab ab ab' aa’! bb lab a'b aa
-5 2 3+ -4 3 (naa/ nbb/)+17 + + (nab-na,b,)z
lablarp’ Mo Tab M a’b’  Tab  Tablbb

4
1
+6—2—(nab narbr)+34raa, —2—+—2—)(nab narbr) . (57)
rab a’'b’ r n’
Using the result$42)—(57), the 3.5PN interaction Hamiltoniail9) can be written as
HE5pn Xa ,Pa 1) = 57X (a)ij (Xa »Pa) [T (1) + Tpij () + Mgy () 1+ 57 x4y () [ T i (Xa , Pa) + i (Xa )]
. : ) 7
= 57X (4)ij (D55 (Xa,Pa) + X(4)ij (D[ Qfj (Xa,Pa 1) + Qj (Xaat)]+ 3 [R'(Xa,Pa 1) + R (X5, 0)].
(58)
|
We stress that the HamiltonidB8) has been obtained by HEo% N = HIa - A+ (Hpa+ H th)+ HORl+ H'm
the aid of a well-defined post-Newtonian near-zone expan- (61)
sion of the retarded solution of E¢L2) to the needed order
[Eqg. (23)]. Also, the integrals which represent the Hamil- pdiss . _pyint it 62)
tonian are well defined at spacelike infin[tigg. (19)]. Only <3.5PN T T25PNT T I3.5PN
for calculational reasons have long-range divergent integrals
been employed; see the Appendixes B and C. The total time derivative 0H<3 spN IS equal to its partial
time derivative, and because only the dissipative part of
V. ENERGY LOSS OF A TWO-BODY SYSTEM H_; spn depends explicitly on time, we get
Let us denote by’-v|$35pN the Hamiltonian which coin- d - 9 -

pidgs with the Hamiltoniglh-l.gag,pN of Eq. (5) after dropping gt H<35pNXa,Pa t) = = H <3.5pNXa:Pa 1)
its field part. So, by definition, we have

H—s.son: =HIS5pnt H g 5pn (59 Hc23 spN Xa:Past). (63

The HamiltonianH < 5 5py can be decomposed into conserva-
tive and dissipative parts The instantaneous energy loss of the matter system due to
~ , the gravitational wave emission is defined as

H=3.5pN Xa Pa 1) = H o0 Xa ,P2) + HLS 500 Xa . Pa ,t)(,60)

d ~
where LozspNt):=— at H <35pNXa:Pat). (64)
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The task is now to calculaté. s gpy for a system of two  the system, its reduced mags=m;m,/M, and the param-
pointlike bodies with masses; and m,. We start from eterv:=u/M. Then the individual masses of the objects can
rewriting the right-hand side of Eq64) in the form[by  be expressed in terms of the paramejerand v :
means of Eqs(62) and (63)]

m1=2% (1+1—4v), mf% (1=V1-4v), (68

where we assumerh;=m,. We also want to express the
We next substitute Eq$41) and(58) into Eq.(65). Then we  velocities of the bodies by their relative velocity=v;
use the following relation, valid up to 1PN order, to express—v, and their relative position, v=r. To do this we need
the particles momentp, in terms of the particle coordinate the following relations linking the positions of the individual
velocitiesv, [see, e.g., Eq4.2) of [13]]: bodies with their relative position valid up to 1PN ordsee,
e.g., Eq.(2.4) of [14]]:

J )
L<35pN — 7t (H55pnt HE5pn)- (65

1
p1=myvy+ 5 myViv; + 32 [6V1 Vo= (N2 Vo) Npyl, e owm-my [, M
(66) e e TV L Tl | ARG
and the analogous relation holds foy. After that, we per-
form the time differentiation and simultaneously we elimi- u p(mi—my) M
nate the time derivatives of the coordinate velocities by r2=[——+—2— (vz— —”r (70)
means of the 1PN equations of motisee, e.g., Eq.1.5 of ma 2M 16

