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In the equilibrium diffusion limit, transport effects vanish and the radiation pressure tensor is diagonal and
isotropic. The radiation pressurePr and energy densityr r are then related byPr5

1
3r r . This assumption will

fail near the boundary surface from which radiation escapes freely. This paper deals with a relativistic hydro-
dynamic approach of radiation phenomena taking into account the effects of the radiation pressure, energy
density, and energy flux. From physical and geometrical considerations we derive an energy-momentum tensor
for radiation. This tensor, which generalizes the isotropic case, may describe a certain model of radiation field
which is of some interest for astrophysics and cosmology. Next, we examine the propagation of shock waves
in the radiating fluid considered. The Rankine-Hugoniot jump conditions are deduced. The case of a radiation-
dominated gas is considered in detail. The study of Rankine-Hugoniot curves with Eddington’s factor as a
parameter allows us to point out the key role that this factor plays in radiation phenomena. In particular, the
Eddington factor is used as a convenient parameter to study the deflagration waves.@S0556-2821~97!02908-1#

PACS number~s!: 95.30.Lz, 04.40.Nr, 47.40.Nm

I. INTRODUCTION

Radiation phenomena play a crucial role in diverse astro-
physical and cosmological situations such as stellar stability,
supernovae explosions, and early stages of the universe.
Many works are devoted to radiation, radiation transport, and
the dynamics of radiating fluids. Thomas@1#, Simon@2#, and
Mihalas and Mihalas@3# have calculated the energy-
momentum tensor for a fluid consisting of some material
plus radiation quanta~photons, neutrinos, or gravitons!. They
have solved the relativistic transport equation for the radia-
tion. Lindquist @4# and Anderson@5# have used the kinetic
description of a gas and radiation field together. From the
usual conservation laws Weinberg@6# has derived the equa-
tions of radiative hydrodynamics and obtained expressions
for radiative contributions to various transport coefficients
associated with the system.

In a fundamental work@7# Levermore and Pomraning
posed a theoretical foundation of the flux-limited diffusion
theory. In recent works Anile and Sammartino@8#, Anile and
Romano@9#, and Bonanno and Romano@10#, have presented
a covariant flux-limited diffusion theory for radiative phe-
nomena from the microscopic viewpoint.

In the present paper from the hydrodynamic viewpoint we
propose a model of a radiating fluid~material plus radiation!
taking into account the effects of the radiation energy den-
sity, pressure, and energy flux. Our study generalizes the
case where the radiation field is assumed to be isotropic. The
radiating shock being one of the most interesting phenomena
in radiation hydrodynamics, we study the propagation of
shock waves in the considered model. This study allows us
to point out the key role that Eddington’s factor plays in
radiation phenomena.

II. THE RADIATING FLUID

A. The stress-energy tensor of the material medium

The material medium under consideration is assumed to
be a perfect fluid which is described by its local thermody-
namic variables such as the baryon number densityn, the
energy densityrm , and the pressurePm ~the subscriptm
stands for matter!:

Tm
mn5rmu

mun2Pmgmn, ~1!

whereum is the fluid unit four-vectorumum51, gmn5gmn

2umun is the projection tensor onto the three-space orthogo-
nal to um, andg is the Lorentzian metric with the signature
1222. Following Taub@11# and Lichnerowicz@12# we set

rm5n~c2mo1em!5nem , ~2!

wheren is the baryon number density,m0 the average bary-
onic rest mass, andem is the ‘‘classical’’ specific ~per
baryon! internal energy.

We introduce the relativistic specific enthalpy

f m5c2mo1hm , ~3!

wherehm5em1Pm /n is the ‘‘classical’’ specific enthalpy.
From the preceding relation it follows that

rm1Pm5n fm . ~4!

The material under consideration is assumed to satisfy the
state equation

Pm5~g21!rm with 1<g<2, ~5!

where g is the adiabatic index assumed to be a constant.
Equation~4! becomes

n fm5rm1Pm5grm .
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The stress-energy tensor can then be written as

Tm
mn5n fmu

mun2Pmgmn. ~6!

The conservation of matter is expressed by the equation

¹m~num!50, ~7!

where¹m is the covariant derivative operator.

