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Evolving test fields in a black-hole geometry
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We consider the initial value problem for a massless scalar field in the Schwarzschild geometry. When
constructed using a complex-frequency approach the necessary Green’s function splits into three components.
We discuss all of these in some det&ll) The contribution from the singularitigghe quasinormal modes of
the black holgis approximated and the mode sum is demonstrated to converge after a certain well-defined time
in the evolution. A dynamic description of the mode excitation is introduced and t¢8jdtis shown how a
straightforward low-frequency approximation to the integral along the branch cut in the black-hole Green’s
function leads to the anticipated power-law falloff at very late times. We also calculate higher order corrections
to this tail and show that they provide an important complement to the leading @Bgdhe high-frequency
problem is also considered. We demonstrate that the combination of the obtained approximations for the
quasinormal modes and the power-law tail provide a complete description of the evolution at late times.
Problems that arisén the complex-frequency picturdor early times are also discussed, as is the fact that
many of the presented results generalize to, for example, Kerr black h8&s56-282197)03202-3

PACS numbsg(s): 04.30.Nk, 04.25.Nx, 97.60.Lf

I. CAUCHY'S PROBLEM The problem we consider here is in many ways an old
FOR PERTURBED BLACK HOLES one. The evolution of a test field in a black-hole background
was first considered more than 25 years at@). The gen-
This paper concerns the evolution of a test fighe it  eral features of such an evolution are well knoj@}. The
scalar, electromagnetic, or a perturbation of the gravitationdfresponse” of the black hole, as seen by a distant observer,
field itself) in a spacetime that contains a black hole. That iscan be divided into three components. Radiation emitted
we consider the problem that is associated with Cauchy ifidirectly” by the perturbation source will dominate at early
the framework of general relativity. Because of the inherentimes. This radiation depends on the exact character of the
nonlinearity of Einstein’s theory this problem is generally initial field. In contrast, the late-time response depends
not amenable to analytic calculations. But if the wave field ismainly on the parameters of the black hole. The exponen-
sufficiently weak that its contribution to the spacetime cur-tially damped oscillations of the black-hole quasinormal
vature can be neglected, the evolution equations reduce toraodes carry a considerable part of the total radiated energy
wave equation with a complicated effective potential. This isin many astrophysical processésich as gravitational col-
the realm of black-hole perturbation thedry,2] in which  lapse [5-8]. Finally, the wave field falls off with time ac-
the initial-value problem can be approached by “standard”’cording to a power law at very late timgs,10].
methodd3,4]. The purpose of the present work is to contrib-  The initial-value problem for black-hole perturbations has
ute a more detailed understanding of the many intricaciebeen considered by several authors. In an impressive study,
associated with the evolution of a weak wave field in alLeaver [3] discussed both the excitation of quasinormal
black-hole geometry. modes and the nature of the power-law tails. The
One can argue that this kind of discussion is of little im- quasinormal-mode problem was later considered by Sun and
portance to physics. It may seem obvious that much relevarRRrice[13] and also by the present auttdi. Late-time tails
information will be lost when the equations of general rela-have recently been studied by Gundlach, Price, and Pullin
tivity are linearized. But it turns out that the perturbation[14,15 and Chinget al. [16].
approach provides surprisingly accurate results in many situ- Even though the problem is far from new, there are sev-
ations. An interesting example of this is the case of twoeral reasons why it needs to be investigated further. Al-
colliding black holeg11]. This does not mean that the linear though the response of a black hole to an impinging wave
equations render a fully nonlinear approach useless. It woulgacket will almost exclusively be dominated by the slowest
be truly surprising if no new phenomena were to be unveiledlamped quasinormal modes, and present methods can reli-
by detailed nonlinear calculations, but linear studies provideably account for the excitation of these modag], several
important benchmarks against which such fully nonlinearguestions remain. For example, what is the role of the highly
numerical calculations ca@nd shouldl be tested. Also, and damped modes? It is known that an infinite number of qua-
of equal importance, is the fact that the linear problem can bsinormal modes exist for each radiative multipblgl7,18,
approached “analytically.” This can lead to an improved but our understanding of the role of the higher overtones is
understanding of the underlying physics and information thatather poor. In fact, it is not at all clear whether the mode
can be extremely difficult to infer from purely numerical sum is convergent or ndt3]. Our understanding of the
data. power-law tail is also somewhat unsatisfactory. The leading
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behavior has been calculated in different w84 6], but the B. The black-hole Green'’s function
resultant formulas are only truly useful at very late times. In 1 is well known that the time evolution of a wave field
a typical evolution scenario there is a considerable time winy, (r, ,t) follows from

dow in which the signal is no longer dominated by the qua- R
sinormal modes, but the leading order power-law tail has not

yet taken over. Is it possible to derive a “higher-order” tail up(ry ,t)ZJ G(ry,y,H)au(y,00dy
expression that describes the evolution adequately for the

intermediate times? These questigaad several otherare
addressed in the present paper. + ] aG(re .y, Huly,0dy (6
Il. THE PROBLEM AND A FORMAL SOLUTION for t>0 (we will discuss the appropriate limits of integration

S _ in Sec. Il ©. The (retarded Green’s function is defined by
A. A massless scalar field in the Schwarzschild geometry

9

In order to make the presentation clear we have chosen to
-7 o VI [G(r y. =818, —y),  (7)
*

specialize this investigation to the case of a massless scalar
field and Schwarzschild black holes. This is, of course, a
model problem since no scalar fields have yet been Observe%ggether with the conditio&(r, ,y,t)=0 for t=<0.

