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Matrix elements of four-fermion operators with quenched Wilson fermions
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We present results for the matrix elements of a variety of four-fermion operators calculated using quenched
Wilson fermions. Our simulations are done on 170 lattices of sizéx®2 at 8=6.0. We find
By =0.74+0.04+0.05,B,=0.78+0.01,B3?=0.58+ 0.02' 0.5}, B3?=0.81+0.03 303, with all results being
in the NDR scheme gt =2 GeV. We also calculate tH& parameter for the operat@l, which is needed in
the study of the difference oB-meson lifetimes. Our best estimate By(NDR,u=1/a=2.33 GeV)
=0.80+0.01. This is given at the lattice scale since the required two-loop anomalous dimension matrix is not
known. In all these estimates, the first error is statistical, while the second is due to the use of truncated
perturbation theory to match continuum and lattice operators. Errors due to quenching and lattice discretization
are not included. We also present new results for the perturbative matching coefficients, extending the calcu-
lation to all Lorentz scalar four-fermion operators, and using NDR as the continuum scheme.
[S0556-282197)05307-1

PACS numbdps): 12.38.Gc, 12.15.Hh, 14.46n

[. INTRODUCTION theory. What we provide is one point with statistical errors
small enough that systematic errors due to chiral extrapola-
One of the central goals of lattice QCD is to calculatetions and the truncation of perturbation theory can be quan-
hadronic matrix elements of phenomenological intefes]. tified. . )
We present here results for the matrix elements of a variety /S @n adjunct to our numerical results, we have extended

of four-fermion operatorsBy , which is needed as input for Previous calculations of the perturbative matching coeffi-
K "= cients between lattice and continuum operators. We also

estimates ofCP violation in K-K mixing; Bp , required t0  present a renormalization-group-improved matching formula
estimateD-D mixing and an indication of the result fd& which incorporates tadpole-improved lattice perturbation
mesons;B,~*2 and By~%?, which determine the dominant theory.

contribution of electromagnetic penguin diagramsetde; The plan of the paper is as follows. We begin, in Sec. Il,

and a new quantityds, needed as part of an estimate of thebY summa}rizing our resullts. In Sec._ I we de§cribe thg vari-
lifetime difference betweeB mesong3]. ous technical details pertinent to this calculation. Section IV

Our results are obtained using Wilson fermions in thesummarizes the matching l_)etween lattice and cpntinyum op-
guenched approximation. The use of Wilson fermions make rators. Resullts for the \_/arloﬁ’sparamete(s are given in the
it more difficult to extract quantities which are constrained '!"a' four sect|or_15. We dlscu_ss two technical ISSU€s In appen-
by chiral symmetry. This is a problem for the calculation of.dlxes' Appendlx_ A describes a rgnormahzagon-group-
Bk, and our results are not competitive with those fromlmproved matching formula, while in Appendng B we
stg(:;gered fermions. Our aim here is to gain experience _resent general formulas for the one_-loop matching coeffi-
reducing systematic errors. The other matrix elements are n ents f(_)r all Lorentz-sca]ar fogr-fermmn operators between
constrained by chiral symmetry, and for these it is more e lattice and the naive dimensional reductidiDR)

; . . scheme.

straightforward to use Wilson than staggered fermions.

Compared to prEViOUS work with Wilson fermions, our II. SUMMARY OF RESULTS
study uses larger lattices (3264), which should make fi-
nite volume effects negligible, reduces the statistical errors, We begin with our result foBy [defined in Eq.(5.1)]:
has improved statistiod 70 lattice$, and uses a larger range _
of light quark masses (0n&; pnys—2Ms pnyd. The latter im- Bk(NDR.2 GeV)=0.74+0.04sta) +0.05subd.  (2.1)
provement allows us to do more reliable chiral extrapola-The second error is an estimate of the uncertainty due to our
tions, since we can include termsca(mﬁ). We have results method of subtracting chiral artifacts. This is a considerable
at only a single lattice spacingg=6/g>=6, and so we can- improvement over our previous wof]—the statistical er-
not extrapolate to the continuum limit of the quenchedror has been reduced by a factor-e6, and we have better

control over the systematic errors.
It is interesting to compare our result to those other recent

*Electronic address: rajan@dqcd.lanl.gov high statistics calculations at or near the same lattice spacing,
"Electronic address: tanmoy@gqcd.lanl.gov particularly since all use different subtraction methods. Ber-
*Electronic address: sharpe@phys.washington.edu nard and Soni use Wilson fermions @6 on 24 39 lat-
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tices[5] and findBy =0.67+0.07. Their subtraction method 3o +0.03
uses off-shell matrix elemenf6] whereas ours uses on-shell  Bg“(NDR,2 GeVj=0.81+0.03stay _, n{perp . (2.6)
matrix elements at finite momentum transfer. One concern

with th_eir result is that th_ey use larger quark masses, whichrpe “perturbative error” reflects the dependence of the re-
according to our analysis, may lead to an overestimate 0fs on the choice af. used in the matching of continuum
Bk . Nevertheless, it is encouraging that the results agree. 5q |attice operators, and is comparable to or larger than the

The APE group has used improved “clover” fermions gasistical errors. The perturbative error could be removed by
and a nonperturbative determination of the matching coeffiy,e se of nonperturbative matching coefficients, but these
cients[7,8]. Their nonperturbatively matched operator hasg e not yet available fo@, and Qg. Our results are consis-

the correct chiral behavior. They present their resfilim o \vith those we found previousfy], the apparent differ-

p=6 on }§X64 latticeg in the “regularization-  gnce heing due to the use of a different continuum regular-
independent” schemeBy(RI,2.02 GeV)=0.62(11). The i, aion scheme, a different final scale, and a different choice

numerical value is unchanged upon conversion to NDR and¢ , in the matching of continuum and lattice operators.
is consistent with our result. The two results can differ by Our values are smaller than the numbers used by Lusi-
terms of O(a), but the errors are too large to resolve anygnq|i et al. [1] and Ciuchiniet al. [16] in their analyses of

difference. redictions fore'/e: They takeB3?=B3?=1.0+0.1. This

_The J.LQCD Co_IIaboratlon has recently _presented .resyltgifference is important because a smabgrmeans a larger
using Wilson fermions and a nonperturbative determination

. . ; €'le.
of matching coefficient$9]. They find, at3=5.9 and 6.1, ) - . - )
that B (NDR,2 GeV)=0.48+0.05 and 0.780.07, respec- . ¢ final quantities we consider aBx=B, and the re

+ . . .
tively. They also have a result for the value in the continuumlated parameteBg [defined in Eqs(8.1) and(8.2]. What is

limit, Bx(NDR,2 GeVa=0)=0.59+0.08. The latter two Of interest for phenomenology is the value for bs me-
numbers are consistent with our result, while the former iSOnS. The closest we can come is the result fogaark with
not. Our methods seem to work comparably well—the finalfoughly the mass of the charm, which is

errors are similar, based on similar samples and lattice sizes.

