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The reheating process in inflationary universe models is considered as an out-of-equilibrium mixture of two
interacting and reacting fluids, and studied within the framework of causal, irreversible thermodynamics. The
evolution of the temperature and the decay rate as determined by causal thermodynamics are estimated at
different stages of the process. A simple model is also used to find the perturbations of the expansion rate,
including the possibility of damped oscillatiof$0556-282(197)00208-1
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[. INTRODUCTION process as a whole on the entire cosmological dynamics,
including the behavior of the scale factor. We believe this to
The reheating period is a key ingredient in many infla-be a main advantage of our approach since most of the quan-
tionary models of the very early Universe. During reheating,tum field theoretical calculations do not even take into ac-
most of the matter and radiation of the Universe is createdount the expansion of the Universe.
via the decay of the inflaton field, while the temperature A two-fluid description of the expanding Universe is nec-
grows by many orders of magnitude. Traditionally, the ide-essarily dissipative, even if the components are assumed to
alized picture of a very quick decay in which the productsbe intrinsically perfect fluids. This is also true for nonreact-
reach equilibrium immediately is assumigld. However, re-  ing fluids (conserved particle numbeysvhere the different
cent quantum field theoretical investigatidis-10] indicate  cooling rates of the subsystems produce an effective,
that the reheating period is characterized by complicateéntropy-generating bulk viscous pressure of the system as a
nonequilibrium processes, the main characteristics of whickvhole[11,12. In fact, conservation of the particle number is
are initial, violent particle production via parametric reso-only a very special case, particularly at high energies. The
nance(“preheating”), with a highly nonequilibrium distri- processes we are interested in are characterized by particle
bution of the produced particles, subsequently relaxing to adecay and production.
equilibrium state. As has been shown recently, any deviation from detailed
In this paper we aim at obtaining a phenomenologicabalance in the decay and inverse decay reactions in the ex-
understanding of the reheating process within a model of tw@anding Universe gives rise to additional bulk press{it&%
interacting and reacting fluids. We regard this approach aik the present case of strong perturbations of the detailed
complementary to the above-mentioned quantum field thedsalancethe reactions are predominantly one directional with
retical studies. The model involves a fluid with the equationghe inverse processes largely suppressede expects con-
of state for mattemodeling scalar field oscillations about siderable bulk viscous pressures that characterize the devia-
the true ground state in the reheajinpat decays into a tions from equilibrium of the cosmological fluid as a whole.
relativistic fluid. The implications of an intermediate decay To describe this nonequilibrium process, we shall resort to
into other massivébosonig particles that does not explicitly the well-known Israel-Stewart theory of transport processes
occur in this model, are assumed to be describable with thgL4] which, because of its causality and stability properties
help of a large, effective decay rate of the initial into the final[15], has been repeatedly applied in the cosmological con-
component of the entire process, leaving the detailed microtext, sed 16—18 and references therein.
physical study of this epoch to quantum field theoretical in- In this theory, generalized “fluxes,” such as a bulk pres-
vestigations which are beyond the scope of the present papesure, become dynamical degrees of freedom on their own
While these simplifications may appear drastic, they operand have associated relaxation times. Our point of view here
the possibility of studying the back reaction of the decayis to regard the cosmic substratum during the reheating pe-
riod as a causal, dissipative fluid, relaxing to equilibrium.
(By “causal” we mean that dissipative signals propagate
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p0|nt out that in the present context it is the high “preheat-where ®=u'; is the fluid expansion anil, is the rate of
ing” particle production rate that provides a “creation” con- change of the number of particles of specis There is
tribution to the “effective” bulk pressure which may be particle production forI'y>0 and particle decay for
much larger than the conventional, thermodynamic, dissipaF ,<0. ForI',=0 we have separate particle number conser-
tive bulk pressure. While the latter is considered to be smalation.
in the applications of this paper, the “effective” bulk pres-  |nteractions between the fluid components amount to the
sure, that determines the reheating temperature, is not. mutual exchange of energy and momentum. Consequently,

