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The measurements of reactionsp2p→p2p1n andp1n→p1p2p on polarized targets at CERN found a
strong dependence of pion production amplitudes on nucleon spin. Analyses of recent measurements of the
p2p→p0p0n reaction on unpolarized targets by the GAMS Collaboration at 38 GeV/c and the BNL E852
Collaboration at 18 GeV/c use the assumption that pion production amplitudes do not depend on nucleon spin,
in conflict with the CERN results on polarized targets. We show that measurements ofp2p→p0p0n and
p2p→hhn on unpolarized targets can be analyzed in a model-independent way in terms of four partial-wave
intensities and three independent interference phases in the mass region whereS andD waves dominate. We
also describe model-independent amplitude analysis of thep2p→p0p0n reaction measured on a polarized
target, both in the absence and in the presence ofG-wave amplitudes. We suggest that high statistics mea-
surements of reactionsp2p→p0p0n andp2p→hhn be made on polarized targets at Protvino IHEP and at
BNL, and that model-independent amplitude analyses of this polarized data be performed to advance hadron
spectroscopy on the level of spin-dependent production amplitudes.@S0556-2821~97!01207-1#

PACS number~s!: 13.88.1e, 13.75.Gx

I. INTRODUCTION

The dependence of hadronic reactions on nucleon spin
was discovered by Chamberlain and his group at Berkeley in
1957 in measurements of polarization inpp andnp elastic
scattering at 320 MeV@1#. The prevalent belief in the 1950s
and 1960s was that in hadronic reactions spin is irrelevant
and the spin effects observed by Chamberlain were expected
to vanish at very high energies, such as 6 GeV/c. Instead,
measurements of polarization in two-body reactions found
significant dependence on spin up to 300 GeV/c at CERN@2#
and Fermilab@3#. Measurements at BNL found large spin
effects at very large momentum transfers@4,5#. Inclusively
produced hyperons show large polarizations up to the
equivalent of 2000 GeV/c @6#. Large spin effects in inclusive
reactions were observed at the Fermilab Spin Facility with
polarized proton and antiproton beams at 200 GeV/c @7,8#.
Today, work is in progress to study the dependence of had-
ronic reactions on spin and nucleon spin structure with po-
larized colliding proton beams at the Relativistic Heavy Ion
Collider ~RHIC! collider at BNL @9#.

The most remarkable feature of hadronic reactions is the
conversion of kinetic energy of colliding hadrons into the
matter of produced particles. This conversion process is
characterized by conservation of total four-momentum and
quantum numbers such as electric charge, baryon number,
and strangeness. The conversion process depends also on the
flavor content and spin of colliding hadrons.

The simplest production processes are single-pion produc-
tion reactions such aspN→p1p2N and KN→KpN. In
1978, Lutz and Rybicki showed@10# that measurements of
these reactions on polarized targets yield enough observables
that model-independent amplitude analysis is possible, deter-
mining the spin-dependent production amplitudes. The mea-
surements of these reactions on polarized targets are thus of

special interest because they permit one to study the spin
dependence of pion creation directly on the level of produc-
tion amplitudes. Several such measurements were actually
done at the CERN Proton Synchrotron~PS!.

The high statistics measurement ofp2p→p2p1n at
17.2 GeV/c on unpolarized targets@11# was later repeated
with a transversely polarized proton target at the same en-
ergy @12–17#. Model-independent amplitude analyses were
performed for various intervals of dimeson mass at small
momentum transfers2t50.00520.2 ~GeV/c)2 @12–15# and
over a large interval of momentum transfer,2t50.221.0
~GeV/c)2 @16,17#.

Additional information was provided by the first measure-
ment of p1n→p1p2p and K1n→K1p2p reactions on
polarized deuteron targets at 5.98 and 11.85 GeV/c @18,19#.
The data allowed us to study thet evolution of the mass
dependence of moduli of amplitudes@20#. Detailed ampli-
tude analyses@21,22# determined the mass dependence of
amplitudes at larger momentum transfers of2t50.220.4
~GeV/c) 2.

The crucial finding of all these measurements was the
strong dependence of production amplitudes on nucleon
spin. The process of pion production is very closely related
to nucleon transversity or the nucleon spin component in a
direction perpendicular to the production plane. For instance,
in p2p→p2p1n at smallt and dipion masses below 1000
MeV, all amplitudes with recoil nucleon transversity down
are smaller than the transversity up amplitudes, irrespective
of dimeson spin and helicity. All recoil nucleon transversity
down amplitudes also show suppression of resonance pro-
duction in ther meson region.

The measurements ofpN→p1p2N reactions on polar-
ized targets also enabled a model-independent separation of
S- andP-wave amplitudes. TheS-wave amplitude with re-
coil nucleon transversity up is found to resonate at 750 MeV
in both solutions@23–25# irrespective of the method of am-
plitude analysis@25#. The resonance is narrow and the most
recent fits@25# determined its width to be 108653 MeV.*Electronic address: svec@hep.physics.mcgill.ca
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Recently high statistics measurements of the
p2p→p0p0n reaction were made at 38 GeV/c by the
GAMS Collaboration at IHEP Protvino@26–28# and at 18
GeV/c by the E852 Collaboration at BNL@29#. In principle
one expects these experiments to confirm the existence of the
s(750) state and to search for new states in higher partial
waves. However, the situation is not so simple. The reason is
that both groups analyze their well-acquired data using a
strong simplifying assumption that the production ampli-
tudes are independent of nucleon spin@30–34#. The purpose
of this assumption is to reduce the number of unknown am-
plitudes by one-half and to enable one to proceed with am-
plitude analysis using such spin-independent ‘‘amplitudes.’’

At this point it is important to realize that one does not
really make an assumption that production amplitudes are
independent of nucleon spin. It is a well-known fact that
nucleon helicity nonflip and flip amplitudes have an entirely
different t dependence due to conservation of angular mo-
mentum. The helicity flip amplitudes vanish ast→0 while
helicity nonflip amplitudes do not. The model-independent
amplitude analyses of two-body reactions also found that the
zero structures of flip and nonflip amplitudes are dramati-
cally different. Moreover, pion production at smallt pro-
ceeds mostly via pion exchange which contributes to helicity
flip amplitudes. Thus the assumption that is really being
made is that all nonflip amplitudes vanish.

The assumption that production amplitudes in
p2p→p0p0n do not depend on nucleon spin is in conflict
with the general consensus that hadronic reactions depend on
nucleon spin up to the highest energies and contradicts all
that we have learned from measurements ofpN→p2p1N
on polarized targets at CERN. Applied to the reactions
p2p→p1p2n andp1n→p1p2p, the assumption has ob-
servable consequences that can be tested directly in measure-
ments with polarized targets.

The first consequence is that all polarized momentspM
L

vanish identically. All experiments on polarized targets,
however, found large nonzero polarized moments. An ex-
ample is given in Fig. 1 which shows the polarized target
asymmetryA related to the momentp0

0. The polarized target
asymmetry has large nonzero~negative! values in both reac-
tions. Measurements ofK1n→K1p2p show similarly large
values ofA @19#.

