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Avoidance of collapse by circular current-carrying cosmic string loops
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Earlier attempts to calculate the nonlinear dynamical evolution of Witten-type superconducting vacuum
vortex defects relied on the use of approximate conducting string models that were too simple to take proper
account of the effect of current saturation. This effect is however allowed for adequately in a newly developed
class of rather more complicated, though still conveniently analytic, conducting string models. These more
realistic models have recently been employed by Larsen and Axenides for investigating the collapse of circular
string loops in the case for which angular momentum is absent. The present work extends this investigation to
the generic case of circular string loops for which angular momentum is present, so that there will be a
centrifugal potential barrier. This barrier will prevent collapse unless the initial conditions are such that the
relevant current saturation limit is attained, in which case the string description of the vortex defect will break
down, so that its subsequent fate is hard to foresee. On the other hand if saturation is avoided one would expect
that the loop will eventually radiate away its excess energy and settle down into a vorton-type equilibrium
state.[S0556-282(97)00508-0

PACS numbdss): 98.80.Cq, 11.2Fd

[. INTRODUCTION was formed, such a vorton distribution might eventually
come to dominate the universe.

Among the conceivable varieties of topological defects of In view of this, it is very important to decide which rotat-
the vacuum that might have been generated at early phassg equilibrium configurations really would be stable over
transitions, thevortex-typedefects describable on a macro- cosmologically significant time scales and what fraction of
scopic scale asosmic stringsare the kind that is usually the original population of cosmic string loops would actually
considered most likely to exist. This is because even if theyend up in such states. Dynamic stability with respect to small
were formed at the grand unified theai@UT) scale, their  perturbations has been establish&d—13 for most though
density would be too low to induce a cosmological catastronot all of the relevant equilibrium states within the frame-
phe, contrary to what happens in the cases of domain walkgork of the classical string description, but the question of
and monopoleg1,2]. However, this consideration applies stability against quantum tunneling processes remains en-
only to the case of ordinary Goto-Nambu-type strings, whichtirely open, being presumably dependent on the postulated
ultimately radiate away their energy and disappear. As Wagetajls of the underlying field theory. If the currents were
first pointed out by Davis and Shellaf8], the situation is rigourously conserved, the requirement that the correspond-
drastically different for “superconducting” current-carrying ing quantum numbers should lie in the range consistent with

ztrinc?s_ O.f tt?e kinq origl:jinally intc;odluced bthitLe[m]. In- stability would from the outset characterize the loops des-
eed, it is becoming clearer and clea/6] that the occur- tined to survive as vortons, but in practice things will be

rence of stable currents in strings can .Iead to areal prOblenr?mre complicated: A lot of future work is needed to estimate
because loops can then be stabilized: The current, wheth

[ : )
timelike or spacelike, breaks the Lorentz invariance alon The fraction of losses that can be expected from mechanisms

the string world she€t7—10], thereby leading to the possi- Such as coIIisions_, Ion_gitudinal ShOCkS.’ cusp formation, an_d
bility of rotation [5]. The centrifugal effect of this rotation occas_lonal Ioce_ll violations of the permissible current magni-
may then compensate the tension in such a way as to produf&d€ limits, which may occur before a protovorton loop has
an equilibrium configuration, which, if it is stable, is what is finished radiating away its excess energy and settled down as
known as avorton Whereas the energy density of noncon-2an actual vorton.
ducting string distribution decays like that of a radiation gas, A loss mechanism of a rather extreme kind, suggested
in contrast a distribution of relic vortons would scale like originally for nonconducting strings by Hawkind4] and
matter. Thus, dependin@] on when and how efficiently it considered more recently in the context of conducting mod-
els by Larsen and Axenidd45], is that whereby a suffi-
ciently large string loop ends up by undergoing “runaway

*Electronic address: carter@obspm.fr collapse” to form a black hole. Events of this exotic kind are
"Electronic address: peter@prunelle.obspm.fr of intrinsic theoretical interest in their own right, even
*Electronic address: gangui@obspm.fr though it is evident that they must be far too rare to be of
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cosmological importance, since they can only occur for verypresent work. In order to provide a physically complete
exceptional cases of initial dynamical configurations with ananalysis of such current saturation phenomena, the present
extremely high degree of symmetry, meaning that they mus$tu_dy needs to be generallz_ed to include noncw_cular configu-
be almost exactly circular. rations, whose treatment will presumably require the use of

The investigation by Larsen and Axenides was restrictediiMerical as opposed to analytic methods. This consider-

to the reflection-symmetric case characterized by the absen?é'on leads to a secondary motivation for the analytic inves-

. : Igation provided here, which is to provide some firm results
of angular momentum, for which they showgtb], subject that can be used for checking the reliability of the numerical

to the neglect of gravitational and electromagnetic self+, oo ms that are already being developed for the purpose of
interactions, that the presence of a current W|Il_not prevent a eating conducting string loop dynamics in the general case.
exactly circular loop from collapsing to what in the frame-  There have been been many previous studies of circular
work of the string description would be just a point, corre- conducting string dynamics that, unlike the recent analysis of
sponding at a microscopic level to a configuration com-| grsen and Axenidekl5], but like that of the present work,
pressed within the radius characterizing the vacuum vorte¥jready included due allowance for the centrifugal effect.
core of the string, which will typically be of the order of the However, these earlier investigations were based on the use
Compton wavelength associated with the relevant Higgs boef conducting string models that were too highly simplified
son massin, say, so that gravitational collapse would follow to provide a realistic description of Witten-type vortex de-

if the total mass energyM were sufficiently large, fects. The most obvious example of such a highly simplified
M=m"1in Planck units. In such a case the neglgdi] of  conducting string model is the linear type, which has re-
an electromagnetic Coulomb barrier will automatically becently been applied to the case of circular loops by Boisseau,
justifiable, not because it is entirely absent, but simply beGiacomini, and PolarsKil6]. A more elegant model origi-
cause it will be dominated by gravitational attraction, pro-nally obtained from a Kaluza-Klein-type projection mecha-
vided the charg® (if any) on the loop is sufficiently small, Nism by Nielsen17] has been used for studies of circular
Q=m~1. This condition will usually be satisfied because we!00PS in various contexts by several authfi8], the appli-
shall haveQ=Ze, wheree is the relevant particle charge cation that is most cIoser related to the present work bel_ng
coupling constant, which must either be zero if the current iéhat of Larse_r[lg]. The N|elsen_model has_the ”?athema“'
of electrically neutral type or else must be equal to the elecSally convenient property of being transorlimeaning that
tron chargee=1/\137~10"*, while Z is the integral charge transverse and longitudinal perturbations travel at the same

guantum number: Since the latter arises just from randorﬁpeef)| and h_as_ been shown to me'de an accurate macro-
fluctuations, it will seldom exceed the relevant limit SCOP' description of the effect of microscopic wiggles in an

e-Im-1 which is of order 16 in the GUT casan~10-3 underlying Goto-Nambu-typénonconducting string [20].
and evén higher for lighter strings However, this transonic model cannot describe the physi-

