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We propose a multistep procedure for the on-line detection and analysis of the gravitational wave signals
emitted during the coalescence of compact binaries. This procedure, based on a hierarchical strategy, consists
of a rough on-line analysis of the gravitational wave signal using adaptive line enhancers filters and a fast
off-line parameter estimate, using the controlled random search optimization algorithm. A more refined off-line
analysis using the classic matched-filtering technique, with a greatly reduced computational burden, can follow
to further improve the parameter estimate. The results of simulations for the rough analysis are quite promising
both for the relatively small computational power needed and for the robustness of the algorithms used, so that
it could be very helpful for gravitational wave detection with very large baseline interferometric detectors such
as LIGO and VIRGO.@S0556-2821~97!05906-7#

PACS number~s!: 04.40.Dg, 04.80.Nn, 95.55.Ym, 97.80.Hn

I. INTRODUCTION

Gravitational wave~GW! detection is certainly one of the
most challenging goals for today’s physics: a very strong
proof in favor of the Einstein’s general relativity description
of phenomena related to the dynamics of gravitation and the
opening of a completely new channel of information on as-
trophysical objects@1–3#. For this task, many detectors with
different measurement bands and sensitivities are already op-
erational or are planned in the world both at Earth~resonant-
mass detectors@4,5#, laser interferometers@6,7#, etc.! and in
space ~spacecraft tracking@8#, space interferometers@9#,
etc.!. But, despite the great efforts produced in the last 20
years, up to now no direct evidence confirms the existence of
GW’s. The only credited indirect evidence of GW emission
is the famous two-neutron star binary pulsar PSR 1913116
discovered in 1975 by Hulse and Taylor@10#, which is de-
caying due to the loss of orbital energy to gravitational
waves at the rate predicted by the general relativity to better
than 1% accuracy@11,12#.

A real great improvement in the direction of direct GW
detection will be given by the new generation of long base-
line laser interferometric detectors, such as GEO@13#, the
Laser Interferometric Gravitational Wave Observatory
~LIGO! @14#, TAMA @15#, and VIRGO@16#, which are going
to be operational at the beginning of the next century. These
detectors are very promising because their projected high
sensitivities, coupled to their intrinsic large measurement
bands, put them in a good position for the detection of GW
emitted from different classes of astrophysical objects like,
for example, radiation bursts from supernovae events occur-
ring in the Virgo cluster, periodic signals from old and new
pulsars, radiation from coalescing compact binaries, stochas-
tic background gravitational radiation, quasinormal modes of
black holes, etc.@2,3#.

In this paper we will focus our attention on GW signal
detection from coalescing compact binaries, which seem to

be very promising transient GW sources, also because of the
relatively large number of expected events each year~of the
order of tens per year within a few hundreds of Mpc! @17–
20#. These systems are made of two compact objects@two
neutron stars~NS-NS!, two black holes~BH-BH!, or a mixed
pair ~NS-BH!# spiraling very rapidly around each other in
their last stage of evolution immediately preceding the final
coalescence with a dynamics entirely ruled by the radiation
forces due to the emission of gravitational radiation, at a
frequency equal to twice the orbital frequency and the typical
shape of a chirp signal@21#.

As said above, the detection of GW generated by coalesc-
ing compact binary systems could be, in principle, possible
with ground-based long baseline interferometric detectors,
although the GW signal will probably not stand above their
broadband noise. In particular, the LIGO and VIRGO anten-
nas will be in a good position for such detection@22–26# and
could provide precise measurements of the masses of the
objects, of the spins and, in the case of neutron stars, of the
radii @27–34#.

But even if these interferometers seem to be sensitive
enough for the detection of these sources, nevertheless the
problem of GW signal analysis is still an open problem,
whose solution requires an adequate choice of the data analy-
sis techniques in connection with the shape of the expected
signal, the noise of the detector and the available computing
power @35,36#.

For this task, many efforts have been made for the devel-
opment of special data analysis techniques for the enhance-
ment of the signal-to-noise ratio of these GW signals. Sev-
eral algorithms have been developed and tested, but probably
the best known technique is the matched-filtering technique,
first suggested in this field of research by Thorne@24#. This
technique, well known in communication theory as the
Wiener-Komolgorov optimum filter@37,38#, requires the
correlation of the output of a detector with a template of the
expected signal~matched filter!. But, although very simple in
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principle, the application of such algorithm requires a prac-
tically exact theoretical knowledge of the shape of the ex-
pected signal as function of the unknown parameters which
describe the coalescing binary and, then, the correlation of
the detector output with several thousands of templates. And,
as it is well known, these two requirements are very difficult
to satisfy for coalescing binary signals@21,39#.

The shape of the GW signal can be obtained by comput-
ing the gravitational radiation field generated by a system of
two point masses moving on a practically circular orbit. Ac-
tually, the solution of this problem requires the calculation of
the gravitational radiation field to a very high order in terms
of a post-Newtonian~PN! expansions@40#, because coalesc-
ing compact binaries are strongly dominated by relativistic
effects@22–24#. This radiation field has been calculated up
to the PN2 approximation@41–43#, although recently the
precision of the energy loss has been extended to include the
next PN2.5 approximation@44#. But, although the PN2 pre-
cision is still insufficient to make full use of the phase data
@45,46#, the PN2 waveform amplitude is close to the needs of
the LIGO and VIRGO detectors@30–32#. For this task, ana-
lytic expressions have been obtained in a form directly us-
able for GW data analysis by@47#.

The large number of templates necessary for data analysis
using matched-filtering technique raises problems due to the
great computing power needed for performing this task on
line @21,35,36#. In fact, as a consequence of the large band of
these detectors~some kHz! sampling rates of the order of 20
kHz are foreseen, resulting in a huge amount of data/day to
be analyzed on line~of the order of 10 GByte/day!. Of
course, the analysis of such a large amount of information
could be made off line, but it would be better to select on
line all the data frames which may contain a GW signal.

At this stage, two are the most credited approaches to
solve this problem. The first approach consists in defining a
single-step procedure characterized by a full on-line fine
analysis of the data with selection of the signals and deter-
mination of the coalescing binaries parameters~matched fil-
ters! while the second approach consists in a hierarchic pro-
cedure characterized by a rough analysis for the selection of
frames of data which could contain GW signals with a rea-
sonable degree of confidence~adaptive filters, optimization
algorithms, matched filters, etc.! followed by a fine analysis
with more refined techniques~matched filters!.

Actually, the direct application of the matched-filtering
technique to the VIRGO antenna requires a computing
power of about 20230 GFlops at the lowest post-Newtonian
order~PN0! and about 80 GFlops at the first post-Newtonian
correction~PN1! in order to recover 95% of the SNR, includ-
ing the computing power necessary for the production of the
templates@48#. An analogous prediction for the LIGO an-
tenna gives substantially comparable results@49#. These es-
timates confirm that already at the stage of the first post-
Newtonian correction large parallel computers are necessary
for the on-line analysis of these signals. Moreover, even if
we assume an easily available computing power, the
matched-filtering technique raises problems due to the filters
computational complexity coupled with their lack of robust-
ness in connection with possible signal missing or the change
of the statistics of the signal due the presence of nonstation-
ary noise. Moreover, but not secondary, the performances of

a matched filter strongly degradate if the theoretically pre-
dicted signal is not close to the real one.

