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We present results for the matrix elements of a variety of four-fermion operators calculated using quenched
Wilson fermions. Our simulations are done on 170 lattices of size 323364 at b56.0. We find
BK50.7460.0460.05,BD50.7860.01,B7

3/250.5860.0220.03
10.07, B8

3/250.8160.0320.02
10.03, with all results being

in the NDR scheme atm52 GeV. We also calculate theB parameter for the operatorQs , which is needed in
the study of the difference ofB-meson lifetimes. Our best estimate isBS(NDR,m51/a52.33 GeV)
50.8060.01. This is given at the lattice scale since the required two-loop anomalous dimension matrix is not
known. In all these estimates, the first error is statistical, while the second is due to the use of truncated
perturbation theory to match continuum and lattice operators. Errors due to quenching and lattice discretization
are not included. We also present new results for the perturbative matching coefficients, extending the calcu-
lation to all Lorentz scalar four-fermion operators, and using NDR as the continuum scheme.
@S0556-2821~97!05307-1#

PACS number~s!: 12.38.Gc, 12.15.Hh, 14.40.2n

I. INTRODUCTION

One of the central goals of lattice QCD is to calculate
hadronic matrix elements of phenomenological interest@1,2#.
We present here results for the matrix elements of a variety
of four-fermion operators:BK , which is needed as input for
estimates ofCP violation in K-K̄ mixing; BD , required to
estimateD-D̄ mixing and an indication of the result forB
mesons;B7

I53/2 andB8
I53/2, which determine the dominant

contribution of electromagnetic penguin diagrams toe8/e;
and a new quantity,BS , needed as part of an estimate of the
lifetime difference betweenB mesons@3#.

Our results are obtained using Wilson fermions in the
quenched approximation. The use of Wilson fermions makes
it more difficult to extract quantities which are constrained
by chiral symmetry. This is a problem for the calculation of
BK , and our results are not competitive with those from
staggered fermions. Our aim here is to gain experience at
reducing systematic errors. The other matrix elements are not
constrained by chiral symmetry, and for these it is more
straightforward to use Wilson than staggered fermions.

Compared to previous work with Wilson fermions, our
study uses larger lattices (323364), which should make fi-
nite volume effects negligible, reduces the statistical errors,
has improved statistics~170 lattices!, and uses a larger range
of light quark masses (0.3ms,phys–2ms,phys). The latter im-
provement allows us to do more reliable chiral extrapola-
tions, since we can include terms ofO(mK

4 ). We have results
at only a single lattice spacing,b[6/g256, and so we can-
not extrapolate to the continuum limit of the quenched

theory. What we provide is one point with statistical errors
small enough that systematic errors due to chiral extrapola-
tions and the truncation of perturbation theory can be quan-
tified.

As an adjunct to our numerical results, we have extended
previous calculations of the perturbative matching coeffi-
cients between lattice and continuum operators. We also
present a renormalization-group-improved matching formula
which incorporates tadpole-improved lattice perturbation
theory.

The plan of the paper is as follows. We begin, in Sec. II,
by summarizing our results. In Sec. III we describe the vari-
ous technical details pertinent to this calculation. Section IV
summarizes the matching between lattice and continuum op-
erators. Results for the variousB parameters are given in the
final four sections. We discuss two technical issues in appen-
dixes. Appendix A describes a renormalization-group-
improved matching formula, while in Appendix B we
present general formulas for the one-loop matching coeffi-
cients for all Lorentz-scalar four-fermion operators between
the lattice and the naive dimensional reduction~NDR!
scheme.

II. SUMMARY OF RESULTS

We begin with our result forBK @defined in Eq.~5.1!#:

BK~NDR,2 GeV!50.7460.04~stat!60.05~subt!. ~2.1!

The second error is an estimate of the uncertainty due to our
method of subtracting chiral artifacts. This is a considerable
improvement over our previous work@4#—the statistical er-
ror has been reduced by a factor of;6, and we have better
control over the systematic errors.

It is interesting to compare our result to those other recent
high statistics calculations at or near the same lattice spacing,
particularly since all use different subtraction methods. Ber-
nard and Soni use Wilson fermions atb56 on 243339 lat-
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tices@5# and findBK50.6760.07. Their subtraction method
uses off-shell matrix elements@6# whereas ours uses on-shell
matrix elements at finite momentum transfer. One concern
with their result is that they use larger quark masses, which,
according to our analysis, may lead to an overestimate of
BK . Nevertheless, it is encouraging that the results agree.

The APE group has used improved ‘‘clover’’ fermions
and a nonperturbative determination of the matching coeffi-
cients @7,8#. Their nonperturbatively matched operator has
the correct chiral behavior. They present their result~from
b56 on 183364 lattices! in the ‘‘regularization-
independent’’ scheme,BK(RI,2.02 GeV)50.62(11). The
numerical value is unchanged upon conversion to NDR and
is consistent with our result. The two results can differ by
terms ofO(a), but the errors are too large to resolve any
difference.

The JLQCD Collaboration has recently presented results
using Wilson fermions and a nonperturbative determination
of matching coefficients@9#. They find, atb55.9 and 6.1,
that BK(NDR,2 GeV)50.4860.05 and 0.7060.07, respec-
tively. They also have a result for the value in the continuum
limit, BK(NDR,2 GeV,a50)50.5960.08. The latter two
numbers are consistent with our result, while the former is
not. Our methods seem to work comparably well—the final
errors are similar, based on similar samples and lattice sizes.
It will be interesting to use their nonperturbative matching
coefficients with our data to evaluate the accuracy of the
procedure we use to remove lattice artifacts in the chiral
expansion.

Finally, we compare our result with that from staggered
fermions. We expect that the two should agree up to correc-
tions of O(a). At b56.0, different choices of discretized
staggered operators give results in the range 0.68–0.71@10–
13#, with statistical errors of 0.01 or smaller. Our results are
consistent with these, but our errors are too large to allow us
to see the expectedO(a) differences.

Our final results forB parameters forD mesons@defined
in Eq. ~6.1!# are

BD~NDR,m52 GeV!50.78560.015 , ~2.2!

BDs
~NDR,m52 GeV!50.8360.01 , ~2.3!

BDs
/BD51.04760.014 . ~2.4!

The errors are much smaller than forBK as we need make no
corrections for mixing with wrong chirality operators. Thus,
for this calculation, we are at a point where the remaining
systematic errors~finite lattice spacing and quenching! are
likely to be larger than the statistical errors. These results are
consistent with those previously obtained~see, for example,
the compilation in Ref. @5,15#!, but have considerably
smaller errors.

Our final results for theB parameters of theI53/2 parts
of the operatorsQ7 andQ8 @defined in Eqs.~7.1!–~7.4!# are

B7
3/2~NDR,2 GeV!50.5860.02~stat!

10.07
20.03~pert! ,

~2.5!

B8
3/2~NDR,2 GeV!50.8160.03~stat!

10.03
20.02~pert! . ~2.6!

The ‘‘perturbative error’’ reflects the dependence of the re-
sults on the choice ofas used in the matching of continuum
and lattice operators, and is comparable to or larger than the
statistical errors. The perturbative error could be removed by
the use of nonperturbative matching coefficients, but these
are not yet available forQ7 andQ8. Our results are consis-
tent with those we found previously@4#, the apparent differ-
ence being due to the use of a different continuum regular-
ization scheme, a different final scale, and a different choice
of as in the matching of continuum and lattice operators.

Our values are smaller than the numbers used by Lusi-
gnoli et al. @1# and Ciuchiniet al. @16# in their analyses of
predictions fore8/e: They takeB7

3/25B8
3/251.060.1. This

difference is important because a smallerB8 means a larger
e8/e.

The final quantities we consider areBS[B4
1 and the re-

lated parameterB5
1 @defined in Eqs.~8.1! and~8.2!#. What is

of interest for phenomenology is the value ofBS for b̄s me-
sons. The closest we can come is the result for ab quark with
roughly the mass of the charm, which is

B4
1~NDR,1/a!50.8060.01~stat! , ~2.7!

B5
1~NDR,1/a!50.9460.01~stat! . ~2.8!

We have to quote these results atm51/a52.33 GeV be-
cause the two-loop anomalous dimension matrix needed to
run to 2 GeV has not been calculated. For the same reason,
we cannot estimate a ‘‘perturbative’’ error.

There are no previous results for theseB parameters using
propagating heavy quarks. Recently, Gime´mez and Marti-
nelli have calculatedBS in the static limitmb→` @17#. Their
lattice result, also atb56.0 but without including any per-
turbative corrections, is BS

GM52 5
8BS52(0.6060.01

60.03). While this is'20% larger than our result, the
above-mentioned differences preclude any meaningful com-
parison.

III. TECHNICAL DETAILS

We use a sample of 170 gauge configurations of size
323364 generated atb56 in the quenched approximation.
In the following we outline the method we have used to
calculate matrix elements of four-fermion operators. Further
details of our update and inversion algorithms, and of our
determination of quark masses, can be found in Ref.@14#.

A. Quark propagators

In our approach we need two kinds of quark propagators:
one which allows for the creation of mesons with an explicit
zero-momentum projection and the other that allows good
overlap with a range of lattice momenta. For the former we
use wall sources~on a time slice fixed to the Coulomb
gauge!, for the latter, gauge-invariant Wuppertal sources.
Both are calculated using periodic boundary conditions in all
directions. We calculate propagators at five quark masses:
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k50.135 (C), 0.153 (S), 0.155 (U1), 0.1558 (U2), and
0.1563 (U3). These quark masses correspond to pseudosca-
lar mesons of mass 2835, 983, 690, 545, and 431 MeV,
respectively. Here, as in the following, we have used
1/a52.330(41) GeV, the scale we determined in Ref.@14#
usingM r .

