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We have shown how, working in a field-theoretic framework, one can derive expressions for the even
moments of the valence parts ofg1,2(x). These expressions cannot be written as matrix elements of local
operators and do not coincide with the analytic continuation ton5 even integer of the OPE results. Just as for
the OPE one can in some cases argue that the hadronic matrix elements should be small, leading to approxi-
mate sum rules for the moments of the valence parts ofg1,2(x). But, most importantly, for the casen52 we
have proved rigorously that the hadronic matrix element vanishes, yielding an exact sum rule. We have argued
that the convergence properties of this sum rule are good and are a further test of QCD.@S0556-
2821~97!04607-9#
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I. INTRODUCTION

The inelastic form factorsG1 andG2, and their scaling
versionsg1 and g2, describing spin-dependent or polarized
deep inelastic scattering are attracting much attention at
present with major experimental programs in progress at
CERN and SLAC and planned for the DESYep collider
HERA. For a comprehensive account see the review article
@1# by Anselmino, Efremov, and Leader~AEL!. The theoret-
ical and experimental status ofg1 andg2 is rather different.
There exists a simple partonic interpretation@2# of the scal-
ing functiong1(x) which is the only one of the two which
survives in the strict Bjorken limit and, in that limit, com-
pletely controls the longitudinal polarization asymmetry.
Longitudinal polarization dominates kinematically in this
limit and is described in QCD as a leading~twist two! effect.
The functiong1(x) is also the easier one to measure experi-
mentally@3,4#. The main theoretical issue is the subtle effect
whereby the triangle anomaly induces an anomalous gluon
contribution ing1(x), in particular in its first moment@5,6#.

G2 and the corresponding dimensionless scaling function
g2 are more complicated. They describe the difference be-
tween the properties of a longitudinally and a transversely
polarized hadron, and QCD twist three effects, for which
there is no probabilistic interpretation, contribute signifi-
cantly @7#. The transverse polarization effects are suppressed
asM /Q (M is the hadron mass; recall that a massless par-
ticle is always longitudinally polarized!. This makes the ex-
perimental studies more complicated as well. The first results
from the Spin Muon Collaboration~SMC! and SLAC have
just appeared@8# and it is hoped that the high intensity lepton
beam and jet target will make possible the measurement of
g2 with high accuracy by the HERMES Collaboration at
HERA.

In this situation sum rules forg2 are especially important.
The Burkhardt-Cottingham superconvergence sum rule@9# is
well known:

E
0

1

g2~x!dx50, ~1.1!

though it is not always realized that it does not follow from
the operator product expansion~OPE! and that it may con-
tradict the expected small-x Regge behavior@1,10#.

The other sum rules that are often quoted are the approxi-
mate Wandzura-Wilczek sum rules@11#

E
0

1

xn21Fn21

n
g1~x!1g2~x!Gdx50, n51,3,5,. . . ,

~1.2!

which, as is discussed below, involve the neglect of twist
three contributions and which assumes the validity of Eq.
~1.1!.1 If the sum rules in~1.2! are assumed to hold also for
even values ofn, one obtains the remarkable result

g1~x!1g2~x!5E
x

1g1~x!

x
dx. ~1.3!

The function g2(x) defined by ~1.3! is often called
g2
WW(x).
In @11# it is argued, on the basis of a model, that the twist

three terms ing2 can be neglected. However, this argument
is generally unreliable, since the self-same model gives un-
acceptable results forF1,2(x) andg1(x).

In the following, g2(x) refers to pure electromagnetic
deep inelastic scattering~DIS!, unless explicitly indicated
otherwise. We shall discuss the derivation of sum rules in-
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1Similar sum rules, for weak boson-mediated deep inelastic scat-
tering ~DIS!, based on the neglect of twist three contributions, have
recently appeared@20#.
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volving g2(x) from two different points of view. One is
based upon the imposition of gauge invariance in a specific
lepton-hadron reaction, namely, polarized DIS, the second
upon a study of the properties of the hadronic matrix ele-
ments involved ing1,2(x), without reference to any specific
reaction.

