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The problem of bound states in effective field theories is studied. A rescaled version of nonrelativistic
effective field theory is formulated which makes the velocity power counting of operators manifest. Results
obtained using the rescaled theory are compared with known results from NRQCD. The same ideas are then
applied to study Yukawa bound states in 111 and 311 dimensions, and to analyze when the Yukawa
potential can be replaced by ad-function potential. The implications of these results for the study of nucleon-
nucleon scattering in chiral perturbation theory are discussed.@S0556-2821~97!03407-3#
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I. INTRODUCTION

Effective field theories are an extremely useful tool for
studying the dynamics of particles at low energies. An effec-
tive Lagrangian typically has an expansion in inverse powers
of some mass scaleM , and describes dynamics at momen-
tum scales which are much smaller thanM . For example,
heavy quark effective theory~HQET! @1–3# describes the
dynamics of hadrons containing a single heavy quark of
massmQ at momentum transfers much smaller thanmQ .
The HQET Lagrangian has an expansion in inverse powers
of mQ , and is used to compute hadronic properties as an
expansion inLQCD/mQ , whereLQCD;300 MeV is a typical
strong interaction scale. The scale at which the HQET La-
grangian ceases to be useful is the massmQ of the heavy
quark. HQET can be used to study the interaction of a single
heavy quark with light degrees of freedom, provided the mo-
mentum transfer is small compared withmQ .

Systems containing a heavy quark and antiquark~or two
heavy quarks! cannot be described by HQET. AsmQ→`,
the quark and antiquark form a Coulomb bound state of size
1/mQas and typical momentum transferp;asmQ . Perturba-
tion theory is infrared divergent, with terms of the form
(a/v)n, wherev is the relative velocity of theQ and Q̄ in
the center-of-mass frame. These infrared singular terms
cause a breakdown of perturbation theory, and must be re-
summed. Resummation of the most singular (a/v)n terms is
equivalent to solving the Schro¨dinger equation in a Coulomb
potential, and the resummedQQ̄ scattering amplitude con-
tains the corresponding bound state poles. One can construct
a different effective field theory, nonrelativistic QCD
~NRQCD!, which is appropriate for the study ofQQ̄ bound
states in QCD~or its QED analogue, NRQED for the study
of positronium! @4,5#. The terms in the NRQCD Lagrangian
are of the same form as those for HQET, but NRQCD has a
different power-counting scheme than HQET. In HQET, the
power counting of operators is manifest. An operator with
coefficient 1/mQ

r has a matrix element of order
(LQCD/mQ)

r . Thus, the quark kinetic energy operator
Q†(D2/2mQ)Q is of orderLQCD/mQ , and is subleading. The

power counting is more subtle in NRQCD;Q†(D2/2mQ)Q is
treated as a leading order operator, and higher dimensional
operators are suppressed not by powers ofLQCD/mQ but by
powers of the relative three-velocity of the heavy quarks. We
will refer to theories such as HQET, in whichQ†( iD 0)Q is
of leading order butQ†(D2/2mQ)Q is small, as static theo-
ries, and will refer to theories such as NRQCD, in which
Q†( iD 0)Q andQ†(D2/2mQ)Q are both of leading order, as
nonrelativistic theories.

In this paper, we study the problem of nonrelativistic
bound states in effective field theories. In Sec. II, we define a
rescaled version of NRQCD~RNRQCD! in which the power
counting of operators is manifest. Most of the results of
RNRQCD follow trivially from well-known results in
NRQCD, but there are a few advantages, which are dis-
cussed in Sec. II. In Sec. III we analyze nonrelativistic
Yukawa bound states due to the exchange of a massive sca-
lar, in both 111 and 311 dimensions, and compare the
results to those in an effective theory in which the scalar is
integrated out and replaced by a four-fermion interaction.
Naively, the momentum expansion of the four-fermion effec-
tive theory has a convergence radius equal to the mass of the
scalar, but this is not necessarily the case when there are
weakly bound states. We study whether the effective theory
can ‘‘produce its own bound state,’’ that is, whether one can
obtain a composite weakly bound state in an effective theory
where the higher dimensional operators have small coeffi-
cients. We show that in 111 dimensions, the effective four-
fermion theory has a radius of convergence of order the sca-
lar mass, and produces a weakly bound state with
perturbative coefficients for higher dimensional operators
when the parameters of the Yukawa theory are such that
there is one weakly bound state in the spectrum. If the
Yukawa theory has two or more bound states, of which one
is weakly bound, the radius of convergence of the four-
fermion effective theory vanishes as the weakly bound state
approaches threshold, and the higher dimension operators
have large coefficients. In 311 dimensions, the four-fermion
effective theory has a finite radius of convergence and higher
dimensional operators with small coefficients only when
there is no bound state near threshold in the Yukawa theory.
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We discuss the implications of our analysis for recent at-
tempts to describe nonperturbative aspects of nucleon-
nucleon scattering by solving the Schro¨dinger equation for a
chiral Lagrangian in which the nucleon-nucleon interaction
arises from both pions exchange and contact terms@6–9#.
We present our conclusions in Sec. IV.

II. POWER COUNTING IN NONRELATIVISTIC QCD

The HQET Lagrangian at leading order in the 1/mQ ex-
pansion is

L5Q†~ iD 0!Q, ~2.1!

whereQ is the annihilation field for a nonrelativistic quark.
It is well known that the Lagrangian, Eq.~2.1!, cannot be
used for systems containing two heavy quarks. The basic
problem arises from the Feynman graph in Fig. 1, when both
the intermediate fermions are simultaneously almost on
shell. The box graph evaluated in QCD@with propagators
1/(p”1m)# has terms which are of ordermQ /uku51/uvu,
wherek andv are the three-momentum and velocity of the
external quarks, respectively. The box diagrams in HQET
cannot reproduce this behavior since the Feynman rules are
independent ofmQ . As a result, QCD cannot be matched
onto HQET in theQQ̄ sector. The box graph in HQET has a
loop integral of the form

E d4k

~2p!4
1

k01 i e

1

2k01 i e
. ~2.2!