The present work extends the analysis of Larsen and AX_(_;ally important saturation effect that arises for large currents

enides[15] by treating generic circular states, for which the M more_elabora_te .k'nd of string mo<_ﬂél1] tha_t IS needed.
outcome is very different. Unlike the reflection-symmetric for a realistic description of the essential physical properties

zero angular momentum cagshich is the only possibility [9] of a naturally.occurrlng vacuum vortex such as would
that can occur for a circular string loop of the simple non—reSUIt from the Witten mechanisfd].
conducting k_ind a geperic circular state for a conducting Il. CURRENT AND THE EQUATION OF STATE
string loop will be subject to the centrifugal effect. Whereas
the Coulomb barrier will usually be negligible, on the other To describe a vacuum vortex defect by a cosmic string
hand, the centrifugal barrier will usually be of dominant im- model, meaning an approximation in terms of a structure
portance. It is the centrifugal effect that makes possible theonfined to a two-dimensional world sheet, it is necessary to
existence of vorton-type equilibrium states, and as will beknow enough about the relevant underlying field theoretical
seen below the associated centrifugal barrier will genericallynodel to be able to obtain the corresponding cylindrical
prevent the kind of collapse to a point that was envisaged byNielsen-Olesen-typevortex configurations. The quantities
Larsen and Axenides. This means that while such a collapsguch as the tensioh and the energy per unit length that
must be very rare even in the nonconducting string case prexre needed for the macroscopic description in terms of the
viously envisaged by Hawking, it will be much more ex- appropriate thin string model are obtained from the relevant
tremely rare in the conducting string case envisaged here. underlying vortex configuration by integration over a trans-
The motivation of the present work is not just to provide verse sectiofi9,10]. In simple nonconducting cases, the cos-
an explicit quantitative demonstration of the qualitatively ob-mic string models obtained in this way will be of the Goto-
vious phenomenon of the existence of an infinite centrifugaNambu type, for whichT andU are constant and equal to
barrier preventing the collapse of a generic circular configueach other. For more general vortex-forming field theoretical
ration of a conducting vortex defect of the vacuum within themodels, the corresponding cosmic string models will be
framework of the cosmic string description. A less trivial characterized by variable tension and energy which in a ge-
purpose is to explore the limits of validity of thikin string  neric state will be related by an inequality of the form
description by investigating the conditions under which theT<<U. In many such cases and, in particular, in the category
current may build up to the saturation limit beyond which theenvisaged by Wittep4], to which the present analysis like
thin string approximation breaks down due to lo¢mans- that of Larsen and Axenidd45] is restricted, the only inde-
verse or longitudinalinstabilities, so that a nonsingular de- pendent internal structure on the string world sheet will con-
scription of the subsequent evolution would require the useaist of a simple surface current', say (which may or may
of a more elaborate treatment beyond the scope of thaot be electrically chargedwhich implies that the dynami-
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cal behavior of the string model will be governed by aninduced metricy,, on the world sheet. The latter will be
equation of state specifyingd and U as functions of the given, in terms of the background spacetime megj¢ with
current magnitude, respect to four-dimensional background coordinat&sby

x=ckc,,, (&) Yab= 9 XaXb s 4

and hence as functions of each otfig/8]. In view of the  using a comma to denote simple partial differentiation with
large number of different fields involved in realisfGUT  respect to the world sheet coordinate$. The gauge-
and electroweakfield theoretical models it is not unlikely covariant derivativep , would be expressible in the presence
that an accurate description of any vortex defects that magf a background electromagnetic field with Maxwellian
occur would require allowance for several independent curgauge covectoA, by ¢,=¢ ,—eA, X’ . However, in the
rents, but even if that is the case, one might expect that iapplication developed below it will be assum@ed was done
typical situations one particular current would dominate thepy Larsen and AxenideEl5]) that the gauge term can be
others so that as a good approximation the effects of themitted, either because the carrier field is uncoupled, mean-
others could be neglected. ing e=0, or else because the electromagnetic background
The following work, like that of Larsen and Axenides, is field is too weak to be important whidtas discussed in the
based on the kind of string modg21] that is derivable on |ntroduction will be a sufficiently good approximation for
the basis of Witten's pioneering approaBh to the treat- most relevant applications, so that it will be sufficient just to
ment of currents in vacuum vortex defects. This approach iggke @|a to be the simple partial derivative operation,
based on the plausible suppositifh10] that the essential ¢ _=¢ .. With even stronger justification it will also be as-
large scale features of such a phenomenon can be understogmed in the application to be developed below that the local
on the basis of an appropriately Slmp“fled field theoretiCﬁ'background gra\/itationaj field is neg|igib|e’ so t% can
model governed by an effective action involving, in the sim-pe taken to be flat.
plest case just the gauged Higgs-type scalar field responsible whether or not background electromagnetic and gravita-
for the local symmetry breaking on which the very existencesjonal fields are present, the dynamics of such a system will
of strings depends, together with a complex scalar “carrier”pe governed7,8] by a Lagrangian scalar,, say, which is a
field %, which is subject to a local or global () phase function only of the state parameterand which determines
invariance group and which is confined to the vortex core okhe corresponding conserved particle current vearsay,

the string with a phase that may vary along the string worldn the world sheet, according to the Noetherian prescription
sheet, thereby determining a corresponding surface current

[22]. Such a Witten-type scalar field model is not only ap- a aL

plicable to cases where the underlying field responsible for == I’ ®)
the current is actually of this simple scalar type: It can also

provide a useful approximation for fermionic fiel@d] as  which implies

well as for vector fieldd23,24. The carrier field will be

expressible in the form Kz*=k o2 (6)

S=|3|exdie{o,7}], (2 (using the induced metric for internal index raisinghere
KC is given as a function ofv by setting

with o and 7, respectively, the spacelike and timelike param-
eters describing the string’s world sheet, wherés a real dc 1
phase variable, whose gradient will contain all the informa- Zd_W: K (@)
tion needed to characterize a particular cylindrical equilib-
rium configuration of the vortex and, hence, to characteriz&his currentz? in the world sheet can be represented by the
the local state of the string in the cool limit for which short corresponding tangential current vectef on the world
wavelength excitations are neglected. In conceivable casesheet, where the latter is defined with respect to the back-
for which short wavelength excitations contribute signifi- ground coordinatez* by
cantly to the energy a more elaborate “warm” string de-
scription would be needef®5], but on the basis of the as- 24=7°x4,. ®
sumption (which is commonly taken for granted in most . . . .
application$ that the cool limit description is adequate, it The purpose of !ntroducmg the_: dlmenspnless Sca"? con-
follows that there will only be a single independent state3tant«, 1s to simplify macroscopic dynamical calculations
parametery, say, which can conveniently be takgh8,21 by arranging for the variable coefficieAt to tend to unity
to be proportional to the squared magnitude of the gaugevhenw tends to zero, i.e., in the limit for which the current

covariant derivative of the phase with Compone@F§' us- is null. To obtain the desired simplification it is convenient
ing Latin indices for the world sheet coordinates= o, not to work direCtly with the fundamental current vecisr

o2=7. We thus take the state parameter to be that (in units such that the Dirac Planck consténis set to
unity) will represent the quantized particle flux, but to work
W:KO’yab(,D|a(,D‘b, 3 instead with a corresponding rescaled particle cur@ht

which is obtained by setting
whereK0 is an adjustable positive dimensionless normaliza-

M= M
tion constant, using the notatioy?® for the inverse of the z \/700 ' ©)
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In terms of the squared magnitugeof this rescaled current m2

w
c#, as given by Eq(1) the primary state variable will be L{w}=—m?— 7*"1 1+ 13
given simply by *

w=K2y. (100  Which leads to the very simple formula
It is to be remarked that in the gauge-coupled case, i.e., if B w
e is nonzero, there will be a corresponding electromagnetic K=1+ m_i (14)
current vector obtained by a prescription of the usual form
j#=aLldA, which simply givesj*=ez* =e\/;<—0c”. for the function introduced above. The allowed parameter