In both these approaches we are able to produce new sum
rules that do not follow from the operator product expansion.
The OPE only makes statements about the odd moments of
g1,2(x), corresponding to the fact that one is essentially deal-
ing with forward virtual Compton scattering, which, viewed
in the t channel, involvesp̄p→gg, and thus only involves
positive parity states.

In our more general field-theoretic approach we obtain
results also for the even moments ofg1,2(x). But what is
fascinating, and at first sight surprising, is that they involve
only the valence contributions to the structure functions.

Among these the most interesting is the casen52, the
so-called Efremov-Leader-Teryaev~ELT! sum rule, since it
is exact and does not rely on any neglect of twist three con-
tributions:

E
0

1

dx x@g1
V~x!12g2

V~x!#50 ~1.4!

and which, as we shall discuss, can be tested experimentally.
Note that in charged current DIS the OPE gives expres-

sions for the odd moments for the sum ofn and n̄ reactions
~as in the electromagnetic case! but for the even moments for
the difference ofn and n̄ reactions. In the latter case we can
also derive our sum rule for the charged current version of

g2
W1

2g2
W2

by starting from the OPE@12#.
In Secs. II and III we show how to derive these general-

ized sum rules first by appealing to gauge invariance in po-
larized DIS, second by a detailed study of the properties of
various hadronic matrix elements. Section IV discusses some
aspects of the ELT sum rules and their generalization and in
Sec. V we consider how the new sum rules might be tested
experimentally.

II. SUM RULE FROM GAUGE INDEPENDENCE IN DIS

Consider first the field-theoretic calculation of the anti-
symmetric part of the hadronic tensorWmn

(A) which controls
polarized deep inelastic scattering, via the Feynman dia-
grams of Fig. 1.

Because we are dealing with twist three effects it is nec-
essary to consider the quark-quark-gluon correlators

bA~x1 ,x2!5E dl1

2p

dl2

2p
eil1~x12x2!1 il2x2b̃A~l1 ,l2!,

~2.1!

where

b̃A~l1 ,l2!5
1

2M
^P,Suc̄~0!n”g5S•D~l1n!c~l2n!uP,S&,

~2.2!

and

bV~x1 ,x2!5E dl1

2p

dl2

2p
eil1~x12x2!1 il2x2b̃V~l1 ,l2!,

~2.3!

where

b̃V~l1 ,l2!52
i

2M
emnrsSnPrns

3^P,Suc̄~0!n”Dm~l1n!c~l2n!uP,S&,

~2.4!

whereDm is the covariant derivative andnm is a lightlike
gauge-fixing vector:n250, n•A50, n•P51. It also defines
the transverse direction; for example, for the covariant spin
vectorSm,

ST
m5Sm2~S•n!Pm. ~2.5!

The fractionsx1 andx2 correspond to the fractions of the
hadron momentum carried by the quarks. In these definitions
the correlatorsbA(x1 ,x2) andbV(x1 ,x2) are real and dimen-
sionless. They are related to the correlators used in AEL by
bV5 iBV/2 andbA52BA/2. They have the symmetry prop-
erties

bV~x1 ,x2!52bV~x2 ,x1!, bA~x1 ,x2!5bA~x2 ,x1!.
~2.6!

In Eqs.~2.1!–~2.4! we have suppressed the flavor labelf on
the quark fields.

Use of the equation of motion for the quark field of a
given flavor leads to a very general relation between
bV ,bA , and the quark-quark correlator functionf T(x) which

FIG. 1. Simplest Feynman diagrams contributing to DIS at twist two and twist three level.~Crossed diagrams are not shown.!
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directly gives the field-theoretic expression for the transverse
combination ofg1 andg2: namely,

gT~x![g1~x!1g2~x!5
1

2(f Qf
2@ f T~x!1 f T~2x!#,

~2.7!

where

f T~x!5E dl

2p
eilx f̃ T~l! ~2.8!

and

f̃ T~l!5
1

2M
^P,Suc̄~0!g5S”c~ln!uP,S&, ~2.9!

where, again, we suppress the flavor label.
For an arbitrary test functions(x) one finds@13#

E dxdy$@s~x!1s~y!#bA~x,y!1@s~x!2s~y!#bV~x,y!%

522E dxs~x!x fT~x!. ~2.10!