The experiments on polarized targets are best analyzed
using nucleon transversity amplitudes rather than nucleon
helicity amplitudes. The second consequence of the assump-
tion of the independence of production amplitudes on
nucleon spin is that all transversity amplitudesuĀu with re-
coil nucleon transversity ‘‘up’’ are equal in magnitude to
transversity amplitudesuAu with recoil nucleon transversity
‘‘down’’ relative to the scattering planep2N→(p2p1)N.
In Fig. 2 we show the ratios of transversity amplitudes for
S, P, D, andF waves for dimeson helicityl50. The ratios
are far from unity, indicating that production amplitudes de-
pend strongly on nucleon spin.

If the assumption that the production amplitudes are inde-
pendent of nucleon spin does not work in the reactions
p2p→p2p1n, p1n→p1p2p, andK1n→K1p2p, then
there is no reason to assume that it will work in the
p2p→p0p0n reaction. We must conclude that some of the

results of the analyses ofp2p→p0p0n by GAMS and E852
Collaborations are not reliable.

The question of the reliability of amplitude analyses based
on the assumption of the independence of production ampli-
tudes on nucleon spin is of special importance to confirma-
tion and further study of the narrows(750) state in the
p2p→p0p0n reaction. The evidence for narrows(750) is
closely connected to the spin dependence of production am-
plitudes. In Fig. 3 we show the twoS-wave production am-
plitudes forp2p→p2p1n. We see that while the transver-
sity up amplitudeuS̄u2S resonates in both solutions around
750 MeV, the transversity down amplitudeuSu2S is large
and nonresonating. This results in a partial wave intensity
I S5(uSu21uS̄u2)S that does not necessarily show a narrow
resonant behavior. As seen in Fig. 4, such is the case of
solution I S(2,2).

It is therefore necessary to establish what quantities can
be determined from the measurements ofp2p→p0p0n on
unpolarized targets without the assumption of the indepen-
dence of production amplitudes on nucleon spin. Further-
more, it is necessary to find out if a model-independent am-
plitude analysis ofp2p→p0p0n in measurements on
polarized targets is possible. The purpose of this work is to
provide answers to these questions. We shall show that in
measurements ofp2p→p0p0n on unpolarized targets in
the region whereS andD waves dominate, one can measure
four spin-averaged partial wave intensities and three unre-
lated phases connected with the spin-averaged interference
terms. We will also show that model-independent amplitude

FIG. 1. Polarized target asymmetry in reactions
p2p→p2p1n andp1n→p1p2p. The assumption that the pion
production amplitudes do not depend on nucleon spin predicts that
polarized target asymmetry will be zero.
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analysis is possible when measurements ofp2p→p0p0n
are made on polarized targets, both in the region whereSand
D waves dominate as well as in the region whereG waves
also contribute. We shall propose that such measurements
are a natural extension of measurements on unpolarized tar-
gets and should be performed at both IHEP in Protvino and
at BNL using Brookhaven Multi Particle Spectrometer.

The paper is organized in seven sections. The kinematics,
observables, and pion production amplitude are introduced in
Sec. II. The method of the model-independent analysis of
data on unpolarized targets is described in Sec. III. In Sec. IV
we compare this method with model-dependent analyses of
the GAMS and E852 Collaborations. In Sec. V we describe a
model-independent amplitude analysis ofp2p→p0p0n on
polarized targets in the absence ofG waves. In Sec. VI we
extend the model-independent amplitude analysis to include
the G-wave amplitudes. The paper closes with a summary
and proposals for measurements ofp2p→p0p0n and
p2p→hhn on polarized targets in Sec. VII.

II. KINEMATICS, OBSERVABLES, AND AMPLITUDES

A. Kinematics

Various aspects of phase space, kinematics, and ampli-
tudes in pion production inpN→ppN reactions are de-
scribed in several books@35–37#. The kinematical variables
used to describe the dimeson production on a polarized target
at rest are (s,t,m,u,f,c,d) wheres is the center-of-mass
system ~c.m.s.! energy squared,t is the four-momentum

FIG. 2. The ratio of amplitudes with recoil nucleon transversity
‘‘down’’ and ‘‘up’’ with dimeson helicity l50 in
p2p→p2p1n at 17.2 GeV/c and2t50.00520.2 ~GeV/c)2. The
assumption that the pion production amplitudes do not depend on
nucleon spin predicts that all ratios will be equal to 1. The deviation
from unity shows the strength of the dependence of production
amplitudes on nucleon spin. Based on Fig. 6 of Ref.@14#.

FIG. 3. Mass dependence of unnormalized amplitudesuS̄u2S
and uSu2S measured inp2p↑→p2p1n at 17.2 GeV/c at
2t50.00520.20 ~GeV/c)2 using the Monte Carlo method for am-
plitude analysis@24#. Both solutions for the transversity ‘‘up’’ am-
plitude uS̄u2S resonate while the transversity ‘‘down’’ amplitude
uSu2S is nonresonating in both solutions.

FIG. 4. Four solutions for theS-wave intensityI S measured in
the reactionp2p↑→p2p1n at 17.2 GeV/c and2t50.00520.20
GeV/c using the Monte Carlo method for amplitude analysis@24#.
Although both solutions for the amplitudeuS̄u2S resonate, the in-
tensity I S(2,2) appears nonresonating.
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transfer to the nucleon squared, andm is the dimeson invari-
ant mass. The angles (u,f) describe the direction ofp0 in
thep0p0 rest frame. The anglec is the angle between the
direction of the target transverse polarization and the normal
to the scattering plane~Fig. 5!. The angled is the angle
between the direction of the target polarization vector and its
transverse component~projection of the polarization vector
into thex,y plane!. The analysis is usually carried out in the
t-channel helicity frame for thep0p0 dimeson system. The
helicities of the initial and final nucleons are always defined
in the s-channel helicity frame.

B. Observables

In our discussion of observables measured in
p2p→p0p0n with polarized targets we follow the notation
of Lutz and Rybicki@10#. When the polarization of the recoil
nucleon is not measured, the unnormalized angular distribu-
tion I (u,f,c,d) of p0p0 ~or hh) production on polarized
nucleons at rest of fixeds, m, andt can be written as

I ~V,c,d!5I U~V!1PTcoscI C~V!1PTsincI S~V!

1PLI L~V!, ~2.1!

wherePT5Pcosd andPL5Psind are the transverse and lon-
gitudinal components of target polarizationPW with respect to
the incident momentum~Fig. 5!. The simple cosc and sinc
dependence is due to a spin12 of the target nucleon@10,38#.
Parity conservation requiresI U and I C to be symmetric and
I S andI L to be antisymmetric inf. In the data analysis of the
angular distribution of the dimeson system, it is convenient
to use expansions of the angular distributions into spherical
harmonics. In the notation of Lutz and Rybicki we have

I U~V!5(
L,M

tM
L ReYM

L ~V!,

I C~V!5(
L,M

pM
L ReYM

L ~V!,

I S~V!5(
L,M

rM
L ImYM

L ~V!,

I L~V!5(
L,M

qM
L ImYM

L ~V!. ~2.2!

