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The decay constants of pseudoscalar mesons are calculated in a relativistic quark model which assumes that
mesons are made of a valence quark-antiquark pair and of an effective vacuumlike component. The results are
given as functions of quark masses and of some free parameters entering the expression of the internal wave
functions of the mesons. UsingFp15130.7 MeV,FK15159.8 MeV to fix the parameters of the model,
we predict 60 MeV<FD1<185 MeV, 95 MeV<FDs

<230 MeV, 80 MeV<FB1<205 MeV,
90 MeV<FBs

<235 MeV for the light quark massesmu55.1 MeV,md59.3 MeV,ms5175 MeV and the
heavy quark masses in the range 1GeV<mc<1.6 GeV, 4.1GeV<mb<4.5 GeV. In the case of light neutral
mesons one obtains with the same set of parametersFp0'138 MeV, Fh'130 MeV, Fh8'78 MeV. The
values are in agreement with the experimental data and other theoretical results.@S0556-2821~97!07005-7#

PACS number~s!: 12.39.Ki, 13.25.Cq, 13.25.Es

I. INTRODUCTION

The decay constants of pseudoscalar mesons have been
treated by current algebra and PCAC~partial conservation of
axial vector current! like simple scale parameters relating the
meson fields with the coresponding axial vector currents. In
quark models they are expressed by means of the quark-
antiquark annihilation amplitude@1#, but, although simple in
principle, the calculation of the decay constants and, in gen-
eral, of the electroweak form factors, is a difficult task due to
the binding effects which escape a relativistic treatment.

A solution is to bypass the binding problem and work
with free quarks. This is the way followed by QCD sum
rules @2#, which rely on the assumption of quark-hadron du-
ality and relate the hadronic matrix elements with some
quark and gluon transition amplitudes which can be evalu-
ated within the perturbative QCD scheme. This is a fruitful
method which produced among many other results, the val-
ues of the decay constants of heavy mesons too.

Another solution is to start from the very QCD principles
in order to have a consistent description of the confinement.
This is the way followed in lattice calculations, which suc-
ceded to give some reliable results, in spite of the technical
difficulties raised by the enormous computational effort@3#.

The oldest solution, which is still at use, is to assume that,
in view of the locality of the weak current, the annihilation
of the quark and of the antiquark takes place at vanishing
relative distance @1,4#. One gets in this way
F}c(0)M21/2, wherec is the solution of a wave equation
with a ‘‘QCD inspired’’ confining potential. Assuming that
c(0) is constant in the infinite mass limit, this leads to the
well known scaling ruleF2M5const@2# for heavy mesons.

Potential models are just quantum mechanics, where the
annihilation process makes no sense since the quarks do not
exist as independent particles, but only in the form of their
bound state. This is perhaps the fundamental reason why
these models give rather poor results in the case of light

mesons. In the case of heavy mesons the large mass differ-
ence allows to see the quarks as independent particles, the
light one moving in the field of forces created by its heavy
partner at rest. In their case the potential models give sensi-
bly better results.

An important step forward in introducing the independent
quarks while preserving the valuable features of the potential
models has been done by Isgur, Scora, Grinstein, and Wise
@5#. Their ‘‘mock meson’’ is a system made of two almost
free, independent particles, whose total momentum is equal
to the meson momentum. The distribution of the quark-
antiquark relative momentum is given by the Fourier trans-
form of the solution of a wave equation with a suitable con-
fining potential. The wave function and its Fourier transform
are thenL2 integrable and the single ‘‘mock meson’’ state
can be normalized like a single particle state. The annoying
point is that, as mentioned in Ref.@5#, a ‘‘mock meson’’
made of almost free quarks with a continuous distribution of
the relative momentum has a false mass width because the
sum of free quark momenta does not belong to a certain
representation of the Lorentz group. This reflects the absence
of a real Lorentz covariance and is the cause of some ambi-
guities when dealing with a moving ‘‘mock meson’’@6#.

