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Time domain amplitude and frequency detection of gravitational waves from coalescing binaries

L. Milano and F. Barone
Universitadi Napoli “Federico Il,” Dipartimento di Scienze Fisiche, Mostra d’Oltremare Pad.19, 1-80125 Napoli, Italy
and Istituto Nazionale di Fisica Nucleare, sez. Napoli, Mostra d’'Oltremare Pad.19, 1-80125 Napoli, Italy

M. Milano
Universitadi Napoli “Federico II,” Facolta di Ingegneria Elettronica, Via Claudio, 1-80125 Napoli, Italy
(Received 26 August 1996

We propose a multistep procedure for the on-line detection and analysis of the gravitational wave signals
emitted during the coalescence of compact binaries. This procedure, based on a hierarchical strategy, consists
of a rough on-line analysis of the gravitational wave signal using adaptive line enhancers filters and a fast
off-line parameter estimate, using the controlled random search optimization algorithm. A more refined off-line
analysis using the classic matched-filtering technique, with a greatly reduced computational burden, can follow
to further improve the parameter estimate. The results of simulations for the rough analysis are quite promising
both for the relatively small computational power needed and for the robustness of the algorithms used, so that
it could be very helpful for gravitational wave detection with very large baseline interferometric detectors such
as LIGO and VIRGO[S0556-282197)05906-1

PACS numbg(s): 04.40.Dg, 04.80.Nn, 95.55.Ym, 97.80.Hn

[. INTRODUCTION be very promising transient GW sources, also because of the
relatively large number of expected events each yehthe

Gravitational wavg GW) detection is certainly one of the order of tens per year within a few hundreds of Mpt7—
most challenging goals for today’s physics: a very strong20]. These systems are made of two compact objguie
proof in favor of the Einstein’s general relativity description neutron star§NS-NS), two black hole§BH-BH), or a mixed
of phenomena related to the dynamics of gravitation and thpair (NS-BH)] spiraling very rapidly around each other in
opening of a completely new channel of information on as-+their last stage of evolution immediately preceding the final
trophysical object$1—3]. For this task, many detectors with coalescence with a dynamics entirely ruled by the radiation
different measurement bands and sensitivities are already ofsrces due to the emission of gravitational radiation, at a
erational or are planned in the world both at Edrfsonant-  frequency equal to twice the orbital frequency and the typical
mass detectorst,5], laser interferometer$,7], etc) and in  shape of a chirp signgR1].
space (spacecraft trackind8], space interferometerg9], As said above, the detection of GW generated by coalesc-
etc). But, despite the great efforts produced in the last 20ng compact binary systems could be, in principle, possible
years, up to now no direct evidence confirms the existence aofith ground-based long baseline interferometric detectors,
GW'’s. The only credited indirect evidence of GW emissionalthough the GW signal will probably not stand above their
is the famous two-neutron star binary pulsar PSR 3918  broadband noise. In particular, the LIGO and VIRGO anten-
discovered in 1975 by Hulse and Tayldr0], which is de- nas will be in a good position for such detecti@2-26§ and
caying due to the loss of orbital energy to gravitationalcould provide precise measurements of the masses of the
waves at the rate predicted by the general relativity to betteobjects, of the spins and, in the case of neutron stars, of the
than 1% accuracj11,12. radii [27-34.

A real great improvement in the direction of direct GW  But even if these interferometers seem to be sensitive
detection will be given by the new generation of long base-enough for the detection of these sources, nevertheless the
line laser interferometric detectors, such as GHQG|, the  problem of GW signal analysis is still an open problem,
Laser Interferometric Gravitational Wave Observatorywhose solution requires an adequate choice of the data analy-
(LIGO) [14], TAMA [15], and VIRGO[16], which are going sis techniques in connection with the shape of the expected
to be operational at the beginning of the next century. Thessignal, the noise of the detector and the available computing
detectors are very promising because their projected highower[35,36.
sensitivities, coupled to their intrinsic large measurement For this task, many efforts have been made for the devel-
bands, put them in a good position for the detection of GWopment of special data analysis techniques for the enhance-
emitted from different classes of astrophysical objects likement of the signal-to-noise ratio of these GW signals. Sev-
for example, radiation bursts from supernovae events occueral algorithms have been developed and tested, but probably
ring in the Virgo cluster, periodic signals from old and new the best known technique is the matched-filtering technique,
pulsars, radiation from coalescing compact binaries, stochasirst suggested in this field of research by Thof@4]. This
tic background gravitational radiation, quasinormal modes otechnique, well known in communication theory as the
black holes, etc[2,3]. Wiener-Komolgorov optimum filter{37,38, requires the

