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Rudjer Bosˇković Institute, P.O. Box 1016, HR-10000 Zagreb, Croatia

W. Schweiger§

Institut für Theoretische Physik, Universita¨t Graz, A-8010 Graz, Austria
~Received 16 April 1996!

The reactionsgp→K1L andgp→K*1L are analyzed within perturbative QCD, allowing for diquarks as
quasielementary constituents of baryons. The diquark-model parameters and the quark-diquark distribution
amplitudes of the proton andL are taken from previous investigations of electromagnetic baryon form factors
and Compton scattering off protons. Unpolarized differential cross sections and polarization observables are
computed for different choices of theK and K* distribution amplitudes. The asymptotic form of theK
distribution amplitude (}x1x2) is found to provide a satisfactory description of theK photoproduction data.
@S0556-2821~97!00307-X#

PACS number~s!: 13.60.Le, 12.38.Bx

I. INTRODUCTION

The reactionsgp→KY (Y5L,S) belong to the most el-
ementary processes which allow one to study strangeness
production. Stimulated by the advent of a new generation of
intermediate-energy electron facilities, such as the Bonn ac-
celerator ELSA or the Continuous Electron Beam Accelera-
tor Facility ~CEBAF!, they recently received renewed inter-
est. Traditional hadronic models applied to the analysis of
K photoproduction mostly make use of Feynman-diagram
techniques@1–3#. The corresponding reaction mechanism is
based on the exchange ofp, L, S, K, andK* , along with a
varying number ofN* andY* resonances. Apart from some
problems with SU~3! bounds on the hadronic coupling con-
stantsgKYN @4#, such models seem to work properly for pho-
ton energies up toplab

g &1.422.2 GeV. New data of higher
precision and completeness~which include also spin observ-
ables! @5,6# are expected to restrict still persisting uncertain-
ties in the meson-baryon couplings and the resonance param-
eters.

A more fundamental treatment of photoproduction
should, of course, rely on QCD, the dynamics of interacting
quarks and gluons. A step in this direction are effective,
‘‘QCD-inspired’’ models which include already one or the
other feature of QCD. A particular example is the chiral
quark model which has been applied toK photoproduction
very recently@7#. Its elementary degrees of freedom are con-
stituent quarks and the members of the~lowest-lying! pseu-
doscalar meson octet (K, h, andp). The latter are consid-
ered Goldstone bosons associated with the spontaneous
breaking of chiral symmetry. The~confined! quarks interact

via exchange of the Goldstone bosons. With less parameters
than hadronic approaches this model also provides reason-
able results forplab

g &2 GeV. Its restricted range of validity is
caused by the use of nonrelativistic transition operators and
baryon wave functions.

Direct application of QCD is~until now! restricted to ki-
nematical situations in which the scattering of the hadronic
constituents and their hadronization takes place on rather dif-
ferent scales. In general this means large energies and mo-
mentum transfers (p'). Well beyond the resonance region
(plab

g @1 GeV! exclusive photoproduction cross sections ex-
hibit a characteristic angular dependence. At forward~small
t) and backward~smallu) angles the strong variation of the
differential cross section is adequately reproduced by the ex-
change of meson and baryon Regge trajectories, respectively
@8#. Arounduc.m.590° ~large t andu) the cross section flat-
tens and shows~for fixed angles! an energy dependence typi-
cal for a hard interaction between the photon and the con-
stituents inside the proton. A constituent scattering model for
high-energy, large-p' elastic and quasielastic reactions has
been proposed in Ref.@9#. The interaction mechanism of this
model, namely quark interchange, may be also thought of as
one of the simplest ways to describe photoproduction of
open strangeness. The resulting interchange amplitude is just
a convolution over light-cone wave functions of the interact-
ing quarks, which have to be parametrized in an appropriate
way.

A more subtle picture, often called the ‘‘hard-scattering
approach,’’ emerges if one tries to figure out the leading
twist contributions to hard exclusive processes within pertur-
bative QCD@10#. The outcome of such an analysis is a fac-
torization formula which is also expressed as a convolution
integral. This integral now consists of distribution ampli-
tudes~DA’s! and a hard-scattering amplitude. The process-
dependent hard-scattering amplitude is perturbatively calcu-
lable and represents the scattering of the hadronic
constituents in collinear approximation. The process-
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independent DA’s contain the nonperturbative bound-state
dynamics of the hadronic constituents. DA’s are, roughly
speaking, valence Fock-state wave functions integrated over
the transverse momentum. At present, the knowledge on
hadron DA’s is still rather limited. The main information is
provided by QCD sum-rule techniques which give estimates
of the lowest moments of various meson and baryon DA’s
@11–13#. The few lowest moments impose some restrictions
on the shape of the DA’s but do not determine them
uniquely. A thorough discussion on how to construct model
DA’s reproducing a certain number of moments can be
found in Ref.@14#. One should also note that the DA’s con-
strained by QCD sum rules are subject to severe criticism
@15–18#. Thus, one is forced, at present, to supplement the
lack of theoretical knowledge on DA’s by some input com-
ing from experiment. Photoproduction reactions are, in this
respect, certainly very interesting. They exhibit a rich flavor
structure and are still simple enough to allow for the compu-
tation of all the Feynman diagrams which enter the hard-
scattering amplitude. Perturbative QCD predictions for vari-
ous photoproduction channels have been published in Ref.
@19#. This paper discusses also the sensitivity of the results
on the choice of the hadron DA’s. Apart from the fact that
there are objections to the numerics of this work~cf. Sec. IV!
and it still needs confirmation, the predictions for theK-L
channel occur to be in considerable disagreement with ex-
periment.

The present work concentrates on photoproduction of the
K-L and K* -L final states. We consider these reactions
within a particular version of the hard-scattering approach in
which baryons are treated as quark-diquark systems. The
same approach has already been applied successfully to other
photon-induced hadronic reactions like magnetic and electric
baryon form factors in the space-@20# and timelike region
@21#, real and virtual Compton scattering@22#, and two-
photon annihilation into proton-antiproton@21#. Further ap-
plications of the diquark model include the charmonium de-
cay hc→pp̄ @21# and the calculation of Landshoff
contributions in elastic proton-proton scattering@23#. The in-
troduction of diquarks not only simplifies computations, but
is rather motivated by the requirement to extend the hard-
scattering approach from large down to intermediate momen-
tum transfers (p'

2*4 GeV2). This is the momentum-transfer
region where experimental data are still available, but where
still persisting nonperturbative effects prevent the pure quark
hard-scattering approach to become fully operational. Di-

quarks may be considered as an effective way to cope with
such nonperturbative effects. It is an assumption that, on an
intermediate momentum-transfer scale, two of the three va-
lence quarks in a baryon make up a diquark cluster. How-
ever, from many experimental and theoretical approaches
there have been indications suggesting the presence of di-
quarks. For instance, they were introduced in baryon spec-
troscopy, in nuclear physics, in jet fragmentation, and in
weak interactions to explain the famousDI51/2 rule. Di-
quarks also provide a natural explanation of the equal slopes
of meson and baryon Regge trajectories. For more details
and for references, see@24#. It is important to note that QCD
provides some attraction between two quarks in a color$3̄%
state at short distances as is to be seen from the static reduc-
tion of the one-gluon exchange term. Also the instanton
force seems to lead to diquark formation@25#. Even more
important for our aim, diquarks have also been found to play
a role in inclusive hard-scattering reactions. The most obvi-
ous place to signal their presence is deep-inelastic lepton-
nucleon scattering. Indeed the higher twist terms, convinc-
ingly observed @26#, can be modeled as lepton-diquark
elastic scattering. Baryon production in inclusivep-p colli-
sions also clearly reveals the need for diquarks scattered
elastically in the hard elementary reactions@27#. For in-
stance, kinematical dependencies or the excess of the proton
yield over the antiproton yield find simple explanations in
the diquark model. No other explanation of these phenomena
is known as yet.

