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Earlier attempts to calculate the nonlinear dynamical evolution of Witten-type superconducting vacuum
vortex defects relied on the use of approximate conducting string models that were too simple to take proper
account of the effect of current saturation. This effect is however allowed for adequately in a newly developed
class of rather more complicated, though still conveniently analytic, conducting string models. These more
realistic models have recently been employed by Larsen and Axenides for investigating the collapse of circular
string loops in the case for which angular momentum is absent. The present work extends this investigation to
the generic case of circular string loops for which angular momentum is present, so that there will be a
centrifugal potential barrier. This barrier will prevent collapse unless the initial conditions are such that the
relevant current saturation limit is attained, in which case the string description of the vortex defect will break
down, so that its subsequent fate is hard to foresee. On the other hand if saturation is avoided one would expect
that the loop will eventually radiate away its excess energy and settle down into a vorton-type equilibrium
state.@S0556-2821~97!00508-0#

PACS number~s!: 98.80.Cq, 11.271d

I. INTRODUCTION

Among the conceivable varieties of topological defects of
the vacuum that might have been generated at early phase
transitions, thevortex-typedefects describable on a macro-
scopic scale ascosmic stringsare the kind that is usually
considered most likely to exist. This is because even if they
were formed at the grand unified theory~GUT! scale, their
density would be too low to induce a cosmological catastro-
phe, contrary to what happens in the cases of domain walls
and monopoles@1,2#. However, this consideration applies
only to the case of ordinary Goto-Nambu-type strings, which
ultimately radiate away their energy and disappear. As was
first pointed out by Davis and Shellard@3#, the situation is
drastically different for ‘‘superconducting’’ current-carrying
strings of the kind originally introduced by Witten@4#. In-
deed, it is becoming clearer and clearer@5,6# that the occur-
rence of stable currents in strings can lead to a real problem
because loops can then be stabilized: The current, whether
timelike or spacelike, breaks the Lorentz invariance along
the string world sheet@7–10#, thereby leading to the possi-
bility of rotation @5#. The centrifugal effect of this rotation
may then compensate the tension in such a way as to produce
an equilibrium configuration, which, if it is stable, is what is
known as avorton. Whereas the energy density of noncon-
ducting string distribution decays like that of a radiation gas,
in contrast a distribution of relic vortons would scale like
matter. Thus, depending@6# on when and how efficiently it

was formed, such a vorton distribution might eventually
come to dominate the universe.

In view of this, it is very important to decide which rotat-
ing equilibrium configurations really would be stable over
cosmologically significant time scales and what fraction of
the original population of cosmic string loops would actually
end up in such states. Dynamic stability with respect to small
perturbations has been established@11–13# for most though
not all of the relevant equilibrium states within the frame-
work of the classical string description, but the question of
stability against quantum tunneling processes remains en-
tirely open, being presumably dependent on the postulated
details of the underlying field theory. If the currents were
rigourously conserved, the requirement that the correspond-
ing quantum numbers should lie in the range consistent with
stability would from the outset characterize the loops des-
tined to survive as vortons, but in practice things will be
more complicated: A lot of future work is needed to estimate
the fraction of losses that can be expected from mechanisms
such as collisions, longitudinal shocks, cusp formation, and
occasional local violations of the permissible current magni-
tude limits, which may occur before a protovorton loop has
finished radiating away its excess energy and settled down as
an actual vorton.

A loss mechanism of a rather extreme kind, suggested
originally for nonconducting strings by Hawking@14# and
considered more recently in the context of conducting mod-
els by Larsen and Axenides@15#, is that whereby a suffi-
ciently large string loop ends up by undergoing ‘‘runaway
collapse’’ to form a black hole. Events of this exotic kind are
of intrinsic theoretical interest in their own right, even
though it is evident that they must be far too rare to be of
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cosmological importance, since they can only occur for very
exceptional cases of initial dynamical configurations with an
extremely high degree of symmetry, meaning that they must
be almost exactly circular.

The investigation by Larsen and Axenides was restricted
to the reflection-symmetric case characterized by the absence
of angular momentum, for which they showed@15#, subject
to the neglect of gravitational and electromagnetic self-
interactions, that the presence of a current will not prevent an
exactly circular loop from collapsing to what in the frame-
work of the string description would be just a point, corre-
sponding at a microscopic level to a configuration com-
pressed within the radius characterizing the vacuum vortex
core of the string, which will typically be of the order of the
Compton wavelength associated with the relevant Higgs bo-
son mass,m, say, so that gravitational collapse would follow
if the total mass energyM were sufficiently large,
M*m21 in Planck units. In such a case the neglect@15# of
an electromagnetic Coulomb barrier will automatically be
justifiable, not because it is entirely absent, but simply be-
cause it will be dominated by gravitational attraction, pro-
vided the chargeQ ~if any! on the loop is sufficiently small,
Q&m21. This condition will usually be satisfied because we
shall haveQ5Ze, wheree is the relevant particle charge
coupling constant, which must either be zero if the current is
of electrically neutral type or else must be equal to the elec-
tron chargee.1/A137'1021, while Z is the integral charge
quantum number: Since the latter arises just from random
fluctuations, it will seldom exceed the relevant limit
e21m21, which is of order 104 in the GUT casem'1023

and even higher for lighter strings.
The present work extends the analysis of Larsen and Ax-

enides@15# by treating generic circular states, for which the
outcome is very different. Unlike the reflection-symmetric
zero angular momentum case~which is the only possibility
that can occur for a circular string loop of the simple non-
conducting kind! a generic circular state for a conducting
string loop will be subject to the centrifugal effect. Whereas
the Coulomb barrier will usually be negligible, on the other
hand, the centrifugal barrier will usually be of dominant im-
portance. It is the centrifugal effect that makes possible the
existence of vorton-type equilibrium states, and as will be
seen below the associated centrifugal barrier will generically
prevent the kind of collapse to a point that was envisaged by
Larsen and Axenides. This means that while such a collapse
must be very rare even in the nonconducting string case pre-
viously envisaged by Hawking, it will be much more ex-
tremely rare in the conducting string case envisaged here.

The motivation of the present work is not just to provide
an explicit quantitative demonstration of the qualitatively ob-
vious phenomenon of the existence of an infinite centrifugal
barrier preventing the collapse of a generic circular configu-
ration of a conducting vortex defect of the vacuum within the
framework of the cosmic string description. A less trivial
purpose is to explore the limits of validity of thisthin string
description by investigating the conditions under which the
current may build up to the saturation limit beyond which the
thin string approximation breaks down due to local~trans-
verse or longitudinal! instabilities, so that a nonsingular de-
scription of the subsequent evolution would require the use
of a more elaborate treatment beyond the scope of the

present work. In order to provide a physically complete
analysis of such current saturation phenomena, the present
study needs to be generalized to include noncircular configu-
rations, whose treatment will presumably require the use of
numerical as opposed to analytic methods. This consider-
ation leads to a secondary motivation for the analytic inves-
tigation provided here, which is to provide some firm results
that can be used for checking the reliability of the numerical
programs that are already being developed for the purpose of
treating conducting string loop dynamics in the general case.

