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Testing the equivalence principle through freely falling quantum objects
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Free fall in a uniform gravitational field is reexamined in the case of quantum states with and without a
classical analogue. The interplay between kinematics and dynamics in the evolution of a falling quantum test
particle is discussed allowing for a better understanding of the equivalence principle at the operational level.
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[. INTRODUCTION in the classical case, a similar prescription is discussed for all
the quantum states mapped, in the macroscopic limit, into
Gravity appears to be distinguished from all the other fun<classical states. In Sec. Ill the peculiar case of quantum states
damental interactions by the remarkable feature of affectingvithout a classical analogue is dealt with, with a detailed
all bodies in a universal way, regardless of their internal@nalysis of the simplest class of Sctirger cat states in the
composition and mass. This fact, which requires in the Newconfigurational space. In Sec. IV the two lowest momenta of
tonian picture the gravitational force to be exactly propor-the time-of-flight distributions for quantum states in free fall
tional to the inertial mass, represents the physica' Cornerin a Uniform graVitatiOI’la| f|e|d are eValuated. The dynamical
stone of Einstein’s weak equivalence principle, establishingffect of a continuous quantum measurement of position on
the local identification of gravity and acceleration as far ashe geodesic motion is dealt with in Sec. V. In Sec. VI some
mechanical effects are concerned. In the famous gedankdiienomenological consequences of the previous consider-
experiment conceived by Galileo, the universality of the ratiodtions are presented, with particular emphasis on the possi-
between gravitational and inertial masses has been studiddlity of testing gravity with mesoscopic objects. Some gen-
by imagining test bodies in free fall from the tower of Pisa eral comments on the definitions of the weak equivalence
[1]. Since that time several actual tests of the weak equivaPrinciple which still hold in the quantum case are finally
lence principle have been performed with very sensitivediscussed.
schemes, such as the ones exploiting pendula or torsion bal-
anced 2], but only classical test bodies have been involved. Il. GALILEIAN PREPARATION
On the other hand, any attempt to merge quantum mechanics FOR CLASSICAL-LIKE STATES
and gravity on an operational basis should start from the
possibility of establishing the properties of the latter by using ! order to perform an ideal free fall experiment for two
a generic body as a probe, regardless of its macroscopici§uantum particles having inertial masse$” and m{®,
and hopefully without reference to classical physics. Thism{®#m{® , we have first of all to specify a proper initial
path of reasoning leads to conceptual difficulties clearly fopreparation in such a way that any difference in the motion
cused, among the others, by Penrose when he writes: “Wduring the free fall must be ascribed to the effect of gravity.
see that this view of reality is very different from the one thatBy recalling that within the classical Hamilton picture the
we have become accustomed to from classical physicsGalileian prescription for initial positions and velocities fixes
where particles can be only in one place at a time, where ththe ratio between the initial momenta in a well-defined way,
physics is localexcept for action at a distanicand where  p{/p®=m{*/m® it is natural to extend such a prescrip-
each particle is a separate individual object which, when it isjon to the guantum case, which can be also represented
in free flight, can be considered in isolation from any otherthrough a Hamiltonian scheme. Of course, the Heisenberg
particle. All these classical conceptions must be overturne@ncertainty principle prevents us from simultaneously defin-
once we accept the reality of the state-vector. It is perhapg, for each particle, initial position and momentum. If
little wonder that most people are reluctant to do thi8].  |4,) and|y,) denote the initial state vectors for particles 1
As a first step along this direction, it is therefore natural toand 2 in the Schidinger picture, the classical recipe can be
ask what happens if the Pisa gedanken experiment is rgeeasonably rephrased by imposing the conditions
peated using properly prepared quantum test particles. This
guestion, besides its above-mentioned conceptual impor- @Zw <ISZ>¢
tance, is also relevant in view of recent attempts and propos- <2>w :<2>¢ , T)lZT)Z (1)
als to investigate gravitation using microscopic and mesos- ! 2 m; m
copic systems, such as antimatter in free f4h-6], cooled
atoms in optical molass¢3] and opto-gravitational cavities where for simplicity we have restricted ourselves to a one-
[8,9], and interfering matter waves in both curved space-timalimensional representation along the vertizalirection and
and accelerated reference frani#8,11. The content of the (Z),, and(p,), denote, as usual, the expectation values for
paper is organized as follows. In Sec. Il, after some remarkposition and momentum operators, respectively. Further-
on the preparation of the initial state for a Galileo experimenimore, our description will be confined to the motion of non-
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relativistic quantum particles, implying values of the initial | ), the separation indicated in E¢R) between diagonal
velocities in Egs(1) to be small compared to the speed of and off-diagonal contributions also reflects on observable
light. From the mathematical viewpoint, Eq4) impose a properties of the system, such as average values of Hermitian
relative constraint on the average values of the position andperators. For a generic observafileone can think its over-
momentum probability distributions associated with theg|| mean value in the statey,) as formed, according to Eq.
stated ¢,) and|,), respectively. Some other remarks are in(2), by two distinct terms:

order. First, leaving aside the special choice of starting from

a given position at rest(p,) 4, =(P2),,=0), we are forced (0),={O) dassicart {O)purely quantum (3)

in general to deal with two different initial staté¢g,) and

|1,) in the single particle Hilbert space; this is analogous toy¢ only nondiagonal entries are different from zero in E8).
the classical situation, where the representative point of th

R . L %) =0 for all n), the mean value of the observable
classical initial state in the phase space is different for thgl//”r']ay”ém contr'b) tions of intrinsicall antum-
two masses. Second, deep differences between the Conceﬁséchanical o);i in foutl intrinsically - quantu
of classical and quantum state exist, which also produce dif- gin.

ferences in the corresponding prepared systems. The proba}acfarg'”ngs t;acIT t?f thenfr::elgalli p:irloglem} theitiprr:aw?uts (i:on- _
bilistic interpretation underlying quantum mechanics will al- slderatio pply 1'a nonclassical superposition state 1S se

low us to speak of probability distributions, for instance, Ie(czt)ed as initial state for one or both test partiotels’ and
characterized byneaninitial conditions such as Eq¢l), as M the decompositiori3) holding in this case for the po-
opposed to the well-defined values for the relevant classicaition and momentum operatarsandp, involved in Eq.(1).
observables. Moreover, as a striking difference with respedpespite the fact that purely quantum expectation values may
to the classical case, conditiof® are far from univocally ~€merge, compatibility with the classical limit is again main-
determining the initial state of the two particles. On the con-tained provided that the Galileian conditiofi3 are satisfied,
trary, the Galileian prescription gives rise to equivalencdn the sense that both states are mapped into initial configu-
classes of states in the Hilbert space, each class possessingpions having the samélassical position and the same
defined mean position and velocity and collapsing in thelclassical velocity. _ .
classical limit into a state having both quantities sharply de- As is well known, a nice class of quantum states without
fined. It is also rewarding to point out that this line of rea- classical counterpart is offered by the so-called Seimger
Soning, being u|timate|y motivated by the Correspondencéiat states, first introduced [ﬂ.Z] Let us consider the coher-
principle, applies in a strict sense to all quantum states fofnt superposition of two macroscopically distinguishable
which a classical interpretation is obtainable. Such a class ¢ftates in the configurational space, represented by a wave
states does not exhaust the totality of the admissible ones fignction of the form

the Hilbert space. For all the other states, namely, the family

of genuinely quantum states for which no classical counter- _N _ (z—2p+A)?
part exists and the correspondence principle cannot be in- Yo(2)=Nj c.ex 2A07
voked, the Galileian prescriptiori&) have to bepostulated
and deserve therefore a more careful discussion. (z—29—A)?
+c_expg — TA% , 4

Ill. CASE OF STATES HAVING
NO CLASSICAL ANALOGUE consisting of the sum of two Gaussian peakzatzy* A,
A>0, each of widthA,. Herec.. are two complex coeffi-

