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We deduce the gluino contribution to the three-loop QCDb function within the minimal supersymmetric
standard model~MSSM! from its standard QCD expression. The result is a first step in the computation of the
full MSSM three-loopb function. In addition, in the case of a light gluino it provides the strong three-loop
SUSY correction to the extrapolation of the strong coupling constant from the low energy regime to theZ
region and up to the squark threshold.@S0556-2821~97!01607-X#

PACS number~s!: 12.60.Jv, 11.30.Pb, 12.38.Bx, 14.80.Ly

Although experimental measurements at the highest avail-
able energy are consistent with the standard model@1#, the
observed relationship of the strong coupling constant at the
Z and the weak angle as well as the value of theb/t mass
ratio vis-à-vis the top quark mass remain strong indications
of a supersymmetric~SUSY! grand unification above 1016

GeV and a SUSY threshold for squarks and sleptons in the
0.1 to 1 TeV region. In this unification picture the value of
the SUSY threshold is very sensitive to the highest known
~two-loop! contribution to the minimal supersymmetric stan-
dard model~MSSM! b function. At the one-loop order a
SUSY threshold far below 100 GeV would be needed to fit
the coupling constant measurements and such a low thresh-
old is directly ruled out by the nonobservation of squarks and
sleptons inZ decay. This can be seen by inserting the current
experimental values for the couplings into the semianalytic
expressions for the SUSY scale given in@2#. This suggests
that the three-loop results could also be important especially
as the precision of the measurements at theZ and beyond
improves. As a first step in the calculation of the full three-
loop b functions of the MSSM, we provide here the gluino
contribution to the renormalization of the strong coupling
constant. This gives the complete result in the region be-
tween the gluino mass and the squark mass which, in the
light gluino scenario, extends from the low energy regime up
to theZ and beyond up to the squark threshold. The standard
Lagrangian density of the MSSM is summarized in@3#. The
gluons interact with quarks and squarks in the fundamental
representation of the gauge group SU(N), and with gluons,
gluinos, and ghosts in the adjoint representation. In each rep-
resentation the generators satisfy the commutation relations

@Ra,Rb#5 i f abcRc, ~1!

with the adjoint representation matrices being defined in
terms of the structure constants (Fa)bc5 i f bac. The running
of the strong coupling constant as a function of the scalem is
determined by the QCDb function

das /d~ lnm2!5asb~as/4p!, ~2!

whereb has the perturbative expansion

b~x!5b1x1b2x
21b3x

31•••. ~3!

Ignoring squark contributions, the one- and two-loop results
in the minimally extended SUSY QCD@4# are
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wherenf is the number of quark flavors andng̃ is the number
of gluino multiplets,CA andCF are the eigenvalues of the
quadratic Casimir operators in the adjoint and fundamental
representation, respectively, andT is the Dynkin index for
the fundamental representation. Note that throughout this pa-
per we use the framework of the dimensional regularization
@5# and a minimal-subtraction-~MS-! or modified-MS
(MS-!type prescriptions @6#. In the standard model
(ng̃50), the three-loop coefficient is@7#

b3
~SM!52 2857

54 CA
32nfT~2CF

22 205
9 CFCA2 1415

27 CA
2 !

2~nfT!2~ 44
9 CF1 158

27 CA!. ~6!

Arriving at this result required the calculation of several hun-
dred Feynman graphs, and a similar number is required to
extend the result to the MSSM. However, the first step in this
program, the incorporation of gluino loops, can be obtained
by purely group theoretical methods. This leaves a sharply
reduced number of graphs that must be treated in detail to
determine the full three-loopb function. The main result of
this paper, proven in the appendix, is that, in the MSSM
above the gluino mass scale but below that of the squarks,
there are only six linearly independent group factors,Ci ,
i50, . . . ,5, among all the relevant Feynman graphs. In
terms of these the three-loopb function of the MSSM takes
the form

b35b0C01b1C11b2C21b3C31b4C41b5C5 . ~7!

The graphs involving solely gluons and ghosts have each a
group factor proportional toC05CA

3 as can be trivially de-
duced on dimensional grounds from the case where there are
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no quarks in the theory. Graphs involving a single fermion
loop have group weights that are linear combinations of the
three factors

C15nfTCF
21ng̃CA

3/2, ~8!