With these five flavors we construct 15 distinct ‘‘kaons,’’
whose matrix elements we then study. The threeUi quarks
allow us to extrapolate to the physical isospin-symmetric
light quark massm̄5(mu1md)/2, whose value is deter-
mined by matchingMp /M r to experiment. The physical
value of the strange quark mass, determined using
Mf /M r , lies betweenS and U1, and we use these two
points to interpolate to it. It turns out that other ways of
determiningms , e.g., matching toMp

2 /MK
2 , lead to values

differing by ;20%. To estimate the uncertainty that this
introduces, we calculate kaon matrix elements in two ways:
by interpolating to our standardms and by directly using the
results forU2U3, which turns out to have almost exactly the
physical kaon mass, albeit for almost degenerate quarks. For
BK , B7

3/2, andB8
3/2, the difference between the two results

turns out to be much smaller than other errors, and so we do
not quote a systematic error due to the uncertainty in setting
ms . In the case ofBDs

andBS , the difference between using

ms(MK) and ms(Mf) is '1% with ms(Mf) giving the
larger value. For reasons explained in@14#, we believe that
ms(Mf) gives a better estimate ofms , and we use this value
consistently for our final results. To illustrate the details of
our analysis we often use results fromU2U3 as they are very
close to the physical kaon mass.

Finally, we take the physical charm mass to beC. With
this choice the experimental values ofMD , MD* , andMDs

lie between the static massM1 ~measured from the rate of
exponential falloff of the two-point function! and the kinetic
mass defined asM2[(]2E/]p2up50)

21 @14#.

B. Extracting the four-fermion matrix elements

We use the same method for calculating matrix elements
of four-fermion operators as in our earlier work@4#. The
method is illustrated in Fig. 1. The initial pseudoscalar state
is created by wall sources at timeT50 and, thus, has
pW 5(0,0,0). It propagates both forward and backward in
time. The four-fermion operator is inserted at a time in the
range 1–31~63–33 for the backward moving particle!. The

operator insertion is done at the five lowest lattice momenta
pW 5(0,0,0), (1,0,0), (1,1,0), (1,1,1), and (2,0,0), averaging
over all possible permutations of the components ofpW . The
pseudoscalar emerging from the four-fermion operator is
then destroyed by an operator constructed using Wuppertal
sources atT532. It is essential that this operator have a large
coupling to kaons with all the above momenta, and we find
that Wuppertal smearing does this well. In the end, we have
two measurements, corresponding to the forward and back-
ward propagation, and, furthermore, each of these is an av-
erage over a certain number of time slices.

As shown in Fig. 1, we calculate the ratio of the matrix
element of the four-fermion operator to a product of bilinear
matrix elements. The bilinears are either the time component
of the axial-vector current or the pseudoscalar density. Each
of these bilinear matrix elements is separately averaged over
the gauge configurations. In the following we generically
refer to the ratios of matrix elements asB parameters. Using
ratios cancels both the exponential decay factors and the
overlap of the source operators with the kaons. This leads to
simplified fitting and to a reduction in statistical errors. For
the renormalizedDS52 LL operator, theB parameter one
obtains~using the axial-vector current in the denominator! is
proportional toBK . To calculateB7, B8, and BS is more
complicated, since, as explained below, the denominator in-
volves both axial-vector and pseudoscalar bilinears.

In several applications we need to consider the matrix
element of the four-fermion operator at intermediate stages
of the calculations. This we obtain by multiplying the ratio
by the product of bilinear matrix elements, themselves cal-
culated from two-point functions.

A possible source of systematic error is contamination
from excited states. In order to assess the size of this error,
we calculate the ratios with sources having two Lorentz

FIG. 1. The ratio of correlations functions that we calculate. The
sourcesJ are the same for all four pseudoscalar mesons. We show
the picture for the case of propagation forward in time.

FIG. 2. BK ~using one-loop matching withm5q*51/a) as a
function of the time sliceTop at which the operator is inserted for
the two choices of sourceJ. The data are for the mass combination

U2U3 with momentum transferpW 5(0,0,0). The fits are shown by
the solid line and the errors by the dashed lines. The fit range
Top511–21 is chosen to be midway between the two sources.
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structures: Either all are pseudoscalars,J;P5(c̄1g5c2), or
all are axial vectors,J;A45(c̄1g4g5c2). The resultingB
parameters should be the same in both cases, but we find that
the convergence is from opposite directions, as shown in
Figs. 2 and 3. If the two asymptotic results overlap, then the
effect of contamination is smaller than the statistical errors.
We find that the two results do overlap, as illustrated by the
figures, in all channels. The difference between the two cases
increases as the quark mass is decreased, growing to;1s
for the lightest combinationU3U3. In practice, we take the
average of the results from the two sources as our best esti-
mate.

C. Statistical errors

We estimate errors using a single elimination jackknife.
We first average the data from the forward and backward
propagation of kaons on each configuration. Then, within the
jackknife loop, we fit to the ratios for each of the two sources
and average the results of these fits.

IV. OPERATOR MIXING
AND PERTURBATIVE RUNNING

In phenomenological applications the matrix elements of
operators must be combined with Wilson coefficients. These
coefficients have been calculated in continuum perturbation
theory in the NDR scheme. Results are available at a number
of scales, and we take 2 GeV as our standard. We thus need
to relate our results for lattice matrix elements to those for
continuum operators in the NDR scheme at 2 GeV.

The general form of the matching formula is

Ocont~m! i5Z~m,a! i jOlatt~a! j , ~4.1!

wherei and j label operators.Z can be expanded as a power
series ing2, and typically only theO(g2) term is known.

Rather than use the direct perturbative expansion, however,
it is better to use a renormalization-group-improved expres-
sion. In Appendix A we give such an expression forZ @Eq.
~A8!# by combining the exact perturbative result of Ji@18#
with the improved lattice perturbation theory of Lepage and
Mackenzie @19#. The additional input needed is the con-
tinuum two-loop anomalous dimension matrix. The improve-
ment is significant numerically when the difference between
continuum scalem52 GeV and the lattice scales 1/a2p/a
becomes substantial and when the anomalous dimensions are
large. The improvement is most important here in the calcu-
lations ofB7,8

3/2.
In practice we use a slightly different improved expres-

sion, that from ‘‘horizontal matching,’’ which is given in Eq.
~A14!. The numerical difference between the two methods is
smaller than our statistical errors.

We need the matching coefficients for the operators with
Dirac structuregmL^ gmL ~for BK), gmL^ gmR ~for B7 and
B8), and L^L ~for BS). Those for the first two structures
have been previously calculated in Refs.@20,21#, using the
DRED ~dimensional reduction! scheme or a variant thereof.
We have extended these calculations by~i! repeating them
for all Lorentz-scalar four-fermion operators, including those
needed forBS , and~ii ! matching to NDR in the continuum
rather than DRED. We give the results in Appendix B. We
find that using tadpole-improved lattice operators substan-
tially reduces the one-loop corrections@19,22#. For the local
operators we use, tadpole improvement involves changing
the normalization of quark fields by replacingA2k with
A8kcA123k/4kc. We make this replacement in our numeri-
cal simulations, even though it cancels between the numera-
tor and denominator of theB parameters.

It turns out that the results for the matching coefficients
for the local four-fermion operator can be easily generalized
from Wilson fermions to those for any improved fermion
action. One only needs to know the matching coefficients for
the five bilinear operators. We present the results in Appen-
dix B in such a way that this generalization can be straight-
forwardly implemented.

To carry out the matching we need to choose not only the
final continuum scalem, but also a scaleq* related to the
truncation of perturbation theory~and explained in detail in
Appendix A!. For our final results we takem52 GeV and
vary q* in the range 2 GeV<q*<p/a, taking 1/a for our
best estimates. At intermediate stages it is convenient to take
m5q*51/a, which we call the TAD1 scheme. This corre-
sponds to doing horizontal matching at 1/a, but no further
running in the continuum. This choice has the advantage that
our results depend very weakly on the lattice spacing in
physical units—the only dependence arises when we have to
interpolate to the physical kaon mass.

Finally, we explain how we determine the modified mini-
mal subtraction scheme (MS) coupling constant, which is
needed in the matching formula. We do this following Ref.
@19#, by first solving

2 lnh5
4p

3
aV~3.41/a!~121.185aV! ~4.2!

for aV and then converting to theMS scheme using

FIG. 3. Same as Fig. 2 except that the data are for momentum

transferpW 5(2,0,0). Because the signal in the backward-propagating
correlator~which has nonzero momentum! dies off for T&15, the
fit range is asymmetric.
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aMS~3.41/a!5aV~e5/6 3.41/a!~112aV /p! . ~4.3!

For the plaquette we useh50.5937. We run the coupling to
other scales using the two-loopb function. This results in
as(q* )50.2049, 0.1927, 0.1523, and 0.1343 forq*52
GeV, 1/a, 2/a, andp/a, respectively.

V. RESULTS FOR BK

The kaonB parameter is defined in the continuum by

BK~m!5
^K0uQuK̄0&

~8/3! ^K0us̄agng5dau0& ^0us̄bgng5dbuK0&
,

~5.1!

whereQ is the left-leftDS52 operator,

Q5 s̄agmLdas̄bgmLdb , ~5.2!

andL5(12g5). We are ultimately interested in the value of
BK whenQ does not insert momentum and when the ‘‘ka-
ons’’ have physical masses. The definition, Eq.~5.1!, is,
however, more general and is useful at intermediate stages.
BK depends on the renormalization scalem becauseQ has a
nonvanishing anomalous dimension unlike the axial-vector
current.

To calculateBK , we use the results of Appendixes A and
B matchQ to a linear combination of lattice operators with
different Lorentz structures. ThusBK itself is a linear com-
bination of latticeB parameters, which we define to be the
ratio of the matrix element of the four-fermion operators
@listed in Eq.~B2!# to

4
3 ^K0u~ s̄agng5da!

lattu0&^0u~ s̄bgng5db!
lattuK̄0& . ~5.3!

