
Testing the equivalence principle through freely falling quantum objects

Lorenza Viola and Roberto Onofrio
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Free fall in a uniform gravitational field is reexamined in the case of quantum states with and without a
classical analogue. The interplay between kinematics and dynamics in the evolution of a falling quantum test
particle is discussed allowing for a better understanding of the equivalence principle at the operational level.
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I. INTRODUCTION

Gravity appears to be distinguished from all the other fun-
damental interactions by the remarkable feature of affecting
all bodies in a universal way, regardless of their internal
composition and mass. This fact, which requires in the New-
tonian picture the gravitational force to be exactly propor-
tional to the inertial mass, represents the physical corner-
stone of Einstein’s weak equivalence principle, establishing
the local identification of gravity and acceleration as far as
mechanical effects are concerned. In the famous gedanken
experiment conceived by Galileo, the universality of the ratio
between gravitational and inertial masses has been studied
by imagining test bodies in free fall from the tower of Pisa
@1#. Since that time several actual tests of the weak equiva-
lence principle have been performed with very sensitive
schemes, such as the ones exploiting pendula or torsion bal-
ances@2#, but only classical test bodies have been involved.
On the other hand, any attempt to merge quantum mechanics
and gravity on an operational basis should start from the
possibility of establishing the properties of the latter by using
a generic body as a probe, regardless of its macroscopicity
and hopefully without reference to classical physics. This
path of reasoning leads to conceptual difficulties clearly fo-
cused, among the others, by Penrose when he writes: ‘‘We
see that this view of reality is very different from the one that
we have become accustomed to from classical physics,
where particles can be only in one place at a time, where the
physics is local~except for action at a distance! and where
each particle is a separate individual object which, when it is
in free flight, can be considered in isolation from any other
particle. All these classical conceptions must be overturned
once we accept the reality of the state-vector. It is perhaps
little wonder that most people are reluctant to do this’’@3#.
As a first step along this direction, it is therefore natural to
ask what happens if the Pisa gedanken experiment is re-
peated using properly prepared quantum test particles. This
question, besides its above-mentioned conceptual impor-
tance, is also relevant in view of recent attempts and propos-
als to investigate gravitation using microscopic and mesos-
copic systems, such as antimatter in free fall@4–6#, cooled
atoms in optical molasses@7# and opto-gravitational cavities
@8,9#, and interfering matter waves in both curved space-time
and accelerated reference frames@10,11#. The content of the
paper is organized as follows. In Sec. II, after some remarks
on the preparation of the initial state for a Galileo experiment

in the classical case, a similar prescription is discussed for all
the quantum states mapped, in the macroscopic limit, into
classical states. In Sec. III the peculiar case of quantum states
without a classical analogue is dealt with, with a detailed
analysis of the simplest class of Schro¨dinger cat states in the
configurational space. In Sec. IV the two lowest momenta of
the time-of-flight distributions for quantum states in free fall
in a uniform gravitational field are evaluated. The dynamical
effect of a continuous quantum measurement of position on
the geodesic motion is dealt with in Sec. V. In Sec. VI some
phenomenological consequences of the previous consider-
ations are presented, with particular emphasis on the possi-
bility of testing gravity with mesoscopic objects. Some gen-
eral comments on the definitions of the weak equivalence
principle which still hold in the quantum case are finally
discussed.

II. GALILEIAN PREPARATION
FOR CLASSICAL-LIKE STATES

In order to perform an ideal free fall experiment for two
quantum particles having inertial massesmi

(1) and mi
(2) ,

mi
(1)Þmi

(2) , we have first of all to specify a proper initial
preparation in such a way that any difference in the motion
during the free fall must be ascribed to the effect of gravity.
By recalling that within the classical Hamilton picture the
Galileian prescription for initial positions and velocities fixes
the ratio between the initial momenta in a well-defined way,
p0
(1)/p0

(2)5mi
(1)/mi

(2) it is natural to extend such a prescrip-
tion to the quantum case, which can be also represented
through a Hamiltonian scheme. Of course, the Heisenberg
uncertainty principle prevents us from simultaneously defin-
ing, for each particle, initial position and momentum. If
uc1& and uc2& denote the initial state vectors for particles 1
and 2 in the Schro¨dinger picture, the classical recipe can be
reasonably rephrased by imposing the conditions

