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Post-decoherence density matrix propagator for quantum Brownian motion
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Using the path integral representation of the density matrix propagator of quantum Brownian motion, we
derive its asymptotic form for times greater than the so-called localization thifigk{T)2, wherey is the
dissipation andr the temperature of the thermal environment. The localization time is typically greater than
the decoherence time, but much shorter than the relaxation finte We use this result to show that the
reduced density operator rapidly evolves into a state which is approximately diagonal in a set of generalized
coherent states. We thus reproduce, using a completely different method, a result we previously obtained using
the quantum state diffusion pictufPhys. Rev. D62, 7294(1995]. We also go beyond this earlier result, in
that we derive an explicit expression for the weighting of each phase space localized state in the approximately
diagonal density matrix, as a function of the initial state. For sufficiently long times it is equal to the Wigner
function, and we confirm that the Wigner function is positive for times greater than the localization time
(multiplied by a number of order)1[S0556-282(97)05008-X]

PACS numbe(s): 03.65.Bz, 05.40tj, 42.50.Ar

I. INTRODUCTION i 1
|dyy=—+ Hg)dt=5 (L—(L)?y)dt

One of the simplest open systems that is amenable to
straightforward analysis is the quantum Brownian motion +(L=(L))|)d&(t) 1.3
model. This model consists of a nonrelativistic point particle,
possibly in a potential, coupled to a bath of harmonic oscilfor the normalized state vecty), whereH=p?/2m andL
lators in a thermal state. The quantum Brownian motion=aX. Here, d¢ is a complex differential random variable
model has been used very extensively in studies of decoherepresenting a complex Wiener process. The linear and qua-
ence and emergent classicalitgee, for example, Refs. dratic means are

[1-8)).

In the simplest case of a free particle of massin a M[dédEF ]=dt, M[d&DE]=0, M[d&]=0. (1.9
high-temperature bath, with negligible dissipation the master
equation for the reduced density matfikx,y) of the point The appeal of this picture is that the solutions to the sto-
particle is chastic Eq(1.3) appear to describe the expected behavior of

an individual history of the system and have been seen to
dp ik (&*p &p 2 ’ correspond to single runs of laboratory experiments. For ex-
gt 2ml\ax? ay?] 2 a(x=y)%p, (1.0 ample, for the quantum Brownian motion model, the solu-
tions tend to phase space localized states of constant width
where a?=4mykT/#2. (More general forms of this equa- whose centers undergo classical Brownian motion
tion, together with the derivations of it may be found in [16,20,22—24 The time scale of this process, the localiza-
many places. See, for example, R¢&5,9].) tion time, is at slowest of orderi( ykT)2, which is the

One of the most important properties of Ed.1) (and time scale on which the thermal fluctuations overtake the
also its more general formss that the density operator tends quantum fluctuationf25—-27. For an initial superposition of
to become approximately diagonal in both position and moiocalized states a distant¢eapart, localization initially pro-
mentum after a short time. This has been seen in numericakeeds on a much shorter time scale, of orti&i(I?mykT)
solutions and in the evolution of particular types of initial (which is often called the decoherence tif814]), thereaf-
states for which analytic solution is possitj-8,10—15. ter going over to the slower time scale above.

A more precise demonstration of this statement was given It is important to note, however, that the quantum state
in Ref. [16] by appealing to an alternative description of diffusion picture is a purelyphenomenologicapicture of
open systems known as the quantum state diffusion picturepen systems. It isiot a fundamental modification of the
[17-21]. In that picture, the density operatesatisfying Eq.  Schralinger equation, since the whole systdthe distin-
(1.1 is regarded as a mean over a distribution of pure statguished system together with its environmesitill evolves
density operators: according to the standard rules of unitary evolution. Justifi-

cation of this phenomenological view is ultimately a matter
p=M|) (], (1.2 of experiment, and as indicated above, experiment appears to
confirm it. There is, furthermore, theoretical evidence in fa-
where M denotes the meaftdefined belowy, with the pure vor of this phenomenological view. The quantum state dif-
states evolving according to a nonlinear stochastic Langevirfusion picture has been shoy21] to coincide, at least in its
Ito equation, which for the model of this paper is intuitive picture and physical predictions, with a more fun-
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damental formulation of quantum theory, namely the deco- im o

