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Gluino contribution to the three-loop B function in the minimal supersymmetric standard model
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We deduce the gluino contribution to the three-loop QBBunction within the minimal supersymmetric
standard modeglMSSM) from its standard QCD expression. The result is a first step in the computation of the
full MSSM three-loopg function. In addition, in the case of a light gluino it provides the strong three-loop
SUSY correction to the extrapolation of the strong coupling constant from the low energy regimezo the
region and up to the squark threshdl80556-282(197)01607-X

PACS numbsgps): 12.60.Jv, 11.30.Pb, 12.38.Bx, 14.80.Ly

Although experimental measurements at the highest availgnoring squark contributions, the one- and two-loop results
able energy are consistent with the standard mgtglthe in the minimally extended SUSY QC[#] are
observed relationship of the strong coupling constant at the
Z and the weak angle as well as the value of tthe mass 11
ratio vis-avis the top quark mass remain strong indications B1=— §CA+ 3
of a supersymmetri¢SUSY) grand unification above 19
GeV and a SUSY threshold for squarks and sleptons in the

Ng
N{T+ —=Cu

Cal, @

0.1 to 1 TeV region. In this unification picture the value of B,=— %C2+ @(nfTCAJF Ecz +4|nTCe+ EC2>
the SUSY threshold is very sensitive to the highest known 37~ 3 2 A 2 AP
(two-loop) contribution to the minimal supersymmetric stan- (5)

dard model(MSSM) B function. At the one-loop order a
SUSY threshold far below 100 GeV would be needed to fitwheren; is the number of quark flavors amg is the number

the coupling constant measurements and such a low thresbf gluino multiplets,C, and Cr are the eigenvalues of the
old is directly ruled out by the nonobservation of squarks andyuadratic Casimir operators in the adjoint and fundamental
sleptons inZ decay. This can be seen by inserting the currentepresentation, respectively, afidis the Dynkin index for
experimental values for the couplings into the semianalytiche fundamental representation. Note that throughout this pa-
expressions for the SUSY scale given[Rl. This suggests per we use the framework of the dimensional regularization
that the three-loop results could also be important especiallj5] and a minimal-subtraction{MS-) or modified-MS

as the precision of the measurements atZhand beyond (MmS.type prescriptions [6]. In the standard model
improves. As a first step in the calculation of the full three-(nazo), the three-loop coefficient [F]

loop B functions of the MSSM, we provide here the gluino

contribution to the renormalization of the strong coupling (SM) _ _ 28573 _ 2_ 205 _ 14152

constant. This gives the complete result in the region be- By == Cam niT(2CE =77 CrCa=27°Cl)

}yveen the gluino mass and the squark mass WhICh., in the —(nT)2(%Cp+22C,). (6)

ight gluino scenario, extends from the low energy regime up

to theZ and beyond up to the squark threshold. The standar
Lagrangian density of the MSSM is summarized 3. The
gluons interact with quarks and squarks in the fundament
representation of the gauge group 8( and with gluons,
gluinos, and ghosts in the adjoint representation. In each re
resentation the generators satisfy the commutation relation

grriving at this result required the calculation of several hun-
aqlred Feynman graphs, and a similar number is required to
extend the result to the MSSM. However, the first step in this
yrogram, the incorporation of gluino loops, can be obtained
y purely group theoretical methods. This leaves a sharply
reduced number of graphs that must be treated in detail to
determine the full three-loop function. The main result of
this paper, proven in the appendix, is that, in the MSSM
above the gluino mass scale but below that of the squarks,
with the adjoint representation matrices being defined inhere are only six linearly independent group factdEs,

[Ra, Rb]:ifabcRc, (1)

terms of the structure constants¥),.=if2°. The running j=0, ... 5 among all the relevant Feynman graphs. In
of the strong coupling constant as a function of the spal®  terms of these the three-logpfunction of the MSSM takes
determined by the QCIB function the form
das/d(Inu?) = asB(adm), () B3=byCo+b;Cy+b,Cr+bsCatb,CatbsCs.  (7)
where 8 has the perturbative expansion The graphs involving solely gluons and ghosts have each a
group factor proportional t@o=Ci as can be trivially de-
B(X)=B1X+ BoX?+ Bax3+ - - . (3)  duced on dimensional grounds from the case where there are
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no quarks in the theory. Graphs involving a single fermion FaFPFa=C,FP/2, TATPT3=(Cr—CA/2)T?, (A3)
loop have group weights that are linear combinations of the

three factors Tr(T3TPTC) =T(d2PC+if2P%)/2, Tr(FaFPF®)=ifaPcC,/2,
5 3 (A4)