Problems of this kind are quite general in quark models
and could not be solved without a relativistic theory of the
binding. Unfortunately, the best relativistic theory we have at
hand, the field theory in the perturbative approach, is unable
to give an easy answer to the binding problem. In our opin-
ion its failure in describing the bound states is due to the lack
of a relativistic equivalent of the binding energy. We thus
suggest to renounce representing the binding by a series of
some quantum exchanges, since binding is not a perturbative
effect and look instead for a relativistic generalization of the
binding energy to be included in a ‘‘mock meson’’ with free
quarks. In this way we hope to combine the valuable features
of the potential models, which are suitable for describing the
binding, but are improper for introducing the boost of the
bound state, with those of the relativistic models which can
boost the free states, but cannot describe the binding.

The model we propose has been recently applied to the*Electronic address: LMICU@THEOR1.IFA.RO

PHYSICAL REVIEW D 1 APRIL 1997VOLUME 55, NUMBER 7

550556-2821/97/55~7!/4151~6!/$10.00 4151 © 1997 The American Physical Society



weak radiative decays of pseudoscalar mesons@7# and to the
decayZ0→p0g @8#. In this paper we intend to exploit further
the properties of the model and to perform some predictions
on the values of the decay constants of heavy mesons.

The specific assumption of the model is that mesons are
made of a valenceqq̄ pair bound together by some collective
oscillation modes of the quark gluonic field. The last ones
are described by an effective vacuumlike componentF. Like
the valence quarks, the effective field contributes with its
own four-momentum to the meson momentum, but it has no
mass shell constraint since it is far from being elementary.

Some ideas similar to the above ones may be found in the
flux-tube model proposed in Ref.@9#. The effective fieldF
may be considered as a kind of Fourier transform of the flux
tube, but the formal frames are quite different in the two
cases.

Turning now to the potential models, we notice that the
essential consequence of a binding potential is the existence
of someL2 integrable solutions of the wave equation. Con-
versely, the existence of anL2 integrable wave function may
be considered as an evidence of a bound state and of a bind-
ing potential. In terms of Fourier transform this means that
an L2 integrable distribution of the relative momentum is a
characteristic feature of a bound system. Looking from this
point of view, we observe that in our model it is the effective
field F which adjusts the continuous distribution of the rela-
tive momentum to the free particle behavior required by rela-
tivistic covariance. It isF which allows to have the quarks
on their mass shell and a continuous distribution of the quark
relative momentum while ensuring a definite mass for the
‘‘mock meson.’’ This argument gives a substantial support to
the assumption thatF(Q) represents the excitations respon-
sible for the confinement and allows us to considerQm the
relativistic generalization of the potential energy. In fact,
Q0 only is the analogue of the potential energy of theqq̄
system at rest. The spatial componentsQ introduced for rela-
tivistic consistency could be rather related with the fluctua-
tions of the confining oscillation modes of the quark gluonic
field, not with the magnitude of the binding forces.

An important ingredient of the model is the internal func-
tion of the compound system representing the hadron. In the
lack of a dynamical equation for it, we shall use some trial
functions allowing to ensure the integrability of the matrix
elements of interest and to fulfill some consistency require-
ments.

Finally we wish to stress once again that a real relativistic
treatment of a system made of independent constituents re-
quires the use of the momentum space. If the states were
defined in the configuration space, it would be necessary to
introduce an independent time coordinate for each compo-
nent, which is nonsense.

In the next section we discuss shortly the dynamical as-
sumptions of the model and give the expressions of the de-
cay constants as functions of the quark and meson masses.

The numerical results obtained with exponential and
Gaussian internal functions are given in the third section.
The fit of the pion and kaon decay constants with the experi-
mental values is used to fix the parameters of the model.

We analyze the results in the fourth section and draw
some general conclusions concerning the reliability of the
model.

II. CALCULATION OF THE DECAY CONSTANTS

The fundamental dynamical assumption of the model is
that the interaction inside the quark system representing a
hadron can be treated independently from the external inter-
action. The first one is a mean field effect and is taken into
account by means of the internal wave function, while the
external interaction is the effect of some specific quantum
fluctuations. We recall that this is also the main assumption
underlying the Furry representation in field theory@10#.

