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Relativistic radiation hydrodynamics: Shock and deflagration waves
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In the equilibrium diffusion limit, transport effects vanish and the radiation pressure tensor is diagonal and
isotropic. The radiation pressuRs and energy density, are then related b, = 3p, . This assumption will
fail near the boundary surface from which radiation escapes freely. This paper deals with a relativistic hydro-
dynamic approach of radiation phenomena taking into account the effects of the radiation pressure, energy
density, and energy flux. From physical and geometrical considerations we derive an energy-momentum tensor
for radiation. This tensor, which generalizes the isotropic case, may describe a certain model of radiation field
which is of some interest for astrophysics and cosmology. Next, we examine the propagation of shock waves
in the radiating fluid considered. The Rankine-Hugoniot jump conditions are deduced. The case of a radiation-
dominated gas is considered in detail. The study of Rankine-Hugoniot curves with Eddington’s factor as a
parameter allows us to point out the key role that this factor plays in radiation phenomena. In particular, the
Eddington factor is used as a convenient parameter to study the deflagration M&E6-282(197)02908-1

PACS numbe(s): 95.30.Lz, 04.40.Nr, 47.40.Nm

I. INTRODUCTION Il. THE RADIATING FLUID
. . . A. The stress-energy tensor of the material medium
Radiation phenomena play a crucial role in diverse astro- ) ) . o
physical and cosmological situations such as stellar stability, The material medium under consideration is assumed to
supernovae explosions, and early stages of the universB® @ perfect fluid which is described by its local thermody-
Many works are devoted to radiation, radiation transport, andl@mic variables such as the baryon number densityhe
the dynamics of radiating fluids. Thomgs, Simon[2], and ~ €Nergy densitypy,, and the pressur@y, (the subscriptm
Mihalas and Mihalas[3] have calculated the energy- Stands for matter
momentum tensor for a fluid consisting of some material
plus radiation quantghotons, neutrinos, or gravitong hey
have solved the relativistic transport equation for the radiaypere u“ is the fluid unit four-vectomXu, =1, y**=gr"
tion. Lindquist[4] and Andersor{5] have used the kinetic — y~y” is the projection tensor onto the three-space orthogo-
description of a gas and radiation field together. From theal tou#, andg is the Lorentzian metric with the signature

Tlr#}:pmu'uuv_ Pmy™?, 1

usual conservation laws Weinbeii@| has derived the equa- +———_ Following Taub[11] and Lichnerowic412] we set
tions of radiative hydrodynamics and obtained expressions
for radiative contributions to various transport coefficients pm=n(c’m,+ €,,) =ney, 2

associated with the system.

In a fundamental wor7] Levermore and Pomraning Wheren is the baryon number density, the average bary-
posed a theoretical foundation of the flux-limited diffusion Onic rest mass, and, is the “classical” specific (per
theory. In recent works Anile and Sammartii&, Anile and ~ baryon internal energy. 3
Romand 9], and Bonanno and Romaiib0], have presented We introduce the relativistic specific enthalpy
a covariant flux-limited diffusion theory for radiative phe-
nomena from the microscopic viewpoint.

In the present paper frqm. the hydrody_namlc wevypqmt Weahere hn=entP,/n is the “classical” specific enthalpy.
propose a model of a radiating fludmatena_l p_Ius radiation From the preceding relation it follows that
taking into account the effects of the radiation energy den-
sity, pressure, andi energy flgx. Our study geperallzgs the pmtPo=nf,. (4
case where the radiation field is assumed to be isotropic. The
radiating shock being one of the most interesting phenomen@he material under consideration is assumed to satisfy the
in radiation hydrodynamics, we study the propagation ofstate equation
shock waves in the considered model. This study allows us
to point out the key role that Eddington’s factor plays in Pn=(y—1)p, with 1<y<2, (5)
radiation phenomena.

fm=0c?my+hp,, 3)

where v is the adiabatic index assumed to be a constant.
Equation(4) becomes
*Permanent address: 17, Chemin du Dessous du Rocher, 91120
Palaiseau, France. Nfrn=pm+Pm=7Pm-
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The stress-energy tensor can then be written as A0 =\,

a a a?