Section |l establishes the basic relationships concerninghere will be no local energy-momentum conservation for the
both particle and energy-momentum nonconservation in ougubsystems separately. Only the energy-momentum tensor of
two-fluid system, and presents an expression for the evoluhe system as a whole is conserved. Denoting the loss and
tion of the temperature of the overall fluid. Section Ill intro- source terms in the separate balances,byve may write
duces the causal transport relation for the thermodynamic,
dissipative bulk stress, and deduces the corresponding equa- TA = —tA, (5)
tion for the evolution of the Hubble parameter. Section IV A
solves the latter equation at three different stages of the ramplying
heating by assuming a very short relaxation time, and deter- _ _
mines the temperature evolution in each of them. The quali- pat O(pat+pa)=Uith, (6)
tative description of the dynamics is determined essentially
by a single thermodynamical quantity, the dissipative contri-and
bution to the speed of sound. If this is larger than the adia- - _ _
batic contribution to the sound speed at the beginning of (patPalu'+pah®=—hitk. (7)
reheating, we show that the temperature rises rapidly to a
maximum (reheating temperature, which we estimate. This All the considerations to follow will be independent of the
condition for rising temperature is equivalent to a growth inspecific structure of thé, . In general, there are no limita-
the total particle number density, which is reasonable in théions on the strength or the structure of the interaction.
initial stage of reheating, when coherent oscillations of the Each component is governed by a separate Gibbs equa-
scalar field lead to a huge production of particles. Thereaftetjon:
the temperature falls, but less rapidly than in the nondissipa-
tive case. In Sec. IV B, we construct a simple model to cal-
culate the perturbations of the expansion rate due to causal
viscous and reactive effects. The model includes the possi-
bility of damped oscillations in the beginning of reheating. Using Eqs(4) and(6), one finds for the time evolution of the
Finally, Sec. V summarizes our conclusions. entropy per particle

Units have been chosen so tlatkg=7%=1.

TAdsA=d( +pAd( 1) (8)
A

NATaSA=Uith— (pa+Pa) A 9

Il. THE TWO-FLUID MODEL _ o _
With nonvanishing source terms in the balancesrfgrand

Let us assume the energy-momentum teriBérof the  p,, the rate of change of entropy per particle is nonzero in

cosmic medium splits into two perfect fluid parts: general. Below, we shall deal with the special case that the
, , , terms on the right-hand side of E(@) just cancel.
TR=TH+TY, D According to Eq.(5) the condition of energy-momentum
conservation for the system as a whole,
with (A=1,2) _ _
, (TF+T5).,=0, (10
TA pau Uk+ pAhlk. (2)
implies
pa is the equilibrium pressure of speci@s For simplicity, , ,
we assume that both components share the same four- th=—t5. (11
velocity u', with projection tensoh’*=g'*+u'uX. The par-
ticle flow vectorN), of speciesA is There is no corresponding condition, however, for the par-
ticle number balance as a whole. Defining the integral par-
N =n,u', (3)  ticle number densityr as
wheren, is the particle number density. We are interested in N=ny+ny, (12)
situations where neither the particle numbers nor the ener
) . SWwe have
momentum of the components is separately conserved, i.e.,
particle interconversion and exchange of energy and momen- .
tum between the components are admitted. n+@&n=nr’, (13
The balance laws for the particle numbers are with

NiA;i:hA"'@nA:nAFA, (4) nF=n1F1+n2F2. (14)
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I is the rate by which the total particle numbdrchanges. general. The difference between the sum(ny,T,)

We donot requirel” to be zero, since total particle number +p2(nz,T2) and the equilibrium pressung(n,T) contrib-

conservation is only a very special case, especially at hightes to the thermodynamical, dissipative bulk presstiré

energies. further source ofr is deviations from detailed balance, i.e.,
From now on we assume that the source terms on theontributions due td',#0 [13].

