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The problem of bound states in effective field theories is studied. A rescaled version of nonrelativistic
effective field theory is formulated which makes the velocity power counting of operators manifest. Results
obtained using the rescaled theory are compared with known results from NRQCD. The same ideas are then
applied to study Yukawa bound states ir-1 and 3+1 dimensions, and to analyze when the Yukawa
potential can be replaced by&function potential. The implications of these results for the study of nucleon-
nucleon scattering in chiral perturbation theory are discug&€ib56-282(97)03407-3

PACS numbgs): 12.39.Jh, 11.10.St, 12.38.Bx

. INTRODUCTION power counting is more subtle in NRQCR;'(D%2mg)Q is
treated as a leading order operator, and higher dimensional
Effective field theories are an extremely useful tool for operators are suppressed not by powera gép/mg but by
studying the dynamics of particles at low energies. An effecpowers of the relative three-velocity of the heavy quarks. We
tive Lagrangian typically has an expansion in inverse powersvill refer to theories such as HQET, in whigd'(iD%)Q is
of some mass scal®l, and describes dynamics at momen-of leading order buQT(DZ/ZmQ)Q is small, as static theo-
tum scales which are much smaller thith For example, ries, and will refer to theories such as NRQCD, in which
heavy quark effective theorfHQET) [1—3] describes the Q'(iD°Q andQ'(D%2mq)Q are both of leading order, as
dynamics of hadrons containing a single heavy quark ofonrelativistic theories.
massmg at momentum transfers much smaller thag . In this paper, we study the problem of nonrelativistic
The HQET Lagrangian has an expansion in inverse power@ound states in effective field theories. In Sec. I, we define a
of mq. and is used to compute hadronic properties as afiihe el O TEAETE R L e St of
expansion iM\ gcp/Mg , whereA ocp~300 MeV is a typical > ’ )
strong interac?ion chaIe. The s?:ale at which the HQET LaﬁggggDbfj?lltc;]v;retr:::”é ]fésvma(;’:llzlrl{:;n%\gn Wﬁitﬁltzrén dis-
grangian ceases to be useful is the magg of the heavy ussed ’in Sec. Il. In Sec. Il we ana? zé nonrelativistic
qguark. HQET can be used to study the interaction of a sing| o ' y

heavy quark with light degrees of freedom, provided the mo-I Uk"."w% btch]u;\f ftatej g}:i t(()j_the e>_<changedof a masswf,-hsca—
mentum transfer is small compared witly, . ar, in bo an Imensions, and compare the

Systems containing a heavy quark and antiquarkiwo results to those in an effective theory in which the scalar is

heavy quarkscannot be described by HQET. Asg—s integrated out and replaced by a four-fermion interaction.
. Q—> y

the quark and antiquark form a Coulomb bound state of siz%‘\?e“/,[ﬂg(’):hi;nsognsgmg e;gsgsr:(;}uog teheugli(r)-ftiremrlr?:ses}ﬁ;ct-he
1/mgas and typical momentum transfer- agsmg . Perturba- y 9 q

tion theory is infrared divergent, with terms of the form scalar, but this is not necessarily the case when. there are

/v)". whereu is the relative velocity of the an dQ_in weakly bound_states. We study whether. the effective theory
(r‘]“ v)", W f” ; Th .yf d sinaul can “produce its own bound state,” that is, whether one can
the center-of-mass frame. ese infrared singular termgp, iy 4 composite weakly bound state in an effective theory
cause a breakdown of perturbation theory, and must be r

4 R ) ¢ th aulat)” V€ Shere the higher dimensional operators have small coeffi-
summed. Resummation of the most singulafu()” terms is  ;iantg \We show that int 1 dimensions, the effective four-

equivalent to solving the Schiinger equation in @ Coulomb o ion theory has a radius of convergence of order the sca-
potential, and the resumme@Q scattering amplitude con- |5r mass, and produces a weakly bound state with
tains the corresponding bound state poles. One can constrygértyrbative coefficients for higher dimensional operators
a different effective field theory, nonrelativistic QCD \hen the parameters of the Yukawa theory are such that
(NRQCD), which is appropriate for the study @Q bound there is one weakly bound state in the spectrum. If the
states in QCD(or its QED analogue, NRQED for the study Yukawa theory has two or more bound states, of which one
of positronium [4,5]. The terms in the NRQCD Lagrangian is weakly bound, the radius of convergence of the four-
are of the same form as those for HQET, but NRQCD has #ermion effective theory vanishes as the weakly bound state
different power-counting scheme than HQET. In HQET, theapproaches threshold, and the higher dimension operators
power counting of operators is manifest. An operator withhave large coefficients. In81 dimensions, the four-fermion
coefficient 1M, has a matrix element of order effective theory has a finite radius of convergence and higher
(Agcp/mg)'. Thus, the quark kinetic energy operator dimensional operators with small coefficients only when
QT(D2/2mQ)Q is of orderA ocp/Mg, and is subleading. The there is no bound state near threshold in the Yukawa theory.
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[ d*k mg
i (29

which, when the gluon propagators are included, reproduces
the mg/|k| enhancement of the box graph in QCD.