In order to solve these theoretical problems and to reduce
the large amount of computing power required for such
analysis, some algorithms have been proposed, like, for ex-
ample, the algorithm proposed by Smith@50# for real-time
detection of coalescing binary waveforms, which requires
resampling the data stream at increasingly larger rate in order
to compensate the increase in frequency of the signal. When
the signal is present, the Fourier transform of the resampled
data will peak at a particular frequency, which depends on
how fast the data are resampled. The rate at which the resa-
mpling is done is the same for all the waveforms, whose
frequencies remain proportional to each other until the coa-
lescence time. This method has the advantage that a simple
Fourier transform will pick up the signal, but it does not help
in saving computing time, because of the resampling data
needed for every time of arrival@21#.

Probably, the best way to solve this problem is to use the
hierarchical strategy, first performing an on-line rough analy-
sis of the signal in order to select all the possible data frames
which could contain a signal, followed by a finer off-line
search using more refined techniques. A possible solution for
the application of the matched-filtering technique in a hier-
archical search could be that of using a corresponding lower
threshold at a first stage, then refining the analysis in corre-
spondence of signal crossing the first threshold, using more
finely spaced templates and also more refined formulas. This
solution proposed by Thorne@35,36# would decrease the
computing power needed of a factor 10. Other possible pro-
posed strategies could be those of performing searches using
genetic algorithms or global optimization with simulated an-
nealing @49# or the hierarchical strategies like the one pro-
posed by Mohanty and Dhurandhar@51#.

A hierarchic strategy is foreseen also for the VIRGO an-
tenna@16#. In fact, all the data, collected and stored in frames
by a Frame Builder, will be analyzed on line by to-be-
defined on-line algorithms which will select all the frames in
which a GW signal could be present. All the selected frames
will then be archived by the on-line data distribution system
on disks~an amount of 500 GByte is foreseen for the on-line
storage! and on tapes@DST ~data summary tapes!# for a re-
fined off-line analysis. Nevertheless, all the frames, selected
or not, will be archived by a raw data archiving system on
tapes in order to allow a full off-line processing@16,52,53#.

Also we think that a hierarchical strategy is probably the
best way of overcoming this problem. Within this frame-
work, we have developed an on-line hierarchical strategy
whose main goal is that of saving computing power and
leaving the necessary uncertainty margin between the theo-
retically predicted signals and the experimental ones, without
degrading the performances of the data analysis algorithms.

The strategy we propose for the rough analysis consists in
dividing the problem of filtering into two steps, in order to
obtain separate information on the amplitude and frequency
of the signal, instead of doing everything at the same time
@54,55#. For this task, we tested an adaptive noise cancelling
algorithm of the class of adaptive line enhancers~ALE’s!
@56#. In fact, the signal to be detected is a classic modulated
signal which exhibits at the same time the three basic forms
of modulation in amplitude, frequency and phase. In particu-
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lar, the modulation in amplitude is related only with the
physical and geometrical structure of the source, while the
frequency and phase modulations are related also to effects
which depend on the relative position of the detectors with
respect to the source. Therefore, a multistep on-line proce-
dure can be defined as~1! 1° step, rough analysis of inter-
esting sequences of a GW antenna output data with suitable
algorithms~adaptive filters!; ~2! 2° step, suitable refined off-
line data analysis with more powerful but computationally
more complex algorithms~global optimization algorithms
and matched filters!.

In particular, the rough analysis must be efficient and ro-
bust, with the following characteristics:~1! minimum loss of
signals which can be extracted from refined algorithms;~2!
robustness against false alarm detection like the refined ones.

As we shall show in this paper, we succeed in getting an
almost complete rough characterization of the signals we are
interested in, estimating the mass parameter, coalescing du-
ration and distance in the case of optimal orientation source-
antenna of the simulated binary coalescence at the Newton-
ian order. Tests were also performed at the first post-
Newtonian order and the results we got have shown that the
performances of the algorithm we implemented are fairly
good also for PN1 terms. For this work we have used the
chirp waveforms derived by Krolak~1989! @28# and adapted
for numerical computations by Verkindt~1993! @57#. In a
following paper we shall test the most up-to-date chirp wave-
forms up to the 2.5 post-Newtonian order and we shall use
more realistic noise constraints.

II. GW SIGNAL FROM COALESCING BINARIES

In this section we briefly describe the nature of the gravi-
tational wave form emitted by a coalescing binary system.
As is well known, in the transverse traceless~TT! gauge, the
gravitational wave emitted by a system is described in terms
of the two polarizations usually denoted byh1(t) and
h3(t) @1#. According to this terminology the noise-free re-
sponse of the detector is simply given by@58,59#

R~ t !5F1h1~ t !1F3h3~ t !, ~2.1!

whereF1 andF3 are functions of the angles describing the
orientation of the detector and the position of the source,
h1(t) andh3(t) are expressed by

h1~ t !5h~ t !~11cos2i !cosF2pE f ~ t !dt1f G , ~2.2!

h3~ t !52h~ t !cosi3sinF2pE f ~ t !dt1f G , ~2.3!

wherei is the inclination of the orbital plane, andh(t) is the
amplitude of the gravitational signal at the detector level

h~ t !5F2mG

dc4 G@GMp f ~ t !#2/3, ~2.4!

wherem andM are the reduced and total mass of the binary,
respectively,d is the distance from Earth,f (t) is the instan-
taneous frequency of the gravitational wave, andf is the
phase of the wave at some fiducial frequency. In particular,

the time dependence of the phase and of the frequency of the
radiation and the total number of revolutions done by the
binary can be expressed as

x~ t !5
8

5
tF12

t

tG5/8, ~2.5!

f ~ t !5 f 0F12
t

tG23/8

, ~2.6!

N5
1

32
p28/3

c5

G5/3K
21f 0

25/3, ~2.7!

whereK5mM2/3 and t is the time lacking to the coales-
cence, if no tidal disruption occurs, when the GW frequency
is equal tof 0,

t5
5p28/3

256

c5

G5/3

1

K
f 0

28/3. ~2.8!

Using Eq.~2.1!, the response of the detector can be written
as

R~ t !5h~ t !@F1
2 ~11cos2i !214F3

2 cos2i #1/2

3cosF2pE f ~ t !dt1c1f G , ~2.9!

where

c5arctanF 2F3cosi

F1~11cos2i !G . ~2.10!

These expressions show that the only effect of any arbitrary
orientation of the detector with respect to the plane of the
orbit of the binary is that of changing the amplitude and the
phase of the output signal without affecting its time depen-
dence. On the basis of what is said above and without loss of
generality, the noise-free response of the detector to the sig-
nal can be rewritten in a more convenient way as

s~ t !5kHh~ t !cos@2p f ~ t !t1f0#, ~2.11!

h~ t !52.56310221F K

M(
5/3GFMpcd GF f ~ t !

100 HzG2/3, ~2.12!

F f ~ t !

100 HzG5S F f 0
100 HzG2 8/3

20.332F K

M(
5/3G t D 23/8

,

~2.13!

t53.0F f 0
100 HzG2 8/3F K

M(
5/3G21

, ~2.14!