There have been been many previous studies of circular
conducting string dynamics that, unlike the recent analysis of
Larsen and Axenides@15#, but like that of the present work,
already included due allowance for the centrifugal effect.
However, these earlier investigations were based on the use
of conducting string models that were too highly simplified
to provide a realistic description of Witten-type vortex de-
fects. The most obvious example of such a highly simplified
conducting string model is the linear type, which has re-
cently been applied to the case of circular loops by Boisseau,
Giacomini, and Polarski@16#. A more elegant model origi-
nally obtained from a Kaluza-Klein-type projection mecha-
nism by Nielsen@17# has been used for studies of circular
loops in various contexts by several authors@18#, the appli-
cation that is most closely related to the present work being
that of Larsen@19#. The Nielsen model has the mathemati-
cally convenient property of being transonic~meaning that
transverse and longitudinal perturbations travel at the same
speed! and has been shown to provide an accurate macro-
scopic description of the effect of microscopic wiggles in an
underlying Goto-Nambu-type~nonconducting! string @20#.
However, this transonic model cannot describe the physi-
cally important saturation effect that arises for large currents
in the more elaborate kind of string model@21# that is needed
for a realistic description of the essential physical properties
@9# of a naturally occurring vacuum vortex such as would
result from the Witten mechanism@4#.

II. CURRENT AND THE EQUATION OF STATE

To describe a vacuum vortex defect by a cosmic string
model, meaning an approximation in terms of a structure
confined to a two-dimensional world sheet, it is necessary to
know enough about the relevant underlying field theoretical
model to be able to obtain the corresponding cylindrical
~Nielsen-Olesen-type! vortex configurations. The quantities
such as the tensionT and the energy per unit lengthU that
are needed for the macroscopic description in terms of the
appropriate thin string model are obtained from the relevant
underlying vortex configuration by integration over a trans-
verse section@9,10#. In simple nonconducting cases, the cos-
mic string models obtained in this way will be of the Goto-
Nambu type, for whichT andU are constant and equal to
each other. For more general vortex-forming field theoretical
models, the corresponding cosmic string models will be
characterized by variable tension and energy which in a ge-
neric state will be related by an inequality of the form
T,U. In many such cases and, in particular, in the category
envisaged by Witten@4#, to which the present analysis like
that of Larsen and Axenides@15# is restricted, the only inde-
pendent internal structure on the string world sheet will con-
sist of a simple surface currentcm, say ~which may or may
not be electrically charged!, which implies that the dynami-
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cal behavior of the string model will be governed by an
equation of state specifyingT and U as functions of the
current magnitude,

x5cmcm , ~1!

and hence as functions of each other@7,8#. In view of the
large number of different fields involved in realistic~GUT
and electroweak! field theoretical models it is not unlikely
that an accurate description of any vortex defects that may
occur would require allowance for several independent cur-
rents, but even if that is the case, one might expect that in
typical situations one particular current would dominate the
others so that as a good approximation the effects of the
others could be neglected.

The following work, like that of Larsen and Axenides, is
based on the kind of string model@21# that is derivable on
the basis of Witten’s pioneering approach@4# to the treat-
ment of currents in vacuum vortex defects. This approach is
based on the plausible supposition@9,10# that the essential
large scale features of such a phenomenon can be understood
on the basis of an appropriately simplified field theoretical
model governed by an effective action involving, in the sim-
plest case just the gauged Higgs-type scalar field responsible
for the local symmetry breaking on which the very existence
of strings depends, together with a complex scalar ‘‘carrier’’
field S, which is subject to a local or global U~1! phase
invariance group and which is confined to the vortex core of
the string with a phase that may vary along the string world
sheet, thereby determining a corresponding surface current
@22#. Such a Witten-type scalar field model is not only ap-
plicable to cases where the underlying field responsible for
the current is actually of this simple scalar type: It can also
provide a useful approximation for fermionic fields@4# as
well as for vector fields@23,24#. The carrier field will be
expressible in the form

S5uSuexp@ iw$s,t%#, ~2!

with s andt, respectively, the spacelike and timelike param-
eters describing the string’s world sheet, wherew is a real
phase variable, whose gradient will contain all the informa-
tion needed to characterize a particular cylindrical equilib-
rium configuration of the vortex and, hence, to characterize
the local state of the string in the cool limit for which short
wavelength excitations are neglected. In conceivable cases
for which short wavelength excitations contribute signifi-
cantly to the energy a more elaborate ‘‘warm’’ string de-
scription would be needed@25#, but on the basis of the as-
sumption ~which is commonly taken for granted in most
applications! that the cool limit description is adequate, it
follows that there will only be a single independent state
parameter,w, say, which can conveniently be taken@7,8,21#
to be proportional to the squared magnitude of the gauge-
covariant derivative of the phase with componentsw ua , us-
ing Latin indices for the world sheet coordinatess15s,
s25t. We thus take the state parameter to be

w5k
0
gabw uaw ub , ~3!

wherek
0
is an adjustable positive dimensionless normaliza-

tion constant, using the notationgab for the inverse of the

induced metricgab on the world sheet. The latter will be
given, in terms of the background spacetime metricgmn with
respect to four-dimensional background coordinatesxm, by

gab5gmnx,a
m x,b

n , ~4!

using a comma to denote simple partial differentiation with
respect to the world sheet coordinatessa. The gauge-
covariant derivativew ua would be expressible in the presence
of a background electromagnetic field with Maxwellian
gauge covectorAm by w ua5w ,a2eAmx,a

m . However, in the
application developed below it will be assumed~as was done
by Larsen and Axenides@15#! that the gauge term can be
omitted, either because the carrier field is uncoupled, mean-
ing e50, or else because the electromagnetic background
field is too weak to be important which~as discussed in the
Introduction! will be a sufficiently good approximation for
most relevant applications, so that it will be sufficient just to
take w ua to be the simple partial derivative operation,
w ua5w ,a . With even stronger justification it will also be as-
sumed in the application to be developed below that the local
background gravitational field is negligible, so thatgmn can
be taken to be flat.

Whether or not background electromagnetic and gravita-
tional fields are present, the dynamics of such a system will
be governed@7,8# by a Lagrangian scalar,L, say, which is a
function only of the state parameterw and which determines
the corresponding conserved particle current vector,za, say,
in the world sheet, according to the Noetherian prescription

za52
]L

]w ua
, ~5!

which implies

Kza5k
0
w ua ~6!

~using the induced metric for internal index raising!, where
K is given as a function ofw by setting

2
dL
dw

52
1

K . ~7!

This currentza in the world sheet can be represented by the
corresponding tangential current vectorzm on the world
sheet, where the latter is defined with respect to the back-
ground coordinatesxm by

zm5zax,a
m . ~8!

The purpose of introducing the dimensionless scale con-
stantk

0
is to simplify macroscopic dynamical calculations

by arranging for the variable coefficientK to tend to unity
whenw tends to zero, i.e., in the limit for which the current
is null. To obtain the desired simplification it is convenient
not to work directly with the fundamental current vectorzm

that ~in units such that the Dirac Planck constant\ is set to
unity! will represent the quantized particle flux, but to work
instead with a corresponding rescaled particle currentcm,
which is obtained by setting

zm5Ak
0
cm. ~9!
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In terms of the squared magnitudex of this rescaled current
cm, as given by Eq.~1! the primary state variablew will be
given simply by

w5K2x. ~10!

It is to be remarked that in the gauge-coupled case, i.e., if
e is nonzero, there will be a corresponding electromagnetic
current vector obtained by a prescription of the usual form
j m5]L/]Am which simply givesj m5ezm 5eAk

0
cm.

An important role is played in the theory by the dual
LagrangianL, which is obtainable@7# from the original La-
grangian functionL by a Legendre-type transformation that
gives

L5L1Kx. ~11!

In the timelike current range wherew is negative the tension
and energy density will be, respectively, given byT52L,
U52L, whereas in the spacelike current range wherew is
positive they will be given byT52L, U52L. Local sta-
bility requires the positivity of the squared speedsc

E

25T/U

and c
L

252dT/dU of extrinsic ~wiggle! and longitudinal
~sound-type! perturbations, and so the admissible range of
variation of the state parameterw or, equivalently, of the
squared current magnitudex will be characterized by

L
L

.0.
dL
dL

. ~12!