In this paper we will focus our attention on GW signal correlation of the output of a detector with a template of the
detection from coalescing compact binaries, which seem texpected signdimatched filtey. But, although very simple in
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principle, the application of such algorithm requires a prac-a matched filter strongly degradate if the theoretically pre-
tically exact theoretical knowledge of the shape of the exdicted signal is not close to the real one.
pected signal as function of the unknown parameters which In order to solve these theoretical problems and to reduce
describe the coalescing binary and, then, the correlation dhe large amount of computing power required for such
the detector output with several thousands of templates. Andnalysis, some algorithms have been proposed, like, for ex-
as it is well known, these two requirements are very difficultample, the algorithm proposed by Smith0] for real-time
to satisfy for coalescing binary signdi21,39. detection of coalescing binary waveforms, which requires
The shape of the GW signal can be obtained by computresampling the data stream at increasingly larger rate in order
ing the gravitational radiation field generated by a system ofo compensate the increase in frequency of the signal. When
two point masses moving on a practically circular orbit. Ac-the signal is present, the Fourier transform of the resampled
tually, the solution of this problem requires the calculation ofdata will peak at a particular frequency, which depends on
the gravitational radiation field to a very high order in termshow fast the data are resampled. The rate at which the resa-
of a post-NewtoniariPN) expansion$40], because coalesc- mpling is done is the same for all the waveforms, whose
ing compact binaries are strongly dominated by relativisticfrequencies remain proportional to each other until the coa-
effects[22—24. This radiation field has been calculated uplescence time. This method has the advantage that a simple
to the PN2 approximatiof41-43, although recently the Fourier transform will pick up the signal, but it does not help
precision of the energy loss has been extended to include the saving computing time, because of the resampling data
next PN2.5 approximatiof44]. But, although the PN2 pre- needed for every time of arrivgR1].
cision is still insufficient to make full use of the phase data Probably, the best way to solve this problem is to use the
[45,46], the PN2 waveform amplitude is close to the needs ohierarchical strategy, first performing an on-line rough analy-
the LIGO and VIRGO detectof80—33. For this task, ana- sis of the signal in order to select all the possible data frames
lytic expressions have been obtained in a form directly uswhich could contain a signal, followed by a finer off-line
able for GW data analysis Qy7]. search using more refined techniques. A possible solution for
The large number of templates necessary for data analysihe application of the matched-filtering technique in a hier-
using matched-filtering technique raises problems due to tharchical search could be that of using a corresponding lower
great computing power needed for performing this task orthreshold at a first stage, then refining the analysis in corre-
line [21,35,34. In fact, as a consequence of the large band okpondence of signal crossing the first threshold, using more
these detectorsome kHz sampling rates of the order of 20 finely spaced templates and also more refined formulas. This
kHz are foreseen, resulting in a huge amount of data/day teolution proposed by Thorng35,36 would decrease the
be analyzed on lindof the order of 10 GByte/dgy Of = computing power needed of a factor 10. Other possible pro-
course, the analysis of such a large amount of informatioposed strategies could be those of performing searches using
could be made off line, but it would be better to select ongenetic algorithms or global optimization with simulated an-
line all the data frames which may contain a GW signal. nealing[49] or the hierarchical strategies like the one pro-
At this stage, two are the most credited approaches tposed by Mohanty and DhurandHar].
solve this problem. The first approach consists in defining a A hierarchic strategy is foreseen also for the VIRGO an-
single-step procedure characterized by a full on-line fingenna[16]. In fact, all the data, collected and stored in frames
analysis of the data with selection of the signals and deteiby a Frame Builder, will be analyzed on line by to-be-
mination of the coalescing binaries parametensitched fil-  defined on-line algorithms which will select all the frames in
terg while the second approach consists in a hierarchic prowhich a GW signal could be present. All the selected frames
cedure characterized by a rough analysis for the selection afill then be archived by the on-line data distribution system
frames of data which could contain GW signals with a rea-on disks(an amount of 500 GByte is foreseen for the on-line
sonable degree of confiden¢adaptive filters, optimization storage and on tape$DST (data summary tapgsfor a re-
algorithms, matched filters, eidollowed by a fine analysis fined off-line analysis. Nevertheless, all the frames, selected
with more refined techniqugsnatched filters or not, will be archived by a raw data archiving system on
Actually, the direct application of the matched-filtering tapes in order to allow a full off-line processif)6,52,53.
technique to the VIRGO antenna requires a computing Also we think that a hierarchical strategy is probably the
power of about 26- 30 GFlops at the lowest post-Newtonian best way of overcoming this problem. Within this frame-
order(PNOQ) and about 80 GFlops at the first post-Newtonianwork, we have developed an on-line hierarchical strategy
correction(PN2) in order to recover 95% of the SNR, includ- whose main goal is that of saving computing power and
ing the computing power necessary for the production of thdeaving the necessary uncertainty margin between the theo-
templates[48]. An analogous prediction for the LIGO an- retically predicted signals and the experimental ones, without
tenna gives substantially comparable res{d@]. These es- degrading the performances of the data analysis algorithms.
timates confirm that already at the stage of the first post- The strategy we propose for the rough analysis consists in
Newtonian correction large parallel computers are necessadividing the problem of filtering into two steps, in order to
for the on-line analysis of these signals. Moreover, even ibbtain separate information on the amplitude and frequency
we assume an easily available computing power, thef the signal, instead of doing everything at the same time
matched-filtering technique raises problems due to the filterg54,55. For this task, we tested an adaptive noise cancelling
computational complexity coupled with their lack of robust- algorithm of the class of adaptive line enhancé&E’s)
ness in connection with possible signal missing or the changkb6]. In fact, the signal to be detected is a classic modulated
of the statistics of the signal due the presence of nonstatiorsignal which exhibits at the same time the three basic forms
ary noise. Moreover, but not secondary, the performances aff modulation in amplitude, frequency and phase. In particu-
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lar, the modulation in amplitude is related only with the the time dependence of the phase and of the frequency of the
physical and geometrical structure of the source, while theadiation and the total number of revolutions done by the
frequency and phase modulations are related also to effeckdnary can be expressed as

which depend on the relative position of the detectors with

respect to the source. Therefore, a multistep on-line proce- (t)= §T 1 _r’s 2.5
dure can be defined d4) 1° step, rough analysis of inter- X 5 T’ '
esting sequences of a GW antenna output data with suitable
algorithms(adaptive filter; (2) 2° step, suitable refined off- —358
line data analysis with more powerful but computationally f(t):fo[l_ ;} ' (2.6
more complex algorithmgglobal optimization algorithms
and matched filteps 1 c5

In particular, the rough analysis must be efficient and ro- N= 3—27778/3§/3K71f65/3, (2.7

bust, with the following characteristic&t) minimum loss of
signals which can be extracted from refined algorith(@s; \yhere K= xM?/3 and 7 is the time lacking to the coales-

robustness against false alarm detection like the refined onegence, if no tidal disruption occurs, when the GW frequency
As we shall show in this paper, we succeed in getting ang equal tof,

almost complete rough characterization of the signals we are

interested in, estimating the mass parameter, coalescing du- 57783 ¢5 1 e
ration and distance in the case of optimal orientation source- ™ 256 GB Rfo : (2.8

antenna of the simulated binary coalescence at the Newton-

ian order. Tests were also performed at the first postysing Eq.(2.1), the response of the detector can be written
Newtonian order and the results we got have shown that thgg

performances of the algorithm we implemented are fairly

good also for PN1 terms. For this work we have used the R(t)=h(t)[F2 (1+ cosi)?+ 4F2 cosi]*?
chirp waveforms derived by Krolakl989 [28] and adapted
for nqmerical computations by Verkindii993 [57]..In a XCOS{ZwJ F(t)dt+ g+ b, 2.9
following paper we shall test the most up-to-date chirp wave-
forms up to the 2.5 post-Newtonian order and we shall use
more realistic noise constraints. where
B 2F ,cos 01
Il. GW SIGNAL FROM COALESCING BINARIES y=arcta m . (2.10

In this section we briefly describe the nature of the gravi- ) )
tational wave form emitted by a coalescing binary systemIhese expressions show that the only effect of any arbitrary
As is well known, in the transverse tracelé33) gauge, the ~orientation of the detector with respect to the plane of the
gravitational wave emitted by a system is described in term§rbit of the binary is that of changing the amplitude and the
of the two polarizations usually denoted Wy, (t) and Phase of the output signal thhogt affecting its time depen-
hy(t) [1]. According to this terminology the noise-free re- dence. On the basis of what is said above and without loss of

sponse of the detector is simply given [58,59 generality, the noise-free response of the detector to the sig-
nal can be rewritten in a more convenient way as

