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Using the path integral representation of the density matrix propagator of quantum Brownian motion, we
derive its asymptotic form for times greater than the so-called localization time (\/gkT)1/2, whereg is the
dissipation andT the temperature of the thermal environment. The localization time is typically greater than
the decoherence time, but much shorter than the relaxation timeg21. We use this result to show that the
reduced density operator rapidly evolves into a state which is approximately diagonal in a set of generalized
coherent states. We thus reproduce, using a completely different method, a result we previously obtained using
the quantum state diffusion picture@Phys. Rev. D52, 7294~1995!#. We also go beyond this earlier result, in
that we derive an explicit expression for the weighting of each phase space localized state in the approximately
diagonal density matrix, as a function of the initial state. For sufficiently long times it is equal to the Wigner
function, and we confirm that the Wigner function is positive for times greater than the localization time
~multiplied by a number of order 1!. @S0556-2821~97!05008-X#

PACS number~s!: 03.65.Bz, 05.40.1j, 42.50.Ar

I. INTRODUCTION

One of the simplest open systems that is amenable to
straightforward analysis is the quantum Brownian motion
model. This model consists of a nonrelativistic point particle,
possibly in a potential, coupled to a bath of harmonic oscil-
lators in a thermal state. The quantum Brownian motion
model has been used very extensively in studies of decoher-
ence and emergent classicality~see, for example, Refs.
@1–8#!.

In the simplest case of a free particle of massm in a
high-temperature bath, with negligible dissipation the master
equation for the reduced density matrixr(x,y) of the point
particle is
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a2~x2y!2r, ~1.1!

wherea254mgkT/\2. ~More general forms of this equa-
tion, together with the derivations of it may be found in
many places. See, for example, Refs.@2,5,9#.!

One of the most important properties of Eq.~1.1! ~and
also its more general forms! is that the density operator tends
to become approximately diagonal in both position and mo-
mentum after a short time. This has been seen in numerical
solutions and in the evolution of particular types of initial
states for which analytic solution is possible@6–8,10–15#.

A more precise demonstration of this statement was given
in Ref. @16# by appealing to an alternative description of
open systems known as the quantum state diffusion picture
@17–21#. In that picture, the density operatorr satisfying Eq.
~1.1! is regarded as a mean over a distribution of pure state
density operators:

r5M uc&^cu, ~1.2!

whereM denotes the mean~defined below!, with the pure
states evolving according to a nonlinear stochastic Langevin-
Ito equation, which for the model of this paper is

udc&52
i

\
Huc&dt2

1

2
~L2^L&!2uc&dt

1~L2^L&!uc&dj~ t ! ~1.3!

for the normalized state vectoruc&, whereH5p2/2m andL
5ax̂. Here, dj is a complex differential random variable
representing a complex Wiener process. The linear and qua-
dratic means are

M @djdj* #5dt, M @djdj#50, M @dj#50. ~1.4!

The appeal of this picture is that the solutions to the sto-
chastic Eq.~1.3! appear to describe the expected behavior of
an individual history of the system and have been seen to
correspond to single runs of laboratory experiments. For ex-
ample, for the quantum Brownian motion model, the solu-
tions tend to phase space localized states of constant width
whose centers undergo classical Brownian motion
@16,20,22–24#. The time scale of this process, the localiza-
tion time, is at slowest of order (\/gkT)1/2, which is the
time scale on which the thermal fluctuations overtake the
quantum fluctuations@25–27#. For an initial superposition of
localized states a distancel apart, localization initially pro-
ceeds on a much shorter time scale, of order\2/( l 2mgkT)
~which is often called the decoherence time@8,14#!, thereaf-
ter going over to the slower time scale above.

It is important to note, however, that the quantum state
diffusion picture is a purelyphenomenologicalpicture of
open systems. It isnot a fundamental modification of the
Schrödinger equation, since the whole system~the distin-
guished system together with its environment! still evolves
according to the standard rules of unitary evolution. Justifi-
cation of this phenomenological view is ultimately a matter
of experiment, and as indicated above, experiment appears to
confirm it. There is, furthermore, theoretical evidence in fa-
vor of this phenomenological view. The quantum state dif-
fusion picture has been shown@21# to coincide, at least in its
intuitive picture and physical predictions, with a more fun-
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damental formulation of quantum theory, namely the deco-
herent histories approach@28–30#.

