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We consider the initial value problem for a massless scalar field in the Schwarzschild geometry. When
constructed using a complex-frequency approach the necessary Green’s function splits into three components.
We discuss all of these in some detail.~1! The contribution from the singularities~the quasinormal modes of
the black hole! is approximated and the mode sum is demonstrated to converge after a certain well-defined time
in the evolution. A dynamic description of the mode excitation is introduced and tested.~2! It is shown how a
straightforward low-frequency approximation to the integral along the branch cut in the black-hole Green’s
function leads to the anticipated power-law falloff at very late times. We also calculate higher order corrections
to this tail and show that they provide an important complement to the leading order.~3! The high-frequency
problem is also considered. We demonstrate that the combination of the obtained approximations for the
quasinormal modes and the power-law tail provide a complete description of the evolution at late times.
Problems that arise~in the complex-frequency picture! for early times are also discussed, as is the fact that
many of the presented results generalize to, for example, Kerr black holes.@S0556-2821~97!03202-5#

PACS number~s!: 04.30.Nk, 04.25.Nx, 97.60.Lf

I. CAUCHY’S PROBLEM
FOR PERTURBED BLACK HOLES

This paper concerns the evolution of a test field~be it
scalar, electromagnetic, or a perturbation of the gravitational
field itself! in a spacetime that contains a black hole. That is,
we consider the problem that is associated with Cauchy in
the framework of general relativity. Because of the inherent
nonlinearity of Einstein’s theory this problem is generally
not amenable to analytic calculations. But if the wave field is
sufficiently weak that its contribution to the spacetime cur-
vature can be neglected, the evolution equations reduce to a
wave equation with a complicated effective potential. This is
the realm of black-hole perturbation theory@1,2# in which
the initial-value problem can be approached by ‘‘standard’’
methods@3,4#. The purpose of the present work is to contrib-
ute a more detailed understanding of the many intricacies
associated with the evolution of a weak wave field in a
black-hole geometry.

One can argue that this kind of discussion is of little im-
portance to physics. It may seem obvious that much relevant
information will be lost when the equations of general rela-
tivity are linearized. But it turns out that the perturbation
approach provides surprisingly accurate results in many situ-
ations. An interesting example of this is the case of two
colliding black holes@11#. This does not mean that the linear
equations render a fully nonlinear approach useless. It would
be truly surprising if no new phenomena were to be unveiled
by detailed nonlinear calculations, but linear studies provide
important benchmarks against which such fully nonlinear,
numerical calculations can~and should! be tested. Also, and
of equal importance, is the fact that the linear problem can be
approached ‘‘analytically.’’ This can lead to an improved
understanding of the underlying physics and information that
can be extremely difficult to infer from purely numerical
data.

The problem we consider here is in many ways an old
one. The evolution of a test field in a black-hole background
was first considered more than 25 years ago@12#. The gen-
eral features of such an evolution are well known@2#. The
‘‘response’’ of the black hole, as seen by a distant observer,
can be divided into three components. Radiation emitted
‘‘directly’’ by the perturbation source will dominate at early
times. This radiation depends on the exact character of the
initial field. In contrast, the late-time response depends
mainly on the parameters of the black hole. The exponen-
tially damped oscillations of the black-hole quasinormal
modes carry a considerable part of the total radiated energy
in many astrophysical processes~such as gravitational col-
lapse! @5–8#. Finally, the wave field falls off with time ac-
cording to a power law at very late times@9,10#.

The initial-value problem for black-hole perturbations has
been considered by several authors. In an impressive study,
Leaver @3# discussed both the excitation of quasinormal
modes and the nature of the power-law tails. The
quasinormal-mode problem was later considered by Sun and
Price@13# and also by the present author@4#. Late-time tails
have recently been studied by Gundlach, Price, and Pullin
@14,15# and Chinget al. @16#.

Even though the problem is far from new, there are sev-
eral reasons why it needs to be investigated further. Al-
though the response of a black hole to an impinging wave
packet will almost exclusively be dominated by the slowest
damped quasinormal modes, and present methods can reli-
ably account for the excitation of these modes@3,4#, several
questions remain. For example, what is the role of the highly
damped modes? It is known that an infinite number of qua-
sinormal modes exist for each radiative multipolel @17,18#,
but our understanding of the role of the higher overtones is
rather poor. In fact, it is not at all clear whether the mode
sum is convergent or not@3#. Our understanding of the
power-law tail is also somewhat unsatisfactory. The leading
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behavior has been calculated in different ways@3,16#, but the
resultant formulas are only truly useful at very late times. In
a typical evolution scenario there is a considerable time win-
dow in which the signal is no longer dominated by the qua-
sinormal modes, but the leading order power-law tail has not
yet taken over. Is it possible to derive a ‘‘higher-order’’ tail
expression that describes the evolution adequately for the
intermediate times? These questions~and several others! are
addressed in the present paper.

II. THE PROBLEM AND A FORMAL SOLUTION

A. A massless scalar field in the Schwarzschild geometry

In order to make the presentation clear we have chosen to
specialize this investigation to the case of a massless scalar
field and Schwarzschild black holes. This is, of course, a
model problem since no scalar fields have yet been observed
in nature. But this does not mean that our results are of
restricted value. On the contrary, because the equations that
govern other perturbing fields~such as an electromagnetic
test field or a gravitational perturbation of the metric! are
similar to the one for a scalar field@2#, the results presented
here are easily extended to all other relevant cases. Further-
more, as will be discussed in Sec. VI, it seems likely that
many of the present results can be adapted also to the case of
rotating black holes.

In the background geometry of a Schwarzschild black
hole, a massless scalar field evolves according to

hF50. ~1!