^ẑ&c1
5^ẑ&c2

,
^ p̂z&c1

mi
~1! 5

^ p̂z&c2

mi
~2! , ~1!

where for simplicity we have restricted ourselves to a one-
dimensional representation along the verticalz direction and
^ ẑ&c and ^ p̂z&c denote, as usual, the expectation values for
position and momentum operators, respectively. Further-
more, our description will be confined to the motion of non-
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relativistic quantum particles, implying values of the initial
velocities in Eqs.~1! to be small compared to the speed of
light. From the mathematical viewpoint, Eqs.~1! impose a
relative constraint on the average values of the position and
momentum probability distributions associated with the
statesuc1& anduc2&, respectively. Some other remarks are in
order. First, leaving aside the special choice of starting from
a given position at rest (^ p̂z&c1

5^ p̂z&c2
50), we are forced

in general to deal with two different initial statesuc1& and
uc2& in the single particle Hilbert space; this is analogous to
the classical situation, where the representative point of the
classical initial state in the phase space is different for the
two masses. Second, deep differences between the concepts
of classical and quantum state exist, which also produce dif-
ferences in the corresponding prepared systems. The proba-
bilistic interpretation underlying quantum mechanics will al-
low us to speak of probability distributions, for instance,
characterized bymeaninitial conditions such as Eqs.~1!, as
opposed to the well-defined values for the relevant classical
observables. Moreover, as a striking difference with respect
to the classical case, conditions~1! are far from univocally
determining the initial state of the two particles. On the con-
trary, the Galileian prescription gives rise to equivalence
classes of states in the Hilbert space, each class possessing a
defined mean position and velocity and collapsing in the
classical limit into a state having both quantities sharply de-
fined. It is also rewarding to point out that this line of rea-
soning, being ultimately motivated by the correspondence
principle, applies in a strict sense to all quantum states for
which a classical interpretation is obtainable. Such a class of
states does not exhaust the totality of the admissible ones in
the Hilbert space. For all the other states, namely, the family
of genuinely quantum states for which no classical counter-
part exists and the correspondence principle cannot be in-
voked, the Galileian prescriptions~1! have to bepostulated
and deserve therefore a more careful discussion.

III. CASE OF STATES HAVING
NO CLASSICAL ANALOGUE

Because of the superposition principle, states of an intrin-
sically quantum nature arise even starting from states which
in the classical limit corresponds to macroscopically distin-
guishable ones. Letucn&, n51, . . . ,N, denote a set of states
in the Hilbert space of a given quantum system, and let us
suppose these states to be macroscopically distinct. Any su-
perposition stateuc0&5(ncnucn& is also permitted, the com-
plex coefficientscn ensuring the overall normalization. The
nonclassical nature of this superposition state can be made
explicit by considering the density matrix representation

r̂5uc0&^c0u5(
n

ucnu2ucn&^cnu1 (
n,m5” n

cn* cmucn&^cmu,

~2!

the off-diagonal terms being responsible for correlations of a
purely quantum-mechanical origin. In the classical limit, due
to the action of decoherence mechanisms, interference ef-
fects are lost and the pure state description~2! becomes iden-
tical to the statistical mixture characterized by the diagonal
probability weightsucnu2 alone. Given the superposition state

uc0&, the separation indicated in Eq.~2! between diagonal
and off-diagonal contributions also reflects on observable
properties of the system, such as average values of Hermitian
operators. For a generic observableÔ, one can think its over-
all mean value in the stateuc0& as formed, according to Eq.
~2!, by two distinct terms:

^Ô&c0
5^Ô& classical1^Ô&purely quantum. ~3!

If only nondiagonal entries are different from zero in Eq.~3!
(^cnuÔucn&50 for all n), the mean value of the observable
Ô has only contributions of intrinsically quantum-
mechanical origin.

Coming back to the free fall problem, the previous con-
siderations apply if a nonclassical superposition state is se-
lected as initial state for one or both test particlesmi

(1) and
mi
(2) , the decomposition~3! holding in this case for the po-

sition and momentum operatorsẑ andp̂z involved in Eq.~1!.
Despite the fact that purely quantum expectation values may
emerge, compatibility with the classical limit is again main-
tained provided that the Galileian conditions~1! are satisfied,
in the sense that both states are mapped into initial configu-
rations having the same~classical! position and the same
~classical! velocity.