Ag,=v(o,)=u“,
TEY=nf u*u’— P v*". 6 iy y - o
m = mY © Al=-VI0 AL=VE, (12
The conservation of matter is expressed by the equation . .
From these relations we obtain

V. . (nu* :O, 7 ’ ’ it ’
w(NU) @) Uup=Ah AL TL 0, =Uue— VS VIS5, (19

whereV, is the covariant derivative operator. Formula(13) gives the projection tensor onto the three-space

0Na—_,a.
B. The stress-energy tensor of radiation orthogonal toV u
In the equilibrium diffusion limit and in a local Galilean Yap=Gap—Ualig=—VI VI8 . (14)
reference of frame the radiation energy tensor is of the form
Making use of Egs(12) and(14), the relation(11) becomes

Pr
P, M,p=—a,y*f+bVy, Vi, 3" 3. (15)
T'urvr: 0 P O ) (8)
' In Egs.(14) and(15) the summation convention is assumed.
P, We set
wherep, and P, are the radiation energy density and pres- J“=V(“i,)‘]i'

sure, respectively. In this approximation the transport effects
vanish. The aim of this paper is to account for the effects otaind
the radiation energy density, pressure, and energy flux.
F=Vl, I (16)
1. The pressure tensor of radiation
In this section and the following, all thermodynamical gnd obtain the expression of the pressure tensor of radiation
quantities referring to radiation are the proper values as med? an arbitrary frame of reference:

sur.ed in the comoving coordinate systems defined as those in [T9F = — g, yoB+ hJ2J6 17
which the observer is at rest relative to the material. At the r '

considered point let us introduce the principal frame of ref--l-he pressure tensor thus obtained satigfiégu, =0
erence, i.e., the unit orthonormal tetrada”') such that

Vv =uy, defines the time-axis and the remaining three 2. The radiation stress-energy tensor
V) define the proper space associated WIff” : We definep, as the energy density of the radiation as
measured locally by an observer with four-veloadity. Let
V(O’)av(o,)a:uaua: 1, T#Y be the stress-energy tensor of the radiation. Our goal is

to account for the effects of the radiation energy, pressure,
and energy flux. The irreversible processes which may occur

(e — _
Va V(i’> 1 in gas is the radiation flow. We then ignore the viscosity and
_ _ o heat conduction and take the radiation stress-energy tensor to
(no summation with respect to the inde%), be of the form
ViD= y yia=q, (9) T =putu?+ T4+ urJ"+u"Jx, (18

In a local Galilean frame of reference we take the radia—In what follows we will assume that

tion pressure tensor of the forthevermorg 13], Anile et al. - e (19)
[14], Kremer and Miler [15]) Pr @
L o L This assumption is equivalent to
' =a,6 K+bJ 'K, (10)
. T, =0. (20)
J' being the radiation energy flux. The subscrigtands for ) _
radiation. The variablea, andb are functions of the radia- Equation(19) or (20) yields
tion energy density, (which we introduce beloyand J2. b 3a.)/J2 21
We now seek the spacetime generalization for @6). =(pr—3a)/J. (22)
In an arbitrary frame of reference we will have Substituting Eq(21) into Eq. (17) we find
' =ad"+pbJ" 3¢, (11) 1#7=—a,y*"+Eh*h’, (22)

It is easy to show that where we set
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hﬂ=£. 23 a,=(p/2)(1-x), E=(p/2)(3x—1). (31)