An important role is played in the theory by the dual range(12) is specifiable by the condition that this function
LagrangianA, which is obtainablg¢7] from the original La- should satisfy
grangian functionC by a Legendre-type transformation that

gives e %< K<2, (15)
A=L+Ky. (1) where
In the timelike current range wheve is negative the tension m \2
and energy density will be, respectively, given By — L, a—(m—) (16)
*

U=—A, whereas in the spacelike current range wheris

positive they will be given byT=—A, U=— L. Local sta- ( oo .
. . e The lower limit is where the tensioh and, hence, also the
bility requires the positivity of the squared spee@? Ty extrinsic “wiggle” speed tend to zero, while the upper limit

and ¢ “=—dT/dU of extrinsic (wiggle) and longitudinal s \where the longitudinal perturbation speed tends to rero.
(sound-type perturbations, and so the admissible range ofThe fixed parameters andm, have the dimensions of mass
variation of the state parameter or, equivalently, of the and can be interpreted as expressing the respective orders of

squared current magnitudewill be characterized by magnitude of the relevant Higgs field and tf@resumably
rather smallercarrier mass scales. It is to be noted that the
£>O>d—£ (12 work of Larsen and Axenidd45] was based on a previously
A dA” proposed alternative Lagrangidfl] that (in terms of the

same parameters andm, ) provides a somewhat more ac-
The appropriate functiod{w} for such a string model is curate treatment of the spacelike current range0,

obtainable in principle by integrating the corresponding La-whereas the newer versidf3) provides a treatment that is
grangian scalar for the underlying field theoretical modelconsiderably more accurate for large timelike currents. For
over a two-dimensional section through the relevant cylindriour present purpose the slight difference between these alter-
cal vortex configuration. In practice this procedure can onlynative string models for Witten vortices is not of qualitative
be carried out with high precision by using a numerical treatphysical importance: Our main reason for preferring to use
ment[9,10]. Progress was delayed for several years by thehe newer versioiil3) has nothing to do with considerations
difficulty of using the output of such a numerical treatmentof very high precision, but is just that it turns out to provide
for explicit dynamical applications. This problem has re-more conveniently explicit analytic expressions for the quan-
cently been solved by the discovery of very simple empiricakities that we shall need.
formulas[21] (originally expressed using a systematic nota-
tion scheme employing a tilde for duality, so thatand’y IIl. CONSERVATION LAWS
represent what are, respectively, expressed herg asd
—w) that provide a convenient analytic description, with  The dynamical equations for such a string model are ob-
sufficient accuracy for realism, within the limited ran@e®)  tained from the Lagrangiad in the usual way, by applying

of w for which the string description is actually valid. the variation principle to a surface action integral of the form
The parametew can take both positive and negative val-

ues depending on whether the current is spacelike or time- _

like, but for the Witten vortex model that we consider here, it S= | dod7y—yLiw;} (17

turns out that the corresponding string description is valid

only as long as it remains within a bounded rahge 10,  (using the notationy=def y,p}), in which the independent
outside of which vortex equilibrium states can still exist, butvariables are the phase field on the world sheet and the
can no longer be stable. What transpif2s] is that the ef-  position of the world sheet itself, as specified by the func-
fective Lagrangian for the thin string description can be reptjons x4, 7}

resented with reasonably good accuracy throughout the al- Independently of the detailed form of the complete sys-
lowed range(and with very high accuracy in the timelike tem, one knows in advance, as a consequence of the local or
part for whichw<0) by a function£ that, for a suitably global U1) phase invariance group, that the corresponding
adjusted(typically order of unity value of the normalization Noether current will be conserved, a condition which is ex-
constantx , is expressibléeven in the presence of electro- pressible as

magnetic and gravitational background figlds terms of

just two independent parametersandm, in the form (\/—_yza),a=0. (18
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For a closed string loop, this impligby Green’s theorem V ct=0, (26)
the conservation of the corresponding flux integral a

which is the equivalent, in background tensorial notation, of
Z= \4; do?e,,2°, (190  the condition expressed above in termsz?).nsing what was

expressed above in world sheet coordinate notation. The
background tensorial operat® in the foregoing equations

wheree is the antisymmetric surface measure ter(sdrose is definable formally by

square is the induced metrig,e®.= y,.), meaning that for
any circuit around the loop one will obtain the same value
for the quantum numbet, which is interpretable as the in-
tegral value of the number of carrier particles in the loop. ) _ _ .
The loop will also be characterized by a second independefthere V is the usual operator of covariant differentiation
quantum number whose conservation is trivially obvious,"‘”th respect to the Riemannian background connection. Thus

namely, the topologically conserved phase winding numbeF‘?r any closed Ioo_p there will be a corresponding conserved
N that is defined by circuit integralC given by

Vh= Y =Xy, 27

2N = 35 de= f}gdoacp,a. (20 €= Tf;dx“swcﬂ (28)

As usual, the stress momentum energy density distributiowheree,, is the background spacetime version of the sur-
T on the background spacetime is derivable from this acface measure tensag,, which means that its contravariant
tion by varying the background metric, according to theversion is the antisymmetric tangential tensor that is given by
specification

eM’=exHxY, . (29)
- oS 2 9(\V—gL) . . . i
THY= Sa = g . (21 This constantC is of course just a rescaled version of the
V=9 %9 -9 v integer particle quantum numb&:;, which will be given in
terms of it b
This leads to an expression of the standard form sortby
z=\k C. (30)

V-gTer= J dodr/=y8“[x"—x{o, 7}T*, (22)
In the following work(as in the preceding work of Larsen

in which thesurfacestress energy momentum tensor on the@nd Axenideg15)) it will be assumed either that the current
world sheet(from which the surface energy density and 1S uncoupled or els¢as will more commonly be the case
the string tensiorT are obtainable as the negatives of its thatF ., is negligible, so that we can simply take
eigenvaluescan be seen to be givéii,8] by

o f,=0. (31)
TH'= L+ Kctc?, (23 ) _ _
As well as neglecting electromagnetic correction effects,
using the notation we shall now also restrict our attention to cases in which the
background is both axisymmetric and stationary, as is the
ntr= yabxfgxfb (24 case for the flat space in which we are in the end most par-

ticularly interested. This means that there will be correspond-
for what is interpretable as thérst) fundamental tensor of ing vectors,/* andk*, say, which satisfy the Killing equa-
the world sheet. tions
Independently of the particular form of the Lagrangian,

the equations of motion obtained from the actia) will be vV./,+V,/,=0, V,k,+V k,=0, (32
expressible in the standard forf®,8]
- and which will be, respectively, interpretable as generators of

v, T =1, (25 rotations and time translations, so that when suitably normal-

. ized, their effect can be expressed in the form

in which 'V, denotes the operator of surface-projected cova-
riant differentiation and wheré,, is the external force den- L L AP (33
sity acting on the world sheet. When the effect of electro- IXH gttt " axm i’
magnetic coupling is significant this will be given in terms of
the fieldF ,,=A, ,— A, , by f,=eF,,z". Evenif this force ~wheret is an ignorable time coordinate agdis an ignorable
density is nonzero, its contraction with the current vectorangle coordinate. This normalization is such that the total
z* or with the corresponding rescaled current vectomill circumferential length of the circular trajectory of the angle
vanish, and hence it can be seen from the preceding formuld§lling vector will simply be given by/ where
that the equations of motions automatically imply the surface
current conservation law /zz/“/M. (39
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These Killing vectors can be employed in the usual way towhere these quantities—of which the latt€ris directly
define the corresponding angular momentum surface curreidentifiable with the global flux of the current so that it is
vector 7* and the corresponding energy current veétbby  justifiable to designate it by the same symbol—are now to be
setting thought of as being constructed according to the prescrip-
o o tions of the purely local fornj26]
T*,P=27 ", TH K'=—EM (35
_ _ _ B=\/k \%¢a, C=/"e,,C". (42)
These currents will then satisfy surface conservation laws
_ — The reason why the single symmetry generattrgives rise
V,J=0, V,&4=0, (380 to not just one but two independent Bernoulli-type constants
. o in this way is attributable to the the string duality property
which have the same form as that satisfied by the current; g (it is to be noted that instead of using the rationalized

