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We consider the low-energy signatures of, and high-energy motivations for, scenarios of semiperturbative
gauge coupling unification. Such scenarios can leave striking imprints on the low-energy sparticle spectrum,
including novel gaugino mass ratios~includingM2 /M1'1!, substantial compression of the intragenerational
squark-to-slepton mass ratios, and an overall lifting of scalar masses relative to the gauginos. We also dem-
onstrate that the unification scale can be raised toMX'431017 GeV while still in the perturbative regime-
close to the one-loop heterotic string scale. We employ a three-loop calculation of the running of the gauge
couplings as a test of the perturbativity of the high-scale theory.@S0556-2821~97!06107-9#

PACS number~s!: 12.60.Jv, 12.10.Kt, 14.80.Ly

I. INTRODUCTION

Two of the most compelling theoretical constructions
since the advent of the standard model~SM! have been the
concepts of grand unification@1# and supersymmetry
~SUSY!. However, it is by now well known that unification,
specifically gauge coupling unification, and supersymmetry
are intimately connected in light of the precise electroweak
data from the CERNe1e2 collider LEP. That the separate
gauge couplings of the SU~3!3SU~2!3U~1! SM gauge
group unify around the scale 231016 GeV if the SM is em-
bedded in its supersymmetric extension, the minimal super-
symmetric standard model~MSSM!, can be taken as the first,
albeit indirect, evidence for SUSY. The initial excitement
surrounding this result has been replaced with a realistic re-
appraisal of the details of the calculation, showing that
simple unification with a light SUSY spectrum and without
modest grand unified theory~GUT! scale corrections predicts
a3(MZ) to be larger than indicated by either LEP or low-
energy data@2#. Nonetheless, there remains a remarkable
level of agreement given the large number of model-
dependent uncertainties that arise in the calculation.

It is necessary, however, to distinguish which aspects of
the MSSM are fundamental to the observation of gauge cou-
pling unification and which are coincidental. For example,
consider the addition of extra matter, beyond that of the
MSSM, at some arbitrary scaleMn.MZ . Taking a15
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anda2 as measured inputs at the weak scale, one can use the
one-loop renormalization group equations~RGE’s! for the
gauge couplings to yield a prediction of, e.g., the unification
scaleMX :
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0 the MSSMb-function coeffi-
cients anddbi the contributions of the extra matter. A similar
form applies for the modified prediction ofa3(MZ). Thus we
recover the very well-known result that, at one loop, new

states which shift all threeb functions identically ~i.e.,
db15db25db3[db! leave unchanged the predictions for
the strong coupling and for the unification scale. Only the
value of the experimentally inaccessible numberaX changes.

The requirementdbi5db is met by adding states with
quantum numbers such that they can be thought of as fitting
into complete representations of some simple group contain-
ing the SM, presumably in conjugate pairs to allow vector-
like SU~3!3SU~2!3U~1!-preserving mass terms and for
anomaly cancellation. Thus the apparent unification already
present in the MSSM is not simply an accident if there exist
only complete ‘‘GUT’’ representations above the weak scale.
From the point of view of gauge coupling unification, the
MSSM and these extended variants are on an equivalent
footing—there is nocurrentexperiment that favors one over
the other.

That said, in this paper we will show that there can exist
potentially dramatic and experimentally observable differ-
ences~at the next generation of colliders! between these
models, given access to the sparticle spectrum. These predic-
tions will provide a channel for detecting this extra matter
through its virtual effects even if it is too heavy to be ob-
served directly. Specifically, we will study intragenerational
sparticle mass ratios and gaugino mass ratios as discrimi-
nants, under the assumption that they exhibit mass unifica-
tion at the unification scale typical of supergravity-mediated
models of SUSY breaking. That masses in the scalar sector
are universal is a strong assumption; however, low-energy
flavor-changing neutral current constraints require intergen-
erational universality, and so intragenerational universality
seems motivated. Gaugino mass unification, on the other
hand, is very well motivated, in both GUT’s and string
theory, as we will discuss in greater detail below.

Each of these mass ratios possesses various advantages
and disadvantages. The sparticle masses have a quite sensi-
tive dependence on the existence of even relatively small
amounts of extra matter, but there are many other contribu-
tions to sparticle masses of a fairly generic nature—D terms
from broken symmetries, Planck-scale corrections to the
Kähler potential, etc.—that may make it difficult to disen-
tangle the contributions of the extra matter in a unique way.
On the other hand, the gaugino mass ratios, as we will show,
are largely immune from corrections arising from unknown
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high-scale physics. But we will also see that gaugino mass
ratios differ from their canonical values only slightly in the
presence of small amounts of extra matter; however, the ra-
tios can begin to differ significantly onceaX.a3(MZ).

It is an inevitable consequence of adding additional matter
to the MSSM thataX increases. Specifically, we will concern
ourselves with scenarios ofsemiperturbative unification
~SPU! in which matter in complete SU~5! multiplets is added
at some intermediate scaleMn,MX such thataX.a3(MZ);
in order to trust our results, however,we requireaX to re-
main perturbative in the sense of quantum field theory. A
reasonable test of perturbativity is that the contributions from
the ~n11!-loop RGE’s are small compared to those atn
loops. Because we will be working in a regime in which the
~n51!-loop contributions can be anomalously small, a test
comparing two-loop to one-loop contributions can be mis-
leading. Instead, we will test for perturbativity by comparing
the three-loop contributions to those at two loops. This will
force aX&1/2. Note that we donot impose that the gauge
coupling remain perturbative all the way up to the Planck~or
reduced Planck! scale, since unification into a string theory
can occur well below that scale, as we will discuss in the
next subsection.

