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Exact sum rule for transversely polarized DIS
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We have shown how, working in a field-theoretic framework, one can derive expressions for the even
moments of the valence parts gf ,(x). These expressions cannot be written as matrix elements of local
operators and do not coincide with the analytic continuation=toeven integer of the OPE results. Just as for
the OPE one can in some cases argue that the hadronic matrix elements should be small, leading to approxi-
mate sum rules for the moments of the valence part,; 6fx). But, most importantly, for the case=2 we
have proved rigorously that the hadronic matrix element vanishes, yielding an exact sum rule. We have argued
that the convergence properties of this sum rule are good and are a further test of [QUE36-
2821(97)04607-9

PACS numbsgs): 13.60.Hb, 12.20.Fv, 12.38.Bx, 12.38.Qk

I. INTRODUCTION In this situation sum rules fay, are especially important.
The Burkhardt-Cottingham superconvergence sum[@ilés
The inelastic form factor$&s; and G,, and their scaling well known:
versionsg; andg,, describing spin-dependent or polarized
deep inelastic scattering are attracting much attention at fl _
i ) . X g,(x)dx=0, (1.1
present with major experimental programs in progress at 0
CERN and SLAC and planned for the DES2p collider
HERA. For a comprehensive account see the review articlghough it is not always realized that it does not follow from
[1] by Anselmino, Efremov, and LeadékEL). The theoret- the operator product expansi¢®@PE and that it may con-
ical and experimental status gf andg, is rather different.  tradict the expected smatl-Regge behaviofl,10].
There exists a simple partonic interpretat{@j of the scal- The other sum rules that are often quoted are the approxi-
ing functiong;(x) which is the only one of the two which mate Wandzura-Wilczek sum rulgs1]
survives in the strict Bjorken limit and, in that limit, com- L n—1
pletely controls the longitudinal polarization asymmetry. n—1 _ _
Longitudinal polarization dominates kinematically in this fox no 91040200 |dx=0, n=135,...,
limit and is described in QCD as a leadifiwist two) effect. (1.2
The functiong;(x) is also the easier one to measure experi-
mentally[3,4]. The main theoretical issue is the subtle effectWhich, as is discussed below, involve the neglect of twist
whereby the triangle anomaly induces an anomalous gluotiree contributions and which assumes the validity of Eq.
contribution ing,(x), in particular in its first momerfis,6.  (1.1)." If the sum rules in(1.2) are assumed to hold also for
G, and the corresponding dimensionless scaling functiofgven values ofi, one obtains the remarkable result
g, are more complicated. They describe the difference be- L
tween the properties of a longitudinally and a transversely 91(X)+92(X)=J gl(x)dx. (1.3
polarized hadron, and QCD twist three effects, for which x X
there is no probabilistic interpretation, contribute signifi-
cantly[7]. The transverse polarization effects are suppresse@ihe function g,(x) defined by (1.3) is often called
asM/Q (M is the hadron mass; recall that a massless parg\ZNW(X).
ticle is always longitudinally polarizedThis makes the ex- In [11] it is argued, on the basis of a model, that the twist
perimental studies more complicated as well. The first resultthree terms irg, can be neglected. However, this argument
from the Spin Muon CollaboratiofSMC) and SLAC have is generally unreliable, since the self-same model gives un-
just appearefi8] and it is hoped that the high intensity lepton acceptable results fdf, J(x) andg;(x).
beam and jet target will make possible the measurement of In the following, g,(x) refers to pure electromagnetic
g, with high accuracy by the HERMES Collaboration at deep inelastic scatterin@dIS), unless explicitly indicated

HERA. otherwise. We shall discuss the derivation of sum rules in-
*Electronic address: efremov@thsunl.jinr.dubna.su 1Similar sum rules, for weak boson-mediated deep inelastic scat-
"Electronic address: teryaev@thsunl.jinr.dubna.su tering (DIS), based on the neglect of twist three contributions, have
*Electronic address: e.leader@physics.bbk.ac.uk recently appearef20].
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FIG. 1. Simplest Feynman diagrams contributing to DIS at twist two and twist three (@reksed diagrams are not shown.