right-hand side of Eq(9) cancel among themselves, i.e., the  The behavior of the equilibrium temperatufeof the sys-

entropy per particle of each of the components is preservedem as a whole is governed p$3]

The particles decay or come into being witlixed entropy

sa. This adiabaticity condition amounts to the assumption T p Om T
that the particles at any stage are amenable to a perfect fluid T —(® _F)@ " Toqp (T) L (23
description. Withs,=0 in Eq.(9), one has
, where the abbreviations:f=9f/JT and
Uita=(pat Pa)la. (15 ]

. . . . . T}  pI'=pi'i—pols
This relationship establishes a link between the source terms T = T
in Egs.(4) and(6) which originally are independent quanti- * L
ties. '_I'he simplifying assumptioiaA=_0 takes into_accoqnt p1+p1 (N, n, ) 1 1 }
the circumstance that the production process itself is the = —p1— =P | =——+—F"|T1
main source of entropy production, while dissipative pro- Tdrp AN n nihy - nohy
cesses within each of the separate components are less im- (24)
portant. The cosmic fluid as a whole will be considered, ) o
however, as dissipativesee below: were used. The terrf24) takes into account deviations from

Combining Egs(11) and(15) one has classical gas behavior. It vanishes fok=n,T, i.e., for a

. . mixture of classical gases. For a mixture of a classical and a
uiti=(p1+p)T 1= —uthb=—(po+po)Ty, (16 guantum gas, or for a mixture of fermions and bosons, it will
be nonzero in general. We shall restrict ourselves to the case
which provides us with a relation between the rdfgsand o two classical fluids, i.e., to the casé/{T), =0. This sim-
I plifying assumption is in line with the general restriction of
our approach concerning the detailed microphysics, pointed
PP (17)  outin the introduction.
P2t P2 The temperature evolution equati28) suggests that we
define an “effective” bulk pressure

F2: -

Use of this relation in Eq(14) yields

T r

’ (18) Weﬁ: T 6T&Tp: T 6p, (25)

1 1
nF:nlrlhl h_l_ h_2

. . so that Eq.(23) in the classical case may be written as
whereh,=(pa+ pa)/na are the enthalpies per particle. To- a2y y

tal particle number conservation, i.€.=0, is only possible T ip Ox

if hy=h,. S YA —— (26)
As is shown elsewherfl2,13, a system of two fluids, T dp Top

each of them perfect on its own, is dissipative in general and

may be characterized by an energy-momentum tensor Our_main concern in 'Fhe following sections will be to stU(_jy
the influence of the different parts of the entropy producing

Tk=pu'u*+ (p+ m)h'. (19 “effective” bulk pressurem__on the cosmological evolu-
tion.

The equilibrium pressure of the total system and the en-  The # , term in Eq.(26) describes the deviation from the
H 1 €
ergy densityp are assumed to obey equations of state adiabatic temperature behavior. It is obvious that any

p=p(n,ny,T) (20) m <0 on the right-hand side of E@26) yields a positive,

i.e., “reheating” contribution toT/T, counteracting the first
and term on the right-hand side of E(R6) that simply describes
the adiabatic cooling due to the expansion.

p=p(N.ny,T), @D As we shall discuss below, the nonequilibrium term on
whereT is the equilibrium temperature of the system as alh€ fight-hand side of Eq26) may overcompensate the adia-
whole, definedby (cf. [11,12) batic term du.rlng the initial preheatlng stage.
The effective bulk pressuré5) consists of the conven-
p1(N1,T1) +pa(nz, T2) =p(n,ng,T). (220  tional, thermodynamic, dissipative bulk pressureand a

creation part—pI'/®. For I'>0, a condition that is ex-
It is worth mentioning that there does not exist a correspondpected to be satisfied during the initial stage of reheating, the
ing relation for the pressures. The partial pressures of thereation part gives the dominant contribution to the effective
components do not add up to the equilibrium pressure ibulk pressure. Even for a small or vanishing thermodynamic
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viscous pressurer, the entropy-producing nonequilibrium The Einstein field equations for a spatially flat Robertson-
parts on the right-hand side of the temperature (28) may = Walker spacetime are