C1=n;TCe+nzgCa/2, (8
fabefabe=C,(N?~1), (A5)

C,=n{TC:Ca+n5CR/2, (9)

where

Ca=n(TCA+ngCRI2. (10 CA=2TN, Cp=T(N2—1)/N. (A6)

Fin_aIIy, all graphs_ involving two _fermion loops have group The unit matrices appearing in EqeA1),(A2) are N and
weights that are linear combinations of the two factors N2—1 dimensional for the fundamental and adjoint repre-

sentations of SUWY), respectively. The arbitrary normaliza-

— 2 _
Ca=(nfTCr+ngCR2) (e T+n5CAl2), (11 tion of the generators is usually chosen so fhat1/2. The

_ 2 B gauge coupling constant usually quoted in experimental
Cs=(n{TCA+NgCA2)(N{T+ngCAI2). (12 Znalyses uses this normalization. The result of this work, that

the three-loopB function including gluino but not squark
contributions is a linear combination of the six quoted group
factors, is proven in this appendix.

We begin by noting that the MS scheme strong coupling
renormalization constanZ, can be determined via the

In the standard model case wherg=0, these results are
trivial and not useful. The importance of E¢8)—(12) is that
they constrain the ways contributions from gluino loops fol-
low from those of quark loops. Substitutir@y, throughCs
into Eq. (7) and comparing with Eq(6) in the ng=0 limit o -
suffices to determine the coefficiemtgthroughbs. The final ~ fénormalization constan@, for the ghost-ghost-gluon ver-

result for the MSSM including gluinos but excluding squarktex, Z3” for the gluon propagator, and}? for the ghost

contributions is, therefore, propagator(see, e.g.[12] for more details
Bs=—Z5IC—n(T(2C2— 2ECeCo— 425C3) Z,=73%25"25%, (A7)
—(N{T)2(4Ce+ 52Cp) + Tn5C3 where by the definition of the MS-type schen& each

renormalization constar®; is a polynomial
—ngn(T(FCa+FCaCp)— 5n2CY. (13
h _

Assuming the gluino lies below tti2 and the squarks above Zi= 1+n§1 Z"(age ™", (A8)
the Z, then at theZ scale,3; is —9769/54 in the standard
model (hg=0) and +14134/27 in the MSSMr{G=1). If  with e=(4—D)/2. Now, the QCDg function can be ob-
the gluino lies below thé quark, the value of at theZ for ~ tained from the following relatiorisee, e.g.[12])
a given ag at my is increased by a non-negligible amount
compared to the experimental error. A complete analysis of f7z(als)
the precise effect is left for a later complete phenomenologi- B
cal analysis which should include the light gluino effect on
theZ andr decay widthg8,9]. The results found here for the  Contributions from graphs with no fermion loops each
MSSM USing the dimensional regularizati{fliﬂ framework, have the group fact@i: CO as can be seen from the stan-
as expected, do not match those found recefl§,1]  gard model result equatid). The relevant Feynman graphs
within the dimensional reduction framework and they do notinyolving at least one fermion loop are those in Fig. 1 with
have to. A similar scheme dependence has been found Bternal gluons being attached at all possible points. We may
[12]. average over th8l>— 1 color gluons. Thus, the group factors

The authors acknowledge useful comments by Igothat occur are 1K?—1) times the group factors of the
Terekhov. This work was supported in part by the U.S. De9raphs obtained by adding an internal gluon line in all pos-

partment of Energy under Grant No. DE-FG02-96ER-409675ible ways to the graphs of Fig. 1, thus transforming them
into four-loop graphs. In each of these four-loop graphs there

are six gluon vertices. We may classify them by the resulting
number of gluons attached to the outer fermion loop in Figs.
1(a)—1(d). We ignore for the present quartic couplings. Each