The appropriate functionL$w% for such a string model is
obtainable in principle by integrating the corresponding La-
grangian scalar for the underlying field theoretical model
over a two-dimensional section through the relevant cylindri-
cal vortex configuration. In practice this procedure can only
be carried out with high precision by using a numerical treat-
ment @9,10#. Progress was delayed for several years by the
difficulty of using the output of such a numerical treatment
for explicit dynamical applications. This problem has re-
cently been solved by the discovery of very simple empirical
formulas@21# ~originally expressed using a systematic nota-
tion scheme employing a tilde for duality, so thatL̃ and x̃
represent what are, respectively, expressed here asL and
2w) that provide a convenient analytic description, with
sufficient accuracy for realism, within the limited range~12!
of w for which the string description is actually valid.

The parameterw can take both positive and negative val-
ues depending on whether the current is spacelike or time-
like, but for the Witten vortex model that we consider here, it
turns out that the corresponding string description is valid
only as long as it remains within a bounded range@7–10#,
outside of which vortex equilibrium states can still exist, but
can no longer be stable. What transpires@21# is that the ef-
fective Lagrangian for the thin string description can be rep-
resented with reasonably good accuracy throughout the al-
lowed range~and with very high accuracy in the timelike
part for whichw,0) by a functionL that, for a suitably
adjusted~typically order of unity! value of the normalization
constantk

0
, is expressible~even in the presence of electro-

magnetic and gravitational background fields! in terms of
just two independent parametersm andm* in the form

L$w%52m22
m
*
2

2
lnH 11

w

m
*
2 J , ~13!

which leads to the very simple formula

K511
w

m
*
2 ~14!

for the function introduced above. The allowed parameter
range~12! is specifiable by the condition that this function
should satisfy

e22a,K,2, ~15!

where

a5S m

m*
D 2. ~16!

~The lower limit is where the tensionT and, hence, also the
extrinsic ‘‘wiggle’’ speed tend to zero, while the upper limit
is where the longitudinal perturbation speed tends to zero.!
The fixed parametersm andm* have the dimensions of mass
and can be interpreted as expressing the respective orders of
magnitude of the relevant Higgs field and the~presumably
rather smaller! carrier mass scales. It is to be noted that the
work of Larsen and Axenides@15# was based on a previously
proposed alternative Lagrangian@21# that ~in terms of the
same parametersm andm* ) provides a somewhat more ac-
curate treatment of the spacelike current rangew.0,
whereas the newer version~13! provides a treatment that is
considerably more accurate for large timelike currents. For
our present purpose the slight difference between these alter-
native string models for Witten vortices is not of qualitative
physical importance: Our main reason for preferring to use
the newer version~13! has nothing to do with considerations
of very high precision, but is just that it turns out to provide
more conveniently explicit analytic expressions for the quan-
tities that we shall need.

III. CONSERVATION LAWS

The dynamical equations for such a string model are ob-
tained from the LagrangianL in the usual way, by applying
the variation principle to a surface action integral of the form

S5E dsdtA2gL$w% ~17!

~using the notationg[det$gab%), in which the independent
variables are the phase fieldw on the world sheet and the
position of the world sheet itself, as specified by the func-
tions xm$s,t%.

Independently of the detailed form of the complete sys-
tem, one knows in advance, as a consequence of the local or
global U~1! phase invariance group, that the corresponding
Noether current will be conserved, a condition which is ex-
pressible as

~A2gza! ,a50. ~18!
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For a closed string loop, this implies~by Green’s theorem!
the conservation of the corresponding flux integral

Z5 R dsaeabz
b, ~19!

wheree is the antisymmetric surface measure tensor~whose
square is the induced metriceabe

b
c5gac), meaning that for

any circuit around the loop one will obtain the same value
for the quantum numberZ, which is interpretable as the in-
tegral value of the number of carrier particles in the loop.
The loop will also be characterized by a second independent
quantum number whose conservation is trivially obvious,
namely, the topologically conserved phase winding number
N that is defined by

2pN5 R dw5 R dsaw ,a . ~20!

As usual, the stress momentum energy density distribution
T̂mn on the background spacetime is derivable from this ac-
tion by varying the background metric, according to the
specification

T̂mn[
2

A2g

dS
dgmn

[
2

A2g

]~A2gL!

]gmn
. ~21!

This leads to an expression of the standard form

A2gT̂mn5E dsdtA2gd~4!@xr2xr$s,t%#T̄mn, ~22!

in which thesurfacestress energy momentum tensor on the
world sheet~from which the surface energy densityU and
the string tensionT are obtainable as the negatives of its
eigenvalues! can be seen to be given@7,8# by

T̄mn5Lhmn1Kcmcn, ~23!

using the notation

hmn5gabx,a
m x,b

n ~24!

for what is interpretable as the~first! fundamental tensor of
the world sheet.

Independently of the particular form of the Lagrangian,
the equations of motion obtained from the action~17! will be
expressible in the standard form@7,8#

¹mT̄
m

n5 f̄ n , ~25!

in which¹m denotes the operator of surface-projected cova-
riant differentiation and wheref̄ m is the external force den-
sity acting on the world sheet. When the effect of electro-
magnetic coupling is significant this will be given in terms of
the fieldFmn5An,m2Am,n by f m5eFmnz

n. Even if this force
density is nonzero, its contraction with the current vector
zm or with the corresponding rescaled current vectorcm will
vanish, and hence it can be seen from the preceding formulas
that the equations of motions automatically imply the surface
current conservation law

¹mc
m50, ~26!

which is the equivalent, in background tensorial notation, of
the condition expressed above in terms ofza using what was
expressed above in world sheet coordinate notation. The
background tensorial operator¹ in the foregoing equations
is definable formally by

¹m[hmn¹n[x,a
m gab¹b , ~27!

where¹ is the usual operator of covariant differentiation
with respect to the Riemannian background connection. Thus
for any closed loop there will be a corresponding conserved
circuit integralC given by

C5 R dxm«mnc
n, ~28!

where«mn is the background spacetime version of the sur-
face measure tensoreab , which means that its contravariant
version is the antisymmetric tangential tensor that is given by

«mn5eabx,a
m x,b

n . ~29!

This constantC is of course just a rescaled version of the
integer particle quantum numberZ, which will be given in
terms of it by

Z5Ak
0
C. ~30!

In the following work~as in the preceding work of Larsen
and Axenides@15#! it will be assumed either that the current
is uncoupled or else~as will more commonly be the case!
thatFmn is negligible, so that we can simply take

f̄ m50. ~31!

As well as neglecting electromagnetic correction effects,
we shall now also restrict our attention to cases in which the
background is both axisymmetric and stationary, as is the
case for the flat space in which we are in the end most par-
ticularly interested. This means that there will be correspond-
ing vectors,l m andkm, say, which satisfy the Killing equa-
tions

¹ml n1¹nl m50, ¹mkn1¹nkm50, ~32!

and which will be, respectively, interpretable as generators of
rotations and time translations, so that when suitably normal-
ized, their effect can be expressed in the form

km
]

]xm 5
]

]t
, l m

]

]xm 52p
]

]f
, ~33!

wheret is an ignorable time coordinate andf is an ignorable
angle coordinate. This normalization is such that the total
circumferential length of the circular trajectory of the angle
Killing vector will simply be given byl where

l 25l ml m . ~34!
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These Killing vectors can be employed in the usual way to
define the corresponding angular momentum surface current
vectorJm and the corresponding energy current vectorEm by
setting

T̄m
nl

n52pJm, T̄m
nk

n52Em. ~35!