[10]}: wherer =|r|. We differentiate Eqs(69) and (70) with re-
spect to time, and then we eliminate the time derivatives
using the Newtonian equation of the relative motiow=

. my m; 2 i ;
Vy=— m N1z 16 :[4(n12 V1) —3(Ngp-Vp)] —M/(16ar)n, wheren:=r/r. The result is
X (V1= Vo) +| —Vi=2v5+4(vy- Vo) + > (NyoVo)? 2wy 1 \/— L
2 V= 1—4v| vo?v— v+(n-v)n]|,
TN e Toqr V(NN
4 6 ik
+ 167-rr12(5m1+ my) [Ng2 (67)
(we omit the analogous equation fay). In the final step, we — 2wV 1 M
identify positions and velocities of particles inside and out-V2=7— 7= \/HJF 5> V1-4v vwv— Teqr LV (n-vn]).
side the TT variable§.e., we identify primed and unprimed v (72)

guantities. For this goal we must apply Hadamard'’s regular-
ization procedure described in Appendix A. After eliminating the coordinate velocitieg;, and v, by

To write the final formula for the energy loss in a more means of Eqs(71) and (72), the instantaneous energy loss
compact way, we introduce the total madds=m;+m, of  L_;pycan be written as

r

L[ L VMEE L o o[ M
T 105|167 7 | | T6m

2 2 2
ﬁss.spflis(%) M—?[z(lg"m) {112 0(n)?] Lo+ (1104~ 60n- V)22 + 48(n. v)“]]

3

2
+4[(— 423+ 2150)v2+ (377+ 254”)(”"’)2]( 1677f)

+[ - (1378+1267v)v*+8(2597+ 547v)(n- v)?v?—3(6518+ 971w)(n-v)*]

167r

+[ —(206+ 1253v)v 8+ 3(380+ 2507) (n-v)%v*— 15198+ 413v)(n- v)*v 2+ 105 28— v)(n-v)G]J. (73
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VI. CONCLUDING REMARKS We use Eq.(A3) to compute all integrals which contain

The comparison of expressidii3d) for the instantaneous Dirac & distribution. It means that we define

gravitational energy loss with the known instantaneous far-

zone-flux expressiofisee Eq.(51) of [15] corrected by an f A3 f(X) S(X—Xa) 1= fred(Xa). (A4)
erratum and equation below E(B.40 of [16]] shows that

the two expressions are different. This is to be expected as

general expressions for the instantaneous gravitational en- APPENDIX B: RIESZ'S FORMULA

ergy loss of a matter system are as well coordinate as repre- The following formula, first derived by Riegzee Egs.
sentaélon dependent, e.g., the representation of they) and(10)in Chap. 2 of[17]], can serve as a tool to regu-
posf-®-energy loss abH <1 pn, H<gspnl, Wherel -, denotes  |arize a class of divergent integrals using the analytic con-

the Poisson brackets, yields an expression which differs frorgnyation argumentghereab; « and 8 are complex num-
both other expressions. lyer and WHl], particularly, would  pgrqy-

have obtained similar results if they would not have forced

their constant$R,,...,R19,S1,...,S10in EQs.(2.16) of [4] to 3. a.p
fit to those energy and angular momentum flux expressiong 9 X Talb
in the far zone which are invariant again@finitesima)

coordinate transformations. Averaging the form(#8) over ap L (@+3)T((B+3)/1T (= (a+ p+3)/2)

one period of quasielliptic motion of the binary, using the =7 T(—al2)T(—BI2T (a+ B+6)12)

method by Blanchet and Sdea (see Sec. 4 of16]), yields

the known result for the averaged energy ldsee Egs. ><r§b+3+3. (B1

(4.20 and (4.2)) of [16]].
In the calculation oh(7y; in Sec. lll we used the following
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APPENDIX A: HADAMARD’S REGULARIZATION
Let f be a real-valued function defined in a neighborhood f d3x rrp=— T rgb_
of a pointxy e R3, excluding this point. Ay, the function 45