Because of the superposition principle, states of an intrinéiems’ for which we denote b the relative phase, ard is

sically quantum nature arise even starting from states whiclj ' ormajization constant determingdp to an irrelevant
in the classical limit corresponds to macroscopically d'St'n'phase factorby

guishable ones. Leéts,), n=1, ... N, denote a set of states

in the Hilbert space of a given quantum system, and let us

suppose these states to be macroscopically distinct. Any su-

perposition statéyo) = =,c,| ) is also permitted, the com- Xexp(—AYAZ) 1, (5)

plex coefficientsc,, ensuring the overall normalization. The

nonclassical nature of this superposition state can be madey ny|| separation4 =0) the special case of a normalized

explicit by considering the density matrix representation  ggussian wave packet with vanishing average momentum is
recovered. The expectation values of position and momen-

IN[?=(mA8) " H|c.|*+|c_|*+2Rgc,c¥)

ﬁ=|¢0><¢0|=2 |Cal2l ) il + Z C* Conl Y)W, tum in the statd4) are calculated, obtaining
n n,m#n
@ o aa o2 e’
Yoo 0 Te, P+ |c |2+ 2Rec.c* Jexp( —AYAZ)’

the off-diagonal terms being responsible for correlations of a
purely quantum-mechanical origin. In the classical limit, due
to the action of decoherence mechanisms, interference ef- N 2/ 2
fects are lost and the pure state descript@®rbecomes iden- B)y = —ZhA Im(c..cZ)exp(—A%Ag)

tical to the statistical mixture characterized by the diagonaf o Ad |ci|?+]c_|?+2Rec c* Jexp —A%/AF)
probability weightgc,|2 alone. Given the superposition state (7)

(6)
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The average position is simply the center of mass of the catime-of-flight probability density. In the probabilistic lan-
weighted by the asymmetry between the coefficignts?  guage, the question is related to the so-called first passage
and|c_|?. By Fourier transforming Eq4), it is seen that no time problem, which has been solved within the natural
diagonal momentum contributions are present, leading to framework offered by stochastic mechanjds] in the spe-
purely guantum momentum in Eg7) with the form of a cial case of stationary statEk6]. Various attempts in differ-
typical interference factor, Ine(.c*)=|c,||c_|sind. A  entdirections have been made, as indicated in a recent work
vanishing value of(p,), is found if the relative phase oOn the subject where an operatorial solution is prop¢seH
9=k, keZ, corresponding to the evefmale and odd Leaving aside a rigorous derivation which is not essential to

(female combinations of definite parity cat statgs3]; a sketch our main line of reasoning, we Wi'|| now I!mit our-
maximum  contribution  is  instead achieved at S€lves to simple arguments. The average time of flight for the
9= (2k+1)/2, ke Z, corresponding to cat wave functions test massn{® can by straightforwardly calculated by means
already introduced by Yurke and Stolgt4]. In order to of the Ehrenfest theorem which, owing to the linearity of the
study the free fall motion of two catlike quantum particles,QraV'tat'_Ona| potentlal, al!ows us to obtain the average posi-
one has to match prescriptiofi) by suitably gauging the tion at timet in the classical form
parameters of the wave functigd), which is, at least in " N

inci i ini - 1m (P2)y
principle, possible. Let us suppose for definiteness to ma|n<- (")(t)>= il NI ot+<2> k=12 (10)
tain the widthA fixed and|c,|=|c_| in such a way that the 2m® 9 m{© Yo’ e
initial average positiori6) is constrained to be,. The sim-
plest choice is clearly represented by parity eigenstates, i.eBy setting (z¥)(t))=0, the mean time of flight at ground
by even or odd cat states necessarily starting at rest. If, howevel is obtained; in the particular caée,) 4= 0, the corre-
ever,_nonvanishir_]g average momenta are present, one c8Bonding expression is
exploit the possibility to tune the separatian , between the

peaks, withd fixed, i.e., mi(k) 2,
T = 2(W) =, k=1,2. (12)
A A2—A?\1+cosdexp —AZ/AZ) m? mg~/ g
—Zexp< _ 2 1 1'=0 _ (8)
Ay A |1+cosYexp—AYAH mb’ A rough estimate of the fluctuations around this mean value,
) . . ) taking into account the spreading of the state during the mo-
or the relative quantum pha%lz, with A f|Xed, l.e., tion, can be given by eva'uatin@-Tof% O-Z(Tof)/UZ(Tof)v