For us, the interesting feature of the quantum state diffu-
sion picture is the purely mathematical connection between
the stochastic Eq.~1.3! and the master equation~1.1!. The
solutions to Eq.~1.3! permit one to deduce some useful in-
formation about the form of the density operator on time
scales greater than the localization time. Given a set of lo-
calized phase space solutionsucpq&, the density operator
may be reconstructed via Eq.~1.2!. This, it may be shown
@16#, may be written explicitly as

r5E dpdq f~p,q,t !uCpq&^Cpqu. ~1.5!

Here, f (p,q,t) is a non-negative, normalized solution to the
Fokker-Planck equation describing the classical Brownian
motion undergone by the centers of the stationary solutions.
This is therefore an explicit, albeit indirect, demonstration of
the approach to approximately phase space diagonal form on
short time scales.

The above demonstration was described by us in detail in
Ref. @16#. However, we were not able to deduce an explicit
form for the functionf (p,q,t) using the quantum state dif-
fusion picture. That is, we know that it is a solution to the
Fokker-Planck equation, but it was not clear how to pick out
the particular solution corresponding to a particular initial
density operator. Intuitively, it is clear thatf (p,q,t) is some-
thing like the Wigner function of the initial state, coarse
grained sufficiently to make it positive, evolved forwards in
time, and with the interference terms thrown away. We
would like to be able to show this explicitly.

The aim of the present paper is to derive the form~1.5!
for times greater than the localization time directly from the
path integral representation of the density matrix propagator
corresponding to Eq.~1.1!, without using the quantum state
diffusion picture used in Ref.@16#. As we shall see, this
derivation has the advantage over Ref.@16# that it gives an
explicit expression forf (p,q,t). In particular, we shall show
that f (p,q,t) coincides with the Wigner functionWt(p,q) of
the density operator at timet, for sufficiently large times.

We will not use the stochastic equation~1.3! in this paper,
and indeed, our results could easily have been described
without mentioning quantum state diffusion at all. It is men-
tioned here only to contrast the present paper with our pre-
vious one, Ref.@16#, and to give some mathematical insight
into the origin of our path integral method.

II. THE DENSITY MATRIX PROPAGATOR

The solution to the master equation~1.1! may be written
in terms of the propagatorJ:

r t~x,y!5E dx0dy0J~x,y,tux0 ,y0,0!r0~x0 ,y0! ~2.1!

~see, for example, Refs.@2,27# for further details of the quan-
tum Brownian motion model!. The propagator may be given
in general by a path integral expression, which for the par-
ticular case considered here is

J~xf ,yf ,tux0 ,y0,0!5E DxDy expS im2\ E dt~ ẋ22 ẏ2!

2
a2

2 E dt~x2y!2D . ~2.2!

This is readily evaluated, with the result

J~xf ,yf ,tux0 ,y0,0!5expS im2\t
@~xf2x0!

22~yf2y0!
2#

2
a2t

6
@~xf2yf !

21~xf2yf !~x02y0!

1~x02y0!
2# D . ~2.3!

~For convenience we will ignore prefactors in what follows.
They may be recovered where required by appropriate nor-
malizations.!

The main result of the present paper comes from the
simple observation that the real part of the exponent in the
path integral~2.2! may be written

expS 2
a2

2 E dt~x2y!2D5E Dx̄ expS 2a2E dt~x2 x̄!2

2a2 E dt~y2 x̄!2D . ~2.4!

The path integral representation of the propagator may,
therefore, be written

J~xf ,yf ,tux0 ,y0,0!5E Dx̄K x̄~xf ,tux0,0!K x̄
* ~yf ,tuy0,0!,

~2.5!

where

K x̄~xf ,tux0,0!5E Dx expS im2\ E dt ẋ2

2a2E dt~x2 x̄!2D . ~2.6!