HQET has a simple power-counting scheme in which
D* is of orderA ocp. The importance of various operators is

FIG. 1. The box graph in th@Q sector. The double lines rep- then manifest from the Lagrangian. An operator in the La-
resent nearly on-shell nonrelativistic quarks and antiquarks, and thgrangian of dimension #r has a coefficient of order
curly lines represent gluons. 1/mg, and is of relative orderqcp/Mg)". It is also trivial

to count powers of Mg in loop graphs. The quark and

We discuss the i_mplications of our analysis for recent at'gluon propagators are independentigf, and so any Feyn-
tempts to describe nonperturbative aspects of nucleon:

. : b . man graph withV vertices of order Th- - -1/mY has an
nucleon scattering by solving the ScHiager equation for a grap ; v Q Q
chiral Lagrangian in which the nucleon-nucleon interactionoverall factor of Iing wherer==/_,r;. NRQCD has a
arises from both pions exchange and contact tefgasg]. ~ More complicated power-counting scheme, which is dis-

We present our conclusions in Sec. V. cussed in detail in Ref[5]. In NRQCD, both D° and
D2/2mQ are of the same order, and so the quark propagator is
Il. POWER COUNTING IN NONRELATIVISTIC QCD i/(k°>-k?2mg+ie). The quark propagator depends on

_ _ . Mg, so that one can get factors wg, from loop graphs, and
The HQET Lagrangian at leading order in theny/ex-  the power-counting rules for loop graphs in NRQCD are not
pansion 1s as straightforward as in HQET. Furthermore, there are sev-
At eral relevant scales in NRQCDng, the three-moment of
L=Q(ID)Q, (2.9 the heavy quarksmgu, the kinetic energy of the heavy
quarkstvzlz, andAqcp. The matrix elements of higher
dimensional operators in NRQCD are suppressed by powers

used for systems containing two heavy quarks. The basigf v, but thev counting is not manifest in the Lagrangian.

; - It is advantageous to have an effective field theory with
problem arises from the Feynman graph in Fig. 1, when both . . . .
manifest power-counting rules. One can achieve this for

the intermediate fermions are simultaneously almost o ; i .
; . RQCD by rescaling the fields and coordinates of the usual
shell. The box graph evaluated in QQWith propagators NRQCD Lagrangian. In a nonrelativistic systenandp are

1(p+m)] has terms which are of ordemg/|k|=1/v|, . o
wherek andv are the three-momentum andQveIocity of the of ordeerv2 andmqu, respectively. Therefore, it is useful

external quarks, respectively. The box diagrams in HQE'IIEerejﬁZ:e th:ﬂ?‘;:g';iﬁi;o tlggii;heeizariégf d?r?;ézln?zes of
cannot reproduce this behavior since the Feynman rules aEIe 9y '

; 0
independent ofn,._As a result, QCD cannot be matched and new fieldst, A" and.A by

onto HQET in theQQ sector. The box graph in HQET has a
loop integral of the form

fd4k 1 1 05
2m)* ko+ie —ko+ie 22

whereQ is the annihilation field for a nonrelativistic quark.
It is well known that the Lagrangian, E@2.1), cannot be

Xx=MX, t=NT, Q=Ng¥, A’=Xp04% A=A,

(2.6
Thek® integral has a pinch singularity, and is divergent. This

singularity is a signal that higher dimensional operators inW
HQET are important in theQQ sector. One constructs a

different effective field theory, NRQCD, with the leading
order quark Lagrangian

here\,=1/mquv. Requiringd® and V#/2m,, to be both of
the same order determinas=moA2=1/mqu?. This gives
the relation between the rescaled energy and momentum
K° andK and the original variablek® andk:

2
2mq

£=Q%(iD%Q+Q" Q+---, (2.3

K0=k0/va2, K=k/mqu. 2.7

in which D2/2mQ is considered to be of the same order as

D°. The box graph in NRQCD has a loop integral of the .
X grapn | Q b integ In a nonrelativistic system the rescaled energy and momen-

form tum are both of order unity.
d%k 1 1 Upon rescaling, the Lagrangian density picks up an over-
e 3 . . .
(2m)® KO~ [K[F2mg+ie —KO—|K[Z2mg+ie all factor of A\;A; from the change of integration variables

2.4 d3x dt— A3\ d®X dT, so the® T(iD%) W term is canonically
normalized ifAo=\; ¥2. The gauge field quadratic terms
instead of Eq(2.2). Thek® integral is now finite, and gives get rescaled to
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(V><A)2—>mQ)\)3()\,§(V><A)2, the various terms in the rescaled Lagrangian, d.0. The
derivation using the original NRQCD Lagrangian is more
involved[5,10].

The effective Lagrangian, Eq2.10), contains additional
higher dimensional operators which are also suppressed by
aA |2 Ax)\f\ dA\? factors ofv. Terms in the effective Lagrangian are relevant,
ot _)m_Q gt irrelevant, or marginal, depending on whether the power of

v in the coefficient is negative, positive or zérblote that in

IA A RNRQCD the fields and derivatives are all dimensionless,

EVAOH)\?)\AOAAH-VAO. (2.8 and so terms with additional fields or derivatives are not
suppressed unless they appear with additional powets of

For example, the operator
In the infrared \ ,— 0, and the dominant gauge kinetic terms

(VA%)2moA3N40(V.A%)2,

are (VxA)? and (VA®?2. These terms are properly normal- 1
ized if YV (2.19)
Q
)\A=)\Ao=(mQ)\§)’1’z. (2.9 in NRQCD becomes, in the rescaled theory,
L —kai)\é«pTv“\If— 2gv4y
With this rescaling the NRQCD Lagrangian becomes m A\l -v ' (212
mQ X

. g 1 . and is of ordew?, which agrees with the power counting in
R_qpt _ 2 _Cwtiv_ 2
LE=¥ ("90 J;ASTa)\P SV VL AT 2 Ref. [5]. The relation between our power counting and that
of Ref. [5] is slightly more subtle for operators containing

1 E andB fields. For example, the chromomagnetic moment
b L
— 2 (A= 3 AT = 9o FapoAP AD)? operator
1 a a b 4cy2 g
+ (3 AF= VI AT = g\ Fapo AT AY) AL I (2.13
Q
Vg 1 b in th led th
— | 19+ - TASTa W (540 0,407 ecomes, in the rescaled theory,
1%

g 2 v _ v
m—QmQ)\4)\Q)\A\I’TU“ G, ¥=gVo¥Targ, W, (2.14

1
+ 5545+ 0(v,gv), (2.10

whereas in the power counting of RE5] this operator is of

which will be referred to as the RNRQCDrescaled orderv?. However, the NRQCD power counting refers to the
NRQCD) Lagrangian.(The effective Lagrangian also con- size of the matrix element of the operator in a quark-
tains the corresponding terms for the heavy antiquark field.antiquark state. The chromomagnetic gluon must therefore