sinﬁz[1+exp(—A2/A§)co&‘}2] m;g) where af(Tof) and v ,(Ty) are the p_osition variance_of the
_ — =—7- (9) state anq _the average yelocny at time T, respectlyely.
sindy[1+exp(—A/Ag)cosd;]  m By exploiting Eq.(10), this may be shown to be equivalent
to another possible definition (meOf, resulting from the se-
'midifference between the times, and t_ for which
éz(tt))toz(ti)=0. Let us consider in detail the behavior
f our quantum probes™ andm(®, when each of them is
allowed to be initially prepared with average positignand
vanishing average momentum in the form of a Gaussian or a
catlike statgthis latter necessarily possessing a well-defined
parity). The general expression of the position variance as a
function of time, o7(t)=(2%),,—(2)7, , has been calculated
by following the Schrdinger evolution having the wave
In the nonrelativistic picture we are considering, the timefunction (4) as initial condition(see Appendix A for detai)s
evolution is  generated by the Hamiltonian The result of the calculation can be written as
H=pZ/2m;+mygz m, denoting the gravitational mass. In
analogy with Galileo’s procedure let us focus, for instance,“z(t)
on the time of flight of the quantum particles. Because of the
already remarked fuzziness of quantum states, even if the A% A? h?
measurements are treated as ideal, allowing us to estimate aff \/ > + —AZ/A2 +2 272
.. ) e . l1+e 0 M;Ag
the measured quantities with infinite precision, these times
can be only predicted in a probabilistic way. Given our par-
ticles with inertial massesni(l) and mi(z), the experiment the upper and lower Signs referring to the e\(e1[a|e1(:+
consists in recording two time-of-flight distributions corre- =c_=1) and odd(female,c. =—c_=1) cat states, respec-
sponding to the time of arrival from the initial height tively. As we will discuss in more detail elsewhdrt8], the
2y=(2),,, at variance with the classical case where tworate of spreading for a cat state may become less than the
single time values are sampled. Therefore, the full knowl-Gaussian one. Equatidi2) reduces to the familiar formula
edge of such time-of-flight distributions can in principle be for the spreading of Gaussian wave packeta i# 0, while
demanded to gain a complete information on the free falklight modifications to the Gaussian case are obtained in the
dynamics. To the best of our knowledge, no general conserimit A/Ay>1. Let us then consider an intermediate regime
sus has been reached so far on a consistent definition of thith A~ A, moreover assuming, small enough to become

Having assigned the initial preparation of each particle
we will analyze in the following two sections the evolution
of the system during the free fall as, respectively, predicte
by ordinary quantum mechanics for closed systems and by
more general description also including the effect of a mea
suring apparatus.

IV. RUNNING THE GEDANKEN EXPERIMENT:
THE UNMEASURED EVOLUTION

112A_g —1ie—A2/A§ t

(12

_A2/A2
A2 eA/AO)Z
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negligible with respect to the evolution induced contributionaccelerating laboratory should see the particle hitting the
in the total spreadingr,(t). One can thus approximate Eq. ground level after the same average time as in (&8} but
(12) by the leading time-dependent term and collect thewith a variance proportional to the inertial mass, the only
available information concerning the time-of-flight distribu- property of the body available in this case. More generally,
tion in the form of average time and standard deviation as once Eq.(15) is fulfilled, the theory shows a complete iden-
tification between the effects of gravitation and acceleration,
mi(k) Zy 2 h predicting in particular that time-of-flight probability distri-
Tor L 2 m® ai Efm: k=12, butions of identical form, with identical mass dependence in
9 oo (13) everymomentum, not just in the second one as here consid-
ered, are detected if the motion is performed in the gravita-
wherek=1,2 distinguishes, as usual, the two particles andional or accelerated laboratory.