The form we proposed for the meson state is@7#

uMi~P!&5
i

~2p!3
E d3p

e/m

d3q

e/m8
d4Q w~p,q;Q!

3ū~p!GMv~q! x†l ic d~4!~p1q1Q2P!

3F†~Q!a†~p!b†~q!u0&, ~1!

where a†,b† are the creation operators of the valenceqq̄
pair; u,v are Dirac spinors andGM is a Dirac matrix ensur-
ing the relativistic coupling of the quark spins. The quarks
are supposed to be free; their creation and annihilation op-
erators satisfy canonical commutation relations and commute
with F†(Q), which describes the creation of a nonelemen-
tary excitation carrying the momentumQm . The mass spec-
trum of the nonelementary excitations denoted byF† and
the internal distribution of momenta are described by the
Lorentz invariant functionw(p,q;Q). A natural assumption
is thatw is a time independent, equilibrium distribution since
the hadrons are long living. This means that as long as a
quark system like that described by Eq.~1! is the single one
in the external state and as long as it does not emit and
absorb any electroweak quanta, the distribution of momenta
is given byw(p,q;Q) and does not change. A straightfor-
ward consequence is that any time translation operator
Us(t,t8) describing the evolution of a quark system under
the action of strong forces only can be replaced by unity
when acting on a state like Eq.~1!. This fact will allow us to
perform some simplifications in the calculation of the matrix
elements of interest.

For a better understanding of the present model, a com-
parison of the expression~1! with the ‘‘mock meson’’ in Ref.
@5# is most useful. A first remark is that the continuous dis-
tribution of the relative momentum in a meson made of a
quark and of an antiquark only, introduced by hand more
than 20 years ago@5,11#, follows naturally in our model from
the existence of a third component, the fieldF, which con-
tributes to the meson momentum. A second remark is that,
unlike the ‘‘mock meson,’’ the expression~1! can be safely
boosted due to the functiond4(p1q1Q2P) which guaran-
tees that the sum of the internal momenta belongs to the
representation of the Lorentz group having the meson mass
as invariant.

As concerns the concrete form of the internal function
w(p,q;Q) some additional comments are necesary. It must
be said that we have noa priori arguments for a particular
form. However, we expectw be such as to ensure the con-
vergence of the integrals over the internal momenta in the
expressions of the physical amplitudes.
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Related to this fact, we remark that if the zeroth compo-
nent of the momentum carried by the effective fieldF were
positive in the rest frame of the meson, the function
d (3)(p1q1Q)d(e1e1Q02M ) would provide some natu-
ral upper bound for the quark energies. The integrals in the
expression~1! of a meson state would then extend over a
finite range and their convergence would be easy to ensure.

This is however not the case since, as shown by the elec-
tromagnetic form factors, there is no upper bound for the
quark energy in a hadron. One must then allow for negative
values ofQ0 and introduce some definite cutoff functions to
ensure the convergence of the integrals. It is worth noticing
thatQ0<0 means also a stability condition for the ‘‘mock
meson.’’

The trial functions we shall use in the next as internal
functions cut off the large values ofQ0 andQ only, but, due
to the presence of the functiond4(p1q1Q2P) we expect
for them to provide the necessary cutoff for the quark mo-
menta too. Indeed, it is easy to see that
(p2q)252m212m822(P2Q)2 and hence, cutting offQ0
andQ2 means also to cut off the quark relative momentum.