in nature. But this does not mean that our results are of "1, find the Green's functiog(r, y.t) is our main task.
restricted value. On the contrary, because the equations thétnce we know it, we can study t’r‘lé évolution of any initial
govern other perturbing fieldssuch as an electromagnetic field by evaluatin,g the integrals in E¢B).

test field or a gravitational perturbation of the metrare The first step in finding3(r, ,y,t) consists of reducing

similar to the'one for a scalar fie[@], the results presented Eq. (7) to an ordinary differential equation. To do this we use
here are easily extended to all other relevant cases. Furthe[rﬁe integral transforni4]

more, as will be discussed in Sec. VI, it seems likely that

many of the present results can be adapted also to the case of A .

rotating black holes. G(r, ,y,w):f G(r, ,y,t)e'tdt. (8)
In the background geometry of a Schwarzschild black 0~

hole, a massless scalar field evolves according to

This transform is well defined as long as &0, and the

O®=0. (1) corresponding inversion formula is
Because of the underlying spherical symmetry it is meaning- 1 (+=+ic . _
ful to introduce the decomposition G(ryy.=5— N G(ry . y.we “do, (9
—©+I|C
U|(r* ,t) . -
im=———Ym(6,¢), (2)  wherec is some positive number.

r .
The Green’s functiorG(r, ,y,w) can now be expressed

in terms of two linearly independent solutions to the homo-

whereY),, are the standard spherical harmonics. The func :
geneous equation

tion u(r, ,t) then solves the wave equation

s 7+ a1, =0 (10
— — — .2 TwW — V| r U| r, ,w)=0.
a—ri— EZ V,(r) u, o, (3) dr* *
where the effective potential is The two required solutions are defined by their asymptotic
behavior. The first solution corresponds to purely ingoing
2M\[I(1+1) 2M waves crossing the event horizon,
V,(r)=<1—7 —z T (4) ,
~in [elwr*, My ——>,
U(ry ,w)~ o —iw
and M is the mass of the black holeve use geometrized () Al @))€ + A (w)e 1, 1, — -+,
unitsc=G=1). The “tortoise” coordinate , is defined by (13)
d 2M\ d and the second solution behaves as a purely outgoing wave
T Z( e (5)  at spatial infinity,
*
Let us now suppose that we are given a specific scalar gup ) Boyt(w)e'wr*+Bin(w)e_"”*, Me— =,
field at some timgwe will uset=0), and that we want to A etlor r,—+o.
deduce the future evolution of this field. That is, we require (12
a scheme for calculatinffor eachl) u(r, ,t) once we are
givenu(r,,0) andd.u,(r,,0). This problem is typically ap- Using these two solutions, the Green’s function can be

proached via a Green'’s function. written as
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A 1 a:n(r* 1w)a|up(y1w)r r*<y! N :
G(I"* ry!w): 5 \'5\/’, power-law tail
2i wA; ~i A <
OAn(@) | GP(y,w)0Rr, 0), 1>y a) 5 e b)
( 13) ’ quasinormal modes
Here, we have used the Wronskian relation X ¥ x
x x
Wioy=in 4 _ el o 14 /\
(w)_ul dr* ul dr* el in(w)' ( ) /I direct transmission
complex frequency plane
C. Using complex frequencies J\

The problem can now, in principle, be approached by di- _ o

rect numerical integration of E¢10) for (almos} real values FIG. 1. (a) Schematic description of a black hole response to
of @ and subsequent inversion of EtP). This approach initial data of compact support. The directly transmitted wgvem
should lead to reliable results and an accurate representati@nsource_po'ny) arrives at a distant observéatr, ) roughly at

of the evolution, as long as some care is taken in each step.Wr*_er*OI' Thde black “hole re?ponseﬁ thalt) is dominated ?Il
multitude of examples of this approach can be found in worI?Eas'EorTg -r,:(t) € rllngt]ln?, re?ﬁ es t |ef ﬁ Sehfver at roughly
relating to particles orbiting black holdsee[2] for an ex- F —y="5. AL very ate imes e sighal 1atls off as an inverse
haustive list of referencesFor the evolution of a test field power of time. This power-law tail arises because of multiple back-

when we want to exolain whv different features seen in th scattering off the spacetime curvatucb) Integration contours in
P y he complex frequency plane. The original inversion contour for the

gmerglng waves arise, it may be useful to follow an alternay reen’s function lies above the real frequency axis. When analyti-

tive route, however.. An approach that often prO\{es use,fufally continued in the complex plane this contour can be replaced

Whe_n one V\{antg to Isolat(? the behavior of a Greer_l S funct'lorg)y the sum of(1) the quasinormal modefthe singularities of

in dlffere_nt time mtgrvals is based on bending the mtegratlorf;(r* . ); the first few are represented by crosses in the figure

contour in Eq.(9) into the lower half of the complexo  (5) an integral along the branch cizt thick line along the negative

plane. This is the approach that we will follow here. imaginarye axis in the figurg that leads to the power-law tail, and
What do we expect to learn by analytically continuing the(3) high frequency arcsthat one would expect vanish at most

Green's function in this way? First of all, it is well known times, but they should also lead to roughly “flat space propagators”

thatG(r, ,y,w) has an infinite number of distinct singulari- at early times

ties in the lower half of thew plane. These correspond to the

black-hole quasinormal modes and occur at frequencies fo§|mpllfy|ng approximation over a less transparent numerical