The main ingredients of the diquark model are baryon
DA’s in terms of quarks and diquarks, the coupling of gluons
and photons to diquarks, and, in order to account for the
composite nature of diquarks, phenomenological diquark
form factors. The proper choice of the diquark form factors
guarantees the compatibility of the diquark model with the
pure quark hard-scattering approach in the limitp'→`. In
so far as the pure quark picture of Brodsky-Lepage and the
diquark model do not oppose each other, they are not alter-
natives but rather complements. The model parameters have
been determined in Ref.@20# by means of elastic electron-
nucleon scattering data. The full model incorporates scalar
(S) and vector diquarks. Vector diquarks are important for
the description of spin observables which violate hadronic
helicity conservation, i.e., quantities not explicable within
the pure quark hard-scattering approach. The nice and sim-
plifying feature of the two photoproduction reactions we are
interested in is that they are not influenced by vector di-

FIG. 1. Constituent kinematics forgp→K (* )1L.

FIG. 2. A few representative examples of Feynman diagrams
contributing to the elementary processguS[u,d]→us̄sS[u,d] .
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quarks since only theS[u,d] diquark is common to proton and
L.

The following section starts with an outline of the hard-
scattering approach with~scalar! diquarks. It contains also a
description of the kaon, proton, andL DA’s to be used in the
sequel. Section III deals with the constituent kinematics,
photoproduction observables, and the general structure of
photoproduction helicity amplitudes within the diquark
model. Predictions for photoproduction observables with a
discussion of their dependence on the choice of the kaon DA

can be found in Sec. IV. Conclusions and prospects are given
in Sec. V. Analytical expressions for the helicity amplitudes
are tabulated in Appendix A. Our numerical method for
treating propagator singularities is sketched in Appendix B.

II. HARD SCATTERING WITH DIQUARKS

Within the hard-scattering approach a helicity amplitude
M $l% for the reactiongp→K (* )1L is ~to leading order in
1/p') given by the the convolution integral@10#

M $l%~ ŝ, t̂ !5E
0

1

dx1dy1dz1f
K~* !†~z1 ,Q̃!fL†~y1 ,Q̃!T̂$l%~x1 ,y1 ,z1 ; ŝ, t̂ !f

p~x1 ,Q̃! . ~2.1!

The distribution amplitudesfH are probability amplitudes
for finding the valence Fock state in the hadronH with the
constituents carrying certain fractions of the momentum of
their parent hadron and being collinear up to a factorization
scaleQ̃. In our model the valence Fock state of an ordinary
baryon is assumed to consist of a quark and a diquark (D).
We fix our notation in such a way that the momentum frac-
tion appearing in the argument offH is carried by the
quark—with the momentum fraction of the other constituent
~either diquark or antiquark! it sums up to 1~cf. Fig. 1!. In
what follows we will neglect the~logarithmic! Q̃ dependence
of the DA’s since it is of minor importance in the restricted
energy range we will be interested in. The hard-scattering
amplitude T̂$l% is calculated perturbatively in collinear ap-
proximation and consists in our particular case of all possible
tree diagrams contributing to the elementary scattering pro-
cessguS→us̄sS. A few examples of such diagrams are de-
picted in Fig. 2. The subscript$l% represents the set of pos-
sible photon, proton, andL helicities. We have written the
Mandelstam variabless and t with a hat to indicate that
masses are neglected during the calculation of the hard-
scattering amplitude. They are only taken into account in
flux and phase-space factors.

If one assumes zero relative orbital angular momentum
between quark and diquark and takes advantage of the col-
linear approximation @pq5x1pB and pD5x2pB
5(12x1)pB# the valence Fock-state wave function of a
baryonB belonging to the energetically lowest-lying octet
may be written as

CB~pB ;l!5 f S
BfS

B~x1! xS
B u~pB ,l!

1 f V
B fV

B~x1! xV
B 1

A3
S ga1

pB
a

mB
D g5u~pB ,l! .

~2.2!

The two terms in Eq.~2.2! represent configurations consist-
ing of a quark and either a scalar or vector diquark. The
pleasant feature of the covariant wave-function representa-
tion Eq. ~2.2! is that it contains, in addition tox1 anda ~the

Lorentz index of the vector-diquark polarization vector!,
only baryonic quantities~momentumpB , helicity l, baryon
massmB).

For an SU~6!-like spin-flavor dependence the flavor func-
tions x for proton andL take on the form~the notation
should be obvious!

xS
p5uS[u,d] , xV

p5@uV$u,d%2A2dV$u,u%#/A3 , ~2.3!

xS
L5@uS[d,s]2dS[u,s]22sS[u,d] #/A6 ,

xV
L5@uV$d,s%2dV$u,s%#/A2 . ~2.4!

Similarly, also theq-q̄ wave functions of pseudoscalar
~PM! and vector~VM ! mesons may be represented in a co-
variant way:

CPM~pPM!5 f PM fPM~x1! xPM
1

A2
~p” PM1mPM!g5 ,

~2.5!

CVM~pVM ;l!52 f VM fVM~x1 ,l! xVM

3
1

A2
~p” VM1mVM!e” ~l! , ~2.6!

with the flavor function of theK (* )1 meson given by

xK~* !1
5us̄ . ~2.7!

At this point we are already in the position to recognize a
considerable simplification in the treatment of the reaction
gp→K (* )1L as compared to arbitrary photoproduction pro-
cesses. Photoproduction of theK (* )1-L final state can solely
proceed via theS[u,d] diquark. This is the only kind of di-
quark occurring in both the proton and theL wave function
@cf. Eqs.~2.3! and~2.4!#. The opposite situation, namely that
only the V$u,d% diquark becomes involved, holds for
gp→K (* )1S0. The fact that scalar diquarks as well as
~massless! quarks do not change their helicity when interact-
ing with a gluon imposes already strong restrictions on spin
observables of theK1-L and K*1- L channels. Helicity
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amplitudes which require the flip of the baryonic helicity are
predicted to vanish, e.g., for thegp→K1L process. On the
other hand, helicity flips may take place in thegp→K1S0

reaction by means of the vector diquark. In order to work out
the different features of scalar and vector diquarks a com-
parison of theL and S0 photoproduction channels would
certainly be of great benefit.

The complicated, nonperturbative bound-state dynamics
is contained in the DA’sfH. These are light-cone wave
functions integrated over transverse momentum~up to Q̃).
The r50 values of the corresponding configuration space
wave functions are related to the constantsf H. We will check
the sensitivity of our photoproduction calculation on the
shape of theK (K* ) DA by choosing two qualitatively
rather different forms: the one is the asymptotic DA,

fasy~x!56x~12x! , ~2.8!

which solves theQ̃ evolution equation forf(x,Q̃) in the
limit Q̃→` ~see, e.g., Ref.@10#!; the other one is a two-
humped DA, namely

fCZ
K ~x!5NKfasy~x!@0.0810.6~122x!210.25~122x!3# ,

~2.9!

for theK,

fL
K* ~x!5NL

K*fasy~x!@0.1810.1~122x!2

10.41~122x!3# , ~2.10!

for the longitudinally polarizedK* , and

fT
K* ~x!5NT

K*fasy~x!@0.28410.07~122x!20.534~122x!2

10.21~122x!310.267~122x!4# , ~2.11!

for the transversially polarizedK* . The DA’s, Eqs.~2.9!–
~2.11!, have been proposed in Refs.@11,28#. They reproduce
the corresponding QCD sum-rule moments atQ̃250.25
GeV2. It has been demonstrated quite recently that the linear
x dependence of pseudoscalar meson DA’s at the end points
x→0,1 can be considered as a direct consequence of QCD
@29#.