herent histories approad@8—30. J(Xs, Y ,t|Xo7YO,0)=f DxDy ex;{ﬁ J dt(x*~y?)
For us, the interesting feature of the quantum state diffu-

sion picture is the purely mathematical connection between a2 5

the stochastic Eq(1.3 and the master equatioii.1). The Y J dt(x—y) ) (2.2

solutions to Eq(1.3) permit one to deduce some useful in-

formation about the form of the density operator on timeThis is readily evaluated, with the result

scales greater than the localization time. Given a set of lo- _

calized phase space solutiohs,,), the density operator _ Im 2 2
may be reconstructed via E(L.2). This, it may be shown I(x1,Y1,t1X0,Y0,0) =X 2ht [(X1=%0)" = (¥1=Y0)"]

[16], may be written explicitly as 5
t

5 [(Xt— Y1) 2+ (X — Y1) (Xo— Yo)
p= | dpdatp.a 0¥, ¥y (L9

+(XO_YO)2])- 2.3
Here,f(p,q,t) is a non-negative, normalized solution to the

Fokker-Planck equation describing the classical BrownianFor convenience we will ignore prefactors in what follows.
motion undergone by the centers of the stationary solutionsthey may be recovered where required by appropriate nor-
This is therefore an explicit, albeit indirect, demonstration ofmalizations)

the approach to approximately phase space diagonal form on The main result of the present paper comes from the

short time scales. simple observation that the real part of the exponent in the
The above demonstration was described by us in detail ipath integra2.2) may be written

Ref.[16]. However, we were not able to deduce an explicit )
form for the functionf(p,q,t) using the quantum state dif- a —
fusion picture. That is, we know that it is a solution to the exr{ ) J dt(x—y)z) :J Dx exr{ _aZJ dt(x—x)?
Fokker-Planck equation, but it was not clear how to pick out
the particular solution corresponding to a particular initial g2 f dt(y—x)?
density operator. Intuitively, it is clear th&fp,q,t) is some-
thing like the Wigner function of the initial state, coarse ] )
grained sufficiently to make it positive, evolved forwards in The path integral representation of the propagator may,
time, and with the interference terms thrown away. Wetherefore, be written
would like to be able to show this explicitly.

The aim of the present paper is to derive the fqdrd) J(Xs Vs :t|X01yo'0)=f DxKxt Xt ,tX0,00KE( Y ,t]y0,0),
for times greater than the localization time directly from the
path integral representation of the density matrix propagator 2.9
corresponding to Eq.1), without using the quantum state
diffusion picture used in Refl16]. As we shall see, this
derivation has the advantage over Rdf6] that it gives an im ]
explicit expression fof (p,q,t). In particular, we shall show KY(Xf,t|Xo,0)=f Dx ex;{i f dt x*
thatf(p,q,t) coincides with the Wigner functiow,(p,q) of
the density operator at tinte for sufficiently large times. ; —

We will not use the stochastic equatith3) in this paper, —a f dt(x—x)7]. (2.6
and indeed, our results could easily have been described
without mentioning quantum state diffusion at all. It is men-For a pure initial stateo(X,y) =Vo(X)W§ (y), the density

tioned here only to contrast the present paper with our pregperator at time may, therefore, be written
vious one, Ref[16], and to give some mathematical insight

into the origin of our path integral method.

. (2.9

where

pt(xvy)ZJ Dﬁ’ﬁxyt)q’ayyt): (27)

Il. THE DENSITY MATRIX PROPAGATOR where the(unnormalizedl wave functionW+-is given by

The solution to the master equati¢hl) may be written
in terms of the propagatar: WX 't):f dxoK 5t X1 11| X0,0) o (Xo).- 2.9

pi(X y):f dxedYed(X,Y,t|X0,Y0,0) po(Xo.Yo) (2.1 (Wave functions of this type often appear in discussions of
’ e ' systems undergoing continuous measurerfi@ht-34.)