c#. This means that for a closed loop there will be corre-constantsB and C. the work of Larser{15,19 uses corre-
sponding conserved angular momentum and mass-energy i8yonding unrationalized constamsand 0, which are ex-

tegrals,J and M, say, which will be given by pressible in terms of our present notation(®y — C/27r and
n= JK_O N=B/27.)
J= fﬁdx“s,wj”, M= 3gdx“swg”. (37) In a similar manner the magsvhen it is definegl and

angular momentum integrals introduced in the previous sec-
tion will also be expressible in terms of purely locally de-
IV. CONSTANTS OF CIRCULAR MOTION fined constants of the motion in the circular case. To do this

it is convenien{26] to start by introducing an effective mo-

We now restrict ourselves to cases for which the string tangent vectdil* given in terms of the relevant
configuration itself shares the background spacetime pro%lling vector, namely,/* in the case with which we are

erty of being symmetric with the action generated by theconcerne d. by the ansatz
Killing vector /*. This entails that’* should be tangential » oY
to the world sheet, i.e., P
[k=/"g,, TPH, (42)
E=N%A, (39 . _
Since the surface stress momentum energy temséronly
Where)\a is a Corresponding K||||ng vector with respect to has ComponentS in directions tangential to the world Sheet, it
the intrinsic geometry of the world sheet, which, on the un-is evident that this formula provides a vectdr that auto-
derstanding that™* is interpretable, in the manner described Matically has the required property of being tangent to the
above, as the generator of angular rotation about a symmet8fring world sheet.

axis, means that the string configurationcigcular, its cir- Whenever the background spacetime is invariant under
cumference at any instant being given by the local value ofh€ action of another Killing vectdk®, which in the appli-
/. cation to be considered here will be interpreted as expressing

In such a case, this Killing vector” can be used to Stationarity, so that the corresponding integral form(@a
generate the, in that case circular, circuit used for evaluatinéﬁf M is well defined, it can be seen using E89) again that
these integrals, i.e., the infinitesimal displacement in the inthis globally defined quantity will now be obtainable as a
tegrand can be taken to be given by@r2=\2d¢, so that purely local constant of the motion from the formula
we obtain

KMIT,=—M. (43
2mdxt=xA\2dp= /4 dep, (39

' It can also be seen that whether or not the background has a
where ¢ is an ignorable angle coordinate of the usual kind(Stationary symmetry generated bk*, the other(angular
with period 2r as introduced abovéSuch an angle coordi- Momentum constant provided according to Eq37) by the
nate can be conveniently used to specify the first world shee@riginal (axisymmetry Killing vector /* itself will similarly
coordinatest by settingo= ¢, so that by taking the second be obtainable, in the circular case, as a purely local constant
world sheet coordinate2= 7 to be constant on the circular Of the motion given by
symmetry trajectories the components of the intrinsic Killing
vector are obtained in the forfix,\2} ={1,0}.) Substituting /H,=2m). (44)
this ansatz fodx* in the corresponding integral formulas, it ) ) )
can be seen that the global integrél®) and (20) for the It is, however, to be noted that this last constant is not inde-
winding numberN and the particle numbez will be given ~ Pendent of the ones presented above: It can be seen by sub-
directly in the circular case by correspondigally defined ~ Stituting the formula(23) in Eq. (42) and using the defining

Bernoulli-type constants of motio andC, say, according relations(6) and(9) for the current that it will be expressible
to the relations in terms of the twamutually dual Bernoulli constant$41)

by the simple product formula

(40) BC_

4
« “2m

B=2m kN, C= NZ. (45)

>
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This shows that the integral quantization of the winding anda special treatment is needed, the self-dual forndla is
particle numbers\ andZ automatically entails the integral immediately obtainable by using the Bernoulli formu({d4)

quantization of the angular momentuim to evaluate the respective components’éfparallel to and
orthogonal to the current.
V. DYNAMICS OF CIRCULAR MOTION Having used this procedure to obtainas a field over the

) . background spacetime, one can then use the result to obtain
Whenever the string motion shares the symmetry genefne corresponding value of the squared magnitifgavhich,
ated by a background spacetime Killing vector, the problem, 5 recent derivatiofig], was written as<?, though it need
of solving the equations of motion for its two-dimensional ot pe positive, since the vectbr* may be timelike or null
world sheet can naturally be reduced to a problem of findings \ye|l as spacelike. This quantity will be obtainable using
a one-dimensional trajectory tangential to the world sheet bu,t_:q_ (47) as a function of the squared Killing vector magni-

not aligned with the symmetry generator, since when such g,qe /2 (which in the case of symmetry must necessarily be
trajectory has been found it is trivial to extend it to the COM-positive) by the manifestly self-dual formula

plete two-dimensional world sheet by the symmetry action.
The general procedure for obtaining such a tangential trajec-
tory for symmetric solutions of the equations of motion of
conducting string models was originally developed by X w

Carter, Frolov, and Heinrich26], who applied this method

to study stationary solutions in a Kerr black hole back-where A is the dual Lagrangian function, as given by Eq.
ground. This method was adapted to the kind of situation11).

with which the present application is concerned, namely, cir- |n order to obtain a treatment that remains valid in the
cular instead of stationary symmetry, by Lardd®]. The  “chiral” limit, for which w and y vanish, so that formulas
original derivation[26] involved the use of quotient space (47) and (48) become indeterminate, it is convenient to re-
with respect to the relevant symmetry action, but a moreyrite ¥ in a manner that sacrifices manifest self-duality by
recent and general treatmé8{ (including allowance for the  expressing it in the form

possibility of axionic as well as electromagnetic coupling

C?A% B?r?
=

: (48)

has provided a more direct route that does not need such an B2C2
auxiliary construction. V=—>-Y2 (49)
What this procedure provides is a particular kind of 7

world-sheet-generating trajectory that is characterized by

having a tangent vectdd* given in terms of the relevant where(unlike the quantityX= % which may be imaginany
Killing vector, namely,/* in the case with which we are the quantityY defined in this way will always be real in the
concerned, by the ansaf42). The procedure makes use of admissible rang€12), as can be seen by expressing it in
the fact[8,26] that, for given values of the Bernoulli con- either of the equivalent, mutually dual, alternative forms
stantsB and C, the state functiorw and, hence, also the

squared magnitude of the tangent vecid¥, namely, the B2 c2Kc

quantity Y= W_A/:7

- L/, (50)
v=II#11, (46)

, . ) ... of which the latter is the most convenient for practical cal-
(which will play the role of a potentigl can be specified in ., jations starting from a given form of the Lagrangian
advance as acalar fieldover the entire background space | he generic cas®2+ C2, the required quantitie and
(not just a single string world sheein such a way as 10, 5r6 gptained indirectly as functions gf by solving Eq.
agree with the respective phy_S|caI \_/alues‘lofon the par- (47 which will give a result that is always non-null; i.av,
ticular world Sh?Et under QOQSIderatlon. and y will never pass through zero, and so the current will

In the generic case this is done by expressgas a  ,oqarve a character that is permanently timelike or perma-

function of one of the independent state variables,say,  nently spacelike as the case may be. The exception is the
which will itself be expressible, as a function of the squared: pirai” case. which is characterized by the equality

Killing vector magnitude/® and, hence, as a scalar field g2_ 2 anq for which the only possible states are of the null
over the entire background space by solving the equation i.4 characterized by=x=0, so that the required quanti-

B2 (2 ties K and £ will be given directly, independently of, as
= —, (47)  the constant&=1 and£=—m?.