The four-fermion operators in Eq.~B2! have half the Wick
contractions ofQ, which is why Eq.~5.3! contains 4/3 in
contrast with the 8/3 in Eq.~5.1!. Note that we do not include
perturbative matching factors in theseB parameters; i.e., the
operators in the numerator and denominator are bare lattice
operators. In Table I we give our results for all theB param-
eters for theU2U3 meson. This is the lattice meson whose
mass lies close to that of the physical kaon.

We also include in Table I results forBK using one-loop
matching in the TAD1 scheme, i.e.,m5q*51/a. At the tree
level,BK is just the following sum of theB parameters~for
definitions see Appendix B!:

BK;As
11At

11Vs11Vt11As
21At

21Vs21Vt2 . ~5.4!

At one loop, however, all Lorentz structures enter. In the
result forBK we include one-loop matching factors, not only
in the numerator, but also in the denominator; i.e., the lattice
axial-vector currents in the denominator have each been mul-
tiplied by ZA511l(q* )cA . To reduce errors, we always
form the appropriate linear combination of operators in the
numerator and denominator before fitting. The results in
Table I indicate the relative size of the matrix elements of the
contributing operators. The largest are the those of the pseu-
doscalars and tensors. The results using the two sources
(J5A4 andP) agree within errors in most cases. Our best
estimate, as explained above, is obtained by averaging the
two results. The errors increase as the momentum inserted by
the operator increases, but we retain good statistical control

TABLE I. B parameters~defined in the text! for individual operators without any renormalization factors. The results forBK , B7
3/2,

B8
3/2, B4

1, andB5
1 are in the TAD1 scheme. All data are for the mass combinationU2U3. The data are shown separately for the two types

of sourceJ and for the five momentum transfers. The columns are labeled byJ@p2#J.

P@0#P A@0#A P@1#P A@1#A P@2#P A@2#A P@3#P A@3#A P@4#P A@4#A

2P1 13.9~1! 13.4~2! 9.9~2! 9.6~2! 8.5~3! 7.9~3! 7.5~4! 6.7~3! 7.1~4! 5.5~4!

2S1 3.36~4! 3.22~7! 2.31~8! 2.26~10! 2.05~12! 1.89~11! 1.79~17! 1.57~14! 1.50~21! 1.20~17!
Vs1 4.43~5! 4.20~9! 2.88~9! 2.70~12! 2.41~13! 2.11~12! 2.06~18! 1.66~15! 1.78~24! 1.22~21!
Vt1 1.62~2! 1.54~3! 1.09~3! 1.03~4! 0.93~4! 0.84~4! 0.80~6! 0.68~5! 0.72~8! 0.52~7!

2As
1 3.46~4! 3.30~6! 2.34~6! 2.21~8! 1.95~8! 1.73~8! 1.68~11! 1.38~9! 1.51~15! 1.01~13!

2At
1 0.86~1! 0.81~2! 0.49~2! 0.45~2! 0.37~3! 0.30~2! 0.29~4! 0.19~3! 0.22~5! 0.08~5!

T s
1 15.2~2! 14.6~2! 10.5~3! 10.2~4! 9.0~4! 8.4~4! 7.9~6! 7.0~5! 7.1~7! 5.7~6!

T t
1 15.3~2! 14.7~2! 10.7~3! 10.4~4! 9.2~4! 8.5~4! 8.0~5! 7.1~5! 7.3~7! 5.7~6!

2P2 37.2~3! 36.0~5! 26.7~5! 26.0~6! 22.9~7! 21.3~7! 20.3~9! 18.0~8! 19.4~11! 15.1~10!
2S2 4.78~8! 4.59~12! 3.30~15! 3.27~20! 3.06~23! 2.79~20! 2.66~32! 2.30~24! 2.13~36! 1.76~30!
Vs2 0.40~1! 0.37~1! 0.25~1! 0.24~2! 0.19~1! 0.17~2! 0.16~2! 0.12~2! 0.14~2! 0.05~3!

Vt2 0.15~0! 0.14~0! 0.10~0! 0.09~1! 0.08~1! 0.08~1! 0.08~1! 0.06~1! 0.06~1! 0.04~1!

2As
2 2.87~3! 2.76~4! 1.98~4! 1.88~6! 1.66~6! 1.54~7! 1.44~9! 1.27~8! 1.35~12! 1.05~11!

At
2 20.17(1) 20.14(1) 0.12~1! 0.14~2! 0.20~3! 0.25~3! 0.25~4! 0.33~4! 0.33~5! 0.39~5!

T s
2 0.54~1! 0.51~1! 0.35~1! 0.34~1! 0.29~2! 0.27~2! 0.25~2! 0.23~2! 0.21~3! 0.16~3!

T t
2 0.55~1! 0.52~1! 0.36~1! 0.35~2! 0.30~2! 0.28~2! 0.27~2! 0.24~2! 0.22~3! 0.17~3!

BK 20.30(1) 20.28(1) 20.03(1) 20.01(2) 0.09~2! 0.14~3! 0.19~3! 0.23~3! 0.23~4! 0.28~6!

B7 0.60~0! 0.60~1! 0.61~1! 0.60~1! 0.60~1! 0.61~2! 0.60~2! 0.62~2! 0.64~2! 0.62~3!

B8 0.82~0! 0.82~1! 0.82~1! 0.82~1! 0.82~2! 0.82~2! 0.81~3! 0.84~3! 0.86~3! 0.84~4!

B4
1 0.59~0! 0.59~1! 0.60~1! 0.59~1! 0.61~2! 0.61~2! 0.61~2! 0.61~2! 0.61~3! 0.60~3!

B5
1 0.78~0! 0.78~1! 0.79~1! 0.78~2! 0.81~2! 0.80~3! 0.80~3! 0.82~3! 0.81~4! 0.80~4!
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for all five momenta. This allows us to see clearly that most
of theB parameters have substantial momentum dependence.

In Table II we give our results forBK for all mass com-
binations. To extract the physical value ofBK we must ac-
count for the breaking of chiral symmetry by Wilson fermi-
ons. The general form of the chiral expansion of the matrix
elements of four-fermion operators is

^K0~pf !uOuK0~pi !&

~8/3! f K,phys
2 5a1bmK

21g pi•pf1d1mK
4

1d2mK
2pi•pf1d3~pi•pf !

21•••,

~5.5!

where f K,phys is the physical kaon decay constant~in lattice
units!. We are ignoring chiral logarithms and terms propor-
tional to (ms2md)

2. The former are difficult to distinguish
numerically from the terms we include, while the latter we
expect to be small, especially for the range of quark masses
studied. We are also assuming that we do not need to include
possiblep4 terms which violate Lorentz symmetry.

For most operators we expect all terms in Eq.~5.5! to
contribute. ForO5Qcont, however, chiral perturbation theory
predicts that the matrix element vanishes whenpi•pf50,
requiringa, b, andd1 to be zero. This means that forBK ,
one expects

BK5
^K0uQcontuK0&

~8/3! f K
2pi•pf

5
f K,phys
2

f K
2 ~g1d2mK

21d3pi•pf !.

~5.6!

With Wilson fermions, however, chiral symmetry is broken
explicitly. This would not be a problem if one could match
with the continuum operator using a nonperturbative method
and if one could extrapolate to the continuum limit. We can
do neither of these and so expect nonzero values ofa, b, and

d1 proportional toag
2 and tog4. There will also be artifacts

of this order contained in the other coefficients in the chiral
expansion.

To show that this is indeed a problem, we plot our results
for ^K0uQcontuK̄0&/@8 f K,phys

2 /3# in Fig. 4. The figure also
shows the result of fitting the data with the six-parameter
form of Eq.~5.5!. A good fit is obtained, with nonzero values
for the artifactsa andb. The curvature in the data indicates
the presence ofp4 terms, but the values of the individual
d i are poorly determined.

The curvature is drastically reduced if we consider the
ratio

FIG. 4. Results for the matrix elementQcont/@8 f K,phys
2 /3# ~in

TAD1 scheme!, together with the chiral fit. The physical kaon cor-
responds tomK,phys

2 50.046 in lattice units.

TABLE II. Lattice results for theB parameter of theDS52 operatorQ in the TAD1 scheme. The momentum inserted by the operator
is indicated at the top of the columns, and the rows label the meson’s quark combination. Results after momentum subtraction~see text! are
given for the ten lightest mesons.

~0,0,0! ~1,0,0! ~1,1,0! ~1,1,1! ~2,0,0! Subtracted

CC 0.920(10) 0.921(11) 0.924(14) 0.925(15) 0.927(16)
CS 0.834(09) 0.838(11) 0.841(14) 0.844(16) 0.847(19)
CU1 0.808(09) 0.811(12) 0.813(16) 0.815(19) 0.817(22)
CU2 0.796(11) 0.799(14) 0.797(20) 0.799(23) 0.799(27)
CU3 0.792(13) 0.795(17) 0.789(25) 0.792(29) 0.787(36)
SS 0.558(04) 0.586(07) 0.605(10) 0.623(13) 0.638(16) 0.746(216)
SU1 0.444(04) 0.488(07) 0.518(11) 0.545(15) 0.567(19) 0.730(165)
SU2 0.382(05) 0.437(08) 0.473(12) 0.506(17) 0.532(22) 0.716(146)
SU3 0.338(05) 0.402(09) 0.442(15) 0.478(20) 0.508(26) 0.704(135)
U1U1 0.244(04) 0.332(08) 0.387(13) 0.433(17) 0.466(23) 0.716(115)
U1U2 0.112(05) 0.237(09) 0.310(15) 0.369(21) 0.408(28) 0.703(098)
U1U3 0.000(07) 0.161(10) 0.248(18) 0.318(25) 0.363(34) 0.687(088)
U2U2 20.091(07) 0.103(11) 0.204(18) 0.283(26) 0.330(38) 0.688(082)
U2U3 20.287(10) 20.017(14) 0.112(22) 0.212(33) 0.256(49) 0.670(075)
U3U3 20.597(16) 20.191(21) 20.021(31) 0.112(45) 0.140(68) 0.643(074)
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^K0uQuK0&

~8/3! f K
2 5BKpi•pf , ~5.7!

as shown in Fig. 5. Heref K is the lattice result for the decay
constant for the corresponding meson@22#. This simplifica-
tion has been noted previously by the APE group@7#. The
figure also shows a fit to the same form as on the right-hand
side~RHS! of Eq. ~5.5!. Not only are the higher order terms
smaller ~although they remain poorly determined!, but also
b is much reduced. Fitting to this ratio leads to smaller errors
in the final result, and we use it in all of the following analy-
sis.