volving g,(x) from two different points of view. One is Because we are dealing with twist three effects it is nec-
based upon the imposition of gauge invariance in a specifiessary to consider the quark-quark-gluon correlators
lepton-hadron reaction, namely, polarized DIS, the second
upon a study of the properties of the hadronic matrix ele- b _ dhg di, g (X1 —Xo) +INoXoTe
: - : e AlX1,X2) = | 5= 5 etk (N g ),

ments involved ing, (x), without reference to any specific 27 27
reaction. (2.1

In both these approaches we are able to produce new sum
rules that do not follow from the operator product expansionWhere
The OPE only makes statements about the odd moments of 1
01.Ax), corresponding to the fact that one is essentially deal- BA(M,)\Z): =—(P,S/(0)hy>S-D(A1n) h(\,n)|P,S),
ing with forward virtual Compton scattering, which, viewed 2M
in thet channel, involvespp— yy, and thus only involves 2.2
positive parity states. and

In our more general field-theoretic approach we obtain

results also for the even moments @f (x). But what is dh; d, -
fascinating, and at first sight surprising, is that they involve  by(X1,X;)= o Eeml(xl’XZ)*mZXva()\l,)\2),
only the valence contributions to the structure functions. 2.3

Among these the most interesting is the case2, the
so-called Efremov-Leader-Terya€lLT) sum rule, since it where
is exact and does not rely on any neglect of twist three con-
tributions:

- i
bV()\l !)\2) == meMVPlTSVPpnO_

1 S
fo dx 9,"(x)+29,"(x)]=0 (1.4 X(P,S[¢(0)hD ,(A1n)¢(X2n)|P,S),
(2.9

and which, as we shall discuss, can be tested experimentallyshere D# is the covariant derivative and* is a lightlike

Note that in charged current DIS the OPE gives expresgauge-fixing vectom?=0,n-A=0,n-P=1. It also defines
sions for the odd moments for the sumiotind v reactions  the transverse direction; for example, for the covariant spin
(as in the electromagnetic cadmit for the even moments for yector S#,
the difference ofv and v reactions. In the latter case we can
also derive our sum rule for the charged current version of SEt=S*—(S-n)P~ (2.5
gW' —g¥ by starting from the OPI12]. _ _

In Secs. Il and lll we show how to derive these general- The fractionsx; andx, correspond to the fractions of the
ized sum rules first by appealing to gauge invariance in pohadron momentum carried by the quarks. In these dgflnltlons
larized DIS, second by a detailed study of the properties of€ correlator®a(x; ,x) andby(xy,x;) are real and dimen-
various hadronic matrix elements. Section IV discusses Som@onlles\?. They are reIaAted to the correlators used in AEL by
aspects of the ELT sum rules and their generalization and iRv=1B"/2 andb,=—B"/2. They have the symmetry prop-
Sec. V we consider how the new sum rules might be teste8tes

experimentally. by(X1,X2)=—by(X2,X1), ba(X1,X2) =ba(X2,X71) -(2 6

Il. SUM RULE FROM GAUGE INDEPENDENCE IN DIS
In Egs.(2.1)—(2.4) we have suppressed the flavor labeain
Consider first the field-theoretic calculation of the anti-the quark fields.
symmetric part of the hadronic tensWELAV which controls Use of the equation of motion for the quark field of a
polarized deep inelastic scattering, via the Feynman diagiven flavor leads to a very general relation between

grams of Fig. 1. by ,b,, and the quark-quark correlator functibép(x) which
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directly gives the field-theoretic expression for the transverse In Eq.(2.14) let us now chooser(x) =x""1, with n odd.
combination ofg; andg,: namely, The integral—1<x=<1 on the right-hand sidéRHS) of Eq.

(2.14) can then be converted into an integrakQ<1, lead-

l . .
G10=0:(X)+6:(0= 53 Q[ +fr(—x),  "IVAEAEDandEE 0l

1 1 n—1
@7 fo dXX”_lgz(X)ZEZ fo dXdY{T(Xn_ZJFY”_Z)

where
dn |~ + ¢dn-1(X,Y) |ba(X,y) (N odd),
(%)= f SN (2.9 B
2
(2.1
and
where
—~ 1 —
fr(N) =57 (P, S|¢(0) ysB¥(An)|P,S), (2.9 xX"=y" n _
2M SaxY)= o (YT (21))
where, again, we suppress the flavor label.
For an arbitrary test functionr(x) one finds[13] Note that
dn(x,y)=0 if x=y. (2.18

f dxdy{[a(x) + o (y) Iba(X,y) +[o(x) = a(y) by(X,y)}
Now, let us chooser(x)=x""2 in Eq. (2.10 with n odd.
By analogous arguments, E@.10 becomes