Then the pressure tensor defined by EY) is expressed in

h* is the unit vector in the direction of the flux. terms ofy as
The pressure tensor of radiation defined by &2) con-

my— v
stitutes the generalization of the isotropic case. In 28) 1 prES,
the last term describes the anisotropy due to the radiatiofyhere
field. Therefore, the quantity, does not reduce to a simple
hydrostatic pressure. EAY=—3(1— x)T*"+ xyh*h". (32
In a local Galilean frame of reference the pressure tensor ]
I1,,, defined by Eq(22) has the form Then relations28) become
Hi/kr:argirk/‘{'Ehi/hk/ (24) _E#VhV:th'! _E#VYVZ%(]'_X)Y# (33)
or Thus y and (1— x)/2 are the eigenvalues of(E*") corre-
sponding to the eigenvecton$ andY*, respectively. Insert-
a, a, 0 ing Eqg.(31) into Eq.(27) we obtain the same expression for
M.,=[0a 0|={0a 0|+|(000|, (25 !*as in[16]. Making use of Eq(22), Eq. (18) becomes
E+a 3 E TAY = p ukU”— 8, Y7+ UrJ + U JA+ EhhY.  (34)
3
whereh;, has been chosen ﬂ%:Vi(r)- One may compare this expression with that obtained from
If we introduce the projection tensor onto the two-spacethe microscopic viewpoinf8,9,10,17,18 In the most ex-
orthogonal tou” andh*, treme cases, the flux out of an optically thin zone predicted

by diffusion may exceed the energy density times the veloc-
ity of light. Therefore, in the following section we will define
J=|J| as[13,14

TA7= y' 4 hehY  with T#'u,=T#*h,=0, (26)

then we obtain

I=p/f, 35
4= —a, T+ (E+a,)h*h?. 27 Pr #9

f=|f| being the normalized flux such thatGF<1:
It follows that

0 in the isotropic case,

al _ a =
—H**hy=(E+a,)h?, f 1 in the free-streaming case. (36)
1Y, =a,Y*, (28)  y andf are related by14,15
whereY is any vector belonging to the two-plane orthogonal
to the two-plane defined byu(h): X—373 V4—3f%. (37)
Ye=TY, . It follows from Eq. (37) that
From Eq.(28) it follows thatE+a, anda, are the eigenval- vel[i,1]efelo,1].

ues of (~II#") corresponding to the eigenvectdn$ and
Y¥, respectively. & +E) anda, may then be interpreted as | what follows we shall use the expressi¢d4) of the
the components of the radiation pressure along the directiogress-energy tensor of the radiation.

of the fluxh* and in the two-space orthogonal to this direc-
tion and tou”.

. . . C. The stress-energy tensor of radiating fluid
Let us mention thai’®” cannot vanish as it has been

claimed in[18] (p. 2889. I'** is an operator: Our goal here is to account for the effects of the radiation
energy, pressure, and energy flux, so we shall ignore viscos-
rwrﬂp:r;_ ity and thermal conduction and as [i8] we shall adopt the
following assumptions.
The dimensionless quantity (i) The material medium is a perfect gas which remains in
local thermodynamical equilibrium with all species of par-
x=(E+a)/p, (29 ticles as the same kinetic temperature.

. ) (i) The radiation field can be treated in the nonequilib-
is called the Eddington factdr3,14,18. But the pressure (jum diffusion.

component along* is The radiating fluid(matter plus radiationmay then be
1 described by the total stress-energy tensor

* _ _ ith —<y<
Pr=atE=xp with g=x=1 30 TP =TE+TH = puru”+ T4+ U3+ u"d%,  (39)

Equation(28) yields where
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FIG. 1. A relativistic deflagration wavéshock in the local
frame of the shock front.

I1#"=— Py’ +Eh*h”,

P=Pn+a,, p=pmtpr. (39
The tensor given by Eq38) can also be written as
TH'=Wu‘u’'—Pg*’+ur*J”’+u’J*+Eh*h”, (40
where
W=p+P=nF. (42)

Ill. SHOCK WAVES IN RADIATING FLUID

A. Shock invariants

The shock wave is here a hypersurface of discontinuity

denoted ag, for the fluid and radiation variables. The total
stress-energy tensdr*” satisfies the local energy and mo-
mentum conservation law:

v, T#"=0. (42

The conservation of baryon flux density is written as
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WA= T,
where
T*=nFuuP—Pg*¥+u*JP+uPJ*+Eh*hP. (46)
We introduce the quantity
(1zh*)?
2_ a
hn_(_,y,uvlﬁlv)' (47)

h, is the component df in the spatial direction of propaga-
tion of the waves. Her&" is a unit four-vector normal t&.
It follows from the timelike character ¥ thatl“l ,= —1.