Our primary results are twofold: First, we generalize
some recent results@3–5# to show that SPU pushes up the
unification scaleMX , sometimes significantly, towards our
expectation from string theory. Second, we examine the im-
print left on the light SUSY spectrum by SPU and extra
matter in general. We will finally consider threshold correc-
tions, particularly those at the high scale.

Throughout, we will present our results both numerically
and analytically. Because of the difficulty in finding simple
and general analytic expressions when the two-loop contri-
butions compete with the one-loop contributions, we will
usually confine our analytic results to the interesting refer-
ence case ofb350, where the running ofa3 is entirely two
loop in origin; for this case~in whichaX.0.22!, it is obvious
thataX is perturbative.

This paper is organized as follows. In the rest of this
section, we will discuss SPU scenarios within the context of
string theory and the relationship of SPU to the older idea of
nonperturbative unification@6#. Those allergic to high-scale
handwaving are encouraged to jump to Sec. II in which we
briefly address the question of the amount and mass scale of
the extra matter needed to achieve SPU of the gauge cou-
plings and discuss the raising of the unification scale at two
loops. Our primary results are contained within Sec. III in
which we examine the low-energy consequences of SPU in
the form of novel gaugino mass ratios and squark and slep-
ton spectra. After our conclusions we include a brief appen-
dix in which the three-loop RGE’s are presented for the sce-
narios considered here, based on the recent work of Jack and
co-workers@7,8#.

A. SPU from a string perspective

That larger values of the unified couplingaX may be pre-
ferred can be seen if we view the unification of couplings
from the perspective of string theory. Probably the most se-
rious phenomenological problem that faces string theory is
that of dilaton runaway@9#, which seems to be generic to
string theories. In short, to all orders of perturbation theory

~for a sypersymmetric string theory! the dilaton, whose ex-
pectation value sets the size of the gauge and other cou-
plings, has no potential. When ‘‘small’’ nonperturbative ef-
fects are included~such as gaugino condensation in a hidden
gauge group!, a potential can be generated, but this potential
must vanishas the dilaton vacuum expectation value goes to
infinity and the theory becomes free. Thus, unless there is a
local minimum at some intermediate value of the dilaton
expectation value, the dilaton either runs away to a free
theory or to a solution with a nonzero cosmological constant,
presumably large. In order to generate a local minimum to
stabilize the dilaton, one must almost certainly be outside the
region of ‘‘small’’ nonperturbative effects, so that one can
have competing terms. If all nonperturbative effects are of
field-theoretic origin @i.e., instantonlike with behavior
exp~28p2/g2!#, then this seems to require very large cou-
plings.

It seems at first to be a disaster that string theory must be
strongly coupled in order to describe our universe. Not only
does the observed unification within the MSSM predict a
small, perturbative value forgstring;gX , but the recent re-
sults on the strong-weak coupling duality suggest that the
dilaton runaway problem just reappears in a new guise if we
move into the strongly coupled regiongstring@1. Thus, from
the duality argument, it appears that at best the value of
gstring is in the region of intermediate coupling~probably near
the electric-magnetic self-dual pointgstring;A2p!, where
field-theoreticnonperturbative effects are still negligible and
cannot stabilize the dilaton.

A possible solution to this conundrum may lie in the ob-
servation that coupling strengths which within the context of
field theory are perturbatively small can within the context of
string theory be nonperturbatively large. In string theory
there are expected to be corrections, specifically to the
Kähler potential, which grow as fast as exp~2a/g!, where
a;1 @10#. Thus we might hope that nature has chosengstring
such that exp~2a/gstring!;1, while exp~28p2/gstring

2 !!1, al-
lowing us to approach unification in perturbation theory
while still understanding the stabilization of the dilaton. Val-
ues of gstring within the SPU rangeg3(MZ),gstring&A2p
are certainly within this domain.

In string theory there is also the well-known problem of
the scale of coupling unification. One expects, for string
theory, unification not only among the field-theoretic cou-
plings, but also with gravity@11#. A one-loop calculation
within weakly coupled heterotic string theory yields a pre-
diction for the scale at which such unification occurs, the
string scale, as a function of the unified coupling,gstring @12#:

M string55.3gstring31017 GeV, ~2!

only about one decade from the MSSM unification scale
231016 GeV with aX'1/25. But converted to a prediction
for a3(MZ) within the MSSM, the string result is many stan-
dard deviations away from the experimentally observed
value. There have been many suggested resolutions to this
disagreement@13#, including the addition of matter in incom-
plete SU~5! multiplets, the inclusion of~hopefully large!
string-scale threshold corrections, and even nonstandard af-
fine levels for the affine algebras~Kac-Moody algebras!, giv-
ing rise to the SM gauge interactions. Most recently, the
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question of the unification scale has been investigated within
the context of strongly coupled E83E8 string theory@14#.
The low-energy limit of this theory is 11-dimensional super-
gravity with the 11th dimension being an interval. The length
of this interval is essentially a free parameter which can be fit
usingaX , MX , and Newton’s constant~in units of the 11-
dimensional Planck lengthl 11!, so that the unification scales
in the string and field theories correspond. If we takeaX and
MX to be those of the MSSM, then the length of this interval
is about 70l 11, quite large. This in turn has potentially inter-
esting consequences for cosmology, axion dynamics, etc.
@15#. However, larger values ofaX andMX are in no way
disfavored by this result; they simply lead to different values
for the length of the interval and therefore different phenom-
enology.

In Sec. II, we will show that in SPU the unification scale
is automatically raised by the two-loop effects, approaching
in some cases the one-loop prediction of the string scale
quite closely.