Thek0 integral has a pinch singularity, and is divergent. This
singularity is a signal that higher dimensional operators in
HQET are important in theQQ̄ sector. One constructs a
different effective field theory, NRQCD, with the leading
order quark Lagrangian

L5Q†~ iD 0!Q1Q†S D2

2mQ
DQ1•••, ~2.3!

in which D2/2mQ is considered to be of the same order as
D0. The box graph in NRQCD has a loop integral of the
form

E d4k

~2p!4
1

k02uku2/2mQ1 i e

1

2k02uku2/2mQ1 i e
•••,

~2.4!

instead of Eq.~2.2!. Thek0 integral is now finite, and gives

2 i E d3k

~2p!3
mQ

uku2
•••, ~2.5!

which, when the gluon propagators are included, reproduces
themQ /uku enhancement of the box graph in QCD.

HQET has a simple power-counting scheme in which
Dm is of orderLQCD. The importance of various operators is
then manifest from the Lagrangian. An operator in the La-
grangian of dimension 41r has a coefficient of order
1/mQ

r and is of relative order (LQCD/mQ)
r . It is also trivial

to count powers of 1/mQ in loop graphs. The quark and
gluon propagators are independent ofmQ , and so any Feyn-
man graph withV vertices of order 1/mQ

r1
•••1/mQ

rV has an

overall factor of 1/mQ
r where r5( i51

V r i . NRQCD has a
more complicated power-counting scheme, which is dis-
cussed in detail in Ref.@5#. In NRQCD, bothD0 and
D2/2mQ are of the same order, and so the quark propagator is
i /(k02k2/2mQ1 i e). The quark propagator depends on
mQ , so that one can get factors ofmQ from loop graphs, and
the power-counting rules for loop graphs in NRQCD are not
as straightforward as in HQET. Furthermore, there are sev-
eral relevant scales in NRQCD:mQ , the three-moment of
the heavy quarksmQv, the kinetic energy of the heavy
quarksmQv

2/2, andLQCD. The matrix elements of higher
dimensional operators in NRQCD are suppressed by powers
of v, but thev counting is not manifest in the Lagrangian.

It is advantageous to have an effective field theory with
manifest power-counting rules. One can achieve this for
NRQCD by rescaling the fields and coordinates of the usual
NRQCD Lagrangian. In a nonrelativistic system,E andp are
of ordermQv

2 andmQv, respectively. Therefore, it is useful
to rescale the coordinates so that these are the natural sizes of
the energy and momentum. Define new coordinatesX and
T, and new fieldsC, A0 andA by

x5lxX, t5l tT, Q5lQC, A05lA0A0, A5lAA,

~2.6!

wherelx51/mQv. Requiring]0 and¹2/2mQ to be both of
the same order determinesl t5mQlx

251/mQv
2. This gives

the relation between the rescaled energy and momentum
K0 andK and the original variablesk0 andk:

K05k0/mQv
2, K5k/mQv. ~2.7!

In a nonrelativistic system the rescaled energy and momen-
tum are both of order unity.

Upon rescaling, the Lagrangian density picks up an over-
all factor of lx

3l t from the change of integration variables
d3x dt→lx

3l td
3X dT, so theC†( iD 0)C term is canonically

normalized if lQ5lx
23/2. The gauge field quadratic terms

get rescaled to

FIG. 1. The box graph in theQQ̄ sector. The double lines rep-
resent nearly on-shell nonrelativistic quarks and antiquarks, and the
curly lines represent gluons.
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~¹3A!2→mQlx
3lA

2~¹3A!2,

~¹A0!2→mQlx
3lA0

2
~¹A0!2,

S ]A

]t D 2→ lxlA
2

mQ
S ]A

]t D
2

,

]A

]t
•“A0→lx

2lA0lA

]A

]t
•“A0. ~2.8!

In the infrared,lx→`, and the dominant gauge kinetic terms
are (¹3A)2 and (¹A0)2. These terms are properly normal-
ized if

lA5lA05~mQlx
3!21/2. ~2.9!

With this rescaling the NRQCD Lagrangian becomes

LR5C†S i ]02 g

Av
A0
aTaD C2

1

2
C†~ i¹2gAvAaTa!2C

2
1

4
~] iAj

a2] jAi
a2gAv f abcAi

bAj
c!2

1
1

2
~] iA0

a2v]0Ai
a2gAv f abcAi

bA0
c!2

5C†S i ]01 ¹2

2
2

g

Av
A0
aTaD C2

1

4
~] iAj

a2] jAi
a!2

1
1

2
~] iA0

a!21O~v,gAv !, ~2.10!

which will be referred to as the RNRQCD~rescaled
NRQCD! Lagrangian.~The effective Lagrangian also con-
tains the corresponding terms for the heavy antiquark field.!

It is clear from the form of the RNRQCD Lagrangian that
the effective coupling constant in theCC sector for Cou-
lomb gluons~i.e.,A0) is a/v, not a. At low velocities, the
Coulomb gluon interaction must be summed to all orders.
Transverse gluons have a coupling constant of ordergAv,
and decouple asv→0. Loop integrals with Coulomb gluons
are independent ofg, v, andmQ , and so thev dependence of
a graph may be easily read off from the vertex factors. There
are no hidden enhancements factors from loop graphs.1 This
is in contrast with the usual formulation of NRQCD, where
1/v enhancements arise due to factors ofmQ /uku in the loop
graphs. For nonrelativistic bound states,v is of ordera, and
the Coulomb interaction in Eq.~2.10! becomes strongly
coupled and must be summed to all orders. Other interac-
tions, such as those due to transverse gluons, are suppressed
by powers ofv and may be treated using perturbation theory.
These well-known results follow simply from the scaling of

the various terms in the rescaled Lagrangian, Eq.~2.10!. The
derivation using the original NRQCD Lagrangian is more
involved @5,10#.