N5480.0F K

M(
5/3G21F f 0

100 HzG25/3

, ~2.15!

whereK5mM2/3,M5K3/5 is the so-called chirp mass, and
d is the distance in Megaparsecs~Mpc! ~the masses are ex-
pressed in solar units!. Finally, the parameterkH
(0,kH,1) depends on the source-detector orientation~in
our simulation we assumedkH51). As it is easy to see,
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this signal has the typical structure of an amplitude modu-
lated signal,h(t), with a time dependent carrier,f (t), and a
starting phasef0 and is valid in the hypothesis in which tidal
effects, post-Newtonian correction, Doppler shift, and orbital
eccentricity are neglected. The detection of this signal simply
implies the determination of these quantities. In particular,
the amplitude modulation is only related to the physical and
geometrical structure of the source, while the frequency and
phase modulations are related also to effects which depend
on the relative position of the detectors with respect to the
source.

At the final stage of the coalescence, when the post-
Newtonian terms of the development inv/c must be taken
into account, the following first order post-Newtonian cor-
rections to the amplitude and phase of the signal, respec-
tively, must be introduced@57#:

PN1h~ t !54.04310224
1

d S 120.514
m

M Dm21f ~ t !4/3,

~2.16!

PN1f~ t !51.53104S 111.24
m

M Dm21f ~ t !21. ~2.17!

Taking into account these terms, we performed some simu-
lations in order to test the performances of the algorithms
also at the PN1 order.

III. ALGORITHMS FOR SIGNAL EXTRACTION

As we stated above, one of the most credited algorithms
for the gravitational signal extraction from the noise due to
the detector is the matched-filter technique, whose theory,
for sake of completeness, we briefly recall here@37,38#. The
purpose of this filter is to extract the signal with the con-
straint of maximizing the signal-to-noise ratio. For this task,
if we assume a signal,s(t), buried in noise,n(t), then the
detector output signal can be written in the linear case as

sout~ t !5s~ t !1n~ t !. ~3.1!

Therefore, if the Fourier transform of the signal iss̃( f ), then
any stationary linear operation on the output can be ex-
pressed as a convolution of the signal with a filterq(t), that
is

c~ t !5sout~ t !* q~ t !5E
2`

`

sout~t!q~t1t !dt

5E
2`

`

s̃out~ f !q̃
!~ f !e2p i f td f . ~3.2!

Computing the expectation value of the filter output, assum-
ing a Gaussian noise,n(t), and evaluating its variance, we
get a raw signal-to-noise ratio, which is possible to maxi-
mize by means of a suitable choice of the filterq(t). If the
output contains a signal, this filter gives an amplitude signal-
to-noise ratio~SNR! in c(t) ~ratio of maximum value to the
standard deviation of the noise! expressed by

~SNR!opt
2 52E

0

` uh̃~ f !u2

Sh~ f !
d f . ~3.3!

As is well known from the theory, this is the largest SNR
achievable with a linear filter and, in the case of Gaussian
noise, this is also the largest possible SNR ratio@2#. There-
fore, one might think that by performing a filtering of the
incoming data stream with many independent filters, one
would just find the filter that gives the best correlation with
the signal and then infer the mass parameter, phase, ampli-
tude, and time-of-arrival from that. But when we search for
coalescing binary signals, obviously, we do not know the
value of the mass parameterK: we have a range of physi-
cally meaningful mass parameters spanning from 0.25 up to
50 at the zero Newtonian order. In other words, there are
some weak points in the matched-filtering procedure which
cannot be ignored: an almost exact knowledge of the shape
of the signal is needed; the exact shape of the noise must be
known; a large number of filters~thousands! are necessary to
detect the signal, if any is present, because the mass param-
eter is unknown; post-Newtonian terms can lead to a mis-
matching of the signal after few cycles; an optimal threshold
must be established in order to minimize the false alarm
probability according to the hypothesis of stationarity of the
noise.

Summing up, we need a lot of templates for the signal and
we can hope to solve these problems only using on-line par-
allel computers. Starting from this kind of trouble, as stated
in the Introduction, we searched for different algorithms
which, notwithstanding their suboptimality, can be more
suitable for a real-time on-line rough analysis than the
matched filters. In particular, we searched for algorithms
which allowed us to split the problem of filtering into two
parts in order to obtain separate information on the amplitude
and frequency of the signal, instead of doing everything at
the same time. To satisfy these requirements we tested adap-
tive algorithms of the class of adaptive line enhancers
~ALE’s! @60#, which, notwithstanding their suboptimality,
are faster and computationally lighter than the matched-
filtering ones.

IV. ADAPTIVE LINE ENHANCERS „ALE’s …

The algorithms we tested for the on-line detection of coa-
lescing binaries belong to the class of the partially adaptive
filters used to obtain a time-frequency output from the fil-
tered signals. For this task we modified a classical filter we
used for tracking of signals in additive white Gaussian noise
~AWGN! in order to obtain the characterization of the fre-
quency of the input signal or the amplitude determination in
the time domain. The adaptive filter we tested is a classical
IIR based adaptive line enhancer~ALE! filter, designed in
such a way to be only partially adaptive for it works in a
constrained recursive center frequency adaptive configura-
tion for the enhancement of noisy bandpass signals, which
allows one to vary only its center frequency@56#.

A. The adaptive line enhancer

An interesting approach to the problem of signal extrac-
tion from noise is represented by an adaptive line enhance-
ment of the input signal. For this task, many different meth-
ods have been developed, which can be classified into two
main categories: finite impulse response~FIR! and infinite
impulse response~IIR! based methods@61#.
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In FIR based methods, the signal is modeled like an au-
toregressive~AR! process, whose parameters are estimated
using, for example, the least mean square~LMS! algorithm
@60,62–64#. Although this approach has the advantage of
producing stable filters, it is computationally expensive if
good accuracy is required. On the other hand, the computa-
tion time of the IIR based methods is reduced at the expense
of taking care of some instability problems. But what is
worth noticing is that both models are well suited for station-
ary signals and, what is really interesting, in some cases they
can enhance one or more narrowband signals of unknown
and possibly drifting amplitudes and frequencies which are
embedded in broadband noise@65#.

Taking into account our need of a robust and fast algo-
rithm for on-line signal detection and tracking in noise we
tested a simplified version of the ALE filter aimed at the
processing of signals embedded in additive Gaussian noise
with zero mean and variances2 @56#. The procedure we
applied is based on the implementation of a center-frequency
adaptive filter with the constraint of a constant bandwidth
and with the allowance of the variation of the center fre-
quency of the filter by changing of its dependent coefficients.
Therefore, the transfer function and order of the filter can be
designed according to thea priori information ~not exact
knowledge! of the type and bandwidth of the input signal
and the out-of band noise requirements.

In the following we will discuss the structure of the ALE
adaptation mechanism, showing and discussing the structure
of the filter. In particular, we implemented the system basing
its adapting response to the performance criterion of maxi-
mizing the mean-squares output of the bandpass filter as
shown in Fig. 1.