According to the above considerations, a meson at rest is
supposed to have an internal function of the following kind:

w~p,q;Q!5DMs~Q0 ,Q!, ~2!

s~Q0 ,Q!5expFQ0

a
2

uQu
b Gu~Q2!u~2Q0!, ~2a!

s~Q0 ,Q!5expFQ0

a
2
Q2

b2Gu~Q2!u~2Q0!, ~2b!

s~Q0 ,Q!5expF2
Q0
2

a2 2
Q2

b2Gu~Q2!u~2Q0!, ~2c!

whereM is the meson mass,a,b are the free parameters of
the model ensuring the desired convergence of the integrals.
Lorentz covariance of the internal function becomes obvious
if one writes Q0 and uQu as Q05(P•Q)/M ,uQu
5A(P•Q)2/M22Q2, where P is the meson momentum.
The functionsu in Eqs.~2a!, ~2b!, ~2c! express the fact that
Q is timelike andQ0 negative, in agreement with our as-
sumption thatQm is the relativistic generalization of the po-
tential energy in the bound system.

Before proceeding to the evaluation of the decay con-
stants, we have to make an explicit statement on the vacuum
expectation value of the effective field. As mentioned above,
the momentum carried byF† is not subject of a mass-shell
constraint, since it represents the creation of a collective ex-
citation, not of an elementary one. Accordingly, we assume
that:

F~Q1!F~Q2!•••F
1~Qn!5F~Q11Q2•••2Qn!

and that the vacuum expectation value of the effective field
F(Q) is

^0uF~Q!u0&5m4E d4Xexp~2 iQ•X!5~2p!4m4d~4!~Q!. ~3!

We emphasize that the appearance of the functiond (4) in Eq.
~3! is essential for ensuring the overall energy-momentum
conservation and for preserving the Lorentz covariance of
the model.

The constantm4 in Eq. ~3!, introduced for dimensional
reasons, is related to the volume of a large four-dimensional
box of interest for our problem bym45(VT)21. A short
comment on the box size will be given in the last section.

Then, using the relations~1! and~3! we get the following
expression for the norm of the single meson state:

^Mi~P8!uM j~P!&5~2p!3d i jd
~3!~P2P8!d~E2E8!

3~2p!4m4E d3p

e/m

d3q

e/m8
d4Q

3d~4!~p1q1Q2P!w~p,q;Q!2

3TrS p̂1m

2m
GM

q̂2m8

2m8
GM8D . ~4!

The functiond (3)(P2P8)d(E2E8) in Eq. ~4! originating
from d (4)(p1q1Q2P) in the definition of a single meson
state can also be written as (E/M )d (3)(P2P8)d(M2M 8).
It is a signal for the continuous mass spectrum of the com-
plex system representing the meson and cannot be modified
without renouncing the real Lorentz invariance of the model.
This forces us to treat the physical meson as a mixed state
whose probability density is the mass distribution function
r(M ,M0) with M0 as central value and the normalization
condition

E r~M ,M0!dM51. ~5!

Accordingly, the normalization condition for the meson
wave function writes

~2p!4m4
1

2M0
2DM

2 E d3p

e/m

d3q

e/m8
d4Qd~4!~p1q1Q2P!

3s2~Q0 ,Q!S p̂1m

2m
GM

q̂2m8

2m8
D 51 ~6!

and the density of states in phase space modifies by replacing
1/(2p)3(d3P/2E) with @1/(2p)3#(d3P/2E)r(M ,M0)dM.

It is important to notice that the continuous distribution of
masses is not at all unusual, but it is a natural consequence of
the uncertainties produced by quantum fluctuations in any
system. Since all the hadrons, with the exception of
the proton, are unstable, the mass distribution function
r may be taken of Breit-Wigner form
r(M ,M0)5(p)21G@(M2M0)

21G2#21 whereG is the par-
ticle width. However, if the dependence of the matrix ele-
ments on the meson massM is rather smooth and if the
width of the mass distribution function is small, one can
replaceM by M0 in the expressions of the matrix elements
and perform the integral over meson masses in the new ex-
pression of the density of states by using the normalization
condition ~5!. The calculation can then proceed like in the
old case, using wave functions which satisfy the normaliza-
tion condition~6!.
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The matrix element of interest for the leptonic decay of a
meson, written in the lowest order of perturbation with re-
spect to the weak interaction, is