Because of the underlying spherical symmetry it is meaning-
ful to introduce the decomposition

F lm5
ul~r * ,t !

r
Ylm~u,w!, ~2!

whereYlm are the standard spherical harmonics. The func-
tion ul(r * ,t) then solves the wave equation

F ]2

]r
*
2 2

]2

]t2
2Vl~r !Gul50, ~3!

where the effective potential is

Vl~r !5S 12
2M

r D F l ~ l11!

r 2
1
2M

r 3 G , ~4!

andM is the mass of the black hole~we use geometrized
unitsc5G51). The ‘‘tortoise’’ coordinater * is defined by

d

dr*
5S 12

2M

r D d

dr
. ~5!

Let us now suppose that we are given a specific scalar
field at some time~we will use t50), and that we want to
deduce the future evolution of this field. That is, we require
a scheme for calculating~for eachl ) ul(r * ,t) once we are
givenul(r * ,0) and] tul(r * ,0). This problem is typically ap-
proached via a Green’s function.

B. The black-hole Green’s function

It is well known that the time evolution of a wave field
ul(r * ,t) follows from

ul~r * ,t !5E G~r * ,y,t !] tul~y,0!dy

1E ] tG~r * ,y,t !ul~y,0!dy ~6!

for t.0 ~we will discuss the appropriate limits of integration
in Sec. III C!. The ~retarded! Green’s function is defined by

F ]2

]r
*
2 2

]2

]t2
2Vl~r !GG~r * ,y,t !5d~ t !d~r *2y!, ~7!

together with the conditionG(r * ,y,t)50 for t<0.
To find the Green’s functionG(r * ,y,t) is our main task.

Once we know it, we can study the evolution of any initial
field by evaluating the integrals in Eq.~6!.

The first step in findingG(r * ,y,t) consists of reducing
Eq. ~7! to an ordinary differential equation. To do this we use
the integral transform@4#

Ĝ~r * ,y,v!5E
02

1`

G~r * ,y,t !e
ivtdt. ~8!

This transform is well defined as long as Imv>0, and the
corresponding inversion formula is

G~r * ,y,t !5
1

2pE2`1 ic

1`1 ic

Ĝ~r * ,y,v!e2 ivtdv, ~9!

wherec is some positive number.
The Green’s functionĜ(r * ,y,v) can now be expressed

in terms of two linearly independent solutions to the homo-
geneous equation

F d2dr
*
2 1v22Vl~r !G ûl~r * ,v!50. ~10!

The two required solutions are defined by their asymptotic
behavior. The first solution corresponds to purely ingoing
waves crossing the event horizon,

ûl
in~r * ,v!;H e2 ivr

* , r *→2`,

Aout~v!eivr*1Ain~v!e2 ivr
* , r *→1`,

~11!

and the second solution behaves as a purely outgoing wave
at spatial infinity,

ûl
up~r * ,v!;HBout~v!eivr*1Bin~v!e2 ivr

* , r *→2`,

e1 ivr
* , r *→1`.

~12!

Using these two solutions, the Green’s function can be
written as
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Ĝ~r * ,y,v!52
1

2ivAin~v! H ûlin~r * ,v!ûl
up~y,v!, r *,y,

ûl
in~y,v!ûl

up~r * ,v!, r *.y.
~13!

Here, we have used the Wronskian relation

W~v![ûl
in
dûl

up

dr*
2ûl

up
dûl

in

dr*
52ivAin~v!. ~14!

C. Using complex frequencies

The problem can now, in principle, be approached by di-
rect numerical integration of Eq.~10! for ~almost! real values
of v and subsequent inversion of Eq.~9!. This approach
should lead to reliable results and an accurate representation
of the evolution, as long as some care is taken in each step. A
multitude of examples of this approach can be found in work
relating to particles orbiting black holes~see@2# for an ex-
haustive list of references!. For the evolution of a test field,
when we want to explain why different features seen in the
emerging waves arise, it may be useful to follow an alterna-
tive route, however. An approach that often proves useful
when one wants to isolate the behavior of a Green’s function
in different time intervals is based on bending the integration
contour in Eq.~9! into the lower half of the complexv
plane. This is the approach that we will follow here.

What do we expect to learn by analytically continuing the
Green’s function in this way? First of all, it is well known
that Ĝ(r * ,y,v) has an infinite number of distinct singulari-
ties in the lower half of thev plane. These correspond to the
black-hole quasinormal modes and occur at frequencies for
which the WronskianW(v) vanishes. That is, for a quasi-
normal mode the two solutionsûl

in and ûl
up are linearly de-

pendent. To determine the quasinormal-mode frequencies is
not a trivial task, but several accurate methods have been
devised@19–22#. The mode frequencies do not, however,
contain all the information that is required to evaluate the
Green’s function. While it is formally straightforward to use
the residue theorem to determine the mode contribution, it is,
in practice, quite difficult to evaluate the resultant expres-
sions. One must be able to approximate the eigenfunction
associated with each quasinormal mode.

In the complex-frequency picture the late-time power-law
tail is associated with the existence of a branch cut inûl

up

This cut is usually placed along the negative imaginaryv
axis. It has been demonstrated that the behavior at very late
times can be obtained from a low-frequency approximation
of the integral along the branch cut@3#. As regards the radia-
tion that reaches an observer more or less directly from the
source, it has been suggested@3# that it can be associated
with the large-frequency arcs that are required to ‘‘close the
contour’’ in the complexv plane~see Fig. 1!. One can argue
that this should be the case in a hand-waving way: For large
frequencies the Green’s function limits to the familiar flat-
space propagator@3#. As yet, there are no detailed studies of
the high-frequency problem, however.