B. Relation to nonperturbative unification

Finally, we wish to mention the connections and differ-
ences of our SPU scenarios with an earlier scheme, nonper-
turbative unification~NPU!, first proposed by Maiani, Parisi,
and Petronzio@6# in 1979. The basic idea of NPU is that as
more and more states are added to the particle spectrum, the
b functions for the gauge couplings increase until a Landau
pole at scaleL develops. If unification occurs in the MSSM,
then the amount and mass scale of extra matter can be cho-
sen such that unification occurs right atMX5L. The value of
gX5g(L) then becomes irrelevant, all low-scale observables
depending only on the scaleL itself. The weak-scale values
of the gauge couplings appear as infrared pseudofixed points
of the renormalization group equations~RGE’s!.

A large number of analyses have been performed of the
NPU scheme in the extended MSSM, most very similar in
nature. These analyses have three rather generic prob-
lems: ~i! They assume that the gauge couplings become
nonperturbative at the unification scale, which is no more
pleasant for string theory than very weak couplings,~ii ! their
only tool for analyzing the unification is perturbative RGE’s,
used despite the fact that the unification is supposedly non-
perturbative, and~iii ! thanks to the nonperturbative nature of
the couplings, other observables such as scalar and gaugino
masses are assumed to have uncontrollable corrections at the
unification scale which prevent any prediction of their values
at the weak scale. Thus the only discriminating signal of
NPU is to actually find the extra matter through on-shell
production. Within SPU, we will see that the coupling
strengths necessary in order to render interesting effects at
the weak scale observable are of intermediate strength.
Moreover, we will have control of the perturbative expansion
by checking against the three-loop contributions.

II. SEMIPERTURBATIVE UNIFICATION

In this work, we assume that nature chooses to unify
semiperturbatively. Therefore the low-energy values of the
gauge couplings which are measured experimentally are by
definition close to their infrared pseudofixed point values and
have their measured values thanks to some combination of

extra matter at some unknown scales and possibly new large
Yukawa couplings involving that extra matter. We have no
knowledgea priori of these dynamics, but hope to study
those effects which are independent of the details. Therefore
we will be interested in increasing theb functions until the
unification scale is pushed close to, but not above, the Lan-
dau scale and examining the resulting phenomenology.

All of our methods for analyzing physics within this do-
main will be perturbative. Each result derived perturbatively
must then be checked against some test of perturbativity to
ensure its validity. As already mentioned, a good test for a
result derived atn loops would be a calculation of the~n
11!-loop corrections. This test does not work forn51 for
two reasons: The one-loopb function for a3 is anoma-
lously small in the region of interest, and many of the effects
in which we are interested only arise at two loops. Therefore
we will use as our test of perturbativity the ratioub i

(3)/b i
(2)u

for each gauge groupi , whereb(n) is the n-loop gaugeb
function. For the purposes of this study, in calculatingb~3!

we will set all Yukawa couplings to zero; see the Appendix
for a full discussion of the relevant RGE’s. We will make the
somewhat arbitrary, but reasonable, choice that the perturba-
tive expansion is valid ifub i

(3)(MX)/b i
(2)(MX)u&1/2 for all

i . All of our results are derived under this constraint.
We also, of course, assume that the near unification of the

three gauge couplings in the MSSM is not an accident. For
the purposes of our calculations, we will denote asMX the
scale at whicha1(Q)5a2(Q) and determine the corre-
sponding value ofa3(MZ) as a prediction by running back
down to the weak scale. Since we only allow complete GUT
multiplets to be added to the MSSM, we know that we can-
not disrupt the full unification that occurs in the MSSM by
much.1

As we do not have control over the specifics of the dy-
namics which are occurring between the weak and unifica-
tion scales, we need an appropriate parametrization for de-
scribing the unknown effects. If the effective theory at the
weak scale is the MSSM, then there are essentially only two
degrees of freedom for exploring SPU: the representations
of the extra matter and the mass scale at which they couple.
Consider the toy case where the new matter is degenerate at
the weak scale,Mn5MZ . We can derive bounds ondb by
requiring that 1/aX approach zero from above. Thus, at one
loop,

db&S b102 a2

a1
b2
0D S a2

a1
21D 21

.4.6. ~3!

A 5 and10 of SU~5! contribute 1/2 and 3/2 todb, respec-
tively, while a16 of SO~10! contributes 2. Equation~3! then

1The precise value ofa3(MZ) is not a particularly useful predic-
tion of SPU~or the MSSM for that matter! without considering the
corrections at the weak scale, logarithmic and nonlogarithmic,
which are known to be large@2#. In this sense, we are not requiring
precise unification ofa3 with a1 and a2. Furthermore, note that
shifts in a3(MZ) which arise due to the extra matter at two loops
are typically canceled against one-loop threshold contributions from
the splittings in the masses of the new matter generated by their
anomalous dimensions@3,16#.
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sets the maximum number of additional5’s, 10’s, and16’s at
9, 3, and 2, respectively. There are no other representations
which can be added at the weak scale. IfMn@MZ , then
there can be correspondingly more states added or, alterna-
tively, larger GUT representations.

It seems then that an effective number of5’s, 10’s, or 16’s
added to the model at the weak scale may be a good param-
etrization for studying the new effects of SPU. In particular,
we will study how the phenomenology changes as the effec-
tive number of representations is increased to the SPU point.
We will choose theeffectivenumber of5’s, 10’s, or 16’s as
the degree of freedom in most cases and differentiate it from
theactualnumberni by denoting itni ,eff for i55, 10, or 16.
Since we are absorbing not only the number of extra repre-
sentations intoni ,eff but also their mass scale and other ef-
fects~see below!, it is not necessary that ni ,eff be an integer.

