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Electromagnetic modes and energy production in the formation of the half Einstein universe
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The purpose of this paper is twofold. First, the electromagnetic modes in the static half Einstein universe are
calculated, assuming that the spherical boundary lying at the pogition/2 is perfectly conductingy is the
radial parameter The half Einstein universe, in contradistinction to the full Einstein universe, enables us to
impose this perfect conductivity condition, which is the natural analogue to the Dirichlet condition conven-
tionally adopted in studies of the scalar field. Second, we calculate the average photon huanerthe
corresponding energy produced in the lowest mode if the half Einstein universe is “suddenly” formed from an
initial Minkowski universe. Here we use the same kind of formalism as previously used by Parker and others
[Phys. Rev. Lett59, 1369(1987] when studying the sudden formation of cosmic strings. We find that the
photon number is very smalN=0.01, and that it is independent of the magnitude of the cosmic scale factor
ay. [S0556-282(97)05408-9

PACS numbd(s): 98.80.Hw, 04.40.Nr

[. INTRODUCTION netic mode formalism, basically in the same way as in the
case of an electromagnetic radiation field in a spherical cav-

The static Einstein univerdd—3] continues to attract in- ity in Minkowski space[7]. Our method, in fact, is just a
terest. The reason, of course, is the simplicity of this modelParallel to the method used in conventional studies of the
which makes it much more easy to handle, especially from scalar field. Thus Bayin and Ozcan, in their studies of the

guantum-mechanical point of view, than the nonstationar)fc"j“a‘r field in the half Ei_n_stein univer$s, ], ado.p.ted the
Robertson-Walker model. It is also worth noticing that all completely analogous Dirichlet boundary condition at the

closed Robertson-Walker metrics are conformally equivalen?urfacefx = 7T/|2'. . " ons in th y
to the Einstein universe. Studies of the Einstein universe may., Our. ormulation o Maxv(\;e S quz?]tlohns In the c_rL:/rlmmear
thus be physically rewarding, although the model as such, df'NStéin metric is in accordance with that given in'lMds

course, cannot be regarded to be a realistic model of OLEook(see; Ref[1]), and also with Refs8-10. It ought to
universe. e mentioned here that the three-dimensional Maxwell

In the present paper we will first study, in Secs. Il and I, theor?;] in the f(_)rm usedhin tg_?f freque_nt_Iy guotzd paperhof
the classical electromagnetic radiation field in the Einsteirf,/Ias oon[11] IS somew at ditterent; it IS based upon t €
metric. The line element is given in E@L) below, where ines drawn up in prior .works of SkrotskfiL2], PIebanqu
a, is the constant scale factor. The paramegteran be re- [13], and Volkov and' Kiseley14]. These matters are dis-
garded as the radial coordinate in a three-dimensional spa&&'SSed more closely in RefLO]. . .
spanned by the axes of, 6, and ¢. In the full Einstein The second objective of our work, covered in Sec. I\_/, is
universey runs from 0 torr. In thehalf Einstein universe, by to calqulatg the_average number of photons p“’d“ce.d. '.f the
contrast,y runs only from 0 tom/2. The fact that the half half Einstein universe is “suddenly” formed from an initial
Einstein universe stands out as an interesting variant of th%'nkOWSk.I Universe, havmg' the same proper radius. W? use
original Einstein model, was noted by Kennedy and Unwinth€ Bogoliubov transformation to relate the mode functions,
[4] and also by Bayin :;md 0zcdb,6]. Especially, the two and the creation and annihilation operators, in the two uni-
last-mentioned references will be key references for us. Thger?es._The analytli:al_teclzhmqltJe Ihit WS use gas_ bi‘?n used
first part of our work is to develop the expressions for theear:er. In ? r(]:osmologl;:_aldcon ext, by d arksr_], Ihn 'de
magnetic[transverse electri€TE)] and electric[transverse analysis of the scalar field energy produced in the sudden
magnetic(TM)] modes in the half Einstein universe, when formation of a cosmic stringan a_nalogous analysis of the
the spherical surface at= /2 is assumed to be perfectly electromagnetic case was later given in R&f]). The pro-
conducting. Now, one may object that from a physical pointduce?i phﬁto? numbed tdurns out tlo tl)e relgaorl;atl)\;ly small; in
of view there is hardly any reason for saying that the outelfaCt’ or t € owest mode we ca cu L1 Moreover,
surface is perfectly conducting. However, on the basis of!'€ xpression foN turns out to be independent of the value
analytical tractability of the electromagnetic theory, the©f the scale factog,.
boundary conditions that we adopt are by far the most natu-