overcompensate the adiabatic part, provided only that the

production ratel” is sufficiently high. In other words, even 3H?=«kp, (30

the production of particles with an equilibrium distribution, o ) o

equivalent to the possibility of a perfect fluid description, Wherex is Einstein’s gravitational constant, and

gives rise to “reheating” and entropy production. We shall

consider this to be the dominant part of the entropy produc- K
tion during preheating. It is the particle production process

itself which is connected with entropy production, simply _
through the enlargement of the phase space. There are addihere H=30=R/R and R is the cosmic scale factor. By
tional entropy-producing contributions due to the fact that inEgs.(30) and(31), the thermodynamic bulk pressure may be
reality the particles will deviate from equilibrium. These written as

contributions will be subject to a causal transport equation in

1
=—§K(p+p+7T), (31

the following section. k= —3yH%— 2H. (32
Ill. THE CAUSAL EVOLUTION EQUATION To calculaterr one first has to determing via
In the Israel-Stewart second order theory of irreversible p= ‘9_ph+ z?_p_-l_ (33)
processes, the viscous pressurés a dynamical degree of an - IT

freedom on its owii14]. Instead of applying the much more

involved full Israel-Stewart theory, we shall restrict our- Using the balance lawd3) for n, and the evolution equation
selves to the so-callettuncated version [17—-19 of this  (23) for T, we find

theory, since the latter already captures the essence of non-

instantaneous relaxations. While the full and the truncated - _ 2 P
theories may disagree significantly if applied to far-from- p=—(H=T)(p*p)c; 3H7T<(?Tp ' (34
equilibrium situationg17-19, they are expected to provide
similar results near equilibriufL8]. Now, reheating is any- with the adiabatic sound velocity; given by
thing but close to equilibrium. But as already mentioned, the
main contribution to the entropy production during the decay 5 [P n Jp T  (d1p)?
_ ] = —+ . (39
process may be traced back to the second term in the expres s"1ap). (ptp)an  (p+tp) dmp
sion (25) for the effective bulk pressure. The thermody- isentropic
namic, dissipative bulk pressure may be regarded as a By differentiating Eq.(31), we get
small perturbation under these circumstances and is sup- '
posed to obey the truncated causal transport equation _ 2 { H D grp
. m=— 3 P25 p| 1+5 | —3H(p+p)_—
m+rr=—{[0. (27 P P
+(38H-T)(p+p)cs. (36)

The quantityr denotes the relaxation time associated with

the thermodynamic, dissipative bulk pressure, i.e., the timgjsing Eqs.(32) and(36) in Eq. (29), the evolution equation
the system would take to come to equilibridperfect fluid  for H pecomes

behavioy if the generalized “force,” in this case the expan-

sion ®, were suddenly turned off. It may be related to the K K ap| 9 1P 3

bulk viscosity¢ by [19] (see alsd18]) Tz +3y 1+@ SH (@—cg—cﬁ + Ecﬁyf
{_ o 2 2 H 3
;—cb(p+p), cp=<1-cg, (28) + o+ 5 y=0. 37)

where ¢, is the adiabatic sound speed aogl is the bulk
viscous contribution to the speed of sound given by
v2=c2+cZ. Thus,

Equation(37) is the causal dynamical equation in general
form. We now specify the equations of state implicipimnd
p. We assume that fluid one is described by the equations of
: state for nonrelativistic matter, i.e.,
TrTT= —@C%p"yr. (29

=n,m+ 3n,T, p;=n,T, m>T, 38
Here and throughout, we will use the abbreviation pimih 2Mls Pi=M 8

o while fluid two is relativistic:
=1+—,
Y p p2=3Nn,T, p=n,T. (39

where y is not assumed constant. Consequently, Eq37) reduces to



H

T{ >+

H2

(ny+nz)nym
(ny+2n5)(ngm+3n,T)