As is well known, a nice class of quantum states without
classical counterpart is offered by the so-called Schro¨dinger
cat states, first introduced in@12#. Let us consider the coher-
ent superposition of two macroscopically distinguishable
states in the configurational space, represented by a wave
function of the form

c0~z!5NH c1expS 2
~z2z01D!2

2D0
2 D

1c2expS 2
~z2z02D!2

2D0
2 D J , ~4!

consisting of the sum of two Gaussian peaks atz5z06D,
D.0, each of widthD0. Herec6 are two complex coeffi-
cients, for which we denote byq the relative phase, andN is
a normalization constant determined~up to an irrelevant
phase factor! by

uNu25~pD0
2!21/2$uc1u21uc2u212Re~c1c2* !

3exp~2D2/D0
2!%21. ~5!

For null separation (D50) the special case of a normalized
Gaussian wave packet with vanishing average momentum is
recovered. The expectation values of position and momen-
tum in the state~4! are calculated, obtaining

^ẑ&c0
5z02D

uc1u22uc2u2

uc1u21uc2u212Re~c1c2* !exp~2D2/D0
2!
,

~6!

^ p̂z&c0
522\

D

D0
2

Im~c1c2* !exp~2D2/D0
2!

uc1u21uc2u212Re~c1c2* !exp~2D2/D0
2!
.

~7!
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The average position is simply the center of mass of the cat,
weighted by the asymmetry between the coefficientsuc1u2
anduc2u2. By Fourier transforming Eq.~4!, it is seen that no
diagonal momentum contributions are present, leading to a
purely quantum momentum in Eq.~7! with the form of a
typical interference factor, Im(c1c2* )5uc1uuc2usinq. A
vanishing value of^ p̂z&c0

is found if the relative phase

q5kp, kPZ, corresponding to the even~male! and odd
~female! combinations of definite parity cat states@13#; a
maximum contribution is instead achieved at
q5(2k11)p/2, kPZ, corresponding to cat wave functions
already introduced by Yurke and Stoler@14#. In order to
study the free fall motion of two catlike quantum particles,
one has to match prescriptions~1! by suitably gauging the
parameters of the wave function~4!, which is, at least in
principle, possible. Let us suppose for definiteness to main-
tain the widthD0 fixed anduc1u5uc2u in such a way that the
initial average position~6! is constrained to bez0. The sim-
plest choice is clearly represented by parity eigenstates, i.e.,
by even or odd cat states necessarily starting at rest. If, how-
ever, nonvanishing average momenta are present, one can
exploit the possibility to tune the separationD1,2 between the
peaks, withq fixed, i.e.,

D2

D1
expS 2

D2
22D1

2

D0
2 D 11cosqexp~2D1

2/D0
2!

11cosqexp~2D2
2/D0

2!
5
mi

~2!

mi
~1! , ~8!

or the relative quantum phaseq1,2, with D fixed, i.e.,

sinq2@11exp~2D2/D0
2!cosq2#

sinq1@11exp~2D2/D0
2!cosq1#

5
mi

~2!

mi
~1! . ~9!

Having assigned the initial preparation of each particle,
we will analyze in the following two sections the evolution
of the system during the free fall as, respectively, predicted
by ordinary quantum mechanics for closed systems and by a
more general description also including the effect of a mea-
suring apparatus.

IV. RUNNING THE GEDANKEN EXPERIMENT:
THE UNMEASURED EVOLUTION

In the nonrelativistic picture we are considering, the time
evolution is generated by the Hamiltonian
Ĥ5 p̂z

2/2mi1mggẑ, mg denoting the gravitational mass. In
analogy with Galileo’s procedure let us focus, for instance,
on the time of flight of the quantum particles. Because of the
already remarked fuzziness of quantum states, even if the
measurements are treated as ideal, allowing us to estimate all
the measured quantities with infinite precision, these times
can be only predicted in a probabilistic way. Given our par-
ticles with inertial massesmi

(1) and mi
(2) , the experiment

consists in recording two time-of-flight distributions corre-
sponding to the time of arrival from the initial height
z05^ẑ&c0