It is well known that for an input of a bandpass signal in
AWGN, the resulting function will be normally unimodal
with the peak occurring at the best solution for the coeffi-
cients, for which the filter center frequency is equal to the
center frequency of the bandpass input. A recursive
maximum-mean-squares algorithm was implemented starting
from the transfer function of a recursive digital filter of order
2 in thez domain,

H~z!5
a01( i51

2 aiz
2 i

11( i51
2 biz

2 i , ~4.1!

assuming as a performance function

PF5E@y2~ t !#5max, ~4.2!

wherey(t) is the output ofH(z) for an inputx(t) as shown
in Fig. 1. Being the objective of this algorithm, the maximi-
zation ofPF within the region of stability, the filter coeffi-
cientsai andbi depend only on one parameter: the central
frequency of the filterand can be updated with increments
proportional to the instantaneous gradient. Since this algo-
rithm maximizes the mean-squares output, it yields stable
parameter estimates only for severe and computationally
complex stability constraints. Hence, this algorithm may be
insufficient for the implementation of general adaptive fil-
ters. However, it yields stable parameter estimates in the case
of the center frequency adaptive filters for a large range of its
scalar convergence parameter,ma .

According to@56#, we implemented the constrained ALE
second-order bandpass Butterworth filter with

H~z!5~12r 2!FWtz/~r1r 2!21

z22Wtz1r 2 G , ~4.3!

where Wt52rcosv0 is the only center-frequency (v0)
parameter-dependent term, whiler is a fixed design param-
eter related to the normalized filter bandwidthB, by the re-
lation B5p(12r ). The stability of this filter requires that
uWtu,2r . Since the objective of the filter is to tune the sig-
nal, then the optimum value ofWt isW0p

52rcosv0p
where

v0p
is the normalized angular center frequency of the input.

FromW0p
52rcosv0p

we can derive the tracked frequency,

f 0(t), of the signal along the time

f 0p~ t !5 f s3acosS W0p

4pr
D , ~4.4!

where f s is the sampling frequency. Therefore, using Eq.
~4.4!, the recursive algorithm for the filter can be expressed
by

yt5WtS 12r

r D xt212~12r 2!xt221Wtyt212r 2yt22 ,

~4.5!

a t5
dyt
dWt

5S 12r

r D xt211Wta t211yt212r 2a t22 ,

~4.6!

Wt115Wt1mayta t /Rt11 , ~4.7!

Rt115nRt1a t
2 ~0,n,1!, ~4.8!

where n is the scalarforgetting factor, introduced for the
recursive computation of the normalizing factorR for the
instantaneous gradienta t , andma is the scalar adaptation
step size. Because of the small number~typically one in our
case! of adapting coefficients, stability monitoring of these
filters is very simple, being performed in order to verify the
conditionuWtu,2r . Concerning the computational efficiency
of recursive adaptive filters, it is well known that it largely
depends on the number of unknown coefficients. Since these
filters have few coefficients, they are computationally very
efficient compared to the completely adaptive filters. More-

FIG. 1. Scheme of the recursive center-frequency adaptive filter
we used for chirp tracking and cost functionPF to be maximized.
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over, if we take into account the availability of a large gra-
dient in the vicinity of the optimum of the performance func-
tion, the algorithm exhibits faster convergence compared to
the completely adaptive filters, expecially while it closely
tracks the signal@56#.

V. ANALYSIS OF ALE PERFORMANCES

The center-frequency adaptive filters continuously track
the center frequency of the input signal and tune to it when
the input is temporarily stationary in center frequency. When
tuned to the center frequency of the input, an adaptive filter
yields maximum SNR improvement:

I5SSNRoutSNRin
D !

5S ~1/2p j !* uH~z!!u2Fss~dz/z!

~1/2p j !* uH~z!!u2Fnn~dz/z! D Y SNRin ,

~5.1!

whereH(z)! is the transfer function of the filter when tuned
to the input signal, andFss andFnn are the power spectral
densities of the input signal and noise components, respec-
tively. Assuming AWGN in input we can further write

I5
~1/2p i !* uH~z!!u2Fss~dz/z!

s2Beq
Y SNRin , ~5.2!

wheres2 is the input one-sided power spectral density or
noise power andBeq is the equivalent noise bandwidth.Beq
can be evaluated from

Beq5
1

2p j E uH~z!!u2
dz

z
~5.3!

using the residue method.
Therefore, if we assume that (12r )!1 and that the filter

is closely tracking the signal, we can state that for the
second-order bandpass Butterworth filter like ALE it is pos-
sible to obtain an improvement of the optimum SNR as

I'
11r

2~12r !
. ~5.4!

At this point it is necessary to discuss how to implement a
trigger and the criterion of choice of the thresholdT, accord-
ing to which we can discriminate between the alternative
hypotheses of absence or presence of a signal at an assigned
level of confidence. In this discussion we will show that the
performances of the implemented ALE filters tend to ap-
proximate those of a matched filter and, of course, are not
better than them. This point, as we shall see, is related to the
choice of the optimum threshold for the trigger. Let us sup-
pose to implement a matched-filter-based trigger assuming:
additive white Gaussian noise~AWGN, of PSD s2), the
form of the signal is exactly known, and the ALE filter tracks
exactly the signal.

The first hypothesis is necessary because our implemen-
tation of the ALE filter works in AGWN and, therefore, it is
a natural choice to assume the same noise environment to
compare the performances of the two algorithms. The second
hypothesis is necessary to define the best situation for the
matched filter, i.e., it is supposed to be perfectly tuned to the
signal in order to obtain the maximum output peak. The third

hypothesis is equivalent to the second one, but for an ALE
filter. Let s(t) be the input signal,S( f ) its Fourier transform,
n(t) a noise process satisfying the hypothesis. The matched-
filter transfer function must, by definition, maximize the fil-
ter output SNR, i.e.,

K~ t !:SNRoutmax!, ~5.5!

whereK(t) is the filter impulse response, and SNRout can be
derived considering the input signal

x~ t !5s~ t !1n~ t ! ~5.6!

and the corresponding output of the matched filter

y~ t !5K~ t !* s~ t !1K~ t !* n~ t ![s8~ t !1n8~ t !. ~5.7!

Therefore, the output SNRout
2 of the matched filter can be

written as

SNRout
2 5

S~ t0!
2

VAR~n!
~5.8!

at a certain timet0.
It is well known that the optimumK( f ), in the way speci-

fied by the condition onK(t), is expressed by

K~ f !5Ce22p f t0
S* ~ f !

sn
2 ~5.9!