For a pure initial stater0(x,y)5C0(x)C0* (y), the density
operator at timet may, therefore, be written

r t~x,y!5E Dx̄C x̄~x,t !C x̄
* ~y,t !, ~2.7!

where the~unnormalized! wave functionC x̄ is given by

C x̄~xf ,t !5E dx0K x̄~xf ,tux0,0!C0~x0!. ~2.8!

~Wave functions of this type often appear in discussions of
systems undergoing continuous measurement@31–34#.!

Our strategy is to first evaluate the quantityK x̄ , examine
is asymptotic form for times greater than the localization
time, and then use it to reconstruct the density matrix propa-
gatorJ. The reason we expect this to yield the desired result
is that up to normalization factors and ignoring the fact that
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x̄ is real not complex, Eq.~2.8! is essentially the solution to
the Langevin-Ito equation~1.3!, so the phase space localiza-
tion effect should be visible in its long time limit. Moreover,
Eq. ~2.7! is the analogue of Eq.~1.2! or ~1.5!, so by reorga-
nizing the functional integral overx̄(t), we might reasonably
expect to derive Eq.~1.5!.

The path integral~2.6! is essentially the same as that for a
harmonic oscillator coupled to an external source, with the
complication that the frequency is complex. The path inte-
gral is therefore readily carried out~see Ref.@35#, for ex-
ample!, with the result

K x̄~xf ,tux0,0!5N expS i\ c1~xf
21x0

2!1
i

\
c2xfx01c3xf

1c4x01c52a2E
0

t

dsx̄2~s! D , ~2.9!

where

c15
mv cosvt

2 sinvt
, ~2.10!

c252
mv

sinvt
, ~2.11!

c35
2a2

sinvt E0
t

dsx̄~s!sinvs, ~2.12!

c45
2a2

sinvt E0
t

dsx̄~s!sinv~ t2s!, ~2.13!

c55
4i\a2

mv sinvt E0
t

dsE
0

s

ds8x̄~s!x̄~s8!sinv~ t2s!sinvs8.

~2.14!

Herev5a(12 i ) and

a5S \a2

4m D 1/25S gkT

\ D 1/2. ~2.15!

The time scale of evolution according to Eq.~2.9! is,
therefore,a21, which coincides with the localization time
discussed in Ref.@16#. The asymptotic properties ofK x̄ are
now easily seen. Ast→`, c2→0, andc1→ 1

2ma(11 i ) like
e2at. Sincec2→0, the propagatorK x̄ factors into a product
of functions ofx0 andxf . The wave function~2.8! therefore
‘‘forgets’’ its initial conditions and becomes proportional to
a Gaussian of the form

expS i\ c1xf
21c3xf D ~2.16!

on a time scalea21. This is in complete agreement with the
quantum state diffusion picture analysis of Refs.@16,20#.

Now introduce

q̄5
\

ma
Rec3 , p̄5\~Rec31Imc3!. ~2.17!

Then the Gaussian may be written

expS i\ c1x
21c3xD5expS 2

ma

2\
~12 i !~x2q̄!21

i

\
p̄x

1
ma

2\
~12 i !q̄2D[^xuC p̄ q̄&expSma

2\
~12 i !q̄ 2D .

~2.18!

The propagatorK x̄ therefore has the form

K x̄~xf ,tux0,0!5N^xf uC p̄ q̄&expSma

2\
~12 i !q̄2D

3expS i\ c1x0
21c4x01c52a2E

0

t

dsx̄2~s! D .
~2.19!

The generalized coherent statesuC p̄ q̄& depend onx̄(t) only
through p̄ and q̄, which are functionals ofx̄(t). They are
close to minimal uncertainty states, satisfyingDpDq
5\/&. @20,16#.

The desired form of the propagator is now obtained by
inserting Eq.~2.19! in Eq. ~2.5!, but reorganizing the func-
tional integral overx̄(t) into ordinary integrations overp̄ and
q̄ and functional integrations over remaining parts ofx̄(t).
This may be achieved by writing the functional integral over
x̄(t) as

E Dx̄5E dpdqE Dx̄d~p2 p̄!d~q2q̄! ~2.20!

with p̄ and q̄ given in terms ofx̄ by Eq. ~2.17!. We thus
obtain

J~xf ,yf ,tux0 ,y0,0!