It will be interesting to use their nonperturbative matching B, (NDR,1/a)=0.80+0.01(stat , 2.7
coefficients with our data to evaluate the accuracy of the

procedure we use to remove lattice artifacts in the chiral B4 (NDR,1/a) =0.94=0.01(stay . (2.9
expansion.

Finally, we compare our result with that from staggeredyye have to quote these results jat1/a=2.33 GeV be-
fermions. We expect that the two should agree up 1o correGegyse the two-loop anomalous dimension matrix needed to

tions of O(a). At B=6.0, different choices of discretized {0 2 GeV has not been calculated. For the same reason,
staggered operators give results in the range 0.684204 e cannot estimate a “perturbative” error.

13], with statistical errors of 0.01 or smaller. Our results are  There are no previous results for th@&eparameters using
consistent with these, but our errors are too large to allow Udropagating heavy quarks. Recently, Gimez and Marti-

to see the expected(a) differences. . nelli have calculate®s in the static limitm,— o [17]. Their
~ Our final results foB parameters foD mesonddefined  |5ttice result, also aB=6.0 but without including any per-
in Eq. (6.1)] are turbative  corrections, is BSM=—2Bg=—(0.60+0.01
+0.03). While this is=~20% larger than our result, the
Bo(NDR,u=2 GeV)=0.785-0.015, (2.2 above-mentioned differences preclude any meaningful com-
parison.
Bp (NDR,u=2 GeV)=0.83:0.01, (2.3

Ill. TECHNICAL DETAILS

Bp /Bp=1.047:0.014 . (2.9 We use a sample of 170 gauge configurations of size
328X 64 generated g8=6 in the quenched approximation.
In the following we outline the method we have used to
calculate matrix elements of four-fermion operators. Further
details of our update and inversion algorithms, and of our

gdetermination of quark masses, can be found in Ref].

The errors are much smaller than 8¢ as we need make no
corrections for mixing with wrong chirality operators. Thus,
for this calculation, we are at a point where the remainin
systematic errorgfinite lattice spacing and quenchingre
likely to be larger than the statistical errors. These results are
consistent with those previously obtaineske, for example, A. Quark propagators
the compilation in Ref.[5,15]), but have considerably
smaller errors.

Our final results for thd8 parameters of thé=3/2 parts
of the operator®); and Qg [defined in Eqs(7.1)—(7.4)] are

In our approach we need two kinds of quark propagators:
one which allows for the creation of mesons with an explicit
zero-momentum projection and the other that allows good
overlap with a range of lattice momenta. For the former we
use wall sourcegon a time slice fixed to the Coulomb
gauge, for the latter, gauge-invariant Wuppertal sources.
Both are calculated using periodic boundary conditions in all
(2.5 directions. We calculate propagators at five quark masses:

32 +0.07
B7(NDR,2 Ge\/)=0.58i0.02(stat)_003(pert) ,
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’ operator insertion is done at the five lowest lattice momenta

Twan l Twuppera 5=(0,0,0), (1,0,0), (1,1,0), (1,1,1), and (2,0,0), averaging
over all possible permutations of the componentg ofhe

K 00 Op Ko pseudoscalar emerging from the four-fermion operator is

then destroyed by an operator constructed using Wuppertal
VSA sources al = 32. It is essential that this operator have a large
DC@ coupling to kaons with all the above momenta, and we find

that Wuppertal smearing does this well. In the end, we have

Jwan Twupperal two measurements, corresponding to the forward and back-

T=0 Top T=32 ward propagation, and, furthermore, each of these is an av-

erage over a certain number of time slices.

FIG. 1. The ratio of correlations functions that we calculate. The AS shown in Fig. 1, we calculate the ratio of the matrix
sources) are the same for all four pseudoscalar mesons. We showlement of the four-fermion operator to a product of bilinear

the picture for the case of propagation forward in time. matrix elements. The bilinears are either the time component
of the axial-vector current or the pseudoscalar density. Each

x=0.135 (C), 0.153 @), 0.155 (U,), 0.1558 {,), and of these bilinear matrix elements is separately averaged over

0.1563 (Us). These quark masses correspond to pseudosche gauge configurations. In the following we generically

lar mesons of mass 2835 983. 690 545. and 431 Me\f€fer to the ratios of matrix elements Bsparameters. Using
respectively. Here, as in the 'follovx;ing we have usedatios cancels both the exponential decay factors and the

1/a=2.330(41) GeV, the scale we determined in Ha#] overlap of the source operators with the kaons. This leads to
using M ’ simplified fitting and to a reduction in statistical errors. For
p . H —

With these five flavors we construct 15 distinct “kaons,” the renormalizeddS=2 LL operator, theB parameter one
whose matrix elements we then study. The threequarks obtalns_(usmg the axial-vector current in the deno_mmaier
allow us to extrapolate to the physical isospin-symmetrigProPortional toBy . To calculateBs, Bg, and Bs is more
light quark massm=(m,+mg)/2, whose value is deter- complicated, since, as explained below, the denominator in-
mined by matchingM /l;\/l to e;<periment The physical volves both axial-vector and pseudoscalar bilinears.

T P .

value of the strange quark mass, determined usin%I In sevefraL apf;phc?tlon;, we need to c'onS|derd.the matrix
M4/M,, lies betweenS and U, and we use these two ement of the four-fermion operator at intermediate stages

points to interpolate to it. It turns out that other ways of of the calculations. _'I_'his we ob_tain by multiplying the ratio
determiningm,, e.g., matching tdv 727/M2 lead to values by the product of bilinear matrix elements, themselves cal-

differing by ~20%. To estimate the uncertainty that this culated from two-point functions. , N
. , . . A possible source of systematic error is contamination
introduces, we calculate kaon matrix elements in two ways . . .

. : ; . from excited states. In order to assess the size of this error,
by interpolating to our standardg and by directly using the . ; .