These currents will then satisfy surface conservation laws

¹mJm50, ¹mEm50, ~36!

which have the same form as that satisfied by the current
cm. This means that for a closed loop there will be corre-
sponding conserved angular momentum and mass-energy in-
tegrals,J andM , say, which will be given by

J5 R dxm«mnJn, M5 R dxm«mnEn. ~37!

IV. CONSTANTS OF CIRCULAR MOTION

We now restrict ourselves to cases for which the string
configuration itself shares the background spacetime prop-
erty of being symmetric with the action generated by the
Killing vector l m. This entails thatl m should be tangential
to the world sheet, i.e.,

l m5lax,a
m , ~38!

wherela is a corresponding Killing vector with respect to
the intrinsic geometry of the world sheet, which, on the un-
derstanding thatl m is interpretable, in the manner described
above, as the generator of angular rotation about a symmetry
axis, means that the string configuration iscircular, its cir-
cumference at any instant being given by the local value of
l .

In such a case, this Killing vectorl m can be used to
generate the, in that case circular, circuit used for evaluating
these integrals, i.e., the infinitesimal displacement in the in-
tegrand can be taken to be given by 2pdsa5ladf, so that
we obtain

2pdxm5x,a
m ladf5l mdf, ~39!

wheref is an ignorable angle coordinate of the usual kind
with period 2p as introduced above.~Such an angle coordi-
nate can be conveniently used to specify the first world sheet
coordinates1 by settings5f, so that by taking the second
world sheet coordinates25t to be constant on the circular
symmetry trajectories the components of the intrinsic Killing
vector are obtained in the form$l1,l2%5$1,0%.! Substituting
this ansatz fordxm in the corresponding integral formulas, it
can be seen that the global integrals~19! and ~20! for the
winding numberN and the particle numberZ will be given
directly in the circular case by correspondinglocally defined
Bernoulli-type constants of motion,B andC, say, according
to the relations

B52pAk
0
N, C5

Z

Ak
0

, ~40!

where these quantities—of which the latterC is directly
identifiable with the global flux of the currentcm so that it is
justifiable to designate it by the same symbol—are now to be
thought of as being constructed according to the prescrip-
tions of the purely local form@26#

B5Ak
0
law ua , C5l m«mnc

n. ~41!

The reason why the single symmetry generatorl m gives rise
to not just one but two independent Bernoulli-type constants
in this way is attributable to the the string duality property
@7,8#. ~It is to be noted that instead of using the rationalized
constantsB andC, the work of Larsen@15,19# uses corre-
sponding unrationalized constantsn andV, which are ex-
pressible in terms of our present notation byV52C/2p and
n5Ak

0
N5B/2p.!

In a similar manner the mass~when it is defined! and
angular momentum integrals introduced in the previous sec-
tion will also be expressible in terms of purely locally de-
fined constants of the motion in the circular case. To do this
it is convenient@26# to start by introducing an effective mo-
mentum tangent vectorPm given in terms of the relevant
Killing vector, namely,l m in the case with which we are
concerned, by the ansatz

Pm5l n«nrT̄
rm. ~42!

Since the surface stress momentum energy tensorTmn only
has components in directions tangential to the world sheet, it
is evident that this formula provides a vectorPm that auto-
matically has the required property of being tangent to the
string world sheet.

Whenever the background spacetime is invariant under
the action of another Killing vectorkm, which in the appli-
cation to be considered here will be interpreted as expressing
stationarity, so that the corresponding integral formula~37!
for M is well defined, it can be seen using Eq.~39! again that
this globally defined quantity will now be obtainable as a
purely local constant of the motion from the formula

kmPm52M . ~43!

It can also be seen that whether or not the background has a
~stationary! symmetry generated bykm, the other~angular
momentum! constantJ provided according to Eq.~37! by the
original ~axisymmetry! Killing vector l m itself will similarly
be obtainable, in the circular case, as a purely local constant
of the motion given by

l mPm52pJ. ~44!

It is, however, to be noted that this last constant is not inde-
pendent of the ones presented above: It can be seen by sub-
stituting the formula~23! in Eq. ~42! and using the defining
relations~6! and~9! for the current that it will be expressible
in terms of the two~mutually dual! Bernoulli constants~41!
by the simple product formula

J5
BC

2p
5NZ. ~45!
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This shows that the integral quantization of the winding and
particle numbersN andZ automatically entails the integral
quantization of the angular momentumJ.

V. DYNAMICS OF CIRCULAR MOTION

Whenever the string motion shares the symmetry gener-
ated by a background spacetime Killing vector, the problem
of solving the equations of motion for its two-dimensional
world sheet can naturally be reduced to a problem of finding
a one-dimensional trajectory tangential to the world sheet but
not aligned with the symmetry generator, since when such a
trajectory has been found it is trivial to extend it to the com-
plete two-dimensional world sheet by the symmetry action.
The general procedure for obtaining such a tangential trajec-
tory for symmetric solutions of the equations of motion of
conducting string models was originally developed by
Carter, Frolov, and Heinrich@26#, who applied this method
to study stationary solutions in a Kerr black hole back-
ground. This method was adapted to the kind of situation
with which the present application is concerned, namely, cir-
cular instead of stationary symmetry, by Larsen@19#. The
original derivation@26# involved the use of quotient space
with respect to the relevant symmetry action, but a more
recent and general treatment@8# ~including allowance for the
possibility of axionic as well as electromagnetic coupling!
has provided a more direct route that does not need such an
auxiliary construction.

What this procedure provides is a particular kind of
world-sheet-generating trajectory that is characterized by
having a tangent vectorPm given in terms of the relevant
Killing vector, namely,l m in the case with which we are
concerned, by the ansatz~42!. The procedure makes use of
the fact @8,26# that, for given values of the Bernoulli con-
stantsB and C, the state functionw and, hence, also the
squared magnitude of the tangent vectorPm, namely, the
quantity

C5PmPm ~46!

~which will play the role of a potential!, can be specified in
advance as ascalar fieldover the entire background space
~not just a single string world sheet!, in such a way as to
agree with the respective physical values ofC on the par-
ticular world sheet under consideration.

In the generic case this is done by expressingC as a
function of one of the independent state variables,w, say,
which will itself be expressible, as a function of the squared
Killing vector magnitudel 2 and, hence, as a scalar field
over the entire background space by solving the equation

l 25
B2

w
2
C2

x
, ~47!

wherex is the squared magnitude~1! of the current vector,
which is obtainable from the LagrangianL as a function of
w in the manner described above. It is to be remarked that in
the recent derivation@8# the corresponding formula~ex-
pressed using the notationb for C, b̃ for B, and2x̃ for
w) contains a transcription error that has the effect of replac-
ing w andx by their respective squares. Except in the ‘‘chi-
ral,’’ i.e., null current, limit for which w andx vanish so that

a special treatment is needed, the self-dual formula~47! is
immediately obtainable by using the Bernoulli formulas~41!
to evaluate the respective components ofl m parallel to and
orthogonal to the current.

Having used this procedure to obtainw as a field over the
background spacetime, one can then use the result to obtain
the corresponding value of the squared magnitudeC, which,
in a recent derivation@8#, was written asX2, though it need
not be positive, since the vectorPm may be timelike or null
as well as spacelike. This quantity will be obtainable using
Eq. ~47! as a function of the squared Killing vector magni-
tudel 2 ~which in the case of symmetry must necessarily be
positive! by the manifestly self-dual formula

C5
C2L2

x
2
B2L2

w
, ~48!

whereL is the dual Lagrangian function, as given by Eq.
~11!.