Itis clear from the form of the RNRQCD Lagrangian that pe attached to one of the external quark lines, which costs an
the effective coupling constant in th&¥ sector for Cou-  additional power ofgy/v; hence, the matrix element of the
lomb gluons(i.e., .AO) is alv, not a. At low velocities, the operator Eq(214) is of order gzv~U2 in a quarkonium
Coulomb gluon interaction must be summed to all ordersstate, as expected.
Transverse gluons have a coupling constant of ogiér,
and decouple as— 0. Loop integrals with Coulomb gluons
are independent @, v, andmg, and so the dependence of ) )
a graph may be easily read off from the vertex factors. There The quark propagator in RNRQCD is
are no hidden enhancements factors from loop graiirés
is in contrast with the usual formulation of NRQCD, where
1/v enhancements arise due to factorsmgf/|k| in the loop
graphs. For nonrelativistic bound statess of ordera, and ]
the Coulomb interaction in Eq(2.10 becomes strongly and the propagator fok is
coupled and must be summed to all orders. Other interac- )
tions, such as those due to transverse gluons, are suppressed e (2.16
by powers ofv and may be treated using perturbation theory. |K|? '
These well-known results follow simply from the scaling of

A. Tranverse gluons

i
KO- [K[%2+ie’ 219

2This is in the renormalization group sense. Irrelevant operators
% counting for transverse gluons is more complicated, and isnserted in loop graphs which are sufficiently divergent can produce
discussed in Sec. Il A. effects that do not vanish as—0.



4132 MICHAEL LUKE AND ANEESH V. MANOHAR 55

i

FIG. 3. The leading order contribution ’Qascattering. The
gluons with dashed lines represent Coulomb gluons.
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00000

! f dk® dk 1 1
< < (@m) (2m)° [K]? [K+P—P2
1
FIG. 2. Radiative correction to Coulomb scattering. The gluon X —KYO—IP.—KIZ2+i
with a dashed line is a Coulomb gluon. (P1=K)"—|Pi—K|%2+ie
1
: . X 0 Y (2.18
which are both independent af. The transverse gluon (P,+K)?—|Py+K|?/2+i€

propagator is
The K° integral can be done by contour integration to give

—i(&--—KiKJ) ! (2.17 dK® !
1 KPP KPP 02K ' (2m) (P1—K)'—[P,—K[?/2+ie

1 1

y 1

which depends on, and so there are potentiablénhance- (Po+K)O—|P,+K|%/2+i €
ments from graphs with internal transverse gluons. A generic i
loop integral can be evaluated by first doing i integra- =— . (2.19
tion using residues. The residue of the transverse gluon (P1+P2)0—[Py—K[?/2— [P+ K][?/2

propagator at th&® pole |K|/v is —1/|K|, which is en-
hanced by 1/. The transverse gluon propagator contributionwhich is the Schrdinger Green function of nonrelativistic
from other polegsuch as fermion polgss typically of order ~quantum mechanics. The ladder graphs of Fig. 3 can be
unity, since these poles are at valueskdf of order unity.  evaluated by first doing thi© Igop integrals. It is easy to
Thus transverse gluon loops can have Bnhancements see that each loop gives the Satirger Green function for
from regions in the momentum integral where the transverséhe intermediate two-fermion state. The sum of all the ladder
gluon is on shell. Consider, for example, the graph in Fig. 2graphs gives the nonrelativistic Schinger equation in mo-
where the gluon in the loop is a transverse gluon. The diamentum space for a Coulomb potential. This result is, of
gram has a 1/ enhancement from the region in loop integral course, well known. What is different here is that in the
where the fermion and virtual gluon are on shell, i.e., fromrescaled theory, the sum of the leading order graphs is iden-
physical tranverse gluon radiation. tical to the Schrdinger equation. While this is also the case

The transverse gluon coupling constangi& , whichisa  for NRQCD in the Coulomb gauge, the rescaling allows
factor ofv smaller than that for Coulomb gluons. Thus trans-Similar results to be obtained in nongauge theories, such as
verse gluon loops obey naive counting, and are? sup- Yukawa theory(which we will discuss at length in the next
pressed, unless the cut part of the graph contributes to tran§ection, where there is no gauge freedom in choosing the
verse gluon radiation. In the latter case, the transverse gludffopagator.
graph has a 1/ enhancement over the naivecounting, and
is only suppressed by one powerwof C. Heavy-light systems

It is not possible to choose a rescaling scheme which has

. . 2 .
a manifest-counting scheme for real and virtual transverse Cr)]ne carr1] see egphcglytwtk@ / S”][Q 'St? reLevant Ic_)pr(]atrat\)tor d
gluons. The reason is that quarks behave like nonrelativistiI:Or eavy-heavy bound states, but not for heavy-light boun

particles when transverse gluons are exchanged betweéﬁates' Consider a nonrelativistic bound state of two particles

them, but like static particles when one of them radiates aﬁi’]'th differgnt masses, a'nd m, with My>m . Applying
on-shell transverse gluon. the rescaling, Eq(2.9), with mg—m_, one finds that the

fermion kinetic terms are

B. Coulomb scattering lﬂIi Oy + %lpIVZ(/,L (2.20
At leading order irv, the only diagrams which contribute
to QQ scattering in the effective theory are the Coulomby,, ihe light fermion and
ladder graphs of Fig. 3, where thé° propagators are de-
noted by gluons with dashed lines. Crossed ladder graphs
such as Fig. 4 vanish when both gluons are Coulomb gluons. i O+ ﬂlﬂLVZlﬂH (2.2
The one-loop box graph has an integral of the form 2my
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V2 g 1
— gt i 90 _ = Al 190 132
L=y (m +2M)¢ Vb dlopt 5(°9)

1
- S-S Wlew?, 3

describing the interaction of a pseudoscalar Goldstone boson
¢ with decay constant_ and couplingg, where we have
suppressed flavor indices. The leading effects of massive ex-
citations are contained in the dimension-6 operatgra/)?