The usual normalization condition,*0
1dxfH(x)51, fixes

the constantsN in Eqs.~2.9!–~2.11!. The quantitiesf PM and
f VM showing up in Eqs.~2.5! and~2.6! are related to experi-
mentally determinable decay constants of the corresponding
mesons. From theK1→m1nm decay one infers in particular

that f K
1

5 f decay
K1

/2A6532.6 MeV. The value off K* is only

known indirectly via the QCD sum-rule resultf K*51.05f r

~cf. Ref. @11#!. The experimental value of
f r5 f decay

r /2A6540.8 MeV obtained from ther0→e1e2 de-

cay impliesf K*542.9 MeV.
In previous applications of the diquark model@20–22# a

DA of the form

fS
B~x!5NSx~12x!3expF2b2Smq

2

x
1

mS
2

12xD G ,

~2.12!

proved to be quite appropriate for the quark-scalar diquark
Fock state of octet baryonsB. The origin of the DA, Eq.
~2.12!, is a nonrelativistic harmonic-oscillator wave function
@30#. Therefore the masses appearing in the exponentials
have to be considered as constituent masses~330 MeV for
light quarks, 580 MeV for light diquarks, strange quarks are
150 MeV heavier than light quarks!. The oscillator parameter
b250.248 GeV22 is chosen in such a way that the full wave
function gives rise to a value of 600 MeV for the mean
intrinsic transverse momentum of quarks inside a nucleon.
Note that the DA, Eq.~2.12!, exhibits a flavor dependence
due to the masses in the exponential. The exponential in Eq.
~2.12! is merely introduced for theoretical purposes~e.g., in
order to suppress the soft end-point regions!. In the actual
data fitting the exponential plays only a minor role. There-
fore, the masses and the oscillator parameter are not consid-
ered as free parameters but taken from the literature. We
stress that the constituent masses do not appear in the hard-
scattering amplitudes.

The dynamics of diquarks is governed by their coupling
to gluons and photons. With respect to color the diquark
behaves like an antiquark. In order that the diquark in com-
bination with a color-triplet quark gives a colorless baryon it
has to be in a color antitriplet state. The color part of the
quark-diquark wave function@omitted in Eq.~2.2!# is there-
fore cqD

color5(1/A3)(a51
3 da ā . The Feynman rules of electro-

magnetically interacting scalar diquarks are just those of
standard scalar electrodynamics@31#. Replacement of the
electric chargee0eS by 2gst

a, with gs5A4pas denoting
the strong-coupling constant andta5la/2 Gell-Mann color
matrices, yields the corresponding Feynman rules for
strongly interacting scalar diquarks. The explicit expressions
for g-S andg-S vertices read

SgS: 2 ie0eS~p11p2!m , gSgS: 22ie0eSgst
agmn ,

SgS: igst
a~p11p2!m , gSgS: igs

2$ta,tb%gmn .
~2.13!

During the calculation of Feynman diagrams diquarks are
treated as pointlike particles. The composite nature of di-
quarks is taken into account by multiplying the expressions
for the various Feynman diagrams with diquark form factors

FS
~n12!~Q2!5dS

QS
2

QS
21Q2 H 1, n51,

aS , n>2,
~2.14!

which depend on the number (n) of gauge bosons going to
the diquark. This choice of the form factors ensures that the
scaling behavior of the diquark model goes over into that of
the pure quark model in the limitp'→`. The factor
dS5as(Q

2)/as(QS
2) (dS51 for Q2<QS

2) provides the cor-
rect powers ofas(Q

2) for asymptotically largeQ2. For the
running coupling constant as the one-loop result
as512p/25ln(Q2/LQCD

2 ) is used withLQCD5200 MeV. In
addition,as is restricted to be smaller than 0.5. The possi-
bility of diquark excitation and breakup in intermediate
states where diquarks can be far off shell is taken into con-
sideration by means of the strength parameteraS .

For reasons already mentioned, vector diquarks do not
show up in the reactions we are investigating in the present
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paper. However, they have been dealt with in Refs.@20–22#
to which we refer for further details of the diquark model.

III. PHOTOPRODUCTION OF MESONS:
KINEMATICS AND HELICITY AMPLITUDES

Exclusive photoproduction of pseudoscalar mesons can,
in general, be described by four independent helicity ampli-
tudes. Following the notation of Ref.@32# we denote these
amplitudes by

N5M0,21/2,11,11/2, S15M0,21/2,11,21/2,

D5M0,11/2,11,21/2, S25M0,11/2,11,11/2. ~3.1!

N, S1, S2, andD represent nonflip, single-flip, and double-
flip amplitudes, respectively. Our helicity amplitudes are
normalized in such a way that the unpolarized differential
cross section is given by

ds

dt
5

1

32p~s2mp
2!2

~ uNu21uS1u21uS2u21uDu2! . ~3.2!

As we have argued above, two of the four amplitudes vanish,
N5D50, if we concentrate on the particular process
gp→K1L and treat it within the diquark model. Out of the
15 polarization observables discussed in Ref.@32# there are
only 3 observables which remain nonzero and which differ
from each other~and fromds/dt) for vanishingN andD.
These can be chosen as the photon asymmetry

S
ds

dt
5
ds'

dt
2
ds i

dt
5

1

16p~s2mp
2!2

Re~S1*S22ND* ! ,

~3.3!

and the two double-polarization observables

G
ds

dt
52

1

16p~s2mp
2!2

Im~S1S2*1ND* ! , ~3.4!

and

E
ds

dt
5

1

32p~s2mp
2!2

~ uNu22uS1u21uS2u22uDu2! .

~3.5!

ds' (ds i) denotes the cross section for photons polarized
perpendicular~parallel! to the reaction plane.

Photoproduction of vector mesons may be expressed by
altogether 12 linear independent helicity amplitudes@33#.
The diquark model leaves four amplitudes nonzero if applied
to the formation of theK*1-L final state. In addition toS1
and S2 one can choose, e.g.,M11,21/2,11,11/2 and
M21,11/2,11,21/2. Because of the lack of experimental data
we will restrict our discussion ofK*1-L production to the
unpolarized differential cross section which is obtained from
Eq. ~3.2! by including also uM11,21/2,11,11/2u2 and
uM21,11/2,11,21/2u2.

The hard-scattering amplitudeT̂$l% for the elementary
processguS[u,d]→us̄sS[u,d] consists, in general, of 79 dif-
ferent tree diagrams. However, only 63 diagrams are encoun-
tered if the outgoing meson is aK1 or K*1. The other 16

diagrams require thes-s̄ pair to go into the produced meson.
Diagrams of this type would, e.g., be important in
gp→fp.

The helicity structure of the hard-scattering amplitude
T̂$l% is particularly simple for theK1-L andK*1-L final
states. Assigning helicity labels to the hadronic constituents
as in Fig. 1 one finds~with the S diquark helicities
l25l650):

lp5l15l3 ,

lL5l552l4 . ~3.6!

Thus the quark helicities are uniquely determined by the pro-
ton andL helicity, respectively. The additional relation~had-
ronic helicity conservation!

l31l45lp2lL5lK~* ! ~3.7!

is the condition for the hard-scattering amplitudeT̂$l% and
consequently the hadronic amplitudeM $l% to become non-
zero within the diquark model.

As depicted in Fig. 2, the hard-scattering amplitude
T̂$l%(x1 ,y1 ,z1 ; ŝ, t̂ ) for the elementary process
guS[u,d]→us̄sS[u,d] can be decomposed into three-, four-,
and five-point contributions

T̂$l%~x1 ,y1 ,z1 ; ŝ, t̂ !52
2

A6
eu@ T̂$l%

~3,q!~x1 ,y1 ,z1 ; ŝ, t̂ !