Our strategy is to first evaluate the quantty, examine
(see, for example, Reff2,27] for further details of the quan- is asymptotic form for times greater than the localization
tum Brownian motion modgl The propagator may be given time, and then use it to reconstruct the density matrix propa-
in general by a path integral expression, which for the pargatorJ. The reason we expect this to yield the desired result
ticular case considered here is is that up to normalization factors and ignoring the fact that
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x is real not complex, Eq2.8) is essentially the solution to i
the Langevin-Ito equatiofil.3), so the phase space localiza- eXF{g C1X?+Cax
tion effect should be visible in its long time limit. Moreover,
Eq. (2.7) is the analogue of Eq1.2) or (1.5), so by reorga-
nizing the functional integral ove(t), we might reasonably
expect to derive Eq1.5).

The path integral2.6) is essentially the same as that for a
harmo_nic_oscillator coupled to an external source, With therpe propagatoK y-therefore has the form
complication that the frequency is complex. The path inte-
gral is therefore readily carried olsee Ref[35], for ex- Ma —
ampla, with the result KxtXt,t[%0,0)=N(x¢| ¥5q)ex %(1—|)q

B Ma ) — [
=ex —%(l—l)(x—q) +gpx

m m
+2—;(1—i)az)z<x|‘lqu exp(z—;“(l—i)az).

(2.18

i i i t
KxtX,t[Xg,00=N exp(% Co(XF+x5) + 7 CoXXo CaXy Xex;{% C1X3+ CaXot cs—azf ds?(s)).
0

t (2.19
+c4x0+c5—a2f dsx?(s) |, (2.9 -
0 The generalized coherent stateisﬁ) depend orx(t) only
h throughp and g, which are functionals ok(t). They are
where close to minimal uncertainty states, satisfyingpAq
Mo cosot =hiIv2. [20_,16|. ' _
clzﬁ, (2.10 The desired form of the propagator is how obtained by
Sinw inserting EqQ.(2.19 in Eq. (2.9, but reorganizing the func-
m tional integral ovex(t) into ordinary integrations over and
2= — _w (2.11 g and functional integrations over remaining partsx¢f).
Sinwt This may be achieved by writing the functional integral over
) x(t) as
2a to_
3= ginat fdsx(s)sinws, (2.12 o L o
0 J DX=fdpdqf Dxo(p—p)d(q—a)  (2.20
2 - _
Ca= ?a ftdSYS)sinw(t—s), (2.13  With p andq given in terms ofx by Eq.(2.17. We thus
Sinwt Jo obtain
difia® [t s . I(X¢,Y+1,t[X0,Y0,0)
C5_W fodsjods X(S)X(s")sinw(t—s)sinws’. B B B
(2.14 =fdpdqf Dx&(p—p) 8(q—= Q)XW o) (W pql Y1)
Herew=a(1—i) and % l{ma 2) l{i 2 i *y2. +c*
exp —— g°|exp - C1Xg— 7 C1 Y5+ CaXotC} Yo
_ﬁ_aZl/Z_ﬂllz 015 h poAR0 g M0 4
“\am] "\ & ' '

(2.23

t
X exp( Cs+CE— 2a2j ds?z(s)) .
The time scale of evolution according to E@.9) is, 0
therefore,e !, which coincides with the localization time This may be written
discussed in Ref.16]. The asymptotic properties ¢ty -are
now easily seen. At—, ¢,—0, andc;— sma(1+i) like
e “'. Sincec,— 0, the propagatoKfactors into a product
of functions ofxy andx;. The wave function2.8) therefore
“forgets” its initial conditions and becomes proportional to
a Gaussian of the form

J(Xs,Y1,tXg,Y0,0) = f dpdqf(p,q,t|xo,Yo) (x| ¥ pg)

X{WpqlyD), (2.22

where

i . —  [(ma
exﬂ(%"“?*%xf) 219 f(p,q,tlxo,yo>=f Dx&(p—ma(q—q)exp(qu)
on atime scaler 1. This is in complete agreement with the
quantum state diffusion picture analysis of R¢fi6,20.