It is easy to show that the equalilnﬁ= 1 holds only if the
normal to the wave front* belongs to the two-plane defined
by the vectorai® andh®: that is,

[*=gu“+kh?,
where
g=1u,
and
k=-1%h,.

It follows from these considerations that
r«1,=0
and
F””IMI,,=I“IM—(I“uﬂ)er(IMh“)z:O,
(1,h*)2=1+(1*u,)2 (48)
In all the following sections we shall consider the last rela-
tion of Eq. (48).

The speedv™ of the wave frontS with respect to the
fluid, that is, with respect to the time direction is given by

V., (nu*)=0. 43 [12]
From the main syster®2) and(43) we obtain by a classical S o o (1 u®)?
argument the general shock equations (V=lc)*=p NETZT L (49
utv
al— af1—
1[nu®]=0, 1,[T*]=0, @4 e setu?=(1%u,)?, and Eq.(49) gives
where the square brackets correspond to the discontinuity of B2
a quantityQ across the shocE:[Q]=Q;—Qq. The sub- uzzlﬁ. (50
scripts “0” and “1” denote upstream and downstream vari- -B
ables, respectively. The thermodynamical quantities are mea-, : : .
sured in the shock system. The quantitigsandu; are thus ﬂ'hyri,u 35 trﬁ four-velocity of the fluid.
the flow four velocities of the upstream and downstream flu- € ldentity
ids, respectively, with respect to the rest frame of the shock
front (Fig. 1). (1,u9)?| —5— 1) =1 (51)
Equationg44) express the invariance acrasof the sca- B
lar . .
follows from Eg.(50). Equations(48) and (49) yield
a=nl,u® (45 | ue
and of the vector "=~ B (52)
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We have chosen the sign assuming that“u, and|“h,
have opposite sign.

B. Basic shock equations

We deduce from the invariance of the vectf that the
scalar

— — a2 a a\2
D=1,Wr=W(I ,u)2+ P+21,3° uf+E(I ;h) 3

is invariant acros&. Making use of Eqs(51) and (52), Eq.
(53) can be written as

D=w*(l u%)?%+P*. (54
In Eq. (54) we have set
P*=P+E=P,+P},
*=W+E 2J +P* (55)
W = -5 = - o
g’ B
whereP} is given by Eq.(30).
In the following sections we shall set
* w*
T :FZ. (56)
Using Eq.(54) we obtain
D=a’r* +P*. (57)

We decompose@ andh according to tangential components
and normal components with respectdo

[ u®
ub=pf+ [B=vP—1 u4?,
17l
8 (58)
hA=tP+ S— |B=tF—| he~,
11,
W is then written as
WE=Z7F—(P* +a27*)|#, (59)
whereZ? is defined by
ZP=AvP+BtP (60)
with
A=W(l  u*)+Jl h%,
(1u)+J1, -

B=JI u+E(l ,h9).

The vectorZ” is tangent toX. The invariance ofW? is
equivalent to the invariance &@” and of that of tangential
component. The scalat’Z,, is then invariant across.

Using Eq.(59) we obtain the following scalar invariant
across;:

2°Z,=A%"y ,+B%t,+ 2ABYy,,. (62)

It is easy to obtain the relations

HYDRODYNAMICS: . .. 4559
vPv,=1+(1,u")?=(l,h"?
tPt,=—1+(1,h*)2=(1,u"? (63)

tPv,=1%u,lPhg.