The effective Lagrangian, Eq.~2.10!, contains additional
higher dimensional operators which are also suppressed by
factors ofv. Terms in the effective Lagrangian are relevant,
irrelevant, or marginal, depending on whether the power of
v in the coefficient is negative, positive or zero.2 Note that in
RNRQCD the fields and derivatives are all dimensionless,
and so terms with additional fields or derivatives are not
suppressed unless they appear with additional powers ofv.
For example, the operator

1

mQ
3 c†¹4c ~2.11!

in NRQCD becomes, in the rescaled theory,

1

mQ
3

mQlx
5lQ

2

lx
4 C†¹4C5v2C̄¹4C, ~2.12!

and is of orderv2, which agrees with the power counting in
Ref. @5#. The relation between our power counting and that
of Ref. @5# is slightly more subtle for operators containing
EW andBW fields. For example, the chromomagnetic moment
operator

g

mQ
c†smnGmnc ~2.13!

becomes, in the rescaled theory,

g

mQ
mQl4lQ

2 lAC†smnGmnC5gAvC†smnGmnC, ~2.14!

whereas in the power counting of Ref.@5# this operator is of
orderv2. However, the NRQCD power counting refers to the
size of the matrix element of the operator in a quark-
antiquark state. The chromomagnetic gluon must therefore
be attached to one of the external quark lines, which costs an
additional power ofgAv; hence, the matrix element of the
operator Eq.~2.14! is of order g2v;v2 in a quarkonium
state, as expected.

A. Tranverse gluons

The quark propagator in RNRQCD is

i

K02uK u2/21 i e
, ~2.15!

and the propagator forA0 is

i

uK u2
, ~2.16!

1v counting for transverse gluons is more complicated, and is
discussed in Sec. II A.

2This is in the renormalization group sense. Irrelevant operators
inserted in loop graphs which are sufficiently divergent can produce
effects that do not vanish asv→0.
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which are both independent ofv. The transverse gluon
propagator is

2 i S d i j2
KiK j

uK u2 D 1

uK u22v2~K0!2
, ~2.17!

which depends onv, and so there are potential 1/v enhance-
ments from graphs with internal transverse gluons. A generic
loop integral can be evaluated by first doing theK0 integra-
tion using residues. The residue of the transverse gluon
propagator at theK0 pole uK u/v is 21/vuK u, which is en-
hanced by 1/v. The transverse gluon propagator contribution
from other poles~such as fermion poles! is typically of order
unity, since these poles are at values ofK0 of order unity.
Thus transverse gluon loops can have 1/v enhancements
from regions in the momentum integral where the transverse
gluon is on shell. Consider, for example, the graph in Fig. 2,
where the gluon in the loop is a transverse gluon. The dia-
gram has a 1/v enhancement from the region in loop integral
where the fermion and virtual gluon are on shell, i.e., from
physical tranverse gluon radiation.

The transverse gluon coupling constant isgAv, which is a
factor ofv smaller than that for Coulomb gluons. Thus trans-
verse gluon loops obey naivev counting, and arev2 sup-
pressed, unless the cut part of the graph contributes to trans-
verse gluon radiation. In the latter case, the transverse gluon
graph has a 1/v enhancement over the naivev counting, and
is only suppressed by one power ofv.

It is not possible to choose a rescaling scheme which has
a manifestv-counting scheme for real and virtual transverse
gluons. The reason is that quarks behave like nonrelativistic
particles when transverse gluons are exchanged between
them, but like static particles when one of them radiates an
on-shell transverse gluon.

B. Coulomb scattering

At leading order inv, the only diagrams which contribute
to Q̄Q scattering in the effective theory are the Coulomb
ladder graphs of Fig. 3, where theA0 propagators are de-
noted by gluons with dashed lines. Crossed ladder graphs
such as Fig. 4 vanish when both gluons are Coulomb gluons.
The one-loop box graph has an integral of the form

E dK0

~2p!

d3K

~2p!3
1

uK u2
1

uK1P182P1u2

3
1

~P12K !02uP12K u2/21 i e

3
1

~P21K !02uP21K u2/21 i e
. ~2.18!

TheK0 integral can be done by contour integration to give

E dK0

~2p!

1

~P12K !02uP12K u2/21 i e

3
1

~P21K !02uP21K u2/21 i e

52
i

~P11P2!
02uP12K u2/22uP21K u2/2

, ~2.19!

which is the Schro¨dinger Green function of nonrelativistic
quantum mechanics. The ladder graphs of Fig. 3 can be
evaluated by first doing theK0 loop integrals. It is easy to
see that each loop gives the Schro¨dinger Green function for
the intermediate two-fermion state. The sum of all the ladder
graphs gives the nonrelativistic Schro¨dinger equation in mo-
mentum space for a Coulomb potential. This result is, of
course, well known. What is different here is that in the
rescaled theory, the sum of the leading order graphs is iden-
tical to the Schro¨dinger equation. While this is also the case
for NRQCD in the Coulomb gauge, the rescaling allows
similar results to be obtained in nongauge theories, such as
Yukawa theory~which we will discuss at length in the next
section!, where there is no gauge freedom in choosing the
propagator.

C. Heavy-light systems

One can see explicitly whyD2/2mQ is a relevant operator
for heavy-heavy bound states, but not for heavy-light bound
states. Consider a nonrelativistic bound state of two particles
with different massesmH andmL , with mH@mL . Applying
the rescaling, Eq.~2.9!, with mQ→mL , one finds that the
fermion kinetic terms are

cL
†i ]0cL1

1

2
cL
†¹2cL ~2.20!

for the light fermion and

cH
† i ]0cH1

mL

2mH
cH
†¹2cH ~2.21!

FIG. 2. Radiative correction to Coulomb scattering. The gluon
with a dashed line is a Coulomb gluon.

FIG. 3. The leading order contribution toQQ̄ scattering. The
gluons with dashed lines represent Coulomb gluons.
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for the heavy fermion. Thec†¹2c operator is comparable to
c†]0c for the light particle, but is smaller bymL /mH for the
heavier particle. The heavier particle can be treated as a
static source~as in HQET!, but the lighter particle must be
treated as nonrelativistic~as in NRQCD!.

D. Scaling dimensions

The velocity scaling rules have a renormalization group
interpretation. In the nonrelativistic limit, the scaling dimen-
sions of space and time should be chosen to be

@x#521, @ t#522, ~2.22!

instead of the usual choice in relativistic theories,

@x#521, @ t#521. ~2.23!

With the choice Eq.~2.22!, one finds that

@L#55, ~2.24!