5E dpdqE Dx̄d~p2 p̄!d~q2q̄!^xf uCpq&^Cpquyf&

3expSma

\
q2DexpS i\ c1x0

22
i

\
c1* y0

21c4x01c4* y0D
3expS c51c5*22a2E

0

t

dsx̄2~s! D . ~2.21!

This may be written

J~xf ,yf ,tux0 ,y0,0!5E dpdq f~p,q,tux0 ,y0!^xf uCpq&

3^Cpquyf&, ~2.22!

where

f ~p,q,tux0 ,y0!5E Dx̄d~p2 p̄!d~q2q̄!expSma

\
q2D

3expS i\ c1x0
22

i

\
c1* y0

21c4x01c4* y0D
3expS c51c5*22a2E

0

t

dsx̄2~s! D . ~2.23!

We have clearly cast the result in the desired form. Folding
an arbitrary initial state into the expression for the density
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matrix propagator~2.22!, we obtain an expression of the de-
sired form~1.5!, where f (p,q,t) is given explicitly by

f ~p,q,t !5E dx0dy0f ~p,q,tux0 ,y0!r0~x0 ,y0!. ~2.24!

This is our first main result.

III. THE PHASE SPACE DISTRIBUTION FUNCTION

It remains to evaluate the path integral expression~2.23!.
To do this first notice that Eq.~2.23! may be written

f ~p,q,tux0 ,y0!5expS i\ c1x0
22

i

\
c1* y0

21
ma

\
q2D E dkdk8

3expS i\ kp1
i

\
k8qD E Dx̄

3expS 2
i

\
kp̄2

i

\
k8q̄1c4x01c4* y0D

3expS c51c5*22a2E
0

t

dsx̄2~s! D . ~3.1!

The functional integral overx̄ is a Gaussian, sincec5 is
quadratic inx̄ andp̄, q̄, andc4 are linear inx̄, but it involves
inverting the functional matrix contain in the last exponential
in Eq. ~3.1!, which does not look particularly easy. However,
we are saved from having to do this calculation by the fol-
lowing observation. From Eq.~2.5! and Eq. ~2.9! ~for at
@1!, we see that

J~xf ,yf ,tux0 ,y0,0!

5expS i\ c1~xf
21x0

2!2
i

\
c1* ~yf

21y0
2! D

3E Dx̄ exp~c3xf1c3* yf1c4x01c4* y0!

3expS c51c5*22a2E
0

t

dsx̄2~s! D . ~3.2!

This functional integral overx̄ in this expression is very
similar in form to Eq.~3.1! but we already know what the
answer is: it is Eq.~2.3!. In particular, equating~3.2! and
~2.3!, we obtain

E Dx̄ expS c3xf1c3* yf1c4x01c4* y01c51c5*

22a2E
0

t

dsx̄2~s! D
5expS im2\t

@~xf2x0!
22~yf2y0!

2#

2
a2t

6
@~xf2yf !

21~xf2yf !~x02y0!1~x02y0!
2# D

3expS 2
i

\
c1~xf

21x0
2!1

i

\
c1* ~yf

21y0
2! D . ~3.3!

Now the point is that the formula~3.3! is true for arbi-
trary, xf ,yf . In particular, using Eq.~2.17!, we see that

c3xf1c3* yf5
ma

\
@xf1yf2 i ~xf2yf !#q̄1

i

\
p̄~xf2yf !.

~3.4!

Hence the functional integral~3.3! is exactly the same as the
one appearing in Eq.~3.1! if, in Eq. ~3.3!, we make the
substitutions

~xf2yf !→2k,
ma

\
@xf1yf2 i ~xf2yf !#→2

i

\
k8.

~3.5!

Inverting forxf andyf , we therefore find that the functional
integral overx̄(t) in Eq. ~3.1! is equal to the right-hand side
of Eq. ~3.3! with

xf52
~11 i !

2
k2

i

2ma
k8, ~3.6!

yf5
~12 i !

2
k2

i

2ma
k8. ~3.7!