B. The stress-energy tensor of radiation

In the equilibrium diffusion limit and in a local Galilean
reference of frame the radiation energy tensor is of the form

Tm8n85S r r

0
Pr

Pr
0

Pr

D , ~8!

wherer r andPr are the radiation energy density and pres-
sure, respectively. In this approximation the transport effects
vanish. The aim of this paper is to account for the effects of
the radiation energy density, pressure, and energy flux.

1. The pressure tensor of radiation

In this section and the following, all thermodynamical
quantities referring to radiation are the proper values as mea-
sured in the comoving coordinate systems defined as those in
which the observer is at rest relative to the material. At the
considered point let us introduce the principal frame of ref-

erence, i.e., the unit orthonormal tetradVa
(l8) such that

Va
(08)5ua defines the time-axis and the remaining three

Va
(l8) define the proper space associated withVa

(08) :

V~o8!aV~o8!a5uaua51,

Va
~ i 8!V

~ i 8!

a
521

~no summation with respect to the indexi 8),

Va
~o8!V~ i 8!a5uaV

~ i 8!a50. ~9!

In a local Galilean frame of reference we take the radia-
tion pressure tensor of the form~Levermore@13#, Anile et al.
@14#, Kremer and Mu¨ller @15#!

P i 8k85ard
i 8k81bJi 8k8, ~10!

Ji 8 being the radiation energy flux. The subscriptr stands for
radiation. The variablesar andb are functions of the radia-
tion energy densityr r ~which we introduce below! andJ2.
We now seek the spacetime generalization for Eq.~10!.

In an arbitrary frame of reference we will have

P i 8k85ard
i 8k81bJi 8Jk8. ~11!

It is easy to show that

Aa
085Va

~08!5ua , A08
a

5V
~08!

a
5ua,

Aa
i 852Va

~ i 8! , Ai 8
ȧ

5V
~ i 8!

a . ~12!

From these relations we obtain

gab5Aa
l8Ab

m8Pl8m85uaub2Va
~ i 8!Vb

~k8!d i 8k8 . ~13!

Formula~13! gives the projection tensor onto the three-space
orthogonal toV(08)a5ua:

gab5gab2uaub52Va
~ i 8!Vb

~k8!d i 8k8 . ~14!

Making use of Eqs.~12! and~14!, the relation~11! becomes

Pab52arg
ab1bV

~ i 8!

a
V

~k8!

b
Ji 8Jk8. ~15!

In Eqs.~14! and~15! the summation convention is assumed.
We set

Ja5V
~ i 8!

a
Ji 8

and

Jb5V
~k8!

b
Jk8 ~16!

and obtain the expression of the pressure tensor of radiation
in an arbitrary frame of reference:

Pab52arg
ab1bJaJb. ~17!

The pressure tensor thus obtained satisfiesPmnun50.

2. The radiation stress-energy tensor

We definer r as the energy density of the radiation as
measured locally by an observer with four-velocityum. Let
Tr

mn be the stress-energy tensor of the radiation. Our goal is
to account for the effects of the radiation energy, pressure,
and energy flux. The irreversible processes which may occur
in gas is the radiation flow. We then ignore the viscosity and
heat conduction and take the radiation stress-energy tensor to
be of the form

Tr
mn5r ru

mun1Pmn1umJn1unJm. ~18!

In what follows we will assume that

r r52Pa
a . ~19!

This assumption is equivalent to

Trm
m 50. ~20!

Equation~19! or ~20! yields

b5~r r23ar !/J
2. ~21!

Substituting Eq.~21! into Eq. ~17! we find

Pmn52arg
mn1Ehmhn, ~22!

where we set
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hm5
Jm

uJu
. ~23!

hm is the unit vector in the direction of the flux.
The pressure tensor of radiation defined by Eq.~22! con-

stitutes the generalization of the isotropic case. In Eq.~22!
the last term describes the anisotropy due to the radiation
field. Therefore, the quantityar does not reduce to a simple
hydrostatic pressure.

In a local Galilean frame of reference the pressure tensor
Pmn defined by Eq.~22! has the form

P i 8k85ard i 8k81Ehi 8hk8 ~24!

or

P i 8k85S ar
0 ar 0
E1ar

D 5S ar
0 ar 0
ar

D 1S 0
0 0 0
E

D , ~25!

wherehi 8 has been chosen ashi 85Vi 8
(3) .