We can reduce the uncertainty in the higher order terms
by noting that the matrix element ofQcont/@8 f K

2 /3# is to good
approximation a function only ofpi•pf , as shown in Fig. 6.
This feature was also found in Ref.@7#. This suggests fitting
with d15d250, and the result of such a fit is shown in the
figure. Thus the dominant artifact isa, with a small contri-
bution fromb, which leads to the observed deviations from a
single curve. This fit leads to the smallest errors inBK , and
we take it as our standard.

In order to extract a value forBK we use a procedure
similar to that we advocated in Ref.@4#, except that we now
have better control over the higher order terms. Having ob-
tained a fit to the data, we simply discard the terms which we
know to be artifacts. Applying this to the fit shown in Fig. 6
gives

BK~m5q*51/a!'g1~d21d3!MK,phys
2 50.68~4!.

~5.8!

We obtain consistent results, with larger errors, from the fits
of Fig. 5 @0.68(6)# and Fig. 4@0.65(10)#. The subtraction
procedure has, however, increased the errors substantially
compared to those in the values for individual mass combi-
nations. For example, the error forU2U3 in BK is 0.01~see
Table I!.

To give an idea of the importance of thep4 terms we have
done a variety of alternate fits, all to the ratioQ/@8 f K2 /3#.
Most interesting are those using only the three lowest order
terms (a, b, andg). Fitting to the results from the lightest
four mesons alone givesBK50.73(4), while fitting to the
lightest six gives 0.74(4). These are higher than our pre-
ferred number, but the difference is only slightly more than
1s. By contrast, if we fit to the combinationsU1U1, SUi ,
andSS~the heaviest five of the mesons in Figs. 4 and 5!, we
find a result, 0.80(4), significantly higher than our preferred
number. Previous work by other groups with Wilson fermi-
ons@7,5#, including our own@4#, used three-parameter chiral
fits to mesons in this mass range. Our results indicate that the
neglect of higher order terms might lead to 10–20 % system-
atic errors in their results.

We have checked our result by repeating the analysis us-
ing a second method. Returning to the original definition of
the chiral expansion, Eq.~5.5!, we note that contributions
from the artifactsa, b, andd1 can be canceled by combining
pairs of points at different momentum transfers:

E1BK~q1!2E2BK~q2!

~E12E2!
5g1d2M

21d3M ~E11E2!. ~5.9!

Here Ei is the energy of the lattice kaon with momentum
qW i . The RHS of Eq.~5.9! differs from the form forBK , Eq.
~5.8!, by d3M (E11E22M ). We use the value ofd3 ex-
tracted from the fit in Fig. 5 to correct for this. The results of
this analysis for the ten light mass combinations are given in
the sixth column of Table II. We have averaged the results
from @q1 ,q2#5@(100),(000)# and @q1 ,q2#5@(110),(000)#,
the channels with the best signal. Extrapolating or interpolat-
ing to MK , we find BK50.66(9), in good agreement with
our earlier result.

We thus are confident that our results do not have signifi-
cant errors due to yet higher order terms@of O(p6)# in the
chiral expansion. What is more difficult to gauge, however,
is the size of the lattice artifacts in the chiral coefficients

FIG. 5. Results for matrix elementQcont/@8 f K
2 /3#, together with

the results of a chiral fit.

FIG. 6. Results for matrix element ofQcont/@8 f K
2 /3#, together

with the results of a chiral fit excludingd1 and d2. The data are
plotted as a function ofpi•pf .
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which we keep, i.e.,g, d2, andd3. These artifacts are due
both to discretization errors and to higher order terms in the
perturbative matching coefficients. Recently the APE group
has studiedBK using Wilson fermions and the improved
‘‘clover’’ action, which removes errors ofO(ag2) @7#. Their
result suggests that the largest source of error in our calcu-
lation is from the matching coefficients rather than discreti-
zation.

Assuming that truncated perturbation theory is the prob-
lem, we can estimate the size of the associated systematic
errors using a method adapted from that of Bernard and Soni
@6#. As explained in Appendix B,Q matches with a linear
combination of five lattice operators: itself (2O1

1) and the
four other Fierz self-conjugate operatorsO2 –5

1 . The idea is
to separately adjust the matching coefficients ofO2 –5

1 rela-
tive to that ofO1

1 so as to remove the artifactsa, b, and
d1. The change in matching coefficients would lead to a
change in the value ofBK . Since there are four operators to
adjust but only three coefficients to fix atO(p4), we need to
make additional assumptions to carry out this procedure. One
approach might be to consider three operators at a time and
use the spread in the final results as an indicator of the sys-
tematic error.

In practice, we have only been able to carry out this pro-
cedure semiquantitatively because our statistical errors are
too large. In Table III we show the results of chiral fits to
matrix elements of various operators keeping onlya, g, and
d3.

~1! The perturbatively correctedDS52 operatorQ ~in the
TAD1 scheme! divided by 8f K

2 /3. This is the matrix element
relevant forBK , the results for which are shown in Fig. 6.

~2! Four linear combinations of the bare lattice operators
O2 –5

1 , each divided by 8f K
2 /3.

The three-parameter fit requires that the data lie on a
single curve when plotted againstpi•pf , which is not a bad
representation of theQ data, as shown in Fig. 6. The fit to
O2 –5

1 is better still. We do not introduce the fourth parameter
b, because, although this improves the fit forQ, it makes
little difference forO2 –5

1 and increases the errors in the fit
parameters.

Since our data are reasonably represented with only the
single artifacta and since the four ‘‘subtraction operators’’
can be similarly represented, our subtraction procedure is as
follows. Take each of the four operators listed in the table in
turn, add them toQ so as to cancela, and use the change in
g1d3mK,phys

2 as the estimate of the possible shift inBK . In
fact we ignore the contribution ofd3, since it is both small
and uncertain. The shifts inBK are then 0.03, 0.07, 0.06, and
0.05 for the four subtraction operators listed in Table III.

Thus we take 0.0560.05 for our estimate of this shift, the
generous error accounting for the uncertainty in this subtrac-
tion method. Thus our final estimate ofBK is

BK~m5q*51/a!50.7360.04~stat!60.05~subt!.
~5.10!

Running in the continuum tom52 GeV increases the result
slightly:

BK~m52 GeV,q*51/a!50.7460.04~stat!60.05~subt!.
~5.11!

We close this section with some comments on the reliabil-
ity of our result.

~1! Our result is almost independent of the horizontal
matching scaleq* : It increases only by 0.02 if we use
q*5p/a. This is in apparent contradiction with the conclu-
sions of Ref.@7#, who find a large dependence ofBK on their
choice ofas . The difference is due to the fact that we have
used tadpole-improved perturbation theory, in which the per-
turbative corrections to both numerator and denominator of
BK are small. Although the tadpole improvements formally
cancel at one-loop order, there is a significant numerical dif-
ference due toO(as

2) terms.
~2! The changes to the coefficients of the subtraction op-

erators required to cancel thea term in the chiral expansion
are smaller than the one-loop perturbative results. For ex-
ample, we can cancela by increasing the coefficient of
O2

11O3
1 from 21.0as /p ~its one-loop perturbative value!

to 20.6as /p'2as /p17(as /p)
2. This is not an unrea-

sonable value for a higher order perturbative term.
~3! Ideally, one would like to determine the matching co-

efficients nonperturbatively. First results with a clover action
@7,8# and with Wilson fermions@9# have been obtained. The
latter are consistent with our result obtained using the chiral
fits and perturbative matching.

~4! Finally, we note that the matrix elements ofP2 and
P1, although they are the largest of all Lorentz structures
~see Table I!, make only a small contribution toBK . This is
because they depend, to good approximation, only onmK

2

and not onpi•pf as exemplified in Fig. 7. On the other hand,
for B7

3/2 andB8
3/2, whereP2 andP1 are part of the continuum

operator, these operators give the dominant contribution.

VI. BD

The analysis of our results for

BD5
^D̄0uc̄agmLuac̄bgmLubuD0&

8/3 ^D̄0uc̄agng5uau0& ^0uc̄bgng5ubuD0&
~6.1!

andBDs
~related byu→s) is more straightforward. There are

no significant constraints from chiral symmetry—all terms in
the expansion of Eq.~5.5! are expected to be present in the
physical matrix element. Thus we simply calculate theB
parameters and extrapolate or interpolate to the physical light
quark masses.

Our results forCS andCUi mesons are given in Table
IV. They show no significant variation with momentum
transfer and very little dependence on the light quark mass.

TABLE III. Results ~in lattice units! of three-parameter chiral
fits to various operators.

Operator a g d3

Q 20.0457(14) 0.713~20! 0.52~7!

O2
11O3

1 1.79~5! 1.1~5! 21.5(1.4)
O2

12O3
1 23.36(9) 24.8(9) 2.9~2.9!

