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0*™* glueball mass
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An approximate vacuum wave functiontl is proposed fof2+1)-dimensional Yang-Mills theories. Using
¥, one can compute the*d glueball massVig in terms of the string tension. By using the idea of dimen-
sional reduction, a prediction foMg can be made in 81 dimensions. One findMgs~1.5 GeV.
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. INTRODUCTION the structure constants\f,\P]=if2P°\¢, where the Lie-
algebra generators A* are normalized so that
Yang-Mills theories without quarks are expected to pro-Tr(A?\°) = 62%/2.
duce one or more bound states or glueballs. When quarks are In 2+1 dimensions, our key result is
present, such pure glue states should mix withstates but
some mesons might have a dominant gluon content. Possible 8o
candidates for such states drg1300, f,(1590, f;(1710, Mg~ 9°C,’ (1.2
and 7(1440 [1]. The %' (958 is expected to obtain a large f
fraction of its mass due to fluctuations in gluonic topologlcalWhere C, is the value of the Casimir operator for the
charge[2--4], fundamental tatio\®\2=C,l. For SU
Initial lattice studies suggested that the lightest @lue- — Snoamsntal | representation i For N,
ball might have a magddl ; of ~1 GeV. Such lattice glueball Cr=(N"=1)/(2N).
computations have been among the most numerically de-
manding due to a poor signal to noise ratio. However, be-Il. THE APPROXIMATE VACUUM WAVE FUNCTIONAL
cause of advances in algorithms and powerful computers,
much progress has been made. The most recent lattice results
give values oM s of 1550+50 MeV[5] and 174671 MeV
[6], suggesting that thé;(1710 or fy(1590 might be the Vo=exg —f(B)], (2.)
lightest 0" glueball state. The;(1710 is favored since it
has decay widths consistent with numerical simulatiogfis ~ wheref is a functional ofB. As g goes to zero, the pertur-
The purpose of this paper is to obtain an approximatdative fpr(B) is
analytic computation of the 0 glueball mass in terms of
the string tensiono. The calculation is carried out in 1 1
D =2+1 dimensions and extended by dimensional reduction fp(B)= 292 J ddea(x)( Bf}(x))
to D=3+1 dimensions. Analytic studies often provide more 9 VT
physical insight than numerical simulations. In addition, the 1
interplay between numerical and analytic approaches can as- f ddxddy B2 (x)( )(x y)B3(y),
sist either approach in obtaining new methods and results. NEs
Our method consists in postulating the form of the

Express the ground statk, as

ground-state wave functional,. The proposedV, is ad- 22
justed to agree with weak- and strong-coupling limits. Sup- 2

port for our¥, comes from the previous woffl8,9]. In par- where the kernel—7) "(xy) is

ticular, numerical and analytic studi€s0—17 of the lattice .

Hamiltonian formulatior{ 18] give rise to vacuum function- 1 3 d% exdip-(x—y)] 23
als similar to our¥y. \/_—32 (xy)= (2)¢ \/ﬁ . (23

The Hamiltonian for the D=d+ 1)-dimensional Yang-

Mills theory is In the Abelian case for which there are no interactions, per-

g2 1 turbation theory and Eq2.2) are exact. For the non-Abelian
H=> f dIXE2E2(x) + 507 f d?xBBfj(x), (1.1) case, Eq(2.2 is not gauge invariant but the violations of
9 gauge invariance are of ordgf.
where E3(X) = (1A)[ 8/ 5A%(X)], B2 =A%~ 9,A? It has been conjectured that, in strong coupling, the

+fabcAibAc g is the gauge coupling constant ah;bbc are ground-state wave functional is governedflayB) with [9]

:ﬁ dy papa
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where u is a parameter with dimensions ¢ength 4. Here, we have replaced the parametgrby a renormalized
There is much evidence in support of EG.4) [9-17]. In parameterm. In integrating out short-distance degrees of
particular, lattice theory gives E(R.4) as the leading strong- freedom, one expecty, to be renormalized. In particulam
coupling resulf15]. contains contributions related to the energy per unit length of
In a confining theory in space-time dimensiobswith  the Wilson lines which enter Eq2.5), as we now explain.
2<D=4, Eg. (2.4 can be derived by the following argu- An explicit formula for the kernel in Eg2.5) for SU(N)
ment. Work in a basis of generalized closed Wilson loops ofs
arbitrary shape and number and in arbitrary representations. ‘ 1o
This gauge-invariant set forms a complete set of variabled.~ D" Dt My)s 15,1, (X.Y)
Expand the vacuum functional in such a basis. Using con-
structive field theory, the vacuum state can be obtained by (7 dr
doing a functional integral weighted by dxpS) in which - fo N b
one integrates over half of space time correspondingio X(n)=x
and uses free boundary conditionst &0. The functional at 1 ¢+
t=0, obtained in this way, is the exact ground-state wave Xexp( - J da[X2(0)+m§]
functional. In a confining theory, Wilson loops of large area 2 Jo
@ exp( if doA X' (o)
Xy 0

