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An approximate vacuum wave functionalC0 is proposed for~211!-dimensional Yang-Mills theories. Using
C0, one can compute the 011 glueball massMG in terms of the string tension. By using the idea of dimen-
sional reduction, a prediction forMG can be made in 311 dimensions. One findsMG'1.5 GeV.
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I. INTRODUCTION

Yang-Mills theories without quarks are expected to pro-
duce one or more bound states or glueballs. When quarks are
present, such pure glue states should mix withqq̄ states but
some mesons might have a dominant gluon content. Possible
candidates for such states aref 0~1300!, f 0~1590!, f J~1710!,
andh~1440! @1#. The h8~958! is expected to obtain a large
fraction of its mass due to fluctuations in gluonic topological
charge@2–4#.

Initial lattice studies suggested that the lightest 011 glue-
ball might have a massMG of ;1 GeV. Such lattice glueball
computations have been among the most numerically de-
manding due to a poor signal to noise ratio. However, be-
cause of advances in algorithms and powerful computers,
much progress has been made. The most recent lattice results
give values ofMG of 1550650 MeV @5# and 1740671 MeV
@6#, suggesting that thef J~1710! or f 0~1590! might be the
lightest 011 glueball state. Thef J~1710! is favored since it
has decay widths consistent with numerical simulations@7#.

The purpose of this paper is to obtain an approximate
analytic computation of the 011 glueball mass in terms of
the string tensions. The calculation is carried out in
D5211 dimensions and extended by dimensional reduction
to D5311 dimensions. Analytic studies often provide more
physical insight than numerical simulations. In addition, the
interplay between numerical and analytic approaches can as-
sist either approach in obtaining new methods and results.

Our method consists in postulating the form of the
ground-state wave functionalC0. The proposedC0 is ad-
justed to agree with weak- and strong-coupling limits. Sup-
port for ourC0 comes from the previous work@8,9#. In par-
ticular, numerical and analytic studies@10–17# of the lattice
Hamiltonian formulation@18# give rise to vacuum function-
als similar to ourC0.

The Hamiltonian for the (D5d11)-dimensional Yang-
Mills theory is

H5
g2

2 E ddxEi
aEi

a~x!1
1

2g2 E ddxBi j
a Bi j

a ~x!, ~1.1!

where E i
a(x)5(1/i )[d/dA i

a(x)],B i j
a5] iA j

a2] jA i
a

1 f abcA i
bA j

c, g is the gauge coupling constant andf abc are

the structure constants [la,lb]5 i f abclc, where the Lie-
algebra generators la are normalized so that
Tr(la,lb)5dab/2.

In 211 dimensions, our key result is

MG'
8s

g2Cf
, ~1.2!

where Cf is the value of the Casimir operator for the
fundamental representationlala5CfI . For SU(N),
Cf5(N221)/(2N).

II. THE APPROXIMATE VACUUM WAVE FUNCTIONAL

Express the ground stateC0 as

C05exp@2 f ~B!#, ~2.1!

where f is a functional ofB. As g goes to zero, the pertur-
bative f PT(B) is

f PT~B!5
1

4g2 E ddxBi j
a ~x!S 1

A2]2
Bi j
a ~x!D

5
1

4g2 E ddxddyBi j
a ~x!S 1

A2]2
D ~x,y!Bi j

a ~y!,

~2.2!

where the kernel~2]2!21/2(x,y) is

S 1

A2]2
D ~x,y!5E ddp

~2p!d
exp@ ip•~x2y!#

Ap•p
. ~2.3!

In the Abelian case for which there are no interactions, per-
turbation theory and Eq.~2.2! are exact. For the non-Abelian
case, Eq.~2.2! is not gauge invariant but the violations of
gauge invariance are of orderg2.

It has been conjectured that, in strong coupling, the
ground-state wave functional is governed byf SC(B) with @9#

f SC~B!5
m

2 E ddxBi j
a Bi j

a ~x!, ~2.4!
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where m is a parameter with dimensions of~length! 42d.
There is much evidence in support of Eq.~2.4! @9–17#. In
particular, lattice theory gives Eq.~2.4! as the leading strong-
coupling result@15#.