. . : : . calculation. The hope is that this will lead to a reasonabl
which the Wronskian\/(«) yarllihes. :I'ur;at IS, -for a quasl- 5ccurate descriptiorF\) of the evolution, and at the same tin¥e
normal mode the two solutions” andj® are linearly de- ) q\ide better insight into the underlying physics. Once one
pendent. To determine the quasinormal-mode frequencies [§y5 acquired this understanding, it will be meaningful to per-
not a trivial task, but several accurate methods have beegyrm a more accurate analysis.
devised[19-22. The mode frequencies do not, however, |n this context, a useful approximation follows if one as-
contain all the information that is required to evaluate thesumes that spacetime is essentially flat in the region of both
Green’s function. While it is formally straightforward to use the observer and the initial datthat should be of compact
the residue theorem to determine the mode contribution, it issupporj. We, consequently, assume th{gtthe observer is
in practice, quite difficult to evaluate the resultant expressituated far away from the black holghis means that
sions. One must be able to approximate the eigenfunction, /M>1 in Eq.(13)] and (ii) the initial data has consider-
associated with each quasinormal mode. able support only far away from the black hole. This implies

In the complex-frequency picture the late-time power-lawthat only the region wherg/M>1 contributes significantly
tail is associated with the existence of a branch cuiiihn ~ to Eq.(6). _ . o
This cut is usually placed along the negative imaginary To make life easier We.WI|| also assume that the initial
axis. It has been demonstrated that the behavior at very la#@t@ has no support outside the obserarly y<r, are
times can be obtained from a low-frequency approximatiof€leévant. With all these restrictions the frequency-domain
of the integral along the branch di#]. As regards the radia- C'een’s function(13) simplifies to
tion that reaches an observer more or less directly from the 1. Aot -
source, it has been suggesi@ that it can be associated G(ry .y 0)~= 5+ g™V 4 ——glol+ )| (15)

X . " lw Ain
with the large-frequency arcs that are required to “close the
contour” in the complexw plane(see Fig. 1. One can argue In the following we will refer to this as the “asymptotic
that this should be the case in a hand-waving way: For largapproximation” since it follows when we use the large-
frequencies the Green’s function limits to the familiar flat- argument asymptotics far" and U} in Eq. (13). The use-
space propagatdB]. As yet, there are no detailed studies of fulness of this approximation should be obvious.

the high-frequency problem, however.
I1l. QUASINORMAL MODES

D. The asymptotic approximation A. Mode contribution to the Green’s function

In this paper we want to pursue the problem analytically As already mentioned, the quasinormal modes correspond
as far as possible. This means that we will often prefer ao complex frequencies«f,) for which the Wronskian
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W(w) vanishes. This means th&t,(w,)=0 and, conse- 1 : ;
quently, it is useful to define a quantity, by
Ain( @)= (0= wp)ay, (16 ¢ ol
in the vicinity of the mode. Then, it follows from the residue ®
theorem(and the fact that modes in the third and fourth §
guadrant are in one-to-one correspondence, see Fig. 4.4 in S o001
[2]) that the total contribution from the modes to the time- )
domain Green'’s function can be writt¢4] ~§
<
* _ < 0.001
GOr, y,)=Rg X, Bpe "V (17)
n=0
Here, we have defined 0.0001 0 160
n
B _Aout(wn) (18)
" wna, FIG. 2. The absolute value of the terms in the mode sum at

t—r,—y=0 for =0, 1, and 2 are shown as a function of the
We have also used the asymptotic approximatitf), and  mode indexn for the first 200 modes. The data is obtained using
the sum is over all quasinormal modes in the fourth quadrantipproximate phase-integral expressions.
That this expression provides an accurate representation of
the mode excitation has already been demonsti@d®.4.  derived in[4] to obtainB,, for the first 200 modes of a scalar
Typical results obtained using E¢L7) are shown in Figs. fie|d (andl=0, 1, and 2. These results are illustrated in Fig.

3@-3(c) in [4]. 2. The data here is not expected to be very accurate for the
highly damped modes. Nevertheless, the trend is clear. The
B. Convergence of the quasinormal-mode sum magnitude oB, decreases monotonically for large values of

When one evolves a test field in the Schwarzschild geom?: Moreover, one finds that successive terms have opposite

etry one typically finds that the response of the black hole>9nS- This suggests a stronger convergence than the ex-
that is associated with the datayafcf. Eq. (6)] reaches the Pecteéd one: the mode sum will converge also at
observer roughly whet—r, —y=0. This is not too surpris- '~ " —y=0.
ing: the slowest damped quasinormal modes can be associ-
ated with the peak of the effective potentiaB]. Hence, one C. Dynamic mode excitation
would expect the response to follow once the specific part of i ) L )
the initial data has had time to reach the peak of the potential Previous investigations of this problefs, 13| were to a
(roughly atr, =0) and then travel back to the observer. ~ certain extent marred by what can be called the “timing
An obvious question concerns the convergence of th&roblem.” Assume that the initial data consists of a “moun-
quasinormal-mode surfi7). At what times(if any) will the ~ t@in” close to the black hole and a tiny “pimple” far away.
sum be convergent? Previous evidence for gravitational perlI was then fo_und that the plmple“ leads to a mu_ch _Iarger
turbations and the first seven modk] suggests that the Mode excitation than does the “mountain.” This is, of
mode sum is convergent at late times, but fails to provide £0UrSe. Contrary to our expectations. Fortunately, it is also
lower limit of t at which this convergence starts. As far as"/N9- . . .
late times are concerned one can convince oneself that the 1€ “timing problem™ arises when one tries to associate

sum should converge: two consecutive terms in Exf) a glven”set of |n|t|all data with a co_nstant excitation
yield the ratio strength” of each quasinormal mode. This would be a useful

approach for many familiar oscillating systems, such as a

Bni1 oot —y) vibrating string. But this approach is probably only meaning-
B. e Ul B e (190 ful when the modes of the system form a complete set. In the
. black-hole case the quasinormal modes are not complete
Now, we know tha{17,1§ (one must also take account of the branch cut intg¢gre
we shall see, it makes more sense to consider the
oy M~w,M—i/4, asn—ow, (200  quasinormal-mode excitation as a dynamic process.