Making use of Eq(63), Eq. (62) gives

Z°Z,=A%(1 ,h*)2+B2(1 ,u*)?+ 2ABI,u“l h?
= (Al h%+ Bl u%)?. (64)

Thus the invariance of ,Z” across is equivalent to that of
the scalar

L=Al h*+BI u“. (65)
Making use of Egs(52) and(55), Eq. (65) can be expressed
as

*

% (1,724

L=Alah“+BIau”=—[

Thus the quantity

s :7_*2
(I u9e+J= ——

*

B

is invariant acrosg..
Using Eq.(61) in (64) we obtain

g= +J (66)

*2 *

707 =12=2_ (1 um+23 2 (1Lu®)2+ 32 (67)
o ?( a B Iy :

By using the identity(51), Eq. (67) can be written as

2°Z,= 0*%(1 u)*+ 0* (WHE)(1,u")?+J% (69
Thus the following scalar is invariant across
ZPZP 2 %2 * Jz

=32 =a "+ 7 (W+E)+;. (69

Thus we have obtained the following radiation Rankine-
Jump conditions:

Nol LUug=n4l uf=a,
a’rs +Py=a’ry + P} =D,

2 2
1

2 %2 * JO 2 %2 *
+TO(W0+E0)+¥:a 7'1 +Tl(Wl+E1)+¥

8.7'0

K.

= (70

The set of equation&’0) is supplemented by an equation of
state of the fluid and of the radiation after the shock. These
state equations will be taken to be of the form given by Eq.
(5) for the matter and by Eq$30) and(35) for the radiation.
The relationg5), (30), (35), and(70) then completely deter-
mine downstream quantities in terms of the known upstream
parameters.
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C. Rankine-Hugoniot adiabats B* x
The invariance acros® of the scalarD andK vyields 7= (y—1)(1—-8*)" (79
71 (W1 +Eq) — 75 (Wo+ Eg) —(PT —Pg) (71 +75) Then\ given by (73) is written as
1 p B 11
+— (J2-J3)=0. 71 = il e Bt
az( 1—J0) (7D )y i 1+0_ X+,8 v X)' (80)

Taking into account the expressionsWfandP* this equa-
tion can be transformed as

1
1 (pa+ Py = po=PIT + 12 (31-35)=0. (72

For a simplified notation we introduce the dimensionless

guantities

X—T* H—P* )\_p 73
_TS' _Pg, _P*' ( )

Focusing mainly on the radiation effects we shall consider
the case corresponding #®* <1, that is, to the radiation-
dominated gas. In this case E@55), (73), and(80) yield

P*=Pf=xp;0* =p(1+x—2f/B),

\ is known if the equations of state of the fluid and theand Eq.(77) becomes

radiation are given. Making use of E(.3), Eq.(72) may be
written as

Xy(NIT;+1)—No—1I1;+ (32-33)=0. (74

a’rt P§

Equations(35) and (73) yield

J2 1
_ £2)\ 2172,
a?rs Py (Ltay)? “0n1 5
2
% = ! apf2\2
a?rsPy  (1+0g)? 007
where we have set
e P5 _ P5 _ (vo— D)oo+t xo
0 5’ wgug ug( Yoo+ 1+ xo—2 o/ Bo) (76)
o= pmlpy.
Then(74) becomes
2y 2172 2y 2
aof NI aofohg
+1)—Ay—1II,+ =0.
Xi(AN I+ 1) — Ao~ 11, (1top? (1t 0g)?
(77
We introduce the parameter
Pm Pm
* - =
A p* Pmt xpr , (78

which is in the range & g* <1.
Equation(78) gives

(y=1o

B = Do+’

which yields

- Py ' 1
- P_gry)\_ )
X0
ag= , 81
O ud(1+ xo— 2o/ Bo) (
aof N2+ (AN X—1)IT— (pg— X) =0, (82
where X,II) is any post shock state and

bo=b(No) =No+ \5fao. (83)

Making use of Eq.37) and the expression of from Eq.
(81) we obtain

4F2\%2=(3N—1)(3—N\). (84)

Equation(82) is a quadratic equation witi as an un-
known quantity anch as a parameter. In theX(IT) plane,
the equation of the straight lin@ is written as

X 1
I(X)=——+1+—. D
0

ag

Now we shall discuss of some of the possible applications of
the shock equation&0) through particular cases of physical
interest.

Case I: Both the upstream and the downstream medium
is assumed to be extremely opaque and in thermal equilib-
rium. The shock is then in an optically thick medium and all
radiation emanating from the front is reabsorbed in the up-
stream medium.