1T̂$l%
~4,q!~x1 ,y1 ,z1 ; ŝ, t̂ !#

2
2

A6
es@ T̂$l%

~3,q̄ !~x1 ,y1 ,z1 ; ŝ, t̂ !

1T̂$l%
~4,q̄ !~x1 ,y1 ,z1 ; ŝ, t̂ !#

2
2

A6
eud@ T̂$l%

~4,S!~x1 ,y1 ,z1 ; ŝ, t̂ !

1T̂$l%
~5,S!~x1 ,y1 ,z1 ; ŝ, t̂ !# , ~3.8!

depending on whether one, two, or three gauge bosons go to
the diquark. The additional superscriptsq, q̄, andS occur-
ring in Eq. ~3.8! indicate whether the photon couples to the
u quark, thes quark, or theS diquark, respectively. For the
numerical evaluation of the convolution integral, Eq.~2.1! it
is advantageous to further subdivide the variousn-point con-
tributions into two parts which differ by their propagator
singularities:

T̂$l%
~3,q!~x1 ,y1 ,z1 ; ŝ, t̂ !5

f $l%
~3,q!~x1 ,y1 ,z1 ; ŝ, t̂ !

~q2
21 i e!~g1

21 i e8!

1
g$l%

~3,q!~x1 ,y1 ,z1 ; ŝ, t̂ !

~q3
21 i e!~q4

21 i e8!
,
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T̂$l%
~3,q̄ !~x1 ,y1 ,z1 ; ŝ, t̂ !5

f $l%
~3,q̄ !~x1 ,y1 ,z1 ; ŝ, t̂ !

~q2
21 i e!~q5

21 i e8!

1
g$l%

~3,q̄ !~x1 ,y1 ,z1 ; ŝ, t̂ !

~q3
21 i e!~g3

21 i e8!
,

T̂$l%
~4,q!~x1 ,y1 ,z1 ; ŝ, t̂ !5

f $l%
~4,q!~x1 ,y1 ,z1 ; ŝ, t̂ !

~g1
21 i e!~D1

21 i e8!

1
g$l%

~4,q!~x1 ,y1 ,z1 ; ŝ, t̂ !

~g1
21 i e!

,

T̂$l%
~4,q̄ !~x1 ,y1 ,z1 ; ŝ, t̂ !5

f $l%
~4,q̄ !~x1 ,y1 ,z1 ; ŝ, t̂ !

~g3
21 i e!~D2

21 i e8!

1
g$l%

~4,q̄ !~x1 ,y1 ,z1 ; ŝ, t̂ !

~g3
21 i e!

,

T̂$l%
~4,S!~x1 ,y1 ,z1 ; ŝ, t̂ !5

f $l%
~4,S!~x1 ,y1 ,z1 ; ŝ, t̂ !

~q5
21 i e!~g2

21 i e8!

1
g$l%

~4,S!~x1 ,y1 ,z1 ; ŝ, t̂ !

~q4
21 i e!~g2

21 i e8!
,

T̂$l%
~5,S!~x1 ,y1 ,z1 ; ŝ, t̂ !5

f $l%
~5,S!~x1 ,y1 ,z1 ; ŝ, t̂ !

~D1
21 i e!~D2

21 i e8!

1
g$l%

~5,S!~x1 ,y1 ,z1 ; ŝ, t̂ !

~g2
21 i e!

. ~3.9!

Apart from g3
22 the qi

22 , Di
22 , andgi

22 denote just those
quark, diquark, and gluon propagators which can go on shell
when integrating overx1, y1, andz1. In order to make sym-
metry properties of the functionsf and g with respect to
interchange of Mandelstam variables and momentum frac-
tions more obvious~cf. Appendix A! we have also extracted
the nonsingular gluon propagatorg3

22. Explicitly the propa-
gator denominators read

q2
25y2z2ŝ1x2y2 t̂1x2z2û , g1

25z2ŝ1x2 t̂1x2z2û ,

q3
25y2z1ŝ1x2y2 t̂1x2z1û , g2

25y1ŝ1x1y1 t̂1x1û ,

q4
25y1z2ŝ1x1y1 t̂1x1z2û , g3

25y2z1ŝ1y2 t̂1z1û ,

q5
25y1z1ŝ1x1y1 t̂1x1z1û , D1

25y1z2ŝ1x2y1 t̂1x2z2û ,

D2
25y2z1ŝ1x1y2 t̂1x1z1û . ~3.10!

As already indicated in Eq.~3.9!, propagator singularities are
treated by means of the usuali e prescription.

Analytical expressions for the functionsf andg ~cf. Ap-
pendix A! have been derived with the help of ‘‘FEYNARTS’’
@34# and ‘‘FEYNCALC’’ @35#, two program packages written
in ‘‘Mathematica’’ which serve the automatic generation and
evaluation of Feynman diagrams. Since ‘‘FEYNARTS’’ only

contains the Feynman rules of the standard model, it had to
be extended to deal withS diquarks as well. The spinor
techniques developed by Kleiss and Stirling@36# have been
utilized to convert strings ofg matrices sandwiched between
spinors into traces which can be handled byFEYNCALC. A
strong indication for the correctness of our results is already
the agreement~apart from a detected sign error! with a pre-
vious independent calculation@37# performed with FORM
@38# ~another symbolic computer program for high-energy
physics!. Further checks of our analytical results were car-
ried out by testing the U~1! gauge invariance with respect to
the photon and the SU~3! gauge invariance with respect to
the gluon. The proof of gauge invariance is facilitated by
observing that not only the sum of all 63 tree diagrams gives
a gauge invariant expression, but rather each of the functions
f andg in Eq. ~3.9! is by itself gauge invariant. In addition to
the gauge invariance tests, a few diagrams were recalculated
by hand.

IV. NUMERICAL RESULTS

Our numerical studies are performed with the set of
diquark-model parameters

f S573.85 MeV, QS
253.22 GeV2, aS50.15,

~4.1!

which has been found by fitting elastic electron-nucleon scat-
tering data@20# and which provides also reasonable results in
other applications of the diquark model@21,22#. A detailed
explanation how the convolution integral, Eq.~2.1!, for the
variousn-point contributions has been treated numerically is
given in Appendix B. At this point we only want to empha-
size that propagator singularities have been carefully sepa-
rated and integrated analytically. The remaining integrals
could be performed by means of rather fast fixed-point
Gaussian quadrature.

One of the characteristic qualitative features of perturba-
tive QCD predictions is the fixed-angle scaling behavior of
cross sections. Within the diquark model thegp→K (* )1L

cross section behaves at largeŝ like

ds

dt
} ŝ25@FS

~3!~2^x2&^y2& t̂ !#
2h~ t̂ / ŝ! ;

ŝ→`

ŝ27h̃~ t̂ / ŝ! .

~4.2!