. we calculate the ratios with sources having two Lorentz

results forU,U 3, which turns out to have almost exactly the
physical kaon mass, albeit for almost degenerate quarks. For
Bk, B2, andBJ?, the difference between the two results 0.2
turns out to be much smaller than other errors, and so we do
not quote a systematic error due to the uncertainty in setting
mg. In the case oBDS andBg, the difference between using 0
mg(Mx) and mg(M,) is ~1% with my(M,) giving the
larger value. For reasons explained[i#], we believe that

X

ms(M ) gives a better estimate afs, and we use this value ’g -0.2
consistently for our final results. To illustrate the details of o
our analysis we often use results frasU ; as they are very L
close to the physical kaon mass. ;;‘ -04

Finally, we take the physical charm mass to ®eWith
this choice the experimental values Mfy, Mp«, andMDs
lie between the static madd; (measured from the rate of —-0.6
exponential falloff of the two-point functigrand the kinetic
mass defined a1 ,=(J°E/dp?|,—q) ~* [14].

v by v b g by e by gy

-0.8 1 1 1 1 ] L f L L | 1 1 1 1

—
(=]
0o
o
[N]
(@]

B. Extracting the four-fermion matrix elements

We use the same method for calculating matrix elements
of four-fermion operators as in our earlier wofk]. The FIG. 2. By (using one-loop matching withu=gq* =1/a) as a
method is illustrated in Fig. 1. The initial pseudoscalar statgnction of the time sliceT,, at which the operator is inserted for
IS created by wall sources at timé=0 and, thus, has the two choices of sourck The data are for the mass combination
p=(0,0,0). It propagates both forward and backward iny,u, with momentum transfep=(0,0,0). The fits are shown by
time. The four-fermion operator is inserted at a time in thethe solid line and the errors by the dashed lines. The fit range
range 1-31(63-33 for the backward moving partigleThe  T,,=11-21 is chosen to be midway between the two sources.
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structures: Either all are pseudoscaldrs,P=(i,ys1,), or ~ Rather than use the direct perturbative expansion, however,
all are axial vectors]~A,= (¢, v4vs1,). The resultingd it' is better to use a renormalization—group—improved expres-
parameters should be the same in both cases, but we find tHeN- In Appendix A we give such an expression ZofEq.

the convergence is from opposite directions, as shown ifA8)] by combining the exact perturbative result of 18]

Figs. 2 and 3. If the two asymptotic results overlap, then thevith the improved lattice perturbation theory of Lepage and
effect of contamination is smaller than the statistical errorsMackenzie[19]. The additional input needed is the con-
We find that the two results do overlap, as illustrated by thdinuum two-loop anomalous dimension matrix. The improve-
figures, in all channels. The difference between the two caség€nt is significant numerically when the difference between
increases as the quark mass is decreased, growinglie ~ continuum scalg.=2 GeV and the lattice scalesalt 7/a

for the lightest combinatiotysU. In practice, we take the becomes substantial and when the anomalous dimensions are

average of the results from the two sources as our best est@rge. The improvement is most important here in the calcu-

mate. lations of BY3.
In practice we use a slightly different improved expres-
C. Statistical errors sion, that from “horizontal matching,” which is given in Eq.

. ) ) o _ (Al4). The numerical difference between the two methods is
We estimate errors using a single elimination jackknife.gmaller than our statistical errors.

We first average the data from the forward and backward \ye need the matching coefficients for the operators with
propagation of kaons on each configuration. Then, within theyjrac structurey,L® v, L (for By), 7,L®v,R (for B; and
jackknife loop, we fit to the ratios for each of the two sourcesg ) andL®L (for Bg). Those for the first two structures
and average the results of these fits. have been previously calculated in Ref80,21], using the
DRED (dimensional reductionscheme or a variant thereof.
IV. OPERATOR MIXING We have extended these calculations (hyrepeating them
AND PERTURBATIVE RUNNING for all Lorentz-scalar four-fermion operators, including those
]needed foBg, and(ii) matching to NDR in the continuum
operators must be combined with Wilson coefficients. Thes ather than .DRED‘ We give the resul_ts in Appendix B. We
coefficients have been calculated in continuum perturbatio nd that using tadpole-improved _Iattlce operators substan-
theory in the NDR scheme. Results are available at a numbé‘r""IIy reduces the one-loop correctiofid,22. For the local

of scales, and we take 2 GeV as our standard. We thus ne&ﬁ)erators vye gse, tadpole improvement in\{olves changing
to relate our results for lattice matrix elements to those fot'€_normalization of quark fields by replacing«c with

In phenomenological applications the matrix elements o

continuum operators in the NDR scheme at 2 GeV. \/gqvl_?’_"/“"c- We make this replacement in our numeri-
The general form of the matching formula is cal 5|mulat|ons_, even though it cancels between the numera-
tor and denominator of thB parameters.
(’)c"“'(,u)i:Z(M,a)ijO'a“(a)J— ' (4.0 It turns out that the results for the matching coefficients

for the local four-fermion operator can be easily generalized
wherei andj label operatorsZ can be expanded as a power from Wilson fermions to those for any improved fermion
series ing?, and typically only theO(g?) term is known. action. One only needs to know the matching coefficients for
the five bilinear operators. We present the results in Appen-
dix B in such a way that this generalization can be straight-
forwardly implemented.

To carry out the matching we need to choose not only the
final continuum scales, but also a scalg* related to the
truncation of perturbation theofand explained in detail in
Appendix A). For our final results we takg=2 GeV and
vary g* in the range 2 Ge¥q* </a, taking 1A for our
best estimates. At intermediate stages it is convenient to take
pn=q*=1/a, which we call the TAD1 scheme. This corre-
sponds to doing horizontal matching aglbut no further
running in the continuum. This choice has the advantage that
our results depend very weakly on the lattice spacing in
physical units—the only dependence arises when we have to
interpolate to the physical kaon mass.

Finally, we explain how we determine the modified mini-
mal subtraction schemeMS) coupling constant, which is
-1 R R R T needed in the matching formula. We do this following Ref.

10 20 30 [19], by first solving

0.5

[ R R

(2,0,0))

By(p=

-0.5

(@]
LA B N A I B N Y N B B

FIG. 3. Same as Fig. 2 except that the data are for momentum —InO= 4?Tra\,(3.41/a)(1— 1.185xy) 4.2
transferf):(Z,0,0). Because the signal in the backward-propagating
correlator(which has nonzero momenturdies off for T<15, the -
fit range is asymmetric. for @y and then converting to thielS scheme using
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TABLE I. B parameterddefined in the tejtfor individual operators without any renormalization factors. The resultBfor B?’Z,
Bglz, B;, andB; are in the TAD1 scheme. All data are for the mass combindtigd ;. The data are shown separately for the two types
of sourceJ and for the five momentum transfers. The columns are labelel {%]J.