If we introduce the projection tensor onto the two-space
orthogonal toum andhm,

Gmn5gmn1hmhn with Gmnun5Gmnhn50, ~26!

then we obtain

Pmn52arG
mn1~E1ar !h

mhn. ~27!

It follows that

2Palhl5~E1ar !h
a,

2PalYl5arY
a, ~28!

whereY is any vector belonging to the two-plane orthogonal
to the two-plane defined by (u,h):

Ya5GalYl .

From Eq.~28! it follows thatE1ar andar are the eigenval-
ues of (2Pmn) corresponding to the eigenvectorshm and
Ym, respectively. (ar1E) andar may then be interpreted as
the components of the radiation pressure along the direction
of the fluxhm and in the two-space orthogonal to this direc-
tion and toum.

Let us mention thatGmn cannot vanish as it has been
claimed in@18# ~p. 2889!. Gmn is an operator:

GmnGmr5Gr
n .

The dimensionless quantity

x5~E1ar !/r r ~29!

is called the Eddington factor@13,14,15#. But the pressure
component alonghm is

Pr*5ar1E5xr r with
1

3
<x<1. ~30!

Equation~28! yields

ar5~r r /2!~12x!, E5~r r /2!~3x21!. ~31!

Then the pressure tensor defined by Eq.~27! is expressed in
terms ofx as

Pmn5r rE
mn,

where

Emn52 1
2 ~12x!Gmn1xhmhn. ~32!

Then relations~28! become

2Emnhn5xhm, 2EmnYn5 1
2 ~12x!Ym. ~33!

Thusx and (12x)/2 are the eigenvalues of (2Emn) corre-
sponding to the eigenvectorshm andYm, respectively. Insert-
ing Eq. ~31! into Eq. ~27! we obtain the same expression for
Pmn as in @16#. Making use of Eq.~22!, Eq. ~18! becomes

Tr
mn5r ru

mun2arg
mn1umJn1unJm1Ehmhn. ~34!

One may compare this expression with that obtained from
the microscopic viewpoint@8,9,10,17,18#. In the most ex-
treme cases, the flux out of an optically thin zone predicted
by diffusion may exceed the energy density times the veloc-
ity of light. Therefore, in the following section we will define
J5uJu as @13,14#

J5r r f , ~35!

f5u f u being the normalized flux such that 0< f<1:

f5 H0 in the isotropic case,
1 in the free-streaming case. ~36!

x and f are related by@14,15#

x5
5

3
2
2

3
A423 f 2. ~37!

It follows from Eq. ~37! that

xP@ 1
3 ,1#⇔ fP@0,1#.

In what follows we shall use the expression~34! of the
stress-energy tensor of the radiation.

C. The stress-energy tensor of radiating fluid

Our goal here is to account for the effects of the radiation
energy, pressure, and energy flux, so we shall ignore viscos-
ity and thermal conduction and as in@3# we shall adopt the
following assumptions.

~i! The material medium is a perfect gas which remains in
local thermodynamical equilibrium with all species of par-
ticles as the same kinetic temperature.

~ii ! The radiation field can be treated in the nonequilib-
rium diffusion.

The radiating fluid~matter plus radiation! may then be
described by the total stress-energy tensor

Tmn5Tm
m1Tr

mn5rumun1Pmn1umJn1unJm, ~38!

where
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Pmn52Pgmn1Ehmhn,
P5Pm1ar , r5rm1r r .

~39!

The tensor given by Eq.~38! can also be written as

Tmn5Wumun2Pgmn1umJn1unJm1Ehmhn, ~40!

where

W5r1P5nF. ~41!

III. SHOCK WAVES IN RADIATING FLUID

A. Shock invariants

The shock wave is here a hypersurface of discontinuity
denoted asS for the fluid and radiation variables. The total
stress-energy tensorTmn satisfies the local energy and mo-
mentum conservation law:

¹mT
mn50. ~42!

The conservation of baryon flux density is written as

¹a~nua!50. ~43!