2(O4
11O5

1) 21.29(4) 21.8(4) 0.3~1.2!
2(O4

12O5
1)/3 20.71(2) 20.8(2) 0.0~6!
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Thus thea term in Eq.~5.5! is dominant—in striking con-
trast to the results for light-light mesons. Quenched chiral
perturbation theory predicts thatBD should diverge as the
light quark mass vanishes@23,24#, with the effect beginning
atms,phys/32ms,phys/4. We see no sign of such behavior with
our light quark masses, which extend down to approximately
ms,phys/3.

To investigate the convergence of perturbation theory, we
show in Table IV separately the ‘‘diagonal’’ and ‘‘mixing’’
contributions toBD . The former is the contribution from the
lattice operator having the same form as the continuum op-
erator ~i.e., 2O1

1), while the latter is the contribution from
the other operators introduced by one-loop mixing (O2 –5

1 ).

The mixing contributions are;15% ofBD , indicating rea-
sonable convergence. Their fractional contribution is also al-
most independent of the momentum and the mass of the light
quark.

Our final results are

BD~m5q*51/a!50.777~15!

and

BDs
~m5q*51/a!50.815~9! . ~6.2!

These convert to

BD~m52 GeV,q*51/a!50.785~15! and

BDs
~m52 GeV,q*51/a!50.822~10! . ~6.3!

The dependence onq* is, as forBK , smaller than the statis-
tical errors. SinceBD andBDs

are correlated, their ratio is
well determined:

BDs
/BD51.048~15! . ~6.4!

The variation ofBD with the light quark mass is described by
0.777(15)10.77(27)mqa. Heremqa is the quark mass ob-
tained from the Ward identity for the axial-vector current,
andms is fixed usingMf @14#.

VII. RESULTS FOR B7
3/2 AND B8

3/2

We now turn to the left-right operators which appear in
the effective weak Hamiltonian due to electromagnetic pen-
guin diagrams:

Q75~ s̄agmLda!@~ ūbgmRub!2 1
2 ~ d̄bgmRdb!

2 1
2 ~ s̄bgmRsb!# , ~7.1!

FIG. 7. Three-parameter fit to the matrix elements of
P2/@8 f K2 /3#. The data forP1 are similar and the VSA relation
P253P1 is approximately valid.

TABLE IV. Results forBD ~in the TAD1 scheme! for the heavy-light mesonsCS andCUi as a function of momentum insertion. Also
shown are the separate contributions of the diagonal and mixing parts of the operator. An error value of 0 means that it is less than 1/2 in
the last significant digit.

pW 5(0,0,0) pW 5(1,0,0) pW 5(1,1,0) pW 5(1,1,1) pW 5(2,0,0)

CS
Full 0.83~1! 0.84~1! 0.84~1! 0.84~2! 0.85~2!

Diagonal 0.71~1! 0.71~1! 0.72~1! 0.72~1! 0.72~2!

Mixing 0.12~0! 0.12~0! 0.12~0! 0.12~0! 0.12~0!

CU1

Full 0.81~1! 0.81~1! 0.81~1! 0.82~2! 0.82~2!

Diagonal 0.68~1! 0.69~1! 0.69~1! 0.69~2! 0.69~2!

Mixing 0.13~0! 0.13~0! 0.13~0! 0.12~0! 0.12~0!

CU2

Full 0.80~1! 0.80~1! 0.80~2! 0.80~2! 0.80~3!

Diagonal 0.67~1! 0.67~1! 0.68~1! 0.68~2! 0.68~2!

Mixing 0.13~0! 0.13~0! 0.13~0! 0.12~0! 0.12~0!

CU3

Full 0.79~1! 0.79~2! 0.80~2! 0.79~3! 0.79~3!

Diagonal 0.67~1! 0.67~2! 0.67~2! 0.67~3! 0.67~3!

Mixing 0.13~0! 0.13~0! 0.13~0! 0.12~1! 0.12~1!
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Q85~ s̄agmLdb!@~ ūbgmRua!2 1
2 ~ d̄bgmRda!

2 1
2 ~ s̄bgmRsa!# . ~7.2!

We have results only for theI53/2 parts of these operators,
since theI51/2 parts have penguin contractions which we
have not calculated. Fortunately, theI53/2 parts are of phe-

nomenological interest, because they are the only operators
giving rise to an imaginary part in theK1→p1p0 amplitude
and, thus, give the dominant electromagnetic contribution to
e8/e. We calculateB parameters forK1→p1 matrix ele-
ments, which are simpler to calculate than those for
K→pp, but are equal at leading order in chiral perturbation
theory. Thus ourB parameters are defined in the continuum
by

B7
3/25

^p1uQ7
3/2uK1&

2
3 ^p1uūg5du0&^0us̄g5uuK1&2^p1uūgmg5du0&^0us̄gmg5uuK1&

, ~7.3!

B8
3/25

^p1uQ8
3/2uK1&

2^p1uūg5du0&^0us̄g5uuK1&2 1
3 ^p1uūgmg5du0&^0us̄gmg5uuK1&

. ~7.4!

FIG. 8. Results for the ratio of correlators definingB7
3/2, in the

TAD1 scheme for theU2U3 meson.
FIG. 9. Results forB8

3/2 in the TAD1 scheme for theU2U3

meson.

TABLE V. Results forB7
3/2 andB8

3/2 in the TAD1 scheme (m5q*51/a).

B7 B8

Full Diagonal Mixing Full Diagonal Mixing

CC 0.859(09) 1.07(1) 20.22(0) 0.941(10) 1.23(1) 20.30(0)
CS 0.822(09) 1.08(1) 20.26(0) 0.943(10) 1.22(2) 20.29(0)
CU1 0.812(10) 1.07(1) 20.27(0) 0.940(11) 1.20(2) 20.28(0)
CU2 0.806(11) 1.06(2) 20.27(0) 0.936(12) 1.20(2) 20.28(1)
CU3 0.800(13) 1.06(2) 20.27(1) 0.932(14) 1.19(3) 20.28(1)
SS 0.723(05) 1.05(1) 20.34(0) 0.917(06) 1.17(1) 20.26(0)
SU1 0.695(04) 1.02(1) 20.34(0) 0.900(05) 1.14(2) 20.25(0)
SU2 0.680(04) 1.01(2) 20.35(1) 0.890(06) 1.12(2) 20.25(0)
SU3 0.669(05) 1.00(2) 20.34(1) 0.880(06) 1.11(2) 20.25(1)
U1U1 0.660(04) 0.99(2) 20.35(1) 0.874(05) 1.10(2) 20.24(1)
U1U2 0.640(04) 0.97(2) 20.35(1) 0.858(05) 1.08(3) 20.24(1)
U1U3 0.625(04) 0.96(3) 20.34(1) 0.843(05) 1.06(3) 20.23(1)
U2U2 0.617(04) 0.95(3) 20.34(1) 0.837(05) 1.05(3) 20.23(1)
U2U3 0.599(04) 0.93(3) 20.34(1) 0.819(06) 1.03(3) 20.23(1)
U3U3 0.578(05) 0.91(4) 20.34(1) 0.797(07) 1.01(4) 20.22(1)
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The operatorsQ7,8
3/2 are defined in Eqs.~B25! and ~B26!.

The operators inB7,8
3/2 are matched onto lattice operators

using the results of Appendix B. A slight complication arises
because the denominators consist of two terms, one of which
~the pseudoscalar! depends on the renormalization scalem,
while the other~axial-vector! part does not. Thus we cannot
simply use theB parameters defined above which have only
the axial-vector currents in the denominator. Instead, we use
horizontal matching followed by two-loop running to calcu-
late both numerator and denominator at the final scalem and
then take the ratio, all within the jackknife loop. We repeat
the entire procedure for various choices ofq* andm.

The calculation involves no chiral subtractions, since all
terms in the chiral expansion are physical. To show the qual-
ity of the results we displayB7

3/2 and B8
3/2 ~in the TAD1

scheme!, in Figs. 8 and 9, respectively, for theU2U3 meson.
The statistical errors are small, and the results using the two
sources agree.

We have done the calculation of these matrix elements
only for the case in which the initial and final mesons have
the same quark composition. Our results in the TAD1
scheme are collected in Table V. We see the same gradual
increase towards unity as the meson mass increases that we
observed betweenBK andBD . Diagonal and mixing contri-
butions are defined as forBD . We have also included results
at different momenta forU2U3 mesons in the last two rows
of Table I. The lack of momentum dependence is due to the
dominance of the pseudoscalar matrix elements, which, as
noted above, depend only onmK

2 .
In Table VI we give results form52 GeV with various

values ofq* . There is a significant variation withq* , con-
siderably larger than the statistical errors. This indicates that
the perturbative expansion for the anomalous dimensions is
converging more slowly than forBK and BD . We take
q*51/a for our final result and use the range of values for
q*52 GeV2p/a to estimate the systematic error. This
leads to

B7
3/2~NDR,2 GeV!50.5860.02~stat!

10.07
20.03~pert!,

~7.5!

B8
3/2~NDR,2 GeV!50.8160.03~stat!

10.03
20.02~pert!.

~7.6!

Note that the statistical errors are somewhat larger after run-
ning tom52 GeV ~compare results in Table VI to those in
Table V!. This is because, in order to evaluate theB param-
eters at 2 GeV, one has to combine results of three separate

fits after the running. Consequently, the cancellation of er-
rors between the numerator and denominator is not as good.

VIII. RESULTS FOR BS

We close with results for theB parameter introduced in
Ref. @3# to calculate the difference ofB-meson lifetimes:

BS[B4
15

^Bsub̄aLsa b̄cLscuBs&

~5/3!^Bsub̄ag5sau0&^0ub̄ag5sauBs&
. ~8.1!

We also consider the operator related by a Fierz transforma-
tion:

B5
15

^Bsub̄aLsc b̄cLsauBs&

~21/3!^Bsub̄ag5sau0&^0ub̄ag5sauBs&
. ~8.2!