D. The asymptotic approximation

In this paper we want to pursue the problem analytically
as far as possible. This means that we will often prefer a

simplifying approximation over a less transparent numerical
calculation. The hope is that this will lead to a reasonably
accurate description of the evolution, and at the same time
provide better insight into the underlying physics. Once one
has acquired this understanding, it will be meaningful to per-
form a more accurate analysis.

In this context, a useful approximation follows if one as-
sumes that spacetime is essentially flat in the region of both
the observer and the initial data~that should be of compact
support!. We, consequently, assume that~i! the observer is
situated far away from the black hole@this means that
r * /M@1 in Eq. ~13!# and ~ii ! the initial data has consider-
able support only far away from the black hole. This implies
that only the region wherey/M@1 contributes significantly
to Eq. ~6!.

To make life easier we will also assume that the initial
data has no support outside the observer~only y,r * are
relevant!. With all these restrictions the frequency-domain
Green’s function~13! simplifies to

Ĝ~r * ,y,v!'2
1

2ivFeiv~r*
2y!1

Aout

Ain
eiv~r*

1y!G . ~15!

In the following we will refer to this as the ‘‘asymptotic
approximation’’ since it follows when we use the large-
argument asymptotics forûl

in and ûl
up in Eq. ~13!. The use-

fulness of this approximation should be obvious.

III. QUASINORMAL MODES

A. Mode contribution to the Green’s function

As already mentioned, the quasinormal modes correspond
to complex frequencies (vn) for which the Wronskian

FIG. 1. ~a! Schematic description of a black hole response to
initial data of compact support. The directly transmitted wave~from
a source pointy) arrives at a distant observer~at r * ) roughly at
t2r *1y50. The black hole response, that is dominated by
quasinormal-mode ringing, reaches the observer at roughly
t2r *2y50. At very late times the signal falls off as an inverse
power of time. This power-law tail arises because of multiple back-
scattering off the spacetime curvature.~b! Integration contours in
the complex frequency plane. The original inversion contour for the
Green’s function lies above the real frequency axis. When analyti-
cally continued in the complex plane this contour can be replaced
by the sum of~1! the quasinormal modes@the singularities of
Ĝ(r * ,y,v); the first few are represented by crosses in the figure#,
~2! an integral along the branch cut~a thick line along the negative
imaginaryv axis in the figure!, that leads to the power-law tail, and
~3! high frequency arcs~that one would expect vanish at most
times, but they should also lead to roughly ‘‘flat space propagators’’
at early times!.
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W(v) vanishes. This means thatAin(vn)50 and, conse-
quently, it is useful to define a quantityan by

Ain~v!'~v2vn!an , ~16!

in the vicinity of the mode. Then, it follows from the residue
theorem ~and the fact that modes in the third and fourth
quadrant are in one-to-one correspondence, see Fig. 4.4 in
@2#! that the total contribution from the modes to the time-
domain Green’s function can be written@4#

GQ~r * ,y,t !5ReF (
n50

`

Bne
2 ivn~ t2r

*
2y!G . ~17!

Here, we have defined

Bn5
Aout~vn!

vnan
. ~18!

We have also used the asymptotic approximation~15!, and
the sum is over all quasinormal modes in the fourth quadrant.
That this expression provides an accurate representation of
the mode excitation has already been demonstrated@3,13,4#.
Typical results obtained using Eq.~17! are shown in Figs.
3~a!–3~c! in @4#.

B. Convergence of the quasinormal-mode sum

When one evolves a test field in the Schwarzschild geom-
etry one typically finds that the response of the black hole
that is associated with the data aty @cf. Eq. ~6!# reaches the
observer roughly whent2r *2y50. This is not too surpris-
ing: the slowest damped quasinormal modes can be associ-
ated with the peak of the effective potential@23#. Hence, one
would expect the response to follow once the specific part of
the initial data has had time to reach the peak of the potential
~roughly atr *50) and then travel back to the observer.

An obvious question concerns the convergence of the
quasinormal-mode sum~17!. At what times~if any! will the
sum be convergent? Previous evidence for gravitational per-
turbations and the first seven modes@3# suggests that the
mode sum is convergent at late times, but fails to provide a
lower limit of t at which this convergence starts. As far as
late times are concerned one can convince oneself that the
sum should converge: two consecutive terms in Eq.~17!
yield the ratio

FBn11

Bn
Ge2 i ~vn112vn!~ t2r

*
2y!. ~19!

Now, we know that@17,18#

vn11M'vnM2 i /4, as n→`. ~20!

Assuming that the term in the square brackets of Eq.~19!
remains of order unity~say!, it follows that the magnitude of
the ratio of successive terms in the mode sum behaves as-
ymptotically as exp@2(t2r*2y)/4#. This implies that the
sum will surely converge fort2r *2y@0.

But this argument relies on the terms in the square brack-
ets of Eq.~19! behaving in a certain way. Does it hold in
practice? To test this we have used the approximate formulas

derived in@4# to obtainBn for the first 200 modes of a scalar
field ~andl50, 1, and 2!. These results are illustrated in Fig.
2. The data here is not expected to be very accurate for the
highly damped modes. Nevertheless, the trend is clear. The
magnitude ofBn decreases monotonically for large values of
n. Moreover, one finds that successive terms have opposite
signs. This suggests a stronger convergence than the ex-
pected one: the mode sum will converge also at
t2r *2y50 .

C. Dynamic mode excitation

Previous investigations of this problem@4,13# were to a
certain extent marred by what can be called the ‘‘timing
problem.’’ Assume that the initial data consists of a ‘‘moun-
tain’’ close to the black hole and a tiny ‘‘pimple’’ far away.
It was then found that the ‘‘pimple’’ leads to a much larger
mode excitation than does the ‘‘mountain.’’ This is, of
course, contrary to our expectations. Fortunately, it is also
wrong.

