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I. INTRODUCTION

The reheating period is a key ingredient in many infla-
tionary models of the very early Universe. During reheating,
most of the matter and radiation of the Universe is created
via the decay of the inflaton field, while the temperature
grows by many orders of magnitude. Traditionally, the ide-
alized picture of a very quick decay in which the products
reach equilibrium immediately is assumed@1#. However, re-
cent quantum field theoretical investigations@2–10# indicate
that the reheating period is characterized by complicated
nonequilibrium processes, the main characteristics of which
are initial, violent particle production via parametric reso-
nance~‘‘preheating’’!, with a highly nonequilibrium distri-
bution of the produced particles, subsequently relaxing to an
equilibrium state.

In this paper we aim at obtaining a phenomenological
understanding of the reheating process within a model of two
interacting and reacting fluids. We regard this approach as
complementary to the above-mentioned quantum field theo-
retical studies. The model involves a fluid with the equations
of state for matter~modeling scalar field oscillations about
the true ground state in the reheating! that decays into a
relativistic fluid. The implications of an intermediate decay
into other massive~bosonic! particles that does not explicitly
occur in this model, are assumed to be describable with the
help of a large, effective decay rate of the initial into the final
component of the entire process, leaving the detailed micro-
physical study of this epoch to quantum field theoretical in-
vestigations which are beyond the scope of the present paper.

While these simplifications may appear drastic, they open
the possibility of studying the back reaction of the decay

process as a whole on the entire cosmological dynamics,
including the behavior of the scale factor. We believe this to
be a main advantage of our approach since most of the quan-
tum field theoretical calculations do not even take into ac-
count the expansion of the Universe.

A two-fluid description of the expanding Universe is nec-
essarily dissipative, even if the components are assumed to
be intrinsically perfect fluids. This is also true for nonreact-
ing fluids ~conserved particle numbers!, where the different
cooling rates of the subsystems produce an effective,
entropy-generating bulk viscous pressure of the system as a
whole @11,12#. In fact, conservation of the particle number is
only a very special case, particularly at high energies. The
processes we are interested in are characterized by particle
decay and production.

As has been shown recently, any deviation from detailed
balance in the decay and inverse decay reactions in the ex-
panding Universe gives rise to additional bulk pressures@13#.
In the present case of strong perturbations of the detailed
balance~the reactions are predominantly one directional with
the inverse processes largely suppressed!, one expects con-
siderable bulk viscous pressures that characterize the devia-
tions from equilibrium of the cosmological fluid as a whole.
To describe this nonequilibrium process, we shall resort to
the well-known Israel-Stewart theory of transport processes
@14# which, because of its causality and stability properties
@15#, has been repeatedly applied in the cosmological con-
text, see@16–18# and references therein.

In this theory, generalized ‘‘fluxes,’’ such as a bulk pres-
sure, become dynamical degrees of freedom on their own
and have associated relaxation times. Our point of view here
is to regard the cosmic substratum during the reheating pe-
riod as a causal, dissipative fluid, relaxing to equilibrium.
~By ‘‘causal’’ we mean that dissipative signals propagate
only at subluminal speeds.!

Bearing in mind that the Israel-Stewart theory was de-
rived for small deviations from equilibrium~for attempts to
apply it to far-from-equilibrium situations see@17,18#!, we
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point out that in the present context it is the high ‘‘preheat-
ing’’ particle production rate that provides a ‘‘creation’’ con-
tribution to the ‘‘effective’’ bulk pressure which may be
much larger than the conventional, thermodynamic, dissipa-
tive bulk pressure. While the latter is considered to be small
in the applications of this paper, the ‘‘effective’’ bulk pres-
sure, that determines the reheating temperature, is not.