and ("o)? with dimensionless coefficients; andc,. In

%Jr 1 dimensions the appropriate rescaling is

FIG. 4. The crossed box graph.

for the heavy fermion. The'V2y operator is comparable to
1%y for the light particle, but is smaller by, /my, for the

heavier particle. The heavier particle can be treated as
static sourcgas in HQET), but the lighter particle must be

— — 2 _y 3l — 3\ -1/
treated as nonrelativisti@s in NRQCD. X=NX, t=MNT, g=NC20, g=(MAY) Y2,

3.2
D. Scaling dimensions giving the rescaled Lagrangian
The velocity scaling rules have a renormalization group

interpretation. In the nonrelativistic limit, the scaling dimen- 2 gM Ju
sions of space and time should be chosen to be Lz‘lf’r( i+ 7)‘1’— - VO -¥igP

[x]=—-1, [t]=-2 (2.22 2 2

v 1 ciM“v
| o . + 5 (°D)? = S(V)2 = Z— (¥TW)?
instead of the usual choice in relativistic theories, 2 2 e
— — CzMZU
[x]=-1, [t]=-1. (2.23 i (Plow)2. (3.3

m

With the choice Eq(2.22, one finds that
Both the derivative interaction and the dimension-6 operators
[£]=5, (2249 are irrelevant in the infrared. Each pion exchange in a Feyn-
man diagram contributes a factor gfM2v/f2 which has
[¥]=3/2, [A°]=3/2, [A]=3/2, [k°]=2, [k]=1. the same dependence B andv as an insertion of one of
(2.29  the dimension-6 four-nucleon operators. This reproduces the

power counting of Ref[6]: A graph with n insertions of

Operators are relevant, irrelevant, or marginal depending oRimension-6 operators and ladder pion exchanges scales
whether their dimensions are less than, greater than, or equgd

to [£]=5. For example, the Coulomb interaction term

PTAY has dimension 9/25—1/2, and so the Coulomb M2p\M+m (MQ\ M
interaction is relevant, and of order Y2 The transverse (—2) =(—2) : (3.9
gluon interaction term is¥'p-A¥ and has dimension = =

11/2=5+1/2, and so the term is irrelevant, and of order

v This agrees with the powers ofin the Lagrangian, Eq. Where Q=Muv is the three-momentum of the scattering
(2.10. nucleons(in the center-of-mass frameFurthermore, with

this rescaling the power counting of Rg8], in which poles
in k% in the pion propagator were treated as higher order in
the nonrelativistic expansion, is manifest. Since pion emis-
sion is kinematically forbidden as— 0, the temporal piece
There has been much recent interest in applying the tectef the pion kinetic term may be treated as a higher-order
niques of nonrelativistic effective theories to nucleon-insertion.
nucleon scatterinf6—9|. The goal is to describe low-energy ~ Since the pion-nucleon interaction terms are irrelevant in
nucleon-nucleon scattering using a chiral Lagrangian wheréhe infrared, unlike the interactions in QED and QCD, per-
massive excitationgsuch asp’s and w's) have been inte- turbation theory for nucleon-nucleon scattering does not
grated out and replaced by an effective four point interactionbreak down at threshold for weak coupling. Multiloop
Nonperturbative effects, such as the large scattering length inubble graphs are not enhanced by powers of bt in-
the 'S, channel or the deuteron in th&, channel, could be stead suppressed by powers w«of It was argued in Refs.
described by solving the Schitimger equation in the effec- [6—9] that the large scattering lengths in th, channel and
tive theory. the deuteron in théS; channel in nucleon-nucleon scatter-
The rescaling of the previous section can be extended ting are signs of the breakdown of perturbation theory, due to
chiral perturbation theory for heavy nucleofisl,6,9. The the fact that for largé the factor in Eq(3.4) is not small.
leading terms in the nucleon-pion chiral Lagrangian have thédt was proposed by these authors that the appropriate descrip-
form tion of nucleon-nucleon scattering could be obtained by sum-

IIl. POWER COUNTING IN CHIRAL
PERTURBATION THEORY
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ming all terms of order@QM)"; corrections to this would be dimensional case with excited states. Once again the higher
suppressed by powers @f/M, and could be calculated sys- dimensional operators become important, and again the ef-
tematically. fective theory description breaks down belpw,,. We find
However, as noted in Ref9], the validity of this ap- by explicit calculation that there are, in fact, higher dimen-
proach rests on the assumption that coefficients of highesional operators in the low-energy theory which scale like
dimensional four-nucleon operators in the chiral LagrangiaflQM)", and spoil the power counting of Refl6—9]. We
with n spatial derivatives are smaller than". Otherwise, will comment on the relation between our results and the
the effective theory description would break down, since theeffective range expansion, as well as the case wpgigis
contributions from higher dimensional operators with un-allowed to vary, in Sec. llIC.
known coefficients would be as large as the graphs which are
being summed in the effective theory. 8] it was argued
that this assumption was consistent in #& (but not in the ) ) ] ) _
33,) channel, since no divergences were found in the Feyn- In ;+ 1 .dlmenS|ons, the mass dimensions of the fields and
man diagrams contributing t&S, channel scattering which couplings in Eq(3.5) are

would require counterterms scaling lik® \1)". _ _ _ _ _
In this section we will investigate the validity of this [p1=1/2, [¢]=0, [M]=1, [m]=1, [g]=1,

A. 1+ 1 dimensions

power counting in a simplified model. We will neglect the S
Goldstone bosons, and simply consider a theory of a nonreIT.he Yukawa potential due to scalar exchange is
ativistic fermion of massM coupled to a scalar of mass
m<M i
) dq glax g2
= — 2 —_— e — — 7m|X|
- V2 n L V(X) g f (2m) P 2me . (3.8
Ly=y!| 1%+ oo [y—gdyy+ 5(°4)* = 5(V¢)°