= —2[ dxo(X)xfr(X). (2.10

1 .in—=1
Further, demanding that the results ##”) be indepen- fo dx X' 1[ 7 91(%)+ga(X)
dent of the gauge-fixing vector* leads to a relation between
b, and the quark-quark correlator functidm (x) which 1 ) _ 72
gives the field-theoretic formula fay,(x): namely, == ZEf fo dxdy{(x""“+y" 9)ba(X,y)

+(X"2=y"" %) by(x,y)} (nodd). (2.19

It follows that[13],

1
0:0=352 QIO +h(=0], (1D

where
1 _4n—1
dn o~ Jo dx X' n 91(x) +ga(x)
h(x)= J 5-€Vhn) (2.12
1 2
and ng ij dxdy| ¢n—1(X,y)ba(X,y)
hi(V) = 55 (P.SI#(0)hysy(An)[P.S). (213 - T(X”Z—ynz)bv(x,y)) n=1,35,....
One finds[13] (2.20
o(X)— a(y) The set of relation$2.20 is perfectly equivalent to what
f dxdy{f ba(X,y) one obtains from the operator product expansion for
Xy n=3,5,7,.... The OPE, however, says nothing about the
casen=1. Indeed, Eq.(2.20 may not be valid fon=1
:f dxa(X)[fr(x) =hL(X)]. (214  because the integrals could diverge.

We see that the left-hand sideHS) of Eq. (2.20 is just

Note that in Eqs(2.10 and(2.14) the range of integration is the LHS of the Wandzura-WilczeRWVW) sum rule (1.2.
Ix|<1,|y|<1 and|x—y|<1. The WW sum rule was originally derived from the operator
For the longitudinal case it is possible to assochate for product expansion by neglecting twist three operators on the

each flavor, with a polarized quark or antiquark number denRHS and by assuming that the operator product result can be
sity, continued smoothly to=1, where, of course, the WW sum

rule just reduces to the Burkhardt-Cottingh&C) sum rule
Ag(x)=h.(x), Aq(x)=h,(—x), (2.15  (1.D).
There are good reasons to believe that BC sum rule will
but such a connection is not possible for the transverse spifail because the expected Regge behavior go(x) as
case. x—0 might make the integral ovey,(x) diverge[10].
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Contrary to the operator product approach, one can cer- lll. SUM RULE FROM PROPERTIES
tainly chooses(x)=x""1 with n even in Eq.(2.14 and OF HADRONIC MATRIX ELEMENTS
o(x)=x""2 with n even in Eq.(2.10, to obtain a totally

new set of relations, which, however, neither involygx) The derivation of the sum rule in Sec. Il is a little unsat-

y isfactory in that it appeals to a particular lepton-hadron reac-
Or gp(x) as such, but a part of therg\l’(x) ?”dgg(x)* which tion to gerive propeetpi)es inhereﬁt to the nucpleon. The follow-
can be regarded as t_he valence gontrlbutlon to the“?- F%g derivation deals only with nucleon matrix elements. The
91(x), which has a simple partonic interpretation, this iS¢ ryles can be derived from a careful study of the structure
straightforward. Fog,(x), which d\(/)es not have a partonic 4nq gauge properties of the matrix elements and use of the
interpretation it is not clear whaj,(x) means physically. equation of motion of the quark field. In this approddh,
However, it is a well-defined object, which can be measuredgne sees very clearly why sum rules such as the Burkhardt-

and thus sum rules involving it are of physical importance. cottingham one may fail because of the noninvertability of
The difference between odd andn even appears in the ertain Fourier transforms.

following way. The LHS's of Eqs(2.16 and (2.19 origi- Consider first the forward matrix element of the bilocal
nally involve integrals of the form, for example, operator

W(0) Y ysh(X)

on the light conex?=0. Its most general form is

1 1
EZ szf_ldx X' 1h, (x).