In a confining theory in space-time dimensionsD with
2,D<4, Eq. ~2.4! can be derived by the following argu-
ment. Work in a basis of generalized closed Wilson loops of
arbitrary shape and number and in arbitrary representations.
This gauge-invariant set forms a complete set of variables.
Expand the vacuum functional in such a basis. Using con-
structive field theory, the vacuum state can be obtained by
doing a functional integral weighted by exp~2S! in which
one integrates over half of space time corresponding tot,0
and uses free boundary conditions att50. The functional at
t50, obtained in this way, is the exact ground-state wave
functional. In a confining theory, Wilson loops of large area
are suppressed. Due to the kinetic energy term
g2*ddxEi

aE i
a(x)/2 in H, one sees that there is also a contri-

bution per unit length to the energy. Hence, Wilson loops of
large area or large perimeter are suppressed. One concludes
that, in a confining theory,f (B) in Eq. ~2.1! is a sum over
arbitrary numbers of Wilson loops in arbitrary representa-
tions for loops which are of small size. As a consequence,
f (B) acts like a localized field theory. In computing vacuum
expectation values, a confining theory inD dimensions be-
comes a localized field theory ind5D21 dimensions gov-
erned by an action equal to 2f (B) ~the factor of two arises
becauseuC0u

2 enters in computations!. Now, use the idea
behind the renormalization group. To compute the behavior
of a large Wilson loop or long-distance correlation function,
one may integrate out short-distance degrees of freedom. In-
tegrate out to a scale slightly larger than the confinement
distance. Then, the resulting field theory will be dominated
by the local gauge-invariant operator of lowest dimension.
This operator isB i j

a B i j
a . In space-time dimensionsD with

D<4, strong coupling corresponds to large distances. Hence,
the effective vacuum functional in the strong-coupling limit
is given by Eq.~2.4!.

From the above discussion, it is clear that the true vacuum
functional is quite complicated. However, a simplified func-
tional, which interpolates between the weak-coupling@Eq.
~2.2!# and strong-coupling@Eq. ~2.4!# forms, might produce
good results for computations. Consider the approximate
vacuum functional governed by

f ~B!5
1

2g2 E ddxddyTrFBi j ~x!

3S 1

A2DkDk1m0
2D ~x,y!Bi j ~y!G , ~2.5!

whereBi j (x)5laB i j
a (x), Tr stands for trace,Dk is the cova-

riant derivative in the adjoint representation, andm0 is a
mass parameter.

At short distances and small coupling, the derivative term
in f (B) dominates and Eq.~2.5! reduces to Eq.~2.2!. At
large distances, the mass term dominates andf (B) in Eq.
~2.5! reduces to Eq.~2.4! with

m5
1

2mg2
. ~2.6!

Here, we have replaced the parameterm0 by a renormalized
parameterm. In integrating out short-distance degrees of
freedom, one expectsm0 to be renormalized. In particular,m
contains contributions related to the energy per unit length of
the Wilson lines which enter Eq.~2.5!, as we now explain.

An explicit formula for the kernel in Eq.~2.5! for SU(N)
is

~2DkDk1m0
2!s1t1 ;s2t2

21/2 ~x,y!

5E
0

t dt

A2pt
EX~0!5y
X~t!5xF)t

DX~t!G
3expS 2

1

2 E
0

t

ds@Ẋ2~s!1m0
2# D

3H F `
x←y

expS i E0tdsAiX
i~s!D G

t1s2

3F `
y←x

expS i Et

0

dsAiẊ
i~s!D G

t2s1

J , ~2.7!

where ` denotes the path-order product alongX~s! and
Ai5laA i

a[X(s)]. The measureDX in Eq. ~2.7! is the Feyn-
man one@19# for a particle of unit mass ind dimensions. The
subscriptss1 ,t1 ,s2 ,t2 , which run from 1 toN for SU(N),
are matrix indices:

Tr@Bi j ~x!~2DkDk1m0
2!21/2~x,y!Bi~y!#

5Bi j
s1t1~x!~2DkDk1m0

2!s1t1 ;s2t2
21/2 ~x,y!Bi j

s2t2~y!. ~2.8!