C25nfTCFCA1ng̃CA
3/2, ~9!

C35nfTCA
21ng̃CA

3/2. ~10!

Finally, all graphs involving two fermion loops have group
weights that are linear combinations of the two factors

C45~nfTCF1ng̃CA
2/2!~nfT1ng̃CA/2!, ~11!

C55~nfTCA1ng̃CA
2/2!~nfT1ng̃CA/2!. ~12!

In the standard model case whereng̃50, these results are
trivial and not useful. The importance of Eqs.~8!–~12! is that
they constrain the ways contributions from gluino loops fol-
low from those of quark loops. SubstitutingC0 throughC5
into Eq. ~7! and comparing with Eq.~6! in the ng̃50 limit
suffices to determine the coefficientsb0 throughb5. The final
result for the MSSM including gluinos but excluding squark
contributions is, therefore,

b352 2857
54 CA

32nfT~2CF
22 205

9 CFCA2 1415
27 CA

2 !

2~nfT!2~ 44
9 CF1 158

27 CA!1 988
27 ng̃CA

3

2ng̃nfT~ 224
27 CA

21 22
9 CACF!2 145

54 ng̃
2CA

3 . ~13!

Assuming the gluino lies below theZ and the squarks above
the Z, then at theZ scale,b3 is 29769/54 in the standard
model (ng̃50) and114134/27 in the MSSM (ng̃51). If
the gluino lies below theb quark, the value ofas at theZ for
a givenas at mb is increased by a non-negligible amount
compared to the experimental error. A complete analysis of
the precise effect is left for a later complete phenomenologi-
cal analysis which should include the light gluino effect on
theZ andt decay widths@8,9#. The results found here for the
MSSM using the dimensional regularization@5# framework,
as expected, do not match those found recently@10,11#
within the dimensional reduction framework and they do not
have to. A similar scheme dependence has been found in
@12#.

The authors acknowledge useful comments by Igor
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APPENDIX

The group factors occuring in theb function are calcu-
lated in terms of traces of representation matrices. The fun-
damental representation matricesTa, and the adjoint repre-
sentation matricesFa satisfy

TaTa5CF1̂, Tr~TaTb!5Tdab, ~A1!

FaFa5CA1̂, Tr~FaFb!5CAdab, ~A2!

FaFbFa5CAF
b/2, TaTbTa5~CF2CA/2!Tb, ~A3!

Tr~TaTbTc!5T~dabc1 i f abc!/2, Tr~FaFbFc!5 i f abcCA/2,
~A4!

f abcf abc5CA~N221!, ~A5!

where

CA52TN, CF5T~N221!/N. ~A6!

The unit matrices appearing in Eqs.~A1!,~A2! are N and
N221 dimensional for the fundamental and adjoint repre-
sentations of SU(N), respectively. The arbitrary normaliza-
tion of the generators is usually chosen so thatT51/2. The
gauge coupling constant usually quoted in experimental
analyses uses this normalization. The result of this work, that
the three-loopb function including gluino but not squark
contributions is a linear combination of the six quoted group
factors, is proven in this appendix.

We begin by noting that the MS scheme strong coupling
renormalization constantZas

can be determined via the

renormalization constantsZ̃1 for the ghost-ghost-gluon ver-
tex, Z3

1/2 for the gluon propagator, andZ̃3
1/2 for the ghost

propagator~see, e.g.,@12# for more details!

Zas
5Z̃ 1

2Z3
21Z̃3

22 , ~A7!

where by the definition of the MS-type schemes@6# each
renormalization constantZi is a polynomial

Zi511 (
n>1

Zi
~n!~as!«

2n, ~A8!

with «5(42D)/2. Now, the QCDb function can be ob-
tained from the following relation~see, e.g.,@12#!

b5
]Zas

~1!

] lnas
. ~A9!

