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The purpose of this paper is twofold. First, the electromagnetic modes in the static half Einstein universe are
calculated, assuming that the spherical boundary lying at the positionx5p/2 is perfectly conducting~x is the
radial parameter!. The half Einstein universe, in contradistinction to the full Einstein universe, enables us to
impose this perfect conductivity condition, which is the natural analogue to the Dirichlet condition conven-
tionally adopted in studies of the scalar field. Second, we calculate the average photon numberN and the
corresponding energy produced in the lowest mode if the half Einstein universe is ‘‘suddenly’’ formed from an
initial Minkowski universe. Here we use the same kind of formalism as previously used by Parker and others
@Phys. Rev. Lett.59, 1369 ~1987!# when studying the sudden formation of cosmic strings. We find that the
photon number is very small,N.0.01, and that it is independent of the magnitude of the cosmic scale factor
a0 . @S0556-2821~97!05408-8#

PACS number~s!: 98.80.Hw, 04.40.Nr

I. INTRODUCTION

The static Einstein universe@1–3# continues to attract in-
terest. The reason, of course, is the simplicity of this model,
which makes it much more easy to handle, especially from a
quantum-mechanical point of view, than the nonstationary
Robertson-Walker model. It is also worth noticing that all
closed Robertson-Walker metrics are conformally equivalent
to the Einstein universe. Studies of the Einstein universe may
thus be physically rewarding, although the model as such, of
course, cannot be regarded to be a realistic model of our
universe.

In the present paper we will first study, in Secs. II and III,
the classical electromagnetic radiation field in the Einstein
metric. The line element is given in Eq.~1! below, where
a0 is the constant scale factor. The parameterx can be re-
garded as the radial coordinate in a three-dimensional space
spanned by the axes ofx, u, and f. In the full Einstein
universe,x runs from 0 top. In thehalfEinstein universe, by
contrast,x runs only from 0 top/2. The fact that the half
Einstein universe stands out as an interesting variant of the
original Einstein model, was noted by Kennedy and Unwin
@4# and also by Bayin and Ozcan@5,6#. Especially, the two
last-mentioned references will be key references for us. The
first part of our work is to develop the expressions for the
magnetic@transverse electric~TE!# and electric@transverse
magnetic~TM!# modes in the half Einstein universe, when
the spherical surface atx5p/2 is assumed to be perfectly
conducting. Now, one may object that from a physical point
of view there is hardly any reason for saying that the outer
surface is perfectly conducting. However, on the basis of
analytical tractability of the electromagnetic theory, the
boundary conditions that we adopt are by far the most natu-
ral ones; it turns out that they fit nicely into the electromag-

netic mode formalism, basically in the same way as in the
case of an electromagnetic radiation field in a spherical cav-
ity in Minkowski space@7#. Our method, in fact, is just a
parallel to the method used in conventional studies of the
scalar field. Thus Bayin and Ozcan, in their studies of the
scalar field in the half Einstein universe@5,6#, adopted the
completely analogous Dirichlet boundary condition at the
surfacex5p/2.

Our formulation of Maxwell’s equations in the curvilinear
Einstein metric is in accordance with that given in Mo” ller’s
book ~see Ref.@1#!, and also with Refs.@8–10#. It ought to
be mentioned here that the three-dimensional Maxwell
theory in the form used in the frequently quoted paper of
Mashhoon@11# is somewhat different; it is based upon the
lines drawn up in prior works of Skrotskii@12#, Plebanski
@13#, and Volkov and Kiselev@14#. These matters are dis-
cussed more closely in Ref.@10#.

The second objective of our work, covered in Sec. IV, is
to calculate the average number of photons produced if the
half Einstein universe is ‘‘suddenly’’ formed from an initial
Minkowski universe, having the same proper radius. We use
the Bogoliubov transformation to relate the mode functions,
and the creation and annihilation operators, in the two uni-
verses. The analytical technique that we use has been used
earlier in a cosmological context, by Parker@15#, in his
analysis of the scalar field energy produced in the sudden
formation of a cosmic string~an analogous analysis of the
electromagnetic case was later given in Ref.@16#!. The pro-
duced photon numberN turns out to be remarkably small; in
fact, for the lowest mode we calculateN.0.01. Moreover,
the expression forN turns out to be independent of the value
of the scale factora0 .