For example, one would not expect the quasinormal

Assuming that the term in the square brackets of @) modes to belconsiderably excited until after the relevant
remains of order unitysay), it follows that the magnitude of feature in the inital data has scattered off the potential barrier
the ratio of successive terms in the mode sum behaves a#iat surrounds the hole. In our previous example this means
ymptotically as exp—(t—r, —y)/4]. This implies that the that the mode excitation that arises because of the “moun-
sum will surely converge for—r, —y=0. tain” in the data will be relevant earlier than that associated

But this argument relies on the terms in the square brackwith the “pimple.” Roughly, the modes should be excited
ets of Eq.(19) behaving in a certain way. Does it hold in when the relevant data reaches the peak of the effective po-
practice? To test this we have used the approximate formulasntial (r, ~0).
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0.15 S — r, =500M. This means that, according to the “dynamical”
- description the modes should not be present in the signal
beforet~950M.

From the data presented in Fig. 3 we can conclude that
our approximation for the quasinormal-mode ringing is quite
accurate. It is conceivable that the remaining discrepancies at
later times would disappear if we used the true mode func-
tions instead of the “asymptotic approximation.” The most
interesting part of Fig. 3 concerns the early times. It is no-
table how nicely the idea of a “dynamic” mode excitation
works in practice. This allows us to discuss the relevance of
the high-order modes in more detail than what has been pos-
sible before[3,4,13. Since they are rapidly damped, one
] would expect the highly damped modes to be relevant only
02 o at early times. As can be seen in Fig. 3 this is, indeed, the

230 960 980 1000 1020 case. While the slowest damped mode represents the signal
fime well after (say t~965M, a much better approximation

FIG. 3. Comparing the field obtained through evolving the scalValid from (say t~953W] is obtained by using the sum of
lar wave equation to the approximate contribution from the quasifhe first six modes. Should we include further modes in the
normal modes. The graph shows datalfer2. The solid line rep- sum th|S tl’end Continues, but |t becomes dlfflCUlt to diStin—
resents the true scalar wave, while the two dashed lines at@for guish any improvement. This evidence clearly supports the
the slowest damped quasinormal mode éndthe sum of the first  notion that the mode sum converges for all times after
six modes. t—r,—y=0.

005}

wave function
=
[
wn

-0.15

To obtain a dynamic description of the mode excitation IV. THE LATE-TIME POWER-LAW TAIL
we need only ensure that the Green’s function respects cau-

sality. The basic m!stake of the previous StUd'@s’lé’]. ._ing is followed by a power-law tail at late times. This feature
was to perform the integral over the product of the initial was first found in the seminal work of Pri¢8,10]. Physi-
data and the Green's functidd(r, ,y,w) before inverting ¢4y, the tail arises because of backscattering off the slightly
the integral transform. If one instead uses EA), the con- ¢ rved spacetime in the region far away from the black hole
fusion of the “timing problem” can be avoided. , [24]. This means that the tail will not depend on the exact
~ To ensure causality we must ensure that the Green's funGyagyre of the central object. Thus, a neutron star of a certain
tion vanishes wheb—r,, +y>0. An observefatr,) should  mas5 will give rise to the same tail as would a black hole of
simply not see anything until after a signal traveling at theihe same mass.
speed of light has been able to reach him/her from the rel- Mathematically, it has been demonstrated that the power-
evant source pointy). In the evolution equatiort7) this |5y tajl can be associated with the branch cut in the
translates into dower limit of integration y=r, —t. complex-frequency Green’s functi¢B]. Using this fact, the

For the quasinormal modes, one can also argue for the Us§act form of the leading-order tail has been calculated in
of an upper limit of integration: if we use ELS) itis clear  giferent ways. But some questions still remain. The most
that the quasinormal-mode part of the signal arises from  jmportant one concerns the black-hole response at interme-
1 1A diate times, after the quasinormal modes have died away, but
T M it =Y. (21)  before the leading-tail term accurately represents the evolu-
AmiJco Ap tion. Is it possible to extend existent calculations in such a
. _ ) way that one can approximate the evolution also at these
Intuitively, one would not expect it to be meaningful to close jytermediate times? Previous calculations are also somewhat
the integration contouC in the lower half plane unless i qived; it would be nice to have a simpler and more direct
t—r,—y>0. At earlier times it seems unlikely that the con- 5o\ lation of the tail effect for black holes.
tribution from the necessary high-frequency arcs will vanish. - one can argue that the late-time behavior should follow
We will consider this issue in more detail in Sec. V. FOr from the low-frequency contribution to the Green’s function.
now, we are content to deduce that this introduces@mer  gagijcally, the effective black-hole potential in E4.0) will

It is by now well known that the quasinormal-mode ring-

G(I’* ,y,t)’v -

limit of integration y=t—r, in the evolution equatio).  pe 5o small for large values of that only low-frequency
As a simple example of the implications of this discussiony,aves will be affected by it. Hence, a low-frequency ap-
we consider the static initial data proximation to the black-hole equation will be useful. In this
_ _ _ 6 section we obtain such an approximation, and use it to study
u(r«,0)=ex —0.05r, /M= 40071, @2 the detailed behavior of the power-law tail.
du(ry,0=0. (23 A. A low-frequency approximation
We then multiply this data wittG®(r, ,y,t) from Eq. Let us begin by introducing a new dependent variable

(17 and integrate (numerically from y=r,—t to
y=t—r, . The result of this calculation is displayed in Fig. A 2M
3. Here, we have assumed that the observer sits at ! r