@c#53/2, @A0#53/2, @A#53/2, @k0#52, @k#51.
~2.25!

Operators are relevant, irrelevant, or marginal depending on
whether their dimensions are less than, greater than, or equal
to @L#55. For example, the Coulomb interaction term
C†A0C has dimension 9/25521/2, and so the Coulomb
interaction is relevant, and of orderv21/2. The transverse
gluon interaction term isC†p–AC and has dimension
11/25511/2, and so the term is irrelevant, and of order
v1/2. This agrees with the powers ofv in the Lagrangian, Eq.
~2.10!.

III. POWER COUNTING IN CHIRAL
PERTURBATION THEORY

There has been much recent interest in applying the tech-
niques of nonrelativistic effective theories to nucleon-
nucleon scattering@6–9#. The goal is to describe low-energy
nucleon-nucleon scattering using a chiral Lagrangian where
massive excitations~such asr ’s and v ’s! have been inte-
grated out and replaced by an effective four point interaction.
Nonperturbative effects, such as the large scattering length in
the 1S0 channel or the deuteron in the

3S1 channel, could be
described by solving the Schro¨dinger equation in the effec-
tive theory.

The rescaling of the previous section can be extended to
chiral perturbation theory for heavy nucleons@11,6,9#. The
leading terms in the nucleon-pion chiral Lagrangian have the
form

L5c†S i ]01 ¹2

2M Dc2
g

f p
¹f•c†sc1

1

2
~]0f!2

2
1

2
~¹f!22

c1
f p
2 ~c†c!22

c2
f p
2 ~c†sc!2, ~3.1!

describing the interaction of a pseudoscalar Goldstone boson
f with decay constantfp and couplingg, where we have
suppressed flavor indices. The leading effects of massive ex-
citations are contained in the dimension-6 operators (c†c)2

and (c†sc)2 with dimensionless coefficientsc1 and c2. In
311 dimensions the appropriate rescaling is

x5lxX, t5Mlx
2T, c5lx

23/2C, f5~Mlx
3!21/2F,

~3.2!

giving the rescaled Lagrangian

L5C†S i ]01 ¹2

2 DC2
gMAv
f p

¹F•C†sC

1
v2

2
~]0F!22

1

2
~¹F!22

c1M
2v

f p
2 ~C†C!2

2
c2M

2v

f p
2 ~C†sC!2. ~3.3!

Both the derivative interaction and the dimension-6 operators
are irrelevant in the infrared. Each pion exchange in a Feyn-
man diagram contributes a factor ofg2M2v/ f p

2 which has
the same dependence ofM andv as an insertion of one of
the dimension-6 four-nucleon operators. This reproduces the
power counting of Ref.@6#: A graph with n insertions of
dimension-6 operators andm ladder pion exchanges scales
as

SM2v

f p
2 D n1m

5SMQ

f p
2 D n1m

, ~3.4!

where Q5Mv is the three-momentum of the scattering
nucleons~in the center-of-mass frame!. Furthermore, with
this rescaling the power counting of Ref.@9#, in which poles
in k0 in the pion propagator were treated as higher order in
the nonrelativistic expansion, is manifest. Since pion emis-
sion is kinematically forbidden asv→0, the temporal piece
of the pion kinetic term may be treated as a higher-order
insertion.

Since the pion-nucleon interaction terms are irrelevant in
the infrared, unlike the interactions in QED and QCD, per-
turbation theory for nucleon-nucleon scattering does not
break down at threshold for weak coupling. Multiloop
bubble graphs are not enhanced by powers of 1/v, but in-
stead suppressed by powers ofv. It was argued in Refs.
@6–9# that the large scattering lengths in the1S0 channel and
the deuteron in the3S1 channel in nucleon-nucleon scatter-
ing are signs of the breakdown of perturbation theory, due to
the fact that for largeM the factor in Eq.~3.4! is not small.
It was proposed by these authors that the appropriate descrip-
tion of nucleon-nucleon scattering could be obtained by sum-

FIG. 4. The crossed box graph.
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ming all terms of order (QM)n; corrections to this would be
suppressed by powers ofQ/M , and could be calculated sys-
tematically.

However, as noted in Ref.@9#, the validity of this ap-
proach rests on the assumption that coefficients of higher
dimensional four-nucleon operators in the chiral Lagrangian
with n spatial derivatives are smaller thanMn. Otherwise,
the effective theory description would break down, since the
contributions from higher dimensional operators with un-
known coefficients would be as large as the graphs which are
being summed in the effective theory. In@9# it was argued
that this assumption was consistent in the1S0 ~but not in the
3S1) channel, since no divergences were found in the Feyn-
man diagrams contributing to1S0 channel scattering which
would require counterterms scaling like (QM)n.

In this section we will investigate the validity of this
power counting in a simplified model. We will neglect the
Goldstone bosons, and simply consider a theory of a nonrel-
ativistic fermion of massM coupled to a scalar of mass
m!M ,

LY5c†S i ]01 ¹2

2M Dc2gfc†c1
1

2
~]0f!22

1

2
~¹f!2

2
1

2
m2f2. ~3.5!

The scalar plays the role of ther, v, and other excitations.
At low momenta,p!m, the scalar may be integrated out,
resulting in an effective four-fermion theory

Ld5c†S i ]01 ¹2

2M Dc1h~c†c!21•••, ~3.6!

where the ellipsis represents higher dimensional operators,
suppressed by powers ofp/m. The Yukawa potential arising
from scalar exchange in Eq.~3.5! is replaced by a series of
d functions and their derivatives in the effective theory. We
will refer to these two theories as NRY and NRd for nonrel-
ativistic Yukawa and nonrelativisticd function, respectively.