^x2& and^y2& denote average values of the longitudinal mo-
mentum fraction of the diquark in a proton orL, respec-
tively. Equation~4.2! shows that the scaling behavior of the
pure quark hard-scattering model@10# is recovered in the
limit ŝ→`. However, at finiteŝ, where the diquark form
factor FS

(3) becomes operational and diquarks appear as

nearly elementary particles, theŝ27 power law is modified.
Additional deviations from theŝ27 decay of the cross section
are due to logarithmic corrections~hidden in the functions
FS
(3) andh) which have their origin in the running coupling

constantas and eventually in the evolution of the DA’sf
~neglected in our calculation!.
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A. gp˜K1L

Figure 3 shows the diquark-model predictions for
s7ds/dt along with the few existing large-momentum trans-
fer data @39# and the outcome of the pure quark hard-
scattering model@19# ~long-dashed curve!. Whereas the
DA’s of proton andL have been kept fixed according to Eq.
~2.12! we have varied theK1 DA. The solid and the short-
dashed line represent results for the asymptotic@Eq. ~2.8!#
and the two-humped@Eq. ~2.9!# K1 DA, respectively, evalu-
ated atElab

g 56 GeV. The better performance of the asymp-
totic DA and the overshooting of the asymmetric DA is in
line with the conclusion drawn from the investigation of the
pion-photon transition form factor@15,40# where, for the
case of the pion, the Chernyak-Zhitnitsky~CZ! DA is clearly
ruled out. There, strongly end-point concentrated DA’s are
also overshooting the data. Our findings have to be con-
trasted with those obtained within the pure quark-model cal-
culation of photoproduction@19#, where the asymptotic
forms for both, baryon and meson DA’s, give systematically
larger results than the combination of very asymmetric DA’s.
However, the numerics of Ref.@19# must be taken with some
provisio. For Compton scattering off nucleons it has been
demonstrated@41# that the very crude treatment of propaga-
tor singularities adopted in Ref.@19#, namely keepingi e
small but finite, may lead to deviations from the correct re-
sult which are as large as 1 order of magnitude. The sensi-
tivity of our calculation to the choice of the baryon DA’s has
been checked only with respect to their end-point behavior
x→0,1. Neglecting the exponential factor in Eq.~2.12! re-
sults in a slight reduction of the cross section, e.g.,'8% at
uc.m.590° andElab

g 56 GeV. Deviations from the scaling
behavior can be estimated by comparing the dash-double-

dotted and the solid curve, which correspond to the asymp-
totic K1 DA at Elab

g 54 and 6 GeV, respectively.
We have also examined the relative importance of various

groups of Feynman graphs and found the three-point contri-
butions to be by far the most important. Four- and five-point
contributions amount to'5% at uc.m.590° and Elab

g 56
GeV as long as onlyds/dt is considered. Their influence
decreases from larger to smaller angles. Spin observables, on
the other hand, are much more affected by four- and five-
point contributions.

The three nonvanishing spin observablesE, S, andG are
depicted in Fig. 4. WhereasE measures the relative strength
of the two amplitudesS1 andS2, S andG are in addition
influenced by the phase difference of these two amplitudes.
To make the interplay of the two amplitudesS1 andS2 more
obvious we have also plotted their moduli and phases in
Figs. 5 and 6, respectively. For both choices of the kaon DA
S1 is observed to be the dominant amplitude in backward
direction. ForfCZ

K it remains dominant over the whole angu-
lar range. In contrast,S2 becomes increasingly important for
fasy
K if one goes from backward to forward direction. This

behavior is clearly reflected by the double-polarization ob-
servableE. The phase difference betweenS1 andS2 varies
rather moderately over the whole angular range forfasy

K ,
whereas it changes dramatically forfCZ

K . Unfortunately, the
information on the phase difference is hidden in the photon
asymmetryS and the double polarization observableG for
which the dependence on the choice of the kaon DA is not so
aggravating.

FIG. 3. Differential cross section forgp→K1L scaled bys7 vs
cos(uc.m.). Solid ~dash-double-dotted! line: diquark-model result at
plab

g 56 GeV (4 GeV), proton and lambda DA’s chosen according
to Eq. ~2.12!, kaon DA according to Eq.~2.8! ~asymptotic DA!;
short-dashed line: diquark-model result atplab

g 56 GeV, proton and
lambda DA’s chosen according to Eq.~2.12!, kaon DA according to
Eq. ~2.9! ~Chernyak-Zhitnitsky DA@11#!; long-dashed line: quark-
model result@19# for the asymmetric proton and lambda DA’s of
Ref. @12# and the kaon DA, Eq.~2.9!. Experimental data are taken
from Ref. @39#.

FIG. 4. Diquark model predictions for the nonvanishing
gp→K1L polarization observables. Solid~short-dashed! line:
same as in Fig. 3.
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Let us recall at this point that the occurrence of nontrivial
phases in photoproduction amplitudes is a consequence of
the fact that most of the Feynman diagrams contain internal
gluons that can propagate on mass shell in certain kinematic
regions of the momentum-fraction space. The treatment of
the corresponding propagator singularities by means of the
usual Feynman prescription results in an imaginary contribu-
tion to photoproduction amplitudes. One may worry about
the validity of perturbation theory for a freely propagating
gluon which is expected to be modified by long-distance
effects. But fortunately photoproduction belongs to a class of
exclusive reactions which does, to leading-order perturbative
QCD, not require the resummation of gluonic radiative cor-
rections~Sudakov effects!. As has been proved in Ref.@42#,
the standard factorization formula, Eq.~2.1!, produces al-
ready an infrared finite amplitude.

Unlike S, G, andE, which have not been measured as
yet, the determination of theL polarizationP has been at-
tempted already@43# ~for more recent efforts, cf. Ref.@6#!.
The way to determine the transverse polarization of theL is
to detect, in addition to theK1, the proton coming from the
weakL→pp2 decay. The transverseL polarizationP then
follows from the known (P-dependent! angular distribution
of the weakL→pp2 decay. According to the diquark
model, and also the pure quark model,P is expected to van-
ish in the hard-scattering regime (tu/s@mp

2). The present
data, however, are at too smalls and t to allow conclusions
about the validity and quality of these perturbative models. It
would be interesting to see, whether the occurrence of siz-
able transverse polarizations atp'' few GeV, as observed,
e.g., in elasticp-p scattering@44# or inclusive production of
hyperons in p-p collisions @45#, continues to the
gp→K1L process. This would be an indication that, be-
sides the perturbative mechanism, non-perturbative physics
~beyond diquarks! is still at work.

We have also computed differential cross sections for the
reactiongn→K0L. For cos(uc.m.)>0 they are considerably
smaller than the correspondinggp→K1L cross sections.
The amount of suppression depends on the choice of the
K0 DA. For the asymptotic DA the suppression factor is
'10 in the whole forward region, whereas it increases for
the two-humped DA from 2 to'10 when cos(uc.m.) is varied
from 0 to 0.8 (Elab

g 56 GeV!. In view of the plans at CEBAF
to studygn→K0L by means of a deuteron target@5# this is
certainly an interesting observation which could be helpful to
pin down the uncertainties of the kaon DA.

B. gp˜K*1L

The diquark-model results for (ds/dt)gp→K*1L are plot-
ted in Fig. 7. Again curves are shown for two choices of the

FIG. 5. Differential cross section forgp→K1L scaled bys7 vs
cos(uc.m.) at plab

g 56 GeV, contributions of the helicity amplitudes
S1 and S2, respectively. Solid~long-dashed! line: contribution of
S1 (S2) for proton and lambda DA’s chosen according to Eq.
~2.12!, kaon DA according to Eq.~2.8!; short-dashed~dash-dotted!
line: contribution ofS1 (S2) for proton and lambda DA’s chosen
according to Eq.~2.12!, kaon DA according to Eq.~2.9!.

FIG. 6. Phases of the helicity amplitudesS1 and S2, respec-
tively. Lines as in Fig. 5.