P[O]P AlO]A P[1]P Al1]A P[2]P A 2]A P[3]P Al3]A P[4]P Al4]A
-pt 13.91) 13.42) 9.92) 9.6(2) 8.5(3) 7.93) 7.54) 6.7(3) 7.1(4) 5.54)
-st 3.364) 3.227) 2.31(8) 2.2610) 2.0512) 1.8911 1.7917) 1.5714) 1.5021 1.2017)
Vi 4.435) 4.2009) 2.899) 2.7012) 2.41(13 2.11(12)  2.06198) 1.6615 1.7824) 1.2221)
Vi 1.622) 1.543) 1.093) 1.034) 0.934) 0.844) 0.806) 0.685) 0.728) 0.527)

—AL 3.464)  3.306) 2.346) 2.218) 1958 1738  1.6811) 1.399) 15115 1.0413)
A 0.861)  0.812) 0.492) 0452 0373 0302 0294 0193 0225  0.085)
Tl 15.22) 14.62) 10.53) 10.24) 9.0(4) 8.4(4) 7.96) 7.005) 7.1(7) 5.7(6)
Tt 15.32) 14.72) 10.73) 10.44) 9.2(4) 8.5(4) 8.0(5) 7.1(5) 7.37) 5.7(6)
-P2 3723  36.05) 26.75) 26.06) 2297 2137 2039 1808  19.411)  15.110)
2 4798) 45912 33015  3.27120) 3.0623 279200 2.6632 23024 2.1336)  1.7630)

V2 0.401)  0.371) 0.251) 0.242) 0191 01720 0.162  0.122)  0.142  0.053)
V2 0.150)  0.140) 0.100) 0.091) 0081  0.081) 0081 0061  0.061)  0.041)
— A2 28713  2.764) 1.984) 1.8846)  1.666)  1547) 1449 1278 13512  1.0511)
A2 —-0.17(1) —0.14(1) 0.121) 0.142) 0203 0.253) 0254 0334 0335  0.395)
72 0.541)  0.51(1) 0.351) 0.341) 02920 0272 0252 0232 0213  0.163)
T2 0.551)  0.521) 0.361) 0.352) 0302 0282 0272 0242 0223  0.173)
By —-0.30(1) -0.28(1) —0.03(1) -0.01(2) 0.02) 0.143) 0193 0233 0234  0.296)
B, 0.600)  0.601) 0.61(1) 0.601) 0601 0612 0602 0622  0.642  0.623)
Bg 0.8200  0.821) 0.821) 0.821) 0.822) 08220 0813 0843  0.863)  0.844)
B, 0.590)  0.591) 0.601) 0.591) 0612 0612 0612 0612 0613  0.603)
B. 0.780)  0.791) 0.791) 0.7892) 0812  0.803) 0803 0823 0814  0.804)
aprs(3.41/8) = a(e%° 3.41k)(1+2ay/m) . (4.3 5 (Kol (527, 75da)"0)(0(spy, v5dp)*|Ko) . (5.3)

For the plaquette we usé =0.5937. We run the coupling to
other scales using the two-logp function. This results in
as(q*)=0.2049, 0.1927, 0.1523, and 0.1343 fqf =2
GeV, 1A, 2/a, andw/a, respectively.

The four-fermion operators in E¢B2) have half the Wick
contractions ofQ, which is why Eq.(5.3) contains 4/3 in
contrast with the 8/3 in Ed5.1). Note that we do not include
perturbative matching factors in theBeparameters; i.e., the
operators in the numerator and denominator are bare lattice
V. RESULTS FOR B operators. In Table | we give our results for all tReparam-
eters for theU,U; meson. This is the lattice meson whose
mass lies close to that of the physical kaon.
<Ko|Q|K_o> We also include in Table | results f@y using one-loop
— —, matching in the TAD1 scheme, i.e.,=q* = 1/a. At the tree
(8/3) (Ko[Say,75dal0) (O[S, ¥5dp|Ko) level, By is just the following sum of thé® parametersfor
5.1)  definitions see Appendix B

The kaonB parameter is defined in the continuum by

By(u)=

where Q is the left-left AS=2 operator, BK~A§+A§+V§+V§+A§+A$+V§+VE. (5.4
Q=5.7,LdaSp,Ldp, (5.2
At one loop, however, all Lorentz structures enter. In the
andL=(1- vys5). We are ultimately interested in the value of result forBx we include one-loop matching factors, not only
Bk when @ does not insert momentum and when the “ka-in the numerator, but also in the denominator; i.e., the lattice
ons” have physical masses. The definition, Ef.1), is, axial-vector currents in the denominator have each been mul-
however, more general and is useful at intermediate stagesiplied by Z,=1+X\(g*)ca. To reduce errors, we always
Bk depends on the renormalization scaldecause&d has a form the appropriate linear combination of operators in the
nonvanishing anomalous dimension unlike the axial-vectonumerator and denominator before fitting. The results in
current. Table | indicate the relative size of the matrix elements of the
To calculateBy , we use the results of Appendixes A and contributing operators. The largest are the those of the pseu-
B match Q to a linear combination of lattice operators with doscalars and tensors. The results using the two sources
different Lorentz structures. ThiBy itself is a linear com- (J=A, and P) agree within errors in most cases. Our best
bination of latticeB parameters, which we define to be the estimate, as explained above, is obtained by averaging the
ratio of the matrix element of the four-fermion operatorstwo results. The errors increase as the momentum inserted by
[listed in Eq.(B2)] to the operator increases, but we retain good statistical control
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TABLE |II. Lattice results for theB parameter of theAS=2 operatorQ in the TAD1 scheme. The momentum inserted by the operator
is indicated at the top of the columns, and the rows label the meson’s quark combination. Results after momentum s(d&eattiimre

given for the ten lightest mesons.