Now introduce

_ h
q=— Recs,

o p=#(Rec;+Imcs).

(2.17

Then the Gaussian may be written

i i
xexpn(% C1X5— = crya+cyXo+Ch yo)

X exp( cs+ct— 2a2f;ds?(s) . (2.23

We have clearly cast the result in the desired form. Folding
an arbitrary initial state into the expression for the density
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matrix propagatof2.22, we obtain an expression of the de-

sired form(1.5), wheref(p,q,t) is given explicitly by

f(p,q,t)=fdxodyof(p,q,tlxo,yo)po(xo,yo)- (2.24
This is our first main result.

Ill. THE PHASE SPACE DISTRIBUTION FUNCTION
It remains to evaluate the path integral expressia3).
To do this first notice that Eq2.23 may be written
i 2 U o Ma ,
f(p.a.tx0.Yo) =exp = Cixg— 7 cTyg+ ——q°| | dkdK
h fi fi
X | kp+ | k' f Dx
exp 7 kpt+ > k'q X
i A I ' *
Xexp — & kp— 7 K'q+caXo+C; Yo

><exp< Cs+CE —ZaZItds_%r(s) . (321
0

The functional integral ovex is a Gaussian, sinces is
guadratic inx andp, g, andc, are linear inx, but it involves
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Now the point is that the formul&3.3) is true for arbi-
trary, X;,ys . In particular, using Eg(2.17), we see that

Ma ] I
C3Xf+cgyf:7[Xf+Yf_|(Xf_yf)]q+%p(xf_Yf)-
(3.9
Hence the functional integréB.3) is exactly the same as the

one appearing in Eq@3.1 if, in Eq. (3.3, we make the
substitutions

m i
(Xi=y)— =k = Xty =i (XYl — 2 K.
(35

Inverting forx; andy;, we therefore find that the functional
integral overx(t) in Eq. (3.1 is equal to the right-hand side
of Eq. (3.3 with

(1+1) i
2 2Ma

Xi= K, (3.6

(3.7)

inverting the functional matrix contain in the last exponentiaIUSi?g this result and changing variables frdch to K=k
in Eq. (3.1), which does not look particularly easy. However, TK'/Ma in Eq. (3.1), we obtain
we are saved from having to do this calculation by the fol-

lowing observation. From Eq2.5 and Eq.(2.9 (for at
>1), we see that

J(X¢,Y1,tX0,Y0,0)

i
=ex;{% CL(X2+x3) — - ct(yF+ys)

X f DX exp(CsX;+ C3 Yi+ CaXo+Ch Vo)

xex;( c5+c§—2a2J;d57(s) ) (3.2

This functional integral ovex in this expression is very

Ma S mXpé&, act
f(p,q,t|Xo,yo)=ex 2 o 2)

R L

ma ., (m m KK
CAh 2h 2kt
[ mX, . ha’
X ex gk p—maq+T—| 6 &o
[ K . Méo 38
X ex % maq+I 7 , (3.8

similar in form to Eq.(3.1) but we already know what the \yhereX = 3(xo+Yo), &o=Xo—Yo. This may now be evalu-

answer is: it is Eq(2.9). In particular, equating3.2) and
(2.3), we obtain

f Dx_exp( CaXi+ ChYi+CaXot+Chyo+CstCE

t
—2a2f dsx(s)
0

— im 2
= exp| 57 e [(X—%0)7~

a%t ) 5
~ 5 [(X—=Y1)“+ (X = Y1) (X0~ Yo) + (Xo—Y0)“]

(Yi—Y0)?]

. (3.3

i i
xext 0+ 1 07D

ated.

An alternative way of writing Eq(3.8) is to carry out the
same steps, but to change variables in Bdl) from k,k’ to
Xs,Ys, with the formal result

f(p,q,t Xo,YO)ZJ dxsdys

Ma ] 5 i
X ex ﬁ(l_l)(xf_(v ~ 7 PX

Ma ) 5 i
X ex %(1+|)(yf_q) + 5 PYr

X J(X¢,Y5,t|X0,Y0,0).