The perturbative matching coefficients for this operator have
not been calculated previously—they are given in Appendix
B. The one loop improved operatorsO4

1 andO5
1 are defined

in Eqs.~B36! and~B37!. ~One needs the matrix elements of
both operators due to the mixing between them.! The calcu-
lation of their matrix elements and the correspondingB pa-
rameters is straightforward, and the results for the 15 mass
combinations, as a function of the matching scalem5q* , are
given in Tables VII and VIII. The results after extrapolation
of the light quark to the physical strange quark mass are
given in Table IX.

Note that, unlike the previous cases ofB parameters, we
cannot run these results to a final common scale. As can be
seen from the results of Appendix A, this requires knowl-
edge of the two-loop anomalous dimensions. It would be
inconsistent to use one-loop matching and then only run us-
ing one-loop anomalous dimensions. Thus we cannot study
theq* dependence of the results at a fixed final scalem. The
fact that bothB41 andB51, evaluated atm5q* , depend only
weakly on q* , as is apparent from Tables VII–IX, is an
accident. The origin of this feature can be traced to the large
value of the matrix elements of the lattice mixing operators
and, consequently, significant variation withas(q* ).

The best we can do at present is to use our preferred value
of q*51/a and quote the results only form5q* , i.e., using
horizontal matching. These results are

B4
1~NDR,m5q*51/a!50.8060.01~stat!, ~8.3!

B5
1~NDR,m5q*51/a!50.9460.01~stat!. ~8.4!
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TABLE VI. Variation of B7 and B8 run to m52 GeV, for
various choices ofq* .

q* B7
3/2 B8

3/2

2 GeV 0.549(18) 0.790(27)
1/a 0.578(19) 0.807(27)
2/a 0.641(21) 0.835(28)
p/a 0.654(21) 0.837(28)
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APPENDIX A: ISSUES IN MATCHING LATTICE
AND CONTINUUM OPERATORS

In this appendix we discuss the matching of lattice and
continuum operators. We also collect results for the anoma-
lous dimensions needed for the particular matrix elements
we calculate.

We wish to find the lattice regularized operators which
match with~i.e., have the same physical matrix elements as!
the continuum operators of interest:

Ocont~m!5Z~m,a!Olatt~a! . ~A1!

HereOcont is a vector of operators which is closed under
continuum and lattice mixing, andOlatt the corresponding

vector of lattice operators. By comparing matrix elements,
one can calculate the matrixZ in perturbation theory. The
one-loop result has the form

Z~m,a!511l c~ma! , ~A2!

wherel5g2/(16p2) andc is the one-loop matching matrix.
Appendix B describes the calculation ofc for four-fermion
operators. The issue we address here is the choice ofg to use
in l. Should it be the continuum couplinggMS(m), or the
bare lattice couplingg(a), or some sort of an average? The
uncertainty this introduces can be comparable to the statisti-
cal error, as is the case in the calculation ofBK using stag-
gered fermions@11#.

TABLE VII. The B parameter for the operatorO4
1 . The data are shown for all 15 mass combinations and

for various choices ofm5q* .

q*52 GeV q*51/a q*52/a q*5p/a

CC 0.877(9) 0.883(9) 0.880(9) 0.871(9)
CS 0.806(6) 0.813(6) 0.813(6) 0.806(6)
CU1 0.784(8) 0.791(8) 0.792(8) 0.786(8)
CU2 0.771(8) 0.779(8) 0.781(8) 0.775(8)
CU3 0.763(9) 0.771(9) 0.773(9) 0.767(9)
SS 0.696(4) 0.703(4) 0.707(4) 0.701(4)
SU1 0.663(3) 0.670(4) 0.675(4) 0.670(4)
SU2 0.647(4) 0.655(4) 0.660(4) 0.656(4)
SU3 0.639(4) 0.646(4) 0.652(4) 0.647(4)
U1U1 0.626(3) 0.634(3) 0.640(3) 0.636(3)
U1U2 0.610(3) 0.617(3) 0.623(3) 0.619(3)
U1U3 0.600(4) 0.607(4) 0.613(4) 0.609(4)
U2U2 0.592(4) 0.599(4) 0.605(4) 0.601(4)
U2U3 0.581(5) 0.588(4) 0.594(4) 0.590(4)
U3U3 0.571(6) 0.578(6) 0.583(6) 0.579(5)

TABLE VIII. The B parameter for the operatorO5
1 . The data are shown for all 15 mass combinations

and for various choices ofm5q* .

q*52 GeV q*51/a q*52/a q*5p/a

CC 0.975(11) 0.991(11) 1.013(11) 1.011(11)
CS 0.940(9) 0.953(9) 0.967(9) 0.963(9)
CU1 0.920(10) 0.933(10) 0.946(10) 0.942(10)
CU2 0.910(12) 0.922(11) 0.935(11) 0.931(11)
CU3 0.902(14) 0.914(13) 0.927(12) 0.923(12)
SS 0.878(5) 0.885(5) 0.885(5) 0.878(5)
SU1 0.850(5) 0.856(5) 0.855(5) 0.847(5)
SU2 0.836(5) 0.842(5) 0.840(5) 0.832(5)
SU3 0.829(6) 0.835(6) 0.832(5) 0.824(5)
U1U1 0.817(4) 0.822(4) 0.819(4) 0.811(4)
U1U2 0.802(5) 0.806(5) 0.802(4) 0.794(4)
U1U3 0.793(5) 0.797(5) 0.792(5) 0.783(5)
U2U2 0.785(5) 0.788(5) 0.783(5) 0.774(5)
U2U3 0.775(6) 0.778(6) 0.771(6) 0.763(6)
U3U3 0.765(8) 0.768(8) 0.759(7) 0.750(7)
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To address this issue we use the exact perturbative for-
mula forZ given by Ji@18#. Generalized to the case of mix-
ing, this is

Z~m,a!5Tg9expS 2E
0

g~m!

dg9
gcont~g9!

bcont~g9! D
3Tg8expS 2E

g~a!

0

dg8
g latt~g8!

b latt~g8! D . ~A3!

The g ’s are the anomalous dimension matrices, which are
different in the continuum and on the lattice. Theb ’s are the
usualb functions, again different in the continuum and on
the lattice, though only atO(g7). TheTg’s indicate that the
exponential integrals areg ordered. This formula has a
simple physical interpretation: First use the renormalization
group to run on the lattice to a lattice spacing as small as one
wants, then match with the continuum at the tree level, and
finally run back to the desired scale in the continuum theory.
It is exact except for possible nonperturbative corrections.

To use Ji’s formula we have to specify both the con-
tinuum and lattice renormalization schemes. In the con-
tinuum we take NDR~i.e., MS plus a particular set of rules
for dealing withg5 in n dimensions!, so thatg(m) is in the
MS scheme. On the lattice, Ji uses the bare lattice coupling
constant and takes the scale to bea. The work of Lepage and
Mackenzie suggests, however, that it is better to reexpress all
lattice perturbative expressions in terms of a continuumlike
coupling @19#. Thus we suggest improving Ji’s formula by
using the same definition of renormalized coupling constant
on the lattice as in the continuum. In other words, we imag-
ine expressing perturbative series on the lattice, e.g., that for
the anomalous dimension matrix, in terms ofgMS(q* ),
whereq* a5K, with K a constant. This is just a change of
variables

gM̄S„q* ,g~a!…5g~a!1c1~q* a!g~a!31O~g5! , ~A4!

with c1 a known constant with known dependence onq* a.
The value ofq* a should be chosen so as to improve the
convergence of perturbative series.

To implement this improvement, we change variables in
the integral over g8 in Eq. ~A3!, from g8 to
gMS(q*5K/a,g8). The result is

E
g~a!

0

dg8
g latt~g8!

b latt~g8!

5E
gMS~q*5K/a!

0 dgM̄S

udgMS~g8!/dg8u

g latt„g8~gMS!…

2dg8~a!/dlna
~A5!

5E
gMS~q*5K/a!

0

dgMS
g latt„g8~gMS!…

dgMS/dlnq*
~A6!

5E
gMS~q*5K/a!

0

dgMS
g latt„g8~gMS!…

bcont~gMS!
. ~A7!

Thus we end up with the same form, but with the continuum
b function in the denominator, a different lower limit, and
the anomalous dimension matrix expressed in terms of
gMS. This change of variables makes no difference if we
work to all orders, but does affect the result when we trun-
cate perturbation theory. The hope is thatg latt converges
more quickly as a result of this reorganization.

In practice we know only the two-loop anomalous dimen-
sions for the operators of interest, and so we expand out Eq.
~A3! @with the substitution~A5!# to second order, following
the method of Ref.@2#:

Z~m,a!5@11l~m!Jcont1O~l2!#21 W21S l~m!

l~q* ! D
g0
D/2b0

3W@11l~q* !Jlatt~q* !1O~l2!# . ~A8!

Note that theg2 in l is in theMS scheme wherever it ap-
pears. Note also that thea dependence comes in implicitly
throughq* . Hereg0

D is the result of diagonalizing the one-
loop anomalous dimension matrixg0 ~which is the same in
both lattice and continuum schemes!:

g0
D5Wg0W

21 . ~A9!

The two-loop contribution feeds in through

J5
b1g0

2b0
2 2W21MW , ~A10!

where the matrixM is

Mi j5
~Wg1W

21! i j

2b02~g0
D! i i1~g0

D! j j
. ~A11!

Jcont differs from Jlatt because the two-loop anomalous di-
mension matrices differ. In practice, the latticeJ’s contain
more off-diagonal terms than those in the continuum. For
example, in the continuum the operatorsQ7 andQ8 only mix
with each other~and with evanescent operators which vanish
in four dimensions!, while Jlatt mixes these operators also
with O1,4,5

1 , as described in Appendix B. The structure of Eq.
~A8! means, however, that, working from left to right, we
can stay in the two-dimensional space spanned by (Q7 ,Q8)
until we encounterJlatt . Thus we need only the rectangular
piece ofJlatt which connects (Q7 ,Q8) to the full basis.