R(t)=F_ h (t)+F.hy(1), 2.1
(O=Fh (B +Fhx(t) @3 s(t)=kHh(t)cog 27f (1)t + o], (2.12
whereF, andF are functions of the angles describing the o3
orientation of the detector and the position of the source, B o] K [[Mpc|| f(t)
h,(t) andhy(t) are expressed by h(t)=2.56x10 M%’S d |/100 HZ (212
- 8/3 —3/8
h+(t)=h(t)(1+co§i)coa{2wJ f(t)dt+¢}, (2.2) f | (] f B
100 Hz| || 100 Hz 0.33 M%Bt ’
(2.13
hX(t)=2h(t)cosi><sir{27rf f(t)dt+ (4, (2.3 . e g 1ot
7=3.0 - —n (2.19
wherei is the inclination of the orbital plane, ainqt) is the ({100 Hz M?f
amplitude of the gravitational signal at the detector level K- g 53
N=480.<{—r [—0 (2.19
2uG 573 ,
h(t)=| g [[GM ()], 2.4 Mo 1100z

whereK =uM?3 M=K3"is the so-called chirp mass, and
whereu andM are the reduced and total mass of the binaryd is the distance in Megaparse@dpc) (the masses are ex-
respectivelyd is the distance from Eartti(t) is the instan- pressed in solar units Finally, the parameterkH
taneous frequency of the gravitational wave, afds the (0<kH<1) depends on the source-detector orientafion
phase of the wave at some fiducial frequency. In particularpur simulation we assumekH=1). As it is easy to see,
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this signal has the typical structure of an amplitude moduAs is well known from the theory, this is the largest SNR
lated signalh(t), with a time dependent carrief(t), and a achievable with a linear filter and, in the case of Gaussian
starting phase, and is valid in the hypothesis in which tidal noise, this is also the largest possible SNR ré#ip There-
effects, post-Newtonian correction, Doppler shift, and orbitalfore, one might think that by performing a filtering of the
eccentricity are neglected. The detection of this signal simplyncoming data stream with many independent filters, one
implies the determination of these quantities. In particularwould just find the filter that gives the best correlation with
the amplitude modulation is only related to the physical andhe signal and then infer the mass parameter, phase, ampli-
geometrical structure of the source, while the frequency antude, and time-of-arrival from that. But when we search for
phase modulations are related also to effects which depentbalescing binary signals, obviously, we do not know the
on the relative position of the detectors with respect to thevalue of the mass parametkr we have a range of physi-
source. cally meaningful mass parameters spanning from 0.25 up to
At the final stage of the coalescence, when the posts0 at the zero Newtonian order. In other words, there are
Newtonian terms of the developmentiric must be taken some weak points in the matched-filtering procedure which
into account, the following first order post-Newtonian cor- cannot be ignored: an almost exact knowledge of the shape
rections to the amplitude and phase of the signal, respe®f the signal is needed; the exact shape of the noise must be

tively, must be introducefb7]: known; a large number of filtefshousandsare necessary to
1 detect the signal, if any is present, because the mass param-
_ o4t |4 M\ a3 eter is unknown; post-Newtonian terms can lead to a mis-
PN1,(t)=4.04<10 d ( 1 051%@ pTOT matching of the signal after few cycles; an optimal threshold

(2.16 must be established in order to minimize the false alarm
probability according to the hypothesis of stationarity of the
noise.

Summing up, we need a lot of templates for the signal and
we can hope to solve these problems only using on-line par-
Taking into account these terms, we performed some simugllel computers. Starting from this kind of trouble, as stated
lations in order to test the performances of the algorithmsn the Introduction, we searched for different algorithms

PN1,(t)=1.5x10*

1+1.24'\M7),u,‘1f(t)‘1. 2.17)

also at the PN1 order. which, notwithstanding their suboptimality, can be more
suitable for a real-time on-line rough analysis than the
Ill. ALGORITHMS FOR SIGNAL EXTRACTION matched filters. In particular, we searched for algorithms

which allowed us to split the problem of filtering into two

As we stated above, one of the most credited algomhmf)arts in order to obtain separate information on the amplitude

for the gravitqtional signal ext_raction frqm the noise due o nd frequency of the signal, instead of doing everything at
the detector is the matched-filter technique, whose theory, "o\ time. To satisfy these requirements we tested adap-
for sake of completeness, we briefly recall hE3&,38. The

- ) ; ! tive algorithms of the class of adaptive line enhancers
purpose of th.'s _f||_ter IS to extract th(f" 3|gngl with th_e Cor"(ALE’S) [60], which, notwithstanding their suboptimality,
straint of maximizing the signal-to-noise ratio. For this task, e tagter and computationally lighter than the matched-
if we assume a signak(t), buried in noisen(t), then the

X : . : filtering ones.
detector output signal can be written in the linear case as
Soult) =S(t) +n(t). (3.1 IV. ADAPTIVE LINE ENHANCERS (ALE’s)

The algorithms we tested for the on-line detection of coa-
lescing binaries belong to the class of the partially adaptive
filters used to obtain a time-frequency output from the fil-
tered signals. For this task we modified a classical filter we
used for tracking of signals in additive white Gaussian noise
o (AWGN) in order to obtain the characterization of the fre-

Soud HA(7+t)dT quency of the input signal or the amplitude determination in
* the time domain The adaptive filter we tested is a classical
© _ _ IIR based adaptive line enhancgkLE) filter, designed in
f Soul )G *(f)e*™Mdf. (3.2 such a way to be only partially adaptive for it works in a
” constrained recursive center frequency adaptive configura-

Computing the expectation value of the filter output, assumtion for the enhancement of noisy bandpass signals, which

ing a Gaussian noisey(t), and evaluating its variance, we 2llows one to vary only its center frequen(36].

get araw signal-to-noise ratio, which is possible to maxi-

mize by means of a suitable choice of the filtgt). If the A. The adaptive line enhancer

output contains a signal, this filter gives an amplitude signal- A interesting approach to the problem of signal extrac-

to-noise ratio(SNR) in c(t) (ratio of maximum value to the tion from noise is represented by an adaptive line enhance-

standard deviation of the nojsexpressed by ment of the input signal. For this task, many different meth-
~ 2 ods have been developed, which can be classified into two

2 =[h(f)] main categories: finite impulse respon$dR) and infinit

(SNR) tzzf df. 33 ! gories. p po a e

P o S(f) impulse responséIR) based methodgb1].

Therefore, if the Fourier transform of the signab{d), then
any stationary linear operation on the output can be ex
pressed as a convolution of the signal with a fity¢t), that

is

c(t)=sout(t)*q(t)=f
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/4 PF=E[y?(t)]=max, (4.2
x(t)=s(t)+n(t) H(z) output wherey(t) is the output oH(z) for an inputx(t) as shown
: y(B in Fig. 1. Being the objective of this algorithm, the maximi-
{ zation of PF within the region of stability, the filter coeffi-

cientsa; andb; depend only on one parameter: the central
frequency of the filteand can be updated with increments
proportional to the instantaneous gradient. Since this algo-
PF = E[yz(t)]= 1 &IH(Z)F(D (Z)ﬂ rithm maximizgs the mean-squares output, it yields ;table
2z j o z parameter estimates only for severe and computationally
complex stability constraints. Hence, this algorithm may be
insufficient for the implementation of general adaptive fil-
FIG. 1. Scheme of the recursive center-frequency adaptive filtefers- However, it yields Stable,pa“_imeter estimates in the cgse
we used for chirp tracking and cost functiéf to be maximized. of the center frequency adaptive filters for a large range of its
scalar convergence parametei, .