From the main system~42! and~43! we obtain by a classical
argument the general shock equations

1a@nua#50, 1a@Tab#50, ~44!

where the square brackets correspond to the discontinuity of
a quantityQ across the shockS:@Q#5Q12Q0 . The sub-
scripts ‘‘0’’ and ‘‘1’’ denote upstream and downstream vari-
ables, respectively. The thermodynamical quantities are mea-
sured in the shock system. The quantitiesu0 andu1 are thus
the flow four velocities of the upstream and downstream flu-
ids, respectively, with respect to the rest frame of the shock
front ~Fig. 1!.

Equations~44! express the invariance acrossS of the sca-
lar

a5nlau
a ~45!

and of the vector

Wb5 l aT
ab,

where

Tab5nFuaub2Pgab1uaJb1ubJa1Ehahb. ~46!

We introduce the quantity

hn
25

~ l ah
a!2

~2gmnlml n!
. ~47!

hn is the component ofh in the spatial direction of propaga-
tion of the waves. Herel a is a unit four-vector normal toS.
It follows from the timelike character ofS that l al a521.

It is easy to show that the equalityhn
251 holds only if the

normal to the wave frontl a belongs to the two-plane defined
by the vectorsua andha: that is,

l a5gua1kha,

where

g5 l aua

and

k52 l aha .

It follows from these considerations that

Gmnlm50

and

Gmnlml n5 lmlm2~ lmum!21~ lmh
m!250,

~ lmh
m!2511~ lmum!2. ~48!

In all the following sections we shall consider the last rela-
tion of Eq. ~48!.

The speedVS of the wave frontS with respect to the
fluid, that is, with respect to the time directionu, is given by
@12#

~VS/c!25b25
~ l au

a!2

~2gmnlml n!
. ~49!

We setu25( l aua)
2, and Eq.~49! gives

u25
b2

12b2 . ~50!

Thus,u is the four-velocity of the fluid.
The identity

~ l au
a!2S 1b221D51 ~51!

follows from Eq.~50!. Equations~48! and ~49! yield

l ah
a52

l au
a

b
. ~52!

FIG. 1. A relativistic deflagration wave~shock! in the local
frame of the shock front.
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We have chosen the sign2 assuming thatl aua and l aha
have opposite sign.

B. Basic shock equations

We deduce from the invariance of the vectorWb that the
scalar

D51rW
r5W~ l au

a!21P12l aJ
al ru

r1E~ l ah
a!2

~53!

is invariant acrossS. Making use of Eqs.~51! and~52!, Eq.
~53! can be written as

D5v* ~ l au
a!21P* . ~54!

In Eq. ~54! we have set

P*5P1E5Pm1Pr* ,

v*5W1E2
2J

b
5r1P*2

2J

b
, ~55!

wherePr* is given by Eq.~30!.
In the following sections we shall set

t*5
v*

n2
. ~56!

Using Eq.~54! we obtain

D5a2t*1P* . ~57!

We decomposeu andh according to tangential components
and normal components with respect toS:

ub5vb1
l au

a

l rl r
l b5vb2 l au

al b,
~58!

hb5tb1
l ah

a

l rl r
l b5tb2 l ah

al b.

W is then written as

Wb5Zb2~P*1a2t* !l b, ~59!

whereZb is defined by

Zb5Avb1Btb ~60!

with

A5W~ l au
a!1Jlah

a,
~61!

B5Jlau
a1E~ l ah

a!.

The vectorZb is tangent toS. The invariance ofWb is
equivalent to the invariance ofZb and of that of tangential
component. The scalarZrZr is then invariant acrossS.

Using Eq. ~59! we obtain the following scalar invariant
acrossS:

ZrZr5A2vrvr1B2trtr12ABtrvr . ~62!

It is easy to obtain the relations

vrvr511~ l au
a!25~ l ah

a!2,

trtr5211~ l ah
a!25~ l au

a!2, ~63!

trvr5 l aual
bhb .

Making use of Eq.~63!, Eq. ~62! gives

ZrZr5A2~ l ah
a!21B2~ l au

a!212ABlau
al rh

r

5~Alah
a1Blau

a!2. ~64!

Thus the invariance ofZrZ
r acrossS is equivalent to that of

the scalar

L5Alah
a1Blau

a. ~65!