. L . Il. MAXWELL'S EQUATIONS:
ral ones; it turns out that they fit nicely into the electromag- S EQUATIONS

THE FUNDAMENTAL SOLUTION

We begin by writing down the line element. In standard
*Electronic address: lver.H.Brevik@varme.unit.no notation,
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ds?=—dt®+a3[dy?+sirfx(dg>+sirfad¢?)] (1) wl=dt,
(c=1), wherefe[0,77] and ¢ [0,27]. As already men- w'=ad
tioned, for full Einstein universey €[ 0,7], whereas for the 08X
half Einstein universey €[0,7/2]. The value of the scale ) )
factorag is determined as follows: the energy dengitgon- w’=aysinydd,
sists of two parts, one mattéitus) partp,, and one vacuum .
part A/87G, A being the cosmological constant a@dthe w?=agsinysingd . (6)

gravitational constant. The pressurefiss —A/87G; i.e.,

there is a field tension. The Friedmann equations yjgJd The components ofE in this basis are written as

=A/4wG, and finallyag= A~ Y2=(47Gp,) 12 (E;,Ej.E;), with a similar notation forH. We write out
It ought to be noted that the teroy? in Eq. (1) could Maxwell's equations in component form:

alternatively has been written ds?/(1—r?), wherer is the

conventional nondimensional radius. Sincesin y, we see sind : E;) . [Ej (EE/)> _
that the relationship between and y is unique when, as siny x sirfx Hy * 0| SInG Hb 9 Ha =0, (@
assumed herey< /2.
We shall numerate the coordinates according to 1 = Ej , H
(x%x1,x2,x3) =(t,x,0,¢). It is often useful, when dealing agsiny sind dp\SING H;, —dg Hy | ~'\ —E. )
with the Maxwell equations in curvilinear space, to write X (8)
down the expressions for the fundamental electromagnetic
tensors. There are two of them. First, there is the proper 1 E; _ ( = )
field tensorF ,,: apsiny sing ‘7¢(H;()_S'”‘9‘7x S'”X(H;) }
o -E, -E, -—E, ( Hb)
=i - 9
I JyB® B’ o ©| _g, ©)
| Ee —VyB? 0 B |’ 1 E; E H;
; o) |_ x| ¢
E, JyB?  —\[yBX 0 agsi aX(SInX(H;,) (9‘9<H;() Iw(_E;}). (10
— — a3ai ; i
where \y=y 9y 90e —aOVsszsme.V Second, there is the  \anipulating these equations we can construct a second-
tensor densityF*" =\~ gF#"=/yF**, containing the dis- order differential equation foE; (or H;). We separate vari-
placemenD and the magnetic field: ables, for the electric field meaningE;(x,6, )
=E:(x)Y, m(6,9), whereY ., are the usual spherical har-
4 X /
0 \/;DX ‘/;D \/;’D(ﬁ monics, defined in accordance with7]. We obtain
- \/;DX 0 H¢ - H(} d2
Frr= . 3 ) ) :
—JyD? -H, O H, . a2 (SiPxX) + (wag)?sifxX—/(/+1)X=0, (11)

—JyD¢ H, -—H, 0
whereX stands forE; or H; . The solution of Eq(11) is a
The Maxwell equations in empty space can be written aknown function:
Fruvp=0, F'=0. We shall express them in three-
dimensional form: taking the time factor to be exp(t) in Xoesin' =t C{ Y (cosgy). (12)
a complex classical representation for the fields, we have
Heren is an integer, and:ff‘)(x) is the Gegenbauer polyno-

divE=0, divB=0, mial, satisfying the basic equation
curE=iwB, curH=—-iwD. (4) ) d2 » d "
(1—x7) e C(X)—(2a+1)x ax C(x)