(0,0,0 (1,0,0 (1,1,0 (1,1,2 (2,0,0 Subtracted
cc 0.920(10) 0.921(11) 0.924(14) 0.925(15) 0.927(16)
CSs 0.834(09) 0.838(11) 0.841(14) 0.844(16) 0.847(19)
cu, 0.808(09) 0.811(12) 0.813(16) 0.815(19) 0.817(22)
cu, 0.796(11) 0.799(14) 0.797(20) 0.799(23) 0.799(27)
CU; 0.792(13) 0.795(17) 0.789(25) 0.792(29) 0.787(36)
ss 0.558(04) 0.586(07) 0.605(10) 0.623(13) 0.638(16) 0.746(216)
sy, 0.444(04) 0.488(07) 0.518(11) 0.545(15) 0.567(19) 0.730(165)
su, 0.382(05) 0.437(08) 0.473(12) 0.506(17) 0.532(22) 0.716(146)
SU, 0.338(05) 0.402(09) 0.442(15) 0.478(20) 0.508(26) 0.704(135)
U,U, 0.244(04) 0.332(08) 0.387(13) 0.433(17) 0.466(23) 0.716(115)
U,U, 0.112(05) 0.237(09) 0.310(15) 0.369(21) 0.408(28) 0.703(098)
U,Us 0.000(07) 0.161(10) 0.248(18) 0.318(25) 0.363(34) 0.687(088)
U,U, —0.091(07) 0.103(11) 0.204(18) 0.283(26) 0.330(38) 0.688(082)
U,Us —0.287(10) —0.017(14) 0.112(22) 0.212(33) 0.256(49) 0.670(075)
UsUs —0.597(16) —0.191(21) —0.021(31) 0.112(45) 0.140(68) 0.643(074)

for all five momenta. This allows us to see clearly that mosts; proportional toag? and tog*. There will also be artifacts
of the B parameters have substantial momentum dependencef this order contained in the other coefficients in the chiral

In Table Il we give our results foBy for all mass com-
binations. To extract the physical value B we must ac-
count for the breaking of chiral symmetry by Wilson fermi-

expansion.
To show that this is indeed a problem, we plot our results
for (K°[Q®"KO)/[8f% ,n,d3] in Fig. 4. The figure also

ons. The general form of the chiral expansion of the matrixshows the result of fitting the data with the six-parameter

elements of four-fermion operators is

(K%(pp)|OIK(p) _
(8/3)FK phys

a+ Bmg+y pi-ps+ Smg

+ 8,mgp;- Pr+ S3(p;- pr)2+ - -,
(5.9

wherefy onysis the physical kaon decay constdit lattice
units). We are ignoring chiral logarithms and terms propor-
tional to (mg—my)2. The former are difficult to distinguish
numerically from the terms we include, while the latter we

expect to be small, especially for the range of quark masses
studied. We are also assuming that we do not need to include

possiblep* terms which violate Lorentz symmetry.

For most operators we expect all terms in E§.5) to
contribute. Fol0= Q°°™ however, chiral perturbation theory
predicts that the matrix element vanishes whgnp;=0,
requiring «, B, and §, to be zero. This means that &,
one expects

2
K,phys

fi

(k0K

2 ..
T (e3)Zp, py 2 YT OAMKE OaPiPr).

(5.9

With Wilson fermions, however, chiral symmetry is broken
explicitly. This would not be a problem if one could match

form of Eq.(5.5). A good fit is obtained, with nonzero values
for the artifactsae and 8. The curvature in the data indicates
the presence op* terms, but the values of the individual
6; are poorly determined.

The curvature is drastically reduced if we consider the
ratio

0.3 - -
L« =-0.028(0.002) .
L g =-0.33(0.05) -
-y = 0.40(0.05) .
6,= 0.80(1.81) -
6,= 4.88(3.26) 1
6,= 0.79(1.50) .
0.L1- p=(200)
I p=(111)
I p=(110)
3 p=(100) |
ol p=(000) |
L i 1 | L | L ‘ | Il ‘ 1 | ]

0 0.05 0.1 0.15 0.2

mg

with the continuum operator using a honperturbative method FIG. 4. Results for the matrix e|emer@c°”9'[8fﬁ'phy513] (in
and if one could extrapolate to the continuum limit. We canTAD1 schemg together with the chiral fit. The physical kaon cor-

do neither of these and so expect nonzero values @f, and

responds tcmﬁ'physzo.046 in lattice units.
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l T T T T T
a =—0.046(01) a =—0.046(001)
T B = 0.046(44) - I B = 0.065(039) )
L v = 0.668(44) J Ly = 0.657(046) :
§,= 0.17(1.33) Yv g q L 3= 0.526(077) B
0.1~ 6,=-0.11(2.38) = ©
5,= 0.51(1.07) | e - .
i i S 7 (200) |
4 0 p=
_ v r T
| o p=(200) | ® % p=(111)
I % p=(111) | " & p=(110) |
+ p=(110) 0= X p=(100)
0 = p=(100) — i + p=(000) ]
N + p=(000) | ‘ ‘
Il L i i L | 1 |
I | ‘ 1 | ‘L | i ‘ | 1 O O 1 02 O 3
0 0.05 0.1 0.15 0.2
mé FIG. 6. Results for matrix element ap®"/[8f2/3], together

with the results of a chiral fit excluding; and §,. The data are

FIG. 5. Results for matrix eleme@°®"[8f2/3], together with  Plotted as a function op; - ps .
the results of a chiral fit. ] ) .
To give an idea of the importance of tp& terms we have
0| A0 done a variety of alternate fits, all to the ra@i[8f§/3].
(K% QIK®) . ) )
~———— " =Bypi-Ps, (5.7 Most interesting are those using only the three lowest order
(83 fk terms (@, B, and y). Fitting to the results from the lightest
four mesons alone giveBx=0.734), while fitting to the

as shown in Fig. 5. Her§ is 'the lattice resul? for_ the_decay lightest six gives 0.7¢). These are higher than our pre-
constant for the corresponding mes@2]. This simplifica-  tgrreq number, but the difference is only slightly more than

tion has been noted previously by the APE grdidp The 1 "y contrast, if we fit to the combinatiorid;U;, SU.,
figure also shows a fit to the same form as on the right-hanéndSs(the heaviest five of the mesons in Figs. 4 amd/\l'fe
side(RHS) of Eq. (5.9). Not o.nly are the h|ghe_r order terms find a result, 0.8(4), significantly higher than our preferred
smaller (although they remain poorly determinedut also number. Previous work by other groups with Wilson fermi-

A is much reduced. Fitting to this ratio leads to smaller €IT0HNns[7,5], including our owr{4], used three-parameter chiral
n the final result, and we use it in all of the following analy- fiis 15 mesons in this mass range. Our results indicate that the

Sis. . )
L . neglect of higher order terms might lead to 10—20 % system-
We can reduce the uncertainty in the higher order terms_mg errors ingtheir results g o Sy

by noting that the matrix element @*"/[8f/3] is to good We have checked our result by repeating the analysis us-

approximation a function only gb;- p, as shown in Fig. 6. jhg 5 second method. Returning to the original definition of
This feature was also found in Ré¥]. This suggests fitting e chiral expansion, Eq5.5), we note that contributions

with 6, =6,=0, and the result of such a fit is shown in the {rom the artifactsx, 8, ands; can be canceled by combining
figure. Thus the dominant artifact is, with a small contri- pairs of points at different momentum transfers:

bution from 3, which leads to the observed deviations from a
single curve. This fit leads to the smallest error&jp, and E,By(d) — EoBk(qy) ,
we take it as our standard. (E—E,) =y+ 5HM+ 5M(E1+E,). (5.9