The expansion coefficientst, p, r , andq are called multipole
moments. The momentstM

L are unpolarized. The moments
pM
L , r M

L , andqM
L are polarized moments. Experiments with

transversely polarized targets measure only transverse mo-
mentspM

L and r M
L but not the longitudinal momentsqM

L .
The multipole moments are obtained from the experimen-

tally observed distributions in each (m,t) bin by means of
the optimization of the maximum likelihood function which
takes into account the acceptance of the apparatus@11,39#. In
these fits it is usually assumed that moments withM.2
vanish. However, it was pointed out by Sakrejda@16# that
moments up toM54 may have to be taken into account at
larger momentum transfers extending to 1.0~GeV/c) 2.

The expansion coefficientst, p, r , andq are simply con-
nected to moments of angular distributions@10#:

tM
L 5eM^ReM

L &5
eM
2pE I ~V,c,d!ReYM

L ~V!dV8,

pM
L 52eM^coscReM

L &

5
2eM
2p E I ~V,c,d!ReYM

L ~V!cosccosddV8,

r M
L 54^sincImYM

L &

5
4

2pE I ~V,c,d!ImYM
L sinccosddV8,

qM
L 54^ImYM

L &5
4

2pE I ~V,c,d!ImYM
L sinddV8,

~2.3!

where dV85dVdc d(2sind). In Eqs. ~2.3!, eM51 for
M50 andeM52 forMÞ0. Integrated over the solid angles
(u,f), the distribution~2.1! becomes

I ~c,d!5~11APTcosc!
d2s

dm dt
, ~2.4!

whereA5A(s,t,m)5A4pp0
0 is the polarized target asym-

metry analogous to the polarization parameter measured in
two-body reactions. In Eq.~2.4!, d2s/dm dt is the inte-
grated reaction cross section:

d2s~s,t,m!

dm dt
5E I ~V,c,d!dV8. ~2.5!

Finally we note the relation of momentstM
L to moments

H(LM ) introduced by Chung@31,32#:

tM
L 5eM^ReYM

L &5eMA2L11

4p
H~LM !. ~2.6!

C. Amplitudes

The reactionp2p→p0p0n is described by the produc-
tion amplitudesHln ,0lp

(s,t,m,u,f) where lp and ln are
the helicities of the proton and neutron, respectively. The

FIG. 5. Definition of the coordinate systems used to describe the

target polarizationPW and the decay of the dimesonp0p0 system.
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production amplitudes can be expressed in terms of produc-
tion amplitudes corresponding to definite dimeson spinJ us-
ing an angular expansion

Hln ,0lp
5 (

J50

`

(
l52J

1J

~2J11!1/2Hlln ,0lp

J ~s,t,m!dl0
J ~u!eilf,

~2.7!

whereJ is the spin andl the helicity of the (p0p0) dimeson
system. Because of the identity of the two final-state mesons,
the ‘‘partial waves’’ with odd J are absent so that
J50,2,4, . . . .

In the following we will consider onlyS-wave (J50),
D-wave (J52), andG-wave (J54) amplitudes. Further-
more, we will restrict the dimeson helicityl to values
l50 or 61 only in accordance with the assumption that
moments withM.2 vanish. This assumption is supported
by experiments.

The ‘‘partial wave’’ amplitudesHlln,0lp
J can be expressed

in terms of nucleon helicity amplitudes with definite
t-channel exchange naturality. The nucleons-channel helic-
ity amplitudes describing the production of the (p0p0) @or
(hh)# system in theS-, D-, andG-wave states are

02
1

2

1

→01
1

2

1

:H01,01
0 5S0 , H01,02

0 5S1 ,

02
1

2

1

→21
1

2

1

:H01,01
2 5D0

0 , H01,02
2 5D1

0 ,

H611,01
2 5

D0
16D0

2

A2
, H611,02

2 5
D1

16D1
2

A2
,

02
1

2

1

→41
1

2

1

:H01,01
4 5G0

0 , H01,02
4 5G1

0 ,

H611,01
4 5

G0
16G0

2

A2
, H611,02

4 5
G1

16G1
2

A2
.

~2.8!

At large s, the amplitudesSn , Dn
0 , Dn

2 , Gn
0 , and Gn

2 ,
n50,1, are dominated by unnatural exchanges while the am-
plitudesDn

1 andGn
1 , n50,1, are dominated by natural ex-

changes. The indexn5ulp2lnu is nucleon helicity flip.
The observables obtained in experiments on transversely

polarized targets in which recoil nucleon polarization is not
observed are most simply related to the nucleon transversity
amplitudes of definite naturality@10,19,40#. For S, D, and
G waves they are defined as

S5k~S01 iS1!, S̄5k~S02 iS1!, ~2.9!

D05k~D0
01 iD 1

0!, D̄05k~D0
02 iD 1

0!,

D25k~D0
21 iD 1

2!, D̄25k~D0
22 iD 1

2!,

D15k~D0
12 iD 1

1!, D̄15k~D0
11 iD 1

1!,

G05k~G0
01 iG1

0!, Ḡ05k~G0
02 iG1

0!,

G25k~G0
21 iG1

2!, Ḡ25k~G0
22 iG1

2!,

G15k~G0
12 iG1

1!, Ḡ15k~G0
11 iG1

1!,

wherek51/A2. The formal proof that the amplitudes defined
in Eqs. ~2.9! are actually transversity amplitudes is given
from the definition in the Appendix in Ref.@19#.

The nucleon helicity and nucleon transversity amplitudes
differ in the quantization axis for the nucleon spin. The trans-
versity amplitudesS, D0, D2, D1, G0, G2, and G1

~S̄, D̄0, D̄2, D̄1, Ḡ0, Ḡ2, andḠ1) describe the production
of the dimeson state with the recoil nucleon spin antiparallel
or ‘‘down’’ ~parallel or ‘‘up’’! relative to the normalnW to the
production plane. The direction of normalnW is defined ac-
cording to the Basel convention bypW p3pW pp wherepW p and
pW pp are the incident pion and dimeson momenta in the target
proton rest frame.

Using the symbols↑ and↓ for the nucleon transversities
up and down, respectively, the following table shows the
spin states of target protons and recoil neutrons and the
dimeson helicities corresponding to the transversity ampli-
tudes~2.9!:

p n (p0p0)

S,D0,G0 ↑ ↓ 0

S̄,D̄0,Ḡ0 ↓ ↑ 0

D2,G2 ↑ ↓ 11 or 21

D̄2,Ḡ2 ↓ ↑ 11 or 21

D1,G1 ↓ ↓ 11 or 21

D̄1,Ḡ1 ↑ ↑ 11 or 21

Parity conservation requires that in the transversity frame
dimeson production with helicities61 depends only on the
transversities of the initial and final nucleons. The ampli-
tudesD2, D̄2, . . . , G1, Ḡ1 do not distinguish between
dimeson helicity states withl511 or 21. Also, dimeson
production with helicityl50 is forbidden by parity conser-
vation when the initial and final nucleons have the same
transversities.

D. Observables in terms of amplitudes

It is possible to express the momentstM
L andpM

L in terms
of quantities that do not depend explicitly on whether we use
nucleon helicity or nucleon transversity amplitudes. How-
ever, eventually we are going to work with transversity am-
plitudes. The quantities we shall need are the spin-averaged
partial wave intensity

I A5uAu21uĀu25uA0u21uA1u2 ~2.10!

and partial wave polarization

PA5uAu22uĀu252eAIm~A0A1* !, ~2.11!

where eA511 for A5S,D0,D2,G0,G2 and eA521 for
A5D1,G1. We also introduce the spin-averaged interfer-
ence terms

R~AB!5Re~AB*1ĀB̄* !5Re~A0B01eAeBA1B1* !,
~2.12!