II. MAXWELL’S EQUATIONS:
THE FUNDAMENTAL SOLUTION

We begin by writing down the line element. In standard
notation,*Electronic address: Iver.H.Brevik@varme.unit.no
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ds252dt21a0
2@dx21sin2x~du21sin2udf2!# ~1!

(c51), whereuP@0,p# andfP@0,2p#. As already men-
tioned, for full Einstein universe,xP@0,p#, whereas for the
half Einstein universe,xP@0,p/2#. The value of the scale
factora0 is determined as follows: the energy densityr con-
sists of two parts, one matter~dust! partr0 , and one vacuum
partL/8pG, L being the cosmological constant andG the
gravitational constant. The pressure isp52L/8pG; i.e.,
there is a field tension. The Friedmann equations yieldr0
5L/4pG, and finallya05L21/25(4pGr0)

21/2.
It ought to be noted that the termdx2 in Eq. ~1! could

alternatively has been written asdr2/(12r 2), wherer is the
conventional nondimensional radius. Sincer5sinx, we see
that the relationship betweenr and x is unique when, as
assumed here,x<p/2.

We shall numerate the coordinates according to
(x0,x1,x2,x3)5(t,x,u,f). It is often useful, when dealing
with the Maxwell equations in curvilinear space, to write
down the expressions for the fundamental electromagnetic
tensors. There are two of them. First, there is the proper
field tensorFmn :

Fmn5F 0 2Ex 2Eu 2Ef

Ex 0 AgBf 2AgBu

Eu 2AgBf 0 AgBx

Ef AgBu 2AgBx 0

G , ~2!

whereAg5Agxxguugff5a0
3sin2xsinu. Second, there is the

tensor densityFmn5A2gFmn5AgFmn, containing the dis-
placementD and the magnetic fieldH:

Fmn5F 0 AgDx AgDu AgDf

2AgDx 0 Hf 2Hu

2AgDu 2Hf 0 Hx

2AgDf Hu 2Hx 0

G . ~3!

The Maxwell equations in empty space can be written as
F @mn,r#50, F,nmn50. We shall express them in three-
dimensional form: taking the time factor to be exp(2ivt) in
a complex classical representation for the fields, we have

divE50, divB50,

curlE5 ivB, curlH52 ivD. ~4!

Here the definitions are

~curlE! i5e i jk] jEk , divB5g21/2] i~AgBi !, ~5!

where e i jk5g21/2d i jk is the antisymmetric pseudotensor,
d i jk being the Levi-Civita symbol withd12351. The gravita-
tional field in general acts like a medium with permittivity
equal to permeability: e5m5(2g00)

21/2. In the present
case, therefore, the situation becomes simple since we can
identify D with E andB with H, and thus only work with
one electric and one magnetic vectorial quantity.

In the following we shall work in an orthonormal basis,
designated by carets:

vt̂5dt,

vx̂5a0dx,

vû5a0sinxdu,

vf̂5a0sinxsinudf. ~6!

The components ofE in this basis are written as
(Ex̂ ,Eû ,Ef̂), with a similar notation forH. We write out
Maxwell’s equations in component form:

sinu

sinx
]xFsin2xS Ex̂

H x̂
D G1]uFsinuS Eû

H û
D G1]fS Ef̂

H f̂
D50, ~7!

1

a0sinx sinu F]uXsinuS Ef̂

H f̂
D C2]fS Eû

H û
D G5 ivS H x̂

2Ex̂
D ,

~8!

1

a0sinx sinu F]fS Ex̂

H x̂
D2sinu]xXsinxS Ef̂

H f̂
D CG

5 ivS H û

2Eû
D , ~9!

1

a0sinx
F]xXsinxS Eû

H û
D C2]uS Ex̂

H x̂
D G5 ivS H f̂

2Ef̂
D . ~10!

Manipulating these equations we can construct a second-
order differential equation forEx̂ ~or H x̂!. We separate vari-
ables, for the electric field meaningEx̂(x,u,f)
5Ex̂(x)Yl m(u,f), whereYl m are the usual spherical har-
monics, defined in accordance with@17#. We obtain

d2

dx2 ~sin2xX!1~va0!
2sin2xX2l ~ l 11!X50, ~11!

whereX stands forEx̂ or H x̂ . The solution of Eq.~11! is a
known function:

X}sinl 21xCn2l
~ l 11!~cosx!. ~12!