In order to extract a value foBx we use a procedure o
similar to that we advocated n R¢#], except that we now Here E; is the energy of the lattice kaon with momentum
have better control over the higher order terms. Having ob-. :
tained a fit to the data, we simply discard the terms which wéli - The RHS of Eq(5.9) differs from the form forBy, Eq.
know to be artifacts. Applying this to the fit shown in Fig. 6 (3-8, by 6sM(E;+E,—M). We use the value ob; ex-

gives tracted from the fit in Fig. 5 to correct for this. The results of
this analysis for the ten light mass combinations are given in
Bu(u=q* =1/a)~y+(5,+ 53)M§ ohy=0.68(4). the sixth column of Table Il. We have averaged the results

(5.8  from[q;,9,]=[(100),(000) and[q;,q,]=[(110),(000),

the channels with the best signal. Extrapolating or interpolat-
We obtain consistent results, with larger errors, from the fitsng to My, we find Bx=0.669), in good agreement with
of Fig. 5[0.68(6)] and Fig. 4[0.65(10). The subtraction our earlier result.
procedure has, however, increased the errors substantially We thus are confident that our results do not have signifi-
compared to those in the values for individual mass combicant errors due to yet higher order terfii$ O(p®)] in the
nations. For example, the error fo,U5 in B is 0.01(see  chiral expansion. What is more difficult to gauge, however,
Table ). is the size of the lattice artifacts in the chiral coefficients
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TABLE IIl. Results (in lattice unitg of three-parameter chiral Thus we take 0.050.05 for our estimate of this shift, the
fits to various operators. generous error accounting for the uncertainty in this subtrac-

tion method. Thus our final estimate Bf; is

Operator a b O3

—n* — —
0 —0.0457(14) 0.71@0) 0.527) Bx(u=q*=1/a)=0.73+0.04stad + 0.05 subp .(5 10
O+ 0} 1.795) 1.1(5) —1.5(1.4) '
0,05 —3.36(9) —4.8(9) 2.92.9 Running in the continuum te=2 GeV increases the result
2(0; +05) —1.29(4) —-1.8(4) 0.31.2) slightly:
2(0; -0H13 —0.71(2) -0.8(2) 0.06)

Bk(u=2 GeVg* =1/a)=0.74*0.04 stah = 0.05 suby.

5.1

which we keep, i.e.y, &,, and §;. These artifacts are due 513
both to discretization errors and to higher order terms in the We close this section with some comments on the reliabil-
perturbative matching coefficients. Recently the APE groupty of our result.
has studiedBy using Wilson fermions and the improved (1) Our result is almost independent of the horizontal
“clover” action, which removes errors dd(ag?) [7]. Their  matching scaleg*: It increases only by 0.02 if we use
result suggests that the largest source of error in our calcut* = 7r/a. This is in apparent contradiction with the conclu-
lation is from the matching coefficients rather than discreti-sions of Ref[7], who find a large dependenceBf on their
zation. choice ofag. The difference is due to the fact that we have

Assuming that truncated perturbation theory is the probused tadpole-improved perturbation theory, in which the per-
lem, we can estimate the size of the associated systematigrbative corrections to both numerator and denominator of
errors using a method adapted from that of Bernard and Sofdkx are small. Although the tadpole improvements formally
[6]. As explained in Appendix BQ matches with a linear cancel at one-loop order, there is a significant numerical dif-
combination of five lattice operators: itself () and the ference due t®(a2) terms.
four other Fierz self-conjugate operata? .. The idea is (2) The changes to the coefficients of the subtraction op-
to separately adjust the matching Coeﬁiciemga;'f_s rela-  erators required to cancel tleterm in the chiral expansion
tive to that of O; so as to remove the artifacts, 8, and ~ are smaller than the one—IO(_)p pertl_erative resul_tg. For ex-
8;. The change in matching coefficients would lead to aanzple, e can cancek by increasing the coefficient of
change in the value dB, . Since there are four operators to O2 + O3 from —1.0as/m (its one-loop perturbative valiie
adjust but only three coefficients to fix @(p%), we need to 0 —0.6as/m~—as/m+7(as/m)?. This is not an unrea-
make additional assumptions to carry out this procedure. Ongonable value for a higher order perturbative term.
approach might be to consider three operators at a time and (3) Ideally, one would like to determine the matching co-

use the Spread in the final results as an indicator of the Sy@.fﬁCientS nonperturbatively. First results with a clover action
tematic error. [7,8] and with Wilson fermion$9] have been obtained. The

In practice, we have On|y been able to carry out this proJatter are consistent with our result obtained USing the chiral
cedure semiquantitatively because our statistical errors aféfs and perturbative matching.
too large. In Table 11l we show the results of chiral fits to _(4) Finally, we note that the matrix elements Bf and
matrix elements of various operators keeping Qm]y% and Pl, although they are the Iargest of all Lorentz structures
5. (see Table)l, make only a small contribution By . This is

(1) The perturbatively correctefiS= 2 operatorQ (inthe ~ because they depend, to good approximation, onlymgn
TAD1 schemg divided by &2/3. This is the matrix element and not orp;- p; as exemplified in Fig. 7. On the other hand,
relevant forBy , the results for which are shown in Fig. 6. for BY?andB3?, whereP? andP" are part of the continuum

(2) Four linear combinations of the bare lattice operatorsoperator, these operators give the dominant contribution.
05 _g, each divided by 8/3.

The three-parameter fit requires that the data lie on a VI. Bp
single curve when plotted against: ps, which is not a bad
representation of th@ data, as shown in Fig. 6. The fit to
05 _sis better still. We do not introduce the fourth parameter
B, because, although this improves the fit @r it makes
little difference forO, _ and increases the errors in the fit
parameters.