Section II establishes the basic relationships concerning
both particle and energy-momentum nonconservation in our
two-fluid system, and presents an expression for the evolu-
tion of the temperature of the overall fluid. Section III intro-
duces the causal transport relation for the thermodynamic,
dissipative bulk stress, and deduces the corresponding equa-
tion for the evolution of the Hubble parameter. Section IV A
solves the latter equation at three different stages of the re-
heating by assuming a very short relaxation time, and deter-
mines the temperature evolution in each of them. The quali-
tative description of the dynamics is determined essentially
by a single thermodynamical quantity, the dissipative contri-
bution to the speed of sound. If this is larger than the adia-
batic contribution to the sound speed at the beginning of
reheating, we show that the temperature rises rapidly to a
maximum~reheating! temperature, which we estimate. This
condition for rising temperature is equivalent to a growth in
the total particle number density, which is reasonable in the
initial stage of reheating, when coherent oscillations of the
scalar field lead to a huge production of particles. Thereafter,
the temperature falls, but less rapidly than in the nondissipa-
tive case. In Sec. IV B, we construct a simple model to cal-
culate the perturbations of the expansion rate due to causal
viscous and reactive effects. The model includes the possi-
bility of damped oscillations in the beginning of reheating.
Finally, Sec. V summarizes our conclusions.

Units have been chosen so thatc5kB5\51.

II. THE TWO-FLUID MODEL

Let us assume the energy-momentum tensorTik of the
cosmic medium splits into two perfect fluid parts:

Tik5T1
ik1T2

ik , ~1!

with (A51,2)

TA
ik5rAu

iuk1pAh
ik. ~2!

pA is the equilibrium pressure of speciesA. For simplicity,
we assume that both components share the same four-
velocity ui , with projection tensorhik5gik1uiuk. The par-
ticle flow vectorNA

i of speciesA is

NA
i 5nAu

i , ~3!

wherenA is the particle number density. We are interested in
situations where neither the particle numbers nor the energy
momentum of the components is separately conserved, i.e.,
particle interconversion and exchange of energy and momen-
tum between the components are admitted.

The balance laws for the particle numbers are

NA; i
i 5ṅA1QnA5nAGA , ~4!

whereQ[u; i
i is the fluid expansion andGA is the rate of

change of the number of particles of speciesA. There is
particle production for GA.0 and particle decay for
GA,0. ForGA50 we have separate particle number conser-
vation.

Interactions between the fluid components amount to the
mutual exchange of energy and momentum. Consequently,
there will be no local energy-momentum conservation for the
subsystems separately. Only the energy-momentum tensor of
the system as a whole is conserved. Denoting the loss and
source terms in the separate balances bytA

i we may write

TA;k
ik 52tA

i , ~5!

implying

ṙA1Q~rA1pA!5uitA
i , ~6!

and

~rA1pA!u̇i1pA,kh
ik52hk

i tA
k . ~7!

All the considerations to follow will be independent of the
specific structure of thetA

i . In general, there are no limita-
tions on the strength or the structure of the interaction.

Each component is governed by a separate Gibbs equa-
tion:

TAdsA5dS rA
nA

D1pAdS 1nAD . ~8!

Using Eqs.~4! and~6!, one finds for the time evolution of the
entropy per particle

nATAṡA5uitA
i 2~rA1pA!GA . ~9!

With nonvanishing source terms in the balances fornA and
rA , the rate of change of entropy per particle is nonzero in
general. Below, we shall deal with the special case that the
terms on the right-hand side of Eq.~9! just cancel.

According to Eq.~5! the condition of energy-momentum
conservation for the system as a whole,

~T1
ik1T2

ik! ;k50, ~10!

implies

t1
i 52t2

i . ~11!

There is no corresponding condition, however, for the par-
ticle number balance as a whole. Defining the integral par-
ticle number densityn as

n5n11n2 , ~12!

we have

ṅ1Qn5nG, ~13!

with

nG5n1G11n2G2 . ~14!
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G is the rate by which the total particle numberN changes.
We donot requireG to be zero, since total particle number
conservation is only a very special case, especially at high
energies.

From now on we assume that the source terms on the
right-hand side of Eq.~9! cancel among themselves, i.e., the
entropy per particle of each of the components is preserved.
The particles decay or come into being with afixedentropy
sA . This adiabaticity condition amounts to the assumption
that the particles at any stage are amenable to a perfect fluid
description. WithṡA50 in Eq. ~9!, one has

ui tA
i 5~rA1pA!GA . ~15!

This relationship establishes a link between the source terms
in Eqs.~4! and ~6! which originally are independent quanti-
ties. The simplifying assumptionṡA50 takes into account
the circumstance that the production process itself is the
main source of entropy production, while dissipative pro-
cesses within each of the separate components are less im-
portant. The cosmic fluid as a whole will be considered,
however, as dissipative~see below!.