In FIR based methods, the signal is modeled like an au; According to[56], we implemented the constrained ALE

i . N aecond—order bandpass Butterworth filter with
oregressive/AR) process, whose parameters are estimate

using, for example, the least mean squédr®lS) algorithm

[60,62—64. Although this approach has the advantage of H(z)=(1-r?)
producing stable filters, it is computationally expensive if

good accuracy is required. On the other hand, the computgghere W,=2rcosw, is the only center-frequency wp)
tion time of the IIR based methods is reduced at the expensgarameter-dependent term, whilds a fixed design param-
of taking care of some instability problems. But what is eter related to the normalized filter bandwidgh by the re-
worth noticing is that both models are well suited for station-jation B=7(1—r). The stability of this filter requires that
ary signals and, what is really interesting, in some cases theyy, | < 2r. Since the objective of the filter is to tune the sig-

can enhance one or more narrowband signals of unknowRg| then the optimum value o/, is W, = 2rcosw, where
and possibly drifting amplitudes and frequencies which are

embedded in broadband noi&s]. o, is the normalized angular center frequency c?f the input.
Taking into account our need of a robust and fast algofrom Wo =2rcosw, we can derive the tracked frequency,
rithm for on-line signal detection and tracking in noise we fy(t), of the signal along the time
tested a simplified version of the ALE filter aimed at the
processing of signals embedded in additive Gaussian noise Wo
with zero mean and variance? [56]. The procedure we fOp(t):fSX acos( m>
applied is based on the implementation of a center-frequency
adaptive filter with the constraint of a constant bandwidthwhere f is the sampling frequency. Therefore, using Eq.
and with the allowance of the variation of the center fre-(4.4), the recursive algorithm for the filter can be expressed
guency of the filter by changing of its dependent coefficientsby
Therefore, the transfer function and order of the filter can be
designed according to tha priori information (not exact _ =1 a2 .2
knowledgé of the type and bandwidth of the input signal yt_Wt( r )th (=Xt W1 =Yz,
and the out-of band noise requirements. (4.5
In the following we will discuss the structure of the ALE
adaptation mechanism, showing and discussing the structure Oy (11 2
of the filter. In particular, we implemented the system basing ~ *t” 5w, | r X1t Wi 1 HYea = Mare,
its adapting response to the performance criterion of maxi- (4.6)
mizing the mean-squares output of the bandpass filter as
shown in Fig. 1. Wi 1= Wit payrar/Resa, (4.7
It is well known that for an input of a bandpass signal in
AWGN, the resulting function will be normally unimodal Rir1=vR+ at2 (0<v<l), (4.9
with the peak occurring at the best solution for the coeffi-
cients, for which the filter center frequency is equal to thewWhere v is the scalarforgetting factor introduced for the
center frequency of the bandpass input. A recursivéecursive computation of the normalizing fact@rfor the
maximum-mean-squares algorithm was implemented startingjstantaneous gradiert,, and u, is the scalar adaptation
from the transfer function of a recursive digital filter of order Step size. Because of the small numfgpically one in our

4.3

Wz/(r+r?)—1
Z—W,z+r? |’

(4.9

2 in thez domain, case of adapting coefficients, stability monitoring of these
_ filters is very simple, being performed in order to verify the

apt+2Z 4z condition|W,| <2r. Concerning the computational efficiency

H(2)= W (4.1) of recursive adaptive filters, it is well known that it largely

depends on the number of unknown coefficients. Since these
filters have few coefficients, they are computationally very
assuming as a performance function efficient compared to the completely adaptive filters. More-
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over, if we take into account the availability of a large gra- hypothesis is equivalent to the second one, but for an ALE
dient in the vicinity of the optimum of the performance func- filter. Let s(t) be the input signalS(f) its Fourier transform,
tion, the algorithm exhibits faster convergence compared ta(t) a noise process satisfying the hypothesis. The matched-

the completely adaptive filters, expecially while it closely filter transfer function must, by definition, maximize the fil-
tracks the signal56]. ter output SNR, i.e.,

V. ANALYSIS OF ALE PERFORMANCES K(t):SNRymax!, (5.9

The center-frequency adaptive filters continuously trackvhereK(t) is the filter impulse response, and Sjjftan be
the center frequency of the input signal and tune to it wherflerived considering the input signal
the input is temporarily stationary in center frequency. When _
tuned to the center frequency of the input, an adaptive filter x(t)=s(t)+n(t) (5.6
yields maximum SNR improvement:

_(SNRM)*
"= sNR,

and the corresponding output of the matched filter
_ [ (1/2m))[[H(2)*|*®(dZ/2) Y(O=K(D)*s(t) +K(D)*n(t)=s'()+n' (). (5.7

_((1/2771')fIH(Z)*lz‘Pnn(dﬂZ)) /

(5.1 Therefore, the output Sl\ﬁﬁ’t of the matched filter can be

written as
whereH(z)* is the transfer function of the filter when tuned

to the input signal, and, and®,, are the power spectral
densities of the input signal and noise components, respec-
tively. Assuming AWGN in input we can further write

S(to)?
SNR%uFrR(n) (5.8

) 1 at a certain time,.
= (1/2ai) [|H(2)*|“@s{(d2/2) SN 52 It is well known that the optimunk (f), in the way speci-
B azBeq R ' fied by the condition orK(t), is expressed by

2

where o“ is the input one-sided power spectral density or K(f):Ce_zwftoS*(f) 5.9
noise power andB. is the equivalent noise bandwidtB,, g?n :
can be evaluated from

(C can be unitary without loss of genera)ityl herefore, the

1 1292 optimum SNR, . is
Beq:mf H(2)**— 53 P B

R 2 Es
using the residue method. (SNR3L) :;ﬁfo |S(H)|"df= a2’ (510
Therefore, if we assume that {Ir)<1 and that the filter
is closely tracking the signal, we can state that for thewhere&yis the energy of the input signa(t). The trigger is
second-order bandpass Butterworth filter like ALE it is pos-implemented considering a set of signal templates and the
sible to obtain an improvement of the optimum SNR as  corresponding matched filter set, the input signal is pro-
cessed by all the filters and the output of the one yielding the
[~ 1+r (5.4 maximum SNR,, is considered. The SNR, is compared
2(1—-r)" ' with a thresholdr, chosen in order to give an error probabil-
S _ _ ity of one false alarm per year. If SN\R>T then it is as-
At this point it is necessary to discuss how to implement asymed that a signal is present. Further analysis can be done,
trigger and the criterion of choice of the threshdldaccord-  wijth a more restricted, but more refined in resolution, set of
ing to which we can discriminate between the alternativeemplates. Let us now turn our attention to the ALE filter.
hypotheses of absence or presence of a signal at an assigng recall the fact that it is a second-order Butterworth band-
level of confidence. |n-th|S discussion we W||| show that thEpaSS ﬁ|ter’ whose center frequency is the 0n|y parameter that
performances of the implemented ALE filters tend to ap+s recursively adapted, while its normalized bandwidth,
proximate those of a matched filter and, of course, are NOB=7(1—r), is a design parameter dependingrorn other
better than them. This point, as we shall see, is related to thgords the filter is noffully adaptive According to the hy-

pose to implement a matched-filter-based trigger assuming:

additive white Gaussian nois@WGN, of PSD ¢?), the ) e
form of the signal is exactly known, and the ALE filter tracks ~ E[Y“()]=S(f)|H(e/*™)] ton Ty (1-r)<i,
exactly the signal. (5.11

The first hypothesis is necessary because our implemen-
tation of the ALE filter works in AGWN and, therefore, itis where f=f(t) is the signal instantaneous frequency and
a natural choice to assume the same noise environment &(f) is the signal instantaneous amplitude. According to the
compare the performances of the two algorithms. The seconithird hypothesis, ALE tracks the input signal, therefore im-
hypothesis is necessary to define the best situation for thglying that the filter center frequency tends to the signal
matched filter, i.e., it is supposed to be perfectly tuned to thénstantaneous frequency, giving in this way an estimate of
signal in order to obtain the maximum output peak. The thirdthis frequency. If the third hypothesis is valid, the
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FIG. 2. Simplified sensitivity curve of VIRGO interferometric GW antenna. In this curve only the low frequency thermal pendular noise

and the shot noise are taken into account.