5n;+8n,
n;+2n,

H+3
H

N (5n;+8ny,)nm
8(ny+2n,)(nym+3n,T)

3 2

. H Jr3(n1m+4n2T)
HZ " 2(n;m+3n,T)

(40)

where Q=|I";|>0 was assumed, i.e., the nonrelativistic
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while for radiation fi;<ny), the well-known behavior
T/T=—H is reproduced. Assuming thdtr|<p;+p,, in
agreement with the applicability conditions of the Israel-
Stewart theory, Eq42) may be written as

_'I_

T

r
T 3H

n;+n,
n,+2n,

(43

It follows that the temperature rises whén>3H. By Eq.
(13), this is equivalent tm>0, i.e., to a growth in the total

component decays. This is the causal evolution equation tBarticle number densitycf. [20]). As discussed in Sec. I,

be solved.

IV. CAUSAL DYNAMICS OF REHEATING

The Eq.(40) is a complicated nonlinear second order

such abundant net particle creation is expected to occur in
the initial nonrelativistic stage of reheating.

1. Nonrelativistic regime

In this regime the fluid is dominated by massive patrticles,

equation. To solve it, one could resort to numerical integrazq thatn,>n,, y~1. Then, Eq(41) reduces to

tion. However, this is strongly dependent on initial condi-
tions and on the form of the decay rafg and it cannot

readily give an idea of the overall dynamical features implied

by the equation. Furthermore, part of the purpose of ou

.3
H+ >

. (44

H?~0=H 2
"

thermodynamical approach is to avoid detailed complexitiesnserting this solution back into Eq40), we find that the
and to aim for an overall qualitative understanding arisingdecay rate at the beginning of reheating is

from the constraint of causality.

In Sec. IV A, we use Eq(40) to estimate the temperature
and decay rate during reheating, neglecting the small pertu
bation of the expansion rate due to thermodynamic viscou
effects.(Notice that the gravitational field equations “feel”
only the thermodynamic viscous pressuie.turns out that
under this condition the reheating dynamics may be dis
cussed in terms of the ratio,/cs of the dissipative to the

r-
s
It is a specific feature of the present first order approximation
that it fixes the rate® andI” which, in our general setting,
are input parameter§ andI’ are positive and proportional
to H. Moreover, our approximation relateg, the bulk vis-

30 e2H rscbZH herec?~ >~ (45
Q~§cb =I=3| , werecs~§a. (45)

S

adiabatic contributions to the speed of sound. Then, in Se&ous contribution to the sound speedQandI’. The exact
IV B, we calculate the perturbation of the expansion rate in avalue ofT" is fixed by the raticZ/cZ . Since, according to Eq.

simple case.

A. Temperature and decay rate

It is reasonable to assume that the expansion is approx
mately governed by nonviscous effects, and that the latte
can be treated as a back reaction. In this approximation, W

neglect the terms multiplying in Eq. (40), and arrive at the
equation governing the expansion rate:

H 3(nym+4n,T)

2t 2(n,m+3n,T) “n

We solve this for three different stages of the decay. Then wg,

use EQ.(40) to determine the corresponding decay r@e
The evolution of the temperature is given by

_'I_
== m[— 12H(py+po+m)+nmQ] (42)

as follows from Eq.(26) and from

n, m

=m7Q

which is a consequence of Ed.8) and the equations of state
(38) and(39). In the perfect fluid limitm=Q=0, one recov-

ers T/T=—2H for n;>n,, i.e., the nonrelativistic case,

(45), c2<1, a valueci~1 is admitted by Eq(28). This
amounts td">H, i.e., violent particle production as required
for “preheating.” A sufficiently high value of" also deter-
pjines the entropy production. Neglecting second order terms
n the entropy flow vector is given bg?~ns\?, where

is the entropy per particle. For large, neglecting the
change in the entropy per particle, the entropy production
density is approximately

$~3 (46)