I1 ox(7)

are suppressed. Due to the kinetic energy term
g%[dxEPE3(x)/2 in H, one sees that there is also a contri-

bution per unit length to the energy. Hence, Wilson loops of X
large area or large perimeter are suppressed. One concludes

|

that, in a confining theoryf(B) in Eq. (2.1) is a sum over 1°%2

arbitrary numbers of Wilson loops in arbitrary representa- [0 -

tions for loops which are of small size. As a consequence, X @ ex;{ 'J da’AiX'(a')>] , 2.7
f(B) acts like a localized field theory. In computing vacuum yex 7 s,

expectation values, a confining theoryndimensions be-

comes a localized field theory =D —1 dimensions gov- where p denotes the path-order product aloXgs) and
erned by an action equal tof2B) (the factor of two arises  A.=)\2A3[X(¢)]. The measur®X in Eq. (2.7) is the Feyn-
becausg/Wo* enters in computationsNow, use the idea man ong[19] for a particle of unit mass id dimensions. The
behind the renormalization group. To compute the behaviosypscriptss, ,t;,s,,t,, which run from 1 toN for SU(N),
of a large Wilson loop or long-distance correlation function, gre matrix indices:
one may integrate out short-distance degrees of freedom. In-
tegrate out to a scale slightly larger than the confinemenTr[Bij(x)(—Dka+ mg)‘l/z(x,y)Bi(y)]
distance. Then, the resulting field theory will be dominated it . 112 ot
by the local gauge-invariant operator of lowest dimension. =B ') (=D Dyt my)g i 's o (XY)BZY). (2.8
This operator isBfjBfj. In space-time dimension® with
D <4, strong coupling corresponds to large distances. Hence, Equation (2.7) shows that(—D*D,+m3) Y4x,y) in-
the effective vacuum functional in the strong-coupling limit volves a sum over paths of a Wilson line in the adjoint rep-
is given by Eq.(2.4). resentation which goes from the space pgirtb the space
From the above discussion, it is clear that the true vacuurpoint X. Each path contributes with a particular probability.
functional is quite complicated. However, a simplified func- As m, is increased, paths of smaller size are weighted com-
tional, which interpolates between the weak-coupliig.  paratively more than paths of larger size. The Wilson lines in
(2.2)] and strong-couplingEq. (2.4)] forms, might produce Ed. (2.7) render Eq(2.5 gauge invariant. When the kinetic
good results for computations. Consider the approximatéermg?fd®xE?E?(x)/2 in H acts on the Wilson line, a con-
vacuum functional governed by tribution to the energy proportional to the length of the non-
backtracking part of the path is produced. Hence, it is ener-
getically favorable to haven, be nonzero. In the case of a
Bij(x) U(2) group, the matrix factor in curly brackets in Eg.7) is
replaced by 1 and no such Wilson line contribution arises
and it is energetically favorable fan, to be zero.
, (2.5 Besides having the correct strong- and weak-coupling
limits, there is numerical evidence from lattice simulations
thatW, in Egs.(2.1) and(2.5) is a reasonable approximation
for the (2+1)-dimensional Yang-Mills theory. Consider ex-
pandingf(B) in inverse powers ofn,. The result is

f(B)zi d9%ddyTr
292 y

1
X(\/Tmz))(X,y)Bij(Y)

whereB;; (x) =\*B i (x), Tr stands for traceD, is the cova-
riant derivative in the adjoint representation, amg is a
mass parameter.

At short distances and small coupling, the derivative term
in f(B) dominates and Eq(2.5 reduces to Eq(2.2). At f(B):,U«oj d*x Tr{B(x)B(x)]
large distances, the mass term dominates &) in Eg.

(2.5) reduces to Eq(2.4) with +:“2f dx THD*B(X)DB(X)]+ - . (2.9

1
- 2mg*

9 2.6

where
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1 1 computing the 0" glueball mass is accurate to about 25%.
mozm- my=— mogrz (2.10 For a summary of computations ®s/+\/o, see the refer-

ences in Ref[22].

Reference/13] has performed Monte Carlo simulations of For ~ SU3), Monte Carlo  simulations  give

— 4 ; ; ; ;
the ground-state functional at intermediate couplings for("Y'C_(0'307io'omDg [23]. This vaIue.ofoln conjunction
SU2) and found that the form in Eq2.9) fits the data well it Eq- (1.2) leads to the SB) results:
}Ni;h 1o=(0.91:0.02/g* and p,=—(0.19+0.05/g°. Ana- Mo~1.842, Mg/o~33 3.4
ytic strong-coupling lattice computations in the Hamiltonian
formulation lead to similar resultgl6]. As predicted from The result in Eq.(3.4) is in reasonable agreement with
Eq. (2.9, u, should be negative and this is borne out in strong-coupling Hamiltonian computatiof4].