Becausen was odd, this could be written as 1 —
M<¢(0)7M75¢(X)>P,SZA15’L+(X'S)Azp““‘(X'S)AsXMa

1w L[t » 1 » (3.2
52 fo dx x' [hL(X)_"hL(_X)]:f dx X" gy (X).
f 0 0 where(- - - ) is short for{ P,S|- - - |P,S). The scalar functions

A, zare functions only ok- P.
For n even, the last step will lead to expressions of the From Eq.(3.1) we deduce

form
1 —
1 1 MW/(O)7”753V¢(X)>P,SZA£S"PV+AZP“S"+A3X“S"
52 Qf J dx X'~ *[h (X) ~h(=x)]
b +(X- S)[AJPHP+ AP
1 1 _ v
= EZ QfJO dx X" Agi(x)—Agi(x)] (2.2 +A3947], (3.2
where
. dA(X-P)
= | dx X" 1g¥(x). 2.2 =
fo 91(X) (2.22 dxP) 33
We shall definegy(x) by [see Eq(2.7)] We now putx*=xn*. Then,

1 —
1 —((0) y*ysp(AN)Yp 5= A1 S+ N (n- S)[ AP+ NAzn*“],
g\zl(x):_g\ll(X)WLEZ QY fr(x)—fr(—x)]. 223 M 5 ps=A1 ) .

(3.9
Then, the relation§2.16), (2.19, and(2.20 hold also for where nowA; =A;(1), and
evenn with g,(x)—gy(x) andg,(x)—g5(x). 1
Of particular interest is the case=2, because the contri- M(¢(0)7”75(9V¢()\n)>p,s=AiS”PV+ A PHS”
bution of the twist three correlators on the RHS of E3j20
vanishes whem=2. Thus, one has +MA3n#S’+(n- S)[A,PHPY

1 +NAZNAPY+Azg#"]}. (3.9
f dx X gy (x)+2g3(x)]=0. (2.24 _

0 We assume that all scalar functions are such that
NA(N)—0 asA—0 for all terms occurring in Eq$3.4) and
This so-called Efremov-Leader-Terya@®i.T) sum rule was (3.9). This is in accord with expectation from OPE, since the
incorrectly stated in AEL[1] where the label ¥/ was not  limit A—0 in our light-cone operators corresponds to them
indicated. becoming local operators. Then,)at 0 we have the simple

We shall return to discuss certain aspects of the ELT surstructures
rule, the possibility of testing it physically, its convergence
properties, and whether or not it can be generalized, after

1 —
_ M =
first discussing a quite different approach to the sum rule. M (9(0)¥*y59(0))p.s=AL(0)S" (3.6



55 EXACT SUM RULE FOR TRANSVERSELY POLARIZED DIS 4311
and - 1
L hL (M) =5 [A1(M)+AA(M)]. (3.19
—((0) yE 0" (0 =A1(0)S*P¥+ A,(0)P+S”.
M ((0) y* y59"( )>P,S 1(0) 2(0) From Egs.(2.9 and (3.4),
3.7 )
We shall also require, from E@3.5), 7T(A)= =Ai(N). (3.1

—\(n-S)[M2A,+5A;+\A;]
(3.8

1 —
WO ysap(Am)p 5=

so that, al =0,

T ((0) 510))p5=0. (39
Finally note, from Eq(3.5), that
%(JO)W;@,Waz/;()\n)>p,S=A18/‘+(n-S)[(A2+)\A§)P“

+N(2A3+NAZNH]

1
=M d)\<l’lj(0)y Ys¥(An))ps.

(3.10

Consider now the gluonic matrix element

1 —
w0 Y ysgA"(X) (X)) p,s

with x=An. Its most general form is

N(S-N)[B1P*P"+\B,P#n"+\B3n“P"+\?B,n*n"]

+BsS*PY+BgP*S"+AB;S*n”+ABgn*S". (3.1)
The gauge conditiom, A*=0 implies that
B5=0, )\812_86, )\Bgz _Bg, (312
so that
_<¢(0 Y*ysgA”(AN)(AN))p 5
=\B{[(S-n)P#*P"—P#S"]+N(S-n)[B,P#n”
+AB4n*n”]+\2B3[(S-n)n*P”"—n*#S"]+ \B,S*n".
(3.13

2

Then, from Eqs(2.11) and(2.12), if the Fourier transforms
can be inverted,

1 Q2 Q?
[Caxa0= S 0= A0 byEa.315.
(3.17

Similarly, from Egs.(2.7) and (2.9

QZ
f dx[g1(X) +g2(x)]= —-f+(0)

Qf

= A0) by Eq. (3.16. (319

Equationg3.17 and(3.18 imply the Burkhardt-Cottingham
sum rule

foldxgz(x) =0. (3.19

As is discussed in Ref.10] the above derivation may fail
because of the noninvertability of the Fourier transforms. We
turn now to the ELT sum rule.