, at variance with the classical case where two
single time values are sampled. Therefore, the full knowl-
edge of such time-of-flight distributions can in principle be
demanded to gain a complete information on the free fall
dynamics. To the best of our knowledge, no general consen-
sus has been reached so far on a consistent definition of the

time-of-flight probability density. In the probabilistic lan-
guage, the question is related to the so-called first passage
time problem, which has been solved within the natural
framework offered by stochastic mechanics@15# in the spe-
cial case of stationary states@16#. Various attempts in differ-
ent directions have been made, as indicated in a recent work
on the subject where an operatorial solution is proposed@17#.
Leaving aside a rigorous derivation which is not essential to
sketch our main line of reasoning, we will now limit our-
selves to simple arguments. The average time of flight for the
test massmi

(k) can by straightforwardly calculated by means
of the Ehrenfest theorem which, owing to the linearity of the
gravitational potential, allows us to obtain the average posi-
tion at timet in the classical form

^z~k!~ t !&52
1

2

mg
~k!

mi
~k! gt

21
^ p̂z&c0

mi
~k! t1^ẑ&c0

, k51,2. ~10!

By setting ^z(k)(t)&50, the mean time of flight at ground
level is obtained; in the particular case^ p̂z&c0

50, the corre-
sponding expression is

Tof
~k!5A2Smi

~k!

mg
~k!D z0g , k51,2. ~11!

A rough estimate of the fluctuations around this mean value,
taking into account the spreading of the state during the mo-
tion, can be given by evaluatingsTof

'sz(Tof)/vz(Tof),
wheresz

2(Tof) and vz(Tof) are the position variance of the
state and the average velocity at timet5Tof , respectively.
By exploiting Eq.~10!, this may be shown to be equivalent
to another possible definition ofsTof

, resulting from the se-

midifference between the timest1 and t2 for which
^z(t6)&6sz(t6)50. Let us consider in detail the behavior
of our quantum probesmi

(1) andmi
(2) , when each of them is

allowed to be initially prepared with average positionz0 and
vanishing average momentum in the form of a Gaussian or a
catlike state~this latter necessarily possessing a well-defined
parity!. The general expression of the position variance as a
function of time,sz

2(t)5^ẑ2&c t
2^ẑ&c t

2 , has been calculated

by following the Schro¨dinger evolution having the wave
function ~4! as initial condition~see Appendix A for details!.
The result of the calculation can be written as

sz~ t !

5AD0
2

2
1

D2

16e2D2/D0
2 1

\2

2mi
2D0

2 S 172
D2

D0
2

e2D2/D0
2

16e2D2/D0
2D t2,

~12!

the upper and lower signs referring to the even~male, c1

5c251! and odd~female,c152c251! cat states, respec-
tively. As we will discuss in more detail elsewhere@18#, the
rate of spreading for a cat state may become less than the
Gaussian one. Equation~12! reduces to the familiar formula
for the spreading of Gaussian wave packets ifD50, while
slight modifications to the Gaussian case are obtained in the
limit D/D0@1. Let us then consider an intermediate regime
with D'D0, moreover assumingD0 small enough to become
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negligible with respect to the evolution induced contribution
in the total spreadingsz(t). One can thus approximate Eq.
~12! by the leading time-dependent term and collect the
available information concerning the time-of-flight distribu-
tion in the form of average time and standard deviation as

Tof6sTof
5A2Smi

~k!

mg
~k!D z0g6A2

2
e

\

D0mg
~k!g

, k51,2,

~13!

wherek51,2 distinguishes, as usual, the two particles and
e is a numerical factor given by

e5H 1 Gaussian state,

S e21

e11D
61/2

male~1 !/female~2 !cat state.
~14!

Equation ~13! can in fact be used with a general validity,
provided the final time in Eq.~12! is long enough, which can
in turn be obtained by properly adjusting the initial height. It
is manifest from Eq.~13! that, despite the semiclassical
preparation formulas~1!, the time-of-flight distributions cor-
responding to different quantum objects are different, due
either to different masses or different initial states. As an
interesting feature, the ratio between inertial and gravita-
tional mass contributes to the average time of flight, whereas
the fluctuations around this value are affected, at this stage,
by thegravitationalmass alone.