The ‘‘timing problem’’ arises when one tries to associate
a given set of initial data with a constant ‘‘excitation
strength’’ of each quasinormal mode. This would be a useful
approach for many familiar oscillating systems, such as a
vibrating string. But this approach is probably only meaning-
ful when the modes of the system form a complete set. In the
black-hole case the quasinormal modes are not complete
~one must also take account of the branch cut integral!. As
we shall see, it makes more sense to consider the
quasinormal-mode excitation as a dynamic process.

For example, one would not expect the quasinormal
modes to be~considerably! excited until after the relevant
feature in the inital data has scattered off the potential barrier
that surrounds the hole. In our previous example this means
that the mode excitation that arises because of the ‘‘moun-
tain’’ in the data will be relevant earlier than that associated
with the ‘‘pimple.’’ Roughly, the modes should be excited
when the relevant data reaches the peak of the effective po-
tential (r *'0).

FIG. 2. The absolute value of the terms in the mode sum at
t2r *2y50 for l50, 1, and 2 are shown as a function of the
mode indexn for the first 200 modes. The data is obtained using
approximate phase-integral expressions.
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To obtain a dynamic description of the mode excitation
we need only ensure that the Green’s function respects cau-
sality. The basic ‘‘mistake’’ of the previous studies@4,13#
was to perform the integral over the product of the initial
data and the Green’s functionĜ(r * ,y,v) before inverting
the integral transform. If one instead uses Eq.~7!, the con-
fusion of the ‘‘timing problem’’ can be avoided.

To ensure causality we must ensure that the Green’s func-
tion vanishes whent2r *1y.0. An observer~at r * ) should
simply not see anything until after a signal traveling at the
speed of light has been able to reach him/her from the rel-
evant source point (y). In the evolution equation~7! this
translates into alower limit of integration y5r *2t.

For the quasinormal modes, one can also argue for the use
of an upper limit of integration: if we use Eq.~15! it is clear
that the quasinormal-mode part of the signal arises from

G~r * ,y,t !;2
1

4p i EC
1

v

Aout

Ain
e2 iv~ t2r

*
2y!dv. ~21!

Intuitively, one would not expect it to be meaningful to close
the integration contourC in the lower half plane unless
t2r *2y.0. At earlier times it seems unlikely that the con-
tribution from the necessary high-frequency arcs will vanish.
We will consider this issue in more detail in Sec. V. For
now, we are content to deduce that this introduces anupper
limit of integration y5t2r * in the evolution equation~6!.

As a simple example of the implications of this discussion
we consider the static initial data

u~r * ,0!5exp@20.05~r * /M2400!6#, ~22!

] tu~r * ,0!50. ~23!

We then multiply this data withGQ(r * ,y,t) from Eq.
~17! and integrate ~numerically! from y5r *2t to
y5t2r * . The result of this calculation is displayed in Fig.
3. Here, we have assumed that the observer sits at

r *5500M . This means that, according to the ‘‘dynamical’’
description the modes should not be present in the signal
beforet'950M .

From the data presented in Fig. 3 we can conclude that
our approximation for the quasinormal-mode ringing is quite
accurate. It is conceivable that the remaining discrepancies at
later times would disappear if we used the true mode func-
tions instead of the ‘‘asymptotic approximation.’’ The most
interesting part of Fig. 3 concerns the early times. It is no-
table how nicely the idea of a ‘‘dynamic’’ mode excitation
works in practice. This allows us to discuss the relevance of
the high-order modes in more detail than what has been pos-
sible before@3,4,13#. Since they are rapidly damped, one
would expect the highly damped modes to be relevant only
at early times. As can be seen in Fig. 3 this is, indeed, the
case. While the slowest damped mode represents the signal
well after ~say! t'965M , a much better approximation
@valid from ~say! t'953M # is obtained by using the sum of
the first six modes. Should we include further modes in the
sum this trend continues, but it becomes difficult to distin-
guish any improvement. This evidence clearly supports the
notion that the mode sum converges for all times after
t2r *2y50.

IV. THE LATE-TIME POWER-LAW TAIL

It is by now well known that the quasinormal-mode ring-
ing is followed by a power-law tail at late times. This feature
was first found in the seminal work of Price@9,10#. Physi-
cally, the tail arises because of backscattering off the slightly
curved spacetime in the region far away from the black hole
@24#. This means that the tail will not depend on the exact
nature of the central object. Thus, a neutron star of a certain
mass will give rise to the same tail as would a black hole of
the same mass.

Mathematically, it has been demonstrated that the power-
law tail can be associated with the branch cut in the
complex-frequency Green’s function@3#. Using this fact, the
exact form of the leading-order tail has been calculated in
different ways. But some questions still remain. The most
important one concerns the black-hole response at interme-
diate times, after the quasinormal modes have died away, but
before the leading-tail term accurately represents the evolu-
tion. Is it possible to extend existent calculations in such a
way that one can approximate the evolution also at these
intermediate times? Previous calculations are also somewhat
involved; it would be nice to have a simpler and more direct
calculation of the tail effect for black holes.

One can argue that the late-time behavior should follow
from the low-frequency contribution to the Green’s function.
Basically, the effective black-hole potential in Eq.~10! will
be so small for large values ofr that only low-frequency
waves will be affected by it. Hence, a low-frequency ap-
proximation to the black-hole equation will be useful. In this
section we obtain such an approximation, and use it to study
the detailed behavior of the power-law tail.

A. A low-frequency approximation

Let us begin by introducing a new dependent variable

ûl5S 12
2M

r D 21/2

c. ~24!

FIG. 3. Comparing the field obtained through evolving the sca-
lar wave equation to the approximate contribution from the quasi-
normal modes. The graph shows data forl52. The solid line rep-
resents the true scalar wave, while the two dashed lines are for~a!
the slowest damped quasinormal mode and~b! the sum of the first
six modes.
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Then Eq.~10! for the scalar field becomes

F d2dr2 1S 12
2M

r D 22H v22S 12
2M

r D l ~ l11!

r 2
1
M2

r 4 J Gc50.