FIG. 7. Differential cross section forgp→K*1L scaled bys7

vs cos(uc.m.) at plab
g 56 GeV. Solid line: diquark-model prediction,

proton and lambda DA’s chosen according to Eq.~2.12!, K* DA
according to Eq.~2.8! ~asymptotic DA!; short-dashed line: diquark-
model prediction, proton and lambda DA’s chosen according to Eq.
~2.12!, K* DA according to Eqs.~2.10! and~2.11! ~taken from Ref.
@28#!.
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K*1 DA with p andL DA kept fixed (Elab
g 56 GeV!. The

results resemble those for photoproduction ofK1 mesons.
Cross sections for the asymmetric DA, Eqs.~2.10! and
~2.11!, are nearly 1 order of magnitude larger than for the
asymptotic DA, Eq.~2.8!. If fasy is taken for both,K1 and
K*1, the photoproduction cross section for theK*1 vector
meson is found to be by a factor of 1.8–3.6~depending on
the scattering angle! larger than that for the pseudoscalar
K1 meson. An increase by a factor 1.73 is due to the differ-

entK1 andK*1 decay constantsf K and f K* . The remaining
difference is caused by the contribution of transversially po-
larized K*1 mesons, which increases from small to large
scattering angles. The situation would be quite similar if we
had takenfCZ

K for both, K1 and K*1. However, the en-
hancement of theK*1 cross section is completely compen-

sated, iffCZ
K is replaced byfL

K* andfT
K* @cf. Eqs.~2.10! and

~2.11!# when going fromK1 to K*1 photoproduction.
Until now large momentum-transfer data for photopro-

duction of vector mesons are only available for the reaction
gp→(r01v)p @39#. At uc.m.590° andElab

g '6 GeV the ex-
perimental value of the cross section ratio
(ds/dt)gp→(r01v)p /(ds/dt)gp→p0p

is '2. This means in

particular that (ds/dt)gp→r0p
&2(ds/dt)gp→p0p

. The dif-

ference in the r0 and p0 decay constants
( f decay

r '1.5f decay
p ), however, already implies an enhancement

of the r0 photoproduction cross section as compared to the
p0 one by a factor of'2.3 which is further magnified by
contributions of transversially polarizedr ’s. The only way to
compensate part of this enhancement is to assume that~as
above in the case ofK1 andK*1) the DA’s of p and r
differ from each other. Experimental data on photoproduc-
tion of pseudoscalar and vector mesons with the same flavor
content could thus be very useful to work out differences in
the corresponding DA’s.

V. SUMMARY AND CONCLUSIONS

We have investigated photoproduction ofK-L andK* -
L final states in the few-GeV momentum-transfer region.
Our analysis is based on perturbative QCD supplemented by
the assumption that baryons can be treated as quark-diquark
systems. The present calculation continues previous work on
photon-induced hadronic reactions@20–22# performed
within the same approach. By modeling quark-quark corre-
lations inside a baryon as quasi-elementary particles—scalar
and vector diquarks—we account for some nonperturbative
effects. In this way we are able to extend the range of appli-
cability of the pure quark hard-scattering approach~HSA!
from large down to moderately large momentum transfers.
The fact that the photoproduction channels we are interested
in contain aL in the final state entails a considerable reduc-
tion in computational effort. In contrast to arbitrary photo-
production reactions only scalar diquarks must be taken into
consideration. This has the consequence that helicity ampli-
tudes and hence spin observables violating hadronic helicity

conservation@cf. Eq. ~3.7!#, e.g., theL polarization, are pre-
dicted to vanish.

Our numerical studies have been performed with the
diquark-model parameters and the quark-diquark DA’s pro-
posed in Ref.@20#. We have paid special attention to the
correct and numerically robust treatment of propagator sin-
gularities~cf. Appendix B!. Reasonable agreement with the
few existing gp→K1L data is achieved already with the
asymptotic form for theK1 DA. On the other hand, the
end-point concentratedK1 DA, based on QCD sum rules
@11#, seems to perform less well. The corresponding curve
lies far beyond the data. The difference between these two
kaon DA’s is also clearly visible in the three nonvanishing
polarization observables, i.e., the photon asymmetryS and
the two double-polarization observablesG andE. It is most
pronounced in the observableE. Another quantity which we
found to be very sensitive on the choice of the kaon DA is
the angular dependence of the cross-section ratio
(ds/dt)gn→K0L /(ds/dt)gp→K1L . For the photoproduction
of theK* vector meson there are no data to compare with.
We have again tested the asymptotic DA and aK* DA
which obeys QCD sum-rule constraints on the lowest mo-
ments@28#. The differences in the results for the two DA’s
are quite similar to those for photoproduction of the pseudo-
scalarK1 meson. When going fromK to K* photoproduc-
tion the cross section becomes larger due to the differentK
and K* decay constants and the additional contributions
from transversially polarizedK* s. This increase of the cross
section, however, is partly compensated if different DA’s for
K andK* are used.

To the best of our knowledge the diquark model is at
present the only constituent-scattering model which is able to
account for the large-p' photoproduction data of theK-L
final state. Admittedly, the momentum transfers at which we
compare our predictions with experiments are somewhat low
for a model based on perturbative QCD. However, we want
to point out that we compare with appropriately scaled cross
sections. Keeping in mind that the fixed-angle scaling behav-
ior is based on dimensional counting@46#, i.e., on much
more general grounds than on a particular perturbative
model, and assuming that one is close to the scaling region
with the experimentally accessible photon energies one
would expect that the scaled cross sections stay, apart from
logarithmic corrections due to the runningas , essentially the
same at higher photon energies where perturbative QCD be-
comes applicable. Similarly, the~scaled! theoretical predic-
tions would not change very much if the calculations were
done at higher photon energies~also neglecting the logarith-
mic p' dependence ofas). The still remaining slight devia-
tions from thes27 scaling behavior are, as already men-
tioned at the beginning of Sec. IV, due to the diquark form
factors. That our results for the photoproduction cross sec-
tion, obtained without adjusting any parameter, agree with
the data is an interesting finding which parallels similar suc-
cesses of the diquark model for Compton scattering@22# and
its crossed reaction,gg→pp̄ @21#.

One may now object that, like in the pure quark hard-
scattering approach~see, e.g., Ref.@47#!, the perturbative re-
sult obtained in collinear approximation is considerably re-
duced if effects due to the intrinsic transverse momentum are
included. In applications of the diquark model to baryon
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form factors@20# this question has been investigated in some
detail. It turned out, e.g., that Sudakov corrections diminish-
the result for the proton magnetic form factorGM

p by 10–
20 %, depending on the momentum transfer. A further reduc-
tion by a somewhat smaller percentage is observed if
intrinsic transverse momenta are also taken into account in
the proton wave function@48#. There are two reasons why
Sudakov corrections and transverse-momentum effects are
less aggravating in the diquark model than in the pure quark
model: On the one hand, the ‘‘freezing’’ ofas due to Suda-
kov corrections is effectively taken into account by the re-
striction as<0.5; on the other hand, contributions from the
end-point regionsx→0,1 are already strongly damped due
to the quark-diquark DA’s@cf. Eq. ~2.12!# used, in particular
due to the exponential factor.1 We expect these findings to
hold for photoproduction as well. It should also be noted that
in photoproduction processes some of the propagators are
timelike, in which case the transverse momenta lead to an
enhancement of the result. However, we want to point out
that even with baryons considered as quark-diquark systems,
an explicit calculation of photoproduction within the modi-
fied HSA including transverse momentum would be a very
demanding task, perhaps impossible to be carried through.
The reasons are that the convolution integral of the hard-
scattering amplitude with the hadronic wave functions be-
comes high-dimensional and the numerical tractability of the
integrand is in addition complicated by the existence of
propagator singularities. Anyway, after having checked for a
simple application, like the electromagnetic nucleon form
factors, that transverse-momentum effects of altogether 20–
40% can be absorbed into the parameters of the diquark
model we think that it does not make too much sense to
consider such subtleties also for more complicated reactions;
this would rather spoil the usefulness of such an approach.
An indirect check for the quality and range of applicability
of a phenomenological model like ours is rather its ability to
describe a large class of exclusive hadronic reactions in a
consistent way, i.e., with the same set of parameters and
hadron DA’s. Apart from the successful applications men-
tioned above preliminary results for other photoproduction
channels, such asgp→K1S0 and gp→p1n, look also
rather promising@50#. That the leading-order perturbative
contribution of the diquark model is already sizable at a few
GeV of momentum transfer, even after inclusion of
transverse-momentum effects, seems to be suprising in view
of opposite conclusions for the pure quark model@16#. One
reason is that for a particular process a smaller number of
gluons is exchanged as compared to the pure quark model.
Hence the perturbative domain is extended down to smaller
mometum transfers. The second reason is that part of the soft
contributions are modeled by the diquarks. This can even be
understood formally. Soft contributions may be estimated by
means of the overlap of the~full ! wave functions of incom-
ing and outgoing hadrons~see, e.g., Ref.@51# for hadron
form factors, and Ref.@9# for more complicated hadronic

processes2!. By assuming that two quarks make up a diquark
part of the multidimensional overlap integral and thus part of
the soft contributions can be absorbed into diquark form fac-
tors which in our model are parametrized phenomenologi-
cally over the whole momentum-transfer range. Adding soft
contributions to the diquark model will, as mentioned in the
previous footnote, likely lead to some double counting. For-
mally diquarks, as any other soft contribution~e.g. overlap
contributions!, represent higher twist effects.