[H(e1?")|? tends to be unitary in correspondence to the sigthe output of a matched filter is a quantity expressing the
nal instantaneous frequency. This implies that it is possibleorrelation between the filter template and the input, while

to write the SNRBLE for ALE in the following way:

(5.12

1+r
e ox——= X .
SN o2 1= SNR}, 2011

the output of ALE is the input signal, that, if closely tracked,
is left unaltered, plus a noise of standard deviatigg;,
much lower than the input noise. Therefore, E§12 sim-

ply states that an ALE can achieve an improvement of the
signal-to-noise ratio of the input signal. A matched-filter trig-
ger could be used at the output of an ALE filter to obtain

This resultmust notbe interpreted saying that an ALE is optimum performances for the trigger. Of course, the cause
(1+r)/2(1—-r) times better than a matched filter, becauseof the apparently better performances obtained with the

TABLE I. The systems were chosen to cover the known range of mass parashetém, the table the headings refer to the component
type of the coalescing system, the masses of the objects, the theoretical mass patépetes, starting theoretical frequencfl,,‘,
considered in the simulation, the theoretical duratign,of the coalescence in sec, the theoretical distaticein Mpc; the corresponding
estimates obtained from the analysis are shown with their standard errors with imdexes

Numerical tests with ALE

System Theoretical values Measured values

Type mi+my(Me)  M(Me)  fo (Hz) 7 (se0  di (Mpc)  Mp(Mo) fo, (H2) Tm (€0 dm (Mpo)
NS-NS 0.5+0.5 0.44 100 12.12 100 0.590.07 84+ 6 11.99+0.10 90t 6

NS-NS 1414 1.21 100 2.15 100 1:20.1 1035 1.80+0.30 90t 10

NS-NS 1.4-1.4 121 100 2.15 500 1230.1 100-5 1.80+0.30 300t 40
NS-BH 1.4+5.0 2.22 100 0.75 500 2.230.04 99+ 1 0.76£0.05 500- 100
NS-BH 1.4+10.0 2.99 100 0.49 500 3.600.04 99.2:0.7 0.46-0.02 51070
BH-BH 5.0+5.0 4.35 100 0.26 500 4.320.04 100.30.6 0.24-0.02 47660
BH-BH 5.0+10.0 6.09 100 0.15 500 5.#10.03 99.0-0.2 0.15-0.02 49670
BH-BH 10.0+10.0 8.70 100 0.082 500 7.70.03 96.9-0.2 0.08:£0.02 500t 100
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FIG. 3. (a) Scheme of the whole procedure of detection and analysis we impleméhjestheme of the procedure of analysis we
implemented to get rough estimates of astrophysical parameters of the coalescence.

simple trigger implemented in this work than the one of awhere a,, related to the pendular thermal noise, was as-
matched filter are due to the different noise environment obumed equal to 210 1° anda,, related to the shot noise,
the ALE output. was assumed equal to210™ 2,
All the simulations were performed in additive prewhit-
ened Gaussian noisdPWGN) of different spectral linear
VI. RESULTS OF THE SIMULATIONS densities:(1) h=2X 10 2! Hz %2 at 100 Hz(worst casg
» . (2) h=2x10"2% Hz Y2 at 100 Hz(best casg in order to
__To test the conditions of efficiency and robustness of thggye account both the foreseen different sensitivities of
implemented algorithm, we simulated a simplified outputy RGO antenna at different stages of its implementation
sensitivity response of VIRGO antenna between 1 Hz up to %16].
KHz taking account the two main sources of noise in" \ye performed some tests on the system shown in Table |
VIRGO, i.e., the low frequency thermal pendular noise and,..qrging to hoth the worst and the best sensitivity cases for
the high frequency shot noise according to the following\ RGO, we shall discuss the results in the next section.
specificationg 16,57 (see Fig. 2 For what concerns the problem of the optimum threshold
for the implemented trigger, from the discussion of the pre-
) vious section on ALE performances the following criteria
+a2 Hz ! 6.1) can be assumed. The demodulator output power, if only
< , . . .
noise is present, can be modeled by a random variable hav-

~ a
|SNR<f>|2=(f—§
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FIG. 4. From the top to the bottom clockwise: the GW input signal buried in noise, emitted by the classical NS-NS coalescing binary
system of (1.4 1.4M) and coming from a distance of 500 Mpc (SNR-3 dB) is shown. On the top right the output signal from ALE
is shown. It is possible to see the great improvement of the ;gNRat reach the value of +8 dB. In the middle are shown the
demodulated amplitud@lots, the theoretical oné&ontinuous line, application time of the signad)2and the threshol(dashed ling On the
bottom the detected frequenci@sarg and the theoretical frequency trefaashed lingare shown.

ing a Rayleigh distribution, with variance 2¢Ir)/(1 A(r—1) P,
+r)oi=07. If a signal is present and is tracked, the output T=on\ —— 571 I35 (6.4
power statistic becomes Rician distribution, with meart

and variancarﬁ. The error probability, assuming indepen-
dent samples, can be written as

In this work we assum@,=10"'? (corresponding to 1 false
alarm probability per year and with r=0.99 and
0,=2%10"2 Hz Y2, We obtained a threshold, T

_ . y .
Pe=P(noise=T)xP(noise only =1.5x10 2 for the demodulated amplitudg(t).