Consider first Eq(2.10 which followed from the equa-
tions of motion. Choosingr(Xx) = 6(x—2z) and then integrat-
ing overz, using Eqgs(2.6), (2.1), and(2.8), there results:

dfr

bA(O,O)Z —1 K

: (3.20

A=0

where we have taken the quark mass to be zero for simplicity
and where we have taken, on the basis of @),

dfy

Notice the crucial feature that the imposition of the gauge

condition, together with the assumptions about the vanishing
of products such asB(\) asA—0, leads to the vanishing

of Eq.(3.13 at\A=0, i.e.,

(4(0) y*y5gA"(0) (0))p s=0. (3.14

This result will be crucial for deriving the ELT sum rule.

xfr(X) =i f 5 (). (3.20)
Now, because of Eq3.14), from Eq.(2.2),
BA0.01= 51 (HOMYs(Sr-2)(O))p.s
so that, via Eq(3.7),
bA(0,0=— %AZ(O). (3.22
Use of this and Eq(3.16 in Eq. (3.20 yields
Az(0)= ﬁAl()\)“:O:Ai(O)- (3.23

Let us now relate some of the above coefficients to the

functions occurring in the discussion gf and g,. From

Egs.(2.13 and(3.4), we have

Now, by arguments similar to those that lead to E321),
we have
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1 _d’ﬁ 1
f_ldx xh () =i - JO dx X g1(X) +2g2(x)]
i 11y [x—y
:'E[A;(OHAZ(O)] by Eq.(3.15 =Z Q?fo dyfo dx mbA(x,—y)—bv(x,—y) :
=iAj(0) DbyEq.(3.23. (3.29 4.9

The matrix elements on the RHS of Hdg.1) are not zero
o ) and cannot be expressed as a finite series of matrix elements
Similarly, we have, using Eq¢3.21) and(3.16), of local operators. However, they are of twist three and are
proportional to the square root of the product of the probabil-
ity to find a gluon and the probability to findgq pair in the
(3.25 nucleon. The latter was estimated to be small from the study
' of QCD sum rules by Shuryak and Vainsht¢itd]. So, it
may be that the RHS of Eg4.1) is negligible, corresponding
to the Wandzura-Wilczek sum rule€l.2) continued to
Subtracting Eq(3.24 from Eq. (3.25 and repeating the n=2. Together with the Burkhardt-Cottingham sum rule
kind of argument that led to Eq2.22, we obtain, once (1.1, this means thagy"(x) should intersect the experi-
again, the ELT sum rule mental g,(x) at least twice in the interval ©x<<1 which
seems compatible with the present SLAC dah
The method used in Sec. lll to derive sum rules for the
1 v v first and second moments gf 5(x) highlights an interesting
fo dx X g1(x)+295(x)]=0. (326 aspect of the Burkhardt-Cottingham sum rule. The assump-
tion that all the scalar function&(\) are well behaved as
N—0, as implied by the assumed behavioA(A)—0 as
A—0 means, as can be seen from E8.4), that the first
IV. DISCUSSION OF THE ELT SUM RULE moments of the longitudinady, (x)=g4(x) and the trans-
AND A GENERALIZATION verseg (x)=g4(x) +g,(x) depend on the matrix element of

We discuss here first the question of the convergence df€ @xial-vector current which is proportional to just the
the ELT sum rule(2.24, then consider an analogous sum single vectorial structur&”. There is no reference to any
rule involving the complete functiong, (x) and not just direction which could differentiate longitudinal from trans-

their valence parts and then comment upon an implicatio/€S€; SO the first moments gf (x) and gr(x) coincide.
for the concept of handedness of jets. This seems very similar to the “naive” derivation of the BC