In order to obtain a treatment that remains valid in the
‘‘chiral’’ limit, for which w andx vanish, so that formulas
~47! and ~48! become indeterminate, it is convenient to re-
write C in a manner that sacrifices manifest self-duality by
expressing it in the form

C5
B2C2

l 2 2Y2, ~49!

where~unlike the quantityX5AC which may be imaginary!
the quantityY defined in this way will always be real in the
admissible range~12!, as can be seen by expressing it in
either of the equivalent, mutually dual, alternative forms

Y5
B2

Kl 2Ll 5
C2K
l

2Ll , ~50!

of which the latter is the most convenient for practical cal-
culations starting from a given form of the LagrangianL.

In the generic case,B2ÞC2, the required quantitiesK and
L are obtained indirectly as functions ofl by solving Eq.
~47! which will give a result that is always non-null; i.e.,w
andx will never pass through zero, and so the current will
preserve a character that is permanently timelike or perma-
nently spacelike as the case may be. The exception is the
‘‘chiral’’ case, which is characterized by the equality
B25C2 and for which the only possible states are of the null
kind characterized byw5x50, so that the required quanti-
tiesK andL will be given directly, independently ofl , as
the constantsK51 andL52m2.

It is of particular interest for the dynamical applications
that follow to obtain the derivative of the fieldY with respect
to the cylindrical radial coordinatel with respect to which it
is implicitly or ~in the chiral case! explicitly defined: It is
obvious in the chiral case since in this caseL5L, and it can
also be verified@using the relation

dl

dw
52

l

2w
1

C2~dK/dw!

2l w~dL/dw!
~51!
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for the variations ofl # in the generic case for whichL and
K are variable that this derivative will be expressible in ei-
ther of the very simple, mutually dual, equivalent forms

dY

dl
52

C2K
l 2 2L52

B2

Kl 2 2L, ~52!

of which again it is the latter that is most convenient for
practical calculations starting from a given form of the La-
grangianL.

After having obtained the fieldC in this way, the final
step in the procedure for obtaining the string tangent vector
Pm is to integrate its equations of motion, which can easily
be shown@8,26,27# to have the form

2Pn¹nPm5¹mC, ~53!

subject to the constraint

l mPm5BC, ~54!

whose conservation is an automatic consequence of the sym-
metry. This constant is interpretable according to Eq.~45! as
being proportional to the angular momentumJ.

The foregoing formulation depends only on the existence
of the symmetry generated byl m, which is postulated to
apply not only to the background but also to the string solu-
tion itself, so that the further supposition that this symmetry
is that of rotation about an axis means that the string con-
figuration is circular. It does not depend on the additional
postulate that the background spacetime is also subject to
another symmetry generated by the independent Killing vec-
tor km that is responsible for the existence of the mass-energy
constantM given by Eq.~43!.

In order to solve the equation of motion~53!, which can
be seen to be interpretable as that of a geodesic with respect
to a conformal modified background metric given by
Cgmn , it is useful to employ a Hamiltonian formulation of
the standard form

dxm

dt
5

]H

]Pm
,
dPm

dt
52

]H

]xm , ~55!

wheret is parameter along the trajectory, which can conve-
niently be used to specify the choice of the second internal
coordinates2 ~the first ones1, having already been chosen
to be the angle coordinatef). Such a formulation of the
conformal geodesic equation is readily obtainable by taking
the Hamiltonian to be given by

2H5gmnPmPn2C, ~56!

with the understanding that the system is to be solved subject
to the constraint

H50, ~57!

which ensures the correct normalization of the tangent vec-
tor, which by the first Hamiltonian equation will be given
directly by

Pm5
dxm

dt
. ~58!

VI. SOLUTION FOR THE STATE FUNCTION

In order to carry out the procedure summarized in the
preceding section, we first have to solve Eq.~47! for the state
variablew. In terms of the magnitudel of the axisymmetry
generatorl m, which will give the local value of the circum-
ference of the circular string loop, this equation will be ex-
pressible as

l 2w5B22C2K2. ~59!

For a general conducting string model this equation would
be hard to solve explicitly, but there are special cases for
which a convenient analytic solution is available, the first
known example being that of the transonic string model, for
which the equation for the fieldw is found to be simply
linear, so that it can immediately be solved to provide a
system that turns out to be completely integrable by separa-
tion of variables in a Kerr black hole background when the
symmetry under consideration is stationarity@26#, though
unfortunately not when it is axisymmetry@19#, in which case
such complete integrability is available only for purely equa-
torial configurations, including in the limit, the kind of flat
space ring configurations with which the present study is
ultimately concerned. Another case whose application to cir-
cular configurations has recently been considered@16# and in
which Eq. ~47! is also simply linear, is that of the even
cruder fixed trace model~for whichK is just a constant! that
was originally suggested by Witten himself@4# to describe
the effect of his mechanism for currents that are very small
compared with saturation, but which turns out@9# to be mis-
leading~because subsonic! even in that limit.

The more recent work of Larsen and Axenides@15# was
more advanced in that it used the newer kind of string model
@21# that ~unlike the simple transonic model and its cruder
fixed trace predecessor! can provide a realistic account of the
current saturation effect that is a salient feature of the Witten
mechanism; this work was, however, much more specialized
than the preceding investigations cited above, as it only con-
sidered the nonrotating case of vanishing winding number
N, which in our present notation meansB50. As well as
allowing for a nonzero winding number, the present work
involves a physically unimportant but technically valuable
improvement in that we use more recently proposed@21#
string model characterized by Eq.~13!, which turns out to be
particularly convenient for the present stage in our analysis
since it leads to an equation forw that although not actually
linear, as was the case for the transonic model, can be seen to
be the next best thing, meaning that it is justquadratic
~whereas the version used by Larsen and Axenides gives an
equation forw that has a much more awkward quartic form!.
The result of using Eq.~13! is expressible in the form

C2K21m
*
2 l 2~K21!2B250, ~60!

which can immediately be solved to give

K5
2m

*
2 l 21A4C2~B21m

*
2l 2!1m

*
4 l 4

2C2 , ~61!
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choosing the positive sign for the square root becauseK is
positive throughout the admissible range~12! for the state
parameterw.

In terms of this explicit formula forK the state function
w itself is immediately obtainable using the expression

w5m
*
2 ~K21!, ~62!

which applies for this model. Since our Lagrangian~13! can
be expressed directly in terms ofK as

L52m
*
2 ~a1 lnAK!, ~63!

our explicit formula forK can also be directly applied to
obtain the required potentialC, for which we obtain the
formula

C5
B2C2

l 2 2l 2SC2K
l 2 1m

*
2 ~a1 lnAK! D 2. ~64!

VII. MOTION IN A FLAT BACKGROUND

Up to this point we have been using a formulation that is
valid for an arbitrary stationary axisymmetric background,
including, for example, that of a Kerr black hole. In order to
obtain a result that is completely integral in explicit form and
because it is the case of greatest physical importance, we
shall now restrict our attention to the case of a flat space
background, for which there will be no loss of generality in
supposing the circular string loop to be confined to an equa-
torial hyperplane with three-dimensional spacetime metric
given in terms of circular coordinates$r ,f,t% by

ds25dr21r 2df22dt2, ~65!

so that the Killing vectors used in the discussion above will
be identifiable as $k1,k2,k3%5$0,0,1% and $l 1,l 2,l 3%
5$0,2p,0%.

In these circumstances the circumferential length fieldl
that played a fundamental role in the preceding discussion
will be given simply by

l 52pr , ~66!

and the evolution of the circular string world sheet will be
given simply by specifying the radiusr as a function of the
background timet. We shall use a dot to denote differentia-
tion with respect to this timet, which will vary proportion-
ally to the Hamiltonian timet, with a coefficient given by
the energy constant, so that we shall have

dt

dt
5M . ~67!

For a complete physical description of the solution, it would
also be necessary to specify the distribution over the world
sheet of the phase fieldw, which must evidently have the
form

w5q1Nf, ~68!

whereN is the conserved winding number as defined above
andq is a function only oft.