€ is a numerical factor given by By summarizing, the widespread quoted sentence accord-
ing to which all bodies equivalently prepared fall precisely
1 Gaussian state, the same way in a gravitational field has to be carefully in-
12 terpreted when quantum objects are considered. Unlike the
e=4 [e—1 (14 . . .
i malg + )/femald — )cat state. classical case, this does not imply that only mass-
e+l independent observables are found. On the contrary, the

. . . .. time-of-flight probability distributions of quantum particles
Equation(13) can in fact be used with a general validity, \emain mass dependent, but such a dependeneepiscted

provided the final time in E12) is long enough, which can i, order that the weak equivalence principle be preserved at
in turn be obtained by properly adjusting the initial height. It 1,4 quantum level

is manifest from Eq.(13) that, despite the semiclassical
preparation formulagl), the time-of-flight distributions cor-
responding to different quantum objects are different, due
either to different masses or different initial states. As an Until now, the discussion has been carried out without
interesting feature, the ratio between inertial and gravitaconsidering the effect of the measurement apparatus. Indeed,
tional mass contributes to the average time of flight, whereadetection schemes can be designed in which each falling
the fluctuations around this value are affected, at this stagatom impulsively interacts with the meter just before stop-

V. MEASURED EVOLUTION

by the gravitational mass alone. ping its evolution, that is, at the arrival time. However, ex-
Since Eq.(11) holds, a necessary and sufficient conditionperimental situations involving a continuous monitoring of
in order to conclude the atom throughout the whole free fall can be investigated
(see[19] for recent proposalsand the perturbation intro-
m®  m® duced by the meter cannot be reduced without a parallel
@D~ @~ const (9 jimitation on the extracted information also resulting. Such

an influence has then in principle to be taken into account, as

is to observe, in close analogy with the classical experimentVe are going to discuss in this section. Various models have
identical values for the average times of flight. Let us supPeen designed to include the effect of a continuous measure-

pose that the equalit{l5) has been established for two par- ment process into the dynamics, the so-called measurement
ticles initially prepared in the same type of state, for in-guantum mechanics, an account of which can be found, for
stance, a Gaussian one. At first sight one may wonder that, #tstance, ir{20]. In the so-called nonselective approach, i.e.,
variance with the classical behavior, a dependence upon thhen no particular history of measurement is selected, the
mass survives in time-of-flight spreading, allowing one toevolution of the system under a continuous measurement of
distinguish again the resulting distribution patterns. At closePosition z is described through a master equation for the
inspection, the role and nature of the mass dependence céduced density matrix operator:
be understood on the basis of kinematical arguments. What- d .
ever such a dependence v_viII be, the crucial point'is that it can —p(t)=— '_[|Z| Pl _ﬁ[g,[glf,]], (16)
be recovered from an equivalent problem where it has a com- dt h 2
pletely kinematical origin. Let us imagine a laboratory in ~ o
which a test particle of mass; is initially placed on the top, H being the Ha_1m|l_ton|ag of trl? systein, the commutator,
at a heightz, above the floor, with the laboratory being then @nd «; expressindin (m?/Hz) "] the coupling of the posi-

. s .~ . tion meter to the test particle. Hereafter,is assumed to be
propelled at uniform accelerati@with respect to an inertial

S . time dependent. Equatiori6) for the system under consid-
reference framea directed upward. The motion of the par- gration can be rewritten as

ticle, which is supposed to freely evolve in the noninertial
frame, can be derived from the inertial free motion by a d . in? & imgg
standf’ard pro.cedur_e,.as outlined in Appendix B.. Provided that EP(ZJ )= om\ a2 922" T h
equality (15) is satisfied ané =g, formally identical evolu-
tion equations are thus found either for the motion of a quan- Ky

i i : itational field wi -5 (z-2')%|p(z,2' 1) 17
tum particle subjected to a uniform gravitational field with 2 14t
strengthg in a inertial reference or for the motion of the
same particle freely evolving in a noninertial reference acwith p(z,z’,t)=(z|p(t)|z’) denoting the coordinate repre-
celerated witha=g. In particular, an observer inside the sentation of the density operator. Besides some numerical

(z=7")
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TABLE I. Predicted standard deviations for the times of flightmseg of freely falling Gaussian states
and Schrdinger cat(male, c,=c_=1 and femalec, =—c_=1) states, starting at rest from an height
Zo=3 mm. The corresponding average time of flighTjs=24.74 ms and the values=A,=100 nm have
been chosen.