Heren is an integer, andCn
(a)(x) is the Gegenbauer polyno-

mial, satisfying the basic equation

~12x2!
d2

dx2
Cn

~a!~x!2~2a11!x
d

dx
Cn

~a!~x!

1n~n12a!Cn
~a!~x!50. ~13!

The eigenfrequencies can be found by inserting solution~12!
into Eq. ~11!. They are

vn5
n11

a0
, n>l . ~14!

Several general properties of the Gegenbauer polynomials
are listed in@18#. We write down the following relations,
which are useful in our context (aÞ0):
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Cn
~a!~1!5S n12a21

n D , ~15!

Cn
~a!~0!5H 0, n52m11,

~21!n/2
G~a1n/2!

G~a!~n/2!!
, n52m,

~16!

C0
~a!~x!51, C1

~a!~x!52ax. ~17!

Also we shall need the derivative formula

~12x2!
d

dx
Cn

~a!~x!52nxCn
~a!~x!1~n12a21!Cn21

~a! ~x!.

~18!

We consider henceforth, as mentioned above, a three-
dimensional spherical volume, spanned by the ‘‘radius’’x
and the angular coordinatesu andf, closed by the perfectly
conducting two-dimensional surface atx5p/2. We shall
work out the specific solutions, starting from Eq.~12!, for the
electric and magnetic modes separately. To facilitate the
writing, we omit the carets on the field components from
now on.

Before closing this section it is worthwhile to mention
that the corresponding elementary wave solution in the case
of a scalar fieldF is @2#

F}sinl xCn2l
~ l 11!~cosx!.

III. CLASSICAL MODES. ELECTROMAGNETIC ENERGY

A. The magnetic „TE… modes

This is the simplest case. The magnetic radial component
Hx is, in general, different from zero. The boundary condi-
tion is

Hx50, x5p/2. ~19!

For the electromagnetic field, we know thatl >1 always. In
Eq. ~12!, we must haven2l >0, in order to avoid infinities
at the originx50. This property can be seen, for instance,
from the relationship betweenCn

(a) and the hypergeometric
functionF:

Cn
~a!~x!5

G~n12a!

n!G~2a!
FS 2n,n12a;a1

1

2
;
12x

2 D .
~20!

Moreover condition~19!, together with the first line of Eq.
~16!, show that the subscript (n2l ) in Eq. ~12! must be an
odd number. It is convenient now to change the meaning of
n, and write the basic magnetic mode solution as

Hx5H0l ~ l 11!sinl 21xC2n11
~ l 11!~cosx!Yl m~u,f!,

~21!

wheren50,1,2, . . . . H0 is a normalization constant.
The eigenfrequencies in this case become, according to

the general Eq.~14!,

vn5
2n1l 12

a0
, ~22!

showing that the lowest-order magnetic mode is (l
12)/a0 , i.e.,v53/a0 when l 51.

It is worth noticing that the spatial variation of then50
mode is quite simple: using Eq.~17! we see that

Hx~n50!52H0l ~ l 11!2sinl 21xcosxYl m . ~23!

When l 51, Hx is different from zero at the origin; it de-
creases as a cosine function towards the valueHx50 at the
boundary. Whenl .1, Hx50 at the origin.

From Maxwell’s equations we calculate the remaining
field components:

Hu5
H0

sinx

d

dx
@sinl 11xC2n11

~ l 11!~cosx!#]uYl m , ~24!

Hf5
imH0

sinx

d

dx
@sinl 11xC2n11

~ l 11!~cosx!#
Yl m
sinu

, ~25!

Eu52m~2n1l 12!H0sin
l xC2n11

~ l 11!~cosx!
Yl m
sinu

,

~26!

Ef52 i ~2n1l 12!H0sin
l xC2n11

~ l 11!~cosx!]uYl m ,
~27!

where in the two last expressions we took Eq.~22! into ac-
count. The time factor exp(2ivt) is understood everywhere.