Further, demanding that the results forWmn
(A) be indepen-

dent of the gauge-fixing vectornm leads to a relation between
bA and the quark-quark correlator functionhL(x) which
gives the field-theoretic formula forg1(x): namely,

g1~x!5
1

2(f Qf
2@hL~x!1hL~2x!#, ~2.11!

where

hL~x!5E dl

2p
eilxh̃L~l! ~2.12!

and

h̃L~l!5
1

2Mn•S
^P,Suc̄~0!n”g5c~ln!uP,S&. ~2.13!

One finds@13#

E dxdyFs~x!2s~y!

x2y GbA~x,y!

5E dxs~x!@ f T~x!2hL~x!#. ~2.14!

Note that in Eqs.~2.10! and~2.14! the range of integration is
uxu<1, uyu<1 andux2yu<1.

For the longitudinal case it is possible to associatehL , for
each flavor, with a polarized quark or antiquark number den-
sity,

Dq~x!5hL~x!, Dq̄~x!5hL~2x!, ~2.15!

but such a connection is not possible for the transverse spin
case.

In Eq. ~2.14! let us now chooses(x)5xn21, with n odd.
The integral21<x<1 on the right-hand side~RHS! of Eq.
~2.14! can then be converted into an integral 0<x<1, lead-
ing via Eqs.~2.7! and ~2.8! to @13#

E
0

1

dxxn21g2~x!5
1

2(f Qf
2E dxdyFn21

2
~xn221yn22!

1fn21~x,y!GbA~x,y! ~n odd!,

~2.16!

where

fn~x,y![
xn2yn

x2y
2
n

2
~xn211yn21!. ~2.17!

Note that

fn~x,y!50 if x5y. ~2.18!

Now, let us chooses(x)5xn22 in Eq. ~2.10! with n odd.
By analogous arguments, Eq.~2.10! becomes

E
0

1

dx xn21Fn21

n
g1~x!1g2~x!G

52
1

4(f Qf
2E dxdy$~xn221yn22!bA~x,y!

1~xn222yn22!bV~x,y!% ~n odd!. ~2.19!

It follows that @13#,

E
0

1

dx xn21Fn21

n
g1~x!1g2~x!G

5
1

4~n11!(f Qf
2E dxdyH fn21~x,y!bA~x,y!

2
n21

2
~xn222yn22!bV~x,y!J n51,3,5,. . . .

~2.20!

The set of relations~2.20! is perfectly equivalent to what
one obtains from the operator product expansion for
n53,5,7,. . . . TheOPE, however, says nothing about the
casen51. Indeed, Eq.~2.20! may not be valid forn51
because the integrals could diverge.

We see that the left-hand side~LHS! of Eq. ~2.20! is just
the LHS of the Wandzura-Wilczek~WW! sum rule ~1.2!.
The WW sum rule was originally derived from the operator
product expansion by neglecting twist three operators on the
RHS and by assuming that the operator product result can be
continued smoothly ton51, where, of course, the WW sum
rule just reduces to the Burkhardt-Cottingham~BC! sum rule
~1.1!.

There are good reasons to believe that BC sum rule will
fail because the expected Regge behavior forg2(x) as
x→0 might make the integral overg2(x) diverge@10#.
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Contrary to the operator product approach, one can cer-
tainly chooses(x)5xn21 with n even in Eq.~2.14! and
s(x)5xn22 with n even in Eq.~2.10!, to obtain a totally
new set of relations, which, however, neither involveg1(x)
or g2(x) as such, but a part of them,g1

V(x) andg2
V(x), which

can be regarded as the valence contribution to them. For
g1(x), which has a simple partonic interpretation, this is
straightforward. Forg2(x), which does not have a partonic
interpretation it is not clear whatg2

V(x) means physically.
However, it is a well-defined object, which can be measured,
and thus sum rules involving it are of physical importance.