Using this result and changing variables fromk8 to K5k
1k8/ma in Eq. ~3.1!, we obtain

f ~p,q,tux0 ,y0!5expSma

\
q21 i

mX0j0
\t

2
a2t

6
j0
2D

3E dkdK expF2S a2t6 2
ma

4\ D k2
2
ma

4\
K21Sma

2\
2

m

2\t D kKG
3expF i\ kS p2maq1

mX0
t

2 i
\a2t

6
j0D G

3expF i\ KSmaq1 i
mj0
2t D G , ~3.8!

whereX05
1
2(x01y0), j05x02y0 . This may now be evalu-

ated.
An alternative way of writing Eq.~3.8! is to carry out the

same steps, but to change variables in Eq.~3.1! from k,k8 to
xf ,yf , with the formal result

f ~p,q,tux0 ,y0!5E dxfdyf

3expSma

2\
~12 i !~xf2q!22

i

\
pxf D

3expSma

2\
~11 i !~yf2q!21

i

\
pyf D

3J~xf ,yf ,tux0 ,y0,0!. ~3.9!

Folding in the initial state via Eq.~2.24!, we obtain
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f ~p,q,t !5E dxfdyf

3expSma

2\
~12 i !~xf2q!22

i

\
pxf D

3expSma

2\
~11 i !~yf2q!21

i

\
pyf D

3r t~xf ,yf !, ~3.10!

which has the appearance of a formal inversion of the rela-
tion ~1.5!.

Because the coordinate transformation~3.6!, ~3.7! is com-
plex some attention to the integration contour is necessary.
In particular, k and k8 are integrated along the real axis,
thereforexf1yf is integrated along a purely imaginary con-
tour and xf2yf along a real contour. More precisely, let
X5 1

2(xf1yf) andj5xf2yf . Then Eq.~3.9! becomes

f ~p,q,tux0 ,y0!5E
2 i`

i`

dXE
2`

1`

dj expFma

\ S ~X2q!21
j2

4 D
2

i

\
maj~X2q!2

i

\
pj G

3JSX1
j

2
,X2

j

2
,tUx0 ,y0,0D . ~3.11!

Explicitly, this integral reads

f ~p,q,tux0 ,y0!5E
2 i`

i`

dXE
2`

1`

dj expFma

\ S ~X2q!21
j2

4 D
2

i

\
maj~X2q!2

i

\
pj G

3expS im\t ~X2X0!~j2j0!

2
2ma2t

3\
~j21jj01j0

2! D , ~3.12!

whereX0 and j0 defined in the same way asX and j. The
X integral will clearly converge since the contour is along
the imaginary axis, and thej integral will converge for suf-
ficiently largeat.

Letting X→X1q, the integral overX is readily carried
out, with the result

f ~p,q,tux0 ,y0!5E dj expS 2
i

\
pj1

im

\t
~q2X0!~j2j0!

2
2ma2t

3\
~j21jj01j0

2! D
3expHma

4\ Fj21S j2
~j2j0!

at D 2G J .
~3.13!

The integral overj may now be evaluated but it is not nec-
essary to do this, since the form of the answer is now clear.

Forat@1, the terms in the second exponential are negligible
compared to the similar terms in the first. Furthermore, the
remaining terms have the form of the Wigner transform of
the propagator@27,36#. We thus have the simple result

f ~p,q,tux0 ,y0!'E dj exp@2~ i /\!pj#J~q,j,tuX0 ,j0,0!.

~3.14!

Attaching an arbitrary initial density matrix, it then follows
from Eq. ~2.24! that

f ~p,q,t !'E dj exp@2~ i /\!pj#r tS q1
1

2
j,q2

1

2
j D

5Wt~p,q!. ~3.15!

That is, forat@1, f (p,q,t) is the Wigner function of the
density operator at timet. This is the second main result of
this paper.

From any of the above representations off (p,q,t) @other
than Eq.~3.14!#, or from Ref. @16#, it is straightforward to
show thatf (p,q,t) obeys the Fokker-Planck equation

] f

]t
52

p

m

] f

]q
12mgkT

]2f

]p2
1~2\gkT!1/2

]2f

]p]q

1
\

2m

]2f

]q2
. ~3.16!