Equation ~A8! is ~aside from a minor modification dis-
cussed below! the result which we propose using in place of

TABLE IX. The B parameter for the operatorO4
1 andO5

1 after
horizontal matching to the continuum at scaleq* . The CUi data
have been extrapolated toms(Mf) in the light quark mass.

B4
1(m5q* ) B5

1(m5q* )

q*52 GeV 0.791(8) 0.927(10)
q*51/a 0.798(8) 0.940(10)
q*52/a 0.799(8) 0.953(10)
q*5p/a 0.792(8) 0.949(10)
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Eq. ~A2!. It makes clear which scale to evaluate the coupling
at wherever it appears: the lattice scale in the lattice anoma-
lous dimension or the continuum scale in the continuum
anomalous dimension. It is valid even ifma is substantially
different from unity, for it sums up the large logarithms of
ma. It can be applied to tadpole-improved operators—
tadpole improvement simply changes the two-loop lattice
anomalous dimension, presumably making the perturbative
series converge more quickly.

To apply Eq.~A8! we need to know theJ’s. In the con-
tinuum, the two-loop anomalous dimensions are known for
most of the operators of interest~they are listed below!, and
from these we can constructJcont. Jlatt can then be deter-
mined by comparing the one-loop matching result to the gen-
eral formula, in the following way. We recall that, when
deriving Eq. ~A2!, one equates the lattice and continuum
coupling constants~their difference being a higher order ef-
fect!. For this to be true in the general formula we must set
m5q* . Thus we have

Z~m5q* ,a![@11l~q* ! c~q* a!1O~l2!#

5@11l~q* !Jcont1O~l2!#21

3@11l~q* !Jlatt~q* !1O~l2!# , ~A12!

and so

Jlatt~q* !5Jcont1c~q* a! . ~A13!

We now see explicitly thatJlatt depends onq* and upon
whether we tadpole improve or not~which changes
c→c2tad, where tad is the tadpole contribution!.

To express the result at scalem, we have in fact used a
slight variant of Eq.~A8!, which we call ‘‘horizontal match-
ing’’:

Z~m,a!5@11l~m!Jcont#
21 W21S l~m!

l~q* ! D
g0
D/2b0

3W@11l~q* !Jcont#@11l~q* !c~q* a!# .

~A14!

This differs by corrections of sizel(q* )2, which turn out to
be much smaller than our statistical errors. The physical in-
terpretation of horizontal matching is that we first match lat-
tice and continuum operators at the scaleq* ~using the same
coupling for both! and then run, in the continuum, down to
the final scalem. The important practical advantage of both
horizontal matching and that based on Ji’s approach is the
improved treatment of terms involvingl, whenl(m) is sig-
nificantly different froml(q* ). We have, in effect, used the
renormalization group to include a subset ofO(l2) terms.

The remaining issue is the choice ofq* . That we have
such a choice simply reflects the fact that we have truncated
the perturbative expansions forg andb. Lepage and Mack-
enzie have suggested a scheme for estimatingq* which
works for finite lattice renormalizations@19#. We have not,
however, found a way to implement their scheme for diver-
gent operators. Presumably one could use the alternative
Brodsky-Lepage-Mackenzie~BLM ! scheme@25#, but this in-
volves calculating a subset of diagrams for the two-loop
matching coefficients~or three-loop anomalous dimensions!,
which has not been done. Thus we have simply carried out
the calculation for a reasonable range ofq* : 2 GeV, 1/a,
2/a, and p/a. Previous work suggests that, for tadpole-
improved operators, the optimumq* lies towards the lower
end of this range@19#. For this reason we quote our final
value usingq*51/a. It is important to realize, however, that
this intuition concerningq* may not apply to matching cal-
culations such as those we are using here. Thus we use the
results from the entire range of values ofq* to estimate a
systematic error.

We close this appendix by collecting results needed to
carry out the matching just described. We quote all results
for nf50 and give anomalous dimensions in the NDR
scheme. The operators are listed in Eqs.~B24!–~B27!.

The coefficients b0 and b1 of the b function
(m]g/]m52b0g

32b1g
52•••) are independent of the

renormalization scheme and are standard. The anomalous di-
mensions forQ are

g054, g1527 . ~A15!

The operatorsQ7
3/2 andQ8

3/2 mix, with anomalous dimen-
sions

g05S 2 26

0 216D ,

g15S 71/3 299

2225/2 21331/6D . ~A16!

The result forg0 is standard, while we have extractedg1
from the results of Ref.@26# by considering only a subset of
the graphs required for the full operatorsQ7,8. The results
for the operators needed to calculateBs are given at the end
of Appendix B.

APPENDIX B: ONE-LOOP MATCHING
FOR FOUR-FERMION OPERATORS

In this appendix we give a general formula for the one-
loop matching coefficients for four-fermion operators of the
form G ^ G. This formula relates continuum operators de-
fined in the NDR scheme to lattice operators which are local,

TABLE X. Bilinear matching coefficients, withl5 ln(ma). Tadpole improvement~discussed in the main
text! adds tad/CF512.86 to each of these numbers.

Action Scheme cS cV cT cA cP

Wilson NDR 212.95216l 220.618 217.0122l 215.796 222.59616l
Wilson DRED-NDR 1 0.5 21 0.5 1
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i.e., reside on a single lattice site. All one needs to know are
the matching coefficients for the five bilinearsS, P, V, A,
andT. The formula applies not only for Wilson fermions, but
for any improved Wilson fermion action, e.g., the
Sheikholeslami-Wohlert action. It is not useful for staggered
fermions, where many of the operators of interest are not
local ~see, for example, Ref.@27#!.

Matching coefficients for a subset of four-fermion opera-
tors were calculated by Martinelli@20# and Bernardet al.
@21#. These authors use different regularization schemes in
the continuum, namely, DRED~dimensional reduction! and
dimensional reduction with an easy subtraction scheme~DR
ĒZ) ~a variant of dimensional reduction!. One of our pur-
poses here is to convert these results to the NDR scheme,
which is the standard scheme used in the evaluation of con-
tinuum coefficient functions. A second purpose is to extend
the calculations to operators of the formS^S1P^P and
T^T. As discussed in the text, the matrix elements of one
such operator has recently been shown to be of phenomeno-
logical interest. Our final purpose is to present all the results
in a simple form which is easy to evaluate.

Our method is adapted from that used for staggered fer-
mions in Ref.@27#. It proceeds in two stages. The first stage
uses the method of Martinelli@20#, who pointed out that all
the one-loop vertex diagrams for four-fermion operators can
be brought into the form of bilinear corrections using Fierz
transformations and charge conjugation. This works, how-
ever, only if the continuum scheme keeps theg matrices in
four dimensions, which is why he chose DRED. Following
Ref. @27#, we actually use a slightly different intermediate
scheme, NDR8. In the second stage we convert from NDR8
to NDR. This part of the calculation is done in the continuum
and it cannot be reduced to that for bilinears. It is, however,
independent of the lattice fermion action. Much of the work
for the second stage has been done in Ref.@27#. Our only
new result is the construction of ann-dimensional definition
of the operatorsS^S1P^P andT^T which maintains Fi-
erz symmetries. This is not an essential condition, but it is
desirable for aesthetic reasons.

We begin with some notation. The one-loop matching co-
efficients for bilinears are defined by

Bicont5Bilat@11CF l ci~ma!# , ~B1!

wherei5S,V,T,A,P, CF54/3,l5g2/16p2, m is the renor-
malization scale of the continuum operator, anda the lattice
spacing. The values of theci are given in Table X for Wilson
fermions in both DRED and NDR schemes. These values are
taken from Refs.@20,21# and converted to NDR using the
conversion factors given in Ref.@28#. Note that the correc-
tions are uniformly small after tadpole improvement@19#.
For completeness we mention that the analogous results of
the renormalization constants for bilinears with the
Sheikholeslami-Wohlert~clover! action have been calculated
by Göckeleret al. @29#.

The four-fermion operators we consider are linear combi-
nations of the five Lorentz scalars

S5~ c̄1c2!~ c̄3c4! ,

V5(
m

~c̄1gmc2!~ c̄3gmc4! .

T5 (
m,n

~ c̄1gmgnc2!~ c̄3gmgnc4! , ~B2!

A5(
m

~c̄1gmg5c2!~ c̄3gmg5c4! ,

P5~ c̄1g5c2!~ c̄3g5c4! .

Keeping the four flavors distinct eliminates ‘‘penguin’’ dia-
grams and allows only a single Wick contraction for each
operator. In the text, we use subscripts to indicate incomplete
summation over repeated Lorentz indices. For example,As
denotes that the sum overm is only over 1–3 and not 4,
while Tt indicates thatn54 in the tensor operator. Each
operator also comes with two possible sets of color indices,
which we distinguish with superscripts: e.g.,

S15~ c̄1
ac2

b!~ c̄3
bc4

a! and S25~ c̄1
ac2

a!~ c̄3
bc4

b!. ~B3!

The superscript is the number of loops that the color indices
form if we take a matrix element of the operators between
states created by (c̄2Gc1) and (c̄4Gc3).

In the following we use two bases for the Lorentz struc-
tures: the ‘‘original’’ basis

Oi85@S,V,T,A,P# ~B4!

and the ‘‘practical’’ basis~related by a nonorthogonal trans-
formation!

Oi5@~V1A!,~V2A!,22~S2P!,~S1P!,

2~S1P2T!/2# . ~B5!

The advantages of each will become clear in the following.
In each basis there is a matrix which implements Fierz trans-
formations. This is simplest in the practical basis

Fprac5S 1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

D . ~B6!

In either basis this satisfiesF251. There is also a matrix
which implements ‘‘charge conjugation,’’ which here means
the effect of transposing the Dirac matrices in one of the
bilinears, and conjugating the result withC5g0g2. This is
simplest in the original basis

Corig5diag~1,21,21,1,1! . ~B7!