Gaussian state Male cat state Female cat state
He? 10.86 7.38 15.98
Be 4.82 3.28 7.09
Na 1.89 1.29 2.78
Rb 0.36 0.24 0.53
Cs 0.33 0.22 0.48

@33 metastable helium.

factor, the coupling constant, is equal to the reciprocal of such the ones exploiting rigid objects. For such configura-
the position noise spectral density. If this last is decreasedions additional complications arise from the difficulty to
i.e., the position sensitivity is increased, the last term in theachieve the quantum domain in macroscopic bof24.
right-hand side of Eq(17) will dominate over the others. As
remarked above, under this assumption the considerations
made in the previous section can be affected by the measure-

ment process and have to be reanalyzed in detail. A straight- Recent progress in the manipulation of atomic states gives
forward but tedious calculatiosee Appendix A for more hope to make the considerations presented here less remote
detaily allows one to explicitly solve the master equationfrom experimental investigation than expected. Atomic
(17) when the initial wave function has a Gaussian or Cat”kernixed states with a Gaussian phase space distribl'ltion7 al-
form. In particular, it is possible to calculate the averagethough far from the minimum uncertainty value of the pure
position and its variance versus time. It turns out that, whilestate configuration, have been already prepared and used to
the former is left UnChanged with reSpeCt to the Unmeasuregtudy the free fall of atoms in a semiclassical regime, as
case(10), the position variance is modified by the measure-reported in8]. A cloud of cesium atoms was trapped, cooled
ment coupling, the net effect being represented by an addit a temperature of a fewK, and then released at an aver-

VI. PHENOMENOLOGY

tive time-dependent contribution of the form age height of 2.91 mm above an atomic mirror made by a
) dielectric surface and a repulsive evanescent field. Various
208 N 204. Kz ﬁ 3 bounces of the cloud were observed, and the time of flight
o5t k) =0o5(t; k,=0) + t3, (18 ) X . . ;
3 \m was measured. In a successive experiment, a vibrating mirror

was used to show phase modulation of atomic waves. In this

with U;(t;KZZO) given in Eq.(12). It is worth observing case, an accurate study of the time of flight was reported,
that an additional mass dependence is obtained in this casghowing that resolutions of the order of 0.5 ms can be
Despite the fact that such a dependence is not different frorachieved[23]. On the other hand, preparation of even and
the unmeasured one, the ratiom; still appearing, an expla- odd superposition states has been prop$adf and Schre
nation analogous to the one delineated at the end of the prelinger cats of a single trapped Bdon with a separation
vious section requires care, due to the physical meaning ck~10? nm have been recently generated and detected in
the couplingk,. In order to state the problem in an acceler-laboratory[25]. Merging these accomplishments, an experi-
ated frame some additional assumptions on the behavior ahent in which a Gaussian or a Sctioger cat state of mat-
such a parameter are required. Since in general the couplirtgr at the single atom level is bouncing over an atomic mirror
between the meter and the test mass is not a purely mechamian be envisaged. Some numerical values, evaluated from
cal one, the question can be properly addressed onjyoby  Eq. (13) for different atomic species routinely manipulated in
tulating the validity of the strong equivalence principle. laboratory, are reported in Table I, allowing us to clarify the