The fact that the fourth~azimuthal! direction can be ig-
nored in this particularly simple case means that the com-
plete set of equations of motion is provided directly in first
integrated form by the constants of the motion. Using the
formulas~6! and ~9! to work out the expression~41! for the
Bernoulli constantC, it can be seen that the time derivative
of this functionq will be given in terms of that of the radius
r by

q̇5CK
A12 ṙ 2

2prAk
0

. ~69!

By similarly using the formula~23! to work out the expres-
sion~43! for the mass-energy constantM the evolution equa-
tion for r can be obtained in the first integrated form

MA12 ṙ 25Y, ~70!

whereY is the quantity that is given by the formula~50!,
whose evaluation as a function of the circumference,
l 52pr is discussed in Sec. V.

Instead of going through the detailed evaluation of the
expression~43! using Eq.~23!, a more elegant albeit less
direct way of obtaining the same equation of motion forr is
to apply the Hamiltonian formalism described in Sec. V. It is
evident from Eq.~67! that in the flat background~65! the
radial momentum componentP

1
will be given by

P
1
5
dr

dt
5Mṙ , ~71!

and under these conditions the Hamiltonian~56! will reduce
to the simple form

H5
1

2 S P
1

21
J2

r 2
2M22C D . ~72!

It is to be remarked that the termJ2/r 2 in this formula has
the form of the centrifugal barrier potential that is familiar in
the context of the analogous problem for a point particle. By
what is a rather remarkable cancellation, it can be seen that
the effect of the extra potentialC, taking account of the
elastic internal structure of the string, is merely to replace the
familiar centrifugal barrier contributionJ2/r 2 by a modified
barrier contribution given simply byY2 whereY is the sca-
lar field ~50! introduced in the previous section, since it can
be seen that the relevant combination of terms turns out to be
expressible simply as

J2

r 2
2C5Y2. ~73!

The normalization expressed by the constraint that the
Hamiltonian should vanish can thus be seen to give the equa-
tion of motion for r in the convenient first integrated form

M2ṙ 25M22Y2, ~74!

which is evidently equivalent to the radial evolution equation
~70! given above.
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VIII. STATIONARY ‘‘VORTON’’ STATES

As an immediate particular consequence of this equation
of motion, it can be seen that there will bevorton-typeequi-
librium solutions, with mass energy given by

M5Y, ~75!

wherever the relevant effective energy functionY satisfies
the stationarity condition

dY

dr
50. ~76!

The formula~52! given above for the derivative ofY can
be used to write this stationarity condition in the form

C2Lw5B2Lx. ~77!

This is recognizable as the equilibrium requirement that is
well known from previous more specialized studies of circu-
lar equilibrium states@28#, according to which the propaga-
tion speedc

E
of extrinsic ~wiggle! perturbations determines

the effective rotation velocityv, namely, that of the current
in the timelike case, for which one obtainsv25T/U5L/L,
and that of the orthonormal tangent direction if the current is
spacelike, in which case one obtainsv25T/U5L/L. Fi-
nally, in the ‘‘chiral’’ case for which the current is null, both
formulas are valid simultaneously: One will haveL5L and
v51.

In all of these cases the vorton circumference will be
given by

l v5
uBu

A2KL
, ~78!

and the equilibrium condition to be solved for the state func-
tion of the vorton will be expressible in the more directly
utilizable form

K2
L
L

5b2, ~79!

using the abbreviationb for theBernoulli ratio, as defined by

b5
B

C
52pk

0

N

Z
, ~80!

whereN andZ are the corresponding integer-valued winding
number and particle quantum number~of which, if the cur-
rent were characterized by a nonzero electric coupling con-
stante, the latter would determine the vorton’s total ionic
charge, namely,Q5Ze, as in ordinary atomic physics!.

From the well-known theorem@11# that ~although there
may be instabilities with respect to nonaxisymmetric pertur-
bations in certain cases! the circular equilibrium states are
alwaysstable with respect to perturbations that preserve their
circular symmetry, it follows that within the admissible
range~12! the effective energy functionY can be extreme
only at a minimum but never at a maximum. This evidently
implies that, within a continuously connected segment of the
admissible range, there can be at most a single such extre-

mum: In other words for a given value of the conserved ratio
b2, the vorton equation can haveat mostone solution for the
state variablew and, hence, for any function thereof, such as
the derived variableK and the corresponding vorton circum-
ferencel , which will thus beuniquelydetermined. It will be
seen in the next section that in some cases there will be no
solution at all; i.e., there are values of the ratiob2 for which
Y is monotonic throughout the allowed range, so that a cor-
responding vorton state does not even exist.

IX. SOLUTION OF THE EQUATIONS OF MOTION

The results in the immediately preceding section are in-
dependent of the particular form of the LagrangianL. If we
now restrict ourselves to the specific case of the model~13!,
we can use the results of the earlier sections to rewrite the
effective barrier energy functionY in the form

Y5m
*
2l Fa1 lnAK1S C

m* l
D 2KG , ~81!

with K given explicitly as a function ofl by Eq. ~61!. A
convenient way of applying this formula is to think ofK as
the independent variable, with the circumferencel ~and
hence the radiusr5l /2p) given by

m
*
2 l 25

B22C2K2

K21
. ~82!

In the caseb2,1, which meansB2,C2, this determinesl
as a monotonically increasing function ofK in the timelike
current range,e22a,K,1. In the caseb2.1, which means
B2.C2, this determinesl as a monotonically decreasing
function of K in the spacelikecurrent range, 1,K,2. In
either case, we finally obtain the effective barrier energy
function in the form

Y5m* uCuAb22K2

K21 S a1 lnAK1
K~K21!

b22K2 D , ~83!

as a fully explicit function just ofK. The formula~52! for the
derivative of this function gives

dY

dl
5m

*
2 S a1 lnAK2

b2~K21!

K~b22K2! D . ~84!

It can thus be seen that the vorton equilibrium requirement
~79!, expressing the condition~76! that this derivative should
vanish, will be given for this particular string model by

K5Kv , ~85!

whereKv is obtained by solving the equation

b25
Kv

2~a1 lnAKv!

a211 lnAKv1Kv
21

. ~86!

Whenever an admissible solution exits, it can be seen that the
corresponding value

M5M v ~87!
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of the mass of the vorton state will be given by

M v

m*
5uCuA Kv21

b22Kv
2S b2Kv

1KvD . ~88!

X. CONFINEMENT EFFECT AND CLASSIFICATION
OF SOLUTIONS

SinceK tends to unity for large values ofl , it can be seen
from Eq. ~81! that the effective potentialY grows linearly
with radius at large distances. This means that no matter how
large its energy may be, the loop can never expand to infin-
ity: It is subject to a confinement effect~not unlike that
which motivated early attempts to use string models to ac-
count for the phenomenon of quark confinement in hadron
theory @29#!.