As we have seen,f (p,q,t) approaches the Wigner function
Wt(p,q) for at@1, which obeys the Fokker-Planck equation
of classical Brownian motion:

]W

]t
52

p

m

]W

]q
12mgkT

]2W

]p2
. ~3.17!

What happens is that the last two terms in Eq.~3.16! become
negligible for largeat, as may be seen by studying the
Wigner function propagator~below!.

IV. THE POSITIVITY OF THE WIGNER FUNCTION

We have shown that the density operator approaches the
form ~1.5!, wheref (p,q,t) is given by the Wigner function.
However, f (p,q,t) is by construction positive, yet the
Wigner function is not guaranteed to be positive in general
@36#. What happens is that the Wigner function becomes
strictly non-negative after a period of time, under evolution
according to~the Wigner transform of! Eq. ~1.1!, as we now
show.

The Wigner transform of the relation~2.1! yields

Wt~p,q!5E dp0dq0K~p,q,tup0 ,q0,0!W0~p0 ,q0!,

~4.1!

whereK(p,q,tup0 ,q0,0) is the Wigner function propagator,
and is given by@27#
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K~p,q,tup0 ,q0,0!5expF2m~p2p0!
22nS q2q02

p0t

m D 2
1s~p2p0!S q2q02

p0t

m D G , ~4.2!

where, introducingD52mgkT,

m5
1

Dt
, n5

3m2

Dt3
, s5

3m

Dt2
. ~4.3!

It is well-known that the Wigner function may take nega-
tive values only through oscillations in\-sized regions of
phase space, and that it may be rendered positive by coarse
graining of such a region. Considered, for example, the
smeared Wigner function

WH~p,q!52E dp8dq8

3expS 2
2sq

2~p2p8!2

\2 2
~q2q8!2

2sq
2 D

3Wr~p8,q8!. ~4.4!

This object is called the Husimi function@37#. It is equal to
the expectation value of the corresponding density operator
in a coherent state~of position widthsq! ^p,qurup,q&, so is
non-negative.

Loosely speaking, what happens during time evolution
according to Eq.~4.1! is that, after a certain amount of time,
the propagator effectively smears the Wigner function over a
region of phase space greater than\, and it becomes posi-
tive, in the manner of Eq.~4.4!. We will now show this
explicitly.

Letting p0→p01p and q0→q01q2p0t/m in Eq. ~4.1!
yields

Wt~p,q!5E dp0dq0exp~2mp0
22nq0

21sp0q0!

3W0S p01p,q01q2
p0t

m D . ~4.5!

The further transformationp0→p01(s/2m)q0 yields

Wt~p,q!5E dp0dq0 exp~2mp0
22bq0

2!

3W0S p01 s

2m
q01p,q01q2

p0t

m D , ~4.6!

whereb5@n2(s2/4m)#. These two transformations are ca-
nonical and therefore the transformed Wigner function ap-
pearing in the integrand of Eq.~4.6! is still the Wigner func-
tion of some state~unitarily related to the original one!.
Hence,

Wt~p,q!5E dp0dq0exp~2mp0
22bq0

2!W̃pq~p0 ,q0!

~4.7!

for some Wigner functionW̃pq depending onp,q. This may
now be recast as the smearing of a Husimi function:

Wt~p,q!5E dp8expS 2
p82

~m212\2b! D E dp0dq0

3expS 2
~p82p0!

2

\2b
2bq0

2D W̃pq~p0 ,q0!.

~4.8!

The integral overp0 ,q0 is a Husimi function withsq
2

51/(2b). HenceWt(p,q)>0 provided the integral over
p8 in Eq. ~4.8! exists. This will be the case ifm21.\2b,
that is, if

t.S)2 D 1/2S \

gkTD
1/2

. ~4.9!

The Wigner function will therefore be non-negative for times
greater than the localization time~multiplied by a number of
order 1!.

V. DISCUSSION

We have shown that for times greater than the localization
time (\/gkT)1/2, the density operator satisfying Eq.~1.1!
approaches the form

r5E dpdqWt~p,q!uCpq&^Cpqu, ~5.1!

whereWt(p,q) is the Wigner function and theuCpq& are
close to minimum uncertainty generalized coherent states.
The Wigner function is strictly non-negative for times
greater than the localization time~times a number of order
1!.