With regard to future experiments we consider, apart from
more and better largep' cross-section data, the polarization
measurement of the recoilingL as one of the most urgent
tasks. A large polarization indicates that the perturbative
QCD regime has not been entered yet. In the perturbative
QCD regime the kaon DA’s could be restricted by means of
quantities, like the photon asymmetry or the cross
section ratios (ds/dt)gn→K0L /(ds/dt)gp→K1L and
(ds/dt)gp→K*1L /(ds/dt)gp→K1L , which are very sensi-
tive to the choice of the DA’s. With a maximal photon labo-
ratory energy of~at present! 4 GeV CEBAF @5# touches at
best the border of the hard-scattering domain. More decisive
data could be expected from a future electron facility such as
ELFE @53# which is designed to explore the energy range up
to 15 GeV~or even higher! with a continuous high intensity
electron beam.

APPENDIX A: ANALYTICAL EXPRESSIONS
FOR THE HARD AMPLITUDES

In this appendix we quote analytical expressions for those
hard amplitudes which describe the process
guS[u,d]→us̄sS[u,d] with the ss̄ pair being in a spin-zero
state. More generally speaking, these are just the scalar di-
quark contributions to photoproduction of pseudoscalar me-
sons. According to Eq.~3.9! the variousn-point contribu-
tions to these amplitudes can be decomposed into gauge-
invariant functionsf and g. The functionsf and g which
determine the hadronic~helicity conserving! amplitudeS1
read

1The importance of the exponential factor is demonstrated in Fig.
2 of @49# in the case of the pion form factor.

2At this point a few remarks are in order. Whereas the Drell-Yan
formula ~including contributions from all Fock states! is an exact
representation of hadron form factors at any momentum transfer,
the quark-interchange model of Ref.@9# is rather a model in the
spirit of the Drell-Yan formula which, however, does not corre-
spond to the full nonperturbative result. Thus it is not an appropriate
starting point for the leading-order perturbative analysis@52#. This
is illustrated, e.g., if one considers exclusive photoproduction of a
f meson on a proton. Whereas this reaction proceeds via the had-
ronic valence Fock states in the HSA, a higher Fock component
containing ans2 s̄ pair from the sea is needed for the proton in the
quark-interchange model. Actually, elastic lepton-hadron scattering
is the only exclusive reaction for which an exact nonperturbative
representation in terms of the hadronic wave functions is known. As
a consequence this is also the only case for which nonperturbative
contributions can be clearly separated from the leading-order per-
turbative result without double-counting problems.
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@x1 t̂1z2ŝ# ,
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21x2y1 t̂ !~D2
22y2û!1x2y2~y12y21z1! t̂ û# ,

g0,21/2,11,21/2
~5,S! 52CF

~2!AT
~S,5!

1

x1y1z1z2ŝû
@x1û1z2~x1û2y1ŝ!# , ~A1!

with

CF
~1!5

16

9A3
, CF

~2!5
1

A3
, ~A2!

and

AT
~S,n!5128p2Apaas

2~ t̂ û/ ŝ!A2 t̂ FS
~n!~2x2y2t ! ,

~A3!

wherea denotes the fine-structure constant.
The functionsf andg contributing to the hadronic ampli-

tudeS2 are obtained from those enteringS1 by interchange

of the Mandelstam variablesŝ↔û and the momentum frac-
tions x1↔y1 andz1↔z2. One finds, in particular,

f 0,11/2,11,11/2
~3,q! 52g0,21/2,11,21/2

~3,q̄ ! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

g0,11/2,11,11/2
~3,q! 52 f 0,21/2,11,21/2

~3,q̄ ! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

f 0,11/2,11,11/2
~3,q̄ ! 52g0,21/2,11,21/2

~3,q! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

g0,11/2,11,11/2
~3,q̄ ! 52 f 0,21/2,11,21/2

~3,q! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

f 0,11/2,11,11/2
~4,q! 52 f 0,21/2,11,21/2

~4,q̄ ! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,
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g0,11/2,11,11/2
~4,q! 52g0,21/2,11,21/2

~4,q̄ ! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

f 0,11/2,11,11/2
~4,q̄ ! 52 f 0,21/2,11,21/2

~4,q! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

g0,11/2,11,11/2
~4,q̄ ! 52g0,21/2,11,21/2

~4,q̄ ! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

f 0,11/2,11,11/2
~4,S! 52g0,21/2,11,21/2

~4,S! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

g0,11/2,11,11/2
~4,S! 52 f 0,21/2,11,21/2

~4,S! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

f 0,11/2,11,11/2
~5,S! 52 f 0,21/2,11,21/2

~5,S! ~ ŝ↔û,x1↔y1 ,z1↔z2! ,

g0,11/2,11,11/2
~5,S! 52g0,21/2,11,21/2

~5,S! ~ ŝ↔û,x1↔y1 ,z1↔z2! .
~A4!

The hard amplitudes for photoproduction of longitudi-
nally polarizedK* mesons are~up to a sign change in
T̂0,21/2,11,21/2) also determined by these expressions. For
photoproduction of transversially polarizedK* mesons the
functionsf andg are of similar length and shape and can be
obtained from the authors on request.

APPENDIX B: NUMERICAL TREATMENT
OF PROPAGATOR POLES

The numerical difficulties in performing the convolution
integral Eq.~2.1! are mainly caused by the occurrence of
propagator singularities in the range of integration which
give rise to a principal value integral

1

k21 i e
5`S 1k2D2 ipd~k2! . ~B1!

In what follows, the four cases to be distinguished will be
discussed separately.

1. No propagator on shell

The only contribution to the convolution integral Eq.~2.1!
exhibiting no propagator singularity is the one corresponding
to g$l%

(4,q̄ ) @cf. Eq. ~3.9!#. In these circumstances the convolu-
tion integral is easily performed by means of three-
dimensional Gaussian quadrature.

2. One propagator on shell

If only one of the propagators goes on shell within the
integration region—this happens forg$l%

(3,q̄ ) , g$l%
(4,q) , f $l%

(4,q̄ ) ,
andg$l%

(5,S)—the corresponding integrals overx1 have the gen-
eral structure

I ~k!~y1 ,z1!5E
0

1

dx1
h~x1 ,y1 ,z1!

k21 i e
. ~B2!