55 4359RELEVANCE OF NUCLEON SPIN IN AN AMPLITUDE . . .



Q~AB!5Re~AB*2ĀB̄* !5Re~eBA0B1*2eAA1B0* !.
~2.13!

Then momentstM
L can be expressed in terms of spin-

averaged intensitiesI A and spin-averaged interference terms
R(AB). The momentspM

L are then expressed in terms of
polarizationsPA and interference termsQ(AB). The formu-
las for pM

L are obtained from those fortM
L using a replace-

ment I A→eAPA and R(AB)→Q(AB) for eA5eB51 and
R(AB)→2Q(AB) for eA5eB521. There is no mixing of
natural and unnatural exchange amplitudes in the moments
tM
L andpM

L .
Using the results of Lutz and Rybicki@10# and of Chung

@32#, we obtain the following expressions for moments in
terms of quantities~2.10!–~2.13! and a constantc5A4p:

Unpolarized moments:

ct0
05I S1I D01I D21I D11I G01I G21I G1, ~2.14!

ct0
25A5H 2

A5
R~SD0!1

2

7
I D01

1

7
~ I D21I D1!

1
12

7A5
R~D0G0!12

A6
7

@R~D2G2!1R~D1G1!#

1
20

77
I G01

17

77
~ I G21I G1!J ,

ct1
252A5H 2

A10
R~SD2!1

A2
7
R~D0D2!1

2A3
7

R~D0G2!

2
4

5
A2

5
R~D2G0!1

2A15
77

R~G0G2!J ,

ct2
252A5H 17A3

2
~ I D22I D1!2

1

7
@R~D2G2!2R~D1G1!#

1
5A6
77

~ I G22I G1!J ,

ct0
45A9H 27 I D02

4

21
~ I D21I D1!1

2

3
R~SG0!

1
40A5
231

R~D0G0!1
162

1001
I G01

10

77
A2

3
@R~D2G2!

1R~D1G1!#1
81

1001
~ I G21I G1!J ,

ct1
452A9H 27A5

3
R~D0D2! 1

A2
3

R~SG2!

1
17A10
231

R~D0G2!

1
10

77A3
R~D2G0!1

81A2
1001

R~G0G2!J ,
ct2

452A9H A10
21

~ I D22I D1!1
6A15
154

@R~D2G2!

2R~D1G1!#1
27A10
1001

~ I G22I G1!J ,
ct0

65A13H 30A5143
R~D0G0!2

20A6
143

@R~D2G2!

1R~D1G1!#1
20

143
I G02

1

143
~ I G21I G1!J ,

ct1
652A13H 10A21143

R~D0G2!1
10A35
143A2

R~D2G0!

1
2A105
143

R~D0G2!J ,
ct2

652A13H 4A70143
@R~D2G2!2R~D1G1!#

1
A105
143

~ I G22I G1!J ,
ct0

85A17H 490

2431
I G02

392

2431
~ I G21I G1!J ,

ct1
852A17H 294A52431

R~G0G2!J ,
ct2

852A17H 42A352431
~ I G22I G1!J .

Polarized momentspM
L :

cp0
05PS1PD01PD22PD11PG01PG22PG1,

~2.15!

cp0
25A5H 2

A5
Q~SD0!1

2

7
PD01

1

7
~PD22PD1!

1
12

7A5
Q~D0G0!1

2A6
7

@Q~D2G2!2Q~D1G1!#

1
20

77
PG01

17

77
~PG22PG1!J ,
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cp1
252A5H 2

A10
Q~SD2!1

A2
7

Q~D0D2!

12
A3
7

Q~D0G2!2
4

5
A2

5
Q~D2G0!

1
2A15
77

Q~G0G2!J ,
cp2

252A5H 17A3

2
~PD21PD1!2

1

7
@Q~D2G2!

1Q~D1G1!#1
5A6
77

~PG21PG1!J ,
cp0

45A9H 27PD02
4

21
~PD22PD1!1

2

3
Q~SG0!

1
40A5
231

Q~D0G0!1
162

1001
PG01

10

77
A2

3
@Q~D2G2!

2Q~D1G1!#1
81

1001
~PG22PG1!J ,

cp1
452A9H 27A5

3
Q~D0D2!1

A2
3

Q~SG2!

1
17A10
231

Q~D0G2!

1
10

77A3
Q~D2G0!1

81A2
1001

Q~G0G2!J ,
cp2

452A9H A10
21

~PD21PD1!1
6A15
154

@Q~D2G2!

1Q~D1G1!#1
27A10
1001

~PG21PG1!J ,
cp0

65A13H 30A5143
Q~D0G0!2

20A6
143

@Q~D2G2!

2Q~D1G1!#1
20

143
PG02

1

143
~PG22PG1!J ,

cp1
652A13H 10A21143

Q~D0G2!1
10A35
143A2

Q~D2G0!

1
2A105
143

Q~G0G2!J ,
cp2

652A13H 4A70143
@Q~D2G2!1Q~D1G1!#

1
A105
143

~PG21PG1!J ,

cp0
85A17H 490

2431
PG02

392

2431
~PG22PG1!J ,

cp1
852A17H 294A52431

Q~G0G2!J ,
cp2

852A17H 42A352431
~PG21PG1!J .

Polarized momentsr M
L :

cr1
2522A2Re~SD1*2S̄D̄1* !2

2A10
7

Re~D0D1*

2D̄0D̄1* !,

cr2
252

2A30
7

Re~D2D1*2D̄2D̄1* !,

cr1
452

4A15
7

Re~D0D1*2D̄0D̄1* !,

cr2
452

4A10
7

Re~D2D1*2D̄2D̄1* !. ~2.16!

We do not includeG-wave contributions in the polarized
momentsr M

L . In general, these moments are not well deter-
mined in measurements on transversely polarized targets
and, as can be seen in the Appendix, the calculation of rela-
tive phases between the natural exchange amplitudeD1 and
the unnatural exchange amplitudesS, D0, andD2 already
involves a high degree of ambiguity. The inclusion ofG
waves would make the situation even less tractable.

III. MODEL-INDEPENDENT ANALYSIS
OF MEASUREMENTS ON UNPOLARIZED TARGETS

We will now show that in the mass region where onlyS
and D waves dominate, i.e., up to about 1500 MeV, it is
possible to perform an analysis of the measurements of
p2p→p0p0n andp2p→hhn on unpolarized targets with-
out the simplifying assumption that production amplitudes
do not depend on nucleon spin. However, we will find that
data on unpolarized targets measure in a model-independent
way only the partial wave intensities and three unrelated in-
terference phases, and not the production amplitudes which
remain undetermined.

When onlyS andD waves contribute there are six inde-
pendent observables to determine seven unknowns: four par-
tial wave intensities and three spin-averaged interference
terms. Since there are more unknowns than observables, it is
necessary to express the maximum likelihood functionL in
terms of the partial wave intensities and the interference
terms and fitL to the observed data to find a solution.