Making use of Eqs.~52! and~55!, Eq. ~65! can be expressed
as

L5Alah
a1Blau

a52Fv*b ~ l au
a!21JG .

Thus the quantity

g5
v*

b
~ l au

a!21J5
t* a2

b
1J ~66!

is invariant acrossS.
Using Eq.~61! in ~64! we obtain

ZrZr5L25
v* 2

b2 ~ l au
a!412J

v*

b
~ l au

a!21J2. ~67!

By using the identity~51!, Eq. ~67! can be written as

ZrZr5v* 2~ l au
a!41v* ~W1E!~ l au

a!21J2. ~68!

Thus the following scalar is invariant acrossS:

K5
ZrZr

a2
5a2t* 21t* ~W1E!1

J2

a2
. ~69!

Thus we have obtained the following radiation Rankine-
Jump conditions:

n0l au0
a5n1l au1

a5a,

a2t0*1P0*5a2t1*1P1*5D,

a2t0*
21t0* ~W01E0!1

J0
2

a2
5a2t1*

21t1* ~W11E1!1
J1
2

a2

5K. ~70!

The set of equations~70! is supplemented by an equation of
state of the fluid and of the radiation after the shock. These
state equations will be taken to be of the form given by Eq.
~5! for the matter and by Eqs.~30! and~35! for the radiation.
The relations~5!, ~30!, ~35!, and~70! then completely deter-
mine downstream quantities in terms of the known upstream
parameters.
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C. Rankine-Hugoniot adiabats

The invariance acrossS of the scalarsD andK yields

t1* ~W11E1!2t0* ~W01E0!2~P1*2P0* !~t1*1t0* !

1
1

a2
~J1

22J0
2!50. ~71!

Taking into account the expressions ofW andP* this equa-
tion can be transformed as

t1* ~r11P0* !2t0* r02P1* t0*1
1

a2
~J1

22J0
2!50. ~72!

For a simplified notation we introduce the dimensionless
quantities

X5
t*

t0*
, P5

P*

P0*
, l5

r

P*
. ~73!

l is known if the equations of state of the fluid and the
radiation are given. Making use of Eq.~73!, Eq. ~72! may be
written as

X1~l1P111!2l02P11
1

a2t0*P0*
~J1

22J0
2!50. ~74!

Equations~35! and ~73! yield

J1
2

a2t0*P0*
5

1

~11s1!
2 a0f n

2l1
2P1

2,

~75!

J0
2

a2t0*P0*
5

1

~11s0!
2 a0f 0

2l0
2,

where we have set

a05
P0*

t0* a
2 5

P0*

v0* u0
2 5

~g021!s01x0

u0
2~g0s0111x022 f 0 /b0!

~76!

s5rm /r r .

Then ~74! becomes

X1~l1P111!2l02P11
a0f 1

2l1
2P1

2

~11s1!
2 2

a0f 0
2l0

2

~11s0!
2 50.

~77!

We introduce the parameter

b*5
Pm

P*
5

Pm

Pm1xr r
, ~78!

which is in the range 0<b*<1.
Equation~78! gives

b*5
~g21!s

~g21!s1x
,

which yields

s5
b* x

~g21!~12b* !
. ~79!

Thenl given by ~73! is written as

l5
r

P*
5

b*

g21 S 11
1

s D5
1

x
1b* S 1

g21
2
1

x D . ~80!

Focusing mainly on the radiation effects we shall consider
the case corresponding tob*!1, that is, to the radiation-
dominated gas. In this case Eqs.~55!, ~73!, and~80! yield

P*5Pr*5xr r ;v*5r r~11x22 f /b!,

P5
Pr*

P0r*
;l5

1

x
,

a05
x0

u0
2~11x022 f 0 /b0!

, ~81!

and Eq.~77! becomes

a0f
2l2P21~lX21!P2~f02X!50, ~82!

where (X,P) is any post shock state and

f05f~l0!5l01l0
2f 0

2a0 . ~83!

Making use of Eq.~37! and the expression ofl from Eq.
~81! we obtain

4 f 2l25~3l21!~32l!. ~84!

Equation~82! is a quadratic equation withX as an un-
known quantity andl as a parameter. In the (X,P) plane,
the equation of the straight lineD is written as

P~X!52
X

a0
111

1

a0
. D

Now we shall discuss of some of the possible applications of
the shock equations~70! through particular cases of physical
interest.