The previously noted lack of effect on the average posi-orders of magnitude involved in a possible experimental test.
tion is interpreted as a manifestation of the Ehrenfest theoThe already achieved time-of-flight resolution quotedi2]
rem for potentials written as polinomials up to the third allows one to observe different time-of-flight distributions
power of distanc¢21]. However, for motions in more com- either due to different massésithin the same columror to
plicated gravitational fields, the last term in the right-handdifferent stategwithin the same royw Experiments of this
side of Eq.(17) can create differences in the average positiorkind should also stimulate further thoughts on consistent
of particles having different masses, something likgravi-  definitions of the time-of-flight distributions in the quantum
tational quantum Zeno effect. This would be, on the otherdomain. Moreover, similar experiments should be performed
hand, the signal of a contrast between a body at the santgy actually observing the time-of-flight distributions in ac-
time being in free fall and having its position continuously celerated frames, for instance, exploiting centrifugal force
registered via a meter interacting with it. Tests of the equivafields, to verify if the weak equivalence principle, as sup-
lence principle, although still viable, become more compli-posed in our discussion, still holds in the quantum realm. In
cated since disentanglement of the effect of the meter fronperforming such experiments, one should be prepared to pos-
the purely gravitational one is required. This problem is alscsible surprises, since no evidence is so far available that na-
present in the case of other tests of the equivalence principlire preserves the equivalence principle at the quantum level.
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VII. DISCUSSIONS AND CONCLUSIONS z+7'
— — !

Besides the experimental feasibility, some conceptual ob- ! 2 VTP A1)
servations concerning the interplay between quantum me-
chanics and gravitation are in order. First of all, the presenc@btaining
of the mass in the time-of-flight distributions cannot be as-
cribed to the fact that the test objects possess, in some sense, 9. =1 2i o K ¢
an extended structure. It is indeed apparent from Eb3. o’!tp(u’v’ )= I'u(?u(?v v plu,1),
and (13) that, due to the uncertainty principle, a further in- (A2)
crease in the spreading is found if more pointlike structures
(i.e., smallerA, values are allowed. Such a dependence canwith w=7%/2m; and v=mgyg/%. By performing the Fourier
be instead deeply related to the impossibility of reproducingfransform with respect to the variable
for any quantum object, the classical concept afetermin-
istic trajectory. It may be helpful to recall that in Nelson’s - 1 Ciau
picture of quantum mechani¢&5] the kinematics is model- pla,v,t)= \/? ¢ p(u,v,t)du, (A3)
ized in terms ofstochastictrajectories in the configuration 7
space. Within this framework, it is not surprising that the
combination/m ultimately appears in Eq(13), which is
nothing but the Brownian diffusion coefficient accounting 9 K,
for the degree of stochasticity of quantum kinematics as op- —'E(a,v,t)=+ —2ua——ivv— —v?p(a,v,t).
posite to the deterministic classical one. As a related ques- at v 2
tion, which is preexisting to the introduction of the gravita-
tional fielq itself, this unavoidable stochasfticity intrc_;d_uce_s-l-he solution of Eq(A4) is
troubles if the same procedure of classical relativity is
adopted to operatively define geodesics curves and associ-
ated inertial frames. In the quantum case, the possibility of a
simple identification between the world lines of freely falling +2uakpti— 2 ka3, (A5)
bodies and a set of preferred entities with a purely geometric

nature clearly no longer holds. We refer 6,27 for a =, ;) denoting the Fourier transform of the initial density

detailed accoun_t on the definition of referenc_e frames b¥natriXpo(u,v). The average position and the average square
means of material quantum objects as a preliminary step toﬁosition at timet are, respectively, given by
ward guantum gravity; see al$@8] for an attempt to give a ’ ’

variational definition of a quantum geodesic within a relativ-
istic stochastic scheme. <2(t))=J dzzp(z,z,t), (iz(t)>=J dzZp(z,z,t).

In summary, we have discussed a revival of the Galileo (A6)
free fall experiment using quantum test objects. Both the
initial preparation and the dynamical evolution have been, the case the initial density matrix

analyzed with special care to states of intrinsically quantum "n— Nk g ; ;
, - Y 1Y po(z,2") = o(2) Yo(2')* arises from a Gaussian or a catlike
nature. It turns out that, despite the possibilityvadighting ave functiony, as considered in Sec. I1l, the Fourier trans-

different quantum objects by looking at their free fall evolu- ¢, (A5) can be explicitly inverted and the above quantities

tion, a complete identification between the effects of graVi'anaIyticalIy evaluated. The Ehrenfest expressitd) for the

tation and acceleration is expected in agreement with thg o546 nosition is then recovered, whereas the complete ex-
equivalence principle. Some troubles may instead emerge ression for the position variance is

including a continuous measurement process, which de-

mands for a reformulation of the conceptfodefall itself. It A2
is not unlikely that an operative definition of the equivalence U?(t)ZZA(tHE
principle consistent with quantum measurement theory will