-1/2

. (24)
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Then Eq.(10) for the scalar field becomes it follows immediately that
d? 2mM\ 73, 2M\ 1(1+1) M? _ C(—1)n+t
a1+ 0| 1= =7+ 7 |¥=0. U(a,n+1,ze27”)=U(a,n+1,z)+2mm
(29
XM(a,n+172). (33

As already mentioned above, one can argue that we only

need a larger approximation to account for the low- We will now use this result to evaluate the effect of the
frequency response. Thus, we expand B§) as a power branch cut in the Green’s function.

series inr/M. This leads to

B. The late-time tail

d> . 4Me® 1(1+1)
d—rz+w + T2 $p=~0. (26) We have seen that there will necessarily be a branch cut

in the black-hole Green'’s functio@(r, ,y,®) (or more spe-
The question is whether this is a useful approximafi@si. cifically, in the solution(i;). To arrive at the detailed power-
That is, is the assumption that we only need largestified?  law tail we need to consider the effect of this cut. The con-
Fortunately, this is a simple thing to test. From E26) we tribution from the branch cut follows from the integiaif.
find that the outer turning point of classical motion is locatedEq. (9)]

at .
1 —iwA_ alljp(r* ’weZﬂ'I)
C _ in
/|(|+l) G™(ry ,y,t)—EJ’ up(y,w) W)_
rtPZZM{ W—Z_l] (27) Auo
U|p(r*,w) et
At ry, one would expect a wave with frequenay to be T T W) e '“do. (34)

scattered by the effective potential. Sincg,— +x as

oM —0, the approximate equatiof26) can be used with This can be rewritten as

confidence for low frequencies.
Let us now introduc¢26]

c _L ~in
G (r* 1y1t) 277 o U| (va)ul (r* 1‘0)

VA
== €*“¢(2), 28 R R ,
l;b (M) ¢( ) ( ) W[ulup(r* ’w)’ulup(r* ’we277|)] - td
o e @ w.
wherez= —2i wr. Then, it follows thate should be a solu- Wlwe™)W(w)
tion to the confluent hypergeometric equation (35
d? d . Using the low-frequency approximation that was de-
EJF(ZI +2_Z)d_z_(| +1-2ioM)|4=0. 29 scribed in the previous section we can show that
It also follows that two basic solutions to the black-hole B a2 DN (20) 72
problem can be writtefremember that >2M) W(w)=(-1) IAB r+1-2ioM) ’ (36)
I+1 .
0in=A M) M1 +1—2i oM, 21 +2,— 2i wr) and since there is no cut ", it follows from Eq.(33) that
(30 W(we?™)=W(w). (37
and To build the Green’s function we also need
i Pl R R .
u|”p=B<M) e'U(I+1-2ioM,2l+2,—2ior), WLOR(r, @), 07%(r, ,0e®™)]
(31 —-1) """ 27(2w)"% 1
g (2D (20) 9

where A and B are normalization constants. The functions I(=1-2ioeM)I'(I+1-2ioM)’

M(a,b,z) andU(a,b,z) represent the two standard solutions
to the confluent hypergeometric equati@¥].

One nice feature of this approximation is that it is obvious
that there will be a cut ini®. If we use the standard result a:nmA(_

If we use these results together with the approximation

I+1
e'M(I+1,21+2,—2iwr)

[27] that, forn an integer, M
U(a n+1z)=&M(a n+1,2)Inz :A(2|+1)”(“’M)I(L)j'("’r)’ (39)
N )= T a—n) &N M

+single-valued terms, (32 we get
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0 — were carried out using, as an independent variable. More-
over, ifr is sufficiently large we will only introduce a small
error. In the specific case of E3) the error introduced in
this way will be smaller than 2.5%.

As long as we are only interested in the leading-order
behavior at very late times, we can assume tha or

<1 [3]. Thus, using the standard power series expansion for
j1(2) we arrive at the final formula

(2142)! 4M(r,y)"™
[(21+1)!17]2 273 . (41)

GO(r, y,)=(-1)""*

In | wave function |

This result is identical to that obtained by Leay8}. This is
not surprising since our derivation is just a simplification of
20 L e Leaver’s approach. Our result also agrees with that of Ching
00 1200 16002000 2400 et al [16], but in that case one must do some additional
calculations to obtain the explicit result for the black-hole
FIG. 4. Comparing the field obtained through evolving the sca-Case.
lar wave equation to the approximate contribution from the power- We have not yet contributed much new information. The
law tail. The graph shows data for=2 using a logarithmic scale. greatest merit of the above derivation is its simplicity. The
The solid line represents the true scalar wave, while the threerigin of the branch cut is clear and its contribution to the
dashed lines are fde) the leading order power-law tailp) the tail ~ Green’s function follows painlessly. This is in remarkable
approximation including the first two terms, afw) using the first  contrast with, for example, the work of Chirgg al. [16],
11 terms in the tail sum. where the result follows after a truly involved analysis. On
. the other hand, the formulas obtained by Cheitgal. are
. e, . e valid for a large class of potentials. Hence, their work shows
Ge(r, ,y,t):4|Mr*yj0 oFji(or,)ji(oy)e” " do. that the tail phenomenon is a generic feature of many prob-
(40)  lems in wave scattering.
Simplicity is not the sole advantage of the present ap-
To obtain this result we have assumed that the asymptotiproach, however. It turns out that we can do the full integral
approximation is valid. Specifically, we have replacetly  in Eq. (40). As long ast—r, —y>0, we can employ Eq.
r. . This is not at all a necessary step, but it simplifies the(6.626 from Gradshteyn and RyzhiK9]. This leads to a
comparison to our numerical evolutions of E®) which  higher-order result