WX It is of particular interest for the dynamical applications
that follow to obtain the derivative of the fieM with respect
to the cylindrical radial coordinaté with respect to which it
I'L§ implicitly or (in the chiral casgexplicitly defined: It is
obvious in the chiral case since in this cadse £, and it can
also be verifiedusing the relation

where y is the squared magnitudé&) of the current vector,
which is obtainable from the Lagrangiahas a function of
w in the manner described above. It is to be remarked that i
the recent derivatior{8] the corresponding formuldex-
pressed using the notatig for C, 8 for B, and —y for

w) contains a transcription error that has the effect of replac- , )

ing w and y by their respective squares. Except in the “chi- %: _ L+ C(dK/dw) (51)
ral,” i.e., null current limit for which w andy vanish so that dw 2w - 27w(dL/dw)
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for the variations of/] in the generic case for which and VI. SOLUTION FOR THE STATE FUNCTION
KC are variable that this derivative will be expressible in ei-

ther of the very simple, mutually dual, equivalent forms In order to carry out the procedure summarized in the

preceding section, we first have to solve &) for the state

dy c2K B2 variablew. In terms of the magnitude’ of the axisymmetry
-7 —A=— 2 - L, (52)  generator*, which will give the local value of the circum-

ference of the circular string loop, this equation will be ex-

of which again it is the latter that is most convenient for Pressible as

practical calculations starting from a given form of the La-

grangiant. /?w=B?-C?K?2. (59
After having obtained the field in this way, the final

step in the procedure for obtaining the string tangent vector

I1# is to integrate its equations of motion, which can easily

be shown8,26,27 to have the form

For a general conducting string model this equation would
be hard to solve explicitly, but there are special cases for
which a convenient analytic solution is available, the first

211"V I1,=V ,V, (53)  known example being that of the transonic string model, for
BooH which the equation for the fieldv is found to be simply
subject to the constraint linear, so that it can immediately be solved to provide a
system that turns out to be completely integrable by separa-
/*11,=BC, (54 tion of variables in a Kerr black hole background when the

L . symmetry under consideration is stationarf86], though
whose conservation is an automatic consequence of the SYMhfortunately not when it is axisymmetfg9], in which case

metry. This constant is interpretable according to @4 as  g,ch complete integrability is available only for purely equa-
being proportional to the angular momentum _ torial configurations, including in the limit, the kind of flat
The foregoing formulation depends only on the existencgpace ring configurations with which the present study is
of the symmetry generated by*, which is postulated to jimately concerned. Another case whose application to cir-
apply not only to the background but also to the string solu|5r configurations has recently been considét&liand in
tion itself, so that the further supposition that this symmetry,,hich Eq. (47) is also simply linear, is that of the even
is that of rotation about an axis means that the string cong,,der fixed trace modéfor which K is just a constanthat
figuration is circular. It does not depend on the additional, ;¢ originally suggested by Witten hims¢#] to describe
postulate that the background spacetime is also subject {g effect of his mechanism for currents that are very small
another symmetry generated by the independent Killing VeCzompared with saturation, but which turns 8 to be mis-
tor k* that is responsible for the existence of the mass-energiading (because subsonieven in that limit.
constantV given by Eq.(43). _ _ The more recent work of Larsen and Axenid&$§] was
In order to solve the equation of motidh3), which can  mre advanced in that it used the newer kind of string model
be seen to be interpretable as that of a geodesic with respegiy] that (unlike the simple transonic model and its cruder
to a conformal modified background metric given by fieq trace predecesgaran provide a realistic account of the
Vg, it is useful to employ a Hamiltonian formulation of ¢y rent saturation effect that is a salient feature of the Witten

the standard form mechanism; this work was, however, much more specialized
than the preceding investigations cited above, as it only con-

dx* oH dII oH ; . o 2
g (55  sidered the nonrotating case of vanishing winding number

dr 4dl," dr axH’ N, which in our present notation meas=0. As well as

h _ ter al the traiect hich allowing for a nonzero winding number, the present work
Wherer IS parameter along e trajectory, Which can conves, ., e 5 physically unimportant but technically valuable

niently be used to specify the choice of the second internq provement in that we use more recently propof2d

coordinates? (the first onea, having already be_en chosen string model characterized by E@.3), which turns out to be
to be the angle c_oordmatlé). .SUCh a formqlanon of the_ articularly convenient for the present stage in our analysis
conformal geodesic equation is readily obtainable by taklnggince it leads to an equation far that although not actually
the Hamiltonian to be given by linear, as was the case for the transonic model, can be seen to
Y be the next best thing, meaning that it is jupiadratic
2H=g*"II JII — WV, 56 . . .
9 py 6 (whereas the version used by Larsen and Axenides gives an

with the understanding that the system is to be solved subje@duation fow that has a much more awkward quartic form
to the constraint The result of using Eq(13) is expressible in the form

H=0, &7 C2k2+m2 /2(K— 1)~ B2=0, (60)
which ensures the correct normalization of the tangent vec-

tor, which by the first Hamiltonian equation will be given which can immediately be solved to give
directly by

dx* —m2 /?+\4C%(B2+mZ/?)+m? /4

[ p— =
M= (58 K — ,

(61)
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choosing the positive sign for the square root becdtse The fact that the fourtlfazimutha) direction can be ig-
positive throughout the admissible ran@?) for the state nored in this particularly simple case means that the com-
parametemw. plete set of equations of motion is provided directly in first

In terms of this explicit formula foikC the state function integrated form by the constants of the motion. Using the
w itself is immediately obtainable using the expression formulas(6) and(9) to work out the expressiof#1) for the
Bernoulli constantC, it can be seen that the time derivative

w=m(K-1), (62 of this functiong will be given in terms of that of the radius
rb
which applies for this model. Since our Lagrangi@s) can y
be expressed directly in terms &f as [1—2
2 q=CKk——. (69
L£=-mZ(a+InyK), (63) 2mr [k,

our gxplicit formula forkC can also be' directly applied to By similarly using the formula23) to work out the expres-

obtain the required potential’, for which we obtain the  sjon (43) for the mass-energy constavitthe evolution equa-

formula tion for r can be obtained in the first integrated form
B2C? c’K 2 :

‘I’=—/2 —/? /T+mi(a+ln\/z) . (64) 1-r2=Y, (70)

whereY is the quantity that is given by the formu(&0),
VII. MOTION IN A FLAT BACKGROUND whose evaluation as a function of the circumference,
. . . . . /=2qr is discussed in Sec. V.