We now wish to ask whether NRd correctly describes the
cc scattering amplitude of NRY at low momentum
p<pmax, in a parameter regime where the Born approxima-
tion fails. By low momentum we meanp<pmax!m, where
pmax is held fixed as one varies the parameters in the Yukawa
theory. This is analogous to the question of whether the
dimension-6 operators in Eq.~3.3! correctly describe
nucleon-nucleon scattering at momenta much smaller than
mr , in a regime where the Born approximation fails. We
consider the problem in both 111 and 311 dimensions. In
111 dimensions, we will show that NRd correctly describes
the scattering for weak coupling; however, for a coupling
large enough that more than one bound state exists the higher
dimensional operators in NRd become important, and the
effective theory breaks down belowpmax. In this case, the
full theory is required to correctly describe the low-energy
physics. In 311 dimensions, there are no bound states for
sufficiently weak coupling. In this case NRd correctly de-
scribes the scattering and no resummation of ladder graphs is
necessary. However, when the coupling is strong enough to
form bound states, the situation is analogous to the~111!-

dimensional case with excited states. Once again the higher
dimensional operators become important, and again the ef-
fective theory description breaks down belowpmax. We find
by explicit calculation that there are, in fact, higher dimen-
sional operators in the low-energy theory which scale like
(QM)n, and spoil the power counting of Refs.@6–9#. We
will comment on the relation between our results and the
effective range expansion, as well as the case wherepmax is
allowed to vary, in Sec. IIIC.

A. 111 dimensions

In 111 dimensions, the mass dimensions of the fields and
couplings in Eq.~3.5! are

@c#51/2, @f#50, @M #51, @m#51, @g#51.
~3.7!

The Yukawa potential due to scalar exchange is

V~x!52g2E dq

~2p!

eiqx

q21m2 52
g2

2m
e2muxu. ~3.8!

An attractive potential in 111 dimensions always has a
bound state. The Schro¨dinger equation for a Yukawa poten-
tial is not analytically soluble. However, wheng is small, the
state is weakly bound and spread out over a large region. In
this limit the Yukawa potential can be approximated by the
d function,

2
g2

2m
e2muxu→2

g2

m2d~x!. ~3.9!

The d-function potential has a bound state with energy
E52g4M /4m4, and wave function

c~x!5Ake2kuxu, k5
g2M

m2 . ~3.10!

Corrections to thed-function result will be suppressed by
powers ofk/m, the ratio of the size of the state to the range
of the potential. Fork/m;1, excited bound states appear,
and thed-function approximation completely breaks down.

In effective field theory language, this indicates that the
nonrelativisticd ~NRd) potential will only correctly describe
bound states for weak coupling,k/m!1, and will break
down at larger values of the coupling. Since an excited state
may be arbitrarily close to threshold, the effective theory
may therefore break down forcc scattering at arbitrarily
low energies, which is not the usual behavior one expects
from a low-energy effective theory, where the importance of
higher dimensional operators is set by powers ofp/m. In this
case, the effects of higher dimensional operators must be
suppressed instead by powers ofk/m. Therefore, it is in-
structive to analyze this problem by matching the nonrelativ-
istic Yukawa~NRY! onto the NRd potential and seeing how
the scalek enters the problem.

To make the power counting manifest we use a rescaled
Lagrangian as in Sec. II. In 111 dimensions, the appropriate
rescaling is
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x5lxX, t5Mlx
2T, c5lx

21/2C, f5~Mlx!
21/2F,

~3.11!

wherelx51/Mv, giving

LYR5C†S i ]01 ¹2

2 DC2
g

M
v23/2FC†C1

v2

2
~]0F!2

2
1

2
~¹F!22

1

2

m2

M2 v
22F2. ~3.12!

The powers ofv can also be obtained using modified scaling
rules, as in Sec. IID. The modified scaling dimensions are

@x#521, @ t#522, @L#53, @c#51/2, @f#51/2.
~3.13!

@c†cf#2@L#523/2 and @f2#2@L#522, so that these
terms scale asv23/2 andv22, respectively. Since the tempo-
ral piece of the scalar kinetic term in Eq.~3.12! is of order
v2, it may be neglected at the order at which we are working.
Thus RNRY~rescaled NRY) describes a fermion coupled to
a static scalar field, with coupling constantgv23/2/M . The
F interactions must be summed to all orders, since the
Yukawa coupling is large. Because theF propagator has no
poles inK0 ~emission of scalars is kinematically forbidden as
v→0), only ladder graphs are nonvanishing in the nonrela-
tivistic theory. For simplicity we consider the scattering of
two off-shell fermions with energyE and zero momentum,
since the scattering amplitude will have the same singulari-
ties as for on-shell states. We will also treat thec ’s as dis-
tinguishable, since the additional graphs from Fermi statis-
tics are not relevant to our arguments. The tree-levelF
exchange graph in the ladder sum in Fig. 5 gives

I 0
Y5 i

g2

M2v3
1

m25 i
g2

m2v
, ~3.14!

wherem25m2/M2v2. The box graph gives

I 1
Y52 i

g4

M4v6E dK

~2p!

1

~K21m2!2
1

~P11P2!
02K2

5 i
g4

M4v6
2m1A«

4m3A«~m1A«!2

5 i
g4

2m4v2«1/2
2 i

3g4M

4m5v
1O~v0!, ~3.15!

where2«5(P11P2)
0 is the total rescaled energy of the

incoming particles. The two-loop box graph gives

I 2
Y5 i

g6

M6v9E dK

~2p!
E dL

~2p!

1

~K21m2!

1

~L21m2!

3
1

~K2L !21m2

1

~P11P2!
02K2

1

~P11P2!
02L2

5 i
g6

M6v9
6m219mA«12«

12m4«~m1A«!2~m12A«!~2m1A«!

5 i
g6

4m6v3«
2 i

3g6M

4m7v2A«
1 i

41g6M2

24m8v
1O~v0!. ~3.16!

TheO(1/v) term from the box graph, Eq.~3.15!, is down
by a factor ofk/m relative to theO(1/v) term due to tree-
level exchange, and so may be neglected in the weak cou-
pling limit, k!m. In this limit, one may sum the most sin-
gular contributions of the graphs in Fig. 5 to obtain, for the
ladder sum,

iA5 i
g2

m2v F11
g2«21/2

2m2v
1S g2«21/2

2m2v D 21••• G
5 i

g2

m2v
1

12g2«21/2/~2m2v !
, ~3.17!

which has a pole at«5g4/(4m4v2). Rescaling back to
physical units givesE52g4M /(4m4), which is the correct
bound state energy fork/m!1. There is always at least one
bound state pole, even for weak coupling, because the box
graph diverges asv→0.