Equation ~2.7! shows that ~2DkDk1m0
2!21/2(x,y) in-

volves a sum over paths of a Wilson line in the adjoint rep-
resentation which goes from the space pointy to the space
point x. Each path contributes with a particular probability.
As m0 is increased, paths of smaller size are weighted com-
paratively more than paths of larger size. The Wilson lines in
Eq. ~2.7! render Eq.~2.5! gauge invariant. When the kinetic
termg2*ddxEi

aE i
a(x)/2 in H acts on the Wilson line, a con-

tribution to the energy proportional to the length of the non-
backtracking part of the path is produced. Hence, it is ener-
getically favorable to havem0 be nonzero. In the case of a
U~1! group, the matrix factor in curly brackets in Eq.~2.7! is
replaced by 1 and no such Wilson line contribution arises
and it is energetically favorable form0 to be zero.

Besides having the correct strong- and weak-coupling
limits, there is numerical evidence from lattice simulations
thatC0 in Eqs.~2.1! and~2.5! is a reasonable approximation
for the ~211!-dimensional Yang-Mills theory. Consider ex-
pandingf (B) in inverse powers ofm0. The result is

f ~B!5m0E d2x Tr@B~x!B~x!#

1m2E d2x Tr@DkB~x!DkB~x!#1••• , ~2.9!

where
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m05
1

2m0g
2 , m252

1

4m0
3g2

. ~2.10!

Reference@13# has performed Monte Carlo simulations of
the ground-state functional at intermediate couplings for
SU~2! and found that the form in Eq.~2.9! fits the data well
with m05~0.9160.02!/g4 and m252~0.1960.05!/g8. Ana-
lytic strong-coupling lattice computations in the Hamiltonian
formulation lead to similar results@16#. As predicted from
Eq. ~2.5!, m2 should be negative and this is borne out in
simulations. The Monte Carlo data impliesm0'1.55g2 for
SU~2!.

III. CONSEQUENCES OF THE APPROXIMATE VACUUM
FUNCTIONAL

Let us first considerD5211 space-time dimensions. In
this case, the strong-coupling functional in Eq.~2.5! leads to
confinement because the dimensionally reduced effective
theory is similar to a localized Yang-Mills theory in two
dimensions. The string tensions is obtained from the
vacuum expectation value of a spatially oriented Wilson
loop. The result is

s5
g2mCf

4
. ~3.1!

The 011 glueball massMG is obtained as the coefficient
of the exponential falloff of the correlation function
^ 1
2B i j

a B i j
a (0,0)12B kl

b B kl
b (0,t)&;c(t)exp~2MGt! for large t.

By exploiting Lorentz invariance,MG can be extracted from
the vacuum functional via

^C0u
1
2Bi j

a Bi j
a ~x! 12Bkl

b Bkl
b ~y!uC0&;c~r !exp~2MGr !,

~3.2!

wherer5ux2yu. In two space dimensions and at large dis-
tances, the propagator forB 12

a in the effective field theory
governed byuC0u

2 is ~2]21m2!1/2. One finds, using pertur-
bation theory in this effective theory, that Eq.~3.2! holds
with

MG'2m. ~3.3!

Equation~3.3! has a physical interpretation. The parameter
m can be thought of as a constituent mass for a gluon. More
precisely,m is the effective mass of an adjoint-representation
configuration of gluons inside a bound state. Since two ad-
joint representations are needed to make a singlet, the glue-
ball mass is approximately 2m.