GC Ly 3 m (_l)|+122,m(2| +2m+2)| r!k+2m72n+ly|+1+2n 42
(e Y O=M 20 2 e 21+ 2n+ D)1 (21 + 2m=2n+ )11 Zr3ram (42)
|
which is remarkably simple. It seems reasonable to assume that this may lead to interfer-

We have thus managed to extend previous work to inence effects that can be distinguished in the evolution of the
clude higher-order corrections to the power-law tail. Thefield. That such effects are present is clear from Fig. 5. It is
question is to what extent such a result is useful. Interestalso clear that a combination of the quasinormal modes and
ingly, it turns out that the higher-order terms play an impor-the higher-order tail sum provides a good representation of
tant role. Essentially, they allow us to extend the validity ofthe evolution throughout the transition between the typical
the tail approximation to much earlier times. A typical result, times when either term dominates the signal. Thus, the ap-
obtained for the initial data given in Eq23), is shown in  Proximations dlsc_ussed so far can be combined to estimate
Fig. 4. Although it is not clear from Fig. 4, it can be verified the signal for all imeg—r, —y>0.
that the lowest-order tail term is a reasonable approximation
to the true evolution at very late times. But the improvement
achieved by including the first two terms in E@2) is im- V. HIGH FREQUENCIES

pressive. It is also clear from Flg 4 that if one includes In the Comp]ex_frequency approach it is typ|ca||y as-
several terms in Eq42) one arrives at an approximation that sumed that the contribution from the required arcs at
takes over from the quasinormal-mode ringing in a natura||— is irrelevant. That way, the original contour integral
way. can often be replaced by a mode sum such agHEag,. In the
Figure 4 shows that there will be a considerable time win-black-hole problem the situation is, of course, complicated
dow in which the contributions from the quasinormal modesby the branch cut in the Green’s function. But as we have
and the higher-order tail are of the same order of magnitudeseen, the contribution from this cut can readily be approxi-
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0 . . . and u is given by
p 1
2 M 1 ,LL:E_2|(OM (46)
.§ s As in the case of low frequencies, we can use standard
S formulas from[27] and show that the two basic solutions
&, 6l 1 that we require to build the black-hole Green’s function can
§ ' be written
= 8t 1 ‘ T —2ioM
S min_ [ o T Y
= . u (ZM) (ZM 1) M(1/2—-4diwM,1-4iowM,
i —2iw(r—2M))e'er—4m (47)
Py
1300901900 1050 1100 and

fime

lar wave equation to the approximate contribution from the slowest 2M M
damped quasinormal mode and the first 11 terms in the sum for the

1/2 —4iwM
FIG. 5. Comparing the field obtained through evolving the sca- ~up_, _ ,: 12-siom| " r _ I
u'=(—4ioM) = >

power-law tail. The graph shows data 12 using a logarithmic XU(1/2-4ioM,1-4ioM, = 2io(r —2M))e'“x.

scale. The solid line represents the true scalar wave, while the (48)
dashed line represents the approximation. It is easy to distinguish

effects of interference between the mode and the tail téwhen- From the asymptotic behavior of the confluent hypergeo-
ever the ringing differs from pure exponential damping at a constanfnetric functions[27] it follows that (in the right half of the
oscillation frequency complexw plane

mated(at least at late timg@sTo complete the study of the T'(1—4i oM)(4i @M)~ 12+ 4ioMg=diom
initial-value problem we now focus our attention on the A= (49
high-frequency problem. Va

Although a hand-waving argument suggests that the
large-frequency arcs should not contribute significantly to?"
the Green’s functiorfiwhen|wM]| is very large one would . . Upiml2
not expect the details of the effective potential to matter . :F(1_4'wM)(4'_wM) e
much; a high-frequency wave will propagate almost as in flat " I'(1/2—4iwM)
spacg, the issue has not been studied in much detail previ- ) ] )
ously. A better understanding of the high-frequency problenf\ter using large argument approximations for thefunc-
is useful for several reasong) We obviously should con- UOns, we get
firm that our expectations of a vanishing contribution to the _ dmoM
Green'’s function holds(ii) The high frequencies may hold Aour=l V2e (51
the key to the response of the black hole at early tifigds
Hence, it is plausible that an understanding of the behaviofind
for high frequencies will yield a handle on the inital part of
the signal that reaches an observer.

(50

Am~ 1. (52)

Hence, a high-frequency approximation to the “reflection

A. An approximation for high frequencies coefficient” of the black hole is
An approximation that is relevant for high frequencies can A |2
be obtained in the following way: whdwM | becomes large = ’ outl _g-87eM. (53)
the equation that governs the scalar fi€kb) limits to the Ain

confluent hypergeometric equati
yperg quatip2e] This result agrees with our expectatidfiom, for example,

d? d ) the WKB methodt for very large frequencies the reflection
232t (2p=2) o~ (p=2ioM)|¢=0. (439  caused by the black-hole potential barrier will be exponen-
tially small.

We can also use this approximation to approximate the
very high overtones of the black hole. Recall that the quasi-
normal modes follow fronA;,=0. Then, it follows from Eq.