(C can be unitary without loss of generality!. Therefore, the
optimum SNRout

2 is

~SNRout
M !25

1

sn
2E

0

`

uS~ f !u2d f5
ES
sn
2 , ~5.10!

whereES is the energy of the input signals(t). The trigger is
implemented considering a set of signal templates and the
corresponding matched filter set, the input signal is pro-
cessed by all the filters and the output of the one yielding the
maximum SNRmax is considered. The SNRmax is compared
with a thresholdT, chosen in order to give an error probabil-
ity of one false alarm per year. If SNRmax

M .T then it is as-
sumed that a signal is present. Further analysis can be done,
with a more restricted, but more refined in resolution, set of
templates. Let us now turn our attention to the ALE filter.
We recall the fact that it is a second-order Butterworth band-
pass filter, whose center frequency is the only parameter that
is recursively adapted, while its normalized bandwidth,
B5p(12r ), is a design parameter depending onr . In other
words the filter is notfully adaptive. According to the hy-
potheses we made, the output power can be written as

E@y2~ t !#>S~ f !uH~ej2p f !u21sn
2 12r

11r
, ~12r !!1,

~5.11!

where f5 f (t) is the signal instantaneous frequency and
S( f ) is the signal instantaneous amplitude. According to the
third hypothesis, ALE tracks the input signal, therefore im-
plying that the filter center frequency tends to the signal
instantaneous frequency, giving in this way an estimate of
this frequency. If the third hypothesis is valid, the
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uH(ej2p f)u2 tends to be unitary in correspondence to the sig-
nal instantaneous frequency. This implies that it is possible
to write the SNRout

ALE for ALE in the following way:

SNRout
ALE[

Es
sn
2 3

11r

12r
5SNRout

M 3
11r

2~12r !
. ~5.12!

This resultmust notbe interpreted saying that an ALE is
(11r )/2(12r ) times better than a matched filter, because

the output of a matched filter is a quantity expressing the
correlation between the filter template and the input, while
the output of ALE is the input signal, that, if closely tracked,
is left unaltered, plus a noise of standard deviationsout,
much lower than the input noise. Therefore, Eq.~5.12! sim-
ply states that an ALE can achieve an improvement of the
signal-to-noise ratio of the input signal. A matched-filter trig-
ger could be used at the output of an ALE filter to obtain
optimum performances for the trigger. Of course, the cause
of the apparently better performances obtained with the

FIG. 2. Simplified sensitivity curve of VIRGO interferometric GW antenna. In this curve only the low frequency thermal pendular noise
and the shot noise are taken into account.

TABLE I. The systems were chosen to cover the known range of mass parameter,M. In the table the headings refer to the component
type of the coalescing system, the masses of the objects, the theoretical mass parameter,Mt the starting theoretical frequency,f ot,
considered in the simulation, the theoretical duration,t t , of the coalescence in sec, the theoretical distance,dt , in Mpc; the corresponding
estimates obtained from the analysis are shown with their standard errors with indexesm.

Numerical tests with ALE

System Theoretical values Measured values

Type m11m2(M() Mt(M() f ot ~Hz! t t ~sec! dt ~Mpc! Mm(M() f om ~Hz! tm ~sec! dm ~Mpc!

NS-NS 0.510.5 0.44 100 12.12 100 0.5960.07 8466 11.9960.10 9066
NS-NS 1.411.4 1.21 100 2.15 100 1.260.1 10365 1.8060.30 90610
NS-NS 1.411.4 1.21 100 2.15 500 1.360.1 10065 1.8060.30 300640
NS-BH 1.415.0 2.22 100 0.75 500 2.2360.04 9961 0.7660.05 5006100
NS-BH 1.4110.0 2.99 100 0.49 500 3.0060.04 99.260.7 0.4660.02 510670
BH-BH 5.015.0 4.35 100 0.26 500 4.1260.04 100.360.6 0.2460.02 470660
BH-BH 5.0110.0 6.09 100 0.15 500 5.7060.03 99.060.2 0.1560.02 490670
BH-BH 10.0110.0 8.70 100 0.082 500 7.7260.03 96.960.2 0.0860.02 5006100
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simple trigger implemented in this work than the one of a
matched filter are due to the different noise environment of
the ALE output.

VI. RESULTS OF THE SIMULATIONS

To test the conditions of efficiency and robustness of the
implemented algorithm, we simulated a simplified output
sensitivity response of VIRGO antenna between 1 Hz up to 5
KHz taking account the two main sources of noise in
VIRGO, i.e., the low frequency thermal pendular noise and
the high frequency shot noise according to the following
specifications@16,57# ~see Fig. 2!:

uSÑR~ f !u25S atf 2D
2

1as
2 Hz21, ~6.1!

where at , related to the pendular thermal noise, was as-
sumed equal to 2310219 andas , related to the shot noise,
was assumed equal to 2310223.

All the simulations were performed in additive prewhit-
ened Gaussian noise~APWGN! of different spectral linear
densities:~1! h̃52310221 Hz21/2 at 100 Hz~worst case!;
~2! h̃52310223 Hz21/2 at 100 Hz~best case!, in order to
take account both the foreseen different sensitivities of
VIRGO antenna at different stages of its implementation
@16#.

We performed some tests on the system shown in Table I
according to both the worst and the best sensitivity cases for
VIRGO. We shall discuss the results in the next section.

For what concerns the problem of the optimum threshold
for the implemented trigger, from the discussion of the pre-
vious section on ALE performances the following criteria
can be assumed. The demodulator output power, if only
noise is present, can be modeled by a random variable hav-

FIG. 3. ~a! Scheme of the whole procedure of detection and analysis we implemented;~b! scheme of the procedure of analysis we
implemented to get rough estimates of astrophysical parameters of the coalescence.
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ing a Rayleigh distribution, with variance 2(12r )/(1
1r )sn

2[sN
2 . If a signal is present and is tracked, the output

power statistic becomes aRician distribution, with meanE
and variancesN

2 . The error probability, assuming indepen-
dent samples, can be written as

Pe5P~noise.T!3P~noise only!

1P@~signal1noise!,T#3P~signal!

5e2T2/2sN
2
~12Ps!1P@~signal1noise!,T#3Ps ,

~6.2!

wherePs is the probability of a signal to be present that is
very low.

Because of the fact thatPs!1, Pe can be conveniently
bounded as

Pe<2e2T2/2sN
2

~6.3!

so giving a closed form for the optimum thresholdT:

T>snA2
4~r21!

r11
ln
Pe

2
. ~6.4!

In this work we assumePe>10212 ~corresponding to 1 false
alarm probability per year! and with r50.99 and
sn52310223 Hz21/2. We obtained a threshold,T
>1.5310223, for the demodulated amplitudeh(t).

We want to stress that this fact is the direct consequence
of the enhancement of the SNR performed by ALE which
allowed us to assume a thresholdT for the outputAI times
smaller than the one necessary for the input signal.

We tested the performances of the algorithm we are deal-
ing with, using the systems of Table I and implementing the
procedure outlined in Fig. 3. In Figs. 4–6 examples are
shown of the detected frequencies and demodulated ampli-
tudes of some simulated signals in the time domain~full line!
and the theoretical trend of the amplitudes and frequencies
~dashed lines! at the Newtonian order along the time of the
coalescing systems emitting GW. We also performed some
experimental tests on simulated data to verify the rejection
factor on the data extraction obtaining, using an Alpha Vax,

FIG. 4. From the top to the bottom clockwise: the GW input signal buried in noise, emitted by the classical NS-NS coalescing binary
system of (1.421.4M() and coming from a distance of 500 Mpc (SNR'23 dB) is shown. On the top right the output signal from ALE
is shown. It is possible to see the great improvement of the SNRout that reach the value of'18 dB. In the middle are shown the
demodulated amplitude~dots!, the theoretical one~continuous line, application time of the signal 2s) and the threshold~dashed line!. On the
bottom the detected frequencies~bars! and the theoretical frequency trend~dashed line! are shown.
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a coefficient of data rejection for an ALE filter~APWGN
noise only as input signal! of nearly 99% of the whole
sample of 50 h of simulated data sampled at 1 kHz. The
assumption we made for these tests was very simple, that is,
we can have an alarm if the output signal is greater than the
thresholdT. During the 50h run we got a total of 16 false
alarms, whose duration was more or less of 1 or 2 msec:
practically noise spikes. The conclusion, in our opinion is
that the threshold we are using is very effective for the de-
tection also taking into account the statistical procedure we
have used to ascertain the significance of the output data~see
next section!.