Contributions from graphs with no fermion loops each
have the group factorCA

35C0 as can be seen from the stan-
dard model result equation~6!. The relevant Feynman graphs
involving at least one fermion loop are those in Fig. 1 with
external gluons being attached at all possible points. We may
average over theN221 color gluons. Thus, the group factors
that occur are 1/(N221) times the group factors of the
graphs obtained by adding an internal gluon line in all pos-
sible ways to the graphs of Fig. 1, thus transforming them
into four-loop graphs. In each of these four-loop graphs there
are six gluon vertices. We may classify them by the resulting
number of gluons attached to the outer fermion loop in Figs.
1~a!–1~d!. We ignore for the present quartic couplings. Each
resulting graph will then haven connections on the outer
fermion line and 62n connections in the interior and we
treat the graphs in order of decreasingn. Equation~1! tells us
that the group factor for a graph with any order of gluon
attachments on the outer loop is a linear combination of the
group factor from the graph with the gluons attached in a
standard order and group factors from graphs with fewer
gluon attachments on the outer loop. This relation may be
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described by a graphical equivalence in color space illus-
trated in Fig. 2. Since Eq.~1! holds for all representations,
the same equivalence is valid on a gluon or ghost loop also.
Thus, the linearly independent group factors may be found
by considering planar graphs only. When gluinos are incor-
porated into the theory, each graph with a quark loop has a
corresponding graph with one or more quark loops replaced
by gluino loops. The gluino contribution to theb function is
given by the quark contribution except for the replacement of
the fundamental representation matrices by the adjoint rep-
resentation matrices and by an extra factor of 1/2 for each
gluino loop due to the Majorana nature of the gluino. This
factor of 1/2 has its source in the fact that, unlike the case for
Dirac fermions, one must ignore the direction of the gluino
line in a Feynman graph in calculating statistical and sym-
metry factors. The only linearly independent group factor
coming from graphs withn56 may be taken as the planar
graph obtained by attaching another gluon line at adjacent
points on the outer loop of Fig. 1~c!. Using the identities of
Eqs.~A1! and~A2!, the corresponding group factor is seen to
be theC1 of Eq. ~8!:

C15
1

N221 FnfTr~TaTaTbTbTcTc!
1
ng̃
2
Tr~FaFaFbFbFcFc!G . ~A10!

The traces here are easily evaluated using Eqs.~A1!–~A5!.
Because of Fig. 2, the group factor from the various nonpla-

nar graphs withn56 are linear combinations ofC1 and
group factors coming from graphs withn,6. Thus, Eq.
~A10! can be taken to be the only linearly independent group
factor coming from then56 graphs. Graphs withn55 can
be obtained by adding a gluon line to Fig. 1~d! or Fig. 1~c!.
Using Fig. 2, one sees that all such graphs lead to group
factors that are proportional to theC2 of Eq. ~9!:

C25
2 i

N221 FnfTr~TaTaTbTcTd!1
ng̃
2
Tr~FaFaFbFcFd!G f bcd

(A11!

plus possibly a linear combination of group factors from
graphs with lowern. It is clear, using the tracelessness of the
representation matrices and the equivalence of Fig. 2, that
this is the only linearly independent group factor one can
write with five attachments on the outer loop and one inter-
nal attachment. We proceed, therefore, ton54. A linearly
independent group factor withn54 is theC3 of Eq. ~10!,

C35
4

N221 FnfTr~TaTbTcTd!1
ng̃
2
Tr~FaFbFcFd!G f abef cde.

~A12!

This appears when the extra gluon line is added connecting
the gluon lines of Fig. 1~c!. A second group invariant corre-
sponding ton54 is

1

N221 FnfTr~TaTaTbTc!1
ng̃
2
Tr~FaFaFbFc!GTr~FbFc!.

~A13!

However, by explicit calculation this is seen to be propor-
tional toC2. At this point one should investigate the graph
where to Fig. 1~d! one adds a gluon line with one leg on the
outer loop and the other attaching to make a quartic cou-
pling. However, the group factor at a quartic coupling is a
sum of three terms each of which is a product of twof abc.
Thus, in group space the quartic coupling is equivalent to a
sum of products of triple vertices as expressed in Fig. 3.
Again, this figure has the meaning that the group factor of a
graph including the quartic coupling is a linear combination
of group factors where the four legs are linked in the three
possible ways by triple couplings. The consequence of this
equivalence is that we may neglect all graphs with quartic
couplings in determining the number and form of linearly

FIG. 1. Basic topologies for the calculation of the gluon propa-
gator renormalization. Solid lines represent fermions, either quarks
or gluinos, and wavy lines represent gluons. The pair of external
gluons are attached at all possible positions.

FIG. 2. Diagrammatic equivalence in group space. The group
factor from a graph containing the left-hand side is a linear combi-
nation of the group factors from graphs in which each of the terms
on the right-hand side is inserted in its place.