Here, we have used

= (ﬁ—lyexdiw(r—ﬂ\ﬂ)]fﬁ, (44 (50 that modes should be located[a8]
[ 1
2= —2iw(r—2M), (45) @nM==7|n+ 3/ (54)
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This approximation yields the correct damping rate for the o
high modes, but it fails to reproduce the small constant real
part that each mode should ha\i,18. -1t

21

B. High-frequency Green'’s function

We now want to use these results to discuss the possible
contribution to the black hole Green'’s function from the re-
quired arcs ajwM|—. To do this we assume that the

In | wave function |
IS

asymptotic approximation from Sec. Il D is appropriétee 1
will discuss alternatives to this lajerThen, we getiin the
right half plane -6
- 1 . _ . gL
Goo(r* ,y’w)% _ m[elw(r*_y)+| \/Ee—4wwMelw(r* +y):|. :
(55) 44530 52 35 56 3 60

time
For obvious reasons, it makes sense to study the two terms in _ _ _
the square brackets, E(p5), separately. FIG. 6. Comparing the fieldfor | =2) obtained through evolv-

For each term we require an integral of fofoi. Eq. (9)] ing the scalgr wave equation to an ia.pprgximation that corresponds
to propagation in flat space. The initial signal that reaches the ob-

flw) . server is shown. After the, essentially unchanged, initial shape fol-
:f —e '"“do, (56) lows a tiny wake. This wake will be more pronounced for initial
c data that has support closer to the black hole. The solid line repre-

. . o sents the true scalar wave, while the dashed line represents the
whereC is a large-frequency quarter circle in either the up-approximation.

per or the lower right half of thev plane (the calculation _ . _
here must be complemented by similar formulas for the leflower half plane for the first term in Eq55) while at the

w

half plang. Now, as long as same time using a contour in the upper half plane for the
second term. But, although consistent with our discussion of

f(w) quasinormal modes in Sec. lll, this is not a useful approach.

T—’O’ as || —o (57 The main reason is that we should not treat the two terms in

Eq. (55 independently. This does not mean that our previous
(which is certainly true heje the integrall vanishes(i) in discussion is flawed: our results still hold because after
the upper half plane for<0 and(ii) in the lower half plane t—r,—y>0, one would certainly want to close both inte-

for 7>0 (Jordan’s lemmp gration contours in the lower half plane. But problems arise
For the specific case of the black-hole Green’s functiorwhen we want to consider earlier times.
this means that Before discussing this problem in more detail it may be
helpful to illustrate the features in the evolution that we want
t—r, +y<o, to describe. In Fig. 6 we show the initial signal that reaches
G(ry.y,t)=0, for t—r, —y>0. (58 the observefatt—r, +y=0) in the case of Eq(23). It is

clear that this signal is more or less the direct transmission

This is a nice result because it shows that a combination dhat one would expect in flat space. But there is one impor-
the quasinormal modes and the contribution from the branckant difference that is difficult to distinguish in Fig. 6: after
cut iné(r* .y, ) should form a complete description of the the |n|.t|al pulse fpllows a tiny que. A description of the
wave evolution aftet—r, —y=0. This confirms the result €a'ly-time behavior must yield this effect. Another part of
of the previous section. It also shows that the evolutionthe signal that one would like to describe is the “reflected

should be causal: no signal will reach the observer befor@UIS€ that reaches the observer slightly befarer,
t—r, +y=0. But the situation for the intermediate times is ;y=0, i.e., before the onset of quasinormal ringing in Fig.

not clear. : L e .
So why is this problem difficult? Basically, there are two

possible routes and both force us to deal with formally sin-
gular terms. The first possibility is to close the integration
We have seericf. Fig. 5 that the combination of the contour in the upper half plane at all times before
guasinormal modes and the higher-order tail sum provides &-r, —y=0. If we do so the first term in Eq55) will be
complete description of the evolution of an initial wave field singular, but all other contributions to the Green'’s function
after a certain time. The only remaining question is whethewill vanish. The second option is to close the contour in the
we can approximate the evolution adequately also at earlidower half plane as early ds-r, +y=0. Then, we find that
times. Unfortunately, this turns out to be more difficult thanthere will be three divergent termghat must balance one
what one might expect. another in some magic waywe know that the quasinormal-
To discuss this issue we consider the high-frequencynode sum will diverge, and the same is true also for the
Green’s function (55). For intermediate timesy,—y integral along the branch cut and the high-frequency| the
<t<r, +y, one would naively want to use a contour in the second term in Eq(55)]. Clearly, this second alternative is

C. Approximating the signal at earlier times
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the less attractive one and we will take a few steps down thgation of the tail expressions. Consequently, these results

first route here. remain unchanged also for general initial data. For the qua-
Let us consider only the leading order. As already pointedsinormal modes, we must use approximations of the corre-

out, the only contribution to the Green’s function that doessponding eigenfunctions that remain valid forlThat this

not vanish for, —y=<ts<r, +y comes from the firsttermin can be done has already been demonstrated by Léayer

Eq. (55). Thus, we need to evaluate The dynamic mode excitation from Sec. Il C becomes more
difficult to introduce in the general case. With the asymptotic

1 e le(t=rty) approximation it was easy to specify a time before which it

G(re .y t)=- Ami ch“” 59 would be meaningless to use integration contours in the

lower half of thew plane. In the general case, this specific
where the integration conto@ is a semicircle in the upper time might not be so easy to define. This issue is intimately
half plane. Now, the integrand can be identified as thgelated to the high-frequency problem. The asymptotic ap-
Laplace transform of the step function. Specifically, we get proximation is crucial for the discussion in Sec. V B. In the
general case, one should use largesymptotics for Egs.
1 (47) and (49) that do not at the same time assume a large
G(r,,y,t)= EH(t_ r,+y. (60)  value ofr. Such asymptotic expressions are not standard but
they should be possible to deriy80]. These new approxi-
mations should indicate at what time it is sensible to use

This is, of r xactly what we woul in fl - . :
S Is, of course, exactly what we would get at space, tegration contours in the lower half of the plane, and