VII. DETERMINATION OF THE ASTROPHYSICAL
PARAMETERS OF COALESCING BINARIES

On the basis of the performances of the algorithms we
implemented, we succeeded in separating the information
coming from the input signals so that we tried to perform a
roughestimate of the parameters of coalescence at the New-
tonian order, i.e., trying to obtain the values of the mass
parameter,M, of the initial frequency,f 0, of the coalescence
duration,t and, finally, of the distance,d, in Mpc in the case
of optimal orientation of the merging binary. We succeeded

in obtaining the values of these parameters during the coa-
lescence with an interval of confidence so that the range of
physically meaningful parameters of the coalescence is
greatly reduced and the problem of the huge demand of com-
puting power required by the matched-filtering technique to
work could be considered greatly reduced.

In connection with the data available@i.e., a reliable de-
tection and estimate of the trend of the frequency and of the
demodulated amplitude of the signal along the time,f 0(t)
andh(t), respectively# for the full exploitation of the infor-
mation they have embedded from the source, it is necessary
to use a suitable algorithm of analysis that does not require
an initial guess of the parameters. Therefore, among the sev-
eral distinct subjects involved in the analysis of GW signals
from coalescing binaries we propose a procedure to get the
rough estimate of their parameters through the synthetized
amplitudes and frequencies of the signal based on the con-
trolled random search~CRS! by Price~1987! @66#. This is a
global optimization algorithm, which represents a powerful
extension of the simplex technique@66#. We want just to
recall that we use this algorithm to solve the problem of light
and radial velocity curve solutions of the Roche-based
eclipsing binary model of Wilson@67–70#, but the method

FIG. 5. From the top to the bottom clockwise: the GW input signal buried in noise, emitted by the classical NS-NS coalescing binary
system of (1.421.4M() and coming from a distance of 100 Mpc (SNR'15 dB) is shown. On the top right the output signal from ALE
is shown. It is possible to see the great improvement of the SNRout that reach the value of'115 dB. In the middle are shown the
demodulated amplitude~dots!, the theoretical one~continuous line, application time of the signal 2s) and the threshold~dashed line!. On the
bottom are shown the detected frequencies~appearing as continuous because of the output signal amplitude remaining over the treshold for
the whole signal duration time! and the theoretical frequency trend~dashed line!.
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can be easily applied to different problems like the one we
are dealing with. In fact, a lot of problems, peculiar to the
classical algorithms of data analysis, concerning the initial
set of parameters, the uniqueness of the solution, and so on,
can be avoided. We expose the fundamentals of the method
in the Appendix.

To calibrate the procedure of optimization, we performed
a rough analysis of the simulated data with the theoretical
parameters shown in Table I. The input data for the CRS
algorithm were established according to the following physi-
cal meaningful intervals: 0.25<K<50 search volume inter-
val for the K parameter related to the chirp-massM;
(0.5<m<6)M( reduced mass search volume for PN1 only;
(2<M<20)M( total mass search volume for PN1 only;
70< f 0<500 Hz starting frequency search volume.

The distance was estimated from the demodulated ampli-
tudes and the time evolution of the chirp frequencies accord-
ing to the following formula:

^d&5
1

n (
i51

n

1.19310222
K

h~ i !
f ~ i !2/3. ~7.1!

In order to avoid problems of transient phases and taking
into account the way of working both of ALE and of the am-

plitude envelope demodulator, for the rough estimate of the
distance we discarded 10% of the initial and final data, both
in frequency and demodulated amplitude. According to these
limits we got the results shown in Table I. The average Price
algorithm iteration number required for a solution was of
30 000~this means a time of about 20 min off-line compu-
tation on an Alpha Vax!.

In Figs. 7–9 it is possible to see the results we got from
the analysis of the coalescence parameters for the detected
systems shown before. In each figure~from the top to the
bottom! the histogram of the distribution of the mass param-
eters obtained by Price algorithm, a normality test for the
observedM distribution and, finally, a confidence ellipse at
the twos level for f 0 versusM are shown. The principal
axes of the ellipse are, respectively, two standard deviations
in M and two standard deviations inf 0. Using the Price
algorithm, we got the estimates of the parameters of the coa-
lescence, at the Newtonian order, from the detected signals
with relative errors for the greater part of the systems less
than 10% with respect to the theoretical values of the mass
parameters~see Table I!. The maximum relative error,
'34%, is related to the lowest mass parameter~i.e., for
Mt50.44). The distances were estimated obtaining relative
errors less than 20%. It is now interesting to compute the

FIG. 6. From the top to the bottom clockwise: the GW input signal buried in noise, emitted by the classical NS-NS coalescing binary
system of (10.0210.0M() and coming from a distance of 500 Mpc (SNR'15 dB) are shown. On the top right the output signal from ALE
is shown. It is possible to see the great improvement of the SNRout that reach the value of'115 dB. In the middle are shown the
demodulated amplitude~dots!, the theoretical one~continuous line, application time of the signal 2s) and the threshold~dashed line!. On the
bottom are shown the detected frequencies~appearing as continuous because of the output signal amplitude remaining over the treshold for
the whole signal duration time! and the theoretical frequency trend~dashed line!.
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gain in terms of computing power if we apply the matched-
filtering technique as a refinement step of this hierarchical
procedure. If we assume a range of uncertainty for the mass
parameter equal to 50%~to be conservative! and apply the
results of@48,49#, it is easy to see that for the worst case~the
first system reported in Table I! the computing power is de-
creased by a factor 10~few GFlops are needed!, while for the
best case~the last system reported in Table I! only a few tens
of MFlops are necessary.

To test the statistical significance of the results we ob-
tained, we devised the following procedure. We generate a
chunk of data constituted by noise only, having the same
estimated duration of the simulated signal and we fed ALE
with this signal. We performed the Price optimization using
the so-obtained output frequencies. We got a set of param-
eters and we performed at-Student test between the set of
parameters obtained from the suspected signal and the pure
noise signal one. We performed a two-tail null-hypothesis
test usingt-Student statistics for the mean at the level of
significance 5% to verify if the samples of mass parameters
obtained from the simulated signals could be extracted from
the same population of the mass parameters obtained from a
pure noise signal. As an example we tested a system of
(1.4210)M( whose theoretical valueKt is equal to 6.20,
obtaining for the signalKs5661 and for the pure noise
signalKn53.9060.02. Performing thet-Student test we can
reject the null hypothesis at the level of significance both of
5% and 1%, so the difference is highly significative. This
fact means also that the procedure we have devised is robust
enough against false signals.