FIG. 3. Graphical equality in group space between a quartic
coupling and three pairs of triple couplings. As in Fig. 2, the equal-
ity has the meaning that the group factor of a graph containing the
quartic coupling is a linear combination of the group factors ob-
tained by replacing that coupling in turn by each of the subgraphs
shown on the right-hand side.
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independent group factors. Withn54 we also have a contri-
bution from the two-fermion loop topology of Fig. 1~a!
where a gluon line is attached at adjacent points on the outer
loop and each of the fermion lines can represent either a
quark or a gluino. The corresponding group factor isC4:

C45
1

N221 FnfTr~TaTaTbTc!1
ng̃
2
Tr~FaFaFbFc!G

3FnfTr~TbTc!1
ng̃
2
Tr~FbFc!G . ~A14!

All other graphs with four attachments on the outer loop can
be seen, using Fig. 2, to be linear combinations ofC1
throughC4 and possible group factors appearing at lower
n. At n53 we have the group factor from Fig. 1~a! with the
extra gluon connecting the outer and inner loops. The corre-
sponding group factor is

22i

N221 FnfTr~Ta@Tb,Tc# !1
ng̃
2
Tr~Fa@Fb,Fc# !G

3FnfTr~TaTbTc!1
ng̃
2
Tr~FaFbFc!G5C5 . ~A15!

Here, we have used the fact that the divergent part of Fig.
1~a! when gluon-crossed graphs are included is totally anti-
symmetric in~a!,~b!,~c!. This can be seen from the fact that
the divergent subgraph of Fig. 1~a! with an extra gluon join-
ing the two fermion loops is a renormalization of the triple
gluon vertex. The other two-fermion-loop possibility at
n53 is obtained by connecting the extra gluon line to Fig.
1~a! with one end on a triple gluon vertex. The correspond-
ing group factor is proportional toC5 as can be seen by using
Fig. 2. The only remaining possibility withn53 is

1

N221 FnfTr~Ta@Tb,Tc# !1
ng̃
2
Tr~Fa@Fb,Fc# !GTr~FaFbFc!,

~A16!

coming for example from adding a gluon line to Fig. 1~b! or
Fig. 1~d!. However, this is easily seen to be proportional to
C3. Finally, we consider graphs withn52. One such graph
coming from Fig. 1~a! is equivalent to a graph treated earlier
under interchange of the outer and inner loops. The only
other group invariants one can construct withn52 are of the
form

C5
1

N221 FnfTr~TaTb!1
ng̃
2
Tr~FaFb!G@ATr~FaFbFcFc!

1BTr~FaFe!Tr~FeFb!#, ~A17!

all of which are proportional toC3. The B term, in fact,
never appears in the three-loopb function since after cutting
a gluon line in the four-loop graph to make the external
gluons, the graph must remain one-particle-irreducible. This
exhausts the graphs contributing to the gluon propagator
renormalization.

The ghost propagator renormalization contributes no new
group factors. This can be seen by noting that the ghost-
ghost-gluon vertex has the same group factorf abc as the

triple gluon vertex. The ghost propagator corrections can be
obtained from the topologies of Fig. 1 by adding a gluon in
all possible ways which lead to at least one closed gluon loop
and then replacing each gluon loop in turn by a ghost loop.
Cutting one of the ghost lines then leads to a ghost propaga-
tor renormalization graph. All of these clearly have the same
group structure as the corresponding contribution to the
gluon propagator renormalization. In fact, since the role of
the ghosts is to cancel unphysical Lorentz modes of the glu-
ons, one can anticipate that the ghost propagator and vertex
renormalizations contribute no new linearly independent
group factors. It is useful, however, to see this in detail.