Here the definitions are
(curlE) = ek g,E,, divB=y Y25(yB), (5 +n(n+2a)CL*(x)=0. (13
where €¥=y"Y25,, is the antisymmetric pseudotensor, The eigenfrequencies can be found by inserting soluti@

8ijx being the Levi-Civita symbol witi; 5= 1. The gravita-  into Eq.(11). They are
tional field in general acts like a medium with permittivity

equal to permeability: e=u=(—goo Y% In the present _n+1 y
o . . w,= , n=/. (14
case, therefore, the situation becomes simple since we can ag
identify D with E and B with H, and thus only work with
one electric and one magnetic vectorial quantity. Several general properties of the Gegenbauer polynomials

In the following we shall work in an orthonormal basis, are listed in[18]. We write down the following relations,
designated by carets: which are useful in our contexin( 0):
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(@ n+2a—1 showing that the lowest-order magnetic mode ig (
Gy (1)=( n ) (19  +2)/ay, ie., w=3/ay, when/=1.
It is worth noticing that the spatial variation of time=0
0, n=2m+1, mode is quite simple: using E¢L7) we see that
C\¥(0)= o Llatn/2) (16) (12— 1
_ = =0)= /(/+ ' .
(-1 Ty " 2m, H, (n=0)=2Hy/(/+1)%sin “‘xcosxY,m. (23

When/ =1, H, is different from zero at the origin; it de-
creases as a cosine function towards the vélye-0 at the
Also we shall need the derivative formula boundary. When”>1, H,=0 at the origin. o

From Maxwell's equations we calculate the remaining
field components:

Cy(x)=1, C¥(x)=2ax. 17

(1-x?) % Cl@(x) = —nxC@(x) + (n+2a—1)Cl@ (x).

Ho d
(18 Ho=gine gy [ST XCE (0080100 s, (29
We consider henceforth, as mentioned above, a three-
dimensional spherical volume, spanned by the “radiys” imH~ d v
Mo Y/m

and the angular coordinat#sand ¢, closed by the perfectly
conducting two-dimensional surface gt 7/2. We shall
work out the specific solutions, starting from E2), for the
electric and magnetic modes separately. To facilitate the E,=—m(2n+/+2)Hosin xCY D(co )h
writing, we omit the carets on the field components from o ’ oSIM X%2n+1(COX sing’
now on. (26)
Before closing this section it is worthwhile to mention
that the corresponding elementary wave solution in the case E,=—i(2n+/+ 2)Hosir(XC</+1)(cosX)(9(,Y/m,

. . 2n+1
of a scalar fieldd is [2] (27

_ P e/l A7+
+="siny_ dy [si " *xC5y i1 (cosy)]

sing’ (25)

: / . . .
deesin’ xCih (cosy). where in the two last expressions we took E2p) into ac-
count. The time factor exp(iwt) is understood everywhere.
Ill. CLASSICAL MODES. ELECTROMAGNETIC ENERGY

A. The magnetic (TE) modes B. The electric (TM) modes

The governing equation for the electric modes is again
g.(11), where nowX=E, . The boundary conditions at the
perfectly conducting surface= /2 follow from the general

This is the simplest case. The magnetic radial compone
H, is, in general, different from zero. The boundary condi-

tion is . . .
electromagnetic theory in orthogonal coordinates, when ac-
H,=0, x=ml2. (19 count is taken of the metril):
For the electromagnetic field, we know thée=1 always. In d,(silyHy) =0, 4,(sinyH,)=0, x=mu/2, (28