An attractive potential in +1 dimensions always has a
_Imeg? (3.5 bound state. The Schilinger equation for a Yukawa poten-
2 ' ' tial is not analytically soluble. However, whenis small, the
state is weakly bound and spread out over a large region. In
The scalar plays the role of the o, and other excitations. this limit the Yukawa potential can be approximated by the
At low momenta,p<m, the scalar may be integrated out, & function,
resulting in an effective four-fermion theory
2 2
- g—e—mlxu - g—za(x). (3.9
prh(p' P+, (36 2m m

VZ
- .0 o
10 +2M

Ls=y'

The S-function potential has a bound state with energy

where the ellipsis represents higher dimensional operator%:_g4M/4m4 and wave function

suppressed by powers pfm. The Yukawa potential arising
from scalar exchange in E¢3.5) is replaced by a series of

2
¢ functions and their derivatives in the effective theory. We d(x)= e X = w (3.10
will refer to these two theories as NRY and BRor nonrel- m

ativistic Yukawa and nonrelativisti@ function, respectively.

We now wish to ask whether NRcorrectly describes the Corrections to thes-function result will be suppressed by
Yy scattering amplitude of NRY at low momentum powers ofk/m, the ratio of the size of the state to the range
P<pPmax. iN & parameter regime where the Born approxima-of the potential. Forx/m~1, excited bound states appear,
tion fails. By low momentum we meap<p,,.«<m, where and thed-function approximation completely breaks down.
PmaxiS held fixed as one varies the parameters in the Yukawa In effective field theory language, this indicates that the
theory. This is analogous to the question of whether thenonrelativisticé (NRS) potential will only correctly describe
dimension-6 operators in Eq(3.3 correctly describe bound states for weak couplings/m<1, and will break
nucleon-nucleon scattering at momenta much smaller thadown at larger values of the coupling. Since an excited state
m,, in a regime where the Born approximation fails. We may be arbitrarily close to threshold, the effective theory
consider the problem in both41 and 3+ 1 dimensions. In  may therefore break down fagy scattering at arbitrarily
1+1 dimensions, we will show that NiRcorrectly describes low energies, which is not the usual behavior one expects
the scattering for weak coupling; however, for a couplingfrom a low-energy effective theory, where the importance of
large enough that more than one bound state exists the highkigher dimensional operators is set by powerg/of. In this
dimensional operators in NRRbecome important, and the case, the effects of higher dimensional operators must be
effective theory breaks down belopy,,,. In this case, the suppressed instead by powers @fm. Therefore, it is in-
full theory is required to correctly describe the low-energystructive to analyze this problem by matching the nonrelativ-
physics. In 3-1 dimensions, there are no bound states foristic Yukawa(NRY) onto the NR potential and seeing how
sufficiently weak coupling. In this case MRcorrectly de- the scalex enters the problem.
scribes the scattering and no resummation of ladder graphs is To make the power counting manifest we use a rescaled
necessary. However, when the coupling is strong enough tbagrangian as in Sec. Il. Infl1 dimensions, the appropriate
form bound states, the situation is analogous to(thel)- rescaling is
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I T | ! !
| L N <2w> 2w> (KZ+ %) (L7+ )
1 1
FIG. 5. Ladder graphs in the Yukawa theory. (K— L)2+,u (P1+P,)0—K? (P;+P,)°—L?
6 2
X=MX, t=MA2T,  g=A Y20, ¢=(M\,) Y20, 9 61+ 9u o+ 2
(3.1 e 12u's(u+ Ve)? ,u+2\/_)(2,u+\/—)
6 6 6

- ivi .9 . 3g°M 419

where\,=1/Mv, giving :|4m61}38_|4m - \/_ P +O(v°). (3.16
) V2 g The O(1/v) term from the box graph, E@3.19), is down
LY=w"i%+ EIAERYE v WY+ 5 (‘90‘13)2 by a factor ofx/m relative to theO(1/v) term due to tree-
level exchange, and so may be neglected in the weak cou-
1 , 1 m? P pling limit, xk<m. In this limit, one may sum the most sin-
N E(V(D) “om2Y @ (3.12 gular contributions of the graphs in Fig. 5 to obtain, for the
ladder sum,
The powers ot can also be obtained using modified scaling 92 g2 12 [g2g12\2
rules, as in Sec. IID. The modified scaling dimensions are iA=i——|1+ 5 5 +.--
m<v 2m-y 2m-u
[XI=-1, [t]=-2, [£]=3, [y]=12, [¢]=1/2. g 1 a1
(313) =1 mZU 1_928—1/2/(2m2v)! ( . 7)

[yl —[L]=—3I2 and[¢2] [£]=-2, so that these Wwhich has a pole at=g*(4m*v?). Rescaling back to
terms scale as 32 andv ~2, respectively. Since the tempo- physical units give€ = —g*M/(4m?), which is the correct

ral piece of the scalar k|net|c term in E(B.12 is of order  bound state energy fot/m<1. There is always at least one
v?, it may be neglected at the order at which we are workingbound state pole, even for weak coupling, because the box
Thus RNRY (rescaled NRY) describes a fermion coupled tograph diverges as—0.

a static scalar field, with coupling constage ~*4M. The When «/m is not small, the ladder sum is no longer a
@ interactions must be summed to all orders, since th@eometric series, since anloop ladder graph has singulari-
Yukawa coupling is large. Because tfhepropagator has no ties of the form

poles inK® (emission of scalars is kinematically forbidden as

v—0), only ladder graphs are nonvanishing in the nonrela- k\"1 k\"1 1
tivistic theory. For simplicity we consider the scattering of v’ v m SR
two off-shell fermions with energ§ and zero momentum,
since the scattering amplitude will have the same singulari-