Case I: Both the upstream and the downstream medium
is assumed to be extremely opaque and in thermal equilib-
rium. The shock is then in an optically thick medium and all
radiation emanating from the front is reabsorbed in the up-
stream medium.

This case corresponds to

f 05 f50⇔x05x5 1
3⇒l05l53. ~85!

This case is appropriate for very high-temperature flows
~e.g., in stellar, envelope!, where the contributions of the
radiation pressure and energy density are significant.

Making use of Eq.~85! in Eq. ~82! we obtain

P~X!5
32X

3X21
. ~86!

The corresponding curve will be denoted asC0 . C0 is the
Taub adiabat for a shock wave. By using Eq.~85!, the ex-
pression ofa0 given by Eq.~81! becomes
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a05
1

4u0
2 . ~87!

The intersections of the straight lineD with the curveC0 are
determined by the equation

32X

3X21
5

X

a0
111

1

a0
,

which yields

3X224~11a0!X14a01150. ~88!

The discriminant of this quadratic equation is

D t54~a02
1
2 !2. ~89!

Then the roots of Eq.~88! are

X5 2
3 @~a011!6~a02

1
2 !#.

Thus we obtain the following intersection points ofC0 and
D:

X15
4a011

3

and

P15
22a0

3a0
~90!

and

X25P251. ~91!

For a05
1
2~or u0

25 1
2⇔b0

251/)! the discriminantD8 given
by Eq. ~89! vanishes and the equation of the straight lineD
becomes

P~X!5322X. D0

D0 is tangent to the curveC0 at the point~1,1!.
The inequalityX1,1 ~or P1.1! implies a0,

1
2⇔u0

2. 1
2

~or b0
2, 1

3!.
Thus the curveC0 and the straight lineD through ~1,1!

will have another intersection with the upper branch if
a0,

1
2 and with the lower branch ifa0.

1
2.

Fora05
1
5(,

1
2) and fora05

3
2(.

1
2) we obtain the follow-

ing equations of the straight lineD:

P~X!5625X d1

and

P~X!52
2X

3
1
5

3
. d2

The curveC0 and the straight linesd1 andd2 are plotted in
Fig. 2. They pass through the point~1,1!.

Case II:We suppose now that we have a radiating shock
propagating into the upstream medium assumed to be trans-
parent. The downstream medium is assumed to be opaque.

In this case we have

f 0P]0,1]⇔x0P] 13 ,1]⇔l0P
~92!

@1,3@ f50⇔x5 1
3⇒l53.

The radiation originating in the post shock medium may then
flow freely across the front and escape to infinity. An ex-
ample is a strong shock emerging from the photosphere or
chromosphere of a star~see@3#, p. 562!.

The discontinuity of the Eddington factor is@x#5x2x0
,0.

By using Eq.~92!, Eq. ~82! yields

P~X!5
F02X

3X21
, ~93!

where

f05l01l0
2f 0

2a05l01
a0

4
~3l021!~32l0! ~94!

with

a05
x0

u0
2~11x022 f 0 /b0!

. ~95!

The curve corresponding to Eq.~93! will be denoted asC.
C is called the Hugoniot curve.

The equation of state of the unburnt gas is taken in the
form

P0r* 5x0r0r .

The equation of state of the burnt fluid is that of a gas of
radiation:

Pr5
r r
3
.

FIG. 2. Plot of Taub adiabatC0, d1(a05
1
5), andd2(a05

3
2) in

the (X,P) plane. The curveC0 and the straight linesd1 andd2 pass
through the point~1,1!. The intersection ofd1 andd2 with C0 gives
the values of the downstream quantities (P,X) if we assume the
upstream states are known.
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C then represents the states of the burnt fluid. We assume
that it lies above the Taub adiabatC0 which represents the
states of the unburnt fluid. This implies thatF0.3 and that
the curveC does not pass through the initial point~1,1!.

The intersections of the straight lineD with the curveC
are determined by the equation

F02X

3X21
52

X

a0
111

1

a0
~96!

or

3X224X~11a0!1~11a01a0F0!50. ~97!

The discriminant of this quadratic equation is

D54a0
22a0~3F025!11. ~98!