~25!

As already mentioned above, one can argue that we only
need a larger approximation to account for the low-
frequency response. Thus, we expand Eq.~25! as a power
series inr /M . This leads to

F d2dr2 1v21
4Mv2

r
2
l ~ l11!

r 2 Gc'0. ~26!

The question is whether this is a useful approximation@25#.
That is, is the assumption that we only need larger justified?
Fortunately, this is a simple thing to test. From Eq.~26! we
find that the outer turning point of classical motion is located
at

r tp52M HAl ~ l11!

4M2v2 2221J . ~27!

At r tp one would expect a wave with frequencyv to be
scattered by the effective potential. Sincer tp→1` as
vM→0, the approximate equation~26! can be used with
confidence for low frequencies.

Let us now introduce@26#

c5S rM D l11

eivrf~z!, ~28!

wherez522ivr . Then, it follows thatf should be a solu-
tion to the confluent hypergeometric equation

Fz d2dz2 1~2l122z!
d

dz
2~ l1122ivM !Gf50. ~29!

It also follows that two basic solutions to the black-hole
problem can be written~remember thatr@2M )

ûl
in5AS rM D l11

eivrM ~ l1122ivM ,2l12,22ivr !

~30!

and

ûl
up5BS rM D l11

eivrU~ l1122ivM ,2l12,22ivr !,

~31!

whereA andB are normalization constants. The functions
M (a,b,z) andU(a,b,z) represent the two standard solutions
to the confluent hypergeometric equation@27#.

One nice feature of this approximation is that it is obvious
that there will be a cut inûl

up. If we use the standard result
@27# that, forn an integer,

U~a,n11,z!5
~21!n11

n!G~a2n!
M ~a,n11,z!lnz

1single-valued terms, ~32!

it follows immediately that

U~a,n11,ze2p i !5U~a,n11,z!12p i
~21!n11

n!G~a2n!

3M ~a,n11,z!. ~33!

We will now use this result to evaluate the effect of the
branch cut in the Green’s function.

B. The late-time tail

We have seen that there will necessarily be a branch cut
in the black-hole Green’s functionĜ(r * ,y,v) ~or more spe-
cifically, in the solutionûl

up). To arrive at the detailed power-
law tail we need to consider the effect of this cut. The con-
tribution from the branch cut follows from the integral@cf.
Eq. ~9!#

GC~r * ,y,t !5
1

2pE0
2 i`

ûl
in~y,v!F ûlup~r * ,ve2p i !

W~ve2p i !

2
ûl
up~r * ,v!

W~v!
Ge2 ivtdv. ~34!

This can be rewritten as

GC~r * ,y,t !5
1

2pE0
2 i`

ûl
in~y,v!ûl

in~r * ,v!

3
W@ ûl

up~r * ,v!,ûl
up~r * ,ve

2p i !#

W~ve2p i !W~v!
e2 ivtdv.

~35!

Using the low-frequency approximation that was de-
scribed in the previous section we can show that

W~v!5~21!2 l21iAB
~2l11!! ~2v!22l21

G~ l1122ivM !
, ~36!

and since there is no cut inûl
in , it follows from Eq.~33! that

W~ve2p i !5W~v!. ~37!

To build the Green’s function we also need

W@ ûl
up~r * ,v!,ûl

up~r * ,ve
2p i !#

5B2
~21!2 l212p~2v!22l21

G~2 l22ivM !G~ l1122ivM !
. ~38!

If we use these results together with the approximation

ûl
in'AS rM D l11

eivrM ~ l11,2l12,22ivr !

5A~2l11!!! ~vM !2 l S rM D j l~vr !, ~39!

we get
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GC~r * ,y,t !54iMr * yE0
2 i`

v2 j l~vr * ! j l~vy!e2 ivtdv.

~40!

To obtain this result we have assumed that the asymptotic
approximation is valid. Specifically, we have replacedr by
r * . This is not at all a necessary step, but it simplifies the
comparison to our numerical evolutions of Eq.~3! which

were carried out usingr * as an independent variable. More-
over, if r is sufficiently large we will only introduce a small
error. In the specific case of Eq.~23! the error introduced in
this way will be smaller than 2.5%.

As long as we are only interested in the leading-order
behavior at very late times, we can assume thatvy,vr *
!1 @3#. Thus, using the standard power series expansion for
j l(z) we arrive at the final formula

GC~r * ,y,t !5~21! l11
~2l12!!

@~2l11!!! #2
4M ~r * y! l11

t2l13 . ~41!

This result is identical to that obtained by Leaver@3#. This is
not surprising since our derivation is just a simplification of
Leaver’s approach. Our result also agrees with that of Ching
et al @16#, but in that case one must do some additional
calculations to obtain the explicit result for the black-hole
case.

We have not yet contributed much new information. The
greatest merit of the above derivation is its simplicity. The
origin of the branch cut is clear and its contribution to the
Green’s function follows painlessly. This is in remarkable
contrast with, for example, the work of Chinget al. @16#,
where the result follows after a truly involved analysis. On
the other hand, the formulas obtained by Chinget al. are
valid for a large class of potentials. Hence, their work shows
that the tail phenomenon is a generic feature of many prob-
lems in wave scattering.