In order to simplify notations we have neglected helicity
labels and the dependence on the Mandelstam variablesŝ

and t̂ . Furthermore, the distribution amplitudesfp(x1),
fL†(y1), andfK†(z1) have been absorbed into the function
h(x1 ,y1 ,z1). The integralI (k) may be rewritten to give

I ~k!~y1 ,z1!5E
0

1

dx1
h~x1 ,y1 ,z1!2h~x1

~k! ,y1 ,z1!

k2

1h~x1
~k! ,y1 ,z1!S `E

0

1dx1
k2

2 ipU ]k2

]x1
U21D ,

~B3!

wherex1
(k)5x1

(k)(y1 ,z1) represents the zero ofk
2 ~considered

as a function ofx1). The first integral in Eq.~B3! is now
again tractable by simple Gaussian quadrature, whereas the
principal-value integral can be done analytically. SinceI (k) is
a regular function ofy1 andz1 Gaussian integration can also
be applied to these variables. Analytical expressions for
propagator-pole positions, principal value integrals andx1
derivatives of propagator denominators are listed in Table I.

3. Two propagators on shell—propagator poles not coinciding

If two propagatorsk1
22 andk2

22 go on shell one can pro-
ceed similarly as in the one-pole case, provided the zeroes
x1
(k1)5x1

(k1)(y1 ,z1) and x1
(k2)5x1

(k2)(y1 ,z1) of k1
2 and k2

2

~considered as functions ofx1) do not coincide for fixedy1
and z1, 0,y1 ,z1,1 arbitrary. This is guaranteed for the
Feynman diagrams contributing tof $l%

(3,q) , f $l%
(4,q) , f $l%

(4,S) , and
g$l%
(4,S) . The x1 integrals to be considered have the general
form

TABLE I. Propagator-pole positions,x1 derivatives, and princi-
pal value integrals for the singular propagators occurring in Eq.
~3.9!.

k2 x1
(k)

]k2

]x1
`E

0

1dx1
k2

g1
2 z1 t̂

t̂1z2û
2( t̂1z2û)

21

t̂1z2û
lnS2z2ŝ

z1t̂
D

g2
2 2y1ŝ

y1t̂1û
(y1 t̂1û)

21

y1t̂1û
lnS2y1ŝ

y2û
D

q2
2 y2z1t̂1y1z2û

y2t̂1z2û
2(y2 t̂1z2û)

21

y2t̂1z2û
lnS 2y2z2ŝ

y2z1t̂1y1z2û
D

q3
2 y2z2t̂1y1z1û

y2t̂1z1û
2(y2 t̂1z1û)

21

y2t̂1z1û
lnS 2y2z1ŝ

y2z2t̂1y1z1û
D

q4
2 2y1z2ŝ

y1t̂1z2û
(y1 t̂1z2û)

21

y1t̂1z2û
lnS 2y1z2ŝ

y1z1t̂1y2z2û
D

q5
2 2y1z1ŝ

y1t̂1z1û
(y1 t̂1z1û)

21

y1t̂1z1û
lnS 2y1z1ŝ

y1z2t̂1y2z1û
D

D1
2 y1z1t̂1y2z2û

y1t̂1z2û
2(y1 t̂1z2û)

21

y1t̂1z2û
lnS 2y1z2ŝ

y1z1t̂1y2z2û
D

D2
2 2y2z1ŝ

y2t̂1z1û
(y2 t̂1z1û)

21

y2t̂1z1û
lnS 2y2z1ŝ

y2z2t̂1y1z1û
D
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I ~k1 ,k2!~y1 ,z1!5E
0

1

dx1
h~x1 ,y1 ,z1!

~k1
21 i e!~k2

21 i e8!
. ~B4!

If x1
(k1)Þx1

(k2) a partial fractioning yields

I ~k1 ,k2!~y1 ,z1!5
1

x1
~k1!

2x1
~k2! H S ]k2

2

]x1
D 21

I ~k1!~y1 ,z1!

2S ]k1
2

]x1
D 21

I ~k2!~y1 ,z1!J , ~B5!

i.e., two terms which again can be treated according to Eq.
~B3!.

4. Two propagators on shell—propagator poles coinciding

This is the worst case and shows up in connection with
the functionsg$l%

(3,q) , f $l%
(3,q̄ ) , and f $l%

(5,S) . The general structure
of thex1 integrals is again that of Eq.~B4!. However, now it
happens that the two propagator singularitiesx1

(k1) andx1
(k2)

~which still depend ony1 andz1) coincide for a certain value
of y1 (0,y1,1), 0,z1,1 fixed. We denote this value by
y1
(k1 ,k2)5y1

(k1 ,k2)(z1), it still depends onz1. We note that the
partial fractioning can still be performed for arbitrary values
of y1 andz1 as long ase ande8 are kept finite. By carefully
taking the limite→0 in the terms containingk1

2 ande8→0
in the terms containingk2

2 and using Eq.~B3! one ends up
with

I ~k1 ,k2!~y1 ,z1!5
1

x1
~k1!

2x1
~k2!

1 i ẽ
H S ]k2

2

]x1
D 21

E
0

1

dx1
h~x1 ,y1 ,z1!2h~x1

~k1! ,y1 ,z1!

k1
2

1S ]k2
2

]x1
D 21

h~x1
~k1! ,y1 ,z1!S `E

0

1dx1
k1
2 2 ipU ]k1

2

]x1
U21D

2S ]k1
2

]x1
D 21

E
0

1

dx1
h~x1 ,y1 ,z1!2h~x1

~k2! ,y1 ,z1!

k2
2

2S ]k1
2

]x1
D 21

h~x1
~k2! ,y1 ,z1!S `E

0

1dx1
k2
2 2 ipU ]k2

2

]x1
U21D J . ~B6!

In Eq. ~B6! ẽ stands for eithere or e8. Closer inspection of (x1
(k1)2x1

(k2)) ~considered as function ofy1) reveals that the zero

y1
(k1 ,k2) is quadratic. On the other hand, one also finds thaty1

(k1 ,k2) is a single zero of bothh(x1
(k1) ,y1 ,z1) and

h(x1
(k2) ,y1 ,z1). This immediately implies that the real part ofI (k1 ,k2)(y1 ,z1) is a regular function ofy1 and alsoz1 so that

Gaussian quadrature is again applicable to the corresponding integrations. Taking further into account that (]k1
2/]x1)

21 and
(]k2

2/]x1)
21 have different signs the imaginary part ofI (k1 ,k2)(y1 ,z1) can be written as

lmI ~k1 ,k2!~y1 ,z1!52pS ]2~x1
~k1!

2x1
~k2!

!

]y1
2 D 21S ]k1

2

]x1
D 21U ]k2

2

]x1
U21

@ h̃~x1
~k1! ,y1 ,z1!1h̃~x1

~k2! ,y1 ,z1!#
~y12y1

~k1 ,k2!
!

~y12y1
~k1 ,k2!

!21 i ẽ
, ~B7!

whereh5(y12y1
(k1 ,k2))h̃. Integrating lmI (k1 ,k2) with respect

to y1 and lettingẽ→0 gives

E
0

1

dy1lmI
~k1 ,k2!~y1 ,z1!5`E

0

1

dy1lmI
~k1 ,k2!~y1 ,z1! , ~B8!

i.e., only the principle-value part of the integration survives.
The principle-value integral in Eq.~B8! can be treated analo-
gous to the principle-value integrals inx1 @cf. Eq. ~B3!#.

Proceeding along the steps outlined in this appendix, i.e.,

carefully separating the singular contributions, exploitingd
functions, rewriting principal-value integrals as ordinary in-
tegrals plus analytically solvable principle-value integrals, it
is finally possible to do all the numerical integrations by
means of fixed-point Gaussian quadrature. For our purposes
anx-y-z grid of 20320324 turned out to be sufficient. Tak-
ing instead a 32332348 grid changes the results by less
than 0.2%. The numerical calculations were performed on a
DEC7000-610 APLPHA workstation. For the larger grid size
the calculation ofds/dt(gp→K1L) took about 1 s per en-
ergy point and angle.
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