Combining Eqs.~11! and ~15! one has

uit1
i 5~r11p1!G152uit2

i 52~r21p2!G2 , ~16!

which provides us with a relation between the ratesG1 and
G2:

G252Fr11p1
r21p2

GG1 . ~17!

Use of this relation in Eq.~14! yields

nG5n1G1h1F 1h1 2
1

h2
G , ~18!

wherehA[(rA1pA)/nA are the enthalpies per particle. To-
tal particle number conservation, i.e.,G50, is only possible
if h15h2.

As is shown elsewhere@12,13#, a system of two fluids,
each of them perfect on its own, is dissipative in general and
may be characterized by an energy-momentum tensor

Tik5ruiuk1~p1p!hik. ~19!

The equilibrium pressurep of the total system and the en-
ergy densityr are assumed to obey equations of state

p5p~n,n1 ,T! ~20!

and

r5r~n,n1 ,T!, ~21!

whereT is the equilibrium temperature of the system as a
whole,definedby ~cf. @11,12#!

r1~n1 ,T1!1r2~n2 ,T2!5r~n,n1 ,T!. ~22!

It is worth mentioning that there does not exist a correspond-
ing relation for the pressures. The partial pressures of the
components do not add up to the equilibrium pressure in

general. The difference between the sump1(n1 ,T1)
1p2(n2 ,T2) and the equilibrium pressurep(n,T) contrib-
utes to the thermodynamical, dissipative bulk pressurep. A
further source ofp is deviations from detailed balance, i.e.,
contributions due toGAÞ0 @13#.

The behavior of the equilibrium temperatureT of the sys-
tem as a whole is governed by@13#

Ṫ

T
52~Q2G!

]Tp

]Tr
2

Qp

T]Tr
1S Ṫ

T
D
*
, ~23!

where the abbreviations]Tf5] f /]T and

S Ṫ
T
D
*

[2
pG2p1G12p2G2

T]Tr

5
r11p1
T]Tr

S n2
n
p12

n1
n
p2D F 1

n1h1
1

1

n2h2
GG1

~24!

were used. The term~24! takes into account deviations from
classical gas behavior. It vanishes forpA5nAT, i.e., for a
mixture of classical gases. For a mixture of a classical and a
quantum gas, or for a mixture of fermions and bosons, it will
be nonzero in general. We shall restrict ourselves to the case
of two classical fluids, i.e., to the case (Ṫ/T)*50. This sim-
plifying assumption is in line with the general restriction of
our approach concerning the detailed microphysics, pointed
out in the introduction.

The temperature evolution equation~23! suggests that we
define an ‘‘effective’’ bulk pressure

p
eff

[p2
G

Q
T]

T
p5p2

G

Q
p, ~25!

so that Eq.~23! in the classical case may be written as

Ṫ

T
52Q

]
T
p

]
T
r

2
Qp

eff

T]
T
r
. ~26!

Our main concern in the following sections will be to study
the influence of the different parts of the entropy producing
‘‘effective’’ bulk pressurep

eff
on the cosmological evolu-

tion.
Thep

eff
term in Eq.~26! describes the deviation from the

adiabatic temperature behavior. It is obvious that any
p

eff
,0 on the right-hand side of Eq.~26! yields a positive,

i.e., ‘‘reheating’’ contribution toṪ/T, counteracting the first
term on the right-hand side of Eq.~26! that simply describes
the adiabatic cooling due to the expansion.

As we shall discuss below, the nonequilibrium term on
the right-hand side of Eq.~26! may overcompensate the adia-
batic term during the initial ‘‘preheating’’ stage.

The effective bulk pressure~25! consists of the conven-
tional, thermodynamic, dissipative bulk pressurep and a
creation part2pG/Q. For G.Q, a condition that is ex-
pected to be satisfied during the initial stage of reheating, the
creation part gives the dominant contribution to the effective
bulk pressure. Even for a small or vanishing thermodynamic
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viscous pressurep, the entropy-producing nonequilibrium
parts on the right-hand side of the temperature law~26! may
overcompensate the adiabatic part, provided only that the
production rateG is sufficiently high. In other words, even
the production of particles with an equilibrium distribution,
equivalent to the possibility of a perfect fluid description,
gives rise to ‘‘reheating’’ and entropy production. We shall
consider this to be the dominant part of the entropy produc-
tion during preheating. It is the particle production process
itself which is connected with entropy production, simply
through the enlargement of the phase space. There are addi-
tional entropy-producing contributions due to the fact that in
reality the particles will deviate from equilibrium. These
contributions will be subject to a causal transport equation in
the following section.