ties as for on-shell states. We will also treat this as dis- (f) 1 1 E L (3.18
tinguishable, since the additional graphs from Fermi statis- m/v (ve)" 1 v (vye)" '
tics are not relevant to our arguments. The tree-lebel
exchange graph in the ladder sum in Fig. 5 gives (ignoring factors ofg/m), as can easily be verified by a
dimensional estimate of the-loop graph. This behavior can
9 1 92 also be seen from the explicit computation, E¢3.14—
13=i =57 —=i—5, (3.14  (3.16. Each term in Eq(3.18 is as large as a term in the
M= u m-v sum, Eq.(3.17), and cannot be neglected. The scattering am-
plitude will be given by the Green function for a Yukawa
whereu?=m?/M?v2. The box graph gives potential (which is not known analyticallyand will have
poles at the energies of all the bound states.
v 1 We now wish to integrate th@ field out of the theory to
l1=— AVES GJ @ ( K2+,u 12 (P, P,)0—K2 obtain the rescaled effective four-fermion thebry
4 . V2 h
g 2u+e LR=wid0+ | W —(Tw)Ze (319
M%® 23 e (p+ Ve)?
g 3g°M The tr_ee-level matching condition arises fraln exchange
=i oz i g5 00, (3.15  andgives

where —e=(P,+P,)? is the total rescaled energy of the 3Theuv dependence of¥™¥)2 can also be obtained using Eq.
incoming particles. The two-loop box graph gives (3.13, since[ (¥ T¥)2]-[£]=—1.
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FIG. 6. One loop matching condition from NRY to MR FIG. 7. The sum of ladder graphs in MRusing the vertex
h( obtained using tree-level matching.

Y

\
Y

2
h(°>=%, (3.20 true in the effective theory. Consider a four-fermion operator
in the effective theory containing one time derivative,

where we denote by(") the r-loop contribution toh. The c
one-loop matching condition is shown in Fig. 6. The box —¢T30¢¢T¢+ H.c. (3.24
graph has already been evaluated in the full theory in Eq. m

3.15. In the effective theory, the box graph is . . . . .
@19 y grap Like h, higher loop matching conditions to will be sup-

hO\2 r gK° dK 1 pressed by powers af/m, and so the matching will have to
I‘f=( ) ETRITNE be done to all orders whes/m is not small. In the rescaled
(2m) (2m) (P1—K)"—K"2+ie theory, this operator becomes

v

1

2
X(P2+ K)9—K?/2+ie SMWU\PT&O\I’\I’T\I’—FH.C. (3.29
h@\2r dk 1
:'(T f @ K2+ e In the Born approximation the matrix element of this opera-
tor may be neglected compared to the terms in the series, Eq.
(RO 2gm102 (3.17); however, when it is inserted into a two-loop bubble
N7 2 (3.2 diagram, it gives a contribution to the scattering amplitude
proportional to
Using the matching condition, Eq3.20, we see that this 5 5 5
reproduces the leading term in E@.15. It must do this, h®c Mv® [k)%c (3.26
because one cannot write down an interaction proportional to v’v m m/ v’ '

an inverse fractional power of in the low-energy RN
effective Lagrangian. Th®(1/v) term in Eqg.(3.15 is re-  which, for x/m~1, is the same size as the first term in the
produced in the effective theory by the one-loop matchinggeometric series. Similarly, operators of arbitrarily high or-

condition toh: der will contribute at all orders in &/to the scattering, sup-
pressed only by powers oé/m, and so the effective field
hU— _ 3 94_M_ 3 Ko (3.22 theory is unable to describe bound states in the theory when
T 4 m 4m ' this parameter is not small. An infinite number of operators

is required in the effective theory to reproduce the scattering
At two loops, one needs to compute the matching conditiongmplitude in the full theory. A simple way to see that the
in Fig. 8. The two-loop graph in the effective theory with effective theory breaks down is to note that in RNRY, the
two insertions oh(® reproduces the &/term in Eq.(3.16,  effective mass of theb is m/\/il_\/lv’fmg/gzl\/l =m/«k, for
and the one-loop graph with one insertiontéf) and one  v~g?/m?. Thus, fork<m the ® field is heavy, and may be
insertion ofh™) reproduces the & term. The matching integrated out, with higher dimensional operators suppressed
correction toh at two loops requires knowing the coefficients by powers ofMv/m~«/m. For k~m, the ® is light, and
of operators of the form¥ T'V¥)2. This is a complication of ~cannot be integrated out of the theory if bound states are to
the (1+1)-dimensional analysis which is not present inbe properly described.
3+1 dimensions.

The tree-level matching condition fdr only dominates B. 3+ 1 dimensions

when «/m<1. In this limit, the sum of bubble graphs in

NR@ shown in Fig. 7 again gives a geometric series, The analysis of the previous subsection can be repeated in

3+1 dimensions. We will use the same symbols as in
1+1 dimensions, but they now have dimension

h©@ 1
e BN () e 17 ' (323 - _ — _ -
v 1-h©@e~¥(2v) [¢]=3/2, [¢]=1, [M]=1, [m]=1, [g]=0.
(3.27
which reproduces the result, Eq43.15, of RNRY for ) ) o
K<M. The three-dimensional Yukawa potential is
When k/m is not small, we have already seen in the full 3 0 x 2 —mix
theory that the scattering amplitude is not given by thev( )= —g? d“q € __9°e (3.29

simple geometric series, E¢3.17; the same is, of course, (2m)3 ql?+m? 47w x|
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The Schrdinger equation with a three-dimensional Yukawa 5 ronra s dK® d3K 1

potential does not necessarily have a bound state. The bound! 7=h"M"v 2m) (2m)3 (P,—K)O—|P,—K[?/2+i e
state first appears when . !