We, therefore, consider finally contributions to theb
function from renormalization of the ghost-ghost-gluon cou-
pling. The corresponding graphs are given by attaching an
external gluon in all possible ways to the graphs of Fig. 1
and then at all possible points joined by a continuous gluon
line attaching a pair of external ghosts and changing the con-
tinuous gluon line between them into a ghost line. Since the
ghost-ghost-gluon vertex, like the triple gluon vertex, is pro-
portional to f abc, the infinite corrections to the vertex must
also have this group structure. Sincef abcf abc5CA(N

221),
all the group factors from the renormalization of this vertex
can be obtained by considering all the vacuum to vacuum,
five-loop graphs including a fermion loop and a ghost loop
that remain one-particle irreducible after at least one particu-
lar gluon-ghost-ghost vertex is excised. The group factors
that occur in the gluon-ghost-ghost vertex renormalization
are then the group factors of these five-loop graphs divided
byCA(N

221). Each of these graphs consists of a ghost loop
and fermion loop with 3,n,6 gluon vertices on the ghost
loop. Four representative graphs are shown in Fig. 4. The
three-loop, ghost-ghost-gluon vertex correction can be re-
stored by excising a ghost-ghost-gluon vertex from these
five-loop graphs in all possible ways that leave the graph
one-particle irreducible. Since there are eight gluon vertices
in a five-loop graph, all the graphs with six attachments to
the ghost loop will have two attachments to the fermion loop
as in Fig. 4~d!. Each such graph, therefore, will have a factor

nfTr~T
aTb!1

ng̃
2
Tr~FaFb!5S nfT1

ng̃
2
CAD dab.

~A18!

FIG. 4. Basic topologies with at least one fermion loop for the
renormalization of the ghost-ghost-gluon vertex. Fermions, gluons,
and ghosts are indicated by solid, wavy, and dashed lines, respec-
tively.
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The group factor for such graphs will, therefore, be
(nfT1ng̃CA/2)/CA times the group factor (CA

3) of the three-
loop gluon propagator correction with no fermion loops. The
resultant group factor isC3. A graph such as Fig. 4~a! with
three gluons attached to the ghost loop clearly gives no new
group factors since

1

CA~N221!
Tr~FgFhFi !5

i f ghi

2~N221!
. ~A19!

That is, a graph with a ghost loop attached to the rest of the
graph by three gluons has the same group factor as the graph
where the ghost loop is shrunk to a point at a triple gluon
vertex leading to one of the graphs treated in the gluon
propagator renormalization. Graphs with five vertices on the
ghost loop@e.g, Fig. 4~b!# have the group factors

1

CA~N221! FnfTr~TbTcTd!
1
ng̃
2
Tr~FbFcFd!GTr~FaFaFbFcFd! ~A20!

and

1

CA~N221! FnfTr~TbTcTd!
1
ng̃
2
Tr~FbFcFd!GTr~FaFbFaFcFd!. ~A21!

Each of these has a group factor proportional toC3 as can be
seen by using Eqs.~A1!–~A3!. Graphs where there is a triple
gluon vertex can be reduced to a linear combination of Eqs.
~A20! and~A21! using the equivalence of Fig. 2. The graph

of Fig. 4~c! where the fermion and ghost loop are joined by
four gluons has, when all the crossed gluon graphs are con-
sidered, the group factor

1

CA~N221! FnfTr~TaTbTcTd!1
ng̃
2
Tr~FaFbFcFd!G

3$ATr~@Fa,Fb#FcFd!1BTr~Fa@Fb,Fc#Fd!

1CTr~FaFbFcFd2FcFbFaFd!%. ~A22!

The symmetry of the divergent part of these graphs is deter-
mined from the fact that the divergent subgraph is a renor-
malization of the quartic gluon vertex. Each of these three
terms is proportional toC3. The group factor for Fig. 4~f! is
also proportional toC3 as is that for the case of Fig. 4~f! with
fermion and gluon loops interchanged. Finally, there is also a
two-fermion-loop graph renormalizing the ghost-ghost-gluon
vertex. This is shown in Fig. 4~e! where the vertex renormal-
ization is obtained by excising and discarding a ghost-ghost-
gluon vertex that leaves a connection from the ghost loop to
each of the fermion loops. The group factor for Fig. 4~e! is

1

CA~N221! S nfTr~TaTbTc!1
ng̃
2
Tr~FaFbFc! D S nfTr~TcTd!

1
ng̃
2
Tr~FcFd! DTr~FaFbFd!52

C5

4
. ~A23!

This completes the proof that, when gluinos are included,
there are only six linearly independent group factors in the
three-loopb function for the SU~N! strong coupling con-
stant, namely,CA

3 and the five group factors given in Eqs.
~8!–~12!. This leads to the result stated in Eqs.~7! and ~13!
of the text.
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