Since Eq.~11! holds, a necessary and sufficient condition
in order to conclude

mi
~1!

mg
~1! 5

mi
~2!

mg
~2! 5const ~15!

is to observe, in close analogy with the classical experiment,
identical values for the average times of flight. Let us sup-
pose that the equality~15! has been established for two par-
ticles initially prepared in the same type of state, for in-
stance, a Gaussian one. At first sight one may wonder that, at
variance with the classical behavior, a dependence upon the
mass survives in time-of-flight spreading, allowing one to
distinguish again the resulting distribution patterns. At closer
inspection, the role and nature of the mass dependence can
be understood on the basis of kinematical arguments. What-
ever such a dependence will be, the crucial point is that it can
be recovered from an equivalent problem where it has a com-
pletely kinematical origin. Let us imagine a laboratory in
which a test particle of massmi is initially placed on the top,
at a heightz0 above the floor, with the laboratory being then
propelled at uniform accelerationaW with respect to an inertial
reference frame,aW directed upward. The motion of the par-
ticle, which is supposed to freely evolve in the noninertial
frame, can be derived from the inertial free motion by a
standard procedure, as outlined in Appendix B. Provided that
equality~15! is satisfied anda5g, formally identical evolu-
tion equations are thus found either for the motion of a quan-
tum particle subjected to a uniform gravitational field with
strengthg in a inertial reference or for the motion of the
same particle freely evolving in a noninertial reference ac-
celerated witha5g. In particular, an observer inside the

accelerating laboratory should see the particle hitting the
ground level after the same average time as in Eq.~13! but
with a variance proportional to the inertial mass, the only
property of the body available in this case. More generally,
once Eq.~15! is fulfilled, the theory shows a complete iden-
tification between the effects of gravitation and acceleration,
predicting in particular that time-of-flight probability distri-
butions of identical form, with identical mass dependence in
everymomentum, not just in the second one as here consid-
ered, are detected if the motion is performed in the gravita-
tional or accelerated laboratory.

By summarizing, the widespread quoted sentence accord-
ing to which all bodies equivalently prepared fall precisely
the same way in a gravitational field has to be carefully in-
terpreted when quantum objects are considered. Unlike the
classical case, this does not imply that only mass-
independent observables are found. On the contrary, the
time-of-flight probability distributions of quantum particles
remain mass dependent, but such a dependence isexpected
in order that the weak equivalence principle be preserved at
the quantum level.

V. MEASURED EVOLUTION

Until now, the discussion has been carried out without
considering the effect of the measurement apparatus. Indeed,
detection schemes can be designed in which each falling
atom impulsively interacts with the meter just before stop-
ping its evolution, that is, at the arrival time. However, ex-
perimental situations involving a continuous monitoring of
the atom throughout the whole free fall can be investigated
~see @19# for recent proposals! and the perturbation intro-
duced by the meter cannot be reduced without a parallel
limitation on the extracted information also resulting. Such
an influence has then in principle to be taken into account, as
we are going to discuss in this section. Various models have
been designed to include the effect of a continuous measure-
ment process into the dynamics, the so-called measurement
quantum mechanics, an account of which can be found, for
instance, in@20#. In the so-called nonselective approach, i.e.,
when no particular history of measurement is selected, the
evolution of the system under a continuous measurement of
position ẑ is described through a master equation for the
reduced density matrix operator:

d

dt
r̂~ t !52

i

\
@Ĥ,r̂ #2

kz

2
@ ẑ,@ ẑ,r̂ ##, ~16!

Ĥ being the Hamiltonian of the system,@ ,# the commutator,
andkz expressing@in (m2/Hz)21] the coupling of the posi-
tion meter to the test particle. Hereafter,kz is assumed to be
time dependent. Equation~16! for the system under consid-
eration can be rewritten as

]

]t
r~z,z8,t !5H i\

2mS ]2

]z2
2

]2

]z82D2
imgg

\
~z2z8!