f is assumed to be singular. We define a family of auxiliary
complex valued functions$, (labeled by unit vectors) in APPENDIX C: INVERSE LAPLACIAN TECHNIQUE

the following way: _ . . .
g way The inverse Laplacian operatdr ! is an integral opera-

f:Cae—f(e):=f(xg+en)eC. (A1)  tor which is defined as
We expandf,, into Laurent series aroune=0: . 1 J s, (X))
} (A7 )H(x):= yp d°x =" (Cy)
f”(s)zm;_N an(n)e™ (A2) Inverting the obvious identitArg=a(a+ 1)r§_2, one

can write(r3 is treated here as analytic function in the com-
Coefficientsa,, of this expansion depend on the unit vector plex a plang
n. We define the regularized value of the functibat x, as
the coefficient at? in the expansiorfA2) averaged over all 1 b2

—l,a__
unit vectorsn: AT r

a (a+2)(a+3) 2 €2

Using the above formula and definitio@) of the TT-

1
FregXo): = 4 % d€2 ag(n). (A3) projection operator, we calculate the TT partrgf.

re o o ) ) )
kl,. o a KAl KAl | k |
5ET ra:—Z(a+3)(a+5) {a(a—2)nyningn, + a(a+6)(8jnzn,+ Snyny) — a(a+4)(sning+ &nkng+ &jnzn,

+8,n5n8) +[(a+1)(a+5)+1](8x 8+ 81 Sj) —[(a+ 1) (a+5)— 1] S} (C3)

BecauseA(llry) =—47d(x—X,), applying several times Eg(C2), one can easily derive that, for any positive
integern,

AT"S(X—Xg) = — ; r2n-3 (C4H
AT T An(2n—2)1 &
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Now we show two families of inverse Laplacians which we used to compute some integrals. The first family is

ATl =In(ra+rp+rap), (C5)
Falp
2 1 2 2 NI I
A o 36 ~rat3ralapt Map=3ralb T 3Manl v —rp) + 75 (Fa~Fap T rp)N(ratrap+ry), (C6)
1
A rafo 28800 63r 5+ 1503 ap-+ 126 3 3y~ 90r o1 3y~ 631 53— 90r 31+ 90F 3F ol y+ O0F o 27— 90F 3y — 2 2 g
1
+ 90 F ol 24+ 1262, r2— 90r or 34+ 150 ,,r 3— 63rp) + %(3@— 6rar2, +3ra +2rr2—6r2 ri+3rp)
XIn(ra+raptry), C7)
|
and the second one reads values of 12 coefficientéin fact, less because of symmetry

with respect to the interchanging the labalandb of the
5 L 1 particles, defining the polynomial$Vv; andW,. To do this
1 Ta 3 2. 2 we require that the following equations must be satis-
AT etz (atra)r, C8  fied: (1) A2f=1/(r,ry), (2) Af=In(rotry+ry), and (3)
A f=r,/(2r,), whereA, contains differentiations with re-
. rg 4 . P S T spect tox,. The first two requirements are obvious. The
r, 45079 (Fatrap)lot g (Fatraraptrap)lo, third one follows from applying the operatdr ?A, to both
(C9) sides of the equation?f=1/(r ,r,,) (in the general, nonsym-
metric case, e.g., that of Eq&C8)—(C10), we also need the
1o 1 5 5 b 3 requirement which follows from applying the operator
AT(rary) = 75 (10ra+5rap—4rp)rp. - (€10 A~"Ap). The requirementél)—(3) fix the 12 coefficients of
polynomialsW,; and W, uniquely. A similar reasoning can
Applying a Laplacian operatofmaybe several timggo  be applied to all inverse Laplacians from E¢85)—(C10.
the right-hand sides of Eq$C5—(C10), one can immedi- As an example of how inverse Laplacians can be used to
ately check that we obtain the correct arguments of the incompute divergent integrals, let us consider the following
verse Laplacian operators from the left-hand sides of thesi#tegral, needed to compute, e.g., the integral on the left-
equations. Moreover, the right-hand sides of E¢85—  hand side of Eq(55 (hereb#a andc+a,b):
(C10 are unique in the following sense. Let us, for example, )

look for the double inverse Laplacian of Ljt,), Eq. (C6). f & rﬁ(i) (i) =a§b>a}°)f P rs
r.C
I