1
Z M
%521.7. (3.29 P, K)O—[Pt K221 i e (339
Under the rescaling, Eq(3.2), the NRY Lagrangian in —ih2M%2 d*K 1
3+1 dimensions becomes 27)3 |K|?+e
1/2
. vz g v 1 — _in2p4,28
L=+ 7)«1»—%@\?*\%5(&0@)2—5(%)2 =—ih"M%"—, (3.37
1 m? where we have evaluated the integral in dimensional regular-
) MTU2<I>2, (3.30 ization. Note that an integral which divergeskds with r an

odd integer, is finite when regulated with dimensional regu-
while the rescaled version of NRyives the RNR Lagrang-  larization, and needs no subtractions. The result,(B&7),
ian correctly reproduces the leading nonanalytic term in Eq.
(3.35. However, the analytic term is absent, and so one

V2 ~ . . .
r=wiig0+ 4 W+ hMZ (W12, (3.3) needs to add a one-loop matching contributior to
y . . w_ M _gM1L
The modified scaling rules of Sec. 1D give =~ 27m 2l - (3.38

[x]=—1, [t]=-2, [£]=5, [¢4]=312, [¢] :(?3’%’2) In the region of parameter space for which bound states exist

in the Yukawa theory, this term is at least as large as the
so that [¢yfy]—[L£]=—-1/2, and [(¢'¢)?]—[L]=1, tree-level matching terrh(®), and so all orders in the loop
which gives thev dependence of the coefficients in Eqgs. expansion must be calculated in order to calculate the match-
(3.30 and(3.31). In three dimensions, the Yukawa interac- ing for h. The complete matching condition fdr will be
tion is a relevant operator, and the four-fermion interaction iproportional to the scattering length for a Yukawa potential,
an irrelevant operator. This is a sign that the four-fermionwhich is not analytically known in closed form. Furthermore,
theory will have trouble correctly reproducing the behaviorthere is no reason fon to be of the naive size &?. In
of the Yukawa theory when there is a light bound state in theparticular, if there is a bound state near threshblaill be
spectrum. much larger.

Tree-level® exchange in RNRY gives the amplitude for  The two-loop ladder graph in the full theory is

V¥ scattering,

2M2 i gﬁ 1 n (2/‘L+81/2)2
|o:igm v+o(03), (333 2= am 208 (2= )2 Bu(p+ 267
_ g°M*% 4 My eM%?
and so the t_ree-level matching condition is the same as in =1 (4m)2m? In§— TJF Am?
1+1 dimensions,
4
m
The one-loop box graph in RNRY is the two-loop bubble graph in RNRis
gt Bk 1 1 g°M®%°
|1:_'_2f 3Tk12L,,2 N2y 2 VA Zme e (3.40
v?) (2m)3 [K|[?+ p? |[K+P— P2+ u (47)°m
" 1 and the one-loop graph with a single insertiorhé¥ is
(P1+P) = |P—K[?/2— [Py +K][?/2 42 65,2 12
. Coinop@ M e SMUTET gy
i g* 1 47 (47)°’m* m "~ '

_l9__ -
87 0% p(u+\e)?

4 3 1/2
vM 2&"“Mv
=i9877m3 1-— +0(v?)]|, (3.35 _g°M% 81/2Mv+8M2024 a4
I(477)2m4 m am? | (3.42

The sum of the graphs on the right-hand side of Fig. 8 is

for off-shell incident particles withP;=P,=0, where as be-
foree=—(P;+ P,)°. The one-loop bubble graph in the low- Comparing Eq.(3.42 with Eq. (3.39, we see that the
energy theory is nonanalytic term of ordee'? is again reproduced in the
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>
: : : ﬁ><+2><x+ m+ FIG. 8. Two-loop matching condition from
e @ o Ko 1o 1o g NRY to NRS.

hM2v81/2 hMZUSUZ 2
4 +( 4 )+}

effective theory, as it must be, but that the terms of oeder -
and ° terms are not reproduced. Therefore there is a two- ihM“v
loop contribution toh,

1_

g°M =ihM?%

47m

1
6pg2
g°M Inf—h(o) 1+hM?ve¥4n’ (349
4 3 -

)= _
h (47)°m

2.4
) In§, (3.43

which is the expression given by Weinbd@]. There is a
which once again is at least as largehd® in the region of pole at
interest, while at ordes the difference between the graphs in

the two theories hM?2p gl/2
—=-1 (3.47
6p /4 2.2 47
IMu MU g 4) (3.44
=7 —— ns .
(4m)*m* 4m? 3 or, rescaling back to physical units, at
contributes to the matching conditions of an operator such as hM33(—E)Y2
Wi g v with coefficient — . -4 (3.48
6p16,,3 O)p12,,\ 2
&206 §+2In‘—1)= §+2|nf)<w> hOM2y. which, for h<0, has a bound state below threshold. The
(4m)“m°\ 4 3/ \4 3 4ar bound state energy [$]
(3.45
. o . . 167
The important observation is that this counterterm contrib- E=- PYVER (3.49

utes to thes term at order QM)3, the same order as the
two-loop bubble graph in the effective theory; hence, WithoutW
knowing the coefficients of the dimension-8 operators in the

effective theory all terms of the formQM)" are not

hen|h|—o, the bound state approaches the threshold.
We have argued, however, that the bubble sum in the

summed. It is clear that a similar situation exists at highel’EffeCt'Ve theory does not correctly sum the terms of order

loops: Each loop graph in the effective theory is the sam QM)™. Wha_t relation does this bound state th.ef‘ have to a
order as a counterterm, and so without knowing the counte bound state in the full theory? To answer this, it is useful to
terms, the graphs may not be summed. Thus, without incluor-eca" some results of the effective range expansion for po-
’ : tential scattering.

ing all higher dimensional operators, the effective theory . e .
does not correctly sum all terms of orde k)" 5 l;I;/he scattering amplitudeA is related to the phase shift