Simplicity is not the sole advantage of the present ap-
proach, however. It turns out that we can do the full integral
in Eq. ~40!. As long ast2r *2y.0, we can employ Eq.
~6.626! from Gradshteyn and Ryzhik@29#. This leads to a
higher-order result

GC~r * ,y,t !5M (
m50

`

(
n50

m
~21! l11222m~2l12m12!!

n! ~m2n!! ~2l12n11!!! ~2l12m22n11!!!

r
*
l12m22n11yl1112n

t2l1312m , ~42!

which is remarkably simple.
We have thus managed to extend previous work to in-

clude higher-order corrections to the power-law tail. The
question is to what extent such a result is useful. Interest-
ingly, it turns out that the higher-order terms play an impor-
tant role. Essentially, they allow us to extend the validity of
the tail approximation to much earlier times. A typical result,
obtained for the initial data given in Eq.~23!, is shown in
Fig. 4. Although it is not clear from Fig. 4, it can be verified
that the lowest-order tail term is a reasonable approximation
to the true evolution at very late times. But the improvement
achieved by including the first two terms in Eq.~42! is im-
pressive. It is also clear from Fig. 4 that if one includes
several terms in Eq.~42! one arrives at an approximation that
takes over from the quasinormal-mode ringing in a natural
way.

Figure 4 shows that there will be a considerable time win-
dow in which the contributions from the quasinormal modes
and the higher-order tail are of the same order of magnitude.

It seems reasonable to assume that this may lead to interfer-
ence effects that can be distinguished in the evolution of the
field. That such effects are present is clear from Fig. 5. It is
also clear that a combination of the quasinormal modes and
the higher-order tail sum provides a good representation of
the evolution throughout the transition between the typical
times when either term dominates the signal. Thus, the ap-
proximations discussed so far can be combined to estimate
the signal for all timest2r *2y.0.

V. HIGH FREQUENCIES

In the complex-frequency approach it is typically as-
sumed that the contribution from the required arcs at
uvu→` is irrelevant. That way, the original contour integral
can often be replaced by a mode sum such as Eq.~17!. In the
black-hole problem the situation is, of course, complicated
by the branch cut in the Green’s function. But as we have
seen, the contribution from this cut can readily be approxi-

FIG. 4. Comparing the field obtained through evolving the sca-
lar wave equation to the approximate contribution from the power-
law tail. The graph shows data forl52 using a logarithmic scale.
The solid line represents the true scalar wave, while the three
dashed lines are for~a! the leading order power-law tail,~b! the tail
approximation including the first two terms, and~c! using the first
11 terms in the tail sum.

474 55NILS ANDERSSON



mated~at least at late times!. To complete the study of the
initial-value problem we now focus our attention on the
high-frequency problem.

Although a hand-waving argument suggests that the
large-frequency arcs should not contribute significantly to
the Green’s function~when uvM u is very large one would
not expect the details of the effective potential to matter
much; a high-frequency wave will propagate almost as in flat
space!, the issue has not been studied in much detail previ-
ously. A better understanding of the high-frequency problem
is useful for several reasons.~i! We obviously should con-
firm that our expectations of a vanishing contribution to the
Green’s function holds.~ii ! The high frequencies may hold
the key to the response of the black hole at early times@3#.
Hence, it is plausible that an understanding of the behavior
for high frequencies will yield a handle on the inital part of
the signal that reaches an observer.

A. An approximation for high frequencies

An approximation that is relevant for high frequencies can
be obtained in the following way: whenuvM u becomes large
the equation that governs the scalar field~25! limits to the
confluent hypergeometric equation@28#

Fz d2dz2 1~2m2z!
d

dz
2~m22ivM !Gf50. ~43!

Here, we have used

c5S r

2M
21D m

exp@ iv~r22M !#f, ~44!

z522iv~r22M !, ~45!

andm is given by

m5
1

2
22ivM . ~46!

As in the case of low frequencies, we can use standard
formulas from @27# and show that the two basic solutions
that we require to build the black-hole Green’s function can
be written

ûl
in5S r

2M D 1/2S r

2M
21D 22ivM

M „1/224ivM ,124ivM ,

22iv~r22M !…eiv~r24M ! ~47!

and

ûl
up5~24ivM !1/224ivMS r

2M D 1/2S r

2M
21D 24ivM

3U„1/224ivM ,124ivM ,22iv~r22M !…eivr* .

~48!

From the asymptotic behavior of the confluent hypergeo-
metric functions@27# it follows that ~in the right half of the
complexv plane!

Aout5
G~124ivM !~4ivM !21/214ivMe24ivM

Ap
~49!

and

Ain5
G~124ivM !~4ivM !21/2eip/2

G~1/224ivM !
. ~50!

After using large argument approximations for theG func-
tions, we get

Aout' iA2e24pvM ~51!

and

Ain'1. ~52!

Hence, a high-frequency approximation to the ‘‘reflection
coefficient’’ of the black hole is

R5U Aout

Ain
U2'e28pvM. ~53!

This result agrees with our expectations~from, for example,
the WKB method!: for very large frequencies the reflection
caused by the black-hole potential barrier will be exponen-
tially small.

We can also use this approximation to approximate the
very high overtones of the black hole. Recall that the quasi-
normal modes follow fromAin50. Then, it follows from Eq.
~50! that modes should be located at@28#

vnM52
i

4 S n1
1

2D . ~54!

FIG. 5. Comparing the field obtained through evolving the sca-
lar wave equation to the approximate contribution from the slowest
damped quasinormal mode and the first 11 terms in the sum for the
power-law tail. The graph shows data forl52 using a logarithmic
scale. The solid line represents the true scalar wave, while the
dashed line represents the approximation. It is easy to distinguish
effects of interference between the mode and the tail terms~when-
ever the ringing differs from pure exponential damping at a constant
oscillation frequency!.
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This approximation yields the correct damping rate for the
high modes, but it fails to reproduce the small constant real
part that each mode should have@17,18#.