As mentioned earlier, the Burkhardt-Cottingham sum ruleSUM rule from rotational invariand€] as well as to the early
(1.1) may well diverge because of a possiblaZlgrowth of QCD derivation[15]. _[It would .be interesting to understand
0,(x) asx—0. It is important to note that such a singular ar11alogo\l/Jst thep?ysmalvmeanlng of Eq.(2.24 written as
behavior will not spoil the convergence of the ELT sum ruleJ odX Xg () =2/5dx xgr(x).] '

(2.24), since the singularity will cancel out in the subtraction AN analogous situation arises for the new spin-dependent
in Eq. (2.13. variable handednegsl) introduced i 16], which allows the

Consider now the question of the analogue of 24  Study of the polarization of a quark or gluon which has frag-
for the complete functiong; (x). In contrast with the op- Mented into a jet. H is given as a product of the quark po-
erator product expansion, the sum ru2.10 holds for larization times the analyzing power A of the fragmentation
o(x)=x""1 with n odd or even and the sum rul@.14 reaction. The analyzing power is described by light-cone
holds for o(x)=x""2 with n odd or even. Fon odd and functions analogous tio, (x) andf(x). As discussed ih16]
>3 they reproduce the OPE results for the moments ofongitudinal and transverse analyzing powers coincide in the
g1 AX). Forn even they produce new sum rules for the mo-Case of particle decay as a consequence of rotational invari-
ments of the valence parts gf 5(x). However, it is possible ~&Nce, but in th? “decay” of the jet the light-cone vector
to consider sum rules fan even from a different point of N “remembers” the jet direction resulting in a difference
view, namely, from the analytic continuation im of the between Iongltudmal_and transverse anallyzmg powers. But
results forn odd. Hence, we wish to begin with Eq@.16 DY the same reasoning as above, the first moment of the
and (2.19 and analytically continue im. As written, the longitudinal and transverse analyzing powers should coin-
RHS's of Eqs.(2.16 and (2.19 do not have a unique ana- cide. The integration variable in this casezjghe fraction of
lytic continuation sincex andy can be negative so that terms (e parton’s momentum carried by a péor triple) of par-

of the form x" and y" effectively reproduce factors of ticles used to define the jet.
(—1)" which grow exponentially in the imaginany direc- Let us now consider how the new sum rules can be used

tion and spoil the uniqueness of the analytic continuation!© €arn aboug,(x) and to test QCD.

However, starting wittn odd we can rewrite all the integrals
in Egs.(2.16 and(2.19 in such a way that &x<1 and
0=<y=1 after which the analytic continuation is unique. We
shall not give the detailed results for arbitramny but for The general field-theoretic expression fpi(x) in terms
n=2 we find of hadronic matrix elements of operators is given in Egs.

1 dfr
2] dx xfp(x)=2i 5—
-1

5| =iAL0).

A=0

V. PHENOMENOLOGICAL TESTS
OF THE ELT SUM RULE



55 EXACT SUM RULE FOR TRANSVERSELY POLARIZED DIS 4313

(2.7-(2.9. As mentioned earlier, despite appearances to thesing a transversely polarized target and with identification
contrary,g,(x) does not have any simple probabilistic parton of the charge of the jetX). If the differences of cross sec-
model interpretation even though only quark operators aptions when the transverse spin is reversagdo®+ and
pear in the matrix elemert2.9). Nonetheless, it is given by a Ado’®-, are measured thgm rdo’® — Ardo’®-] will in-
sum over contributions coming from quark operators of defi-volve the combinationf18]

nite flavorf (the flavor label was suppressed in Seg, $b

that the contribution of a given flavor of quark or antiquark (924t gzyg)—(gzdergz’uﬁ:g\z”u—g\z’Yd. (5.9

to g,(x) is meaningful.

Moreover, since the flavor label is clearly irrelevant in the |t would seem possible to carry out such a measurement
derivation, it must be true that ER.24 holds for the con- in the upgraded SMC experiment HMC with a forward mag-
tribution to g,(x) of each flavor. Hence one has, for eachnetic spectrometer or in the HERMES experiment at HERA
flavor f, which uses a polarized gas jet target.