For this purpose we will now show that the interference
termsR(AB) in Eqs.~2.14! have a general form

R~AB!5AI AAI Bcos~dAB!. ~3.1!

From the definition~2.12! we have
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R~AB!5 (
n50

1

Re~AnBn* !5 (
n50

1

uAnuuBnucos~fn
A2fn

B!.

We can write

R~AB!5AI AAI BZAB . ~3.2!

With definitions forn50,1,

jn
AB5

uAnu
AI A

uBnu
AI B

, wn
AB5fn

A2fn
B , ~3.3!

we have

ZAB5j0
ABcosw0

AB1j1
ABcosw1

AB. ~3.4!

We now recall a theorem from wave theory@41#,

A1sin~vt1w1!1A2sin~vt1w2!5Asin~vt1w!,
~3.5!

where

A25A1
21A2

212A1A2cos~w22w1!,

tanw5
A1sinw11A2sinw2

A1cosw11A2cosw2
. ~3.6!

For vt5p/2 we get

A1cosw11A2cosw25Acosw, ~3.7!

with A andw given above. We can apply Eq.~3.7! to Eq.
~3.4! and get

ZAB5jABcoswAB ,

wherejAB andwAB are given by Eqs.~3.6! with the appro-
priate substitutions from Eq.~3.4!. After some algebra it is
possible to show that

0<jAB<11, ~3.8!

so that 21<ZAB<11. Thus we can actually write
ZAB[cosdAB which proves the statement~3.1!. The phase
dAB is not simply related to the two relative phases
f0
A2f0

B and f1
A2f1

B of the helicity amplitudesAn ,Bn ,
n50,1. Moreover, cosdAB is a measurable parameter along
with the intensitiesI A and I B .

We will refer to dSD0, dSD2, anddD0D2 in Eq. ~3.1! as
interference phases. Notice again that interference phases are
not relative phases between amplitudes and are thus indepen-
dent. Whereas relative phases satisfy forn50,1,

~fn
S2fn

D0
!1~fn

D2
2fn

S!1~fn
D0

2fn
D2

!50, ~3.9!

there is no such relation for the interference phases.
We can use Eq.~3.1! to express the maximum likelihood

functionL in terms of the four intensitiesI S , I D0, I D2, and
I D1 and three interference phasesdSD0, dSD2, and dD0D2

and fitL to the observed angular distributions to find a so-
lution for these quantities in each (m,t) bin. We can con-
clude that an analysis of the data onp2p→p0p0n unpolar-
ized targets is possible without the assumption that

production amplitudes are independent of nucleon spin.
However, the data on unpolarized targets cannot determine
the eight moduli and six cosines of dependent relative phases
of production amplitudes. As we show below, for that deter-
mination measurements on polarized targets are necessary.
The measurements on unpolarized targets determine only
four partial wave intensities and three interference phases in
a model-independent way.

In a mass region whereG waves contribute, measure-
ments on unpolarized targets measure 12 independent unpo-
larized momentstM

L . There are 7 intensities and 11 spin-
averaged interference terms in Eqs.~2.14! for a total of 18
unknowns. In this case a model-independent amplitude
analysis is not possible. However, we shall see below that a
model-independent analysis includingG waves is possible
for measurements on polarized targets.

IV. COMPARISON
WITH MODEL-DEPENDENT ANALYSES

OF p2 p ˜p0p0 n ON UNPOLARIZED TARGETS

Both the GAMS Collaboration and BNL E852 Collabora-
tion use the assumption of the independence of production
amplitudes on nucleon spin@31,32# but employ different
strategies in actual fits to the observed angular distributions
@33,34#. We will confine our discussion to the mass region
whereS andD waves dominate.

The assumption of the independence of production ampli-
tudes on nucleon spin means that formally there is one
S-wave amplitudeS and threeD-wave amplitudesD0, D2,
andD1. The amplitudes have no nucleon spin index. How-
ever, as we have argued above, these amplitudes are essen-
tially the single flip helicity amplitudes (n51) while all he-
licity nonflip amplitudes (n50) are assumed to vanish.

In the GAMS approach@33# the unpolarized moments are
then written as~with c5A4p)

ct0
05uSu21uD0u21uD2u21uD1u2,

ct0
252Re~SD0* !1

2A5
7

uD0u21
A5
7

~ uD2u21uD1u2!,

ct1
252A2Re~SD2* !1

2A10
7

Re~D0D2* !,

ct2
25

A30
7

~ uD2u22uD1u2!,

ct0
45

6

7
uD0u22

4

7
~ uD2u21uD1u2!,

ct1
45

4

7
A15Re~D0D2* !,

ct2
45

2

7
A10~ uD2u22uD1u2!. ~4.1!

There are six independent equations for seven unknowns:
four moduli and three cosines of relative phases. The GAMS
Collaboration determines these quantities by expressing the
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maximum likelihood functionL in terms of the amplitudes
~moduli and cosines! and fittingL to the observed angular
distribution to find solutions for the moduli and relative
phases@27,28,33#. Formally this approach is equivalent to
our approach~described in the previous section! with an ad-
ditional assumption that the interference phases are not inde-
pendent but satisfy a constraint

dSD01dD2S1dD0D250. ~4.2!

What the GAMS Collaboration is actually doing is determin-
ing partial wave intensitiesI A , A5S, D0, D2, D1, and
interference phases subject to the constraint~4.2!. When the
constraint~4.2! is removed, their approach becomes a fully
model-independent determination, not of amplitudes, but of
partial wave intensities.

The BNL E852 employs a different approach@34#. They
express the moduli squared and interference terms in Eqs.
~4.1! in terms of real and imaginary parts for amplitudesS,
D0, andD2. Since there is no interference withD1, only
uD1u2 is retained. Moreover, it is possible to set the overall
phase such that one of the amplitudes~e.g.,S) is purely real.
Thus there are six unknown quantities. The maximum like-
lihood function is then expressed in terms of these unknown
real and imaginary parts ofS, D0, D2, anduD1u2 and fitted
to the observed angular distributions to find the solution for
the amplitudes@34#. Formally this approach is different from
our model-independent method and relies more explicitly on
the assumption that the nonflip helicity amplitudes all vanish.

V. MODEL-INDEPENDENT AMPLITUDE ANALYSIS
OF p2 p↑˜p0p0 n MEASURED ON POLARIZED

TARGETS WITH G WAVES ABSENT

In the following we will assume that unpolarized and po-
larized momentstM

L andpM
L ~andr M

L ) have been determined
using the maximum likelihood method in data analysis of
measurements ofp2p→p0p0n andpp→hhn on polarized
targets in a manner previously used in the reactions
pN↑→p2p1N @11–19#. In this section we show that an
analytical solution exists forS and D waves in the mass
region where these waves dominate. In the next section we
extend the solution to include theG-wave amplitudes. In
both cases we will find it useful to work with nucleon trans-
versity amplitudes~2.9!.