When k/m is not small, the ladder sum is no longer a
geometric series, since ann-loop ladder graph has singulari-
ties of the form

S k

mD n 1v , S k

mD n21 1

v
1

vA«
, . . . ,

S k

mD 1v 1

~vA«!n21
,

1

v
1

~vA«!n
~3.18!

~ignoring factors ofg/m), as can easily be verified by a
dimensional estimate of then-loop graph. This behavior can
also be seen from the explicit computation, Eqs.~3.14!–
~3.16!. Each term in Eq.~3.18! is as large as a term in the
sum, Eq.~3.17!, and cannot be neglected. The scattering am-
plitude will be given by the Green function for a Yukawa
potential ~which is not known analytically! and will have
poles at the energies of all the bound states.

We now wish to integrate theF field out of the theory to
obtain the rescaled effective four-fermion theory3

Ld
R5C†S i ]01 ¹2

2 DC1
h

v
~C†C!21•••. ~3.19!

The tree-level matching condition arises fromF exchange
and gives

3The v dependence of (C†C)2 can also be obtained using Eq.
~3.13!, since@(C†C)2#2@L#521.

FIG. 5. Ladder graphs in the Yukawa theory.
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h~0!5
g2

m2 , ~3.20!

where we denote byh(r ) the r -loop contribution toh. The
one-loop matching condition is shown in Fig. 6. The box
graph has already been evaluated in the full theory in Eq.
~3.15!. In the effective theory, the box graph is

I 1
d5S h~0!

v D 2E dK0

~2p!

dK

~2p!

1

~P12K !02K2/21 i e

3
1

~P21K !02K2/21 i e

5 i S h~0!

v D 2E dK

~2p!

1

K21«

5 i S h~0!

v D 2 «21/2

2
. ~3.21!

Using the matching condition, Eq.~3.20!, we see that this
reproduces the leading term in Eq.~3.15!. It must do this,
because one cannot write down an interaction proportional to
an inverse fractional power ofe in the low-energy RNRd
effective Lagrangian. TheO(1/v) term in Eq.~3.15! is re-
produced in the effective theory by the one-loop matching
condition toh:

h~1!52
3

4

g4M

m5 52
3

4

k

m
h~0!. ~3.22!

At two loops, one needs to compute the matching conditions
in Fig. 8. The two-loop graph in the effective theory with
two insertions ofh(0) reproduces the 1/« term in Eq.~3.16!,
and the one-loop graph with one insertion ofh(0) and one
insertion of h(1) reproduces the 1/A« term. The matching
correction toh at two loops requires knowing the coefficients
of operators of the form (C†¹C)2. This is a complication of
the ~111!-dimensional analysis which is not present in
311 dimensions.

The tree-level matching condition forh only dominates
when k/m!1. In this limit, the sum of bubble graphs in
NRd shown in Fig. 7 again gives a geometric series,

i
h~0!

v
1

12h~0!«21/2/~2v !
, ~3.23!

which reproduces the result, Eq.~3.15!, of RNRY for
k!m.

Whenk/m is not small, we have already seen in the full
theory that the scattering amplitude is not given by the
simple geometric series, Eq.~3.17!; the same is, of course,

true in the effective theory. Consider a four-fermion operator
in the effective theory containing one time derivative,

c

m
c†]0cc†c1H.c. ~3.24!

Like h, higher loop matching conditions toc will be sup-
pressed by powers ofk/m, and so the matching will have to
be done to all orders whenk/m is not small. In the rescaled
theory, this operator becomes

c

v
Mv2

m
C†]0CC†C1H.c. ~3.25!

In the Born approximation the matrix element of this opera-
tor may be neglected compared to the terms in the series, Eq.
~3.17!; however, when it is inserted into a two-loop bubble
diagram, it gives a contribution to the scattering amplitude
proportional to

h2

v2
c

v
Mv2

m
;S k

mD 2 cv , ~3.26!

which, for k/m;1, is the same size as the first term in the
geometric series. Similarly, operators of arbitrarily high or-
der will contribute at all orders in 1/v to the scattering, sup-
pressed only by powers ofk/m, and so the effective field
theory is unable to describe bound states in the theory when
this parameter is not small. An infinite number of operators
is required in the effective theory to reproduce the scattering
amplitude in the full theory. A simple way to see that the
effective theory breaks down is to note that in RNRY, the
effective mass of theF is m/A2Mv;m3/g2M5m/k, for
v;g2/m2. Thus, fork!m theF field is heavy, and may be
integrated out, with higher dimensional operators suppressed
by powers ofMv/m;k/m. For k;m, theF is light, and
cannot be integrated out of the theory if bound states are to
be properly described.

B. 311 dimensions

The analysis of the previous subsection can be repeated in
311 dimensions. We will use the same symbols as in
111 dimensions, but they now have dimension

@c#53/2, @f#51, @M #51, @m#51, @g#50.
~3.27!

The three-dimensional Yukawa potential is

V~x!52g2E d3q

~2p!3
eiq•x

uqu21m2 52
g2

4p

e2muxu

uxu
. ~3.28!

FIG. 6. One loop matching condition from NRY to NRd. FIG. 7. The sum of ladder graphs in NRd using the vertex
h(0) obtained using tree-level matching.
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The Schro¨dinger equation with a three-dimensional Yukawa
potential does not necessarily have a bound state. The bound
state first appears when

g2

4p

M

m
>1.7. ~3.29!

Under the rescaling, Eq.~3.2!, the NRY Lagrangian in
311 dimensions becomes

L5C†S i ]01 ¹2

2 DC2
g

Av
FC†C1

v
2

~]0F!22
1

2
~¹F!2

2
1

2

m2

M2v2
F2, ~3.30!

while the rescaled version of NRd gives the RNRd Lagrang-
ian

L5C†S i ]01 ¹2

2 DC1hM2v~C†C!2. ~3.31!

The modified scaling rules of Sec. IID give

@x#521, @ t#522, @L#55, @c#53/2, @f#53/2,
~3.32!

so that @fc†c#2@L#521/2, and @(c†c)2#2@L#51,
which gives thev dependence of the coefficients in Eqs.
~3.30! and ~3.31!. In three dimensions, the Yukawa interac-
tion is a relevant operator, and the four-fermion interaction is
an irrelevant operator. This is a sign that the four-fermion
theory will have trouble correctly reproducing the behavior
of the Yukawa theory when there is a light bound state in the
spectrum.