Eq. (12), we must haven— /=0, in order to avoid infinities _ _
at the originy=0. This property can be seen, for instance,cf., for instance, p. 484 ifil9]. )
from the relationship betwee@!® and the hypergeometric ~ WhenE, contains the factor siT* x, as Eq(12) shows,

function F: then the componentd , andH 4 will in view of Maxwell’s
equations have to contain the factor'gjrand so we obtain
I'n+2a) 1 1-x from Eq. (28) the condition
CW(x)=—==— F| —nn+2e,a+=; ——
n'Tr'(2a) 2" 2 _ i1
(20) a [sin " xCY M (cosy)]=0, x=ml2. (29

Moreover condition(19), to_gether vyith the first line of Eq.  yse of formula(18), with x=cosy=0, then tells us thatr(
(16), show that the subscript¢-/) in Eq. (12) must be an  _ /) must be an even integer. Again changing the meaning

odd number. It is convenient now to change the meaning ot the integem, we write the electric mode in the form
n, and write the basic magnetic mode solution as

— i —1 (/+1)
HX:HO/(/+ 1)S|r(71)(c(2/ni})(co$()Y/m( 01¢)’ EX_EO/(/+1)S|r( XCZn (COS{)Y/m(ﬁ,(ﬁ),

(21) (30)
wheren=0,1,2 ... . H, is a normalization constant. with r!=0,1,2 ... . Egisa norma_lization const_ant.
The eigenfrequencies in this case become, according to USing Eq.(14) we see that the eigenfrequencies now be-
the general Eq(14), come
2n+/+2 2n+/+1
wop=——F——, (22) wp=——"—", (31)

ap =l
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so that the lowest order electric mode 54 1)/ay. When
/=1, o=wgn=2/ay. This is the lowest of all possible

modes, both electric and magnetic.

From Maxwell’s equations we calculate the remaining

field components:

Eo= G dy LS XCan (09010, (32)
imEo d ‘1 Y,

=Sy @y LS TXCE(cos0] GG (39)
Y,

Hy=m(2n-+/+ 1) Eqsin xCiy  H(coso) S, (34

Hy=i(2n+/+1)Eesin’ xCr 1 (cosy)dpY /m, (35

again with the factor exp{iwt) understood.

C. Electromagnetic energy

The total electromagnetic energy is
W=J w dV, (36)

wherew is the energy density

1
W=7 (JE 2Bl 2+ [Egl >+ [H 2+ [H 2+ [Hy[?).

37

We consider again one of the magnetic modes first, corre-
sponding tcE, =0. It is convenient to make use of the vector

spherical harmonics

1
=LY (38

X L 1
™o+ "

whose components are
(X/m))(: 01

—m Y/m

(X/m)ﬂzm sing’

—i
(X/m) p=——=—=—39yY /. (39)
/m/) ¢ /(/+ 1) 0'/m
Because of the orthogonality &f,,,, one has
| a1, (40
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/(/+1)

1 ’ 72
Wh/m=7 ag|Hol2/ (7 + 1)L “SiPy

+(2n+/+2)2}Q§n+1+(aXQ2n+l)2]dX-
(42)
In the last term we perform a partial integration, observing
that the contribution from the surface term is zero due to the
boundary condition(19). Moreover taking into account the

governing equation for the Gegenbauer polynomials, which
can conveniently be written in the form

o Si1)? /(/+1)
aXQn—— (n+ / +1) _WX_ Qn, (43)

we get

1 a2, o2 [™ A2
Wn/mzz ag|Ho|*/(/+1)(2n+/+2) fo Q2n+1dx-
(44)

The integration ovely can be performed, if we invoke the
orthogonality relation for the Gegenbauer polynom([dl8]:

. 772172a1-*(n+2a)
_ a— (a) =
f_l(l x3)* = Cl@(x)]2dx= nl(n+a)[T'(a)]?’

(45

and observe thaE{®(—x)=(—1)"C{*(x). The final result
then becomes, for the magnetic modes,

Wn/m:g aglHol?/ (7 +1)(2n+/+2)

2°2T(2n+2/+3)
e DT/ D2

(46)

The electric modes can be handled similarly. The energy,
when expressed in a form analogous to E®), is then

A(/+1)
sirfy

1 N ) ) 2
Wn/mzz aO|EO| /(/+1)f0

+(2n+/+1)?