There are two dominant effects which change the number
of representations that can or must be added to the MSSM at
a given scaleMn to achieve SPU. Two-loop contributions to
the RGE’s tend to increase the gaugeb functions. In the
MSSM ~with or without extra matter!, this decreases the
amount of matter that can or must be added compared to the
one-loop case. In Fig. 1 we plot the extreme upper bound on
n5 as a function ofMn . ~By ‘‘extreme upper bound’’ we
mean the value beyond which the Landau scale occurs below
the unification scale, calculated to the stated order in pertur-
bation theory. This is not to be confused with our usual defi-
nition of an upper bound, which requiresub i

(3)/b i
(2)u,1/2 at

the unification scale.! Results are shown at one, two, and
three loops, where for the purposes of the figure all Yukawa
couplings are set to zero. In the one-loop case, one can
rescale the y axis to n10 or n16 using the relation
n553n1054n16; the two-loop corrections do not have any
such simple scaling. Note thatdn.3 or 4 in going from one
loop to two loops over most of the range ofMn .

Yukawa couplings enter the two-loopb functions with
opposite signs from the gauge contributions and therefore
slow the running of the gauge couplings, an effect which

might either increase or decrease the amount of extra matter
which is allowed. One can parametrize this effect as a shift in
ni ,eff away fromni ; that is, the effects of the Yukawa cou-
plings mimic extra matter:

b i5a i
2S bi2p

2(
j

aib
32p3 yb

2D 1O~a3!, ~4!

for some Yukawa couplingyb . Ignoring the running of the
Yukawas themselves and generalizing Eq.~3!, one finds2

dn5,eff5(
b

yb
2

8p2 S a1b2 a2

a1
a2bD S a2

a1
21D 21

. ~5!

For Yukawa couplings like those of the SM particles~includ-
ing the top Yukawa coupling!, n5,eff,0, so that more matter
can be added to the spectrum and still maintain perturbativ-
ity. This is not true for generic Yukawa couplings; in par-
ticular, mostR-parity-violating couplings lead ton5,eff.0,
though their coefficients are usually assumed to be very
small.

Although SPU has no effect on the scale of unification at
one loop, at two loops this no longer holds. For small values
of aX the two-loop effects are calculable and negligible, but
for SPU, the shifts in the unification scale can be substantial.
Consider, for example, our reference case ofb350. It is nec-
essary to solve thea3 equation

da3

dt
5

6

p2 a3
31••• , ~6!

where the ellipsis represents subleading terms which go as
a3
2a1,2 and are also down by small coefficients. Making the

good approximation of dropping these terms, we get the so-
lution

1

a3
2~m!

.
1

a3
2~MZ!

2
12

p2 lnS m

MZ
D , ~7!

and soaX.a3(MZ), as expected. Witha3(MZ)50.12, this
leads toaX.0.22. In this case the expression for the unifi-
cation scale becomes

MX.MX
~1!F )

i51,2
S aX

a i
D ~b2i2b1i !/2bi ~b12b2!G

3expF p

24

b232b13
b12b2

S 1

a3~MZ!
2

1

aX
D G , ~8!

where M X
(1) is the one-loop unification scale, about

~2–3!31016GeV. Note that, for SPU, [1/a3(MZ)21/aX].0
andb12b2528/5, but thebi j depend on the type of matter
added to setb350, i.e., either two10’s or six 5’s. For either
case the first factor coming from the U~1! and SU~2! contri-

2For each observable the precise definition ofni ,eff in terms ofni ,
the new mass scale, and any other effects such as Yukawa cou-
plings differs slightly. This particular definition is appropriate for
parametrizing effects of Yukawa couplings onaX and thus on the
amount of extra matter needed for SPU.

FIG. 1. Dependence of the maximal number of5’s on their mass
scale, calculated at one, two, and three loops, and with all Yukawa
couplings set to zero.

55 4255LOW-ENERGY SIGNATURES OF SEMIPERTURBATIVE . . .



butions raises the unification scale by a factor;4. On the
other hand, the exponential@SU~3! contribution# depends
strongly on type of additional matter since

b232b135 H64/5 if n1052,
0 if n556, ~9!

which results in an additional enhancement in Eq.~8! of ;3
in the case of10’s, but none in the case of the5’s. This is
due to the presence of~3,2! states in the decomposition of
the 10 which lead to enhancedb23 entries in the two-loop
b-function coefficients. Thus there is a quantitative differ-
ence at two loops between adding~one-loop! equivalent
amounts of5’s and10’s.

In Fig. 2~a! we show a full three-loop numerical calcula-
tion of the unification scale as function ofn5,eff andn10,eff.
This clearly shows the increase in the unification scale for
both5’s and10’s, and that the increase is more marked in the
second case. In line with the analytic estimates in Eq.~8!, the
unification scale for10’s is about a factor of 3 higher than
that for5’s. It is quite remarkable that the unification scale in
these models, especially in the case of10’s, approaches quite
closely the one-loop heterotic string prediction~;131018

GeV for the appropriate value ofgstring!. Note that this occurs
without the introduction of split multiplets or large weak or
string scale threshold corrections.

In Fig. 2~b! we plot the ratio of the three-loop term to the
two-loop term evaluated at the unification scale for the three
SM gauge couplings. Notice that the perturbative expansion
breaks down first inb1, with ub1

~3!/b1
~2!u reaching values near/

below 1/2 as we approach the cutoff in the amount of extra
matter. We take this as a strong indication that our perturba-
tive calculations are under control.