B. The electric „TM … modes

The governing equation for the electric modes is again
Eq. ~11!, where nowX5Ex . The boundary conditions at the
perfectly conducting surfacex5p/2 follow from the general
electromagnetic theory in orthogonal coordinates, when ac-
count is taken of the metric~1!:

]x~sinxHu!50, ]x~sinxHf!50, x5p/2, ~28!

cf., for instance, p. 484 in@19#.
WhenEx contains the factor sin

l 21 x, as Eq.~12! shows,
then the componentsHu andHf will in view of Maxwell’s
equations have to contain the factor sinlx, and so we obtain
from Eq. ~28! the condition

]x@sinl 11xCn2l
~ l 11!~cosx!#50, x5p/2. ~29!

Use of formula~18!, with x5cosx50, then tells us that (n
2l ) must be an even integer. Again changing the meaning
of the integern, we write the electric mode in the form

Ex5E0l ~ l 11!sinl 21xC2n
~ l 11!~cosx!Yl m~u,f!,

~30!

with n50,1,2, . . . . E0 is a normalization constant.
Using Eq.~14! we see that the eigenfrequencies now be-

come

vn5
2n1l 11

a0
, ~31!
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so that the lowest order electric mode is (l 11)/a0 . When
l 51, v5vmin52/a0 . This is the lowest of all possible
modes, both electric and magnetic.

From Maxwell’s equations we calculate the remaining
field components:

Eu5
E0

sinx

d

dx
@sinl 11xC2n

~ l 11!~cosx!#]uYl m , ~32!

Ef5
imE0

sinx

d

dx
@sinl 11xC2n

~ l 11!~cosx!#
Yl m
sinu

, ~33!

Hu5m~2n1l 11!E0sin
l xC2n11

~ l 11!~cosx!
Yl m
sinu

, ~34!

Hf5 i ~2n1l 11!E0sin
l xC2n11

~ l 11!~cosx!]uYl m , ~35!

again with the factor exp(2ivt) understood.

C. Electromagnetic energy

The total electromagnetic energy is

W5E w dV, ~36!

wherew is the energy density

w5
1

4
~ uExu21uEuu21uEfu21uHxu21uHuu21uHfu2!.

~37!

We consider again one of the magnetic modes first, corre-
sponding toEx50. It is convenient to make use of the vector
spherical harmonics

Xl m5
1

Al ~ l 11!
LYl m , ~38!

whose components are

~Xl m!x50,

~Xl m!u5
2m

Al ~ l 11!

Yl m
sinu

,

~Xl m!f5
2 i

Al ~ l 11!
]uYl m . ~39!

Because of the orthogonality ofXl m , one has

E uXl mu2dV51, ~40!

where the integration is taken over all angles. For ease in
writing we also introduce the symbolQn , defined as

Qn5sinl 11xCn
~ l 11!~cosx!. ~41!

Inserting Eq.~21! and Eqs.~24!–~27! into Eq. ~37! we get,
after integrating over all angles and observing thatdV
5a0

3sin2x dx dV, the mode energy

Wnl m5
1

4
a0
3uH0u2l ~ l 11!E

0

p/2H F l ~ l 11!

sin2x

1~2n1l 12!2GQ2n11
2 1~]xQ2n11!

2J dx.

~42!

In the last term we perform a partial integration, observing
that the contribution from the surface term is zero due to the
boundary condition~19!. Moreover taking into account the
governing equation for the Gegenbauer polynomials, which
can conveniently be written in the form

]x
2Qn52F ~n1l 11!22

l ~ l 11!

sin2x GQn , ~43!

we get

Wnl m5
1

2
a0
3uH0u2l ~ l 11!~2n1l 12!2E

0

p/2

Q2n11
2 dx.

~44!

The integration overx can be performed, if we invoke the
orthogonality relation for the Gegenbauer polynomials@18#:

E
21

1

~12x2!a21/2@Cn
~a!~x!#2dx5

p2122aG~n12a!

n! ~n1a!@G~a!#2
,

~45!

and observe thatCn
(a)(2x)5(21)nCn

(a)(x). The final result
then becomes, for the magnetic modes,

Wnl m5
p

8
a0
3uH0u2l ~ l 11!~2n1l 12!

3
222l G~2n12l 13!

~2n11!! @G~ l 11!#2
. ~46!

The electric modes can be handled similarly. The energy,
when expressed in a form analogous to Eq.~42!, is then

Wnl m5
1

4
a0
3uE0u2l ~ l 11!E

0

p/2H F l ~ l 11!

sin2x

1~2n1l 11!2GQ2n
2 1~]xQ2n!

2J dx. ~47!