The group factors occuring in the function are calcu- oq1ting graph will then have connections on the outer
lated in terms of traces of representation matrices. The fung

d | i X d the adioi ermion line and 6-n connections in the interior and we
amental representation matrice, and the adjoint repre- oot the graphs in order of decreasmdEquation(l) tells us
sentation matriceE*® satisfy

that the group factor for a graph with any order of gluon
ava. o~ 7 acby b attachments on the outer loop is a linear combination of the
TATe=Cel, Tr(TOT?)=To6%, (A1) group factor from the graph with the gluons attached in a

standard order and group factors from graphs with fewer
FaFa=C,1, Tr(FaF°)=C,6%, (A2)  gluon attachments on the outer loop. This relation may be

- dnayg’ (A9)

APPENDIX



4270 L. CLAVELLI, P. W. COULTER, AND L. R. SURGULADZE 55
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FIG. 3. Graphical equality in group space between a quartic
coupling and three pairs of triple couplings. As in Fig. 2, the equal-
ity has the meaning that the group factor of a graph containing the
@ quartic coupling is a linear combination of the group factors ob-
tained by replacing that coupling in turn by each of the subgraphs
shown on the right-hand side.
FIG. 1. Basic topologies for the calculation of the gluon propa-
gator renormalization. Solid lines represent fermions, either quarkpar graphs withn=6 are linear combinations of; and
or gluinos, and wavy lines represent gluons. The pair of externabroup factors coming from graphs with<6. Thus, Eq.
gluons are attached at all possible positions. (A10) can be taken to be the only linearly independent group

factor coming from then=6 graphs. Graphs with=>5 can

described by a graphical equivalence in color space iIIusbe obtained b ; ; ; ;

g : : y adding a gluon line to Figdlor Fig. 1(c).
trated in Fig. 2. Since EqJl) holds for all representations, Using Fig. 2, one sees that all such graphs lead to group
the same equivalence is valid on a gluon or ghost loop alsq

Thus, the linearly independent group factors may be foundacmrs that are proportional to Ui, of Eq. (9)
by considering planar graphs only. When gluinos are incor- —ij
porated into the theory, each graph with a quark loop has @zzm
corresponding graph with one or more quark loops replaced

by gluino loops. The gluino contribution to thgfunction is (A11)
given by the quark contribution except for the replacement o
the fundamental representation matrices by the adjoint re
resentation matrices and by an extra factor of 1/2 for eac

fglwtncr) I?(;E)Z(:]ue Tf the rl\/lajitr):?rr:afnattltjrr]etof :I'Ii gtlﬁnno. Th]'csthis is the only linearly independent group factor one can
actoro as Is source € factinat, uniike the case 104, ;o with five attachments on the outer loop and one inter-

I_D|ra(_: fermions, one must gnore the_ d|rect|(_)n_of the gIUInOnal attachment. We proceed, thereforente4. A linearly
line in a Feynman graph in calculating statistical and sym-

metry factors. The only linearly independent group factordependent group factor with=4is theCs of Eq. (10),
coming from graphs witm=6 may be taken as the planar

graph obtained by attaching another gluon line at adjacencgzﬁz_—l
points on the outer loop of Fig.(d). Using the identities of

Egs.(Al) and(A2), the corresponding group factor is seen to
be theC; of Eq. (8):

©

-
NTH(TTETOTETE) + S TH(FAReRoReRe) oo

olus possibly a linear combination of group factors from
raphs with lowen. It is clear, using the tracelessness of the
epresentation matrices and the equivalence of Fig. 2, that

N~
nfTr(TaTchTd)+ 7g-l-r(I:aI:bI:cI:d) fabegcde
(A12)

This appears when the extra gluon line is added connecting
the gluon lines of Fig. (c). A second group invariant corre-

cl:i neTr(TATATPTPTOTS) sponding ton=4 is

N°—1

. (A10) N2—1

aTaTbTcC na arapbpc bpc
nfTr(TTTT)+7Tr(F FeFPF®) [Tr(F°F°).

9 apapbpbpcpc

The traces here are easily evaluated using E&%)—(A5).