III. THE CAUSAL EVOLUTION EQUATION

In the Israel-Stewart second order theory of irreversible
processes, the viscous pressurep is a dynamical degree of
freedom on its own@14#. Instead of applying the much more
involved full Israel-Stewart theory, we shall restrict our-
selves to the so-calledtruncated version @17–19# of this
theory, since the latter already captures the essence of non-
instantaneous relaxations. While the full and the truncated
theories may disagree significantly if applied to far-from-
equilibrium situations@17–19#, they are expected to provide
similar results near equilibrium@18#. Now, reheating is any-
thing but close to equilibrium. But as already mentioned, the
main contribution to the entropy production during the decay
process may be traced back to the second term in the expres-
sion ~25! for the effective bulk pressure. The thermody-
namic, dissipative bulk pressurep may be regarded as a
small perturbation under these circumstances and is sup-
posed to obey the truncated causal transport equation

p1tṗ52zQ. ~27!

The quantityt denotes the relaxation time associated with
the thermodynamic, dissipative bulk pressure, i.e., the time
the system would take to come to equilibrium~perfect fluid
behavior! if the generalized ‘‘force,’’ in this case the expan-
sion Q, were suddenly turned off. It may be related to the
bulk viscosityz by @19# ~see also@18#!

z

t
5cb

2~r1p!, cb
2<12cs

2 , ~28!

where cs is the adiabatic sound speed andcb is the bulk
viscous contribution to the speed of soundv, given by
v25cs

21cb
2 . Thus,

p1tṗ52Qcb
2rgt. ~29!

Here and throughout, we will use the abbreviation

g[11
p

r
,

whereg is not assumed constant.

The Einstein field equations for a spatially flat Robertson-
Walker spacetime are

3H25kr, ~30!

wherek is Einstein’s gravitational constant, and

Ḣ52
1

2
k~r1p1p!, ~31!

whereH5 1
3Q5Ṙ/R andR is the cosmic scale factor. By

Eqs.~30! and~31!, the thermodynamic bulk pressure may be
written as

kp523gH222Ḣ. ~32!

To calculateṗ one first has to determineṗ via

ṗ5
]p

]n
ṅ1

]p

]T
Ṫ. ~33!

Using the balance law~13! for n, and the evolution equation
~23! for T, we find

ṗ52~3H2G!~r1p!cs
223HpS ]Tp

]Tr
D , ~34!

with the adiabatic sound velocitycs given by

cs
25S ]p

]r D
isentropic

5
n

~r1p!

]p

]n
1

T

~r1p!

~]Tp!2

]Tr
. ~35!

By differentiating Eq.~31!, we get

ṗ52
2

3

Ḧ

H2 r22
Ḣ

H
rS 11

]Tp

]Tr
D23H~r1p!

]Tp

]Tr

1~3H2G!~r1p!cs
2. ~36!

Using Eqs.~32! and~36! in Eq. ~29!, the evolution equation
for H becomes

tF Ḧ
H2 13

Ḣ

H
S 11

]Tp

]Tr
D 1

9

2
HgS ]Tp

]Tr
2cs

22cb
2D 1

3

2
cs
2gGG

1
Ḣ

H2 1
3

2
g50. ~37!

Equation~37! is the causal dynamical equation in general
form. We now specify the equations of state implicit inr and
p. We assume that fluid one is described by the equations of
state for nonrelativistic matter, i.e.,

r15n1m1 3
2n1T, p15n1T, m@T, ~38!

while fluid two is relativistic:

r253n2T, p25n2T. ~39!

Consequently, Eq.~37! reduces to
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tF Ḧ
H2 1S 5n118n2

n112n2
D Ḣ
H

13H ~n11n2!n1m

~n112n2!~n1m13n2T!