The difference betweenn odd andn even appears in the
following way. The LHS’s of Eqs.~2.16! and ~2.19! origi-
nally involve integrals of the form, for example,

1

2(f Qf
2E

21

1

dx xn21hL~x!.

Becausen was odd, this could be written as

1

2(f Qf
2E

0

1

dx xn21@hL~x!1hL~2x!#5E
0

1

dx xn21g1~x!.

For n even, the last step will lead to expressions of the
form

1

2(f Qf
2E

0

1

dx xn21@hL~x!2hL~2x!#

5
1

2(f Qf
2E

0

1

dx xn21@Dqf~x!2Dq̄f~x!# ~2.21!

5E
0

1

dx xn21g1
V~x!. ~2.22!

We shall defineg2
V(x) by @see Eq.~2.7!#

g2
V~x!52g1

V~x!1
1

2(f Qf
2@ f T~x!2 f T~2x!#. ~2.23!

Then, the relations~2.16!, ~2.19!, and~2.20! hold also for
evenn with g1(x)→g1

V(x) andg2(x)→g2
V(x).

Of particular interest is the casen52, because the contri-
bution of the twist three correlators on the RHS of Eq.~2.20!
vanishes whenn52. Thus, one has

E
0

1

dx x@g1
V~x!12g2

V~x!#50. ~2.24!

This so-called Efremov-Leader-Teryaev~ELT! sum rule was
incorrectly stated in AEL@1# where the label ‘‘V’’ was not
indicated.

We shall return to discuss certain aspects of the ELT sum
rule, the possibility of testing it physically, its convergence
properties, and whether or not it can be generalized, after
first discussing a quite different approach to the sum rule.

III. SUM RULE FROM PROPERTIES
OF HADRONIC MATRIX ELEMENTS

The derivation of the sum rule in Sec. II is a little unsat-
isfactory in that it appeals to a particular lepton-hadron reac-
tion to derive properties inherent to the nucleon. The follow-
ing derivation deals only with nucleon matrix elements. The
sum rules can be derived from a careful study of the structure
and gauge properties of the matrix elements and use of the
equation of motion of the quark field. In this approach@1#,
one sees very clearly why sum rules such as the Burkhardt-
Cottingham one may fail because of the noninvertability of
certain Fourier transforms.

Consider first the forward matrix element of the bilocal
operator

c̄~0!gmg5c~x!

on the light conex250. Its most general form is

1

M
^c̄~0!gmg5c~x!&P,S5A1S

m1~x•S!A2P
m1~x•S!A3x

m,

~3.1!

where^•••& is short for^P,Su•••uP,S&. The scalar functions
A1,2,3 are functions only ofx•P.

From Eq.~3.1! we deduce

1

M
^c̄~0!gmg5]

nc~x!&P,S5A18S
mPn1A2P

mSn1A3x
mSn

1~x•S!@A28P
mPn1A38x

mPn

1A3g
mn#, ~3.2!

where

A8[
dA~x•P!

d~x•P!
. ~3.3!

We now putxm5lnm. Then,

1

M
^c̄~0!gmg5c~ln!&P,S5A1S

m1l~n•S!@A2P
m1lA3n

m#,

~3.4!

where nowAi5Ai(l), and

1

M
^c̄~0!gmg5]

nc~ln!&P,S5A18S
mPn1A2P

mSn

1l$A3n
mSn1~n•S!@A28P

mPn

1lA38n
mPn1A3g

mn#%. ~3.5!

We assume that all scalar functions are such that
lA(l)→0 asl→0 for all terms occurring in Eqs.~3.4! and
~3.5!. This is in accord with expectation from OPE, since the
limit l→0 in our light-cone operators corresponds to them
becoming local operators. Then, atl50 we have the simple
structures

1

M
^c̄~0!gmg5c~0!&P,S5A1~0!Sm ~3.6!