Diósi has also discussed the possibility of the phase space
diagonal form~1.5! under evolution according to the master
equation~1.1! @38#. His method was very different to ours in
that he used the properties of the coherent states to regard
Eq. ~1.5! as an expansion of the density operator. He found
that such an expansion is possible for times greater than the
localization time, times a number of order 1, in tune with our
results.

Intuitively, Eq. ~5.1! indicates that the system is in a sta-
tistical mixture of quasiclassical trajectories, with the prob-
ability for each trajectory that indicated by Wigner function
~regarded as a true phase space distribution function!. This
interpretation is not immediately clear, however, since the
representation of the density matrix as diagonal in coherent
states is not unique, because of the overcompleteness of the
coherent states. Furthermore, there will be another basis of
complete orthogonal states in which the density matrix is
exactly diagonal and these states will be quite different from
coherent states.

These various issues were discussed in Ref.@16#. There it
was shown, using the above results, that histories consisting
of time-ordered sequences of quasiprojections onto cells of
phase space are approximately decoherent, and that the prob-
abilities for them are those indicated by the classical stochas-
tic process described by the Fokker-Planck equation~3.17!,
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for sufficiently large phase space cells. This substantiates the
interpretation in terms of a statistical ensemble of trajecto-
ries. Potential ambiguities arising from the overcompleteness
of the coherent states become insignificant because the phase
space cells projected onto are large. Furthermore, the exact
diagonality of the density operator in a different basis corre-
sponds to the well-known fact that a given physical system
typically admits more than one decoherent set of histories
@29,30#. This in turn is related to the fact that corresponding
to a given master equation there can be many unravelings in
terms of stochastic Schro¨dinger equations@16,39,40#. We
stress once again that this paper is concerned with the math-
ematical question of deriving the form~5.1!, and we do not
have anything original to say about questions of its signifi-
cance and interpretation.

An advantage of deriving Eq.~5.1! using path integral
methods rather than quantum state diffusion, is that it yields
and explicit expression for the phase space distribution func-
tion f (p,q,t). Another advantage is that it is not obviously
restricted to Markovian master equations. The quantum state
diffusion picture, in its current state of development, exists
only for systems described by a Markovian master equation.
It may exist in the non-Markovian case, but is yet to be
developed. The exact propagator for quantum Brownian mo-
tion, for quadratic potentials, can be given in terms of a path
integral@5# and is~mildly! non-Markovian. Since the method
described here utilizes path integrals, rather than the quan-
tum state diffusion picture, there is a chance that our method
may be valid in the non-Markovian case also, but this is still
to be investigated.

We have concentrated in this paper on the simplest pos-
sible model of quantum Brownian motion: the free particle in
a high-temperature environment with negligible dissipation
g. It is clear, however, that remaining in the context of a
Markovian master equation, it would be straightforward~al-
though perhaps tedious! to extend our considerations to the
case of a harmonic oscillator with nontrivial dissipation. In
the quantum state diffusion picture analysis, this case was
covered in Ref.@16# and we expect the path integral treat-
ment of the present paper to yield comparable results.

It is perhaps enlightening to comment on the various time
scales involved in a more general quantum Brownian motion
model and sketch the expected general physical picture part
of which is described by the results of this paper. In this
paper, we have largely been concerned with the localization

time (\/gkT)1/2, which is the time scale on which an arbi-
trary initial density operator approaches the form~1.5!. The
nomenclature ‘‘localization time’’ comes from the quantum
state diffusion picture, which was the picture first used to
derive some of the results described in this paper. It is so
named because it is the time scale on which an arbitrary
initial wave function becomes localized in phase space under
evolution according to Eq.~1.3! @16,20#.

Also relevant is the decoherence time\2/( l 2mgkT),
which is the time scale on which the off-diagonal terms of
the density matrix are suppressed~in the position represen-
tation! @14#. The decoherence time necessarily involves a
length scalel , which comes from the initial state. It could,
for example, be the separation of a superposition of localized
wave packets, and the decoherence time is then the time
scale on which the interference between these packets is sup-
pressed.