2
Cph
—| sH.
CS

Equation(42) implies that at the beginning of the reheating,
e rate of temperature change is given by

2
c
1— (—b) }H.
c
In the initial stage, a very large rate of creation of particles
can lead to a growth in the net number density and thus in
the temperature. By Ed47), this is again equivalent to the

effective dissipative contribution, to the sound speed ex-
ceeding the adiabatic contributi@y:

T~
T~-2 (47)

S

n>0eT>0ec,>C,. (48)

Equation(47) then implies that initially the temperature rises
extremely rapidly(see also[20]). It reaches a maximum,
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which we could call the reheating temperatiig,, follow-
ing standard terminology, and then decreases,dalls be-
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We expect that Eq56) is easily satisfied in the intermediate
regime, after the initial violent rate of creation of particles

low cs. By Eq. (45), the reheating temperature is given by has passed, and the two-fluid mixture evolves increasingly

Trer =C2m. (49)

5

It follows from Eg. (46) that there is a high entropy produc-
tion in this regime. Alternatively, this regime may be char-

acterized in terms of the effective bulk pressy2®). For
I'=3H, the condition| 7| <p;+ p,=p leads generally to

r

Weﬁ% - 3_H p. (50)

Using the relationg45), one gets

2
Cp 3
We"%_(c_s) p*‘gnmfﬁ%—nTreh, (51)
equivalent to

|7Teff| Treh

p =~ T (52)

For large particle production the conditi¢ﬁeﬂ|>p is satis-

fied. The reheating temperatu(¢9) may be understood as

the temperature for whichr_|~p=~p;.

2. Intermediate regime

towards “normal” two-fluid behavior, for whickt,<1 [see
Eq. (53) of [12)).

3. Ultrarelativistic regime

In this last stage of reheating, the energy density becomes
dominated by the radiation fluid, i.en,T>n;m and y~ 3.
Therefore, from Eq(41) we have

. 1
H+2H2~O:H~z. (57)
Then, Eq.(40) implies the decay rate:
n,T Cp\? 1
~36c2 2 ~3 2 2~
Q 36cb(nlm>H:>F 3(%) H, wherecg 3
(58)
The temperature change follows from E42) as
T 1| 2 H 59
T~ o) | (59

As argued above, we expect tlgt ¢4 is easily satisfied, so
that the temperature continues to fall, although still at a re-
duced rate relative to the nondissipative case. Towards the
end of reheating the cosmic medium approaches a perfect,
relativistic fluid with vanishingZ, so thatc? must tend to
zero. For any nonzeroﬁ the decay rat& diverges in the
limit nym<n,T.

Here, the energy densities of both components are com-

parable, i.e.n;m~3n,T so thaty~¢{ and consequently, Eq.

(41) simplifies to

H7H20H 4
+yH*~0=H~—.

(53
Then, Eq.(40) implies that the decay rate is

C
1+8| -2

2 4
2
}H, wherecg 51"

(54

1 , 3
Q~ §(1+420b)H2F%§

S

As can be seen from E¢42), the temperature behavior is

T 7[ 8(cb)2
—~——1-=|=
7\ ¢

H. (55

B. Perturbations of the expansion rate

It is possible, givera priori the forms of the relaxation
time 7 and the decay rat®, to calculate the perturbations of
the expansion ratel due to causal viscous and reaction ef-
fects, via Eq.(40). We illustrate this with a simple model
which, in particular, can accommodate oscillationgirur-
ing the initial stage of reheating@ompareg 21], p. 24).