C. Bound states and the effective range expansion A

Let us look for bound state poles in the scattering ampli- keotd= M_A+'k' (3.50
tude. In 11 dimensions, the bubble chain sum in the effec-
tive theqry hgd contr?butions proportion_al.to inverse powers, the effective range expansiokcotd is expanded in pow-
of v, which diverged in the low-energy limit. Thus, for weak g ¢ ofk,
coupling there was a bound state at threshold, which was
reproduced in the low-energy theory. Ir-3 dimensions, the 1 1
full theory with a Yukawa potential has a bound state at kcotd=— —+ =rk?+cak?+ - - -. (3.51)
threshold wherg?M/47m=1.7. Since in the bubble sum in a 2
NRéS only positive powers ofv occur, all higher-order ) ) ) . ) )
graphs contributing to the scattering amplitude vanish at low! NiS €xpansion gives us some useful additional information,
energy. Therefore, there can be no bound state pole at threshécause it is known to have a radius of convergeaca/2
old unless one of the coefficients in the effective Lagrangiat12,13. Herea is the scattering length, and is the effec-
NRS diverges. In particular, there can be a bound state diVe range. The first two terms in this series provide a very
threshold ifh—. To see this in thes-function effective 900d approximation to the measured nucleon scattering cross
theory, one must evaluate the matching conditiortfoo all ~ S€ctions. As shown in Ref9], Egs.(3.50 and (3.51) imply
orders, sincg?M/4mm is not small. that thg four-fermion operators in NRhave a momentum
For finite h the bubble sum in the effective theory may be Xpansion of the form
summed to find a bound state for finike Neglecting the
contributions from operators of dimension6, the bubble 4m

chain sum is M

1 1
a+ —a%rk’+ a3Zr§—aZC4 K4

5 . (3.52
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Rescaling these coefficients, we find thais related to the the bound state was correctly predicted in the low-energy

exact scattering lengta of the Yukawa theory, theory but the radius of convergence of the theory was set by
the heavy scalar mass.

4
h=— Va, (353
D. Implications for chiral perturbation theory
whereas a two-derivative term such $8V>¥¥'¥ has a The results are unchanged when pions are included in the
coefficient of order chiral Lagrangian, since pion exchange scales Withand
3 3.2 v in the same way as the dimension-6 contact interactions.
27M° v acre. (354 we may therefore conclude from this simple model that chi-

) _ ] ral perturbation theory cannot sum all terms of order
The scattering length diverges when there is a bound state ?@M)n without including an infinite number of higher-
threshold, so that— . Itis known from potential scattering gimensional operators. Using the effective range expansion,
that the other coeff!C|ents in the effec_tlve range expansionye see that the bubble graphs only correctly describe the
Eq. (3.5)), do not divergg12,13. In this case, the coeffi- |ow.energy bound state when the effective field theory
cients of the higher dimensional operators diverge as well, 8§reaks down at a scale much less than the symmetry-
is evident in Eq.(3.52, and the divergent behavior of the preaking scale\ g5 (the analogue of the scalar mass in our
various coefficients is highly correlated. It is difficult to see simple model. ‘Therefore the standard form of heavy
this behavior by studying the matching conditions to the ef-,,cleon chiral perturbation theory does not provide the cor-
fective theory, since one must perform the matching to alkect description of nucleon-nucleon scattering up to energies
orders in the loop expansion. However, the effective rang@et py the scale of the heavy excitations which have been
expansion gives nontnwgl information on the form of the integrated out of the theory. This does not mean that the
complete matching conditions. effective field theory idea is useless: It does mean, however,
If we now consider)y scattering, the two-bubble graph that the usual chiral Lagrangian is not the correct effective
from the dimension-6 operator/{#) gives a term of order field theory. If the appropriate low-energy degrees of free-
30 r3.3 dom are introduced by hand as new fields in the effective
a’M*v (3.55 Lagrangian, it should be possible to correctly describe low-
/% ' energy nucleon-nucleon scattering in an effective field
theory? However, the properties of the low-energy degrees
which is to be compared with the counterterm contribution,of freedom are not determined by the parameters in the stan-
Eq. (3.59. The terms have the same explicit dependence odard chiral Lagrangian, unless all higher dimensional opera-
M andv, as we have already argued, and so the bubble grapiors are included.
is the same order as the counterterm using the power-
counting scheme di6—9]. Furthermore, both terms are sup- IV. CONCLUSIONS

pressed by two powers dp=Muv relative to the contact L L ) o
term, and so even wheM is large it is not necessary to  Rescaled nonrelativistic effective field theories simplify

resum the bubble graphs in this scheme. However, thE1e study of weakly bound states in quantum field theory.
bubble graph will dominate when The use of RNRQCD makes the power counting of
NRQCD manifest, and reorganizes the perturbation expan-
sion in a more systematic way. Rescaled effective theories
>1. (3.56 can also be used to study Yukawa bound states due to scalar
exchange. In +1 dimensions, a bound state occurs at weak
: . . ._coupling because the-loop ladder graph diverge is propor-
o A et 0 s fonal o LIC €)% n s it ne may um the digra
aldmr, not Q/M. Therefore, when the scattering length is fFlgf 7 and obtgm the propert|es.of the bqgnd state, Wltho.Ut
large(and therefore the bound state is nearly at threghblel worrying about hlgher-loop_ _matchmg _condmons. In three_ di-
sum of the bubble graphs in NRcorrectly describes the mensions, one needs a critical couplmg b_efo_re there exists a
bound state, and E(3.49 is valid, up to corrections of bound state, and thg problem is mtrmsmglly strqngly
order 4xr./a. However, as discussed [8], when the scat- coudpledr.] Or;)e negds o mcIIEudg thle fuIII Yurl:awa mtiractlcf)n o
tering length is large the effective theory breaks down not a t;Yyt; I?IR 50;:?”5,[ ngt%erf(?rl::ga(\jetr;t )E;'” tor?j errgaitr? tlrr: 3 Ior(())gn

a
41

k~m-~r¢*, but at a much lower scale expansion, and the higher-order matching terms are relevant
for the bound state. We have shown by explicit computation
K~ /i (3.57 that the power-counting scheme of R¢-9] that involves
ar.’ ' summing powers 0QM does not hold for Yukawa theory.

One cannot, in general replace the Yukawa potential by a
which, in the region where the bubble graphs dominate, isS-function potential to study even weakly coupled bound
much less thaim. The region of convergence is not con- states in three dimensions, except for a very limited region in
trolled by the scalar mass, and vanishes as the bound state
approaches threshold. Thus, we still do not have the situation
we had in weakly boun¢L+1)-dimensional theory in which  “we thank D. Kaplan for discussions on this point.
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