2
kz

2
~z2z8!2J r~z,z8,t !, ~17!

with r(z,z8,t)5^zur̂(t)uz8& denoting the coordinate repre-
sentation of the density operator. Besides some numerical
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factor, the coupling constantkz is equal to the reciprocal of
the position noise spectral density. If this last is decreased,
i.e., the position sensitivity is increased, the last term in the
right-hand side of Eq.~17! will dominate over the others. As
remarked above, under this assumption the considerations
made in the previous section can be affected by the measure-
ment process and have to be reanalyzed in detail. A straight-
forward but tedious calculation~see Appendix A for more
details! allows one to explicitly solve the master equation
~17! when the initial wave function has a Gaussian or catlike
form. In particular, it is possible to calculate the average
position and its variance versus time. It turns out that, while
the former is left unchanged with respect to the unmeasured
case~10!, the position variance is modified by the measure-
ment coupling, the net effect being represented by an addi-
tive time-dependent contribution of the form

sz
2~ t;kz!5sz

2~ t;kz50!1
kz

3 S \

mi
D 2t3, ~18!

with sz
2(t;kz50) given in Eq.~12!. It is worth observing

that an additional mass dependence is obtained in this case.
Despite the fact that such a dependence is not different from
the unmeasured one, the ratio\/mi still appearing, an expla-
nation analogous to the one delineated at the end of the pre-
vious section requires care, due to the physical meaning of
the couplingkz . In order to state the problem in an acceler-
ated frame some additional assumptions on the behavior of
such a parameter are required. Since in general the coupling
between the meter and the test mass is not a purely mechani-
cal one, the question can be properly addressed only bypos-
tulating the validity of the strong equivalence principle.

The previously noted lack of effect on the average posi-
tion is interpreted as a manifestation of the Ehrenfest theo-
rem for potentials written as polinomials up to the third
power of distance@21#. However, for motions in more com-
plicated gravitational fields, the last term in the right-hand
side of Eq.~17! can create differences in the average position
of particles having different masses, something like agravi-
tational quantum Zeno effect. This would be, on the other
hand, the signal of a contrast between a body at the same
time being in free fall and having its position continuously
registered via a meter interacting with it. Tests of the equiva-
lence principle, although still viable, become more compli-
cated since disentanglement of the effect of the meter from
the purely gravitational one is required. This problem is also
present in the case of other tests of the equivalence principle

such the ones exploiting rigid objects. For such configura-
tions additional complications arise from the difficulty to
achieve the quantum domain in macroscopic bodies@22#.

VI. PHENOMENOLOGY

Recent progress in the manipulation of atomic states gives
hope to make the considerations presented here less remote
from experimental investigation than expected. Atomic
mixed states with a Gaussian phase space distribution, al-
though far from the minimum uncertainty value of the pure
state configuration, have been already prepared and used to
study the free fall of atoms in a semiclassical regime, as
reported in@8#. A cloud of cesium atoms was trapped, cooled
at a temperature of a fewmK, and then released at an aver-
age height of 2.91 mm above an atomic mirror made by a
dielectric surface and a repulsive evanescent field. Various
bounces of the cloud were observed, and the time of flight
was measured. In a successive experiment, a vibrating mirror
was used to show phase modulation of atomic waves. In this
case, an accurate study of the time of flight was reported,
showing that resolutions of the order of 0.5 ms can be
achieved@23#. On the other hand, preparation of even and
odd superposition states has been proposed@24#, and Schro¨-
dinger cats of a single trapped Be1 ion with a separation
D'102 nm have been recently generated and detected in
laboratory@25#. Merging these accomplishments, an experi-
ment in which a Gaussian or a Schro¨dinger cat state of mat-
ter at the single atom level is bouncing over an atomic mirror
can be envisaged. Some numerical values, evaluated from
Eq. ~13! for different atomic species routinely manipulated in
laboratory, are reported in Table I, allowing us to clarify the
orders of magnitude involved in a possible experimental test.
The already achieved time-of-flight resolution quoted in@23#
allows one to observe different time-of-flight distributions
either due to different masses~within the same column! or to
different states~within the same row!. Experiments of this
kind should also stimulate further thoughts on consistent
definitions of the time-of-flight distributions in the quantum
domain. Moreover, similar experiments should be performed
by actually observing the time-of-flight distributions in ac-
celerated frames, for instance, exploiting centrifugal force
fields, to verify if the weak equivalence principle, as sup-
posed in our discussion, still holds in the quantum realm. In
performing such experiments, one should be prepared to pos-
sible surprises, since no evidence is so far available that na-
ture preserves the equivalence principle at the quantum level.

TABLE I. Predicted standard deviations for the times of flight~in msec! of freely falling Gaussian states
and Schro¨dinger cat~male, c15c251 and female,c152c251! states, starting at rest from an height
z053 mm. The corresponding average time of flight isTof524.74 ms and the valuesD5D05100 nm have
been chosen.