As the scale of extra matter increases, more matter is
needed to reach SPU. However, the prediction ofMX re-
mains roughly constant, as we have checked numerically.
We also note that the case of the16’s is intermediate to those
of the5’s and10’s, as one might expect. But there are ques-
tions which cannot be addressed within the context of this
parametrization which assumes all the extra matter sits at the
weak scale. Two such issues are the question ofb-t unifica-
tion in simple GUT’s and the existence of infrared pseudo-

fixed points for the soft masses and couplings which arise in
running between the string-Planck scale and a true GUT
scale. It is well known that even within the MSSMb-t uni-
fication only occurs near the infrared pseudofixed point of
one of the third generation Yukawa couplings and, prefer-
ably, for smaller values ofa3(MZ). Since the Yukawa uni-
fication depends on the values ofa3 at all scales betweenMZ
andMX , it is clear that the scale of the extra matter is of
primary concern. Lanzagorta and Ross@4# have also consid-
ered a case similar to SPU in which the extra matter sits near
or above the unification scale, so that the running from the
GUT scale to the string scale is semiperturbative. There one
finds interesting fixed point structures in the soft masses and
couplings which then set the boundary condition for further
running down to the weak scale. Once again, the scale of the
extra matter is of primary importance and so our effective
parametrization is not applicable.

III. LOW-ENERGY SIGNATURES

The low-energy signatures of SPU on which we focus all
involve changes to the spectra of sparticle masses at the
weak scale. Further, all the statements that we make in this
regard will be in the context of supergravity-~SUGRA-! me-
diated supersymmetry-breaking scenarios@17#. The reason
for this restriction is that the main effect of the additional
matter on sparticle masses will be radiative, through the
modified RGE running of the soft SUSY-breaking param-
eters, and this only occurs if the soft masses are induced
above the scale of the additional matter. Therefore we will,
for example, have nothing to say about the case of gauge-
mediated SUSY breaking where the scale at which the soft
terms are induced in the observable sector is very close to the
scale of the additional messenger matter.

In line with the usual assumptions, we will take the soft
terms induced at the unification scale to beuniversalin form.
This is certainly a strong assumption for the soft scalar
masses, but one of our main points will be that the usual
low-energy predictions of such a scenario can be greatly al-
tered even without violations of universality at the high
scale. Furthermore, for thegauginomasses the universality
assumption is relatively mild, as we will review below.

Probably the single most interesting and distinctive signa-
ture of SPU, at least near the upper limit of the allowed range
of unified coupling, is the change in the low-energy gaugino
mass ratios. Recall the usual situation within SUGRA-
mediated SUSY breaking, where at the unification scale we
expect universal gaugino masses

M1~Mx!5M2~Mx!5M3~Mx![M1/2. ~10!

Given this boundary condition, the low-energy ratios are de-
termined by the running fromMX down to the weak scale.
The two-loop RGE’s for the gaugino masses are very close
in form to those of the gauge couplings:

dMi

dt
5

bi
2p

a iM i1
bi j
8p2 a ia j~Mi1M j !

1
a ic

32p3 a i yc
2Mi1••• , ~11!

FIG. 2. ~a! Dependence of the unification scale on the type and
amount of extra matter;~b! ratio of the three-loop to two-loop con-
tributions to the threeb functions at the unification scale with extra
10’s. The ratio for the U~1! coupling provides the strongest con-
straint, followed by that of the SU~2!.
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where the ellipsis representsA-term contributions which can
be shown to be small both in the MSSM and with extra
matter ~see the work of Yamada in Ref.@18#!. The
b-function coefficientsbi , bi j , andaic are equal to those for
the gauge couplings given in the Appendix@18#. Such a form
for the gaugino RGE’s implies that the ratio

Ri[Mi /a i ~12!

satisfies the equation

dRi
dt

5
bi j
8p2 a j

2Rj1••• , ~13!

where again the ellipsis represents the smallA-term contri-
butions. In other words, the ratio is constant at one loop, but
runs at two loops. In the case of the unextended MSSM, the
change in the ratio due to the two-loop term is quite small,
and we get the standard result that, at the weak scale,

Mi /M j5a i /a j , ~14!

up to relatively small weak-scale threshold corrections and
conversions from dimensional reduction with modified mini-
mal subtraction (DR) masses to pole masses. Thus
M3 :M2 :M1;7.4:2.0:1.0.

In the SPU scenario these ratios can change dramatically.
In our reference case withb350, the equation forR3 has an
a3
2R3 term with large coefficient anda i

2Ri terms~i51,2! that
are suppressed both by relatively small coefficients and the
fact that belowMX the U~1! and SU~2! couplings decrease
quite quickly. Keeping just the dominanta3

2R3 term leads to
the expression~valid to roughly 10%!

R3~MZ!.
M1/2

aX
S a3~MZ!

aX
D . ~15!

The term in parentheses is the modification to the usual re-
sult and amounts to a 40% change in the predicted value of
R3 as compared to the MSSM.

For the other ratiosR1,2, a similar approximation scheme
is applicable. Thea3

2R3 term again dominates for most of the
running, although thea1,2

2 R1,2 terms can provide a numeri-
cally significant correction near the unification scale. These
can be simply dealt with by substituting in the one-loop ex-
pressions and integrating. The general form of the prediction
for the ratiosR1 andR2 is then

Ri~MZ!.
M1/2

aX
H 12Bi2 (

j51,2

bi j
4pbj

aXJ 1BiR3~MZ!,

~16!

where the constantsBi5bi3/b33 are ratios of 2 two-loop
b-function coefficients that depend upon the type of extra
matter. We have also dropped small correction terms of order
M1/2a i(MZ)/4paX . The form of Eq.~16! is actuallyvalid
beyond the particular case of b350—it is the generalization
of the usual one-loop relationRi5M1/2/aX to two loops.

For R2 in the specific case ofb350, this leads to the
prediction

R2~MZ!.
M1/2

aX
$12B22A2aX%1B2R3~MZ!, ~17!

where the constantsA2 andB2 take on the values 281/96p
and 5/6~95/32p and 1/2! in the10 ~5! case, respectively.

The ratioR1 may be handled in an identical way, leading
to the relation

R1~MZ!5
M1/2

aX
$12B12A1aX%1B1R3~MZ!, ~18!

in the b350 case, withA15337/480p ~147/160p! and
B15b13/b33517/30 ~1/2!, in the10 ~5! case.