This expression is further processed by means of a partial
integration, taking the boundary condition~29! into account.
We obtain

Wnl m5
1

2
a0
3uE0u2l ~ l 11!~2n1l 11!2E

0

p/2

Q2n
2 dx

~48!

which, again in view of the orthogonality condition~45!, can
be expressed in the form
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Wnl m5
p

8
a0
3uE0u2l ~ l 11!~2n1l 11!

3
222l G~2n12l 12!

~2n!! @G~ l 11!#2
. ~49!

This is the final classical result for the electric mode energy.

IV. QUANTUM THEORY: THE BOGOLIUBOV
TRANSFORMATION

Consider now the quantum electrodynamic theory of the
half Einstein universe. We shall analyze the following prob-
lem: what is the amount of produced radiation energy asso-
ciated with a ‘‘sudden’’ creation of this particular universe
from an initial Minkowski universe having the same proper
radius? Information about the energy production can give us
some physical insight about the importance of quantum me-
chanics for cosmology in general, in spite of the fact that the
quantum system that we study here is after all quite simple.

Our assumption about a ‘‘sudden’’ transformation from
one kind of universe to another kind is of course an ideali-
zation. It is however an attractive model since it has both
mathematical and physical merits: mathematically, the for-
malism becomes easily tractable; physically, the suddenness
is known to be quite appropriate as regards the formation of
local systems, such as cosmic strings, in the early universe.
Cosmic strings were handled in this way by Parker, in the
context of the scalar field@15# ~cf. also@16#!. One may object
here, of course, that a universe is after all not a local system.
However, our calculation as such does not require that the
scale factora0 is a very large quantity. The calculation can
equally well be looked upon as a treatment of a ‘‘miniuni-
verse’’ of the Einstein type, in whicha0 can be arbitrarily
small. In the following we shall consider the electric modes
only. As noted above, the lowest eigenfrequency (vmin
52/a0) is found for just thel 51 electric mode.

Let us begin by writing the classical expression~48! for
the mode energy as

Wnl m5
~2n1l 11!2

l ~ l 11!
E Ex

2sin2x dV, ~50!

where nowEx is the real field in the radial direction. The
classical energy can accordingly be expressed in terms of
one single component only. In quantum theory it is therefore
natural to regardEx , now considered a Hermitian operator,
as the basic field quantity. We expand it as follows, summing
over all modes:

Ex5
1

a0sinx
(
n50

`

(
l 51

`

(
m52l

l

Al ~ l 11!

3~anl m
E unl m

E 1anl m
E† unl m

E* !. ~51!

Hereanl m
E andanl m

E† are annihilation and creation operators,
satisfying the commutation rules

@anl m
E ,an8l 8m8

E†
#5dnn8d l l 8dmm8 . ~52!

SubscriptsE refer to the Einstein metric. Theunl m
E are mode

functions. They will be normalized in accordance with the
general expression

~u1 ,u2!52 i E u1* ] m
J u2d

3Sm, ~53!

where d3Sm5(1/3!)emnrsdx
m∧dxn∧dxs, emnrs

5A2gdmnrs , with d012351. This means that the scalar
product becomes

~u1
E ,u2

E!5 ia0
3E ~u1

E* ]J0u2
E! sin2xdxdV. ~54!

As mode functions we take the form

unl m
E 5

1

a0
A2~2n!!

p

2l G~ l 11!

@G~2n12l 12!#1/2

3sinl xC2n
~ l 11!~cosx!Yl m exp~2 ivnt ! ~55!

@recall thatvn5(2n1l 11)/a0 in the exponential factor#.
Insertion of Eq.~55! into Eq.~54! shows that the scalar prod-
uct thereby becomes orthonormal:

~unl m
E ,un8l 8m8

E
!52~unl m

E* ,un8l 8m8
E* !5dnn8d l l 8dmm8 ,

~56!

the other scalar products being zero. Moreover, Eqs.~50! and
~51! show that the mode energyWnl m can be written as the
frequencyvn times the photon occupation number, plus a
zero-point term:

Wnl m5vnS ^anl m
E† anl m

E &1
1

2D . ~57!

Let us now consider the Minkowski space. Similarly as
above, we assume the region under investigation to be
bounded by a perfectly conducting spherical surface. Scaling
the ordinary Minkowski radiusr according tor5a0x, where
a0 has the same meaning as above, we can write the line
element as

ds252dt21a0
2~dx21x2dV2!. ~58!