The fact that it admits no possibility of unbound trajecto-
ries distinguishes the loop problem considered here from
cases such as the familiar example a point particle, of mass
m, say, moving in the Newtonian gravitational field of a
central mass,M* , say. In that case, the orbits can be clas-
sified as type 0, type 1, and type 2, where type 0 means the
special case of constant radius~circular! orbits, type 1 means
the generic case of varying radius but nevertheless bound
orbits, and type 2 denotes unbound orbits. These types can
be subclassified into categories A and B, where A stands for
‘‘always regular’’ or ‘‘avoiding trouble’’ and B stands for
‘‘badly terminating.’’ For type 0 orbits, the ‘‘good’’ subcat-
egory A is clearly the only possibility. However, while type
1 orbits are generically of type 1A, which for an inverse
square law means the elliptic case, there is also the possibil-
ity of type 1B orbits, meaning bound trajectories of purely
radially moving type, which end by plunging into the central
singularity. Similarly type 2 orbits are generically of type
2A, which for an inverse square law means the parabolic and
hyperbolic cases, but there is also the possibility of type 2B
orbits, meaning unbound trajectories of purely radially mov-
ing type which begin or end at the central singularity. In the
simple point particle case the only relevant parameters are
the orbital binding energyE, say, and the angular momen-
tum J, say. Subcategory B corresponds to the special case
J50. In the inverse square law case the classification is sim-
plified by the property of self-symmetry with respect to the
transformationsE°E/s, J°JAs wheres is a scale factor:
Thus, for the generic subcategory A, the classification de-
pends just on the invariant dimensionless combination
EJ2/m3M

*
2 , being type 0 for its absolute minimum value,

which is21/2, type 1 for a higher but still negative value,
and type 2 otherwise.

The same principles can be applied to the classification of
solutions of the circular string loop problem, for which one
only needs the type 1, with ‘‘good’’ and ‘‘bad’’ subcatego-
ries 1A and 1B, and the type 0, which in this case means a
vorton state, which can only be ‘‘good.’’ There is no ana-
logue of type 2 for the string loop problem because the pos-
sibility of an unbound orbit does not exist. This is because
the relevant effective potential functionY does not only di-
verge to infinity~due to the centrifugal effect! as the radius
r becomes small, i.e., asl →0, which corresponds to
K→ubu: It is evident thatY must also diverge~due to the
energy needed for stretching the string! in the larger limit,

i.e., asl →`, which corresponds toK→1.
Despite the fact that instead of the five possibilities

~namely, 0, 1A, 1B, 2A, and 2B! needed or the point particle
problem there are only three~namely, 0, 1A, and 1B! in the
circular string loop problem, the state of affairs for this latter
problem is considerably more complicated because the orbits
are not fully characterized just by the mass energy parameter
M and the angular momentum parameterJ: They also de-
pend on the Bernoulli constantsB andC @which, by Eq.~40!,
are, respectively, proportional to the microscopic winding
numberN and the particle numberZ#. According to Eq.~45!
these constants are related by the conditionBC52pJ, but
that still leaves three independent parameters which may
conveniently be taken to beM , B, C, say, instead of the two
that were sufficient for the point particle case. As in the
inverse square law case for a point particle, the flat space
string loop problem is self-similar with respect to scale trans-
formations, which are expressible in this case byB°Bs,
C°Cs, andM°Ms ~so thatJ°Js2). Thus, whereas all
that mattered qualitatively in the inverse square law was a
single dimensionless ratio~namely, that betweenJ2 and
E21), in a corresponding manner the not so simple behavior
of the circular string loop is qualitatively dependent on the
two independent dimensionless ratios relatingB2, C2, and
M2. A further complication is that the nature of this depen-
dence depends on the dimensionless parametera character-
izing the underlying string model.

Unlike the mass-energy parameterM , whose conservation
depends on the stationary character of the space time back-
ground, and would no longer hold exactly when allowance is
made for losses from gravitational radiation, the winding
number and particle number satisfy conservation laws of a
less conditional nature, and so~although their local conser-
vation is also symmetry dependent! the corresponding Ber-
noulli parametersB andC provide more fundamental infor-
mation about the string loop. It is therefore appropriate to use
their ratiob as the primary variable in a classification of the
solution ~with the understanding thatb5` meansC50).

Proceeding on this basis, the relevant parameter space can
be described in terms of five consecutive zones for the pa-
rameterb2. The reason why there are so many possibilities is
that the range ofl , from 0 to` corresponds, according to
Eq. ~82!, to a range ofK from 1 to ubu, which may extend
beyond the range~15! that is physically admissible according
to the criterion~12!.

Between the limits where it diverges,Y→1`, asK→1
andK→ubu, the effective potential energy functionY will
vary smoothly with at least one local minimum. However,
according to the theorem recalled at the end of the previous
section,Y can have at most one local minimum and no local
maximum within the admissible range~15!. Moreover, since
a is strictly positive by its construction~16!, it is evident that
the large radius limitK→1 will always lie safely within the
physically admissible range~15!. This leaves only two alter-
native possibilities, which are either thatY should be mono-
tonic, withdY/dl .0, throughout the physically admissible
range~15!, or else that this admissible range should include a
turning point at a critical value ofl within which the deriva-
tive dY/dl will become negative, in which case it will have
to remain negative all the way to the inner limit of the ad-
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missible range. It is directly apparent from the expression
~84! for dY/dl that there is no possibility for it to remain
positive near the limit of the admissible range in the timelike
current case, i.e., as lnAK→2a, and so forb2,1 the vorton
equilibrium equation~86! will always have a physically ad-
missible solution. However, in the spacelike current case,
b2.1, for which the relevant limit of the admissible range is
given ~independently ofa) byK→2, it can be seen that it is
indeed possible for the gradient~84! to remain positive, the
condition for this being the criterion for the first of the quali-
tatively different zones listed as follows.

Zone I. This is the ‘‘fatal’’ spacelike zone characterized
by

b2S 12
1

2a1 ln2D>4, ~89!

for which no admissible vorton solution exists. For such a
scenario it can be seen from Eq.~83! that the mass energy
must necessarily satisfy the condition

M>M s, ~90!

where the mass limitM s is given by

M s

m*
5AB224C2S a1

1

2
ln21

2

b224D . ~91!

In this case, after a possible phase of expansion to a maxi-
mum radius obtained by solvingY5M , the loop will inevi-
tably contract until it reaches the current saturation limit at
K52, at which stage our classical string description will
break down. This means that in terms of the terminology
introduced above, all zone I trajectories are of type 1B. In
Fig. 1 is displayed the potentialY against~top! the value of
K and ~bottom! that of the circumferencel , all quantities
being rescaled with the Kibble massm. It should be noted
that fora*1, the potential is roughly~i.e., up to negligible
logarithmic corrections! independent ofa when seen as
function of l but not as a function ofK. This shows that the
most relevant parameter for cosmological applications ism
and notm* even though the latter is essential for the very
existence of vorton states. The starting point of this zone
marks the end of the curves in Fig. 6.

It is to be remarked that in order for this zone to be of
finite extent, the carrier mass scalem* must not be too large
compared with the Kibble mass scalem, the precise condi-
tion being that the value ofa given by Eq.~16! should sat-
isfy the inequality

a.~12 ln2!/2. ~92!

If this condition were not satisfied, which would be unlikely
in a realistic model, since the Witten mechanism cannot be
expected to work if the carrier mass is too large@4,9,10#,
then zone I would consist only of the extreme limitb25`,
i.e., the caseC50, for which the string falls radially inwards
with a spacelike current but zero angular momentum.

Zone II. This is the ‘‘dangerous’’ spacelike zone charac-
terized by

b2>4.b2S 12
1

2a1 ln2D ~93!