Gaussian state Male cat state Female cat state

Hea 10.86 7.38 15.98
Be 4.82 3.28 7.09
Na 1.89 1.29 2.78
Rb 0.36 0.24 0.53
Cs 0.33 0.22 0.48

a3S metastable helium.
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VII. DISCUSSIONS AND CONCLUSIONS

Besides the experimental feasibility, some conceptual ob-
servations concerning the interplay between quantum me-
chanics and gravitation are in order. First of all, the presence
of the mass in the time-of-flight distributions cannot be as-
cribed to the fact that the test objects possess, in some sense,
an extended structure. It is indeed apparent from Eqs.~12!
and ~13! that, due to the uncertainty principle, a further in-
crease in the spreading is found if more pointlike structures
~i.e., smallerD0 values! are allowed. Such a dependence can
be instead deeply related to the impossibility of reproducing,
for any quantum object, the classical concept of adetermin-
istic trajectory. It may be helpful to recall that in Nelson’s
picture of quantum mechanics@15# the kinematics is model-
ized in terms ofstochastictrajectories in the configuration
space. Within this framework, it is not surprising that the
combination\/m ultimately appears in Eq.~13!, which is
nothing but the Brownian diffusion coefficient accounting
for the degree of stochasticity of quantum kinematics as op-
posite to the deterministic classical one. As a related ques-
tion, which is preexisting to the introduction of the gravita-
tional field itself, this unavoidable stochasticity introduces
troubles if the same procedure of classical relativity is
adopted to operatively define geodesics curves and associ-
ated inertial frames. In the quantum case, the possibility of a
simple identification between the world lines of freely falling
bodies and a set of preferred entities with a purely geometric
nature clearly no longer holds. We refer to@26,27# for a
detailed account on the definition of reference frames by
means of material quantum objects as a preliminary step to-
ward quantum gravity; see also@28# for an attempt to give a
variational definition of a quantum geodesic within a relativ-
istic stochastic scheme.

In summary, we have discussed a revival of the Galileo
free fall experiment using quantum test objects. Both the
initial preparation and the dynamical evolution have been
analyzed with special care to states of intrinsically quantum
nature. It turns out that, despite the possibility ofweighting
different quantum objects by looking at their free fall evolu-
tion, a complete identification between the effects of gravi-
tation and acceleration is expected in agreement with the
equivalence principle. Some troubles may instead emerge by
including a continuous measurement process, which de-
mands for a reformulation of the concept offree fall itself. It
is not unlikely that an operative definition of the equivalence
principle consistent with quantum measurement theory will
require the emergence of new concepts in gravitation@3#.
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APPENDIX A: SOLUTION OF THE MASTER EQUATION
WITH MEASUREMENT COUPLING

The master equation~17! can be conveniently rewritten in
terms of new independent variablesu andv defined as

u5
z1z8

2
, v5z2z8, ~A1!

obtaining

]

]t
r~u,v,t !5H 2im ]2

]u]v
2 inv2

kz

2
v2J r~u,v,t !,

~A2!

with m5\/2mi and n5mgg/\. By performing the Fourier
transform with respect to the variableu,

r̃~a,v,t !5
1

A2p
E

2`

1`

e2 iaur~u,v,t !du, ~A3!

we get from Eq.~A2! the equation

]

]t
r̃~a,v,t !5H 22ma

]

]v
2 inv2

kz

2
v2J r̃~a,v,t !.

~A4!

The solution of Eq.~A4! is

r̃~a,v,t !5 r̃0~a,v22mat !exp$ in~mat22vt !2kzv
2t

12makzvt
22 4

3 kzm
2a2t3%, ~A5!

r̃0(a,v) denoting the Fourier transform of the initial density
matrix r0(u,v). The average position and the average square
position at timet are, respectively, given by

^ẑ~ t !&5E dzzr~z,z,t !, ^ẑ2~ t !&5E dzz2r~z,z,t !.

~A6!