simulations. The Monte Carlo data implieg,~1.55> for Recently, another analytic approach, based on finding ex-
SU2). act eigenstates of the kinetic energy term kh gives
Mg=N/m7g? for SU(N) [25]. For SUZ2), one obtains
IIl. CONSEQUENCES OF THE APPROXIMATE VACUUM M~0.6492%, which is considerably smaller than the Monte
FUNCTIONAL Carlo result, suggesting that corrections involving the poten-

tial energy termfd?xB%,B3,(x)/(2g%) may be important.
Let us first consideD=2+1 space-time dimensions. In For SU3), the approach giveM ;~0.95y2, which is about
this case, the strong-coupling functional in E&.5) leads to  half the value in Eq(3.4).
confinement because the dimensionally reduced effective
theory is similar to a localized Yang-Mills theory in two IV. EXTRAPOLATION TO D=4
dimensions. The string tensionr is obtained from the
vacuum expectation value of a spatially oriented Wilson The result in Eq(1.2) does not directly apply t®=3+1

loop. The result is dimensions. However, one can appeal to the idea of dimen-
sional reductiori26]. If a (3+1)-dimensional gauge theory is
) - : ) . )
g°‘mC; confining, then the computation of spatial correlation func
o= (3.1 tions and Wilson loops involves only those degrees of free-

dom within the order of . in the time direction, wheré, is

The 0" glueball massV s is obtained as the coefficient the gonfinement Iength. Hence, it .ShOUId be possible to ap-

of the exponent) falof of the corlaton functon BOSTALR 43 Jmensiona conining eoy by
lpapa 1 .

(28118 13(0.0)2B14B1a(0)) ~c(exp~Mgt) for large t, past work[15,27) and is embodied in the result th{(B)
can be used for the purposes of computing large spatial Wil-
son loops. Because of the function being negativey is
expected to be exponentially large irg1/In short, assuming
four-dimensional confinement, results fdrg/ /o should be
approximately the same ini2l and 3+1 dimensions. In fact,
Monte Carlo simulations of the SP) gauge theory indicate
that the glueball spectra, in units gfo, in 2+1 and 3+1
dimensions agree to about 159%il].

Assuming the validity of dimensional reduction, £§.4)
with \/o=440 MeV gives a value of the'd glueball mass
Mg in D=3+1 dimensions for the S@3) gauge theory of

By exploiting Lorentz invarianceyl 5 can be extracted from
the vacuum functional via

(Wol3B3BE (x)3BRBR(Y) | Wo)~c(r)exp —Mgr),

wherer =|x—y|. In two space dimensions and at large dis-
tances, the propagator fdﬂi‘zz in the effective field theory
governed by|¥,|? is (—#+m?Y2 One finds, using pertur-
bation theory in this effective theory, that E(.2) holds

with
Mg~ 2m. (3.3 Mg~1.5 GeV. (4.1

Equation(3.3) has a physical interpretation. The parameter
m can be thought of as a constituent mass for a gluon. More
preciselym is the effective mass of an adjoint-representation In summary, by using an approximate vacuum functional
configuration of gluons inside a bound state. Since two adwhich interpolates between strong- and weak-coupling
joint representations are needed to make a singlet, the gluéerms, we have obtained the relation in Efj.2) between the
ball mass is approximatelyra. lightest 0" glueball mass and the string tension ir-2
Combining Egs(3.1) and (3.3), one arrives at the main dimensions. Using dimensional reduction, we obtain a value
result in Eq.(1.2). Monte Carlo simulations of thé€2+1)- of about 1.5 GeV foM g in 3+1 dimensions.
dimensional S(2) Yang-Mills theory have accuratef20] Our value of 1.5 GeV foM ¢ is much larger than many of
determined the string tension to log,c=(0.112-0.002g*.  the natural scales in Yang-Mills theory is 440 MeV, the
Using this value foro in Eq. (1.2), we obtainMg~1.29°.  deconfining phase transition temperature-250 MeV, the
The Monte Carlo calculations of Ref[21] give mass of the color-singlet gluon cloud around a quark is
Mg=(1.59+0.01)g%. Thus, we findMg/ Jo~3.6, while ~ ~300 MeV assuming that the contribution to the constituent
numerical simulation§21] give Mg/\/o=4.77+0.05. Using mass of a quark in a bound state comes from such a gluon
the difference between our results and those of the lattice agoud, and the topological susceptibiliy?) which enters the
a means of estimating systematic uncertainty, our method fo’ mass is(+?**~180 MeV [28-33. On this basis one

V. SUMMARY
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might expect approximate analytic computationshdf to  about 15% less than the most accurate current lattice value of
yield values less than 1 GeV. For example, if the continuunil740 MeV[6].
strong-coupling(2+ 1)-dimensional Hamiltonian resuf25]

is assumed to extrapolate B=3+1 by dimensional reduc-

tion, one would obtairM ;~760 MeV.

Since, as mentioned above, the error in our resultstit 2 We thank V. P. Nair for discussions and Columbia Uni-
dimensions is estimated to be about 25% and that the error iversity for hospitality. This work was supported in part by
extrapolating to 3-1 dimensions is about 15%, the total er- the United States Department of Energy under Grant No.
ror in Mg is around 30%. Our value of 1.5 GeV fMg is  DE-FG02-92ER40698.
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