2
3

2
gcb

2JH1
~5n118n2!n1m

8~n112n2!~n1m13n2T!
QG

1
Ḣ

H2 1
3~n1m14n2T!

2~n1m13n2T!
50, ~40!

where Q[uG1u.0 was assumed, i.e., the nonrelativistic
component decays. This is the causal evolution equation to
be solved.

IV. CAUSAL DYNAMICS OF REHEATING

The Eq. ~40! is a complicated nonlinear second order
equation. To solve it, one could resort to numerical integra-
tion. However, this is strongly dependent on initial condi-
tions and on the form of the decay rateQ, and it cannot
readily give an idea of the overall dynamical features implied
by the equation. Furthermore, part of the purpose of our
thermodynamical approach is to avoid detailed complexities
and to aim for an overall qualitative understanding arising
from the constraint of causality.

In Sec. IV A, we use Eq.~40! to estimate the temperature
and decay rate during reheating, neglecting the small pertur-
bation of the expansion rate due to thermodynamic viscous
effects.~Notice that the gravitational field equations ‘‘feel’’
only the thermodynamic viscous pressure.! It turns out that
under this condition the reheating dynamics may be dis-
cussed in terms of the ratiocb /cs of the dissipative to the
adiabatic contributions to the speed of sound. Then, in Sec.
IV B, we calculate the perturbation of the expansion rate in a
simple case.

A. Temperature and decay rate

It is reasonable to assume that the expansion is approxi-
mately governed by nonviscous effects, and that the latter
can be treated as a back reaction. In this approximation, we
neglect the terms multiplyingt in Eq. ~40!, and arrive at the
equation governing the expansion rate:

Ḣ

H2 1
3~n1m14n2T!

2~n1m13n2T!
'0. ~41!

We solve this for three different stages of the decay. Then we
use Eq.~40! to determine the corresponding decay rateQ.
The evolution of the temperature is given by

Ṫ

T
5

1

6~n112n2!T
@212H~p11p21p!1n1mQ# ~42!

as follows from Eq.~26! and from

G5
n1
4n

m

T
Q,

which is a consequence of Eq.~18! and the equations of state
~38! and~39!. In the perfect fluid limitp5Q50, one recov-
ers Ṫ/T522H for n1@n2, i.e., the nonrelativistic case,

while for radiation (n1!n2), the well-known behavior
Ṫ/T52H is reproduced. Assuming thatupu!p11p2, in
agreement with the applicability conditions of the Israel-
Stewart theory, Eq.~42! may be written as

Ṫ

T
'22HS n11n2

n112n2
D F12

G

3HG . ~43!

It follows that the temperature rises whenG.3H. By Eq.
~13!, this is equivalent toṅ.0, i.e., to a growth in the total
particle number density~cf. @20#!. As discussed in Sec. I,
such abundant net particle creation is expected to occur in
the initial nonrelativistic stage of reheating.

1. Nonrelativistic regime

In this regime the fluid is dominated by massive particles,
so thatn1@n2, g'1. Then, Eq.~41! reduces to

Ḣ1
3

2
H2'0⇒H'

2

3t
. ~44!

Inserting this solution back into Eq.~40!, we find that the
decay rate at the beginning of reheating is

Q'
36

5
cb
2H⇒G'3S cbcsD

2

H, wherecs
2'

5

3

T

m
. ~45!

It is a specific feature of the present first order approximation
that it fixes the ratesQ andG which, in our general setting,
are input parameters.Q andG are positive and proportional
to H. Moreover, our approximation relatescb , the bulk vis-
cous contribution to the sound speed, toQ andG. The exact
value ofG is fixed by the ratiocb

2/cs
2 . Since, according to Eq.

~45!, cs
2!1, a valuecb

2'1 is admitted by Eq.~28!. This
amounts toG@H, i.e., violent particle production as required
for ‘‘preheating.’’ A sufficiently high value ofG also deter-
mines the entropy production. Neglecting second order terms
in p, the entropy flow vector is given bySa'nsua, where
s is the entropy per particle. For largeG, neglecting the
change in the entropy per particle, the entropy production
density is approximately

S;a
a '3S cbcsD

2

sH. ~46!

Equation~42! implies that at the beginning of the reheating,
the rate of temperature change is given by

Ṫ

T
'22F12S cbcsD

2GH. ~47!