+ P[ (signah-noise <T]X P(signal We want to stress that this fact is the direct consequence
o 2 of the enhancement of the SNR performed by ALE which
=e™ T7?7N(1~ Py)+ P[(signak-nois§ <T]x Ps, allowed us to assume a threshdidor the outputy/l times

6.2 smaller than the one necessary for the input signal.
' We tested the performances of the algorithm we are deal-
ing with, using the systems of Table | and implementing the

where Py is the probability of a signal to be present that is procedure outlined in Fig. 3. In Figs. 4—6 examples are

very low. . :
Because of the fact tha&,<1, P, can be conveniently shown of the dgtected frequenc;es anq demodu_latgd ampli-
bounded as tudes of some simulated signals in the time donthit line)

and the theoretical trend of the amplitudes and frequencies

. 2 (dashed lingsat the Newtonian order along the time of the
Pe<2e™ "2\ (6.3 coalescing systems emitting GW. We also performed some
experimental tests on simulated data to verify the rejection

so giving a closed form for the optimum threshdid factor on the data extraction obtaining, using an Alpha Vax,
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FIG. 5. From the top to the bottom clockwise: the GW input signal buried in noise, emitted by the classical NS-NS coalescing binary
system of (1.4 1.4M) and coming from a distance of 100 Mpc (SNR-5 dB) is shown. On the top right the output signal from ALE
is shown. It is possible to see the great improvement of the SNRat reach the value of +15 dB. In the middle are shown the
demodulated amplitud@lots, the theoretical onécontinuous line, application time of the signa)2and the threshol(dashed ling On the
bottom are shown the detected frequencaspearing as continuous because of the output signal amplitude remaining over the treshold for
the whole signal duration timeand the theoretical frequency trefdashed ling

a coefficient of data rejection for an ALE fitséAPWGN in obtaining the values of these parameters during the coa-
noise only as input signgalof nearly 99% of the whole lescence with an interval of confidence so that the range of
sample of 50 h of simulated data sampled at 1 kHz. Thephysically meaningful parameters of the coalescence is
assumption we made for these tests was very simple, that igreatly reduced and the problem of the huge demand of com-
we can have an alarm if the output signal is greater than thguting power required by the matched-filtering technique to
thresholdT. During the 50 run we got a total of 16 false work could be considered greatly reduced.
alarms, whose duration was more or less of 1 or 2 msec: |n connection with the data availablee., a reliable de-
practically noise spikes. The conclusion, in our opinion istection and estimate of the trend of the frequency and of the
that the threshold we are using is very effective for the deyemodulated amplitude of the signal along the tirhg(t)
tection also taking into account the statistical procedure Wend h(t), respectively for the full exploitation of the infor-
have useq to ascertain the significance of the output(Eaa mation t'hey have embedded from the source, it is necessary
next sectioin to use a suitable algorithm of analysis that does not require
an initial guess of the parameters. Therefore, among the sev-
VII. DETERMINATION OF THE ASTROPHYSICAL eral distinct subjects involved in the analysis of GW signals
PARAMETERS OF COALESCING BINARIES from coalescing binaries we propose a procedure to get the

On the basis of the performances of the algorithms wdough estimate of their parameters through the synthetized
implemented, we succeeded in separating the informatiodAmplitudes and frequencies of the signal based on the con-
coming from the input signals so that we tried to perform atrolled random searctCRS by Price(1987 [66]. This is a
rough estimate of the parameters of coalescence at the Nevglobal optimization algorithm, which represents a powerful
tonian order, i.e., trying to obtain the values of the massxtension of the simplex technigyé6]. We want just to
parameter,M, of the initial frequencyf, of the coalescence recall that we use this algorithm to solve the problem of light
duration, and, finally, of the distancel, in Mpc in the case and radial velocity curve solutions of the Roche-based
of optimal orientation of the merging binary. We succeedececlipsing binary model of Wilsofi67—70, but the method
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FIG. 6. From the top to the bottom clockwise: the GW input signal buried in noise, emitted by the classical NS-NS coalescing binary
system of (10.6-10.0M ) and coming from a distance of 500 Mpc (SNR-5 dB) are shown. On the top right the output signal from ALE
is shown. It is possible to see the great improvement of the SNRat reach the value of +15 dB. In the middle are shown the
demodulated amplitudg@lots, the theoretical onéontinuous line, application time of the signa)2and the threshol¢dashed ling On the
bottom are shown the detected frequenc@spearing as continuous because of the output signal amplitude remaining over the treshold for
the whole signal duration timend the theoretical frequency trefdhshed ling

can be easily applied to different problems like the one weplitude envelope demodulator, for the rough estimate of the
are dealing with. In fact, a lot of problems, peculiar to thedistance we discarded 10% of the initial and final data, both
classical algorithms of data analysis, concerning the initiain frequency and demodulated amplitude. According to these
set of parameters, the uniqueness of the solution, and so Olmits we got the results shown in Table I. The average Price
can be avoided. We expose the fundamentals of the methaglgorithm iteration number required for a solution was of

in the Appendix. 30 000(this means a time of about 20 min off-line compu-
To calibrate the procedure of optimization, we performediation on an Alpha Vax

a rough analysis of the simulated data with the theoretical |n Figs. 7-9 it is possible to see the results we got from
parameters shown in Table I. The input data for the CRShe analysis of the coalescence parameters for the detected
algorithm were established according to the following physi-systems shown before. In each figufeom the top to the
cal meaningful intervals: 0.258K <50 search volume inter- pottom) the histogram of the distribution of the mass param-
val for the K parameter related to the chirp-masgel;  eters obtained by Price algorithm, a normality test for the
(0.5su<6)Mg reduced mass search volume for PN1 only;observedM distribution and, finally, a confidence ellipse at
(2<M<20)M, total mass search volume for PN1 only; the two o level for f, versusM are shown. The principal
70<f,=500 Hz starting frequency search volume. axes of the ellipse are, respectively, two standard deviations
The distance was estimated from the demodulated amplin A and two standard deviations ify. Using the Price
tudes and the time evolution of the chirp frequencies accordalgorithm, we got the estimates of the parameters of the coa-

ing to the following formula: lescence, at the Newtonian order, from the detected signals
n with relative errors for the greater part of the systems less
1 K than 10% with respect to the theoretical values of the mass
_ - — 22 1213
()= n Z‘l 1.19<10 h(i) F)™ (7.9 parameters(see Table )l The maximum relative error,

~34%, is related to the lowest mass paramdieas., for
In order to avoid problems of transient phases and taking\1;=0.44). The distances were estimated obtaining relative
into account the way of working both of ALE and of the am- errors less than 20%. It is now interesting to compute the
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FIG. 7. From the top to the bottom for the NS-NS coalescing binary+1.4) system at 500 Mpc the output distribution of the
computed mass parameters of the binary by the Price algofiiywn normality test for the computed mass parametgris(middle), the
95% confidence ellipse for the parameters solufddnandf, (bottom are shown.

gain in terms of computing power if we apply the matched- In this way we have statistically tested the whole proce-
filtering technique as a refinement step of this hierarchicatiure including an ALE plus Price algorithm. In Table | the
procedure. If we assume a range of uncertainty for the masduration of the coalescence estimated from the demodulated
parameter equal to 50%0 be conservativeand apply the amplitudes are also shown. In Figs. 10 and 11 the results of
results 0f{48,49, it is easy to see that for the worst cdtiee ~ the ALE detection and of the CRS astrophysical analysis for
first system reported in Table the computing power is de- the classical 1.4 1.4M binary neutron stars system at the
creased by a factor 1@ew GFlops are needgdwhile for the  first post-Newtonian order for a distance of 300 Mpc are
best caséthe last system reported in Tab)eonly a few tens ~ shown. The results we got for the worst case of noise envi-
of MFlops are necessary. ronment, i.e.h=2.10"2 Hz Y2 at 100 Hz are practically