To understand the added subtleties of the black-hole case . S L ;
us imply an initial time for the excitation of quasinormal

must pursue the calculation to higher orders. des. C v it likelv that all the id
In principle, such a higher-order calculation seems pos[no es. Lonsequently, it seems Tikely that all the 1deas pre-

sible. One could, for example, try to express the high_sented in this paper can be useful also in the general case.

frequency approximations of the solution$” and i;" from

Sec. V A as power series i ". That should yield higher- C. Rotating black holes
order corrections to Eq60). Unfortunately, it seems as if
one would have to keep a large number of te(all) in the We finally turn to the initial-value problem for rotating

resultant expression to get a useful answer. There may aldslack holes. When the black hole is rotating, both the angular
be less obvious complications. So far, our attempts to do thiand the radial functions that are required to describe a per-
calculation have been unsuccessful. Hence, we will have teurbation are frequency dependent. In a numerical evolution

return to this problem in the future. one would, therefore, not decouple the corresponding equa-
tions, and thus have to deal with a two-dimensional problem.
VI. EXTENDING THE PRESENT WORK The analysis of the Kerr problem is, in general, far more

) o ) _ complicated than the present one. But, in principle, one
To conclude this paper it is meaningful to discuss how theyouid expect all the ideas discussed in this paper to be useful
present work, for a massless scalar field in the Schwarzschilg|sg for rotating holes.
geometry, can be adapted to other, physically more interest- For example, the construction of the black-hole Green’s
Ing, cases. function should be analogous to that in Sec. II. Of course, the
angular dependence would have to be included in equations
A. Other perturbing fields such as Eq(6). Then, the quasinormal modes are defined
exactly as in the Schwarzschild case. The main difference is
that each Schwarzschild mode splits intot2l distinct ones
(ifor different values ofm) because of the rotation of the
lack hole[19].
As regards the late-time power-law tail, the generalization
Kerr also seems straightforward. Since the issue of tails in
the geometry of a rotating black hole has recently been ana-
lyzed through numerical evolutions by Krivan, Laguna, and
Papadopoulo§31], it may be worthwhile to discuss this in
somewhat more detail here.
As was first shown by Teukolsky, the equations that gov-
ern a small perturbation of a rotating black hole can be writ-
ten[32]

It is straightforward to extend the present work to other
perturbing fields. It is, in fact, trivial to show that all our
results carry over also to electromagnetic and gravitation
waves in the Schwarzschild background. Both the discussio
of the tail effect in Sec. IV and the high-frequency discussion
in Sec. V are valid also for these other test fields. As regard
the quasinormal modes, the characteristic frequericiad
the coefficientsB,, in Eq. (17)] will be different for other
fields, but the approximate phase-integral expressdns
that we used to evaluate E(.7) can be used also for elec-
tromagnetic and gravitational perturbations.

B. Without the asymptotic approximation

Throughout this paper we used the asymptotic approxima- _—
tion from Sec. Il D to simplify the calculations. This clearly , ¢ d AsﬂdR K=2is(r—M)K 4i R0
restricts the initial data in an unnecessary way. Fortunately, ip dr dr * A +alsor—AR=
is not (formally) difficult to generalize our results in such a (61
way that they hold also for more general data. First, we note
that the asymptotic approximation was never ugagart
from in the replacement af by r, in Eq. (40)] in the deri- and
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1 d
sing dg

~ds
sind—

ag)t

a’w?cosH— m’ —2awscos
Sinte

|

2mscosd
~ g S cof#+E—s?|S=0. (62)
Here we have introduced
K=(r’+a’)o—am (63
and
A=E—s(s+1)+a’w’—2amo. (64)

Herea<M is the rotation parameter of the black hole, and
s is the spin weight of the perturbing field. The solutions to
the angular equatio(62) are generally referred to as “spin-
weighted spheroidal harmonics.”

Let us now adopt the approach of Sec. IV and approac
the Kerr problem for low frequencies. It is sufficient to con-
siders=0 (the results fos= —1,— 2 can be deduced via the
Teukolsky-Starobinsky identitielsl]), and we can also use
the fact tha{33]

©

E=1(1+1)+s%+ >, f,(aw)" (65)
n=1
Then, we expand Eq61) for larger and find
d2y 4AM w?+ 2isw
bk 2, 777 7
[(1+1)+s’°— 12M?w?+2amw—2isMw
_ > =0,
(66)
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where the new dependent variablg is defined by
R=A"("1"2y, From this equation two things follow imme-
diately. (i) For low frequencies we can neglect all frequency-
dependent terms in the factor ofrd/ (ii) For scalar waves
(s=0), we reproduce the Schwarzschild equati(t).
Hence, the leading-order tail calculation in Sec. IV must re-
main valid also for scalar waves in the Kerr background.
This confirms the main result of Krivan, Laguna, and Papa-
dopoulos[31]. But what about fields with nonzes? Well,
from Eqgs.(62) and(66) follows that we can neglect all terms
that depend on the rotation of the black hole. This shows that
it is sufficient to analyze the tail effect in the Schwarzschild
limit. The fact that the radial equatioi®6) does not imme-
diately agree with Eq(26) need not worry us too much. As
Chandrasekhar has shoy8d], thea—0 limit of Eq. (61),

the Bardeen-Press equati@b], can be transformed into the
ﬁlegge-Wheeler equatiai0). We thus have clear evidence
that the leading-order tail result from Sec. IV will hold also
for Kerr black holes.

To derive higher-order tail corrections for Kerr demands a
more involved analysis. The issue is complicated by the
frequency-dependent coupling between E@d) and (62).
Similar difficulties make the high-frequency problem less
transparent. Hence, we will not discuss these problems fur-
ther here. What is clear is that the Kerr problem poses an
interesting challenge, and we hope to be able to discuss it
further in the near future.
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