In the initial stage, a very large rate of creation of particles
can lead to a growth in the net number density and thus in
the temperature. By Eq.~47!, this is again equivalent to the
effective dissipative contributioncb to the sound speed ex-
ceeding the adiabatic contributioncs :

ṅ.0⇔Ṫ.0⇔cb.cs . ~48!

Equation~47! then implies that initially the temperature rises
extremely rapidly~see also@20#!. It reaches a maximum,
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which we could call the reheating temperatureTreh, follow-
ing standard terminology, and then decreases ascb falls be-
low cs . By Eq. ~45!, the reheating temperature is given by

Treh'
3

5
cb
2m. ~49!

It follows from Eq. ~46! that there is a high entropy produc-
tion in this regime. Alternatively, this regime may be char-
acterized in terms of the effective bulk pressure~25!. For
G>3H, the conditionupu!p11p25p leads generally to

p
eff

'2
G

3H
p. ~50!

Using the relations~45!, one gets

p
eff

'2S cbcsD
2

p'2
3

5
nmcb

2'2nTreh, ~51!

equivalent to

up
eff

u

p
'
Treh
T

. ~52!

For large particle production the conditionup
eff

u@p is satis-
fied. The reheating temperature~49! may be understood as
the temperature for whichup

eff
u'p'p1.

2. Intermediate regime

Here, the energy densities of both components are com-
parable, i.e.,n1m'3n2T so thatg' 7

6 and consequently, Eq.
~41! simplifies to

Ḣ1
7

4
H2'0⇒H'

4

7t
. ~53!

Then, Eq.~40! implies that the decay rate is

Q'
1

2
~1142cb

2!H⇒G'
3

8 F118S cbcsD
2GH, wherecs

2'
4

21
.

~54!

As can be seen from Eq.~42!, the temperature behavior is

Ṫ

T
'2

7

8F12
8

7 S cbcsD
2GH. ~55!

After the initial stage in the nonrelativistic regime, the cre-
ation of ultrarelativistic particles slows down, while the non-
relativistic particles continue to decay, and we no longer ex-
pect thatṅ is positive. Thus,Ṫ,0, although by Eq.~55! the
cooling rate is less than the nondissipative case (cb50). We
expect that the temperature should decrease monotonically
after reaching its maximumTreh. By Eq.~55!, this is the case
provided that

cb
2,

7

8
cs
2⇒cb

2,
1

6
. ~56!

We expect that Eq.~56! is easily satisfied in the intermediate
regime, after the initial violent rate of creation of particles
has passed, and the two-fluid mixture evolves increasingly
towards ‘‘normal’’ two-fluid behavior, for whichcb!1 @see
Eq. ~53! of @12#!.

3. Ultrarelativistic regime

In this last stage of reheating, the energy density becomes
dominated by the radiation fluid, i.e.,n2T@n1m andg' 4

3.
Therefore, from Eq.~41! we have

Ḣ12H2'0⇒H'
1

2t
. ~57!

Then, Eq.~40! implies the decay rate:

Q'36cb
2S n2Tn1m

DH⇒G'3S cbcsD
2

H, wherecs
2'

1

3
.

~58!

The temperature change follows from Eq.~42! as

Ṫ

T
'2F12S cbcsD

2GH. ~59!

As argued above, we expect thatcb,cs is easily satisfied, so
that the temperature continues to fall, although still at a re-
duced rate relative to the nondissipative case. Towards the
end of reheating the cosmic medium approaches a perfect,
relativistic fluid with vanishingz, so thatcb

2 must tend to
zero. For any nonzerocb

2 the decay rateQ diverges in the
limit n1m!n2T.

B. Perturbations of the expansion rate

It is possible, givena priori the forms of the relaxation
time t and the decay rateQ, to calculate the perturbations of
the expansion rateH due to causal viscous and reaction ef-
fects, via Eq.~40!. We illustrate this with a simple model
which, in particular, can accommodate oscillations inH dur-
ing the initial stage of reheating~compare@21#, p. 241!.