4310 55A. V. EFREMOV, O. V. TERYAEV, AND ELLIOT LEADER



and

1

M
^c̄~0!gmg5]

nc~0!&P,S5A18~0!SmPn1A2~0!PmSn.

~3.7!

We shall also require, from Eq.~3.5!,

1

M
^c̄~0!g5]/ c~ln!&P,S52l~n•S!@M2A2815A31lA38#

~3.8!

so that, atl50,

1

M
^c̄~0!g5]/ c~0!&P,S50. ~3.9!

Finally note, from Eq.~3.5!, that

1

M
^c̄~0!gmg5n•]c~ln!&P,S5A18S

m1~n•S!@~A21lA28!Pm

1l~2A31lA38!nm#

5
1

M

d

dl
^c̄~0!gmg5c~ln!&P,S .

~3.10!

Consider now the gluonic matrix element

1

M
^c̄~0!gmg5gA

n~x!c~x!&P,S

with x5ln. Its most general form is

l~S•n!@B1P
mPn1lB2P

mnn1lB3n
mPn1l2B4n

mnn#

1B5S
mPn1B6P

mSn1lB7S
mnn1lB8n

mSn. ~3.11!

The gauge conditionnmA
m50 implies that

B550, lB152B6 , lB352B8 , ~3.12!

so that

1

M
^c̄~0!gmg5gA

n~ln!c~ln!&P,S

5lB1@~S•n!PmPn2PmSn#1l~S•n!@B2P
mnn

1lB4n
mnn#1l2B3@~S•n!nmPn2nmSn#1lB7S

mnn.

~3.13!

Notice the crucial feature that the imposition of the gauge
condition, together with the assumptions about the vanishing
of products such aslB(l) asl→0, leads to the vanishing
of Eq. ~3.13! at l50, i.e.,

^c̄~0!gmg5gA
n~0!c~0!&P,S50. ~3.14!

This result will be crucial for deriving the ELT sum rule.
Let us now relate some of the above coefficients to the

functions occurring in the discussion ofg1 and g2. From
Eqs.~2.13! and ~3.4!, we have

h̃L~l!5
1

2
@A1~l!1lA2~l!#. ~3.15!

From Eqs.~2.9! and ~3.4!,

f̃ T~l!5
1

2
A1~l!. ~3.16!

Then, from Eqs.~2.11! and ~2.12!, if the Fourier transforms
can be inverted,

E
0

1

dxg1~x!5
Qf
2

2
h̃L~0!5

Qf
2

4
A1~0! by Eq. ~3.15!.

~3.17!

Similarly, from Eqs.~2.7! and ~2.8!

E
0

1

dx@g1~x!1g2~x!#5
Qf
2

2
f̃ T~0!

5
Qf
2

4
A1~0! by Eq. ~3.16!. ~3.18!

Equations~3.17! and~3.18! imply the Burkhardt-Cottingham
sum rule

E
0

1

dxg2~x!50. ~3.19!

As is discussed in Ref.@10# the above derivation may fail
because of the noninvertability of the Fourier transforms. We
turn now to the ELT sum rule.

Consider first Eq.~2.10! which followed from the equa-
tions of motion. Choosings(x)5d(x2z) and then integrat-
ing overz, using Eqs.~2.6!, ~2.1!, and~2.8!, there results:

b̃A~0,0!52 i
d f̃T
dl

U
l50

, ~3.20!

where we have taken the quark mass to be zero for simplicity
and where we have taken, on the basis of Eq.~2.8!,

x fT~x!5 i E dl

2p
eilx

d f̃T
dl

~l!. ~3.21!

Now, because of Eq.~3.14!, from Eq. ~2.2!,

b̃A~0,0!5
i

2M
^c̄~0!n”g5~ST•]!c~0!&P,S

so that, via Eq.~3.7!,

b̃A~0,0!52
i

2
A2~0!. ~3.22!

Use of this and Eq.~3.16! in Eq. ~3.20! yields

A2~0!5
d

dl
A1~l!ul505A18~0!. ~3.23!