@which would consist of the entire rangeb2>4 if Eq. ~92!
were not satisfied#, for which the trajectory may be of~sta-
tionary! type 0,~well-behaved oscillatory! type 1A, or~badly
behaved! type 1B, depending on its energy. The type 1B case
is that for whichM satisfies an inequality of the form~90!, in
which case the loop will evolve in the same way as in the
previous scenario, and thus will again end up by contracting
to a state of current saturation. The ‘‘good’’ type 1A possi-
bility is characterized by the condition that the mass should
lie in the range

M s.M.M v , ~94!

where the maximum beyond which the current will ulti-
mately saturate is given by the preceding formula~91! for
M s, and the minimum valueM v is the mass of the relevant
vorton state as characterized by Eq.~88!: When this latter
condition is satisfied the loop will oscillate in a well-behaved
manner between a minimum and a maximum radius that are
obtained by solvingY5M . Finally the type 0 possibility is
that of the vorton state itself, as given by the minimum value
M5M v . Similarly to Fig. 1, Fig. 2 shows the potential in

FIG. 1. The potentialY/(muCu) as a function ofK ~top! and
ml /uCu ~bottom! for zone I. Here and on the following figures, it is
found that fora*1, the curves as functions ofml /uCu all coincide
~up to negligible logarithmic corrections! so they can be shown for
different values ofa ranging from 1 to 100 by the same thick curve.
~Note that this simplification depends on normalizing with respect
to the Higgs boson massm rather than the carrier mass scale
m* .) It is clear, however, that the variations withK are strongly
dependent on the ratioa.
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this zone II, against eitherK ~top! and l m/uCu ~bottom!,
with the same remark as before whena*1.

Zone III. This is the ‘‘safe’’ zone characterized by

4.b2.e24a, ~95!

for which there is no danger of bad behavior; i.e., the only
possibilities are the well-behaved type 1A, which applies to
the entire range

M.M v , ~96!

and the vortonic type 0, as given byM5M v .
It is to be remarked that this ‘‘safe’’ zone consists of three

qualitatively distinct parts, namely, a subrange of spacelike
current solutions, zone III$1%, say~Fig. 3!, given by

2.ubu.1, ~97!

a subrange of timelike current solutions, zone III$2%, say
~Fig. 4!, given by

1.ubu.e22a, ~98!

and in between the special ‘‘chiral’’ case of null current so-
lutions, zone III$0%, say, which is given just byubu51.

Zone IV. This is the ‘‘dangerous’’ timelike zone charac-
terized by

FIG. 2. Same as Fig. 1 for zone II.
FIG. 3. Same as Fig. 1 for zone III$2%.

FIG. 4. Same as Fig. 1 for zone III$1%.
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e24a>b2.0, ~99!

for which ~as in zone II! the trajectory may be of~stationary!
type 0, ~well-behaved oscillatory! type 1A, or ~badly be-
haved! type 1B, depending on its energy~see Fig. 5!. The
latter will occur whenever

M>M r , ~100!

where the relevant minimum mass, above which the loop
will contract to a state of complete relaxation, i.e., zero ten-
sion, is given by

M r

m*
5uCue22aA 12e22a

e24a2b2
. ~101!

The ‘‘good’’ type 1A possibility is characterized by the con-
dition that the mass should lie in the range

M r.M.M v , ~102!

where as beforeM v is the vorton mass value given by Eq.
~88!, while finally the type 0 possibility occurs when
M5M v . It is to be remarked that the zone~99! includes a
subzone characterized by the strict conditioncE,cL , where
cL
252dT/dU is the woggle velocity, a condition that is ex-
pressible as@21# K,e2(122a), and which has been conjec-
tured to be sufficient to ensure classical stability of the cor-
responding vorton state.

Zone V. This is the ‘‘fatal’’ timelike zone characterized
by

b250, ~103!

i.e., the case for whichB50 ~to which the investigation of
Larsen and Axenides@15# was devoted! for which it can be
seen that the mass must satisfy the inequality

M

m*
.uCuA12e22a ~104!

~in which the lower bound is the common limit to which
M v andM r converge asB tends to zero!. In this case~as in
the more extensive range covered by zone I! the trajectory
must be of type 1B, its ultimate fate being to reach a state of
relaxation,T→0, as in zone IV when~100! is satisfied.

All these zones are shown in Fig. 6 where, as functions of
the parameterubu are plotted the value of the functionK that
minimizes the potential in all but zone I~top!, the corre-
sponding value of the vorton massM

V
~middle! and length

l ~bottom!, all in units of the Kibble massm. It should be
clear in this figure that in most cases the latter two are almost
independent ofa, the largest dependence occurring in zones
II and IV.

FIG. 5. Same as Fig. 1 for zone IV. In this zone, for large values
of a, the minimum value of the potential is attained only for very
small values ofK and hence are not visible on the figure. FIG. 6. The vorton state functionK

V
, massM

V
/muCu, and

length ml /uCu against the Bernoulli ratio ubu. From
a5(12 ln2)/2 to a51, the curve is smoothly deformed from the
long-dashed one to the thick one which includes many values of
a, showing explicitly the independence ina.
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XI. CONCLUSIONS

In view of the potential cosmological interest of vorton
formation, it is of interest to distinguish the range of condi-
tions under which a cosmic string loop can survive in an
‘‘A-type’’ oscillatory state, which will ultimately damp
down towards a stationary vorton configuration, from the
alternative range of conditions under which the loop will
undergo a ‘‘B-type’’ evolution, whereby it reaches a con-
figuration for which the classical string description breaks
down, in which case the investigation of its subsequent fate
and, in particular, of the question of whether the underlying
vacuum vortex defect will ultimately survive at all will need
more sophisticated methods of analysis than are presently
available.

The present investigation is restricted to the case of ex-
actly circular loops for which it is shown, on the basis of the
best available classical string model@21#, that there is an
extensive range of parameter space, including the whole of
zone III in the above classification, for which the ‘‘A-type’’
solutions ~which are propitious for ultimate vorton forma-
tion! will indeed be obtained. On the other hand, it is also
shown that~unlike what occurs in the classical point particle
problem! badly behaved ‘‘B-type’’ solutions are not limited
to the special zero angular momentum case, zone V, to
which a preceding study@15# of this problem was restricted,
but are of generic occurrence, occupying the whole of zone I
and extensive parts of zones II and IV. It remains an open
question whether these results are representative of what will
happen in the more general case of initially noncircular
loops.

The foregoing results are based on an analysis that is
purely classical in the sense that it neglects both quantum
effects and also the general relativistic effects of the gravita-
tional field. In realistic cases of cosmological interest, in-
volving cosmic strings produced at or below the GUT tran-
sition level, it is to be expected that the neglect of
gravitational effects will be a very good approximation: As
remarked in the Introduction, the relevant Schwarzschild ra-
dius will usually be so small that the question of black hole
formation will be utterly academic, while the effect of gravi-
tational radiation, although it may become cumulatively im-
portant, will be allowable for in the short run in terms of a
very slow ‘‘secular’’ variation of the mass parameterM ,
whereby an oscillatory~type 1A! trajectory will gradually
settle down towards a stationary~type 0! vorton state.

Unlike the usually small corrections that will arise from

gravitation, the effects of quantum limitations may be of
dominant importance for realistic cosmological applications.
The preceding analysis should be valid for loops character-
ized by sufficiently large values of the winding numberN
and particle quantum numberZ, and thus for correspond-
ingly large values of the Bernoulli constantsB andC and
hence ofM . However, it can be expected to break down
whenever the loop lengthl becomes small enough to be
comparable with the Compton wavelength

l *5m
*
21 ~105!

associated with the carrier mass scalem* . It can be seen
from Eq. ~82! that the current saturation limitK→2 cannot
be attained without violating the classicality condition

l @l * ~106!

unless the corresponding dimensionless Bernoulli constants
B andC @which by Eq. ~40! will have the same order of
magnitude providedk

0
is of order unity# are such as to sat-

isfy the condition

B224C2*1. ~107!

This differs from the corresponding purely classical condi-
tion B2.4C2 ~characterizing zones I and II! by having 1
instead of 0 on the right-hand side. It can similarly be seen
that the relaxation (T→0) limit K→e22a cannot be ob-
tained without violating the classicality condition~106! un-
less the Bernoulli constants satisfies the condition

C2e24a2B2*12e22a, ~108!

which is similarly stronger than the corresponding purely
classical conditionC2e24a.B2 ~characterizing zones IV
and V!.
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