^0uUs~1`,0!Am~0!Us~0,2`uM ~P!&5 iFMPm , ~7!

where the operatorUs(t,t8) describes the evolution of a sys-
tem under the action of strong interaction among the con-
stituents, andAm is the free-field weak current of interest in
the process. It is important to notice that in soft processes,
like, for instance, the present one, the perturbative expansion
of Us is inappropriate. For this reason we shall not consider
the virtual states generated by the evolution operator in the
perturbative approach, but merely look at the real modifica-
tions which could appear in the distribution of flavors and
momenta during the time translation. In the above case no
such changes could appear, since the real vacuum and the
single meson state are stable states whose content does not
change under the action of strong interaction and conse-
quently both time translation operators in Eq.~7! can be
replaced by unity.

By using the relation~3!, the canonical anticommutation
relations of the fermionic operators and integrating over the
internal momenta, we obtain from the matrix element~7! the

following expression for the decay constants:

FM5~2p!4m4DM2pA3
p~m1m8!

M F12
~m2m8!2

M2 G ,
~8!

where p5(M /2)A@12(m1m8)2/M2#@12(m2m8)2/M2#
and the factorA3 comes from the colors.

It is worthwhile noticing that the leptonic decay constant
in Eq. ~8! is proportional to the internal wave function at
Qm50, which means the absence of any other excitations
beside the valence quarks. Expressing this result in more
general terms, one may say that the leptonic decay constants
are proportional to the value of the internal function at van-
ishing contribution from the binding effects. This is in re-
markable agreement with the old assumption thatFP is pro-
portional to the internal wave function at vanishing distance
between the quarks@1,4#, since, according to the asymptotic
freedom, this is the point in the configuration space where
the confining forces vanish. It is a strong argument for con-
sidering the present model as a real relativistic generalization
of the potential models.

We eliminate now the constantDM in Eq. ~8! with the aid
of the normalizaton condition~6! and write the decay con-
stants in terms ofm and of the integral over the internal
distribution of momenta which is in fact a function of meson
and quark masses as well as of the model parametersa and
b:

FM5~2p!2m2~48p3!1/2p~m1m8!S 12
~m2m8!2

M2 D H E dQ0Q
2duQus2~Q0 ,Q!

3F ~M2Q0!
22Q22~m2m8!2

M2@~M2Q0!
22Q2# GA@~M2Q0!

22Q22m22m82#224m2m82J 21/2

. ~9!

Similar expressions can be written for the decay constants of neutral mesons. Defining them as in Ref.@12# one has

FM05~2p!2m2~24p3!1/2 (
i5u,d,s

k i
2mi S 12

4mi
2

M2 D 1/2
3H (

i5u,d,s
k i
2E dQ0uQu2duQus2~Q0 ,Q!S F S 12

Q0

M D 22Q2

M2 2
2mi

2

M2 G22 4mi
4

M4 D 1/2J 21/2

, ~10!

where mi are the quark masses, k i5a(l3) i i
1b(l8) i i1c(l0) i i with l j the Gell-Mann matrices@12#,
a51; b5c50 for p0, a50; b5cosuP ; c52sinuP for h,
a50; b5sinuP ; c5cosuP for h8 and uP52100 or
uP52230 @12#.

III. NUMERICAL RESULTS

Before proceeding to the numerical calculations we have
to analyze the relation of the model parametersa, b, m, with
the general features of the boundqq̄ system.

First of all we remind thatQ0 is the analogue of the
potential energy in the nonrelativistic models. In the present
approach it is the energy of the oscillation modes of the
quark-gluonic field confining the valence quarks inside the

meson. Its cutoff parameter,a, must be chosen such as to
ensure a relative stability ofFP with the increase ofMP .
@See Eq. ~9!#. Our tests with a5kAmm8M /(m1m8),
a5kAAmm8M , a5k(m1m8), and a5kM whereM is
the meson mass andk a universal parameter, proved that the
last choice is the best. All the others either lead to very small
values for the decay constants of the heavy mesons or do not
allow to fit pion and kaon decay constants with the same set
of parameters, as required from the beginning.