B. High-frequency Green’s function

We now want to use these results to discuss the possible
contribution to the black hole Green’s function from the re-
quired arcs atuvM u→`. To do this we assume that the
asymptotic approximation from Sec. II D is appropriate~we
will discuss alternatives to this later!. Then, we get~in the
right half plane!

Ĝ`~r * ,y,v!'2
1

2iv
@eiv~r*

2y!1 iA2e24pvMeiv~r*
1y!#.

~55!

For obvious reasons, it makes sense to study the two terms in
the square brackets, Eq.~55!, separately.

For each term we require an integral of form@cf. Eq. ~9!#

I5E
C

f ~v!

v
e2 ivtdv, ~56!

whereC is a large-frequency quarter circle in either the up-
per or the lower right half of thev plane ~the calculation
here must be complemented by similar formulas for the left
half plane!. Now, as long as

f ~v!

v
→0, as uvu→` ~57!

~which is certainly true here!, the integralI vanishes~i! in
the upper half plane fort,0 and~ii ! in the lower half plane
for t.0 ~Jordan’s lemma!.

For the specific case of the black-hole Green’s function
this means that

G~r * ,y,t !50, for H t2r *1y,0,

t2r *2y.0.
~58!

This is a nice result because it shows that a combination of
the quasinormal modes and the contribution from the branch
cut in Ĝ(r * ,y,v) should form a complete description of the
wave evolution aftert2r *2y50. This confirms the result
of the previous section. It also shows that the evolution
should be causal: no signal will reach the observer before
t2r *1y50. But the situation for the intermediate times is
not clear.

C. Approximating the signal at earlier times

We have seen~cf. Fig. 5! that the combination of the
quasinormal modes and the higher-order tail sum provides a
complete description of the evolution of an initial wave field
after a certain time. The only remaining question is whether
we can approximate the evolution adequately also at earlier
times. Unfortunately, this turns out to be more difficult than
what one might expect.

To discuss this issue we consider the high-frequency
Green’s function ~55!. For intermediate times,r *2y
<t<r *1y, one would naively want to use a contour in the

lower half plane for the first term in Eq.~55! while at the
same time using a contour in the upper half plane for the
second term. But, although consistent with our discussion of
quasinormal modes in Sec. III, this is not a useful approach.
The main reason is that we should not treat the two terms in
Eq. ~55! independently. This does not mean that our previous
discussion is flawed: our results still hold because after
t2r *2y.0, one would certainly want to close both inte-
gration contours in the lower half plane. But problems arise
when we want to consider earlier times.

Before discussing this problem in more detail it may be
helpful to illustrate the features in the evolution that we want
to describe. In Fig. 6 we show the initial signal that reaches
the observer~at t2r *1y50) in the case of Eq.~23!. It is
clear that this signal is more or less the direct transmission
that one would expect in flat space. But there is one impor-
tant difference that is difficult to distinguish in Fig. 6: after
the initial pulse follows a tiny wake. A description of the
early-time behavior must yield this effect. Another part of
the signal that one would like to describe is the ‘‘reflected’’
pulse that reaches the observer slightly beforet2r *
2y50, i.e., before the onset of quasinormal ringing in Fig.
3.

So why is this problem difficult? Basically, there are two
possible routes and both force us to deal with formally sin-
gular terms. The first possibility is to close the integration
contour in the upper half plane at all times before
t2r *2y50. If we do so the first term in Eq.~55! will be
singular, but all other contributions to the Green’s function
will vanish. The second option is to close the contour in the
lower half plane as early ast2r *1y50. Then, we find that
there will be three divergent terms~that must balance one
another in some magic way!: we know that the quasinormal-
mode sum will diverge, and the same is true also for the
integral along the branch cut and the high-frequency arc@the
second term in Eq.~55!#. Clearly, this second alternative is

FIG. 6. Comparing the field~for l52) obtained through evolv-
ing the scalar wave equation to an approximation that corresponds
to propagation in flat space. The initial signal that reaches the ob-
server is shown. After the, essentially unchanged, initial shape fol-
lows a tiny wake. This wake will be more pronounced for initial
data that has support closer to the black hole. The solid line repre-
sents the true scalar wave, while the dashed line represents the
approximation.
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the less attractive one and we will take a few steps down the
first route here.

Let us consider only the leading order. As already pointed
out, the only contribution to the Green’s function that does
not vanish forr *2y<t<r *1y comes from the first term in
Eq. ~55!. Thus, we need to evaluate

G~r * ,y,t !52
1

4p i EC
e2 iv~ t2r

*
1y!

v
dv, ~59!

where the integration contourC is a semicircle in the upper
half plane. Now, the integrand can be identified as the
Laplace transform of the step function. Specifically, we get

G~r * ,y,t !5
1

2
H~ t2r *1y!. ~60!

This is, of course, exactly what we would get in flat space.
To understand the added subtleties of the black-hole case we
must pursue the calculation to higher orders.

In principle, such a higher-order calculation seems pos-
sible. One could, for example, try to express the high-
frequency approximations of the solutionsûl

up and ûl
in from

Sec. V A as power series inv2n. That should yield higher-
order corrections to Eq.~60!. Unfortunately, it seems as if
one would have to keep a large number of terms~all?! in the
resultant expression to get a useful answer. There may also
be less obvious complications. So far, our attempts to do this
calculation have been unsuccessful. Hence, we will have to
return to this problem in the future.

VI. EXTENDING THE PRESENT WORK

To conclude this paper it is meaningful to discuss how the
present work, for a massless scalar field in the Schwarzschild
geometry, can be adapted to other, physically more interest-
ing, cases.