In Fig. 3 we show the results of the numerical evaluation
of the low-energy gaugino mass ratios~a! M2/M1 and ~b!
M3/M2 as a function ofn5,eff andn10,eff. The most remark-
able feature of the figure is that with SPU one can have large
changes in the gaugino mass ratios away from the canonical
values ofa i /a j . In particular,M2/M1 can approach unity,
depending on the type of extra matter. This has strong phe-
nomenological consequences. One of the neutralinos of the
MSSM can be essentially photino like, rather thanB-ino like
as is usually assumed. If that neutralino is the lightest SUSY
particle, then it can be the dark matter in the universe with
properties markedly different than one might expect from
B-ino-like dark matter@19#. For example, because it lacks a
coupling to the Higgs boson, it does not self-annihilate as
efficiently, resulting in a higher relic density than for a simi-
larly massiveB-ino.

As a way to differentiate the cases of the5’s and10’s, it
would be useful to have access to theM3/M2 mass ratio.
Figure 3~b! reveals that as one approaches SPU,M3/M2 re-
mains constant or slightly increases for10’s, while it de-
creases for5’s; the behavior for the5’s is well described by
Eqs. ~15!–~18!, but that of the10’s requires a much more
detailed analytic analysis because of cancellations among
competing terms.@Note that Fig. 3 was made assuming that
a3(MZ) is brought back to the experimentally measured val-
ues using threshold effects.#

One may worry that these predictions for the gaugino
mass ratios suffer from large uncertainties due to threshold
corrections, either at the low or, especially, at the high scale,
due to the large amount of matter present. However, this is

FIG. 3. Ratios of the gaugino masses~a! M2/M1 and ~b!
M3/M2 as functions of the amount and type of extra matter. Solid
lines are for the case of additional5’s, dotted lines for10’s.
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not the case. Part of the reason is obvious: Because the
one-loop runnings of the gaugino masses and the gauge cou-
plings are identical, all logarithmically enhanced threshold
terms such as

aX

4p
lnSMV

2

MX
2 D or

aX

4p
lnS Mc

2

MX
2 D , ~19!

whereMV (Mc) is the mass of some superheavy vector~chi-
ral! multiplet, cancel in the ratioMi /a i . Actually, the situa-
tion is even better than this. The one-loop nonlogarithmically
enhanced threshold corrections to the gaugino masses have
been calculated in Ref.@20#, resulting in the expression

Mi~m!

a i~m!
5
M1/2

aX
1

1

4p H 2Ti~V!@M1/2~m!2dm#

1 (
c5chiral

Ti~Rc!BcJ , ~20!

where dm is the mass of the fermion component of the
Nambu-Goldstone multiplet induced by SUSY breaking@and
is O(MZ)#, the Bc are the standardB terms for the chiral
multiplets, and theTi group factors are defined in the Ap-
pendix. In the case of universal scalar mass terms~and B
parameters!, the contributions of complete GUT multiplets to
Ti(Rc)Bc add equally to each ratioMi /a i and are thus harm-
less in theMi /M j ratios. The only nonvanishing contribution
from chiral multiplets in the universal case arises from heavy
Higgs triplets and is, thus, independent of the amount of
extra matter. Similarly, there is a small correction arising
from the heavyvectormultiplets, whose contribution only
depends on the gauge structure of the underlying theory. The
final result is a total threshold correction to the gaugino mass
ratios of only a few percent, independent of any unsplit chi-
ral multiplets at the high scale. Thus high-scale field-
theoretic corrections to our expressions are generically under
control.

Gaugino mass unification is also a generic prediction of
string theory. One-loop perturbative string threshold correc-
tions to universality have been considered and argued to be
small except in the limit where the moduliF terms are much
larger than those of the dilaton. There is also the question of
nonperturbative corrections to gaugino masses in string
theory. Banks and Dine@21# have argued that through a com-
bination of the holomorphy of the gauge kinetic functionsf i
and discrete gauged subgroups of Peccei-Quinn symmetries,
one can show that string nonperturbative corrections to
gaugino masses behave as exp~28p2/g2!, of the same order
as field-theoretic nonperturbative effects, which we are by
the definition of SPU taken to be small. Therefore string-
induced corrections to our expressions are also generically
under control.

We now turn to the other major low-energy signal for a
larger value of the unified coupling, the squark and slepton
spectrum. One interesting feature of the modified spectrum is
that as a function of the amount of additional matter, the
shifts in the squark and slepton masses occur well before the
maximal SPU point is reached. It is therefore sufficient to
consider only the one-loop equations for the running of these
parameters to gain a good understanding of the changes. In

our analytic results we will also concentrate on the first two
generations of squarks and sleptons so as to avoid complica-
tions due to the large top Yukawa coupling; however, our
numerical results include all MSSM Yukawa contributions.
The general form for the one-loop squark and slepton RGE’s
is

dmc
2

dt
52

1

2p (
i

g i
~c!a iM i

2, ~21!

where the anomalous dimension coefficientsg i
(c) are not

modified by the addition of extra matter. They take the val-
ues g(Q)5~1/15,3,16/3! for the Q̃ squark doublets,
g(u)5~16/15,0,16/3! for the ũR squarks,g(d)5~4/15,0,16/3!
for the d̃R squarks,g

(L)5~3/5,3,0! for the L̃ slepton doublets,
and g(e)5~12/5,0,0! for the ẽR sleptons. The only depen-
dence onn5 and n10 comes through the running ofai and
Mi

2. In the case of the MSSM, we can solve these RGE’s by
using the one-loop relationMi /a i5M1/2/aX , leading to

mc
2~MZ!5m0

21(
i51

3 g i
~c!