The simple model is based on the ansatz tdt andQ
are proportional to the expansion rate in the initial stage of
reheating, i.e.,

7 '=vH, Q=pH, (60)

wherev and B8 are positive constantsvith »>1 for a con-
sistent hydrodynamic descriptibriThe ansatz foQ is con-
sistent with Eq(45) if ¢, is constant. Using Eq$60) in Eq.
(40) in the nonrelativistic regime, we find that the evolution

After the initial stage in the nonrelativistic regime, the cre-Of the expansion rate is governed by

ation of ultrarelativistic particles slows down, while the non-
relativistic particles continue to decay, and we no longer ex-

pect thamn is positive. ThusT <0, although by Eq(55) the
cooling rate is less than the nondissipative cage=(0). We

; . 3 5 9,
H+(5+v)HH+ 3+§V+§3—§cb H3~0. (61

Now, we know that

expect that the temperature should decrease monotonically

after reaching its maximum,,. By Eqg.(55), this is the case 2 2
provided that H=g+ h, where|h|< 3t (62
2_" 2 2 =T ubstituting Eq(62) into Eq. (61) and linearizing, we find
Ch=gCs=Cb=g: 8 hat the perturbatioh is governed by
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. [2 .
h+ §(5+ v) [t th+

1 : 1
6(4+8v+5,8—360§)}t‘2h T+2HT~ < fmH.

1 _
~[2—7(36c§—53)}t‘3. Denoting byT the dominant zero order part of the tempera-
ture, which is determined by =2/(3t), and bydST the per-
This is the equation of a forced damped oscillator, as igurbation induced byH=h, this equation leads to
readily seen after the change of variablestelnt:
— 1
(5T)‘+2H5T~(g,8m—2?)h. (68

h'+ h'+

1 1
3(7+2v) 6(4+8y+5ﬁ—36c§)}h

Equation (68) determines the temperature perturbation ex-
plicitly in terms of the Hubble rate perturbation. Clearly, if
h has an oscillatory component, then so vdll.

e s (63

1 2
~|53(36c5-58)

The simplest case is E¢45), i.e., 58=36c?, for which

Eq. (63) leads to the overdamped perturbation V. CONCLUDING REMARKS

A qualitative analysis based on a thermodynamic two-
fluid model subject to causality has produced overall features
which are consistent with expectations. The decay rate of
nonrelativistic particles implied by causality is positive
throughout the reheating proce@bus providing a consis-

308> 216c2+(2v—5)2, (65)  tency check on our approagiand proportional to the expan-
sion. The overall behavior of the temperature and decay rate
which shows that,, is a damping factor, while the decay are essentially determined by, the dissipative contribution
coefficient 8 contributes to oscillation. A further constraint to the sound speed. Provided tltat exceeds the adiabatic
on the thermodynamic parameters arises from the requiresontributioncg in the beginning of reheating, equivalently,
ment that the particular integral of E¢3) must be small provided that the total number density grows by virtue of
compared to 2/(8: superabundant particle creation, the temperature rises very
rapidly at the start of reheating. It quickly reaches a maxi-
mum value(49), whereafter it falls with expansion, at a re-
duced ratddetermined byc,) relative to the nondissipative
case. Large amounts of entropy are generated in the early
If Egs. (65) and (66) are satisfied, then the damped oscilla- stage, as shown by E{46). A simplified model(60) allows
tory perturbation is given by us to calculate explicitly the decaying perturbations of the
Hubble rate, including a case of oscillatory perturbations
(67) around matter-dominated behavior.
We have thus shown the capacity of a phenomenological
(67 model based on causal relativistic thermodynamics to predict
the expected basic features of reheating with economy and
simplicity, and independent of detailed knowledge of the in-
1 teraction. This should be counted as another success of the
w:—[30ﬂ—21&:t2)—(2]}—5)2]1/2 Israel-Stewart theoryas adapted to deal with interacting
6 fluids), and another argument in favor of the theory with its
Scausality and stability properties.

h(t)~ et ™2+ et~ (2+20)53, (64)

Damped oscillations ofh about the zero order solution
2/(3t) occur when

36c2—58
58—36ci+4v—4

<1. (66)

IBIE’

2
h(t)~ §Bt‘1+t-<7+2V>/6[ €,c08 wInt) + e,sin(wint) ],

where

is the frequency of oscillation. A simple choice that satisfie
Egs.(65) and(66) is
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