We shall fix the external radiusR to be

R5a0p/2. ~59!

ThusR, corresponding tox5p/2, is taken to be the same as
the proper radial distance from the origin to the outer surface
x5p/2 in the Einstein metric~1!. In this sense the Einstein
half universe and our Minkowski ‘‘universe’’ are analogous
to each other.

The field components for the electric modes in
Minkowski space can be written, when the time factors
exp(2ivt) are omitted, in the form@7,20,21#

Ex5
E0l ~ l 11!

x2 c l ~vsa0x!Yl m , ~60!

Eu5
E0

x
]xc l ~vsa0x!]uYl m , ~61!
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Ef5
imE0

x
]xc l ~vsa0x!

Yl m
sinu

, ~62!

Hr50, ~63!

Hu5
mva0E0

x
c l ~vsa0x!

Yl m
sinu

, ~64!

Hf5
iva0E0

x
c l ~vsa0x!]uYl m . ~65!

Here c l (x)5x j l (x) is the ~real! Riccati-Bessel function,
j l being the spherical Bessel function. The eigenfrequencies
vs in Minkowski space are determined from the boundary
condition, for the electric mode, at the surfacer5R:

]xc l ~vsa0x!ux5p/250. ~66!

Note that at this point the formulation of the theory in
Minkowski space differs from that in Einstein space: in the
latter case, the determination of the eigenfrequencies in Eq.
~14! was made on the basis of the governing equation~11!
alone; the boundary condition at the outer surface was not
drawn into consideration explicitly. Near the originx50 it
follows, in view of the relationship

c l ~x!→
xl 11

~2l 11!!!
, x!1, ~67!

that Eq.~60! leads toEx}x l 21 . This is seen to be in quali-
tative agreement with Eq.~30!, when one notes, in accor-
dance with Eq.~15!, thatC2n

(l 11)(1) is a constant.
As expected, for general values ofx the Einstein space

modes~30! and ~32!–~35! are analogous to the Minkowski
space modes~60!–~65!. The analogy can be regarded as re-
flecting the following correspondence between the basis
functions:

c l ~vsa0x!�sinl 11xC2n
~ l 11!~cosx!. ~68!

Note also that the orders of the rootvs in Minkowski space
corresponds to the order 2n of the Gegenbauer polynomial in
Einstein space.

We now intend to construct the Minkowski mode func-
tions uM corresponding to the Einstein mode functionsuE

above. First consider the electromagnetic energy: inserting
Eqs.~60!–~65! into Eq. ~37! we get, taking into account that
the volume element now isdV5a0

3x2dx dv,

Wsl m5
1

4
a0
3uE0u2l ~ l 11!

3E
0

p/2H F l ~ l 11!

x2 1vs
2a0

2Gc l21~]xc l !2J dx,

~69!

cf. the analogous Eq.~47!. By means of a partial integration,
observing condition~66!, and also taking into account the
governing equation

c l9 ~x!52F12
l ~ l 11!

x2 Gc l ~x! ~70!

for the Riccati-Bessel functions, we obtain

Wsl m5
1

2
a0
3uE0u2l ~ l 11!~vsa0!

2E
0

p/2

c l
2dx. ~71!

From the recursion relations for the spherical Bessel func-
tions one can derive the integration formula@c l 5c l (x)#

E c l
2 ~x!5

1

2
xH ~c l8 !22

1

x
c l c l8 1F12

l ~ l 11!

x2 Gc l2 J ,
~72!

the use of which in Eq.~71! leads to

Wsl m5
p

8
a0
3uE0u2l ~ l 11!~vsa0!

2

3F12
l ~ l 11!

~vsR!2 Gc l2 ~vsR!. ~73!

This is the final expression for the energy of the electric
Minkowski modes.

The Minkowski mode functionsusl m
M can now be intro-

duced via the expansion

Ex5
1

a0x
(
s

(
l 51

`

(
m52l

l

Al ~ l 11!~asl m
M usl m

M 1asl m
M†

usl m
M* !,

~74!

where the creation and annihilation operators satisfy

@aslm
M ,as8l 8m8

M†
#5dss8d l l 8dmm8. ~75!