The same stability argument forces us to introduce an
additional cutoff foruQu, the momentum carried by the ef-
fective component, since the simple requirement forQ2 to be
positive would lead to a too strong increase ofFP with the
meson mass. We recall thatuQu has been introduced for rela-
tivistic consistency; we did not relate it to the potential en-
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ergy, but rather to some fluctuations in the momentum car-
ried by the collective excitations denoted byF. The
parameterb in Eqs.~2a!, ~2b!, and~2c! is hence a measure
of the fluctuation amplitude and we shall assume that it does
not depend on the quark or meson masses because the vacu-
umlike excitations are not sensitive to the flavors. However,
we expectb be smaller than the cutoff parameter ofQ0 in
the case of heavy mesons, because the fluctuation effect must
be negligible in their cases.

The parameter (2p)4m4 is assumed to be an universal
constant, related to the volume of the four-dimensional box
relevant for the process. It has the same meaning like the
four-dimensional volume of the lattice, in lattice calculations
@3#. Its independence on the masses will be used as a consis-
tency condition in fixing the parametersa and b of the
model.

Specifically, our procedure is to reverse the equation~9!
and to expressm in terms ofFM in the case of thep and
K mesons, whose decay constantsFp5130.7 MeV,
FK5159.8 MeV@12# are taken as input. The next step is to
search for the values of the parametersa andb yielding the
same value form in these cases. The parametersa and b
satisfying this consistency requirement will then be intro-
duced in Eq.~8! in order to obtain the decay constants of the
D andB mesons.

A last comment concerns the quark masses. We recall

that in our model the quarks are assumed to be free and the
weak current entering the matrix element~7! is expressed in
terms of free quark fields. Then, as already emphasized in the
comments to Eq.~7!, it is natural to assume that the quarks
are of the current type and that their masses are rather small,
not far from the chiral symmetry limit. The calculations have
been done using the values of the light quark masses
mu55.1 MeV,md59.3 MeV,ms5175 MeV resulting from
the chiral perturbation theory@13#. These values are also in
agreement with the quark masses recently obtained in lattice
calculations@3#. Heavy quark masses have been taken in the
range quoted by Particle Data@12#. The results obtained us-
ing the trial functions~2a!, ~2b!, ~2c! are listed in Table I.
The heavy quark masses are given in GeV and the decay
constants are given in MeV.

Using Eq.~10! and the same sets of parameters as above
we calculated also the decay constants of the lightest pseu-
doscalar mesons. The results are quoted in Table II.

IV. COMMENTS AND CONCLUSIONS

Analyzing the numerical results in Table I, one notices
that, for each of the tested internal functions, the decay con-
stants do not change significantly when passing from one set
of parametersa, b, m to another set which fits the values of
Fp andFK . Indeed, for a change with 200% ofa andb,

TABLE I. Decay constants of heavy mesons. The indices~a!, ~b!, ~c! correspond to the trial functions
~2a!, ~2b!, ~2c!.

a ( i ) ,b ( i ) Decay constants
(2p)4m ( i )

4 mc mb FD FDs
FB FBs

a (a)50.075M 1.0 4.1 126 152 107 108
b (a)50.096 GeV 1.3 4.3 109 141 92 95
(2p)4m (a)

4 5310 MeV4 1.6 4.5 56 91 64 80
a (a)50.05M 1.0 4.1 125 151 111 109
b (a)50.065 GeV 1.3 4.3 111 142 95 96
(2p)4m (a)

4 557 MeV4 1.6 4.1 60 95 77 82
a (a)50.025M 1.0 4.1 121 144 98 113
b (a)50.032 GeV 1.3 4.3 111 139 87 102
(2p)4m (a)

4 53.3 MeV4 1.6 4.5 65 98 72 88
a (b)50.075M 1.0 4.1 155 188 148 172
b (b)50.082 GeV 1.3 4.3 137 177 126 151
(2p)4m (b)