Again, in either basis one hasC251. Note that this definition
is specific to four-dimensional Dirac matrices.

To combine the Lorentz and color indices we use the
notation
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OW i5SOi
1

Oi
2D . ~B8!

Then, as shown in Ref.@27#, one-loop matching has the form

OW i
cont5OW i

lat1l(
j

~Mi j
a Ca
J1Mi j

b Cb
J1Mi j

c Cc
J !OW j

lat .

~B9!

There are three types of diagram which contribute, denoted
a, b, andc, each giving rise to a color matrixC and a matrix
acting on the Lorentz indices. The color matrices are

Ca
J5

1

6 S 21 3

0 8D , Cb
J5

1

6 S 8 0

3 21D ,

Cc
J5

1

6 S 21 3

3 21D . ~B10!

The core of the calculation is of the 535 correction matrices
M.

The first stage of this calculation is to determineM in a
scheme in which theg matrices are four dimensional, say,
DRED. The ‘‘a’’ diagrams are just those in which the two
bilinears in the four-fermion operator are matched indepen-
dently ~see Ref.@27#!. ThusMa is simple in the original
basis:

Ma52 diag@cS ,cV ,cT ,cA ,cP# . ~B11!

Following Ref.@20# one can then obtainMb andMc using
Fierz and charge conjugation transformations:

Mb5FMaF , ~B12!

Mc52CFMaFC . ~B13!

These results can then be inserted in the general formula Eq.
~B9!. Fierz symmetry also requires thatMc be self-
conjugate:

Mc5FMcF . ~B14!

This result, together with Eq.~B13! and the peculiar fact that
FCFCF5C, requires that@C,Ma#50. This is trivially true
given thatMa andC are diagonal in the original basis.

This construction fails for NDR, however, because one is
then dealing withn-dimensionalg matrices. It is useful, nev-
ertheless, to introduce an intermediate scheme, NDR8, which
is defined by Eq.~B11!, with NDR bilinear matching coeffi-
cients, together with Eqs.~B12! and ~B13!. That is, we en-
force Fierz and charge-conjugation symmetries by hand.

The second stage is the extension of the calculation to
NDR. For this, we need to define the continuation of the
four-fermion operators ton dimensions. There are many
ways to do this~corresponding to different choices of ‘‘eva-
nescent’’ operators!, and we wish to make a choice which
maintains the Fierz relations~B12! and ~B14!. We have not
found a way of simultaneously maintaining Eq.~B13! and
suspect that this is not possible. Thus, in NDR,Mb can be
obtained fromMa , while Mc is independent. Fierz-
symmetric choices for (V6A) and (S2P) were given in

Refs.@26,30#, and we use these. Definitions for (S1P) and
T were given in Ref.@27#, but the choices made there did not
maintain Fierz symmetry. We have found Fierz-symmetric
choice, which we now explain.

We work in the ‘‘practical’’ basis. The operators are ex-
tended ton5422e dimensions such that they are the even
parity parts of

O15~ c̄1gmLc2!~ c̄3gmLc4! , ~B15!

O25~ c̄1gmLc2!~ c̄3gmRc4! , ~B16!

O3522~ c̄1Lc2!~ c̄3Rc4! , ~B17!

O45~ c̄1Lc2!~ c̄3Lc4! , ~B18!

O552 1
8 ~113e/4!~ c̄1gmgnLc2!~ c̄3gngmLc4! .

~B19!

Here we are implicitly summing repeated indices over alln
values, and definingL5(12g5) andR5(11g5). The odd
parity parts of these operators are not important for the fol-
lowing discussion, but we include them for generality. The
analysis is unchanged if we change the sign ofg5. The pe-
culiar factor of (113e/4) inO5 is necessary in order that, in
the final result,Mc is Fierz self-conjugate. When we calcu-
late one-loop corrections in NDR the resulting operators
have the form

O5 (
i51,5

diOi1evanescent operators , ~B20!

where the evanescent operators vanish whenn54. We de-
termine thedi using projection operators. Fierz-symmetric
projectors ontoO1–3 have been given in Refs.@26,30#. To
determined4 andd5 @up to terms ofO(e2)# we use

S d4d5D 52
115e/12

3 S ~11e/4! 2~12e/4!

2 1 D S P4~O!

P5~O!
D .

~B21!

where, in the notation of Ref.@30#, the projectors are

P45
1

32
L^L , ~B22!

P552
1

256S 4nD
2

gmgnL^ gngmL . ~B23!

The matrix in Eq.~B21! has been determined by requiring
di51 if O5Oi ; i.e., the basis operators project back onto
themselves.

Using these definitions, we have calculated the matching
between NDR and NDR8 and, thus, between NDR and lat-
tice operators. We find, for our final results,
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Ma5S cV1A cV2A 0 0 0

cV2A cV1A 0 0 0

0 0 cS1P 22cS2P 0

0 0 2 1
2 cS2P cS1P 21

0 0 1
4 cS2P

1
2 ~2cT2cS1P! 2cT

D ,

Mc5S 2~cS1P16! 0 0 2cS2P 2cS2P

0 2~cV1A16! cV2A 0 0

0 cV2A 2~cV1A16! 0 0

1
4 cS2P 0 0 2 1

2 ~cS1P12cT14! 2 1
2 ~cS1P22cT12!

1
4 cS2P 0 0 2 1

2 ~cS1P22cT12! 2 1
2 ~cS1P12cT14!

D ,

where all theci are in the NDR scheme, and we have defined
cS1P5cS1cP , etc.Mb continues to be determined from
Eq. ~B12!. Note thatMc is Fierz self-conjugate. The results
for NDR8 and DRED can be obtained by deleting the nu-
merical constants, i.e., keeping only the terms involving the
ci .

We conclude by presenting the explicit results needed for
the matrix elements we study in this paper. The operators of
interest are

Q5 1
2 @~ s̄agmLda!~ s̄bgmLdb!1~ s̄agmLdb!~ s̄bgmLda!# ,

~B24!

Q7
3/25~ s̄agmLda!@~ ūbgmRub!2~ d̄bgmRdb!#1~ s̄agmLua!

3~ ūbgmRdb! , ~B25!

Q8
3/25~ s̄agmLdb!@~ ūbgmRua!2~ d̄bgmRda!#1~ s̄agmLub!

3~ ūbgmRda! , ~B26!

QS5
1
2 @~ b̄aLsa!~ b̄bLsb!2 1

8 ~113e/4!~ b̄agmgnLsb!

3~ b̄bgngmLsa!# . ~B27!

Following Ref. @31#, we have extendedQ andQS to n di-
mensions in such a way that the Fierz symmetry is explicit.
None of these operators have penguin contractions~in the
isospin-symmetric limit!, and so all can be matched onto the
lattice using the approach explained above.

The first step is to rewrite the operators using the four-
flavor notation. For this purpose it is useful to introduce a
third operator basis, that of Fierz self-conjugate and anticon-
jugate operators:

Oi
65@~O1

26O1
1!,~O2

26O3
1!,~O3

26O2
1!,~O4

26O5
1!,~O5

2

6O4
1!# . ~B28!

The operators of interest can be written in this new basis as

Q→2O1
1 , ~B29!

Q7
3/2→O2

1 , ~B30!

Q8
3/2→O3

1 , ~B31!

QS→2O4
1 , ~B32!

where the factors of 2 come from the additional Wick con-
tractions forQ andQS compared to the four-flavor operators.
Fierz symmetry forbids mixing between theOi

1 andOi
2 ,

and so the matching coefficient falls into two 535 blocks.
We give the results for the Fierz self-conjugate operators:

Oi
1~NDR!2Oi

1~ latt!5l ci j
1 Oj

1~ latt! , ~B33!

with

ci j
15S Z1 0 0 0 0

0 Z1 Z78 0 0

0 Z87 Z2 0 0

0 0 0 Z4 Z45

0 0 0 Z54 Z5

D
1
Z*

24S 0 222 2 12 12

212 26 2 224 8

24 2 26 264 0

2 21 213 0 0

2 2 2 0 0

D .

~B34!

The expressions and numerical results for theZ’s are col-
lected in Table XI. Our results in the DRED scheme for the
matching coefficients ofO11 , O21 , andO31 agree with
those of Ref.@20#. The results of Ref.@4# for Z1 , Z1, and
Z2 using NDR are, however, wrong and are corrected by
those given here.

The matrix elements needed in the study ofB lifetimes
are those of operatorsO4

1 andO5
1 . Since these are new, we
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write them in a form which is more directly practical. In the
four-flavor notation these operators are

O4
15~S21P2!2 1

2 ~S11P12T_1! ,

O5
15~S11P1!2 1

2 ~S21P22T_2! . ~B35!

The one-loop continuum operators, in the NDR scheme, are

O4
1~cont!5$11l@246.89412tad128/3 ln~ma!#%O4

1~ latt!

1l@22.03324/3 ln~ma!#O5
1~ latt!

1
lZ*

24
@2S1126S222P1226P2211V11V2

115A113A2# ,

O5
1~cont!5$11l@245.38412tad232/3 ln~ma!#%O5

1~ latt!

1l@20.131216/3 ln~ma!#O4
1~ latt!

1
lZ*

6
@~P12S1!1~P22S2!1V11V2# .

~B36!

TheB parameters are obtained by dividing the above by their
VSA forms

O4
1~VSA!51 5

6 @11lZP#2~P^P! ,

O5
1~VSA!52 1

6 @11lZP#2~P^P! . ~B37!

These two operators mix under the renormalization group
flow. The one-loop anomalous dimension matrix governing
this flow is

S 228/3 4/3

16/3 32/3D ,

and the two-loop contribution is yet to be calculated. Conse-
quently, we state our results forB parameters after the one-
loop matching at scalem5q* , i.e., without any running in
the continuum which requires the two-loop results.
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