Now, by arguments similar to those that lead to Eq.~3.21!,
we have
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E
21

1

dx xhL~x!5 i
dh̃

dl
U

l50

5
i

2
@A18~0!1A2~0!# by Eq. ~3.15!

5 iA18~0! by Eq. ~3.23!. ~3.24!

Similarly, we have, using Eqs.~3.21! and ~3.16!,

2E
21

1

dx x fT~x!52i
d f̃T
dl

U
l50

5 iA18~0!. ~3.25!

Subtracting Eq.~3.24! from Eq. ~3.25! and repeating the
kind of argument that led to Eq.~2.22!, we obtain, once
again, the ELT sum rule

E
0

1

dx x@g1
V~x!12g2

V~x!#50. ~3.26!

IV. DISCUSSION OF THE ELT SUM RULE
AND A GENERALIZATION

We discuss here first the question of the convergence of
the ELT sum rule~2.24!, then consider an analogous sum
rule involving the complete functionsg1,2(x) and not just
their valence parts and then comment upon an implication
for the concept of handedness of jets.

As mentioned earlier, the Burkhardt-Cottingham sum rule
~1.1! may well diverge because of a possible 1/x2 growth of
g2(x) as x→0. It is important to note that such a singular
behavior will not spoil the convergence of the ELT sum rule
~2.24!, since the singularity will cancel out in the subtraction
in Eq. ~2.13!.

Consider now the question of the analogue of Eq.~2.24!
for the complete functionsg1,2(x). In contrast with the op-
erator product expansion, the sum rule~2.10! holds for
s(x)5xn21 with n odd or even and the sum rule~2.14!
holds for s(x)5xn22 with n odd or even. Forn odd and
>3 they reproduce the OPE results for the moments of
g1,2(x). For n even they produce new sum rules for the mo-
ments of the valence parts ofg1,2(x). However, it is possible
to consider sum rules forn even from a different point of
view, namely, from the analytic continuation inn of the
results forn odd. Hence, we wish to begin with Eqs.~2.16!
and ~2.19! and analytically continue inn. As written, the
RHS’s of Eqs.~2.16! and ~2.19! do not have a unique ana-
lytic continuation sincex andy can be negative so that terms
of the form xn and yn effectively reproduce factors of
(21)n which grow exponentially in the imaginaryn direc-
tion and spoil the uniqueness of the analytic continuation.
However, starting withn odd we can rewrite all the integrals
in Eqs. ~2.16! and ~2.19! in such a way that 0<x<1 and
0<y<1 after which the analytic continuation is unique. We
shall not give the detailed results for arbitraryn, but for
n52 we find

E
0

1

dx x@g1~x!12g2~x!#

5(
f
Qf
2E

0

1

dyE
0

12y

dxFx2y

x1y
bA~x,2y!2bV~x,2y!G .

~4.1!

The matrix elements on the RHS of Eq.~4.1! are not zero
and cannot be expressed as a finite series of matrix elements
of local operators. However, they are of twist three and are
proportional to the square root of the product of the probabil-
ity to find a gluon and the probability to find aqq̄ pair in the
nucleon. The latter was estimated to be small from the study
of QCD sum rules by Shuryak and Vainshtein@14#. So, it
may be that the RHS of Eq.~4.1! is negligible, corresponding
to the Wandzura-Wilczek sum rules~1.2! continued to
n52. Together with the Burkhardt-Cottingham sum rule
~1.1!, this means thatg2

WW(x) should intersect the experi-
mentalg2(x) at least twice in the interval 0,x,1 which
seems compatible with the present SLAC data@8#.