In this way we have statistically tested the whole proce-
dure including an ALE plus Price algorithm. In Table I the
duration of the coalescence estimated from the demodulated
amplitudes are also shown. In Figs. 10 and 11 the results of
the ALE detection and of the CRS astrophysical analysis for
the classical 1.421.4M( binary neutron stars system at the
first post-Newtonian order for a distance of 300 Mpc are
shown. The results we got for the worst case of noise envi-
ronment, i.e.,h̃52.10221 Hz21/2 at 100 Hz are practically
the same as for the optimistic case apart from the scaling of
the limit distance of detection that undergoes a scaling factor
100 in respect of the optimistic sensitivity case. As it is pos-
sible to see, the results for the detection are similar to the
ones at PN0. This fact means that with our procedure we can
also analyze signals at post-Newtonian order, getting results
useful to a more refined analysis. We tried to perform a
direct estimate both of the reduced massm and of the total
massM . We got gotm51.760.8 in respect to am t50.7 and
M52.161.0 in respect toMt52.8. In this case the results
are not very encouraging but, for the solution we used only
theobserved frequencies.

VIII. CONCLUSIONS

We have shown in this paper a procedure for the rough
on-line analysis which has allowed us to obtain the following
results.

~a! We tested a very simple adaptive filter of practically
negligible computational complexity:the implementation of
a single ALE requires 30 arithmetic operations. This class of

FIG. 7. From the top to the bottom for the NS-NS coalescing binary (1.411.4) system at 500 Mpc the output distribution of the
computed mass parameters of the binary by the Price algorithm~top!, normality test for the computed mass parameters,M ~middle!, the
95% confidence ellipse for the parameters solutionM and f 0 ~bottom! are shown.
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filters can be easily used on-line with performances that are
very interesting and effective taking care of the problems of
misadjustment.

~b! We recall the attention of the interested reader to the
results that are shown in Figs. 4–11. In our opinion they
surely represent a fairly good and interesting solution to the
problem of on-line data analysis for the class of coalescing
binary signals: using the ALE coupled with the Price algo-
rithm we can completely characterize the signal because we
have two sources of information concerning both the trend of
the frequency and of the amplitude evolution of the coales-
cence signal in the time domain with input SNR ratios that
can also be of the order of 0.2. The conclusion is that an on-
line rough and fast estimation of the parameters of the coa-
lescence is possible and in any case useful to perform the
initialization of more powerful refined analysis even on line.
In fact, in our simulations we restricted the intervals of pos-
sible mass parameters so that the computational power de-
mand for a matched filter is lowered at a level that could be
a feasible on-line analysis by a parallel computer.

~c! This approach suggested for the analysis of GW coa-
lescing binary signals could represent a good contribution
towards the implementation of a fairly good approximation
of a matched-filtering technique, without the necessity of
huge computing power and overall without the need of an
almostexactknowledge of the signal waveform. In fact, if
we apply a hierarchical procedure using the results we re-
ported in Table I using the results obtained with ALE to be
refined with a matched-filtering technique, we reduce the
computing power needed by a factor 10 for the worst case
~first system in Table I! and to few tens of MFlops for the

best case~last system in Table I!.
Certainly there are, at the moment, limits and drawbacks

of this procedure. Great relevance assumes the problem of
missing the final part of the coalescence owing to the strong
frequency gradient. This fact means that we must correct the
adaptation step size of the filter so that the gradientma can
be adaptively increased at the increase of the output fre-
quency, taking full care of the filter stability problems. It is
also worth noticing the noise environment we used for the
simulation. Of course, we are well aware that we must as-
sume in the future a more realistic noise model: we must also
test the robustness of the filter against interference, like ther-
mal pendular resonances that are surely present in the sensi-
tivity curve of LIGO and VIRGO antennas. The robustness
can be achieved using adaptive notch filter like the ones used
for the tracking of the signal, but permitting only a moderate
excursion in an assigned frequency band in such a way to
also take account of small parametric variations of the reso-
nances due to different unpredictable sources of noise.

Last but not the least, we must perform a more complete
and accurate test of statistical significance of the algorithm.
In a following paper we shall accomplish all these tasks us-
ing also more refined signal forms@47#, but we are confident
in succeeding in finding reasonable solutions to the remain-
ing problems both for ALE and for the Price algorithm.

APPENDIX

We give, now, a brief outline of CRS~for further details,
see@66#!. Given a functionf of m variables whose minima
have to be found, one has to assign limits to each of them

FIG. 8. From the top to the bottom for the NS-NS coalescing binary (1.411.4M() system at 100 Mpc, the output distribution of the
computed mass parameters of the binary by the Price algorithm~top!, normality test for the computed mass parameters,M ~middle!, the
95% confidence ellipse for the parameters solutionM and f 0 ~bottom! are shown.
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variables thus defining an initial search volumeV. Hence the
minimization procedure can be expressed by

Ssol5MIN @ f ~x1 ,x2 , . . . ,xm!#, ~A1!

where (x1 ,x2 , . . . ,xm)PV, i.e.,

x1low<x1<x1up, x2low<x2<x2up, xmlow
<xm<xmup

.

~A2!

A numberN of trial points is randomly chosen within this
domain, consistent with the constraints. The coordinates of
every point and the function values are stored in an
N3(m11) arrayA whose structure is

S x11 x12 ••• x1m f 1

x21 x22 ••• x2m f 2

••• ••• ••• ••• •••

xm1 xm2 ... xmm fm
D . ~A3!

After this initialization step, the real minimization proce-
dure begins. A trial pointP is selected in a way that depends
on the points stored in the arrayA. In m11 points
(R1 ,R2 , . . . ,Rm11) are randomly extracted from the array
and the centroidG of the firstm points (R1 ,R2 ,..,Rm) is
evaluated. Then the trial pointP is determined following the
algebraic operation

P52•G2Rm11 . ~A4!

If the value of the function inP is less than the maximum
value stored inA, thenP replaces this point, otherwise a new
trial point is selected. The algorithm iterates within this
scheme. The set ofN points ofA tends to cluster around the
minima, as shown by Price~1976! @66#, but can~randomly!
reach also zones far from detected minima~a useful feature
to get out of the local ones!.

The higher the number of lines of the arrayA, the higher
is the probability of finding a global minimum. The higher
the number of iterations, the better the definition of minima.
The algorithm does not specify a particular stop criterion,
leaving the choice to the user, but we studied the property of
convergence in probability of this procedure and established
a suitable stop criterion using the results of a study reported
in the next paragraph.

1. Convergence of the Price algorithm

The convergence of the Price algorithm can be shown, in
a heuristic way, assuming that the objective function is con-
tinuous in the search volumeV and that there is a unique
global minimum~this last hypothesis is assumed for sake of
simplicity but is not strictly necessary!.

The generation of the grid in the search volume gives a
sample of a uniform stochastic variable of dimension 1. At
each iteration, the new generated point can expressed as fol-
lows:

Ps5
1

2 S 2m•(
i51

mf

Pi22•Rm11D . ~A5!