_Up to this point we hav_e been using a for_mulatlon that is Instead of going through the detailed evaluation of the
yahd for an arbitrary stationary axisymmetric baCkground’expression(43) using Eq.(23), a more elegant albeit less
|ncluld|ng, for example, that of a I_<err bla(_:k holg. !n order to direct way of obtaining the same equation of motionifas
obtain a result that is completely integral in explicit form and,[0 apply the Hamiltonian formalism described in Sec. V. It is

bﬁc;elluse it is the case of greatest rﬁ)hysical irppo][ltance, W&ident from Eq.(67) that in the flat background5) the
shall now restrict our attention to the case of a flat space_ . : ;
§adial momentum componelﬁtl will be given by

background, for which there will be no loss of generality in
supposing the circular string loop to be confined to an equa-

torial hyperplane with three-dimensional spacetime metric I :ﬂzM'r, (7)
given in terms of circular coordinatds, ¢,t} by todr
ds’=dr?+r2d¢?—dt?, (65  and under these conditions the Hamiltoni&6) will reduce
to the simple form
so that the Killing vectors used in the discussion above will
be identifiable as{ki,k?,k3}={0,0,3 and {/1,/2,/3} 1 J? 5
={0,2m,0}. HZE H1+r_2_M - (72

In these circumstances the circumferential length fiéld
that played a fundamental role in the preceding discussioft is to be remarked that the terdf/r2 in this formula has
will be given simply by the form of the centrifugal barrier potential that is familiar in
the context of the analogous problem for a point particle. By

/=2, (66) what is a rather remarkable cancellation, it can be seen that

the effect of the extra potential, taking account of the

elastic internal structure of the string, is merely to replace the

familiar centrifugal barrier contributiod?/r? by a modified

barrier contribution given simply by ? whereY is the sca-

lar field (50) introduced in the previous section, since it can

be seen that the relevant combination of terms turns out to be

expressible simply as

and the evolution of the circular string world sheet will be
given simply by specifying the radiusas a function of the
background time. We shall use a dot to denote differentia-
tion with respect to this timé, which will vary proportion-
ally to the Hamiltonian timer, with a coefficient given by
the energy constant, so that we shall have

dt

R J2
ar M (€7 Z-P=Y2 (73

For a complete physical description of the solution, it would

also be necessary to specify the distribution over the world "€ Nnormalization expressed by the constraint that the
sheet of the phase field, which must evidently have the Hamiltonian should vanish can thus be seen to give the equa-
form ' tion of motion forr in the convenient first integrated form

¢=q+Ng, (69) M2r2=M2-Y2, (74)

whereN is the conserved winding number as defined abovevhich is evidently equivalent to the radial evolution equation
andq is a function only oft. (70) given above.
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VIIl. STATIONARY “VORTON” STATES mum: In other words for a given value of the conserved ratio
: . : . . b?, the vorton equation can hae¢ mostone solution for the
As an immediate particular consequence of this equation ; .
S ! . State variablev and, hence, for any function thereof, such as
of motion, it can be seen that there will berton-typeequi- the derived variabléC and the corresponding vorton circum
librium solutions, with m nergy given Al . . ) 4 )
brium solutions, with mass energy given by ference/’, which will thus beuniquelydetermined. It will be
M=Y, (75)  seen in the next section that in some cases there will be no
solution at all; i.e., there are values of the raifofor which
wherever the relevant effective energy functiwnsatisfies Y is monotonic throughout the allowed range, so that a cor-
the stationarity condition responding vorton state does not even exist.

ay _ IX. SOLUTION OF THE EQUATIONS OF MOTION
ar =0. (76)

The results in the immediately preceding section are in-

The formula(52) given above for the derivative af can  dependent of the particular form of the Lagrangianif we

be used to write this stationarity condition in the form now restrict ourselves to the specific case of the m¢ti®|,
we can use the results of the earlier sections to rewrite the

C2Lw=B?Ay. (77 effective barrier energy functioli in the form

This is recognizable as the equilibrium requirement that is 5
well known from previous more specialized studies of circu- Y=m;/
lar equilibrium state$28], according to which the propaga-

tion speech of extrinsic (wiggle) perturbations determines with K given explicitly as a function o’ by Eq. (61). A
the effective rotation velocity, namely, that of the current convenient way of applying this formula is to think &f as
in the timelike case, for which one obtainé=T/U= /A, the independent variable, with the circumferente(and
and that of the orthonormal tangent direction if the current ishence the radius=/"/27) given by

spacelike, in which case one obtaind=T/U=A/L. Fi-

a-l—ln\/z—l—

C 2
w5

nally, in the “chiral” case for which the current is null, both e B?-—C’k? 82
formulas are valid simultaneously: One will hake= £ and * K-1
v=1.
In all of these cases the vorton circumference will beln the caseb®<1, which mean3?< C?, this determines’
given by as a monotonically increasing function &f in the timelike
current rangee 2“< K< 1. In the casé?>1, which means
/ |B] B2>C?, this determines” as a monotonically decreasing
/v=\/_—£, (78 function of K in the spacelikecurrent range, £ K<2. In

either case, we finally obtain the effective barrier energy

and the equilibrium condition to be solved for the state func-funCtIon in the form

tion of the vorton will be expressible in the more directly b2 K2 K(K—1)
utilizable form Y=m,|C|\/—=—— a+INVK+ ~—5—|, (83
K-1 b —K
L
1C2X =b?, (79  as a fully explicit function just okC. The formula(52) for the
derivative of this function gives
using the abbreviatioh for the Bernoulli ratio, as defined by 4y b2(K—1)
= m? —
5 N Y m*(a+ln\/f K(0—K3) )). (84
bZEZZWKoz, (80)

It can thus be seen that the vorton equilibrium requirement
whereN andz are the corresponding integer-valued winding (79, expressing the conditiofY6) that this derivative should
number and particle quantum numkef which, if the cur- vanish, will be given for this particular string model by
rent were characterized by a nonzero electric coupling con-
stante, the latter would determine the vorton’s total ionic K=Ky, (85)
charge, namelyQ=Ze, as in ordinary atomic physigs

From the well-known theorermll] that (although there
may be instabilities with respect to nonaxisymmetric pertur-

where/C, is obtained by solving the equation

2 i
bations in certain casgshe circular equilibrium states are b2= K (atnyky) _ (86)
alwaysstable with respect to perturbations that preserve their a—1+In \/E,Jr o

circular symmetry, it follows that within the admissible

range(12) the effective energy functio® can be extreme Whenever an admissible solution exits, it can be seen that the
only at a minimum but never at a maximum. This evidentlycorresponding value

implies that, within a continuously connected segment of the

admissible range, there can be at most a single such extre- M=M, (87)
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of the mass of the vorton state will be given by i.e., as/— o, which corresponds téf—1.
) Despite the fact that instead of the five possibilities
&z IC| K1 b—+IC (89) (namely, 0, 1A, 1B, 2A, and 2Bnheeded or the point particle
m, b*-K K, ) problem there are only thrg@amely, 0, 1A, and 1Bin the
circular string loop problem, the state of affairs for this latter
X. CONFINEMENT EFFECT AND CLASSIFICATION problem is considerably more complicated because the orbits
OF SOLUTIONS are not fully characterized just by the mass energy parameter