Tree-levelF exchange in RNRY gives the amplitude for
CC scattering,

I 05 i
g2M2v
m2 1O~v3!, ~3.33!

and so the tree-level matching condition is the same as in
111 dimensions,

h~0!5
g2

m2 . ~3.34!

The one-loop box graph in RNRY is

I 1
Y52 i

g4

v2E d3K

~2p!3
1

uK u21m2

1

uK1P12P18u
21m2

3
1

~P11P2!
02uP22K u2/22uP11K u2/2

5
i

8p

g4

v2
1

m~m1A«!2

5 i
g4vM3

8pm3 F12
2«1/2Mv

m
1O~v2!G , ~3.35!

for off-shell incident particles withP15P250, where as be-
fore«52(P11P2)

0. The one-loop bubble graph in the low-
energy theory is

I 1
d5h2M4v2E dK0

~2p!

d3K

~2p!3
1

~P12K !02uP12K u2/21 i e

3
1

~P21K !02uP21K u2/21 i e
~3.36!

5 ih2M4v2E d3K

~2p!3
1

uK u21«

52 ih2M4v2
«1/2

4p
, ~3.37!

where we have evaluated the integral in dimensional regular-
ization. Note that an integral which diverges asKr , with r an
odd integer, is finite when regulated with dimensional regu-
larization, and needs no subtractions. The result, Eq.~3.37!,
correctly reproduces the leading nonanalytic term in Eq.
~3.35!. However, the analytic term is absent, and so one
needs to add a one-loop matching contribution toh,

h~1!5
g4M

8pm3 5
g2M

4pm

1

2
h~0!. ~3.38!

In the region of parameter space for which bound states exist
in the Yukawa theory, this term is at least as large as the
tree-level matching termh(0), and so all orders in the loop
expansion must be calculated in order to calculate the match-
ing for h. The complete matching condition forh will be
proportional to the scattering length for a Yukawa potential,
which is not analytically known in closed form. Furthermore,
there is no reason forh to be of the naive size 1/m2. In
particular, if there is a bound state near threshold,h will be
much larger.

The two-loop ladder graph in the full theory is

I 25 i
g6

~4p!2v3
1

~m22«!2
ln

~2m1«1/2!2

3m~m12«1/2!

5 i
g6M4v

~4p!2m4 F ln432
«1/2Mv
m

1
«M2v2

4m2

3S 718ln
4

3D1O~v3!G , ~3.39!

the two-loop bubble graph in RNRd is

i
g6M6v3

~4p!2m6 «, ~3.40!

and the one-loop graph with a single insertion ofh(1) is

22ih ~0!h~1!
M4v2

4p
«1/252 i

g6M5v2

~4p!2m4

«1/2

m
. ~3.41!

The sum of the graphs on the right-hand side of Fig. 8 is

i
g6M4v

~4p!2m4 F2
«1/2Mv
m

1
«M2v2

4m2 4G . ~3.42!

Comparing Eq.~3.42! with Eq. ~3.39!, we see that the
nonanalytic term of order«1/2 is again reproduced in the
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effective theory, as it must be, but that the terms of order«
and «0 terms are not reproduced. Therefore there is a two-
loop contribution toh,

h~2!5
g6M2

~4p!2m4 ln
4

3
5h~0!S g2M4pmD 2ln43 , ~3.43!

which once again is at least as large ash(0) in the region of
interest, while at order« the difference between the graphs in
the two theories

i
g6M4v

~4p!2m4

«M2v2

4m2 S 318ln
4

3D ~3.44!

contributes to the matching conditions of an operator such as
C†i ]0CC†C, with coefficient

g6M6v3

~4p!2m6 S 3412ln
4

3D 5S 3412ln
4

3D S h~0!M2v
4p D 2h~0!M2v.

~3.45!

The important observation is that this counterterm contrib-
utes to the« term at order (QM)3, the same order as the
two-loop bubble graph in the effective theory; hence, without
knowing the coefficients of the dimension-8 operators in the
effective theory all terms of the form (QM)n are not
summed. It is clear that a similar situation exists at higher
loops: Each loop graph in the effective theory is the same
order as a counterterm, and so without knowing the counter-
terms, the graphs may not be summed. Thus, without includ-
ing all higher dimensional operators, the effective theory
does not correctly sum all terms of order (QM)n.

C. Bound states and the effective range expansion

Let us look for bound state poles in the scattering ampli-
tude. In 111 dimensions, the bubble chain sum in the effec-
tive theory had contributions proportional to inverse powers
of v, which diverged in the low-energy limit. Thus, for weak
coupling there was a bound state at threshold, which was
reproduced in the low-energy theory. In 311 dimensions, the
full theory with a Yukawa potential has a bound state at
threshold wheng2M /4pm.1.7. Since in the bubble sum in
NRd only positive powers ofv occur, all higher-order
graphs contributing to the scattering amplitude vanish at low
energy. Therefore, there can be no bound state pole at thresh-
old unless one of the coefficients in the effective Lagrangian
NRd diverges. In particular, there can be a bound state at
threshold if h→`. To see this in thed-function effective
theory, one must evaluate the matching condition forh to all
orders, sinceg2M /4pm is not small.

For finiteh the bubble sum in the effective theory may be
summed to find a bound state for finiteh. Neglecting the
contributions from operators of dimension.6, the bubble
chain sum is

ihM2vF12
hM2v«1/2

4p
1S hM2v«1/2

4p D 21••• G
5 ihM2v

1

11hM2v«1/2/4p
, ~3.46!

which is the expression given by Weinberg@6#. There is a
pole at

hM2v«1/2

4p
521 ~3.47!

or, rescaling back to physical units, at

hM3/2~2E!1/2

4p
521, ~3.48!

which, for h,0, has a bound state below threshold. The
bound state energy is@6#

E52
16p2

h2M3 . ~3.49!