This case corresponds to

(89

This case is appropriate for very high-temperature flows

(e.g., in stellar, envelopewhere the contributions of the

radiation pressure and energy density are significant.
Making use of Eq(85) in Eq. (82) we obtain

fo=f=0&xo=x=3=No=\=3.

HX)=3x=1

(86)
The corresponding curve will be denoted @g. Cg is the
Taub adiabat for a shock wave. By using E8&5), the ex-
pression ofa, given by Eq.(81) becomes
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1
ao—4—guo. (87)
The intersections of the straight lif with the curveC, are
determined by the equation

3—X X 1
™1 +1+ a0
which yields
3X?2—4(1+ ag)X+4ag+1=0. (89)
The discriminant of this quadratic equation is
A'=4(ao—3)2. (89)

Then the roots of Eq(88) are
X=5[(ao+1) = (ao—3)].

Thus we obtain the following intersection points ©f and
D:

4a0+1
17773
and
=22 90
1 3010 ( )
and
XZ:HZZJ. (91)

For ap=3(or u3= 3= B5=1A3) the discriminantA’ given
by Eqg.(89) vanishes and the equation of the straight lihe
becomes

TI(X)=3—2X. Dy

D, is tangent to the curv€, at the point(1,1).

The inequalityX,;<1 (or IT;>1) implies ay< 3= uz> 3
(or B3<3).

Thus the curveC, and the straight lind® through(1,1)

will have another intersection with the upper branch if

ao<3 and with the lower branch ifo> 3.
For ap=%(< 3) and forag=3(>3) we obtain the follow-
ing equations of the straight lin@:

[I(X)=6—5X d;
and

2X 5 d
H(X)Z—?'Fg. 2

The curveC, and the straight lined; andd, are plotted in
Fig. 2. They pass through the poifit,1).
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FIG. 2. Plot of Taub adiabat,, dl(a0=%), anddz(a():%’) in
the (X,II) plane. The curv€, and the straight lined, andd, pass
through the point1,1). The intersection ofl; andd, with C, gives
the values of the downstream quantitid$,¥) if we assume the
upstream states are known.

Case ll: We suppose now that we have a radiating shock
propagating into the upstream medium assumed to be trans-
parent. The downstream medium is assumed to be opaque.

In this case we have

foe]0,1]e xoe] 3.1l e 92)

[1,3f=0ey=3=\=3.

The radiation originating in the post shock medium may then
flow freely across the front and escape to infinity. An ex-
ample is a strong shock emerging from the photosphere or
chromosphere of a stdésee[3], p. 562.

The discontinuity of the Eddington factor ig]=x— xo
<0.

By using Eq.(92), Eq. (82) yields

M(x)= 2o~ X 93
( )_3)(——1’ (93
where
262 o
do=Not Nofgao=No+ 7 (Bho—1)(3—Ng) (99
with
X
° (95

an=— .
O uB(1+ xo—2 o/ Bo)

The curve corresponding to E¢P3) will be denoted a<C.
C is called the Hugoniot curve.

The equation of state of the unburnt gas is taken in the
form

PSr = XoPor -

The equation of state of the burnt fluid is that of a gas of
radiation:
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C then represents the states of the burnt fluid. We assume
that it lies above the Taub adiab@t, which represents the

states of the unburnt fluid. This implies tht>3 and that
the curveC does not pass through the initial poifit1).

The intersections of the straight lii& with the curveC
are determined by the equation

®y— X X 1
X1 +1+ ” (96)
or
3X2—AX(1+ ag) + (1+ ag+ ag®y) =0. 97
The discriminant of this quadratic equation is
A=4a5— ag(3®y—5)+1. (98)

Equation(98) is also a quadratic polynomial, its discriminant

may be written as

So=9D3— 30D+ 9=3(P,—3)(3D,—1). (99
It follows that ®,> 3= 5,>0.
Equation(98) then has two positive roots given by

30,—5-5,
aolzT,

o= —3(1)0 > \/6—0 . (100)
8
ThusA>0, if ag<agq, Of ag>ag,. For each value o
>3, we can determineg; and «, and may choose, such
that ao< apq or C(0> apo.
The roots of the quadratic equati@?) are

" 2(1+ ag) * JK.