Combining Eqs.~3.1! and ~3.3!, one arrives at the main
result in Eq.~1.2!. Monte Carlo simulations of the~211!-
dimensional SU~2! Yang-Mills theory have accurately@20#
determined the string tension to besMC5~0.11260.002!g4.
Using this value fors in Eq. ~1.2!, we obtainMG'1.2g2.
The Monte Carlo calculations of Ref.@21# give
MG5(1.5960.01)g2. Thus, we findMG/As'3.6, while
numerical simulations@21# giveMG/As54.7760.05. Using
the difference between our results and those of the lattice as
a means of estimating systematic uncertainty, our method for

computing the 011 glueball mass is accurate to about 25%.
For a summary of computations ofMG/As, see the refer-
ences in Ref.@22#.

For SU~3!, Monte Carlo simulations give
sMC5~0.30760.004!g4 @23#. This value ofs in conjunction
with Eq. ~1.2! leads to the SU~3! results:

MG'1.84g2, MG /As'3.3 ~3.4!

The result in Eq.~3.4! is in reasonable agreement with
strong-coupling Hamiltonian computations@24#.

Recently, another analytic approach, based on finding ex-
act eigenstates of the kinetic energy term inH, gives
MG5N/pg2 for SU(N) @25#. For SU~2!, one obtains
MG'0.64g2, which is considerably smaller than the Monte
Carlo result, suggesting that corrections involving the poten-
tial energy term*d2xB12

a B 12
a (x)/(2g2) may be important.

For SU~3!, the approach givesMG'0.95g2, which is about
half the value in Eq.~3.4!.

IV. EXTRAPOLATION TO D54

The result in Eq.~1.2! does not directly apply toD5311
dimensions. However, one can appeal to the idea of dimen-
sional reduction@26#. If a ~311!-dimensional gauge theory is
confining, then the computation of spatial correlation func-
tions and Wilson loops involves only those degrees of free-
dom within the order ofLc in the time direction, whereLc is
the confinement length. Hence, it should be possible to ap-
proximate a~311!-dimensional confining theory by a~211!-
dimensional theory. This idea has been used several times in
past work@15,27# and is embodied in the result thatf SC(B)
can be used for the purposes of computing large spatial Wil-
son loops. Because of theb function being negative,m is
expected to be exponentially large in 1/g2. In short, assuming
four-dimensional confinement, results forMG/As should be
approximately the same in 211 and 311 dimensions. In fact,
Monte Carlo simulations of the SU~2! gauge theory indicate
that the glueball spectra, in units ofAs, in 211 and 311
dimensions agree to about 15%@21#.

Assuming the validity of dimensional reduction, Eq.~3.4!
with As5440 MeV gives a value of the 011 glueball mass
MG in D5311 dimensions for the SU~3! gauge theory of

MG'1.5 GeV. ~4.1!

V. SUMMARY

In summary, by using an approximate vacuum functional
which interpolates between strong- and weak-coupling
forms, we have obtained the relation in Eq.~1.2! between the
lightest 011 glueball mass and the string tension in 211
dimensions. Using dimensional reduction, we obtain a value
of about 1.5 GeV forMG in 311 dimensions.

Our value of 1.5 GeV forMG is much larger than many of
the natural scales in Yang-Mills theory:As is 440 MeV, the
deconfining phase transition temperature is;250 MeV, the
mass of the color-singlet gluon cloud around a quark is
;300 MeV assuming that the contribution to the constituent
mass of a quark in a bound state comes from such a gluon
cloud, and the topological susceptibility^n2& which enters the
h8 mass is^n2&1/4'180 MeV @28–33#. On this basis one
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might expect approximate analytic computations ofMG to
yield values less than 1 GeV. For example, if the continuum
strong-coupling~211!-dimensional Hamiltonian result@25#
is assumed to extrapolate toD5311 by dimensional reduc-
tion, one would obtainMG'760 MeV.

Since, as mentioned above, the error in our results in 211
dimensions is estimated to be about 25% and that the error in
extrapolating to 311 dimensions is about 15%, the total er-
ror in MG is around 30%. Our value of 1.5 GeV forMG is

about 15% less than the most accurate current lattice value of
1740 MeV @6#.
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