Equation~98! is also a quadratic polynomial, its discriminant
may be written as

d059F0
2230F01953~F023!~3F021! . ~99!

It follows thatF0.3⇒d0.0.
Equation~98! then has two positive roots given by

a015
3F0252Ad0

8
,

a025
3F0251Ad0

8
. ~100!

ThusD.0, if a0,a01, or a0.a02. For each value ofF0
.3, we can determinea01 anda02 and may choosea0 such
thata0,a01 or a0.a02.

The roots of the quadratic equation~97! are

X5
2~11a0!6AD

3
. ~101!

These solutions represent the two intersections which the ray
D through the point~1,1! makes with the curveC.

We deduce from Eq.~94! that

l05
215a062AD

3a0
, ~102!

wherea0 is given by~100!. In order to satisfy the inequali-
ties 1<l0,3 we have to consider in Eq.~102! a value of
a0 which is greater thana02.

The straight lineD is tangent toC only if the discriminant
D given by Eq.~98! is null: the two points of intersection
coalesce at the Jouguet pointJ and a05a20 ~the roota0
5a10 being excluded!. It follows from ~101! that at the Jou-
guet point we have

XJ5
2

3
~11a02!. ~103!

The equation of the tangent toC at this point is

PJ~X!52
X

a02
111

1

a02
. T

Since the tangent to either curve at a point (P,X) is related
to the speed of sound in the medium corresponding to that
point one observes that the hydrodynamical processes are
devided into weak (b,bs), Jouguet (b5bs), and strong
(b.bs) deflagrations.bs designs the sonic speed andb is
the speed of the deflagration wave in the burnt fluid.

The existence of deflagration as a possible mode for a
phase transition in the early universe has recently been ex-
amined~see, for example,@19#, @20#, and@21#!. From Landau
and Lifchitz @22# one knows that

b1
25

~P22P1!~e21P1!

~e22e1!~e11P2!
,

~104!

b2
25

~P22P1!~e11P2!

~e22e1!~e21P1!
,

wheree, P have their usual meanings. Using our notations,
the relations~104! may be written as

b0
25

~P21!~lP11!

~lP2l0!~l01P!
,

~105!

b25
~P21!~l01P!

~lP11!~lP2l0!
.

It follows from Eq. ~105! that

b0→1, b→
1

l
5x, for P@1.

Any straight lineD such thata0.a02 intersects the defla-
gration branch in two points: along it from the point~1,1! the
pressureP decreases and the volumeX increases.

Thus the relation

P~X!5
F02X

3X21

gives various deflagration adiabat withl0 as a parameter. In
order to ensure 1<l0,3 it is necessary thatF0.3. It is
interesting to notice the similarity of our relation with that
obtained from the equation~3.8! of @23#

P~x!5
K2x

3x21
with P5P2 /P1 and x5x2 /x1 ,

where

K5
4«

P1
13 ~106!

for various detonation adiabats as a function of the vacuum
energye.
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For F053.8 ~100! givesa0150.1755 anda0251.4245.
We may choosea050.16,a01 or a058/5.a02 to have
D.0. Equation~102! then yields

l0H 14
3

7
if a050.16

and

l05H 5
3

5
2

if a05
8
5 . ~107!

We shall exclude the valuea050.16 asl0 must be in the
range 1<l0,3. In this example Eq.~93! becomes

P~X!5
3.82X

3X21
~108!

with the equation of the straight lineD being

P~X!5
5X

8
1
13

8
. ~109!

The curvesC0 and Eq.~108! and the straight line Eq.~109!
are plotted in Fig. 3. The equation of the tangentT becomes

PJ~X!520.702X11.702. ~110!

The curvesC0 and Eq.~108!, and the straight line~110! are
plotted in Fig. 4. Thus forF0.3 we obtain various Hugo-
niot adiabats which lie above the Taub adiabatC0 .

Case III: The upstream material is an optically thin me-
dium while the downstream medium is an optically thick
one. This case may correspond to

f 051⇔x051⇒l051,
~111!

f50⇔x5 1
3⇒l53.