- : However, by explicit calculation this is seen to be propor-
Because of Fig. 2, the group factor from the various nonpla y exp prop

tional to C,. At this point one should investigate the graph
where to Fig. 1d) one adds a gluon line with one leg on the

outer loop and the other attaching to make a quartic cou-
a b b pling. However, the group factor at a quartic coupling is a
= + 8 sum of three terms each of which is a product of tf#6C.
b W a Thus, in group space the quartic coupling is equivalent to a
sum of products of triple vertices as expressed in Fig. 3.
a

Again, this figure has the meaning that the group factor of a

graph including the quartic coupling is a linear combination

FIG. 2. Diagrammatic equivalence in group space. The grouf group factors where the four legs are linked in the three
factor from a graph containing the left-hand side is a linear combi0ssible ways by triple couplings. The consequence of this
nation of the group factors from graphs in which each of the terms2quivalence is that we may neglect all graphs with quartic
on the right-hand side is inserted in its place. couplings in determining the number and form of linearly
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independent group factors. With=4 we also have a contri- TR
bution from the two-fermion loop topology of Fig.(d
where a gluon line is attached at adjacent points on the outer
loop and each of the fermion lines can represent either a
quark or a gluino. The corresponding group facto€Cig
(b) (©)

1 N= (a)
Co=rp—1 nfTr(TaTaTbTC)+79Tr(FaFanF°)} o
ng ;
X nfTr(TbT°)+?gTr(FbF°) . (A14) O *
All other graphs with four attachments on the outer loop can d (e) ®)

be seen, using Fig. 2, to be linear combinations Gf

through C, and possible group factors appearing at lower FIG. 4. Basic topologies with at least one fermion loop for the
n. At n=3 we have the group factor from Fig(al with the  renormalization of the ghost-ghost-gluon vertex. Fermions, gluons,
extra gluon connecting the outer and inner loops. The correand ghosts are indicated by solid, wavy, and dashed lines, respec-
sponding group factor is tively.

N~ triple gluon vertex. The ghost propagator corrections can be
neTr(T3[ TP, T]) + %Tr(Fa[Fb,FC])} obtained from the topologies of Fig. 1 by adding a gluon in
all possible ways which lead to at least one closed gluon loop
n~ and then replacing each gluon loop in turn by a ghost loop.
neTr(T3TPTC) + ?gTr(FanFC)} =Cs. (Al5  Cutting one of the ghost lines then leads to a ghost propaga-
tor renormalization graph. All of these clearly have the same
Here, we have used the fact that the divergent part of FigdrOUp structure as the corresponding contribution to the
1(a) when gluon-crossed graphs are included is totally antjgluon propggator renormallzat!on. In fact, since the role of
symmetric in(a),(b),(c). This can be seen from the fact that he ghosts is to cancel unphysical Lorentz modes of the glu-
the divergent subgraph of Fig(d with an extra gluon join- NS, One can anticipate that the ghost propagator and vertex
ing the two fermion loops is a renormalization of the triple €Normalizations contribute no new linearly independent
gluon vertex. The other two-fermion-loop possibility at 9rOUP factors. It is useful, however, to see this in detail.
n=3 is obtained by connecting the extra gluon line to Fig.. W€, therefore, consider finally contributions to tige

1(a) with one end on a triple gluon vertex. The correspond-fu_nCtiO” from renormal_ization of the gho_st-ghost-gluon_ cou-
ing group factor is proportional 165 as can be seen by using PliNg- The corresponding graphs are given by attaching an

Fig. 2. The only remaining possibility with=3 is external gluon in all possible ways to the graphs of Fig. 1
and then at all possible points joined by a continuous gluon

1 N~ line attaching a pair of external ghosts and changing the con-
=1 nfTr(Ta[Tb,TC])+?gTr(Fa[Fb,FC])}Tr(FanFC), tinuous gluon line between them into a ghost line. Since the
(A16) ghost-ghost-gluon vertex, like the triple gluon vertex, is pro-
portional to f2¢, the infinite corrections to the vertex must

coming for example from adding a gluon line to Figbjlor ~ also have this group structure. Sinf¥°f2*°=C,(N*-1),