Q§n+<aXQ2n>2jdx. (47)

This expression is further processed by means of a partial
integration, taking the boundary conditi¢29) into account.
We obtain

where the integration is taken over all angles. For ease in

writing we also introduce the symb@),,, defined as

Qn=sin’ *1xCy Y(cosy). (42)

Inserting Eqg.(21) and Eqs.(24)—(27) into Eqg. (37) we get,
after integrating over all angles and observing tiohf

= adsir’y dy d, the mode energy

1 ac 2, 2 [™ 2
Wam=5 BB/ (/+ 120+ /+1)? | " QB dx
(48)

which, again in view of the orthogonality conditi@45), can
be expressed in the form
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L , Subscript<E refer to the Einstein metric. The:,,, are mode
Wn/m=g &lEol*/ (7 +1)(2n+/+1) functions. They will be normalized in accordance with the
general expression
27%T(2n+2/+2)

TN

(49 . .~ 3
(Ug,Up)=—1i | u7d “ud®s ,, (53
This is the final classical result for the electric mode energy,here _d32#:(l/3!)eﬁ_ypadx“|]dx”Ddx", €Lvpe
=V—=09,ps, With 8p1o5=1. This means that the scalar
IV. QUANTUM THEORY: THE BOGOLIUBOV product becomes
TRANSFORMATION

Consider now the quantum electrodynamic theory of the (UE,UE)ZiaSJ (UT* Jous) sirfxdydQ. (54
half Einstein universe. We shall analyze the following prob-
lem: what is the amount of produced radiation energy assoAs mode functions we take the form
ciated with a “sudden” creation of this particular universe

from an initial Minkowski universe having the same proper E 1 /2(2n)! 2’T(/+1)

radius? Information about the energy production can give us un/m:aTO 7 [[(2n+2/+2)]*2

some physical insight about the importance of quantum me-

chanics for cosmology in general, in spite of the fact that the X sin’ xC "V (cosy)Y ,m exp —iwgt) (55

guantum system that we study here is after all quite simple. ) )

Our assumption about a “sudden” transformation from[recall thatw,=(2n+/"+1)/a, in the exponential factgr
one kind of universe to another kind is of course an ideali-nsertion of Eq(55) into Eq.(54) shows that the scalar prod-
zation. It is however an attractive model since it has bothict thereby becomes orthonormal:
mathematical and physical merits: mathematically, the for- . £ -
malism becomes easily tractable; physically, the suddenness (Un,/m Uy, 1) = = (Unsm Uns or0) = Snn 6,71 O
is known to be quite appropriate as regards the formation of (56)

local systems, such as cosmic strings, in the early univers .
Cosmic strings were handled in this way by Parker, in thee{he other scalar products being zero. Moreover, Esf3.and

context of the scalar fieldl5] (cf. also[16]). One may object (51) show that' the mode enerdy,, m can be written as the
here, of course, that a universe is after all not a local systenfr€dUencyw, times the photon occupation number, plus a
However, our calculation as such does not require that thg€ro-point term:
scale factora, is a very large quantity. The calculation can
equally well be looked upon as a treatment of a “miniuni- Wh,/m= o,
verse” of the Einstein type, in whiclhy can be arbitrarily
small. In the following we shall conside_r the electric modesl_et us now consider the Minkowski space. Similarly as
only. As noted above, the lowest eigenfrequenay,
=2/a,) is found for just the/’=1 electric mode.