3 (101
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X 1
m;xX)y=-—+1+—. T
ap2 ap2

Since the tangent to either curve at a poiht,X) is related

to the speed of sound in the medium corresponding to that
point one observes that the hydrodynamical processes are
devided into weak g<pB), Jouguet B=pBs), and strong
(B> B,) deflagrations B, designs the sonic speed agBds

the speed of the deflagration wave in the burnt fluid.

The existence of deflagration as a possible mode for a
phase transition in the early universe has recently been ex-
amined(see, for exampld19], [20], and[21]). From Landau
and Lifchitz[22] one knows that

Bzz(Pz_Pl)(92+ P1)
1 (ey—ep)(e+Py)

(104
o_(Pa—Py)(e1+Py)
2 (ey—ep)(eyt+Py)

wheree, P have their usual meanings. Using our notations,
the relationg104) may be written as

,  (IT=1)(\I+1)
O (ANIT—Ng)(Np+11)

(109
~ (II=1)(\o+1T)
NI+ 1)(NT—Np)

2

It follows from Eg. (105 that
1
Bo—1, B—>X=)(, for 1I>1.

Any straight lineD such thatag> «g, intersects the defla-
gration branch in two points: along it from the poidtl) the
pressurdl decreases and the voluneincreases.

Thus the relation

These solutions represent the two intersections which the ray

D through the point1,1) makes with the curveE.
We deduce from Eq(94) that

_2+5a0*2\A

3ag ; (102

0

where g is given by(100). In order to satisfy the inequali-
ties 1=\y<3 we have to consider in Eq102 a value of
ag Which is greater thaag,.

The straight lineD is tangent taC only if the discriminant
A given by EQ.(98) is null: the two points of intersection
coalesce at the Jouguet poihtand ag= ayg (the root ag
= a4 being excluded It follows from (101) that at the Jou-
guet point we have

2

The equation of the tangent © at this point is

CDO_X
3X-1

I1(X)=

gives various deflagration adiabat with as a parameter. In
order to ensure £\,<3 it is necessary thaby>3. It is
interesting to notice the similarity of our relation with that
obtained from the equatiof8.8) of [23]

K—x
II(X)= s—

3x—1 W|th H=P2/P1 and X=X2/X1,

where
(106

for various detonation adiabats as a function of the vacuum
energye.
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1.

FIG 3 Plot Of Co, C((I’OZ
(X,II) plane.

3.8), and D(aq=

8/5) in the

For ®,=3.8 (100 gives ag=0.1755 andag,=1.4245.
We may chooserxy=0.16<ag; or ay=8/5>aq, to have
A>0. Equation(102) then yields

1_4
)\0{; if 2o=0.16
and
5
x0:|g if ap="2. (107)
2

We shall exclude the valuey=0.16 as\y must be in the
range E=Ay<3. In this example Eq(93) becomes

nox) = 2% 108

( )—m (108
with the equation of the straight lin@ being

I1(X)= X, 1 109

X)=5*+5- (109

The curvesC, and Eq.(108) and the straight line Eq109
are plotted in Fig. 3. The equation of the tang@rttecomes
IT;(X)=—0.702X+1.702. (110

The curvesC, and Eq.(108), and the straight lin¢110) are

plotted in Fig. 4. Thus foby>3 we obtain various Hugo-

niot adiabats which lie above the Taub adiaBgt

Case lll: The upstream material is an optically thin me-

4563

FIG. 4. Plot of Cy, C(®7=3.8) andT(«ag=1.4245) in the
(X,II) plane.

1+ 8o
2B

Equation (83) then gives®y=1+ «q.
>3e ag>2. The equation{96) yields

apg= — (112)

It follows that @

3XZ—AX(1+ ag)+ (1+ ag)?= (113
The discriminant of this quadratic equation is
6= (14 ap)?. (114
The roots of Eq(110) are
2(1+a’0)_\/3 l+a0
1: = y
3 3
(119
2(1+ap) =8 —\s
2= 3 = l+ ag.