Fig. 1(d). However, this is easily seen to be proportional to@ll the group factors from the renormalization of this vertex
Cs. Finally, we consider graphs with=2. One such graph can be obtained by considering all the vacuum to vacuum,
coming from Fig. 1a) is equivalent to a graph treated earlier five-loop graphs including a fermion loop and a ghost loop
under interchange of the outer and inner |00psl The 0n|9hat remain One-parthle irreducible after at least one par“CU-

other group invariants one can construct with 2 are of the  lar gluon-ghost-ghost vertex is excised. The group factors
form that occur in the gluon-ghost-ghost vertex renormalization

are then the group factors of these five-loop graphs divided

1 avby . NG acb Aebrcrc by CA(N?—1). Each of these graphs consists of a ghost loop
C=qz—7 | MTr(T )+ Tr(FEF) [ [ATH(FPFPFFY) and fermion loop with 3Xn<6 gluon vertices on the ghost

loop. Four representative graphs are shown in Fig. 4. The

+BTr(F3F®) Tr(F°F?)], (A17)  three-loop, ghost-ghost-gluon vertex correction can be re-

stored by excising a ghost-ghost-gluon vertex from these

all of which are proportional taC;. The B term, in fact, five-loop graphs in all possible ways that leave the graph

never appears in the three-logpfunction since after cutting  one-particle irreducible. Since there are eight gluon vertices

a gluon line in the four-loop graph to make the externalin a five-loop graph, all the graphs with six attachments to

gluons, the graph must remain one-particle-irreducible. Thishe ghost loop will have two attachments to the fermion loop

exhausts the graphs contributing to the gluon propagatoss in Fig. 4d). Each such graph, therefore, will have a factor
renormalization.

The ghost propagator renormalization contributes no new arby . 1. acby Ng b
group factors. This can be seen by noting that the ghost- neTr(T2T2) + 2Tr(F F= 2 Ca | O
ghost-gluon vertex has the same group fadtth® as the (A18)

N?—1

X

nfT-l—
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The group factor for such graphs will, therefore, beof Fig. 4c) where the fermion and ghost loop are joined by
(nsT+ngCal2)/Cp times the group factor@3) of the three-  four gluons has, when all the crossed gluon graphs are con-
loop gluon propagator correction with no fermion loops. Thesidered, the group factor

resultant group factor i€3. A graph such as Fig.(4) with

) .
three gluons attached to the ghost loop clearly gives no new N Tr(TaTPTCTd) + ?gTr(FanFCFd)

group factors since Ca(N%—1)
1 _ jfohi X {ATr([F3,FPIFCFY) + BTr(F3 F° FCIFY)
—————Tr(FIF"Fy= . (A19)
Ca(N*—1) 2(N°~1) +CTr(F2FPFeFY— FeFPFapd)}, (A22)

That is, a graph with a ghost loop attached to the rest of thqnhe symmetry of the divergent part of these graphs is deter-
graph by three gluons has the same group factor as the graWﬁned from the fact that the divergent subgraph is a renor-
where tlhedghost loop is :h;‘unk to ﬁ point atda. trlpr:e glluonmalization of the quartic gluon vertex. Each of these three
vertex leading to one o the grap s'trefate |n.t € 9lU0Rems is proportional t&€;. The group factor for Fig. @) is
propagator renormallzauon. Graphs with five vertices on thealso proportional t€; as is that for the case of Fig(f4with
ghost loop(e.g, Fig. 4b)] have the group factors fermion and gluon loops interchanged. Finally, there is also a
two-fermion-loop graph renormalizing the ghost-ghost-gluon
neTr(TPTCTY) vertex. This is shown in Fig.(4) where the vertex renormal-
ization is obtained by excising and discarding a ghost-ghost-
n- gluon vertex that leaves a connection from the ghost loop to
+ ?gTr(FbFCFd)}Tr(FaFanFCFd) (A20)  each of the fermion loops. The group factor for Fige)4ds

1
Ca(N°—1)

1 ng
and - aTbTcy, 9 arbpc crd
CANT=T) (nfTr(T T°T% + 2Tr(F F°F ))(nfTr(T T
L nTr(TPTeTY) e Cs
Ca(N*—1) + ?gTr(FCFd))Tr(FanFd) =——- (A23)

N~
+?gTr(FbFCFd) Tr(FAFPF2FFY).  (A21)  This completes the proof that, when gluinos are included,

there are only six linearly independent group factors in the
Each of these has a group factor proportionaCtoas can be three-loopg function for the SUN) strong coupling con-
seen by using Eq¢A1)—(A3). Graphs where there is a triple stant, namelyC3 and the five group factors given in Egs.
gluon vertex can be reduced to a linear combination of Eqs(8)—(12). This leads to the result stated in E¢8) and(13)
(A20) and(A21) using the equivalence of Fig. 2. The graph of the text.
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