Since our data are reasonably represented with only thandBp_(related byu—s) is more straightforward. There are
single artifacte and since the four “subtraction operators” no significant constraints from chiral symmetry—all terms in
can be similarly represented, our subtraction procedure is ghe expansion of E¢5.5) are expected to be present in the
follows. Take each of the four operators listed in the table inphysical matrix element. Thus we simply calculate e
turn, add them t@ so as to cancet, and use the change in parameters and extrapolate or interpolate to the physical light
v+ 53m§’phyS as the estimate of the possible shiftBg . In  quark masses.
fact we ignore the contribution ofs, since it is both small Our results forCS and CU; mesons are given in Table
and uncertain. The shifts By are then 0.03, 0.07, 0.06, and IV. They show no significant variation with momentum
0.05 for the four subtraction operators listed in Table lll. transfer and very little dependence on the light quark mass.

The analysis of our results for

_ _<Do|C_a7’,LLUaC_b7,LLUb|Do>
8/3(Do|Ca¥,¥5Ua|0) (0[CHy,¥sUp/ Do)

6.1

D
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The mixing contributions are-15% of By, indicating rea-

-15 - — . g T
L _ ! ‘ i sonable convergence. Their fractional contribution is also al-
- (0,00} | most independent of the momentum and the mass of the light
i T quark.
oL =(1,0.0) 1 Our final results are
a =(1.1,0) |
o L p=(1,1,1) 1 Bo(u=0*=1/a)=0.77115)
(o8] = N
N - p=(2.0.0) ] and
X 25 -
= [ ] B (4=0* =1/a)=0.8159) . (6.2
& - a=-163£0.08 .
L | p=-3.3:12 ] These convert to
[ 0i=307eaz ] Bp(u=2 GeVg*=1/a)=0.78515 and
- ‘ i | 1 Bp (=2 GeVg*=1/a)=0.82210) . (6.3
_36 L 1 L L L L L L L
0 0.05 0.15 0.2

The dependence ayt is, as forBy , smaller than the statis-
tical errors. SinceBp and Bp, are correlated, their ratio is

FIG. 7. Three-parameter fit to the matrix elements of Well determined:
PZ/[SfﬁIS]. The data forP! are similar and the VSA relation B
P2=3P! is approximately valid. Bp /Bp=1.04815) . (6.4

0.1
mg

The variation oB with the light quark mass is described by

Thus thea term in Eq.(5.5 is dominant—in striking con- 777(15)+ 0.77(27)m :
: i . 0. . a. Heremga is the quark mass ob-
- q q
tras:{t tg tthe rtt;sults for ggr:t “t?:; mehsonlz. (;Quenched fhh'raPained from the Ward identity for the axial-vector current,
perturbation theory predicts o should diverge as the ., i fixed usingM , [14].

light quark mass vanishg&3,24], with the effect beginning

atmg oy d3— Mg oy d4. We see no sign of such behavior with
our light quark masses, which extend down to approximately
Ms, phyd3. We now turn to the left-right operators which appear in

To investigate the convergence of perturbation theory, wehe effective weak Hamiltonian due to electromagnetic pen-
show in Table IV separately the “diagonal” and “mixing” guin diagrams:

contributions taBp . The former is the contribution from the

VIl. RESULTS FOR B3? AND BJ?

lattice operator having the same form as the continuum op- Q7:(5_a7MLda)[(U_b7MRUb)— %(d_medb)
erator (i.e., 20;), while the latter is the contribution from
the other operators introduced by one-loop mixir@; (). - %(s_byMRso)] , (7.1

TABLE IV. Results forBp (in the TAD1 schemgfor the heavy-light meson€ S andCU; as a function of momentum insertion. Also
shown are the separate contributions of the diagonal and mixing parts of the operator. An error value of 0 means that it is less than 1/2 in
the last significant digit.

p=(0,0,0) p=(1,0,0) p=(1,1,0) p=(1,1,1) p=(2,0,0)

CS

Full 0.831) 0.841) 0.841) 0.8412) 0.852)

Diagonal 0.710) 0.71(1) 0.721) 0.721) 0.722)

Mixing 0.12(0) 0.120) 0.120) 0.120) 0.120)
cu,

Full 0.81(1) 0.81(1) 0.81(1) 0.822) 0.822)

Diagonal 0.681) 0.691) 0.691) 0.692) 0.692)

Mixing 0.130) 0.130) 0.130) 0.120) 0.120)
CU,

Full 0.801) 0.801) 0.802) 0.802) 0.803)

Diagonal 0.670) 0.671) 0.681) 0.682) 0.682)

Mixing 0.1300) 0.130) 0.130) 0.120) 0.120)
CU,

Full 0.791) 0.792) 0.802) 0.793) 0.793)

Diagonal 0.671) 0.672) 0.672) 0.673) 0.673)

Mixing 0.13(0) 0.130) 0.130) 0.121) 0.121)
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FIG. 8. Results for the ratio of correlators definiBg?, in the

TAD1 scheme for theéJ,U; meson.

FIG. 9. Results forB3? in the TAD1 scheme for théJ,U,

meson.

nomenological interest, because they are the only operators
giving rise to an imaginary part in thé* — 7" 7% amplitude

and, thus, give the dominant electromagnetic contribution to
€'le. We calculateB parameters foK*— 7 matrix ele-
ments, which are simpler to calculate than those for
We have results only for thie=3/2 parts of these operators, K— 74, but are equal at leading order in chiral perturbation
since thel =1/2 parts have penguin contractions which wetheory. Thus ouB parameters are defined in the continuum

Q5= (S37,Ldp)[(Upy,RU,) — (dpy,Rd,)

— 2(sp7,Re)] (7.2

have not calculated. Fortunately, the 3/2 parts are of phe-

by

32_

(m|Q¥AK™)

7

3l2_

(71937

K*)

2w+ [uysd|0)0[sysulK ) — (7" [u7y,, y5d|0)(O[Sy, ysulK )

8

2(m* [Uuysd|0)(O[sysulK*)— 3 (" [U7y, y5d|0)(0[Sy, ysulK ")

TABLE V. Results forB3? and B3 in the TAD1 scheme 4= q* =1/a).