A. Other perturbing fields

It is straightforward to extend the present work to other
perturbing fields. It is, in fact, trivial to show that all our
results carry over also to electromagnetic and gravitational
waves in the Schwarzschild background. Both the discussion
of the tail effect in Sec. IV and the high-frequency discussion
in Sec. V are valid also for these other test fields. As regards
the quasinormal modes, the characteristic frequencies@and
the coefficientsBn in Eq. ~17!# will be different for other
fields, but the approximate phase-integral expressions@4#
that we used to evaluate Eq.~17! can be used also for elec-
tromagnetic and gravitational perturbations.

B. Without the asymptotic approximation

Throughout this paper we used the asymptotic approxima-
tion from Sec. II D to simplify the calculations. This clearly
restricts the initial data in an unnecessary way. Fortunately, it
is not ~formally! difficult to generalize our results in such a
way that they hold also for more general data. First, we note
that the asymptotic approximation was never used@apart
from in the replacement ofr by r * in Eq. ~40!# in the deri-

vation of the tail expressions. Consequently, these results
remain unchanged also for general initial data. For the qua-
sinormal modes, we must use approximations of the corre-
sponding eigenfunctions that remain valid for allr . That this
can be done has already been demonstrated by Leaver@3#.
The dynamic mode excitation from Sec. III C becomes more
difficult to introduce in the general case. With the asymptotic
approximation it was easy to specify a time before which it
would be meaningless to use integration contours in the
lower half of thev plane. In the general case, this specific
time might not be so easy to define. This issue is intimately
related to the high-frequency problem. The asymptotic ap-
proximation is crucial for the discussion in Sec. V B. In the
general case, one should use large-v asymptotics for Eqs.
~47! and ~48! that do not at the same time assume a large
value ofr . Such asymptotic expressions are not standard but
they should be possible to derive@30#. These new approxi-
mations should indicate at what time it is sensible to use
integration contours in the lower half of thev plane, and
thus imply an initial time for the excitation of quasinormal
modes. Consequently, it seems likely that all the ideas pre-
sented in this paper can be useful also in the general case.

C. Rotating black holes

We finally turn to the initial-value problem for rotating
black holes. When the black hole is rotating, both the angular
and the radial functions that are required to describe a per-
turbation are frequency dependent. In a numerical evolution
one would, therefore, not decouple the corresponding equa-
tions, and thus have to deal with a two-dimensional problem.
The analysis of the Kerr problem is, in general, far more
complicated than the present one. But, in principle, one
would expect all the ideas discussed in this paper to be useful
also for rotating holes.

For example, the construction of the black-hole Green’s
function should be analogous to that in Sec. II. Of course, the
angular dependence would have to be included in equations
such as Eq.~6!. Then, the quasinormal modes are defined
exactly as in the Schwarzschild case. The main difference is
that each Schwarzschild mode splits into 2l11 distinct ones
~for different values ofm) because of the rotation of the
black hole@19#.

As regards the late-time power-law tail, the generalization
to Kerr also seems straightforward. Since the issue of tails in
the geometry of a rotating black hole has recently been ana-
lyzed through numerical evolutions by Krivan, Laguna, and
Papadopoulos@31#, it may be worthwhile to discuss this in
somewhat more detail here.

As was first shown by Teukolsky, the equations that gov-
ern a small perturbation of a rotating black hole can be writ-
ten @32#

D2s
d

dr S Ds11
dR

dr D1FK222is~r2M !K

D
14isvr2l GR50

~61!

and
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1

sinu

d

du S sinu dSdu D1Fa2v2cos2u2
m2

sin2u
22avscosu

2
2mscosu

sin2u
2s2cot2u1E2s2GS50. ~62!

Here we have introduced

K[~r 21a2!v2am ~63!

and

l[E2s~s11!1a2v222amv. ~64!

Herea<M is the rotation parameter of the black hole, and
s is the spin weight of the perturbing field. The solutions to
the angular equation~62! are generally referred to as ‘‘spin-
weighted spheroidal harmonics.’’

Let us now adopt the approach of Sec. IV and approach
the Kerr problem for low frequencies. It is sufficient to con-
siders>0 ~the results fors521,22 can be deduced via the
Teukolsky-Starobinsky identities@1#!, and we can also use
the fact that@33#

E5 l ~ l11!1s21 (
n51

`

f n~av!n. ~65!

Then, we expand Eq.~61! for large r and find

d2c

dr2
1Fv21

4Mv212isv

r

2
l ~ l11!1s2212M2v212amv22isMv

r 2 Gc50,

~66!

where the new dependent variablec is defined by
R5D2(s11)/2c. From this equation two things follow imme-
diately.~i! For low frequencies we can neglect all frequency-
dependent terms in the factor of 1/r 2. ~ii ! For scalar waves
(s50), we reproduce the Schwarzschild equation~26!.
Hence, the leading-order tail calculation in Sec. IV must re-
main valid also for scalar waves in the Kerr background.
This confirms the main result of Krivan, Laguna, and Papa-
dopoulos@31#. But what about fields with nonzeros? Well,
from Eqs.~62! and~66! follows that we can neglect all terms
that depend on the rotation of the black hole. This shows that
it is sufficient to analyze the tail effect in the Schwarzschild
limit. The fact that the radial equation~66! does not imme-
diately agree with Eq.~26! need not worry us too much. As
Chandrasekhar has shown@34#, the a→0 limit of Eq. ~61!,
the Bardeen-Press equation@35#, can be transformed into the
Regge-Wheeler equation~10!. We thus have clear evidence
that the leading-order tail result from Sec. IV will hold also
for Kerr black holes.

To derive higher-order tail corrections for Kerr demands a
more involved analysis. The issue is complicated by the
frequency-dependent coupling between Eqs.~61! and ~62!.
Similar difficulties make the high-frequency problem less
transparent. Hence, we will not discuss these problems fur-
ther here. What is clear is that the Kerr problem poses an
interesting challenge, and we hope to be able to discuss it
further in the near future.
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