2bi
M1/2

2 H 12
a i
2~MZ!

aX
2 J , ~22!

where we have assumedbiÞ0 andm0 is the soft SUSY-
breaking scalar mass communicated by supergravity at the
high scale~assumed universal for simplicity!. Explicitly,

m
Q̃

2
5m0

21M1/2
2 $2 8

9 ~12a3
2/aX

2 !1 3
2 ~12a2

2/aX
2 !

1 1
198~12a1

2/aX
2 !%, ~23!

mũ
25m0

21M1/2
2 $2 8

9 ~12a3
2/aX

2 !1 8
99 ~12a1

2/aX
2 !%,

~24!

m
d̃

2
5m0

21M1/2
2 $2 8

9 ~12a3
2/aX

2 !1 2
99 ~12a1

2/aX
2 !%,

~25!

for the first two generation squarks, and

m
L̃

2
5m0

21M1/2
2 $ 3

2 ~12a2
2/aX

2 !1 1
22 ~12a1

2/aX
2 !%, ~26!

mẽ
25m0

21M1/2
2 $ 2

11 ~12a1
2/aX

2 !%, ~27!

for the sleptons. An important qualitative feature of these
solutions in the MSSM is that the SU~3! terms dominate
because of the large ratioa i

2(MZ/)a X
2;9.8. This enhance-

ment of the SU~3! contributions relative to those arising from
SU~2! and U~1! is due to the fact that with the standard
MSSM spectrum the color coupling is still asymptotically
free, while the SU~2! and U~1! couplings are not. Therefore,
as we approach the point wherea3 is no longer asymptoti-
cally free, we expect a substantial compression of the squark
and slepton spectrum. Specifically, the form of the contribu-
tion due the SU~3! quantum numbers of the states for our
reference case~b350! is modified to

D3mc
2~MZ!5

g3
~c!p

36

M1/2
2

aX
H 12

a3
3~MZ!

aX
3 J . ~28!
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This leads to a prediction for the masses in theb350 case
~equations on the left! as compared to the MSSM~equations
on the right! of

m
Q̃

2
5m0

21~2.1!M1/2
2

mũ
25m0

21~1.8!M1/2
2

m
d̃

2
5m0

21~1.75!M1/2
2 vs

m
L̃

2
5m0

21~0.4!M1/2
2

mẽ
25m0

21~0.12!M1/2
2

m
Q̃

2
5m0

21~7.2!M1/2
2 ,

mũ
25m0

21~6.7!M1/2
2 ,

m
d̃

2
5m0

21~6.7!M1/2
2 ,

m
L̃

2
5m0

21~0.5!M1/2
2 ,

mẽ
25m0

21~0.15!M1/2
2 .

~29!

This compression of the squarks down towards the sleptons
is a general signature of SPU that sets in well before the
nonperturbative limit at the high scale is reached and does
not depend on large two-loop contributions.

However, to assess the overall scale of the squark and
slepton spectrum, it is necessary to reexpressM1/2 in terms
of the physically observable gaugino masses. In particular,
from Eq. ~15! we find that~in the caseb350! M1/2.2.9M3
~versusM1/2.0.33M3 in the MSSM!. Written in terms of
the gluino mass parameter, Eqs.~29! become

m
Q̃

2
5m0

21~17.6!M3
2

mũ
25m0

21~15.1!M3
2

m
d̃

2
5m0

21~14.7!M3
2 vs

m
L̃

2
5m0

21~3.4!M3
2

mẽ
25m0

21~1.0!M3
2

m
Q̃

2
5m0

21~2.4!M3
2,

mũ
25m0

21~2.2!M3
2,

m
d̃

2
5m0

21~2.2!M3
2,

m
L̃

2
5m0

21~0.17!M3
2,

mẽ
25m0

21~0.05!M3
2.

~30!

Given the bound on the gluino mass of roughly 180 GeV
from the Collider Detector at Fermilob~CDF! @22# ~this is in
the limit of heavy squarks which is appropriate here!, we find
that first two generations of squark doublets have a mass of
at least 750 GeV in our reference case~see also Ref.@3#!,
while the sleptons range in mass from 180 to 330 GeV, al-
ways assumingm050. ~The right-handed top squark, be-
cause of the large top quark Yukawa coupling, has a reduced
mass relative to the other squarks—numerically, we find its
lower bound to be 500 GeV, ignoring left-right mix-
ing.! Therefore the squark and slepton spectrum has to be
heavier than is apparent in Eqs.~29!.

The essential physics is demonstrated in Fig. 4, where we
have taken a constant value ofM35200 GeV and tanb52
and shown how the scalar masses change as a function of the
amount of extra5’s. ~The case of extra10’s is essentially
identical.! In the figure are plotted the first- and second-
generation squarks and sleptons and the right-handed top
squark t̃, which falls significantly below the other squarks
due to the large top Yukawa coupling. The figure clearly
shows the overall lifting of the scalar masses with respect to
the gauginos; the compression of the scalar mass ratios is
also present, but more difficult to see.

It is well known that in the MSSM electroweak symmetry
breaking~EWSB! is induced when the~mass!2 of one of the
Higgs doublets is driven negative by radiative effects en-
hanced by the large top quark Yukawa coupling. We have
studied this question numerically and found that this physics
is qualitatively unaffected by the inclusion of extra matter. In

particular, theumHu

2 u scales withn5,eff in a similar fashion as
the other scalars. Therefore we expect the value ofm in the
MSSM superpotential to be much larger than the gaugino
masses, so that the lightest SUSY state in this SPU scenario
will be a neutralino, which is dominantly photinolike.