. (4) In charge-changing DIS mediated by* bosons, the
v v _ coupling to quarks and antiquarks is of opposite sign. If the
fo dx X g1;(X)+292¢(x)]=0. 6.0 cross-section differences under reversal of the transverse
nucleon polarization can be measured for

Information about the contributions of a given flavor to o
g,(x) can be obtained by studying reactions with different M*N—>v#+ X,
targets and by studying nonpurely electromagnetic DIS, for
example, charge-changing DIS involviMg™ exchange or, and for
at largeQ?, interference betweem andZ® exchange. There
is also the possibility of focusing on specific flavors by look- u N—v,+X
ing at semi-inclusive DIS.

VThere thus appear to be several possibilities to learn abotien, for the difference of these, one Hag]
924(X).

(1) Assuming, as usual, that the contributions from sea ATdaVﬂ_”u—ATda“_ﬁ"Wg\zm—g\z’v_. (5.5

guarks are the same in protons and neutrons, we can derive a

kind of analogue of the Bjorken sum rule. For, then, frompe precise relation between cross sections and scaling func-

Eq. (224 or (5.2, tions is given in Ref.[1]. However, the expression for
1 g»'(x) given there, which was taken from Rg19], is incor-
f dx X{[g1(x) +292(x)1p—[91(X) +295(x) ]n} = 0. rect. In fact,gy () is given in terms of the functiohy(x) as
0

it occurs in Eq.(2.7). The only difference is in the coupling
(5.2)  constants involved. Hence, the combination occurring in Eq.
(5.5 can be expressed in terms of the purely electromagnetic

Hence, we have the interesting new sum rule :
9 g2(x) valence parts discussed above:

1 111
j dx X[QS(X)—QS(X)]:EJ dx ¥ g1(x) —gh(x)].
0 0

+ - 9
g2 (0=g7 (0)=1807400~503,(0). (5.6
(5.3

(2) In unpolarized semi-inclusive DIS it is claimed that FOr an isoscalar target, one then has
the study of meson production

+ - 0 25
SENS ST EMAEX, (98" (0 =08 (01 per =Z-10%,00 +g¥4(0)].

nucleon

. . — (5.7
whereM = 7=, 70, K= K% KO, etc. allows one to identify the

contribution of a giverg; or gy to the unpolarized structure |n principle, one could combine Eg.7) and(5.4) to study
functions and it is proposed to use the same approach, biie individualu andd valence contributions tg,(x).

with a longitudinally polarized target at CER7] to iden- (5) If an asymmetry measurement with transversely polar-
tify the individual Aq¢(x) and Aq¢(x) contributions to jzed target can be done at sufficiently lar@é, so thaty—
91(X). Z° interference is important, then
We suggest that the same method, but using a transversely
polarized target, will allow the identification of the contribu- N
tions g,¢(X) to g,(x) coming from a given flavor quark or ggz(x)zzz (—V)ng(x), (5.8
antiquark. T Qs
Hence, in principle, the valence contributiongg(x) of a " ) g )
given flavor,gy(x), can be measured. wheregy=1/2—(4/3)sirf b, gy=—1/2+(2/3)sirf4y, Q
(3) A simpler method is to assume dominance of the is the charge, and,((x) is the flavorf contribution to the
andd contributions and to study pure electromagnetig,(x). Measurement of3*(x) thus

provides further information about the flavbicontributions
/+N—/"+jet+X, to go(X).
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N _
V. CONCLUSIONS expressions for the even momentsgé\‘ —g\z’" and can be

It is known that, for e|ectr0magnetic DIS, the operatorused as a Starting point for the derivation of our sum rule.
product expansion provides expressions forrittemoments We have argued that the convergence properties of these
of g,(x) andg,(x) in terms of hadronic matrix elements of sum rules are good and have discussed how they can be used
local operators fon= odd integer. In some cases these ma-to get information aboug,(x) from inclusive and semiinclu-
trix elements are expected to be small, leading to approxisive electromagnetic DIS, from charged current DIS and
mate sum rules for the odd moments @f(x). We have eventually fromy-Z interference in neutral current DIS. It is
shown how, working in a field-theoretic framework, one canimportant to test the sum rule since it is a direct consequence
derive expressions for the even moments of the valence parts QCD.
of g;4X). These expressions cannot be written as matrix
elements of local operators and do not coincide with the
analytic continuation tm= even integer of the OPE, results. ACKNOWLEDGMENTS
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