If one is interested in emergent classicality for macro-
scopic systems, it is appropriate to choose values order 1 in
cgs units, forl , T, m, andg. The decoherence time is then
typically much shorter than the localization time. This is in
turn typically much shorter than the relaxation timeg21,
which is the time scale on which the system approaches ther-
mal equilibrium~when this is possible!.

Hence the general picture we have is as follows. Suppose
the initial state of the system is a superposition of localized
wave packets. Then the interference terms between these
wave packets is destroyed on the decoherence time scale.
After a few localization times the density matrix subse-
quently approaches the phase space diagonal form~1.5!. Af-
ter a much longer time of order in the relaxation time, the
system reaches thermal equilibrium. Discussions of emergent
classicality usually concern times between the decoherence
time and the relaxation time, and it is this range of time
which has been the primary concern of this paper.

Note added in proof.A stochastic decoupling of the den-
sity matrix propagator@of the form Eq.~2.5!# valid for cer-
tain non-Markovian systems has been proposed by Strunz
@41#.

ACKNOWLEDGMENTS

We would like to thank Todd Brun, Lajos Dio´si, Juan
Pablo Paz, Ian Percival, and Wojtek Zurek for useful conver-
sations.

@1# G. S. Agarwal Phys. Rev. A3, 828 ~1971!; 4, 739 ~1971!; H.
Dekker,ibid. 16, 2116~1977!; Phys. Rep.80, 1 ~1991!; G. W.
Ford, M. Kac, and P. Mazur, J. Math. Phys.~N.Y.! 6, 504
~1965!; H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep.
168, 115~1988!; V. Hakim and V. Ambegaokar, Phys. Rev. A
32, 423 ~1985!; J. Schwinger, J. Math. Phys.~N.Y.! 2, 407
~1961!; I. R. Senitzky, Phys. Rev.119, 670 ~1960!.

@2# A. O. Caldeira and A. J. Leggett, Physica A121, 587 ~1983!.
@3# H. F. Dowker and J. J. Halliwell, Phys. Rev. D46, 1580

~1992!.
@4# M. R. Gallis, Phys. Rev. A48, 1023~1993!.

@5# B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D45, 2843
~1992!; 47, 1576~1993!.

@6# J. P. Paz, S. Habib, and W. Zurek, Phys. Rev. D47, 488
~1993!.

@7# W. G. Unruh and W. Zurek, Phys. Rev. D40, 1071~1989!.
@8# W. Zurek, Phys. Today40, 36 ~1991!.
@9# J. J. Halliwell and T. Yu, Phys. Rev. D53, 2012~1996!.

@10# E. Joos and H. D. Zeh, Z. Phys. B59, 223 ~1985!.
@11# J. P. Paz and W. Zurek, Phys. Rev. D48, 2728~1993!.
@12# W. Zurek, S. Habib, and J. P. Paz, Phys. Rev. Lett.70, 1187

~1993!.

55 4703POST-DECOHERENCE DENSITY MATRIX PROPAGATOR . . .



@13# W. Zurek, Phys. Rev. Lett.53, 391 ~1984!.
@14# W. Zurek, inFrontiers of Nonequilibrium Statistical Physics,

edited by G. T. Moore and M. O. Scully~Plenum, New York,
1986!.

@15# W. Zurek, Prog. Theor. Phys.89, 281~1993!; in Physical Ori-
gins of Time Asymmetry, edited by J. J. Halliwell, J. Perez-
Mercader, and W. Zurek~Cambridge University Press, Cam-
bridge, England, 1994!.

@16# J. J. Halliwell and A. Zoupas, Phys. Rev. D52, 7294~1995!.
@17# N. Gisin and I. C. Percival, J. Phys. A25, 5677 ~1992!; see

also, Phys. Lett. A167, 315 ~1992!.
@18# N. Gisin and I. C. Percival J. Phys. A26, 2233~1993!.
@19# N. Gisin and I. C. Percival, J. Phys. A26, 2245~1993!.
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