In the mass region whereS andD waves dominate and
theG wave is absent, there are seven unpolarized moments
tM
L , seven polarized momentspM

L , and four polarized mo-
mentsr M

L measured in each (m,t) bin. Looking at Eqs.~2.14!
and ~2.15! and recalling definitions~2.10!–~2.13!, we see
that it is advantageous to introduce new observables which
are the sum and difference of the corresponding moments
tM
L and pM

L . We thus define~with c5A4p) the first set
of equations

a15
c

2
~ t0
01p0

0!5uSu21uD0u21uD2u21uD̄1u2, ~5.1!

a25
c

2
~ t0
21p0

2!52Re~SD0* !1
2A5
7

uD0u21
A5
7

~ uD2u2

1uD1u!,

a35
c

2
~ t1
21p1

2!52A2Re~SD2* !1
2A10
7

Re~D0D2* !,

a45
c

2
~ t2
21p2

2!5
A30
7

~ uD2u22uD̄1u2!,

a55
c

2
~ t0
41p0

4!5
6

7
uD0u22

4

7
~ uD2u21uD1u2!,

a65
c

2
~ t1
41p1

4!5
4

7
A15Re~D0D2* !,

a75
c

2
~ t2
41p2

4!5
2

7
A10~ uD2u22uD̄1u2!.

The second set of equations is obtained by defining observ-
ablesā1 ,ā2 , . . . ,ā7 which are the difference of correspond-
ing moments. We obtain

ā15
c

2
~ t0
02p0

0!5uS̄u21uD̄0u21uD̄2u21uD1u2,

ā25
c

2
~ t0
22p0

2!52Re~S̄D̄0* !1
2A5
7

uD̄0u2

1
A5
7

~ uD̄2u21uD1u2!,

ā35
c

2
~ t1
22p1

2!52A2Re~S̄D̄2* !1
2A10
7

Re~D̄0D̄2* !,

ā45
c

2
~ t2
22p2

2!5
A30
7

~ uD̄2u22uD1u2!,

ā55
c

2
~ t0
42p0

4!5
6

7
uD̄0u22

4

7
~ uD̄2u21uD1u2!,

ā65
c

2
~ t1
42p1

4!5
4A15
7

Re~D̄0D̄2* !,

ā75
c

2
~ t2
42p2

4!5
2

7
A10~ uD̄2u22uD1u2!. ~5.2!

The first set of six independent equations involves four
moduli uSu, uD0u, uD2u, and uD̄1u and three cosines of rela-
tive phases cos(gSD0), cos(gSD2), and cos(gD0D2). The second
set of six independent equations involves the amplitudes of
opposite transversity: four moduliuS̄u, uD̄0u, uD̄2u, and
uD1u and three cosines of their relative phases, cos(ḡSD0),
cos(ḡSD2), and cos(ḡD0D2). The two sets are entirely indepen-
dent and the relative phase between transversity amplitudes
up and down is unknown in measurements on transversely
polarized targets.
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To proceed with the analytical solution, we first find, from
Eq. ~5.1!,

uD0u25
4

10
~a12uSu2!1

7

10
a5 ,

uD2u25
3

10
~a12uSu2!2

7

10
a51

7

2A30
a4 ,

uD̄1u25
3

10
~a12uSu2!2

7

10
a52

7

2A30
a4 , ~5.3!

cosgSD05
1

uSuuD0u S A1
1

2A5
uSu2D ,

cosgSD25
1

uSuuD2u
B,

cosgD0D25
1

uD0uuD2u
C, ~5.4!

where

A5
1

2 H a22 1

A5
a11

1

2A5
a5J ,

B5
1

2 H 1

A2
a32

1

2A3
a6J ,

C5
1

2 H 7

4A15
a6J . ~5.5!

Notice thata7 is not independent and does not enter in the
above equations. Similar solutions can be derived from the
second set~5.2! for amplitudes of opposite transversity.
However, we need one more equation in each set: one equa-
tion for uSu2 in the first set and another one foruS̄u2 in the
second set.

The additional equations are provided by the relative
phases which are not independent:

gSD02gSD21gD0D25~fS2fD0!2~fS2fD2!

1~fD02fD2!50,

ḡSD02ḡSD21ḡD0D25~f̄S2f̄D0!2~f̄S2f̄D2!

1~f̄D02f̄D2!50. ~5.6!

These conditions lead to nonlinear relations between the co-
sines:

cos2~gSD0!1cos2~gSD2!1cos2~gD0D2!,

22cos~gSD0!cos~gSD2!cos~gD0D2!51,

cos2~ ḡSD0!1cos2~ ḡSD2!1cos2~ ḡD0D2!,

22cos~ ḡSD0!cos~ ḡSD2!cos~ ḡD0D2!51. ~5.7!

Similar relations also hold for the sines. Next we define com-
binations of observables

D5
4

10
a12

7

10
a5 ,

E5
3

10
a12

7

20
a51

7

2A3
a4 , ~5.8!

so that

uD0u25D2
4

10
uSu2,

uD2u25E2
3

10
uSu2. ~5.9!

Substituting into Eqs.~5.7! first from Eqs.~5.4! for the co-
sines and then from Eqs.~5.9! for uD0u2 and uD2u2, we ob-
tain a cubic equation forx[uSu2,

ax31bx21cx1d50, ~5.10!

where

a5
27

200
,

b5
1

10S 1

A5
A23D2

9

2
ED ,

c5
1

10
~3A214B2210C212A5BC22A5AE110DE!

d52ABC2A2E2B2D. ~5.11!

A similar cubic equation can be derived for the amplitude
uS̄u2 .

Analytical expressions for the three roots of the cubic
equation~5.10! are given in Table I of Ref.@21#. It is seen
from the table that three real solutions exist; one of them is
negative and it is rejected. There are in general two positive
solutions foruSu2 which lead to two solutions in set 1. Simi-
larly there are two solutions in set 2 of opposite transversity.
Since the two sets are independent, there are four solutions
for partial wave intensities:

I A~ i , j !5uA~ i !u21uĀ~ j !u2,i , j51,2. ~5.12!

The error propagation in the cubic equation and the cal-
culation of errors on the moduli, cosines, and partial wave
intensities as well as the treatment of unphysical complex
solutions are best handled using the Monte Carlo method
described in detail in Ref.@24#.
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The determination of relative phases between the natural
exchange amplitudeD1 and unnatural exchange amplitudes
S, D0, andD2 is described in the Appendix.

VI. MODEL-INDEPENDENT AMPLITUDE ANALYSIS
OF p2 p↑˜p0p0 n MEASURED ON POLARIZED

TARGETS WITH G WAVES INCLUDED

In the mass region whereS, D, andG waves all contrib-
ute ~expected above 1500 MeV!, the measurement of

p2p↑→p0p0n on polarized targets will yield 13 unpolar-
ized momentstM

L , 13 polarized momentspM
L , and 8 polar-

ized momentsr M
L . Central to our discussion are again the

momentstM
L andpM

L given by Eqs.~2.14! and ~2.15!. Using
the definitions~2.10!–~2.13! we see again that it is useful to
define two new sets of observables, one with the sums
tM
L 1pM

L and another one with the differencestM
L 2pM

L .
With c5A4p we obtain, for the first set~sums!,

a15
c

2
~ t0
01p0

0!5uSu21uD0u21uD2u21uD̄1u21uG0u21uG2u21uḠ1u2, ~6.1!

a25
c

2
~ t0
21p0

2!5A5H 2

A5
Re~SD0* !1

2

7
uD0u21

1

7
~ uD2u21uD̄1u2!