The method used in Sec. III to derive sum rules for the
first and second moments ofg1,2(x) highlights an interesting
aspect of the Burkhardt-Cottingham sum rule. The assump-
tion that all the scalar functionsA(l) are well behaved as
l→0, as implied by the assumed behaviorlA(l)→0 as
l→0 means, as can be seen from Eq.~3.4!, that the first
moments of the longitudinalgL(x)[g1(x) and the trans-
versegT(x)[g1(x)1g2(x) depend on the matrix element of
the axial-vector current which is proportional to just the
single vectorial structureSm. There is no reference to any
direction which could differentiate longitudinal from trans-
verse, so the first moments ofgL(x) and gT(x) coincide.
This seems very similar to the ‘‘naive’’ derivation of the BC
sum rule from rotational invariance@2# as well as to the early
QCD derivation@15#. @It would be interesting to understand
analogously thephysicalmeaning of Eq.~2.24! written as
*0
1dx xgL

V(x)52*0
1dx xgT

V(x).#
An analogous situation arises for the new spin-dependent

variable handedness~H! introduced in@16#, which allows the
study of the polarization of a quark or gluon which has frag-
mented into a jet. H is given as a product of the quark po-
larization times the analyzing power A of the fragmentation
reaction. The analyzing power is described by light-cone
functions analogous tohL(x) and f T(x). As discussed in@16#
longitudinal and transverse analyzing powers coincide in the
case of particle decay as a consequence of rotational invari-
ance, but in the ‘‘decay’’ of the jet the light-cone vector
nm ‘‘remembers’’ the jet direction resulting in a difference
between longitudinal and transverse analyzing powers. But
by the same reasoning as above, the first moment of the
longitudinal and transverse analyzing powers should coin-
cide. The integration variable in this case isz, the fraction of
the parton’s momentum carried by a pair~or triple! of par-
ticles used to define the jet.

Let us now consider how the new sum rules can be used
to learn aboutg2(x) and to test QCD.

V. PHENOMENOLOGICAL TESTS
OF THE ELT SUM RULE

The general field-theoretic expression forg2(x) in terms
of hadronic matrix elements of operators is given in Eqs.
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~2.7!–~2.9!. As mentioned earlier, despite appearances to the
contrary,g2(x) does not have any simple probabilistic parton
model interpretation even though only quark operators ap-
pear in the matrix element~2.9!. Nonetheless, it is given by a
sum over contributions coming from quark operators of defi-
nite flavor f ~the flavor label was suppressed in Sec. II!, so
that the contribution of a given flavor of quark or antiquark
to g2(x) is meaningful.

Moreover, since the flavor label is clearly irrelevant in the
derivation, it must be true that Eq.~2.24! holds for the con-
tribution to g2(x) of each flavor. Hence one has, for each
flavor f ,

E
0

1

dx x@g1,f
V ~x!12g2,f

V ~x!#50. ~5.1!

Information about the contributions of a given flavor to
g2(x) can be obtained by studying reactions with different
targets and by studying nonpurely electromagnetic DIS, for
example, charge-changing DIS involvingW6 exchange or,
at largeQ2, interference betweeng andZ0 exchange. There
is also the possibility of focusing on specific flavors by look-
ing at semi-inclusive DIS.

There thus appear to be several possibilities to learn about
g2,f
V (x).

~1! Assuming, as usual, that the contributions from sea
quarks are the same in protons and neutrons, we can derive a
kind of analogue of the Bjorken sum rule. For, then, from
Eq. ~2.24! or ~5.1!,

E
0

1

dx x$@g1~x!12g2~x!#p2@g1~x!12g2~x!#n%50.

~5.2!

Hence, we have the interesting new sum rule

E
0

1

dx x@g2
p~x!2g2

n~x!#5
1

2E0
1

dx x@g1
n~x!2g1

p~x!#.

~5.3!

~2! In unpolarized semi-inclusive DIS it is claimed that
the study of meson production

l 1N→l 81M1X,

whereM5p6,p0,K6,K0,K̄0, etc. allows one to identify the
contribution of a givenqf or q̄f to the unpolarized structure
functions and it is proposed to use the same approach, but
with a longitudinally polarized target at CERN@17# to iden-
tify the individual Dqf(x) and Dq̄f(x) contributions to
g1(x).

We suggest that the same method, but using a transversely
polarized target, will allow the identification of the contribu-
tions g2,f(x) to g2(x) coming from a given flavor quark or
antiquark.