4 5397 MeV4 1.6 4.5 73 118 102 127
a (b)50.05M 1.0 4.1 156 190 153 176
b (b)50.054 GeV 1.3 4.5 140 180 132 157
(2p)4m (b)

4 571.7 MeV4 1.6 4.5 79 124 108 133
a (b)50.025M 1.0 4.1 155 188 156 178
b (b)50.027 GeV 1.3 4.5 143 181 136 160
(2p)4m (b)

4 54.1 MeV4 1.6 4.5 85 129 114 138
a (c)50.075M 1.0 4.1 185 227 203 235
b (c)50.04 GeV 1.3 4.3 168 216 177 209
(2p)4m (c)

4 5117 MeV4 1.6 4.5 95 149 144 178
a (c)50.05M 1.0 4.1 183 223 204 235
b (c)50.027 GeV 1.3 4.3 168 214 178 210
(2p)4m (c)

4 522.3 MeV4 1.6 4.5 99 152 148 181
a (c)50.025M 1.0 4.1 176 213 198 229
b (c)50.014 GeV 1.3 4.3 163 207 175 207
(2p)4m (c)

4 51.3 MeV4 1.6 4.5 99 151 147 180
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(4p)4m4 changes with two orders of magnitude, while the
theoretical values of the decay constants change with less
than 10%.

The decay constants are more sensitive to the variation of
the heavy quark masses and could be used in principle for a
more precise determination of the last ones. The comparison
with the experimental values @12# FD<300,FDs

5232645620648 MeV, or FDs
5344637652642 MeV

and with the values yielded by QCD sum rules@4,14#
and lattice calculations@3# FD'(1.3560.0460.06)Fp ,
FDs

'(1.5560.10)Fp , FB'(1.4960.0660.05)Fp , FB

5185640 MeV shows that the agreement is better at the
lowest values of the heavy quark masses. Things look mainly
the same for any of the trial functions, but the best fit of the
data seems to be done with the internal function~2c!. Of
course, this is just a qualitative estimate. A more reliable test
could be provided by the fit of the weak or electromagnetic
form factors, which are very sensitive to the form of the
internal function.

In the case of neutral mesons, we found (Fh) th in the
range 128–139 MeV foruP5210°, which is in agreement
with Fh5133610 MeV quoted in Ref. @12#, but
(Fp0) th'138 MeV, slightly larger thanFp0511964 MeV
in Ref. @12#. One sees also that the calculated values of

Fh8 both for uP510° and uP5223° are smaller than
Fh8512667 MeV, quoted in Ref.@12#. The differences no-
ticed above must not be taken too seriously because of the
large uncertainties entering the values quoted in Ref.@12#.
They come from the extrapolation on the meson mass shell
when derivingFP0 with the aid of the axial anomaly but, for
h, h8 they come also from the uncertainties in the mixing
angle.

Resuming, one may say that the present model yields rea-
sonable values for the decay constants of lightand heavy
mesons using the same set of parameters, which is quite
remarkable.

A last comment concerns the parameterm. As it can be
seen from Table I, its values resulting from the fit of the pion
and kaon decay constants are in the range 0.2–0.7 MeV.
Recalling thatm24 is equal to the four-dimensional volume
VT of a very large box containing the meson, we get a box
size of about 300–1000 fm, quite large in comparison with
the meson size which is less than 1 fm. The large value
found for the box size, sensible larger than the lattice size
@3#, as well as the relative independence of the results in
Tables I and II on the value ofm, if m is sufficiently small,
are strong arguments for the consistency of the present
model.
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TABLE II. The decay constants of the lightest neutral mesons. The trial functions are indicated in the first
column.

p0(135) h(547) h(547) h8(958) h8(958)
uP5210° uP5223° uP5210° uP5223°

~2a! 137–139 128–139 77–78 67–69 94–97
~2b! '139 '131 77–78 75–76 105–107
~2c! 135–139 129–132 76–78 77–81 108–114

4156 55L. MICU