Let us begin by writing the classical expressi@®) for
the mode energy as

. (57

+ 1
<aﬁ/maﬁ/m> + E

above, we assume the region under investigation to be
bounded by a perfectly conducting spherical surface. Scaling
the ordinary Minkowski radius according ta =agy, where

a, has the same meaning as above, we can write the line

‘ ’ element as
(2n+/+1)

_ 2a
Wom=""7751) f Ejsiry dV, (50 ds?= — dt?+aZ(dy2+ x2dQ?). (58)
where nowE, is thereal field in the radial direction. The We shall fix the external radiuR to be
classical energy can accordingly be expressed in terms of R=a.m/2 (59)
one single component only. In quantum theory it is therefore o

natural to _reg_arcEX, now considered a Hermitian operator, ThysR, corresponding toy= 7/2, is taken to be the same as
as the basic field quantity. We expand it as follows, summingne proper radial distance from the origin to the outer surface

over all modes: x= /2 in the Einstein metri¢1). In this sense the Einstein
e e half universe and our Minkowski “universe” are analogous
1 ' . to each other.
X:aosinx nZO /21 m;_/ V(7 +1) The field components for the electric modes in
Minkowski space can be written, when the time factors
x(af, Ut + aE;muE;m)' (51)  exp(-iet) are omitted, in the forn7,20,21
t Eo/(/+1)
Hereal, ., andaf, ., are annihilation and creation operators, - b (@030X)Y /m, (60)

satisfying the commutation rules

t =0
[aE m.a5 1= O 8/ Sy - (52 By=— ¥ (©s20X)99Y /m, (61)
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imEg Y,/m . A(/+1)
Ey=—— dy¥(0s0x) 5. (62) ()=~ 1= ——7—¢(X) (70
X sing X
H,=0, (63  for the Riccati-Bessel functions, we obtain
MwaokE, Y /m W, !t ad|Eo|?/(/+1)(wea )ZF/Zl/;ZdX (71)
Hy=——— ¢ (0s0x) 5., (64) sm 2 formen 0o TN
X sing
) From the recursion relations for the spherical Bessel func-
E
Hy= B WA 00x)79Y /- (65) tions one can derive the integration form{ika, = i (X) ]
, 1 ! ) A7+,
Here ¢, (x)=xj(X) is the (rea) Riccati-Bessel function, j YAx)= 2 X (#7) Y Yoyt 1= X2 a8
j » being the spherical Bessel function. The eigenfrequencies (72)
ws in Minkowski space are determined from the boundary o
condition, for the electric mode, at the surfaceR: the use of which in Eq(71) leads to
— aa )
YA @580X)| = 712=0- (66) W m=g a3l Eol?/(/ +1)(wsa0)?
Note that at this point the formulation of the theory in (/+1)
Minkowski space differs from that in Einstein space: in the X|1— ——= 2 (wgR). (73
latter case, the determination of the eigenfrequencies in Eq. (0sR)

(14) was made on the basis of the governing equatidi)
alone; the boundary condition at the outer surface was n
drawn into consideration explicitly. Near the origin=0 it
follows, in view of the relationship

o‘{his is the final expression for the energy of the electric
Minkowski modes.

The Minkowski mode functionsl,, can now be intro-
duced via the expansion
/1

o /
X)— =, X<1, 6 1 ‘ .
VA= G O eSS S D@ ),
AoX s /=1 m=—/ i
that Eq.(60) leads toE ,«x” 1. This is seen to be in quali- (74)
tative agreement with Eq30), when one notes, in accor-
dance with Eq(15), thatC(zf]”)(l) is a constant.
As expected, for general values gfthe Einstein space MMt _ ,
modes(30) and (32)—(35) are analogous to the Minkowski [8sim:8g/1m 1= Fss 01 Opnrr - (79)
space mode#60)—(65). The analogy can be regarded as re-tna Minkowski scalar product
flecting the following correspondence between the basis
functions:

where the creation and annihilation operators satisfy

(uy',uz)=iag f (U dou¥)x2dx d@  (76)
¥ (020x)Ssin’ Ty Ch Y (cosy). (68)

is required to be orthogonal, in analogy to the Einstein scalar
Note also that the ordey of the rootwg in Minkowski space  product(54) above. Explicitly, the mode functions become
corresponds to the ordendf the Gegenbauer polynomial in

Einstein space. 1 [1-/(/+DN0R)?] ¢, (wsa0x)