(3.9

Folding in the initial state via Eq2.24), we obtain
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For at>1, the terms in the second exponential are negligible
f(p,q,t)zf dx¢dys compared to the similar terms in the first. Furthermore, the
remaining terms have the form of the Wigner transform of

Ma i the propagatof27,36. We thus have the simple result
Xex[{%(l_i)(xf_cﬂz_% pr) propagatof g P

f(p,q,t|x0,yo)~f d¢ exp — (i/)p&1I(a.£,t{Xo,40.0).

F{ma Lot _. )
X ex ﬁ( +i)(ys—q) + o PVt (3.14

XpXe.yr), (3.10 Attaching an arbitrary initial density matrix, it then follows

which has the appearance of a formal inversion of the relaffom Eq.(2.24 that
tion (1.5).
Because the coordinate transformati8t6), (3.7) is com- .
plex some attention to the integration contour is necessary. |(P:G:t)= [ d& exd —(i/7)pé]p,
In particular,k and k’ are integrated along the real axis,

1 1 )
q+§§1q_§§

thereforex; + y; is integrated along a purely imaginary con- =Wi(p,q). (3.19

tour andx;—y; along a real contour. More precisely, let

X=3(x;+Yy;) andé=x;—y;. Then Eq.(3.9 becomes That is, for at>1, f(p,q,t) is the Wigner function of the
density operator at time This is the second main result of

§2

joo + o0 m .
f(|o,q,t|><o,yo)=ﬁi dxfi d¢ exn[%((x g+ M paper

From any of the above representationst gb,q,t) [other
than Eq.(3.14)], or from Ref.[16], it is straightforward to
show thatf(p,q,t) obeys the Fokker-Planck equation

i i
5 maé(X—q)— 7 pf}

3 3 anh__p +2mykT — il +(2h ykT) Y2 7t
e E RN CEL I M T AT
. . . . ﬁ &Zf 3 l
Explicitly, this integral reads ™ Frk (3.16

§2
f(p,d.t|xo, yo)—f dXJ dé exp{ ((X q)*+ 7 As we have seerf,(p,q,t) approaches the Wigner function
W,(p,q) for at>1, which obeys the Fokker-Planck equation

of classical Brownian motion:

i [
—%mai(X—q)—%pé}
. M:—B— 2m'ykT(92—\N (3.17
xexp(%(X—xoxg—go) o mdq 7w |

What happens is that the last two terms in E2J16 become
(3.12 negligible for largeat, as may be seen by studying the
Wigner function propagatoibelow).

+EETED) ],

where X, and &, defined in the same way aé and ¢&. The
X integral will clearly converge since the contour is along IV. THE POSITIVITY OF THE WIGNER FUNCTION

the imaginary axis, and th&integral will converge for suf- .
ficiently largeat. We have shown that the density operator approaches the

Letting X—X+q, the integral oveiX is readily carried orm (1.9), wheref(p,q,t) is given by the Wigner function.
out, with the result quever, f(p,q,t') is by construction pOSIt'I\'/e, .yet the
Wigner function is not guaranteed to be positive in general
i im [36]. What happens is that the Wigner function becomes
f(p,q,tlxo,y0)=f dé ex;{ — 7 PEF 77 (A= Xo) (€~ o) strictly non-negative after a period of time, under evolution
according tothe Wigner transform 9ofEq. (1.1), as we now

> show.
+ &80+ &) The Wigner transform of the relatioi2.1) yields
Mma | (&= &o)
Xexp 4o &+ & ot : Wt(p,q)ZJdponOK(p-Q-t|po-QoaO)Wo(po.QO).