Hence, in principle, the valence contribution tog2(x) of a
given flavor,g2,f

V (x), can be measured.
~3! A simpler method is to assume dominance of theu

andd contributions and to study

l 1N→l 81 jet1X,

using a transversely polarized target and with identification
of the charge of the jet (6). If the differences of cross sec-
tions when the transverse spin is reversed,DTds jet1 and
DTds jet2, are measured then@DTds jet12DTds jet2# will in-
volve the combinations@18#

~g2,u1g2,d̄ !2~g2,d1g2,ū !5g2,u
V 2g2,d

V . ~5.4!

It would seem possible to carry out such a measurement
in the upgraded SMC experiment HMC with a forward mag-
netic spectrometer or in the HERMES experiment at HERA
which uses a polarized gas jet target.

~4! In charge-changing DIS mediated byW6 bosons, the
coupling to quarks and antiquarks is of opposite sign. If the
cross-section differences under reversal of the transverse
nucleon polarization can be measured for

m1N→ n̄m1X,

and for

m2N→nm1X

then, for the difference of these, one has@12#

DTdsm1→ n̄m2DTdsm2→nm}g2
W1

2g2
W2

. ~5.5!

The precise relation between cross sections and scaling func-
tions is given in Ref.@1#. However, the expression for
g2
W(x) given there, which was taken from Ref.@19#, is incor-
rect. In fact,g2

W(x) is given in terms of the functionf T(x) as
it occurs in Eq.~2.7!. The only difference is in the coupling
constants involved. Hence, the combination occurring in Eq.
~5.5! can be expressed in terms of the purely electromagnetic
g2(x) valence parts discussed above:

g2
W1

~x!2g2
W2

~x!518g2,d
V ~x!2

9

2
g2,u
V ~x!. ~5.6!

For an isoscalar targetA0 one then has

@g2
W1

~x!2g2
W2

~x!# per
nucleon

A0

5
25

4
@g2,u

V ~x!1g2,d
V ~x!#.

~5.7!

In principle, one could combine Eqs.~5.7! and~5.4! to study
the individualu andd valence contributions tog2(x).

~5! If an asymmetry measurement with transversely polar-
ized target can be done at sufficiently largeQ2, so thatg–
Z0 interference is important, then

g2
gZ~x!52(

f
S gVfQf

Dg2,f~x!, ~5.8!

wheregV
u51/22(4/3)sin2uW, gV

d521/21(2/3)sin2uW, Qf

is the charge, andg2,f(x) is the flavor f contribution to the
pure electromagneticg2(x). Measurement ofg2

gZ(x) thus
provides further information about the flavorf contributions
to g2(x).
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VI. CONCLUSIONS

It is known that, for electromagnetic DIS, the operator
product expansion provides expressions for thenth moments
of g1(x) andg2(x) in terms of hadronic matrix elements of
local operators forn5 odd integer. In some cases these ma-
trix elements are expected to be small, leading to approxi-
mate sum rules for the odd moments ofg1,2(x). We have
shown how, working in a field-theoretic framework, one can
derive expressions for the even moments of the valence parts
of g1,2(x). These expressions cannot be written as matrix
elements of local operators and do not coincide with the
analytic continuation ton5 even integer of the OPE, results.

Just as for the OPE, one can in some cases argue that the
hadronic matrix elements should be small, leading to ap-
proximate sum rules for the moments of the valence parts of
g1,2(x). But, most importantly, for the casen52 we have
proved rigorously that the hadronic matrix element vanishes,
yielding the exact ELT sum rule

E
0

1

dx x@g1
V~x!12g2

V~x!#50.

In the case of the charged current DIS the OPE provides

expressions for the even moments ofg2
W1

2g2
W2

and can be
used as a starting point for the derivation of our sum rule.

We have argued that the convergence properties of these
sum rules are good and have discussed how they can be used
to get information aboutg2(x) from inclusive and semiinclu-
sive electromagnetic DIS, from charged current DIS and
eventually fromg-Z interference in neutral current DIS. It is
important to test the sum rule since it is a direct consequence
of QCD.
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