It means that we are looking for a solutidnof the partial

differential equatiom\?f=1/(r ,r,,). Let us now restrict our-

selves to the belonging only to the family of functions of 5

type Wq(ra,rp,rap) T Wo(ra,rp,rap)In(ratry+ra,), where —_ (b) A(c) —1r_a

2 &l . . 413,797 A,

W, andW, are polynomials of indicated variables consisting ] rp

only of quadratic terms in these variablgg., the most gen- 1 1
H H H 2 2 2

eral polynomial of this type i®r;+asrp+asraptasrary - _477&i<b)ajgc)[ -5 r3.+ 7 (12412 e

+asr raptaghplap)- This particular form can be guessed

easily from the dimensional reasons if we already know the

first inverse Laplacian of 1¢4r,), Eq. (C5). So we assume where Eq.(C8) was employed and® stands for differen-

we know the general form of, all we need is to fix the tiation with respect toj, .

M/ . j Mol e

[1] J. H. Taylor, Class. Quantum Grat0, S167 (1993; A. [4] B. R. lyer and C. M. Will, Phys. Rev. 32, 6882(1995.
Wolszczanjbid. 11, A227 (1994. ) [5] L. Blanchet, Phys. Rev. @7, 4392(1993.

[2] C. Cutler, T. A. Apostolatos, L. Bildsten, L. S. Finn, E. [6] R. Arnowitt, S. Deser, and C. W. Misner, {@ravitation: An
Flanagan, D. Kennefick, D. M. Markovi@. Ori, E. Poisson, Introduction to Current Researclkedited by L. Witten(Wiley,
G. J. Sussman, and K. S. Thorne, Phys. Rev. L[#}t.2984 New York, 1962, p. 227.
(1993. [7] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Prog. Theor.

[3] B. R. lyer and C. M. Will, Phys. Rev. Let70, 113(1993. Phys.51, 1598(1974).



4722 PIOTR JARANOWSKI AND GERHARD SCHAER 55
[8] G. Schéer, Ann. Phys(N.Y.) B161, 81 (1985. Gauss Symposium, Conference A: Mathematical and Theoret-
[9] G. Sch#er, “Post-Newtonian approximations and equations of ical Physics, Munich, edited by M. Behara, R. Fritsch, and R.
motion of general relativity,” report, Banach Center Publica- G. Lintz (Walter de Gruyter, Berlin, 1995p. 667.
tions, Institute of Mathematics, Polish Academy of Sciences|13] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Prog. Theor.

Warsaw, 1997unpublisheg Phys.51, 1220(1974.
[10] T. Damour and G. Sclfer, Nuovo Cimento B101 127  [14] T. Damour and N. Deruelle, Ann. Inst. Henri Poincatays.
(1988. Theor. 43, 107 (1985.

[11] G. Schéer, in 5th Marcel Grossmann Meeting on General [15] R. V. Wagoner and C. M. Will, Astrophys. 210, 764(1976;
Relativity, Proceedings of the Meeting held at the University of 215, 984E) (1977.

Western Australia, Perth, edited by D. G. Blair and M. J. [16] L. Blanchet and G. Sclier, Mon. Not. R. Astron. Soc239
Buckingham (World Scientific, Singapore, 1989Pt. A, p. 8.45 (1989 ' ' '

467. .
[12] G. Schéer, in Symposia Gaussian@roceedings of the 2nd [17] M. Riesz, Acta Math81, 1 (1949.