To test the statistical significance of the results we obthe same as for the optimistic case apart from the scaling of
tained, we devised the following procedure. We generate ghe limit distance of detection that undergoes a scaling factor
chunk of data constituted by noise only, having the sameQ0 in respect of the optimistic sensitivity case. As it is pos-
estimated duration of the simulated signal and we fed ALEsible to see, the results for the detection are similar to the
with this signal We performed the Price optimization using ones at PNO. This fact means that with our procedure we can
the so-obtained output frequencies. We got a set of paramsiso analyze signals at post-Newtonian order, getting results
eters and we performed taStudent test between the set of useful to a more refined analysis. We tried to perform a
parameters obtained from the suspected signal and the pugirect estimate both of the reduced massind of the total
noise signal one. We performed a two-tail null-hypothesismassM. We got gotu.=1.7+0.8 in respect to a,=0.7 and
test usingt-Student statistics for the mean at the level ofM=2.1+1.0 in respect taV;=2.8. In this case the results
significance 5% to verify if the samples of mass parametergre not very encouraging but, for the solution we used only
obtained from the simulated signals could be extracted fronthe observed frequencies
the same population of the mass parameters obtained from a
pure noise signal. As an example we tested a system of
(1.4—-10)M, whose theoretical valuk; is equal to 6.20,
obtaining for the signaKs=6*1 and for the pure noise We have shown in this paper a procedure for the rough
signalK,,=3.90+0.02. Performing thé-Student test we can on-line analysis which has allowed us to obtain the following
reject the null hypothesis at the level of significance both ofresults.
5% and 1%, so the difference is highly significative. This (a) We tested a very simple adaptive filter of practically
fact means also that the procedure we have devised is robusegligible computational complexityhe implementation of
enough against false signals. a single ALE requires 30 arithmetic operatiorighis class of

VIIl. CONCLUSIONS
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FIG. 8. From the top to the bottom for the NS-NS coalescing binary+1.4M ) system at 100 Mpc, the output distribution of the
computed mass parameters of the binary by the Price algofiibpn normality test for the computed mass parametgrs(middle), the
95% confidence ellipse for the parameters solutddnand f, (bottom are shown.

filters can be easily used on-line with performances that arbest casélast system in Table)l
very interesting and effective taking care of the problems of Certainly there are, at the moment, limits and drawbacks
misadjustment. of this procedure. Great relevance assumes the problem of
(b) We recall the attention of the interested reader to themissing the final part of the coalescence owing to the strong
results that are shown in Figs. 4—11. In our opinion theyfrequency gradient. This fact means that we must correct the
surely represent a fairly good and interesting solution to thedaptation step size of the filter so that the gradjegpican
problem of on-line data analysis for the class of coalescinde adaptively increased at the increase of the output fre-
binary signals: using the ALE coupled with the Price algo-quency, taking full care of the filter stability problems. It is
rithm we can completely characterize the signal because walso worth noticing the noise environment we used for the
have two sources of information concerning both the trend osimulation. Of course, we are well aware that we must as-
the frequency and of the amplitude evolution of the coalessume in the future a more realistic noise model: we must also
cence signal in the time domain with input SNR ratios thattest the robustness of the filter against interference, like ther-
can also be of the order of 0.2. The conclusion is that an onmal pendular resonances that are surely present in the sensi-
line rough and fast estimation of the parameters of the coativity curve of LIGO and VIRGO antennas. The robustness
lescence is possible and in any case useful to perform thean be achieved using adaptive notch filter like the ones used
initialization of more powerful refined analysis even on line. for the tracking of the signal, but permitting only a moderate
In fact, in our simulations we restricted the intervals of pos-excursion in an assigned frequency band in such a way to
sible mass parameters so that the computational power delso take account of small parametric variations of the reso-
mand for a matched filter is lowered at a level that could benances due to different unpredictable sources of noise.
a feasible on-line analysis by a parallel computer. Last but not the least, we must perform a more complete
(c) This approach suggested for the analysis of GW coaand accurate test of statistical significance of the algorithm.
lescing binary signals could represent a good contributiorin a following paper we shall accomplish all these tasks us-
towards the implementation of a fairly good approximationing also more refined signal fornp47], but we are confident
of a matched-filtering technique, without the necessity ofin succeeding in finding reasonable solutions to the remain-
huge computing power and overall without the need of aring problems both for ALE and for the Price algorithm.
almostexactknowledge of the signal waveform. In fact, if
we apply a hierarchical procedure using the results we re- APPENDIX
ported in Table | using the results obtained with ALE to be
refined with a matched-filtering technique, we reduce the We give, now, a brief outline of CR8or further details,
computing power needed by a factor 10 for the worst cassee[66]). Given a functionf of m variables whose minima
(first system in Table)land to few tens of MFlops for the have to be found, one has to assign limits to each ofnthe
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FIG. 9. From the top to the bottom for the NS-NS coalescing binary (10@0M ;) system at 500 Mpc, the output distribution of the
computed mass parameters of the binary by the Price algofithpn normality test for the computed mass paramet&simiddle), bottom
the 95% confidence ellipse for the parameters solutiérand f, (bottom are shown.

variables thus defining an initial search volumMeHence the If the value of the function irP is less than the maximum
minimization procedure can be expressed by value stored irA, thenP replaces this point, otherwise a new
trial point is selected. The algorithm iterates within this
Sso=MIN[f(X1,Xz, ... Xm)], (Al)  scheme. The set & points ofA tends to cluster around the
) minima, as shown by Pricel976 [66], but can(randomly
where K1,X3, ... Xm) €V, i.e., reach also zones far from detected minitaauseful feature
to get out of the local ongs
Loy SX1SX1 X2, SX2SXp 5 Xy, SXm<Xm, The higher the number of lines of the arrAythe higher

(A2) is the probability of finding a global minimum. The higher

_ L - . the number of iterations, the better the definition of minima.

A numberN of trial points is randomly chosen within this The 40rithm does not specify a particular stop criterion,
domain, consistent with the constraints. The coordlna}tes %aving the choice to the user, but we studied the property of
every point and the function values are stored in arn.,nyergence in probability of this procedure and established
Nx(m+1) arrayA whose structure is a suitable stop criterion using the results of a study reported

in the next paragraph.
X11 X2 0 Xmo

(A3) 1. Convergence of the Price algorithm

The convergence of the Price algorithm can be shown, in
Xmi Xm2 .o Xmm  fm a heuristic way, assuming that the objective function is con-
tinuous in the search volumé¢ and that there is a unique
After this initialization step, the real minimization proce- 9/0bal minimum(this last hypothesis is assumed for sake of

dure begins. A trial poinP is selected in a way that depends SIMPlicity but is not strictly necessary _

on the points stored in the arraj. In m+1 points The generation of the grid in the search volume gives a

(R;,R,, ... Rn.,) are randomly extracted from the array sample of a uniform stochastic variable of dimension 1. At

antlj’ thzé cer;trgierls of the firstm points [R;,Ry,...Ry) is each iteration, the new generated point can expressed as fol-
H 1ty m.

evaluated. Then the trial poift is determined following the lows:
algebraic operation 1[{2 M

P==| 2.3 P,—2-Rpi1]. AS
P=2.G—Ry. (Ad) s=2lm ;1 i m+1 (A5)
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FIG. 10. Detection of the GW signal from the classical (1144M ) binary neutron star coalescence at a distance of 300 Mpc at PN1
order. Clockwise from the top left to the bottom the signal buried in noise (SBIRB), the detected output signal from ALE top right are
shown. In the middle the detected demodulated amplifddes and the theoretical on@lashed lingtogether with the threshold are shown.