(3.13 4.1

The integral ove may now be evaluated but it is not nec- whereK(p,q,t|po,d0,0) is the Wigner function propagator,
essary to do this, since the form of the answer is now cleand is given by{27]
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|00ti2 for some Wigner functior\'/vvpq depending orp,q. This may

K(p.a.t po,q0,0)=exri —(p=Ppo)®~ ”( A= 0o~ 1y now be recast as the smearing of a Husimi function:
12
Pot B , _ p
to(P=po)|A=do— || (42 Wi(p.@)= | dp'exp — = =1—7z5| | dPoddo
where, introducingd® =2mykT (p'—po)? 2|
' ' X ex —W—ﬁqo Wp4(Po,0o)-
1 3m? 3m
M Dt ’ v Dt3 ’ o Dt2 . (43)

The integral overpg,qq is a Husimi function with US
It is well-known that the Wigner function may take nega- =1/(28). Hence W,(p,q)=0 provided the integral over
tive values only through oscillations ifi-sized regions of p’ in Eq. (4.8) exists. This will be the case i~ 1>#%28,
phase space, and that it may be rendered positive by coargeat is, if
graining of such a region. Considered, for example, the

smeared Wigner function i\@)”zi h il’z

4.9

2] \9kT

Wh(p.a)= Zi dp’dq The Wigner function will therefore be non-negative for times
, , greater than the localization tinienultiplied by a number of

20’3(p_p )2 (q_q )2 order ])

Xexp — -

2 2
fi 2(rq

XW,(p".q"). (4.9 V. DISCUSSION

We have shown that for times greater than the localization

This object is called the Husimi functicﬂ?o?]. It is equal t0  time (ﬁ/‘ykT)]-/Z, the density operator Satisfying E(ﬂ_j_)
the expectation value of the corresponding density operatg§pproaches the form

in a coherent statéf position widtho ) (p,alp|p.q), so is
non-negative.

Loosely speaking, what happens during time evolution P:i dpdqW(p, )| W pg) (W pq. 5.9
according to Eq(4.1) is that, after a certain amount of time,
the propagator effectively smears the Wigner function over gvhere W,(p,q) is the Wigner function and thel ) are
region of phase space greater thfgnand it becomes posi- close to minimum uncertainty generalized coherent states.
tive, in the manner of Eq(4.4. We will now show this  The Wigner function is strictly non-negative for times

explicitly. greater than the localization timé@mes a number of order
Letting po— po+p and go— o+ g—pot/m in Eq. (4.1) 1).
yields Diosi has also discussed the possibility of the phase space

diagonal form(1.5 under evolution according to the master
equation(1.1) [38]. His method was very different to ours in
that he used the properties of the coherent states to regard
Eqg. (1.5 as an expansion of the density operator. He found

Wi(p,q)= i dpod doexp( — wpj— va5+ aPodo)

Pot ion i i i
XWol| po+p,Go+q— _) (4.5) that §uch an expansion is possible for tlmes. greater t_han the
m localization time, times a number of order 1, in tune with our
. _ results.
The further transformatiopy— po+ (o/2u)qq yields Intuitively, Eq. (5.1) indicates that the system is in a sta-

tistical mixture of quasiclassical trajectories, with the prob-
ability for each trajectory that indicated by Wigner function
(regarded as a true phase space distribution functibimis
interpretation is not immediately clear, however, since the
XWoi Do+ 21 Qo+ P Qo+ q— p_Oti (4.6) representation c_)f the density matrix as diagonal in coherent
M m states is not unique, because of the overcompleteness of the
coherent states. Furthermore, there will be another basis of
where8=[v—(o?/4u)]. These two transformations are ca- complete orthogonal states in which the density matrix is
nonical and therefore the transformed Wigner function apexactly diagonal and these states will be quite different from
pearing in the integrand of E¢.6) is still the Wigner func-  coherent states.
tion of some statgunitarily related to the original one These various issues were discussed in Réf]. There it
Hence, was shown, using the above results, that histories consisting
of time-ordered sequences of quasiprojections onto cells of
~ phase space are approximately decoherent, and that the prob-
Wi(p,a)= f dPoddoexpl — P5— BA) Wpq(Po, do) abilities for them are those indicated by the classical stochas-
(4.7 tic process described by the Fokker-Planck equat®h?),