The Minkowski scalar product

~u1
M ,u2

M !5 ia0
3E ~u1

M* ]0Ju2
M !x2dx dV ~76!

is required to be orthogonal, in analogy to the Einstein scalar
product~54! above. Explicitly, the mode functions become

usl m
M 5

1

a0AvsR

@12l ~ l 11!/~vsR!2#

c l ~vsR!

c l ~vsa0x!

x

3Yl mexp~2 ivst !. ~77!

The classical mode energy, which in accordance with Eq.
~71! can be expressed as

Wsl m5
~vsa0!

2

l ~ l 11!
E Ex

2x2dV, ~78!

corresponds quantum mechanically to the form

Wsl m5vsS ^asl m
M†

asl m
M &1

1

2D . ~79!

Armed with the above formalism, we are now able to
analyze the following physical problem: assume that the Ein-
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stein universe was suddenly formed at the instantt50. Prior
to this event the Minkowski universe was present. We as-
sume thatEx was continuous att50. The two sets of mode
functions, uE and uM, may be related via a Bogoliubov
transformation:

unl m
E 5 (

sl 8m8
@g~nl musl 8m8!usl 8m8

M

1d~nl musl 8m8!usl 8m8
M* #, ~80!

g andd being the Bogoliubov coefficients. The correspond-
ing relation for the operators is

asl m
M 5 (

nl 8m8
@g~nl musl 8m8!anl 8m8

E

1d* ~nl musl 8m8!anl 8m8
E†

#. ~81!

The average number of particles produced in the modes,
l , m from the initial vacuum is

Nsl m5 (
nl 8m8

ud~nl musl 8m8!u2. ~82!

From Eq.~80! we see that the Bogoliubov coefficient is

d~nl musl 8m8!52~unl m
E ,usl 8m8

M* !M , ~83!

an extra subscriptM is added to indicate that the scalar prod-
uct is taken in accordance with the Minkowski normalization
~76!. Inserting Eq.~55! and Eq.~77! into Eq.~83! we see that
the coefficient vanishes unless whenl 85l andm852m.
From Eq.~82! we then obtain

Nsl m5
22l 11

pvsRc l
2 ~vsR!

@G~ l 11!#2

12l ~ l 11!/~vsR!2

3(
n

a0
2~vs2vn!

2~2n!!

G~2n12l 12!
I , ~84!

whereI is the integral

I5E
0

p/2

x sinl xC2n
~ l 11!~cosx!c l ~vsa0x!dx ~85!

~recall thatR5a0p/2!. Note that expression~84! is degen-
erate with respect tom. Thus, if we were to sumNsl m over

the Minkowski quantum numbers, we would have to take
into account that there are 2l 11 m values for eachl .

The electromagnetic energy in modes, l , m produced by
the sudden formation of the Einstein universe isWsl m
5vsNsl m .

Inspection of Eq.~84! shows the remarkable fact that the
produced number of particles is independent of the value of
the scale factora0 . The reason is that the scale factor occurs
only in the nondimensional combinationsa0vs and a0vn ;
for the lowest-lying states these numbers are of order unity.

Expression~84! is complicated, and we consider hence-
forth only the contribution from the lowest mode. It corre-
sponds tol 51, s51, n50. We have in this case

c1~x!5
sinx

x
2cosx, C0

~ l 11!~cosx!51, ~86!

vsR52.75, vna052, ~87!

cf. Eqs.~17! and~31! ~for notational clarity we here keep the
general subscriptss andn on v to distinguish the frequen-
cies!. Some calculation leads to

I52
vsa0

vs
2a0

221 S 2vsa0cosvsR

vs
2a0

221
1

p

2
sinvsRD 50.820,

~88!

which again means that

N11m50.009 47. ~89!

The number of produced photons in this particular mode is
thus very small. The produced energy, in dimensional units,
becomes

W11m5
2.75\c

R
N11m5

1.75\c

a0
N11m . ~90!

To get an appreciable amount of energy, we have to envisage
a miniuniverse whose scale factora0 is very small. From a
physical point of view, the dependence ofW11m upon some
inverse power ofa0 is just what we would expect. The cur-
vature effect, and hence also the quantum-mechanical effect,
become more pronounced the smaller the value ofa0 is. The
curvature effect is reflected, for instance, by the fact that the
scalar curvature of the Einstein metric is equal to 6/a0
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