2
0 Kz ,

+ oo

we get from Eq(A2) the equation

(A4)

Pla,v,t)=po(a,v—2uat)exgiv(pat®=vt)— kpt

1
L Nk

require the emergence of new concepts in gravitat&in A2 -
—=o— (|c [P~ lc_[?)Im(c, c*)me 27|t
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having denoted  A(t)=A3/4+ 1%/ (4mZAZ) 2+ 12/

(6m?) k,t° andB=|c  |?+|c_|>+2Re(c, c* )exp(— AZA),

respectively. The unmeasured evolution is obtained when
The master equatiofl7) can be conveniently rewritten in «,=0, while the evolution of a Gaussian state corresponds to

terms of new independent variablesandv defined as the choiceA=0.

APPENDIX A: SOLUTION OF THE MASTER EQUATION
WITH MEASUREMENT COUPLING
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APPENDIX B: NONRELATIVISTIC SCHRO DINGER Eq. (B4) simplifies as follows:
EVOLUTION IN ACCELERATED FRAMES
’ 2 9247
Let us consider a free nonrelativistic quantum particle, iﬁi(z”t’):— ——l’,//z(z',t')+maz' y(z' ).
satisfying the one-dimensional Schinger equation ot 2m 9z (B6)
O h? Py
ih—-(20)=—5-—=(z1), (B1)  The second term in the right-hand side of E&) represents

the effect of an effective potentidl;,(z')=maz which, in
and let us introduce an accelerate frame of reference bthe classical limit, corresponds to the well-known inertial

means of the coordinate transformation force for the case of constant acceleration. By putting
a=0, we recover the Galileo transformation between two
7'=z—vt— }at? inertial frames of reference translating with relative velocity

t'=t, B2 U In this case the invariance of E(B1) reflects, as ex-

pected, the validity of the Galileian relativity principl29].

v anda being constant. As a consequence of E@), a  According to Eq(B3), the wave functions are related in this
corresponding transformation on the space of states will béase by the transformation
induced, mapping the wave functigr(z,t) — ¢'(z',t"). We

. . 2
represent such a transformation via the ansatz '

zp’(z’,t’):exp{ - ili_ muz' + UT) } Pp(z' +ot' t).
g (2 )=y )z’ t), (B3 (B7)

where the real functiofi(z’,t") has been introduced to allow one can easily check that the phase factor involved in Eq.
the possibility of a local phase factor and g7)isjust the one needed to ensure the correct transforma-

(z(z',1"),t(z',t")) denotes the inverse transformation, ob-{jons of the average values of position and momentum,
tainable from Eq.(B2) by letting v——v, a——a. The namely

equation of motion satisfied by the transformed wave func-

;irc())r;n(BES;]). \(/éitlk;:a genericf can be straightforwardly obtained (2Y=(2)—vt, (p')=(P)—mw, (B8)
Y’ of Y’ of in agreement with the Heisenberg equations of motion
ih——h—¢' +v+at)|ith——-Ffh—
ot at oX X “ ~ n " ”

dz’ dz  p’ dp’_dp_O BS

R Py P at )2 dtoat Tme oar o a o B9
=—o- ot oo
2m ox 2m\ gx

12 of CiR2 o2 Finally, we write the density matrix associated with the pure
_ a7 ot %_ ot (B4) state(B3) with f given by Eq.(B5) as

If the functionf(z’t’) is now chosen to be of the form p'(Zi,Zé,t')=EXp[ — flfl(mv+mat’)(zi—z§)
’ ! ! 12
f(z/ t')=— %(z + %) —nﬁ'ﬁ—at ! % % , X p(zi+vt'+3at'?,z,+ovt' +3at'2t’).
(BS) (B10)
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