FIG. 9. From the top to the bottom for the NS-NS coalescing binary (10.0110.0M() system at 500 Mpc, the output distribution of the
computed mass parameters of the binary by the Price algorithm~top!, normality test for the computed mass parameters,M ~middle!, bottom
the 95% confidence ellipse for the parameters solutionM and f 0 ~bottom! are shown.
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From Eq.~A5! we can deduce thatPs is the sample mean of
the stochastic variables: 2/m•( i51

mf Pi and 22•Rm11 and
both have finite variances owing to the fact the the first one
is the sample mean ofm stochastic variables extracted from
a uniform distribution according to the hypothesis we made,
while the second one because it is extracted from a uniform
distribution. So the new generated point will be a stochastic
variable extracted from a finite variance distribution. After
k iterations, each stochastic variables,Pi( i51, . . . ,m11),
involved in the process of generation of the new point tends
to be a sample mean. This means that the stochastic process
fulfills the hypothesis of the central limit theorem and so we
can affirm that the distribution of the grid points will tend to
a Gaussian distribution with increasing the number of itera-
tions. The mean of this distribution will be coincident with
the global minimum, if the dimensionm of the grid is large
enough.

First of all let us demonstrate that the distribution vari-
ance decreases with the increasing of the iterations: at the
kth iteration, beingf mk

the maximum of the objective func-

tion, f , over the grid points,Ps the new generated point, let
us define

pk5Prob@ f ~Ps!, f mk
#. ~A6!

If k is great enough, the point grid distribution will no longer
be uniform; this fact implies that some zones of the search
volume will not be reachable starting from the grid points
~there will not be a simplex from which a reflection alone
would be possible to generate whatever point of the grid as at
the beginning of the process! so we have

pk<
meas~$P: f ~P!, f mk

%!

meas~V!
5pmk

. ~A7!

The equal sign on the left-hand side of the disequation is true
only in the case of the possibility of a complete exploration
of the whole search volume, starting from whatever point of
the grid. If m is great enough this fact happens until to a
number of iterationsk such that we are guaranteed a reason-
ably complete scanning of the search volumeV ~the greater
m, the greater is the completeness of the scanning!. At the
(k11)th iteration we could have one of the following cases:

~1! f (Ps), f mk
⇒ f mk11

, f mk
⇒pmk11

,pmk
,

~2! f mk
< f (Ps)⇒ f mk11

5 f mk
⇒pmk11

5pmk
.

This implies that
~3! (limk→`pmk

50)⇒(limk→`pk50).

Be Pl the l th point for which we will have that the limit
condition is fulfilled: the choice of a new pointPs depends
only on the grid configuration, so if the variance of the dis-

FIG. 10. Detection of the GW signal from the classical (1.411.4M() binary neutron star coalescence at a distance of 300 Mpc at PN1
order. Clockwise from the top left to the bottom the signal buried in noise (SNR'0 dB), the detected output signal from ALE top right are
shown. In the middle the detected demodulated amplitude~dots! and the theoretical one~dashed line! together with the threshold are shown.
In the bottom the detected frequencies~bars! and their theoretical trend~dashed line! are shown.
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tribution would not decrease then the conditions written
above would not be verified. In the ideal case the conditions
will be asymptotically satisfied (k→`), and this means that
we will never have null variance. Actually the points of the
search volume belong to a grid, whose step can be, in the
best case, equal to the physical limit imposed by the machine
precision of the computer used. Therefore, defining such step
d, we will haveconvergence over the pointwhen

s i
2<d2, i51,2, . . . ,m, ~A8!

wheres i
2 is the variance of thei th parameter. In this situa-

tion, the grid points will collapse all on the pointPl , or,
more precisely, on the nearest grid point. When this situation
is verified we will definitively havePk5Pl because the gen-
eration of points different fromPl will no longer be possible.
If at this stage the mean of the points distribution were not a
minimum, or if it were not a point of global minimum, this
would imply the existence of at least a pointP8 different
from Pl such thatf (P8), f (Pl). The existence of such a
point is guaranteed by the continuity of the function, but
conditions~1! and ~2! and consequence~3!, written above,
state that waiting for a number of iterationsk great enough,
the probability of the occurrence of that kind tends to zero.
Therefore, we have heuristically demonstrated the conver-
gence in probability of the Price algorithm. The practical
consequences of the above conclusions are that all the infor-
mation, coming from Price algorithm, could be expressed by
a quality coefficient, which quantifies the goodness of the
fitting and, at the same time, represents the connection be-
tween the mathematics and the physics of the solution pro-

cedure. The structure of such a coefficient must be a bal-
anced synthesis of different aspects of the problem and must
give precise information on the following two items.

~1! The validity of the physical model used on the basis of
the type, the quality and the quantity of data available. In
practice, it is important to verify which are the physical phe-
nomena whose presence can be ascertained only on the basis
of the data and, as consequence, the type and the number of
parameters which correctly describe the system.

~2! The level of significance of the solutions preventing us
from the false alarm probability at a fixed level of confi-
dence. In the hypothesis of a correct description of the sys-
tem, it should also permit one to quantify the errors on each
physical and geometrical parameter. An obvious choice for
this quality indexS comes from fitting the data in the least
squares sense, i.e., minimizing the value of the function~in
the general case in which the GW frequency and amplitude
curves are solved together!

S5
1

nf
(
i51

nf

w f i~ f i ,obs2 f i ,comp!
2

1
1

nh
(
l51

nh

whl~hl ,obs2hl ,comp!
2, ~A9!

wherewfi andwhl are the weights of the points of frequency
and amplitude curves,nf ,nh are the number of observations
in each curve, respectively. At this point it is evident that the
quality indexS we have introduced is proportional to the
statisticx2, assuming that the final distribution of the param-

FIG. 11. Statistical analysis of the results we got from Price algorithm for the parameters at PN1 order for the parameters of the binary
shown in Fig. 10. In this figure only the results for the mass parameterM, the frequencyf 0, and the reduced massm are shown.
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eters is Gaussian as we have heuristically demonstrated
above. On the basis of what was said above, the determina-
tion of statistically meaningful solutions can be synthetized
in the following procedure.

We assume that the physical model used can exactly fit
the noise freeobservations and that the estimated standard
deviation ŝ is correctly calculated. We choose a value
l50.50 as a level of significance for the solutions and calcu-
late the value ofS0.50 which corresponds to a value of the
probability distribution functionPx(x,n)50.50 and is in-
dicative of a good fit: all the solutions characterized by
S<S0.50 are statistically meaningful solutions at least at the
level of significance 0.50 and must be stored during the mini-
mization procedure. Then it is necessary to ascertain that the
global minimum is characterized by a value of the order of

S'S0.50, that is indicative of a good fit. If this hypothesis is
verified then it is necessary to build a large set of solutions
characterized byS<S0.50, using also the previously stored
ones. This set permits one to calculate the parameters and the
relative errors by simply evaluating the mean and standard
deviation of the parameters of the stored solutions.

Concerning the CPU time required for a solution we can
say that it depends, of course, on the time required for each
iteration by the objective function computation and on the
number of iterations. Because of the~controlled! random
search used, a new iteration does not necessarily update the
search array. Therefore, the number of iterations may be very
high, but in our case the objective function requires a very
low time of computation per iteration so the algorithm could
work on line.
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