Wt(p,Q):i dpodap exp(— upg— Ba3)
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for sufficiently large phase space cells. This substantiates th@me (#/ykT)*2, which is the time scale on which an arbi-
interpretation in terms of a statistical ensemble of trajectotrary initial density operator approaches the fofhb). The
ries. Potential ambiguities arising from the overcompletenesasomenclature “localization time” comes from the quantum
of the coherent states become insignificant because the phastate diffusion picture, which was the picture first used to
space cells projected onto are large. Furthermore, the exaderive some of the results described in this paper. It is so
diagonality of the density operator in a different basis correnamed because it is the time scale on which an arbitrary
sponds to the well-known fact that a given physical systeninitial wave function becomes localized in phase space under
typically admits more than one decoherent set of historiegvolution according to Eq.1.3) [16,20.

[29,30. This in turn is related to the fact that corresponding Also relevant is the decoherence tinie/(1?mykT),

to a given master equation there can be many unravelings which is the time scale on which the off-diagonal terms of
terms of stochastic Schdinger equationg16,39,40. We  the density matrix are suppresséd the position represen-
stress once again that this paper is concerned with the mattation) [14]. The decoherence time necessarily involves a
ematical question of deriving the for(s.1), and we do not length scald, which comes from the initial state. It could,
have anything original to say about questions of its signifi-for example, be the separation of a superposition of localized
cance and interpretation. wave packets, and the decoherence time is then the time

An advantage of deriving Eq5.1) using path integral scale on which the interference between these packets is sup-
methods rather than quantum state diffusion, is that it yieldpressed.
and explicit expression for the phase space distribution func- If one is interested in emergent classicality for macro-
tion f(p,q,t). Another advantage is that it is not obviously scopic systems, it is appropriate to choose values order 1 in
restricted to Markovian master equations. The quantum staiegs units, forl, T, m, andy. The decoherence time is then
diffusion picture, in its current state of development, existstypically much shorter than the localization time. This is in
only for systems described by a Markovian master equatiorturn typically much shorter than the relaxation tinye?,

It may exist in the non-Markovian case, but is yet to bewhich is the time scale on which the system approaches ther-
developed. The exact propagator for quantum Brownian momal equilibrium(when this is possib)e

tion, for quadratic potentials, can be given in terms of a path Hence the general picture we have is as follows. Suppose
integral[5] and is(mildly) non-Markovian. Since the method the initial state of the system is a superposition of localized
described here utilizes path integrals, rather than the quanvave packets. Then the interference terms between these
tum state diffusion picture, there is a chance that our methodiave packets is destroyed on the decoherence time scale.
may be valid in the non-Markovian case also, but this is stillAfter a few localization times the density matrix subse-
to be investigated. quently approaches the phase space diagonal fbreh Af-

We have concentrated in this paper on the simplest poger a much longer time of order in the relaxation time, the
sible model of quantum Brownian motion: the free particle insystem reaches thermal equilibrium. Discussions of emergent
a high-temperature environment with negligible dissipationclassicality usually concern times between the decoherence
v. It is clear, however, that remaining in the context of atime and the relaxation time, and it is this range of time
Markovian master equation, it would be straightforwgatt ~ which has been the primary concern of this paper.
though perhaps tediouso extend our considerations to the  Note added in proofA stochastic decoupling of the den-
case of a harmonic oscillator with nontrivial dissipation. In sity matrix propagatofof the form Eq.(2.5)] valid for cer-
the quantum state diffusion picture analysis, this case watain non-Markovian systems has been proposed by Strunz
covered in Ref[16] and we expect the path integral treat- [41].
ment of the present paper to yield comparable results.

It is perhaps enlightening to comment on the various time ACKNOWLEDGMENTS
scales involved in a more general quantum Brownian motion
model and sketch the expected general physical picture part We would like to thank Todd Brun, Lajos Dég Juan
of which is described by the results of this paper. In thisPablo Paz, lan Percival, and Wojtek Zurek for useful conver-
paper, we have largely been concerned with the localizatiosations.
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