M and the angular momentum paramelerThey also de-

f Siné:elcgt(in?s ttotlrJ]nityf?or:farge V?qu.zy@f’ it can lt?e selen pend on the Bernoulli constariisandC [which, by Eq.(40),
rom Eq. (81) that the effective potential grows linearly are, respectively, proportional to the microscopic winding

with rqd|us at large distances. This means that no matter h.ovr\llumberN and the particle numbet]. According to Eq/(45)
large its energy may be, the loop can never expand to mfmt—h tant lated by th difD=27J. but
ity: It is subject to a confinement effe¢hot unlike that ese constants are reiated by the conaie=carJ, bu

which motivated early attempts to use string models to ac'Ehat still leaves three independent parameters which may

count for the phenomenon of quark confinement in hadroffonveniently be taken to b, B, C, say, instead of the two
theory[29]). _that were sufficient for the point .parucle_ case. As in the
The fact that it admits no possibility of unbound trajecto- Nverse square law case for a point particle, the flat space
ries distinguishes the loop problem considered here frongtring loop problem is self-similar with respect to scale trans-
cases such as the familiar example a point particle, of mag@rmations, which are expressible in this case By Bs,
m, say, moving in the Newtonian gravitational field of a C—Cs, and M—Ms (so thatJ—Js?). Thus, whereas all
central massM,, , say. In that case, the orbits can be clas-that mattered qualitatively in the inverse square law was a
sified as type 0, type 1, and type 2, where type 0 means thgingle dimensionless ratiqnamely, that betweed? and
special case of constant radi(girculan orbits, type 1 means E™1), in a corresponding manner the not so simple behavior
the generic case of varying radius but nevertheless bounaf the circular string loop is qualitatively dependent on the
orbits, and type 2 denotes unbound orbits. These types camwo independent dimensionless ratios relat®g C?, and
be subclassified into categories A and B, where A stands fok?2. A further complication is that the nature of this depen-
“always regular” or “avoiding trouble” and B stands for dence depends on the dimensionless parametraracter-
“badly terminating.” For type 0 orbits, the “good” subcat- izing the underlying string model.
egory A is clearly the only possibility. However, while type  Unlike the mass-energy paramelér whose conservation
1 orbits are generically of type 1A, which for an inverse depends on the stationary character of the space time back-
square law means the elliptic case, there is also the possibiiround, and would no longer hold exactly when allowance is
ity of type 1B orbits, meaning bound trajectories of purelymade for losses from gravitational radiation, the winding
radially moving type, which end by plunging into the central number and particle number satisfy conservation laws of a
singularity. Similarly type 2 orbits are generically of type less conditional nature, and $although their local conser-
2A, which for an inverse square law means the parabolic andation is also symmetry dependgtite corresponding Ber-
hyperbolic cases, but there is also the possibility of type 2Bhoulli parameter® andC provide more fundamental infor-
orbits, meaning unbound trajectories of purely radially mov-mation about the string loop. It is therefore appropriate to use
ing type which begin or end at the central singularity. In thetheir ratiob as the primary variable in a classification of the
simple point particle case the only relevant parameters areolution (with the understanding thdt=2 meansC=0).
the orbital binding energ¥, say, and the angular momen-  Proceeding on this basis, the relevant parameter space can
tum J, say. Subcategory B corresponds to the special cadee described in terms of five consecutive zones for the pa-
J=0. In the inverse square law case the classification is simeameteb?. The reason why there are so many possibilities is
plified by the property of self-symmetry with respect to thethat the range of’, from 0 to corresponds, according to
transformation€E—E/s, J—>J\/s wheres is a scale factor: Eq. (82), to a range ofC from 1 to |b|, which may extend
Thus, for the generic subcategory A, the classification debeyond the rangél5) that is physically admissible according
pends just on the invariant dimensionless combinatiorto the criterion(12).
EJ2/m3Mi , being type 0 for its absolute minimum value,  Between the limits where it diverge¥,— +«, ask—1
which is —1/2, type 1 for a higher but still negative value, and K— |b|, the effective potential energy functioni will
and type 2 otherwise. vary smoothly with at least one local minimum. However,
The same principles can be applied to the classification ofccording to the theorem recalled at the end of the previous
solutions of the circular string loop problem, for which one section,Y can have at most one local minimum and no local
only needs the type 1, with “good” and “bad” subcatego- maximum within the admissible rang&5). Moreover, since
ries 1A and 1B, and the type 0, which in this case means a is strictly positive by its constructioflL6), it is evident that
vorton state, which can only be “good.” There is no ana-the large radius limiK— 1 will always lie safely within the
logue of type 2 for the string loop problem because the posphysically admissible rangd5). This leaves only two alter-
sibility of an unbound orbit does not exist. This is becausenative possibilities, which are either thatshould be mono-
the relevant effective potential functioi does not only di-  tonic, withdY/d/>0, throughout the physically admissible
verge to infinity(due to the centrifugal effects the radius range(15), or else that this admissible range should include a
r becomes small, i.e., ag—0, which corresponds to turning point at a critical value of within which the deriva-
K—|b|: It is evident thatY must also divergédue to the tive dY/d/ will become negative, in which case it will have
energy needed for stretching the stiinig the larger limit, to remain negative all the way to the inner limit of the ad-
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missible range. It is directly apparent from the expression Zone I

(84) for dY/d/ that there is no possibility for it to remain

positive near the limit of the admissible range in the timelike ~ “ [ ' * ; '

current case, i.e., as\itC— — a, and so fob2<1 the vorton TN

equilibrium equation86) will always have a physically ad- < RN

missible solution. However, in the spacelike current case, o T

b2>1, for which the relevant limit of the admissible range is ;

given (independently ofr) by K— 2, it can be seen that it is N

indeed possible for the gradie(@4) to remain positive, the P

condition for this being the criterion for the first of the quali- T

tatively different zones listed as follows. [
Zone |. This is the “fatal” spacelike zone characterized 10 12 14 16 18 2.0

by K

Y /imlCl

20 [N J

bz( 1- a—) =4, (89 30

for which no admissible vorton solution exists. For such a

.. 20
scenario it can be seen from E®3) that the mass energy

must necessarily satisfy the condition Eﬁ
M=Mjq, (90
where the mass limiM is given by 0, -
%=m a+ 1|n2+—2f : (91) i N i
m, 2 bc—4 FIG. 1. The potentiak'/(m|C|) as a function offC (top) and

m//|C| (bottom) for zone I. Here and on the following figures, it is

In this case, after a possible phase of expansion to a maxiound that fora=1, the curves as functions of//|C| all coincide
mum radius obtained by solving =M, the loop will inevi-  (up to negligible logarithmic correctionso they can be shown for
tably contract until it reaches the current saturation limit atdifferent values otx ranging from 1 to 100 by the same thick curve.
k=2, at which stage our classical string description will (Note tha_t this simplification depends on normallglng with respect
break down. This means that in terms of the terminology!® the Higgs boson mass rather than the carrier mass scale
introduced above, all zone | trajectories are of type 1B. In" ) Itis clear, howgver, that the variations with are strongly
Fig. 1 is displayed the potential against(top) the value of dependent on the ratio.
K and (bottom) that of the circumference’, all quantities
being rescaled with the Kibble mass. It should be noted b2>4>b2(1
that for =1, the potential is roughlyi.e., up to negligible
logarithmic corrections independent ofa when seen as ) i ) i
function of / but not as a function of. This shows that the [Which would consist of the entire rangé=4 if Eq. (92)
most relevant parameter for cosmological applicationsiis were not satisfief] for which the trajectory may be dta-
and notm, even though the latter is essential for the veryt'onarw type 0,(we||-behayed osqllatobytype 1A, or(badly
existence of vorton states. The starting point of this Zoné)ehaveaitype_ 1B, dep_er)dlng on Its energy. The type 15 case
marks the end of the curves in Fig. 6. is t_hat for whichM satlsf_|es an me_quallty of the for(80), in

It is to be remarked that in order for this zone to be ofWh'C,h case the 'Ioop will evol\{e In the same way as in t_he
finite extent, the carrier mass scafg must not be too large PreVious scenario, and thus will again end up by contracting
compared with the Kibble mass scate the precise condi- to a state of current saturation. Th? good” type 1A possi-
tion being that the value of given by Eq.(16) should sat- t?|I|§y is characterized by the condition that the mass should
isfy the inequality lie in the range

(93

C 2a+In2

MS>M>M,, (99
a>(1-1n2)/2. (92)

where the maximum beyond which the current will ulti-

If this condition were not satisfied, which would be unlikely mately saturate is given by the preceding form(84) for
in a realistic model, since the Witten mechanism cannot bé/, and the minimum valu#/, is the mass of the relevant
expected to work if the carrier mass is too lafge9,10, vorton state as characterized by E§8): When this latter
then zone | would consist only of the extreme lirbft=oc, condition is satisfied the loop will oscillate in a well-behaved
i.e., the cas€ =0, for which the string falls radially inwards manner between a minimum and a maximum radius that are
with a spacelike current but zero angular momentum. obtained by solvingy =M. Finally the type O possibility is

Zone Il. This is the “dangerous” spacelike zone charac- that of the vorton state itself, as given by the minimum value
terized by M=M,. Similarly to Fig. 1, Fig. 2 shows the potential in



Zone Il

20— ; .