The simple model is based on the ansatz thatt21 andQ
are proportional to the expansion rate in the initial stage of
reheating, i.e.,

t215nH, Q5bH, ~60!

wheren andb are positive constants~with n.1 for a con-
sistent hydrodynamic description!. The ansatz forQ is con-
sistent with Eq.~45! if cb is constant. Using Eqs.~60! in Eq.
~40! in the nonrelativistic regime, we find that the evolution
of the expansion rate is governed by

Ḧ1~51n!HḢ1F31
3

2
n1

5

8
b2

9

2
cb
2GH3'0. ~61!

Now, we know that

H5
2

3t
1h, whereuhu!

2

3t
. ~62!

Substituting Eq.~62! into Eq. ~61! and linearizing, we find
that the perturbationh is governed by
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ḧ1F23 ~51n!G t21ḣ1F16 ~418n15b236cb
2!G t22h

'F 127~36cb
225b!G t23.

This is the equation of a forced damped oscillator, as is
readily seen after the change of variable tos5 lnt:

h91F13 ~712n!Gh81F16 ~418n15b236cb
2!Gh

'F 127~36cb225b!Ge2s. ~63!

The simplest case is Eq.~45!, i.e., 5b536cb
2 , for which

Eq. ~63! leads to the overdamped perturbation

h~ t !'e1t
221e2t

2~112n!/3. ~64!

Damped oscillations ofh about the zero order solution
2/(3t) occur when

30b.216cb
21~2n25!2, ~65!

which shows thatcb is a damping factor, while the decay
coefficientb contributes to oscillation. A further constraint
on the thermodynamic parameters arises from the require-
ment that the particular integral of Eq.~63! must be small
compared to 2/(3t):

uBu[U 36cb
225b

5b236cb
214n24 U!1. ~66!

If Eqs. ~65! and ~66! are satisfied, then the damped oscilla-
tory perturbation is given by

h~ t !'
2

9
Bt211t2~712n!/6@e1cos~v lnt !1e2sin~v lnt !#,

~67!

where

v5
1

6
@30b2216cb

22~2n25!2#1/2

is the frequency of oscillation. A simple choice that satisfies
Eqs.~65! and ~66! is

n5
5

2
, b5

2

165
1
36

5
cb
2 ,

in which case

H'
2

3t
2

1

450t
1
1

t2
eexpS iA1133

lnt D .
Finally, we note that the perturbations of the Hubble rate

induce perturbations of the temperature via the temperature
evolution equation ~42!. Using Eq. ~60! and n1@n2,
p11p21p'n1T, we find

Ṫ12HT'
1

6
bmH.

Denoting byT̄ the dominant zero order part of the tempera-
ture, which is determined byH̄[2/(3t), and bydT the per-
turbation induced bydH[h, this equation leads to

~dT!–12H̄dT'S 16bm22T̄Dh. ~68!

Equation ~68! determines the temperature perturbation ex-
plicitly in terms of the Hubble rate perturbation. Clearly, if
h has an oscillatory component, then so willdT.

V. CONCLUDING REMARKS

A qualitative analysis based on a thermodynamic two-
fluid model subject to causality has produced overall features
which are consistent with expectations. The decay rate of
nonrelativistic particles implied by causality is positive
throughout the reheating process~thus providing a consis-
tency check on our approach!, and proportional to the expan-
sion. The overall behavior of the temperature and decay rate
are essentially determined bycb , the dissipative contribution
to the sound speed. Provided thatcb exceeds the adiabatic
contributioncs in the beginning of reheating, equivalently,
provided that the total number density grows by virtue of
superabundant particle creation, the temperature rises very
rapidly at the start of reheating. It quickly reaches a maxi-
mum value~49!, whereafter it falls with expansion, at a re-
duced rate~determined bycb) relative to the nondissipative
case. Large amounts of entropy are generated in the early
stage, as shown by Eq.~46!. A simplified model~60! allows
us to calculate explicitly the decaying perturbations of the
Hubble rate, including a case of oscillatory perturbations
~67! around matter-dominated behavior.

We have thus shown the capacity of a phenomenological
model based on causal relativistic thermodynamics to predict
the expected basic features of reheating with economy and
simplicity, and independent of detailed knowledge of the in-
teraction. This should be counted as another success of the
Israel–Stewart theory~as adapted to deal with interacting
fluids!, and another argument in favor of the theory with its
causality and stability properties.
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