1
12

7A5
Re~D0G0* !1

2A6
7

@Re~D2G2* !1Re~D̄1Ḡ1* !#1
20

77
uG0u21

17

77
~ uG2u21uḠ1u2!J ,

a35
c

2
~ t1
21p1

2!52A5H 2

A10
Re~SD2* !1

A2
7

Re~D0D2* !1
2A3
7

Re~D0G2* !

2
4A2
5A5

Re~D2G0* !1
2A15
77

Re~G0G2* !J ,
a45

c

2
~ t2
21p2

2!52A5H 17A3

2
~ uD2u22uD̄1u2!2

1

7
@Re~D2G2* !2Re~D̄1Ḡ1* !#1

5A6
77

~ uG2u22uḠ1u2!J ,
a55

c

2
~ t0
41p0

4!5A9H 27 uD0u22
4

21
~ uD2u21uD̄1u2!1

2

3
Re~SG0* !1

40A5
231

Re~D0G0* !1
162

1001
uG0u2

1
81

1001
~ uG2u21uḠ1u2!1

10A2
77A3

@Re~D2G2* !1Re~D̄1Ḡ1* !#J ,
a65

c

2
~ t1
41p1

4!52A9H 27A5

3
Re~D0D2* !1

A2
3

Re~SG2* !1
17A10
231

Re~D0G2* !

1
10

77A3
Re~D2G0* !1

81A2
1001

Re~G0G2* !J ,
a75

c

2
~ t2
41p2

4!52A9HA1021
~ uD2u22uD̄1u2!1

6A15
154

@Re~D2G2* !2Re~D̄1Ḡ1* !#1
27A10
1001

~ uG2u22uḠ1u2!J ,
a85

c

2
~ t0
61p0

6!5
A13
143

$30A5Re~D0G0* !220A6@Re~D2G2* !1Re~D̄1Ḡ1* !#120uG0u22~ uG2u21uḠ1u2!%,

a95
c

2
~ t1
61p1

6!5
2A13
143 H 10A21Re~D0G2* !1

10A35
A2

Re~D2G0* !12A105Re~G0G2* !J ,
a105

c

2
~ t2
61p2

6!5
2A13
143

$4A70@Re~D2G2* !2Re~D̄1Ḡ1* !#1A105~ uG2u22uḠ1u2!%,

a115
c

2
~ t0
81p0

8!5
A17
2431

$490uG0u22392~ uG2u21uḠ1u2!%,

55 4365RELEVANCE OF NUCLEON SPIN IN AN AMPLITUDE . . .



a125
c

2
~ t1
81p1

8!5
2A17
2431

$294A5Re~G0G2* !%,

a135
c

2
~ t2
81p2

8!5
2A17
2431

$42A35~ uG2u22uḠ1u2!%.

The second set of observablesāi , i51,2, . . . ,13, is formed
similarly by the differencestM

L 2pM
L . It has the same form as

set 1 but involves the amplitudes of opposite transversity.
The first setai , i51, . . .,13, involves seven moduli

uSu,uD0u,uD2u,uD̄1u,uG0u,uG2u,uḠ1u, ~6.2!

ten cosines of relative phases between unnatural amplitudes,

cos~gSD0!,cos~gSD2!,cos~gSG0!,cos~gSG2!, ~6.3!

cos~gD0D2!,cos~gD0G0!,cos~gD0G2!, ~6.4!

cos~gD2G0!,cos~gD2G2!,cos~gG0G2!, ~6.5!

and one cosine of relative phase between the two natural
amplitudes,

cos~ ḡD1G1!. ~6.6!

The second setāi , i51, . . .,13, involves the same ampli-
tudes but of opposite transversity. We will now show that the
cosines~6.4! and ~6.5! can be expressed in terms of cosines
~6.3!. For instance, we can write

gD0D25fD02fD25~fS2fD2!2~fS2fD0!

5gSD22gSD0. ~6.7!

Hence

cosgD0D25cosgSD0cosgSD21singSD0singSD2.

Since the signs of the sines singSD0 and singSD2 are not
known, we write

singSD05eSD0usingSD0u, singSD25eSD2usingSD2u.
~6.8!

Then

cosgD0D25cosgSD0cosgSD2

1eD0D2A~12cos2gSD0!~12cos2gSD2!,

~6.9!

whereeD0D2561 is the sign ambiguity. The remaining co-
sines in Eqs.~6.4! and~6.5! can be written in the form simi-
lar to Eq. ~6.9! with their own sign ambiguities. The sign
ambiguities of all cosines~6.4! and ~6.5! can be written in
terms of sign ambiguitieseSD0, eSD2, eSG0, andeSG2 corre-
sponding to the sines singSD0, singSD2, singSG0, and
singSG2. We can write

eD0D25eSD0eSD2, ~6.10!

eD0G05eSD0eSG0,

eD0G25eSD0eSG2,

eD2G05eSD2eSG0,

eD2G25eSD2eSG2,

eG0G25eSG0eSG2. ~6.11!

First we notice that reversal of all signseSD0 , eSD2 , eSG0,
andeSG2 yields the same sign ambiguities~6.10! and~6.11!.
Next we notice that the sign ambiguities~6.11! of cosines
~6.5! are uniquely determined by the sign ambiguities~6.10!
for cosines~6.4!. Only sign ambiguities~6.10! are indepen-
dent and there are eight sign combinations~6.10!. The fol-
lowing table lists all eight allowed sets of sign ambiguities of
cosines~6.4! and ~6.5!:

1 2 3 4 5 5 7 8

eD0D2 1 2 1 1 2 2 1 2

eD0G0 1 1 2 1 2 1 2 2

eD0G2 1 1 1 2 1 2 2 2

eD2G0 1 2 2 1 1 2 2 1

eD2G2 1 2 1 2 2 1 2 1

eG0G2 1 1 2 2 2 2 1 1

Using expressions like Eq.~6.9! for cosines~6.4! and
~6.5!, we have 12 unknowns in each nonlinear set of 13
equationsai , i51,2, . . . ,13, with one choice of sign ambi-
guities for cosines~6.4! and~6.5! from the above table. The
nonlinear set can be solved numerically or by thex2 method
@25#. In each (m,t) bin we thus have 8 solutions for moduli
~6.2! and cosines~6.3!–~6.5!, and 8 solutions for amplitudes
of opposite transversity from the setāi , i51,2, . . . ,13.
Since each solution is uniquely labeled by the choice of sign
ambiguities, there is no problem linking solutions in neigh-
boring (m,t) bins.

Since the 8 solutions from the first setai ,
i51,2, . . . ,13, are independent from the 8 solutions from
the second setāi , i51,2, . . . ,13, there will be a 64-fold
ambiguity in the partial wave intensities. ForA5S, D0,
D2, D1, G0, G2, andG1 we can write

I A~ i , j !5uA~ i !u21uĀ~ j !u2, i , j51,2, . . . ,8. ~6.12!

We now will discuss constraints on the moments that
should be taken into account at the time of fitting maximum
likelihood functionL to the observed angular distribution in
the process of constrained optimization.
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The observablesai and āi , i51,2, . . . ,13, are not all
linearly independent. In fact one finds two relations@32#

8A14a424A42a71
91

A13
a102

119

2
A 3

17
a1350,

8A14ā424A42ā71
91

A13
ā102

119

2
A 3

17
ā1350.