When uhu→`, the bound state approaches the threshold.
We have argued, however, that the bubble sum in the

effective theory does not correctly sum the terms of order
(QM)n. What relation does this bound state then have to a
bound state in the full theory? To answer this, it is useful to
recall some results of the effective range expansion for po-
tential scattering.

The scattering amplitudeiA is related to the phase shift
d by

kcotd5
4p

MA1 ik. ~3.50!

In the effective range expansion,kcotd is expanded in pow-
ers ofk,

kcotd52
1

a
1
1

2
r ek

21c4k
41•••. ~3.51!

This expansion gives us some useful additional information,
because it is known to have a radius of convergence>m/2
@12,13#. Herea is the scattering length, andr e is the effec-
tive range. The first two terms in this series provide a very
good approximation to the measured nucleon scattering cross
sections. As shown in Ref.@9#, Eqs.~3.50! and~3.51! imply
that the four-fermion operators in NRd have a momentum
expansion of the form

2
4p

M Fa1
1

2
a2r ek

21S a3 14 r e22a2c4D k41••• G . ~3.52!

FIG. 8. Two-loop matching condition from
NRY to NRd.
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Rescaling these coefficients, we find thath is related to the
exact scattering lengtha of the Yukawa theory,

h52
4p

M
a, ~3.53!

whereas a two-derivative term such asC†
“

2CC†C has a
coefficient of order

2pM3v3a2r e . ~3.54!

The scattering length diverges when there is a bound state at
threshold, so thath→`. It is known from potential scattering
that the other coefficients in the effective range expansion,
Eq. ~3.51!, do not diverge@12,13#. In this case, the coeffi-
cients of the higher dimensional operators diverge as well, as
is evident in Eq.~3.52!, and the divergent behavior of the
various coefficients is highly correlated. It is difficult to see
this behavior by studying the matching conditions to the ef-
fective theory, since one must perform the matching to all
orders in the loop expansion. However, the effective range
expansion gives nontrivial information on the form of the
complete matching conditions.

If we now considercc scattering, the two-bubble graph
from the dimension-6 operator (c†c)2 gives a term of order

a3M3v3

4p
, ~3.55!

which is to be compared with the counterterm contribution,
Eq. ~3.54!. The terms have the same explicit dependence on
M andv, as we have already argued, and so the bubble graph
is the same order as the counterterm using the power-
counting scheme of@6–9#. Furthermore, both terms are sup-
pressed by two powers ofQ5Mv relative to the contact
term, and so even whenM is large it is not necessary to
resum the bubble graphs in this scheme. However, the
bubble graph will dominate when

a

4pr e
@1. ~3.56!

Summing bubble graphs in the effective range expansion
therefore corresponds to an expansion in powers of
a/4pr e , notQ/M . Therefore, when the scattering length is
large~and therefore the bound state is nearly at threshold! the
sum of the bubble graphs in NRd correctly describes the
bound state, and Eq.~3.49! is valid, up to corrections of
order 4pr e /a. However, as discussed in@9#, when the scat-
tering length is large the effective theory breaks down not at
k;m;r e

21 , but at a much lower scale

k;A 2

are
, ~3.57!

which, in the region where the bubble graphs dominate, is
much less thanm. The region of convergence is not con-
trolled by the scalar mass, and vanishes as the bound state
approaches threshold. Thus, we still do not have the situation
we had in weakly bound~111!-dimensional theory in which

the bound state was correctly predicted in the low-energy
theory but the radius of convergence of the theory was set by
the heavy scalar mass.

D. Implications for chiral perturbation theory

The results are unchanged when pions are included in the
chiral Lagrangian, since pion exchange scales withM and
v in the same way as the dimension-6 contact interactions.
We may therefore conclude from this simple model that chi-
ral perturbation theory cannot sum all terms of order
(QM)n without including an infinite number of higher-
dimensional operators. Using the effective range expansion,
we see that the bubble graphs only correctly describe the
low-energy bound state when the effective field theory
breaks down at a scale much less than the symmetry-
breaking scaleLxSB ~the analogue of the scalar mass in our
simple model!. Therefore the standard form of heavy
nucleon chiral perturbation theory does not provide the cor-
rect description of nucleon-nucleon scattering up to energies
set by the scale of the heavy excitations which have been
integrated out of the theory. This does not mean that the
effective field theory idea is useless: It does mean, however,
that the usual chiral Lagrangian is not the correct effective
field theory. If the appropriate low-energy degrees of free-
dom are introduced by hand as new fields in the effective
Lagrangian, it should be possible to correctly describe low-
energy nucleon-nucleon scattering in an effective field
theory.4 However, the properties of the low-energy degrees
of freedom are not determined by the parameters in the stan-
dard chiral Lagrangian, unless all higher dimensional opera-
tors are included.

IV. CONCLUSIONS

Rescaled nonrelativistic effective field theories simplify
the study of weakly bound states in quantum field theory.
The use of RNRQCD makes thev power counting of
NRQCD manifest, and reorganizes the perturbation expan-
sion in a more systematic way. Rescaled effective theories
can also be used to study Yukawa bound states due to scalar
exchange. In 111 dimensions, a bound state occurs at weak
coupling because then-loop ladder graph diverge is propor-
tional to 1/(2E)n/2. In this limit one may sum the diagrams
of Fig. 7 and obtain the properties of the bound state, without
worrying about higher-loop matching conditions. In three di-
mensions, one needs a critical coupling before there exists a
bound state, and the problem is intrinsically strongly
coupled. One needs to include the full Yukawa interaction to
study the bound state. Equivalently, the matching from
NRY to NRd must be performed to all orders in the loop
expansion, and the higher-order matching terms are relevant
for the bound state. We have shown by explicit computation
that the power-counting scheme of Refs.@6–9# that involves
summing powers ofQM does not hold for Yukawa theory.
One cannot, in general replace the Yukawa potential by a
d-function potential to study even weakly coupled bound
states in three dimensions, except for a very limited region in

4We thank D. Kaplan for discussions on this point.
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momentum spaceuku,A2/are, which vanishes as the bound
state approaches threshold.
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