Ispy N 1

2.0

10

Y/mICl

10
ImACl

FIG. 2. Same as Fig. 1 for zone II.

this zone II, against eithek (top) and /m/|C| (bottom),
with the same remark as before whee:1.
Zone lll. This is the “safe” zone characterized by

4>p?>e 4o, (95

for which there is no danger of bad behavior; i.e., the only
possibilities are the well-behaved type 1A, which applies to
the entire range

M>M,, (96)
and the vortonic type 0, as given by=M, .

It is to be remarked that this “safe” zone consists of three
qualitatively distinct parts, namely, a subrange of spacelike
current solutions, zone K}, say(Fig. 3), given by

(97)

a subrange of timelike current solutions, zond H}, say
(Fig. 4), given by

2>|b|>1,

1>|b|>e "2, (98)
and in between the special “chiral” case of null current so-
lutions, zone 10}, say, which is given just bjb|=1.

Zone V. This is the “dangerous” timelike zone charac-
terized by

Y /mlCl

Y/mICi

Y /mlC)

Y/mIC
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Zone IHI{-}

10

T T T

LmNCl

FIG. 3. Same as Fig. 1 for zone{}.

Zone HI{+}

40 ¢

T T T T

10

0

ImACl

FIG. 4. Same as Fig. 1 for zone {H}.
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Zone IV

miACI

0 1 2
1m/Cl

FIG. 5. Same as Fig. 1 for zone IV. In this zone, for large values
of «, the minimum value of the potential is attained only for very

small values ofC and hence are not visible on the figure. FIG. 6. The vorton state functioiC , massM /m|C|, and
length m//|C| against the Bernoulli ratio |b|. From
e 4*=p?>0, (99 a=(1-In2)/2 to =1, the curve is smoothly deformed from the

long-dashed one to the thick one which includes many values of
for which (as in zone |) the trajectory may be dftationary  «a, showing explicitly the independence in
type 0, (well-behaved oscillatojytype 1A, or (badly be-
haved type 1B, depending on its enerdggee Fig. 5. The b?=0 (103
latter will occur whenever R

M=M,, (100

i.e., the case for whiclB=0 (to which the investigation of
where the relevant minimum mass, above which the looparsen and Axenidegl5] was devotegfor which it can be
will contract to a state of complete relaxation, i.e., zero tenseen that the mass must satisfy the inequality
sion, is given by

Mo _ otz 20 101 Mo cvize?
m_*_| e e % p? (101 m—*>|C| 1-e (104

The “good” type 1A possibility is characterized by the con-

dition that the mass should lie in the range (in which the lower bound is the common limit to which

M.>M>M (102 M, andM, converge a3 tends to zerp In this casgas in
' v the more extensive range covered by zon¢hé trajectory
where as beforé/, is the vorton mass value given by Eq. must be of type 1B, its ultimate fate being to reach a state of
(88), while finally the type O possibility occurs when relaxation,T—0, as in zone IV whert100) is satisfied.
M=M,. It is to be remarked that the zoit@9) includes a All these zones are shown in Fig. 6 where, as functions of
subzone characterized by the strict conditigrec, , where  the parametefb| are plotted the value of the functida that
cZ=—dT/dU is the woggle velocity, a condition that is ex- Minimizes the potential in all but zone (top), the corre-
pressible ag21] K<e2(1~29 and which has been conjec- sponding value of the vorton mass, (middle) and length
tured to be sufficient to ensure classical stability of the cor-" (bottom), all in units of the Kibble mass. It should be
responding vorton state. clear in this figure that in most cases the latter two are almost
Zone V. This is the “fatal” timelike zone characterized independent of, the largest dependence occurring in zones
by II'and IV.
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XI. CONCLUSIONS gravitation, the effects of quantum limitations may be of
dominant importance for realistic cosmological applications.
The preceding analysis should be valid for loops character-
ized by sufficiently large values of the winding numbr
and particle quantum numbeét, and thus for correspond-
ingly large values of the Bernoulli constariisand C and
hence ofM. However, it can be expected to break down
whenever the loop length” becomes small enough to be
comparable with the Compton wavelength

In view of the potential cosmological interest of vorton
formation, it is of interest to distinguish the range of condi-
tions under which a cosmic string loop can survive in an
“A-type” oscillatory state, which will ultimately damp
down towards a stationary vorton configuration, from the
alternative range of conditions under which the loop will
undergo a “B-type” evolution, whereby it reaches a con-
figuration for which the classical string description breaks
down, in which case the investigation of its subsequent fate /. =m-L (105
and, in particular, of the question of whether the underlying * *
vacuum vortex defect will ultimately survive at all will need zssociated with the carrier mass 5031@_ It can be seen

more sophisticated methods of analysis than are presenttyom Eq. (82) that the current saturation limi€—2 cannot

available. _ o _ be attained without violating the classicality condition
The present investigation is restricted to the case of ex-
actly circular loops for which it is shown, on the basis of the />0, (106

best available classical string modé@1], that there is an ) ) ) )
extensive range of parameter space, including the whole dinless the corresponding dimensionless Bernoulli constants

zone |1l in the above classification, for which the “A-type” B and C [which by Eq.(40) will have the same order of
solutions (which are propitious for ultimate vorton forma- Magnitude provided  is of order unity are such as to sat-
tion) will indeed be obtained. On the other hand, it is alsoisfy the condition

shown that(unlike what occurs in the classical point particle ) )

problen) badly behaved “B-type” solutions are not limited B*-4C"=1. (107)
to the special zero angular momentum case, zone V, t

which a preceding studjl5] of this problem was restricted, 1iion B2>4C2 (characterizing zones | and)lby having 1

but are of generic occurrence, occupying the whole of zone : : )
and extensive parts of zones Il and IV. It remains an Opeﬁnstead of 0 on the right-hand side. It can similarly be seen
' ~2@ cannot be ob-

guestion whether these results are representative of what wﬁﬁ‘?t the 'relaxatl'on -(_’0) lirit I§—>_e s
happen in the more general case of initially noncirculart@ined without vu_)latlng the clas_spahty cond|t|q¢06) un-
less the Bernoulli constants satisfies the condition

loops.
The foregoing results are based on an analysis that is Cl2e 42_B2=1—e 2@ (109

purely classical in the sense that it neglects both quantum '

effects and also the general relativistic effects of the graVitawhich is Simi|ar|y Stronger than the Corresponding pure|y

tional field. In realistic cases of cosmological interest, in-c|assical conditionC2e4*>B2 (characterizing zones IV

volving cosmic strings produced at or below the GUT tran-gng \).

sition level, it is to be expected that the neglect of

gravitational effects will be a very good approximation: As ACKNOWLEDGMENTS
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