IV. CONCLUSIONS

In this paper we have considered the possibility that the
gauge couplings unify within the semiperturbative regime at
high scales. Although such scenarios are from an experimen-
tal viewpoint currently on an equivalent footing to the
MSSM, we showed that they can lead to striking experimen-
tal signatures. In contrast to previous studies of nonperturba-
tive unification, we have been able to make reliable predic-
tions in our scenario by utilizing the three-loop gauge
coupling RGE’s as a test of the sensitivity of our predictions
to higher-loop effects.

The addition of extra matter changes the usual spectrum
of scalar masses which one derives from minimal
supergravity-mediated models of SUSY breaking and, more
surprisingly, shifts significantly the relations among the
gaugino masses at the weak scale. In particular, we find that
M2/M1.1 can be achieved for values of the unified cou-
pling for which the field theory is still perturbative. This can
lead to a host of phenomologically interesting effects coming
from the photinolike nature of the lightest SUSY state. Inter-
estingly, it may be possible to use some observables~e.g.,
M3/M2! as discriminants among the various types of extra
matter.

We have also demonstrated that a generic prediction of
SPU is the raising of the unification scale well above the
canonical value of the MSSM. For10’s, in particular, we
find MX'431017 GeV, remarkably close to the one-loop
string unification scale.

Overall, we find that the idea of SPU is both motivated
and potentially testable at the next generation of colliders
through its novel effects on the sparticle spectrum.

FIG. 4. Squark and slepton masses as a function of the number
of additional5’s, for constantM35200 GeV andm050. The t̃ is
shown as a dashed line. Theũ and d̃ contours are coincident.
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APPENDIX

The form of the three-loopb functions is

da i

dt
5a i

2H bi
2p

1
1

8p2 ~bi ja j1aiaỹa!

1
1

32p3 ~bi jka jak1ci jaa j ỹa1aiabỹaỹb!J ,
~A1!

whereỹa5y a
2/4p. In the case of an additionaln5 5’s andn10

10’s, the one- and two-loop coefficients are well known:

bi5@33/5,1,23#1 1
2 ~n513n10!@1,1,1# ~A2!

and

bi j5F 199/259/5
11/5

27/5
25
9

88/5
24
14

G1n5F 7/303/10
2/15

9/10
7/2
0

16/15
0

17/3
G

1n10F 23/101/10
3/5

3/10
21/2
3

24/5
8
17

G . ~A3!

The aia can be found in the literature and do not change as
additional matter is added.

The three-loop coefficients in the dimensional reduction

with modified minimal subtraction (DR! scheme for a simple
gauge group have been recently calculated in Ref.@7#. This
was extended to the MSSM in Ref.@8#; expressions for the
aiab , bi jk , andci ja in the MSSM~or in the MSSM with extra
16’s! can be easily extracted from the explicit expressions
given there. For the purposes of this study, we are setting the
Yukawa contributions in the three-loop RGE’s to zero, keep-
ing only the pure gauge pieces.

That there is a scheme dependence to the coefficients of
the three-loopb functions is well known. Our choice of
DR, however, is the natural one, since it is within this
scheme that gauge and gaugino unifications are expected to
hold.

The three-loop gauge contributions to the RGE’s for a
product group can be written in theDR scheme as

da i

dt U
3 loop

5
a i
2

32p3 H a i
2biC~Gi !@4C~Gi !2bi #

18C~Gi !(
a, j

a ia jTi~Ra!Cj~Ra!

26(
a, j

a j
2bjTi~Ra!Cj~Ra!

28(
a, j ,k

a jakTi~Ra!Cj~Ra!Ck~Ra!J ,
~A4!

wherei , j ,k label gauge groups anda labels matter represen-
tations. The Casimir invariants have the usual definitions

Ci~R!dm
n[~ t i

At i
A!m

n , Ti~R!dAB[TrR~ t i
At i
B!, ~A5!

with t i the generators of gauge groupi . In our normalization,
for SU(N), C(G)5N, T(R)5 1

2 for a fundamental and
C(R)5 3

4 or
4
3 for a fundamental of SU~2! or SU~3!.

Plugging into the general form for the MSSM with addi-
tional 5’s and10’s, one finds thebi jk to be

b1 jka jak5~2 32117
375 2 7507

900 n52
12859
300 n102

7
40n5

22 207
40 n10

2 2 9
4n5n10!a1

21~2 81
5 2 27

4 n52
261
20 n102

27
40n5

22 27
40n10

2 2 9
4n5n10!a2

2

1~ 484
15 2 506

45 n52
154
5 n102

4
5n5

22 54
5 n10

2 26n5n10!a3
21~2 69

252 27
50n52

1
50n10!a1a21~2 1096

75 2 64
225n52

344
75 n10!a1a3

1~2 24
5 2 8

5n10!a2a3 ,

b2 jka jak5~2 457
25 2 441

100n52
1513
300 n102

9
40n5

22 9
40n10

2 2 3
4n5n10!a1

21~352 33
4 n52

99
4 n102

13
8 n5

22 117
8 n10

2 2 39
4 n5n10!a2

2

1~44218n52
118
3 n10218n10

2 26n5n10!a3
21~ 9

51 3
10n51

1
10n10!a1a21~2 8

52 8
15n10!a1a31~2418n10!a2a3 ,

b3 jka jak5~2 1702
75 2 2689

900 n52
3353
300 n102

1
10n5

22 27
20n10

2 2 3
4n5n10!a1

21~2272 27
4 n52

117
4 n102

27
4 n10

2 2 9
4n5n10!a2

2

1~ 347
3 1 215

9 n51
215
3 n102

11
4 n5

22 99
4 n10

2 2 33
2 n5n10!a3

21~2 3
52 1

5n10!a1a2

1~ 22
151 4

45n51
2
5n10!a1a31~612n10!a2a3 . ~A6!

The MSSM is recovered forn55n1050.
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