~6.13!

By adding and subtracting the last two equations we get the
same relationship for corresponding momentstM

L andpM
L :

8A14t2224A42t241
91

A13
t2
62

119

2
A 3

17
t2
850,

8A14p2224A42p241
91

A13
p2
62

119

2
A 3

17
p2
850.

~6.14!

Additional constraints can be obtained by solving for
uG2u21uḠ1u2 from a11 and substituting intoa1. Proceeding
in the same way also foruḠ2u21uG1u2 from ā11 and substi-
tuting into ā1, we get

a11
2431

392A17
a11.0, ā11

2431

392A17
ā11.0. ~6.15!

By adding the two inequalities we get

t0
01

2431

392A17
t0
8.0. ~6.16!

The constraints~6.13! and ~6.14!, or ~6.15! and ~6.16!, are
self-consistency constraints which follow from the assump-
tion that onlyS, D, andG waves contribute. These con-
straints should be imposed on the maximum likelihood func-
tion during the fit to the observed angular distribution. We
then deal with constrained optimization@42–44#. A program
MINOS 5.0 has been developed at Stanford University for
constrained optimization with equality and inequality con-
straints@45#.

VII. SUMMARY

The dependence of hadronic reactions on nucleon spin is
now a well-established experimental fact. Measurements of
the reactionsp2p→p2p1n andp1n→p1p2p on polar-
ized targets at CERN found a strong dependence of pion
production amplitudes on nucleon spin. The assumption that
pion production amplitudes are independent of nucleon spin
is in direct conflict with these experimental findings. The
analyses of thep2p→p0p0n data based on this assumption
thus are not sufficient and may not be fully reliable.

We have shown in Sec. III that unpolarized data provide
model-independent information only on the spin-averaged
partial wave intensities and cosines of three interference
phases. To obtain information about the production ampli-
tudes, measurements ofp2p→p0p0n on polarized targets

are necessary. We have shown in Secs. V and VI how to
perform model-independent amplitude analyses of
p2p→p0p0n measured on polarized targets. A model-
independent analysis is possible in the mass region where
only S- andD-wave amplitudes contribute, as well as in the
mass region where alsoG-wave amplitudes contribute. Our
only assumption was that amplitudes with dimeson helicity
l>2 do not significantly contribute to thep0p0 production.
This assumption is supported by the available data.

On this basis we propose that high statistics measure-
ments ofp2p→p0p0n and p2p→hhn be made at the
BNL Multiparticle Spectrometer and at IHEP in Protvino
and that model-independent amplitude analyses of these re-
actions be performed. We note that this amplitude analysis
will require the unpolarized momentstM

L which should be
determined from the data on unpolarized targets in the same
(m,t) bins.

We suggest that the extensions of the GAMS and BNL
E852 programs to measurements on polarized targets will
significantly contribute to new developments of hadron spec-
troscopy on the level of spin-dependent production ampli-
tudes and to our understanding of hadron dynamics.
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APPENDIX: CALCULATION OF THE PHASES gD1S

AND ḡD1S

In this appendix we solve Eqs.~2.16! for the helicity
frame invariant phases gD1S5fD12fS and
ḡD1S5f̄D12f̄S. Other phases in Eq.~2.16! are then ex-
pressed in terms of these phases and the phases~5.4!:

gD1D05fD12fD05~fD12fS!1~fS2fD0!

5gD1S2gD0S ,

gD1D25fD12fD25~fD12fS!1~fS2fD2!

5gD1S2gD2S , ~A1!

with similar relations forḡD1D0 and ḡD1D2 . The system of
equations~2.16! can then be written as

b152
7A4p

2A30
r 2
25uD1uuD2ucosgD1D2 ~A2!

2uD̄1uuD̄2ucosḡD1D2,

b252
7A4p

4A15
r 1
45uD1uuD0ucosgD1D0

2uD̄1uuD̄0ucosḡD1D0,
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b352
A4p

2A2
r 1
22A5

7
b25uD1uuSucosgD1S

2uD̄1uuS̄ucosḡD1S .

From b3 we obtain

cosḡD1S5
uD1uuSucosgD1S2b3

uD̄1uuS̄u
. ~A3!

Using Eqs.~A1! we obtain, fromb2,

sinḡD1S52cosḡD1S~cosḡD0S /sinḡD0S!1
b22uD1uuD0u~cosgD1ScosgD0S1singD1SsingD0S!

uD̄1uuD̄0usinḡD0S

. ~A4!

We now define

c1[uD0uuSusingD0S5e1AuD0u2uSu22S A1
1

2A5
uSu2D 2,

c2[uD2uuSusingD2S5e2AuD2u2uSu22B2,

c35uD2uuD0usingD2D05e3AuD2u2uD0u22C2, ~A5!

whereek561,k51,2,3 is the ambiguity sign of the sines.
The c3 and the signe3 are not independent ofc1 andc2:

uSu2c35S A1
1

2A5
uSu2D c22Bc1 . ~A6!

Similarly we definec̄1 , c̄2 , and c̄3 for amplitudes of oppo-
site transversity. Substituting for cosḡD1S and sinḡD1S from
Eqs. ~A3! and ~A4! in the equation forb1 and using the
above definitions forck , c̄k , k51,2,3, we obtain

~b1c̄11b2c̄21b3c̄3!uS̄u2uSu

5singD1SuD1uuS̄u2~c1c̄21 c̄1c2!

1cosgD1SuD1u H c̄1~BuS̄u22B̄uSu2!1 c̄2

3F S A1
1

2A5
uSu2D uS̄u21S Ā1

1

2A5
uS̄u 2D uSu2G J .

~A7!

Define

d5
b1c̄11b2c̄21b3c̄3

c1c̄21 c̄1c2
S uSu
uD1u D , ~A8!

tana5H c̄1~BuS̄u22B̄uSu2!1 c̄2F S A1
1

2A5
uSu2D uS̄u2

1S Ā1
1

2A5
uS̄u2D uSu2G J Y~c1c̄21 c̄1c2!uS̄u2.

With this notation Eq.~A6! takes the form

singD1S1cosgD1Stana5d. ~A9!

Its solution is

cosgD1S5
1

11tan2a
$dtana6A11tan2a2d2%,

singD1S5
1

11tan2a
$d7tanaA11tan2a2d2%.

~A10!

Using Eqs.~A10! we obtain cosḡD1S and sinḡD1S from Eqs.
~A3! and ~A4!.

There are four combinations of solutions for moduli
uAu2 and uĀu2, A5S, D0, D2, and D1, entering the calcu-
lation of d and tana. In addition each such combination is
accompanied by the fourfold sign ambiguity from the unde-
termined signsek and ēk , k51,2. This 16-fold ambiguity
increases to 32-fold ambiguity due to sign ambiguity in Eqs.
~A10!.

The solvability of Eq.~A9! imposes a nonlinear constraint
on the data and on the solution for moduli squared:

d221<tan2a. ~A11!

Additional constraints follow from the requirement that co-
sines and sines ofgD1S and ḡD1S have physical values. In
principle, these constraints could reduce the overall ambigu-
ity of solution ~A10!.
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