In the bottom the detected frequencigsrg and their theoretical tren@ashed lingare shown.

From Eq.(A5) we can deduce th&, is the sample mean of If k is great enough, the point grid distribution will no longer
the stochastic variables: 18/ P; and —2-Ry,., and  be uniform; this fact implies that some zones of the search

both have finite variances owing to the fact the the first one/0lume will not be reachable starting from the grid points

is the sample mean oh stochastic variables extracted from (there will not be a simplex from which a reflection alone

a uniform distribution according to the hypothesis we madeWould be possible to generate whatever point of the grid as at

while the second one because it is extracted from a uniforrtl€ beginning of the processo we have

distribution. So the new generated point will be a stochastic .

variable extracted from a finite variance distribution. After - mea${P.f(P)<fmk}) _

k iterations, each stochastic variablés(i=1,... m+1), Pk= measgV) Pm,:

involved in the process of generation of the new point tends

to be a sample mean. This means that the stochastic proceEge equal sign on the left-hand side of the disequation is true

fulfills the hypothesis of the central limit theorem and so weonly in the case of the possibility of a complete exploration

can affirm that the distribution of the grid points will tend to Of the whole search volume, starting from whatever point of

a Gaussian distribution with increasing the number of iterathe grid. If m is great enough this fact happens until to a

tions. The mean of this distribution will be coincident with humber of iteration& such that we are guaranteed a reason-

the global minimum, if the dimensiom of the grid is large  ably complete scanning of the search voluwhéthe greater

enough. m, the greater is the completeness of the scanniAgthe
First of all let us demonstrate that the distribution vari- (k+1)th iteration we could have one of the following cases:

ance decreases with the increasing of the iterations: at the (1) f(P9)<fp=fy <fym=pm  <Pm,

(A7)

kth iteration, beingmk the maximum of the objective func- 2 fmksf(ps):fmkﬂzfmk: Pm,,,=Pm,
tion, f, over the grid pointsPg the new generated point, let This implies that
us define ) (limy_.pm, = 0)=(limy_..px=0).

Be P, thelth point for which we will have that the limit
condition is fulfilled: the choice of a new poifg depends

pk:PrOt[f(PS)<fmk]' (AB) only on the grid configuration, so if the variance of the dis-
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FIG. 11. Statistical analysis of the results we got from Price algorithm for the parameters at PN1 order for the parameters of the binary
shown in Fig. 10. In this figure only the results for the mass parametethe frequencyf,, and the reduced mags are shown.

tribution would not decrease then the conditions writtencedure. The structure of such a coefficient must be a bal-
above would not be verified. In the ideal case the conditiongnced synthesis of different aspects of the problem and must
will be asymptotically satisfiedk— ), and this means that give precise information on the following two items.

we will never have null variance. Actually the points of the (1) The validity of the physical model used on the basis of
search volume belong to a grid, whose step can be, in ththe type, the quality and the quantity of data available. In
best case, equal to the physical limit imposed by the machinpractice, it is important to verify which are the physical phe-
precision of the computer used. Therefore, defining such stepomena whose presence can be ascertained only on the basis

d, we will have convergence over the poimthen of the data and, as consequence, the type and the number of
parameters which correctly describe the system.
gfgdZ, i=1,2,...,m, (A8) (2) The level of significance of the solutions preventing us

from the false alarm probability at a fixed level of confi-
whereo? is the variance of théth parameter. In this situa- 9€Nnce. In the hypothesis of a correct description of the sys-
tion, the grid points will collapse all on the poif,, or, tem, it should also permit one to quantify the errors on each

more precisely, on the nearest grid point. When this situationﬁ’hhys'c"’lll_am_j é:]eogetncal Ec)ararr;_et_er. Ahn c:ij'OF'S c;]ho;ce for
is verified we will definitively haveP, = P, because the gen- 1S quality indexS comes from fitting the data In the least

eration of points different fronP, will no longer be possible. sgquares sense, I.e., minimizing the value of the functln_n

If at this stage the mean of the points distribution were not éhe general case in which the GW frequency and amplitude
minimum, or if it were not a point of global minimum, this curves are solved together

would imply the existence of at least a poiRt different

from P, such thatf(P’)<f(P,). The existence of such a 0

point is guaranteed by the continuity of the function, but S:n_f izl Wi(fi ops— fi.comp?

conditions(1) and (2) and consequencg), written above,

state that waiting for a number of iteratiokggreat enough, Mh

the probability of the occurrence of that kind tends to zero. + n—h 2’1 wh(h) ops— h|,comQ2, (A9)

Therefore, we have heuristically demonstrated the conver-
gence in probability of the Price algorithm. The practical
consequences of the above conclusions are that all the infowherew f; andwh, are the weights of the points of frequency
mation, coming from Price algorithm, could be expressed byand amplitude curves); ,n,, are the number of observations
a quality coefficient, which quantifies the goodness of then each curve, respectively. At this point it is evident that the
fitting and, at the same time, represents the connection beuality index S we have introduced is proportional to the
tween the mathematics and the physics of the solution prostatisticy?, assuming that the final distribution of the param-
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eters is Gaussian as we have heuristically demonstrates~S, 5o, that is indicative of a good fit. If this hypothesis is
above. On the basis of what was said above, the determingerified then it is necessary to build a large set of solutions
tion of statistically meaningful solutions can be synthetizedcharacterized bys<S; 5, Using also the previously stored
in the following procedure. ones. This set permits one to calculate the parameters and the
We assume that the physical model used can exactly filg|ative errors by simply evaluating the mean and standard
the noise freeobservations and that the estimated standar@eviation of the parameters of the stored solutions.
deviation o is correctly calculated. We choose a value Concerning the CPU time required for a solution we can
=0.50 as a level of significance for the solutions and calcusay that it depends, of course, on the time required for each
late the value ofS; 5o which corresponds to a value of the iteration by the objective function computation and on the
probability distribution functionP, (x,»)=0.50 and is in- number of iterations. Because of ttieontrolled random
dicative of a good fit: all the solutions characterized bysearch used, a new iteration does not necessarily update the
S< S, 5 are statistically meaningful solutions at least at thesearch array. Therefore, the number of iterations may be very
level of significance 0.50 and must be stored during the minihigh, but in our case the objective function requires a very
mization procedure. Then it is necessary to ascertain that tHew time of computation per iteration so the algorithm could
global minimum is characterized by a value of the order ofwork on line.
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