The straight line D is tangent to the curveC if
6=0eay=—1 which yields®,=0 and Eq.(115 gives
X;=X,=0. Thus the case where,=1, x=3, and
ao=—1 leads to results which are not consistent with shock
waves.

It may be remarked that ifo=1 anday=—1 then we
obtain from Eq.(95) that B,=1. We obtain forC the equa-
tion

dium while the downstream medium is an optically thick FOT @0= 5 Ed.(116 becomes

one. This case may correspond to

f0:1<:X0:1:>)\O:11 (111)
f=0ey=3=\=3.

The relationg111) are the extreme case of E@2).

The radiation originating in the postshock medium can

)= 3x—1~ 3x-1 (119
10X = 3.85-X 1
( )_3)(——1’ (117
the equation of the straight lin@ being
I(X)= A 118
(X)== 27 +57 (118

then flow freely and escape to infinity. In this case, from Eq.

(30) we haveE=0 andag, =Pg,=
Egs.(50) and(95) that

por» and it follows from

For ao=135, EQ. (115 gives the two intersections of the
straight lineD with the curveC:
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Ty
[ J,
(9]

FIG. 5. Plot of Cy, C(®,=3.85) andD(ap=32}) in the
(X,II) plane.

77

1 77 154
X1:§(1+ao):a),

57 171"
(119

20X,
=7

77
XZ:1+C¥0:¢0:2_0, ]._.[2:0

The straight lineD through(1,1) intersects the Taub adiabat
C, at another point whose coordinates are given by(EQ):

17

171

_2_61/0_

1 62
X1=§ (1+4ag)= 1—51_[1—3—0[0

(120

Equation (120 represents a thermodynamic state with a

negative pressure, the final state on the cu@veorrespond-
ing to the strong deflagration is<¢=®,,I1,=0) given by
the last relation of Eq(119. The curvesC, and Eqgs(117)

and (118 are plotted in Fig. 5.

IV. REMARKS

The above results are obtained considering a radiation-

dominated gas, that is assumes tBat<1. The same results

MAHDY CISSOKO

by Egs.(1) and(34) are not evaluated at equilibrium states
[18]. The conservation law42) then reads

vV, T2=0, Vv, T**=0.

V. CONCLUSION

The main purpose of this paper was to derive from the
macroscopic viewpoint the radiation energy momentum ten-
sor taking into account the effects of the radiation pressure,
energy density, and flux and to extend previously known
results on the relativistic shock waves to the case of relativ-
istic radiation hydrodynamics. It is shown that the Eddington
factor is a convenient parameter to study the Rankine-
Hugoniot adiabats. Our main conclusions are the following.

(i) For xo=x=1% andu3>3 (or B,>1/v3) we obtain the
Taub adiabat for shock wavésee Fig. 2

(i) For 3<xyo=<1 and y=3 and for each value of the
quantity ®, such that®,>3 the curveC lies above the
Taub adiabat. It is shown that in this case one has to consider
only the intersections of the straight lii2 with the defla-
gration branch. The slope of the straight lifiewhich is
tangent to this branch at the Jouguet point is determined by
the great rootag, of the equatiomA(«a)=0 given by Eq.
(98). Any ray with the slope greater than that of this tangent
(ap>agy) intersects the deflagration branch in two points
(Fig. 3.

(iii ) If xo=1 (free streamingand y= 3, then the straight
line D through the poin{1,1) cannot be tangent to the de-
flagration curve and null pressure corresponds to its first in-
tersection(strong deflagrationwith the curve(Fig. 5). The
speed of the downstream medium is theés 1. The radia-
tion emetted across the front from the hot downstream me-
dium escapes freely to infinity.

We hope that some applications of our results to the ra-
diation dominated epoch of the Universe will be possible. A
forthcoming paper will be devoted to the study of the deno-
tation waves.
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