The relations~111! are the extreme case of Eq.~92!.
The radiation originating in the postshock medium can

then flow freely and escape to infinity. In this case, from Eq.
~30! we haveE50 anda0r5P0r5r0r , and it follows from
Eqs.~50! and ~95! that

a052
11b0

2b0
. ~112!

Equation ~83! then givesF0511a0 . It follows that F0
.3⇔a0.2. The equation~96! yields

3X224X~11a0!1~11a0!
250. ~113!

The discriminant of this quadratic equation is

d5~11a0!
2. ~114!

The roots of Eq.~110! are

X15
2~11a0!2Ad

3
5
11a0

3
,

~115!

X25
2~11a0!2Ad

3
511a0 .

The straight line D is tangent to the curveC if
d50⇔a0521 which yieldsF050 and Eq.~115! gives
X15X250. Thus the case wherex051, x51

3 , and
a0521 leads to results which are not consistent with shock
waves.

It may be remarked that ifx051 anda0521 then we
obtain from Eq.~95! thatb051. We obtain forC the equa-
tion

P~X!5
F02X

3X21
5

~11a0!2X

3X21
. ~116!

For a05
57
20, Eq. ~116! becomes

P~X!5
3.852X

3X21
, ~117!

the equation of the straight lineD being

P~X!52
20X

57
1
77

57
. ~118!

For a05
57
20, Eq. ~115! gives the two intersections of the

straight lineD with the curveC:

FIG. 4. Plot of C0 , C(F053.8) andT(a051.4245) in the
(X,P) plane.

FIG. 3. Plot of C0 , C(F053.8), and D(a058/5) in the
(X,P) plane.
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X15
1

3
~11a0!5

77

60
, P152

20X1

57
1
77

57
5
154

171
,
~119!

X2511a05f05
77

20
, P250.

The straight lineD through~1,1! intersects the Taub adiabat
C0 at another point whose coordinates are given by Eq.~90!:

X15
1

3
~114a0!5

62

15
P15

22a0

3a0
52

17

171
. ~120!

Equation ~120! represents a thermodynamic state with a
negative pressure, the final state on the curveC correspond-
ing to the strong deflagration is (X25F0 ,P250) given by
the last relation of Eq.~119!. The curvesC0 and Eqs.~117!
and ~118! are plotted in Fig. 5.

IV. REMARKS

The above results are obtained considering a radiation-
dominated gas, that is assumes thatb1*!1. The same results
may be obtained considering that the matter and the radiation
are not in thermal equilibrium, i.e., the energy tensors given

by Eqs.~1! and ~34! are not evaluated at equilibrium states
@18#. The conservation law~42! then reads

¹aTm
ab50, ¹aTr

ab50.

V. CONCLUSION

The main purpose of this paper was to derive from the
macroscopic viewpoint the radiation energy momentum ten-
sor taking into account the effects of the radiation pressure,
energy density, and flux and to extend previously known
results on the relativistic shock waves to the case of relativ-
istic radiation hydrodynamics. It is shown that the Eddington
factor is a convenient parameter to study the Rankine-
Hugoniot adiabats. Our main conclusions are the following.

~i! Forx05x5 1
3 andu0

2. 1
2 ~or b0.1/)! we obtain the

Taub adiabat for shock waves~see Fig. 2!.
~ii ! For 1

3,x0<1 and x5 1
3 and for each value of the

quantity F0 such thatF0.3 the curveC lies above the
Taub adiabat. It is shown that in this case one has to consider
only the intersections of the straight lineD with the defla-
gration branch. The slope of the straight lineT which is
tangent to this branch at the Jouguet point is determined by
the great roota02 of the equationD(a0)50 given by Eq.
~98!. Any ray with the slope greater than that of this tangent
(a0.a02) intersects the deflagration branch in two points
~Fig. 3!.

~iii ! If x051 ~free streaming! andx5 1
3, then the straight

line D through the point~1,1! cannot be tangent to the de-
flagration curve and null pressure corresponds to its first in-
tersection~strong deflagration! with the curve~Fig. 5!. The
speed of the downstream medium is thenb51. The radia-
tion emetted across the front from the hot downstream me-
dium escapes freely to infinity.

We hope that some applications of our results to the ra-
diation dominated epoch of the Universe will be possible. A
forthcoming paper will be devoted to the study of the deno-
tation waves.
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