M

We now intend to construct the Minkowski mode func- Usm=———F——=
tions uM corresponding to the Einstein mode functicufs 2oV wsR VR X
above. First consider the electromagnetic energy: inserting XY /meXp — i wgt). (77
Egs.(60)—(65) into Eq.(37) we get, taking into account that
the volume element now i8V=ajy?dy dw, The classical mode energy, which in accordance with Eq.
(71) can be expressed as
\Ns/m:E a8|EO|2/(/+ 1) ((J’)sao)2 2 o
4 Ws/m_/(/+ 1) ExX dV, (78)
TR A(7+1) ] 2 .
X fo ——— Ty |yt (d, ) dx, corresponds quantum mechanically to the form
1
€9 Wy, m= s <a2A/Tma2A/m>+ 2] (79

cf. the analogous Eq47). By means of a partial integration,
observing condition66), and also taking into account the  Armed with the above formalism, we are now able to
governing equation analyze the following physical problem: assume that the Ein-
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stein universe was suddenly formed at the instad. Prior  the Minkowski quantum numbers, we would have to take
to this event the Minkowski universe was present. We asinto account that there are2-1 m values for eacl’’.

sume that, was continuous at=0. The two sets of mode The electromagnetic energy in mosle/’, m produced by
functions, uf and uM, may be related via a Bogoliubov the sudden formation of the Einstein universe W&,

transformation: =wsNg/m.
Inspection of Eq(84) shows the remarkable fact that the
E [y(n/mls/"m")u produced number of particles i_s independent of the value of
n/m S 24 s/’m’ the scale factoa,. The reason is that the scale factor occurs
only in the nondimensional combinatiomgws and agw,, ;
+ 5(n/m|s/’m’)u2";m,], (80)  for the lowest-lying states these numbers are of order unity.

Expression(84) is complicated, and we consider hence-
v and 6 being the Bogoliubov coefficients. The correspond-forth only the contribution from the lowest mode. It corre-

ing relation for the operators is sponds to/'=1, s=1, n=0. We have in this case
/ sinx
aym= /E [v(n/mls/ m)ag, ()= ———cos, C{*V(cos)=1,  (86)
n
1l =
+&(n/m|s/'m"a 1. (81 0R=2.75, w,ap=2, (87

The average number of particles produced in the de
/. m from gt]he initial vacugm is P e cf. Egs.(17) and(31) (for notational clarity we here keep the

general subscripts andn on w to distinguish the frequen-
cies. Some calculation leads to

Ngm= > |8(n/m|s/'m")|% (82
n/tm’ wdy [20@0C0WR T
. oy . I = — 7 2 2 2 + = SIanR :0820,
From Eq.(80) we see that the Bogoliubov coefficient is wiag—1 wiag—1 2
21 ! E M* (88)
s(n/mls/’'m’)=—(Up U/ m )M (83
which again means that
an extra subscrig¥! is added to indicate that the scalar prod-
uct is taken in accordance with the Minkowski normalization Ny;m=0.009 47. (89)
(76). Inserting Eq(55) and Eq.(77) into Eqg.(83) we see that
the coefficient vanishes unless wheh=/ andm’'=—-m.

The number of produced photons in this particular mode is

From Eq.(82) we then obtain thus very small. The produced energy, in dimensional units,

- 22/ +1 [T(/+1)]2 becomes
M roRYE(0R) 1=/ (/+1)(wgR)? _27sc  178c 0
ag(ws_ wn)z(zn)! 1im™— R 11Im™— ao 11im:-

X2

~ I'(2n+2/7+2) 7 (84) . )
To get an appreciable amount of energy, we have to envisage
wherel is the integral a miniuniverse whose scale factag is very small. From a
physical point of view, the dependence\af ;,, upon some
inverse power ofy is just what we would expect. The cur-
vature effect, and hence also the quantum-mechanical effect,
become more pronounced the smaller the valua,aé. The
(recall thatR=a,y7/2). Note that expressiofB4) is degen- curvature effect is reflected, for instance, by the fact that the

erate with respect tmn. Thus, if we were to sur,,,, over  scalar curvature of the Einstein metric is equal ta§6/

| = J'O’T x sin’ xC% "V (cosy) ¥, (wsaox)dy (85
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