In the case the initial density matrix
r0(z,z8)5c0(z)c0(z8)* arises from a Gaussian or a catlike
wave functionc0 as considered in Sec. III, the Fourier trans-
form ~A5! can be explicitly inverted and the above quantities
analytically evaluated. The Ehrenfest expression~10! for the
average position is then recovered, whereas the complete ex-
pression for the position variance is

sz
2~ t !52A~ t !1

D2

B F uc1u21uc2u22
1

B
~ uc1u22uc2u2!2G

2
8\

B2mi
F ~ uc1u22uc2u2!Im~c1c2* !

D2

D0
2e

2D2/D0
2G t

2
1

BF2\2

mi
2 Re~c1c2* !

D2

D0
4e

2D2/D0
2

1
4\2

Bmi
2Im

2~c1c2* !
D2

D0
4e

22D2/D0
2G t2, ~A7!

having denoted A(t)5D0
2/41\2/(4mi

2D0
2)t21\2/

(6mi
2)kzt

3 andB5uc1u21uc2u212Re(c1c2* )exp(2D2/D0
2),

respectively. The unmeasured evolution is obtained when
kz50, while the evolution of a Gaussian state corresponds to
the choiceD50.
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APPENDIX B: NONRELATIVISTIC SCHRO¨ DINGER
EVOLUTION IN ACCELERATED FRAMES

Let us consider a free nonrelativistic quantum particle,
satisfying the one-dimensional Schro¨dinger equation

i\
]c

]t
~z,t !52

\2

2m

]2c

]z2
~z,t !, ~B1!

and let us introduce an accelerate frame of reference by
means of the coordinate transformation

z85z2vt2 1
2 at

2,

t85t, ~B2!

v and a being constant. As a consequence of Eqs.~B2!, a
corresponding transformation on the space of states will be
induced, mapping the wave functionc(z,t)→c8(z8,t8). We
represent such a transformation via the ansatz

c8~z8,t8!5ei f ~z8,t8!c„z~z8,t8!,t~z8,t8!…, ~B3!

where the real functionf (z8,t8) has been introduced to allow
the possibility of a local phase factor and
„z(z8,t8),t(z8,t8)… denotes the inverse transformation, ob-
tainable from Eq.~B2! by letting v°2v, a°2a. The
equation of motion satisfied by the transformed wave func-
tion ~B3! with a genericf can be straightforwardly obtained
from Eq. ~B1!:

i\
]c8

]t8
2\

] f

]t8
c81~v1at8!S i\ ]c8

]x8
2\

] f

]x8D
52

\2

2m

]2c8

]x82
1

\2

2mS ] f

]x8D
2

2
i\2

m

] f

]x8

]c8

]x8
2
i\2

2m

]2f

]x8
c8. ~B4!

If the function f (z8t8) is now chosen to be of the form

f ~z8,t8!52
mv
\ S z81

vt8
2 D2

mat8

\ S z81
vt8
2

1
at82

6 D ,
~B5!

Eq. ~B4! simplifies as follows:

i\
]c8

]t8
~z8,t8!52

\2

2m

]2c8

]z82
~z8,t8!1maz8c8~z8,t8!.

~B6!

The second term in the right-hand side of Eq.~B6! represents
the effect of an effective potentialVin(z8)5maz8 which, in
the classical limit, corresponds to the well-known inertial
force for the case of constant acceleration. By putting
a50, we recover the Galileo transformation between two
inertial frames of reference translating with relative velocity
v. In this case the invariance of Eq.~B1! reflects, as ex-
pected, the validity of the Galileian relativity principle@29#.
According to Eq.~B3!, the wave functions are related in this
case by the transformation

c8~z8,t8!5expH 2
i

\ Smvz81
v2t8
2 D J c~z81vt8,t8!.

~B7!

One can easily check that the phase factor involved in Eq.
~B7! is just the one needed to ensure the correct transforma-
tions of the average values of position and momentum,
namely,

^ẑ8&5^ẑ&2vt, ^ p̂8&5^ p̂&2mv, ~B8!

in agreement with the Heisenberg equations of motion

dẑ8

dt
5
dẑ

dt
2v5

p̂8

m
,

dp̂8

dt
5
dp̂

dt
50. ~B9!

Finally, we write the density matrix associated with the pure
state~B3! with f given by Eq.~B5! as

r8~z18 ,z28 ,t8!5expH 2
i

\
~mv1mat8!~z182z28!J

3r~z181vt81 1
2at8

2,z281vt81 1
2at8

2,t8!.

~B10!
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