B, Bs

Full Diagonal Mixing Full Diagonal Mixing
cC 0.859(09) 1.07(1) —0.22(0) 0.941(10) 1.23(1) —0.30(0)
CSs 0.822(09) 1.08(1) —0.26(0) 0.943(10) 1.22(2) —0.29(0)
CuU, 0.812(10) 1.07(1) —0.27(0) 0.940(11) 1.20(2) —0.28(0)
CuU, 0.806(11) 1.06(2) —0.27(0) 0.936(12) 1.20(2) —0.28(1)
CU; 0.800(13) 1.06(2) —-0.27(1) 0.932(14) 1.19(3) —0.28(1)
SS 0.723(05) 1.05(1) —0.34(0) 0.917(06) 1.17(1) —0.26(0)
SU, 0.695(04) 1.02(1) —0.34(0) 0.900(05) 1.14(2) —0.25(0)
SU, 0.680(04) 1.01(2) —0.35(1) 0.890(06) 1.12(2) —0.25(0)
SUs 0.669(05) 1.00(2) —0.34(1) 0.880(06) 1.11(2) —0.25(1)
u,U, 0.660(04) 0.99(2) —0.35(1) 0.874(05) 1.10(2) —0.24(1)
u,U, 0.640(04) 0.97(2) —0.35(1) 0.858(05) 1.08(3) —0.24(1)
U,U; 0.625(04) 0.96(3) —0.34(1) 0.843(05) 1.06(3) —0.23(1)
u,U, 0.617(04) 0.95(3) —0.34(1) 0.837(05) 1.05(3) —0.23(1)
U,U; 0.599(04) 0.93(3) —0.34(1) 0.819(06) 1.03(3) —0.23(1)
UsU; 0.578(05) 0.91(4) —0.34(1) 0.797(07) 1.01(4) —0.22(1)

(7.3

(7.9
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TABLE VI. Variation of B; and Bg run to u=2 GeV, for
various choices of|*.

fits after the running. Consequently, the cancellation of er-

q* B3? B3? rors between the numerator and denominator is not as good.
2 GeV 0.549(18) 0.790(27)

1a 0.578(19) 0.807(27) VIIl. RESULTS FOR Bg

20a 0.641(21) 0.835(28) We close with results for th& parameter introduced in
wla 0.654(21) 0.837(28) Ref.[3] to calculate the difference d&-meson lifetimes:

The operator3? are defined in EqgB25) and (B26). B (Bg|balsa bclsc|Bs) 8.1)

The operators irBY3 are matched onto lattice operators

using the results of Appendix B. A slight complication arises

because the denominators consist of two terms, one of whicfye also consider the operator related by a Fierz transforma-
(the pseudoscaladepends on the renormalization scale  tion:
while the othern(axial-vectoy part does not. Thus we cannot
simply use theB parameters defined above which have only (B |b_Ls bls |B_>
the axial-vector currents in the denominator. Instead, we use Bs = sa-Tc crral s .
horizontal matching followed by two-loop running to calcu- (—1/3)(Bg|b,y554|0){0|b,¥5S4| Bs)
late both numerator and denominator at the final spatnd

then take the ratio, all within the jackknife loop. We repeatThe perturbative matching coefficients for this operator have
the entire procedure for various choicesgdfandu. not been calculated previously—they are given in Appendix
The calculation involves no chiral subtractions, since allg The one loop improved operata®; andO; are defined
terms in the chiral expansion are physical. To show the qualy, Eqgs.(B36) and (B37). (One needs the matrix elements of
ity of the results we displayg?”? and BF” (in the TAD1 oy, operators due to the mixing between thefhe calcu-
schemg in Figs. 8 and 9, respectively, for thé,Us meson.  |ation of their matrix elements and the correspondihga-
The statistical errors are small, and the results using the tWpymeters is straightforward, and the results for the 15 mass
sources agree. ) ) combinations, as a function of the matching sqateq*, are
We have done the calculation of these matrix elementgiven in Tables VIl and VIII. The results after extrapolation

only for the case in which the initial and final mesons haveys the light quark to the physical strange quark mass are
the same quark composition. Our results in the TADlgiven in Table 1X.

scheme are collected in Table V. We see the same gradual Note that. unlike the previous casesBfparameters, we

increase towards unity as the meson mass increases that Wennot run these results to a final common scale. As can be
observed betweeBy andBp . Diagonal and mixing contri-  geen from the results of Appendix A, this requires knowl-
butions are defined as f@ . We have also included results gqge of the two-loop anomalous dimensions. It would be
at different momenta fot),Us mesons in the last two rows jnconsistent to use one-loop matching and then only run us-
of Table I. The lack of momentum dependence is due t0 thé,g one-loop anomalous dimensions. Thus we cannot study
dominance of the pseudoscalar matrix elements, which, ageq* dependence of the results at a fixed final sgal@he
noted above, depend only an; . _ _ fact that bothB,+ andBs+, evaluated at.=q*, depend only

In Table VI we give results fop=2 GeV with various  weakly ong*, as is apparent from Tables VII-IX, is an
values ofg™. There is a significant variation with*, con-  accident. The origin of this feature can be traced to the large
siderably Iarg_er than the_ statistical errors. This |r_1dlcate_s tha_\}ame of the matrix elements of the lattice mixing operators
the perturbative expansion for the anomalous dimensions ignd, consequently, significant variation witly(q*).
converging more slowly than foBy and Bp. We take The best we can do at present is to use our preferred value
q* = 1/a for our final result and use the range of values forof q* =1/a and guote the results on|y fw: q*' ie., using
g*=2 GeV—m/a to estimate the systematic error. This horizontal matching. These results are
leads to

(5/3)< Bs| ba753a| O><0| ba755a|B_s> .

(8.2

+0.07 B, (NDR,u=q*=1/a)=0.80+0.01(stay, (8.3
B3%(NDR,2 Ge\/)=0.58i0.02(stat)_Ojos(pert),

(7.5 Bs (NDR,u=q*=1/a)=0.94+0.01(stay. (8.4
o +0.03
Bg(NDR,2 Ge\j=0.81+0.03stad _ , yf pert. ACKNOWLEDGMENTS
(7.6 These calculations have been done on the CM5 at LANL

as part of the U.S. DOE HPCC Grand Challenge program
Note that the statistical errors are somewhat larger after rurand at NCSA under a Metacenter allocation. We thank Jeff
ning to u=2 GeV (compare results in Table VI to those in Mandula, Larry Smarr, Andy White, and the entire staff at
Table V). This is because, in order to evaluate Bi@param-  the two centers for their tremendous support throughout this
eters at 2 GeV, one has to combine results of three separapeoject.
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TABLE VII. The B parameter for the operat@; . The data are shown for all 15 mass combinations and
for various choices oft=q*.

g*=2 GeV g*=1/a g*=2/a g*=mla
cc 0.877(9) 0.883(9) 0.880(9) 0.871(9)
CcS 0.806(6) 0.813(6) 0.813(6) 0.806(6)
cu, 0.784(8) 0.791(8) 0.792(8) 0.786(8)
cu, 0.771(8) 0.779(8) 0.781(8) 0.775(8)
CU, 0.763(9) 0.771(9) 0.773(9) 0.767(9)
SS 0.696(4) 0.703(4) 0.707(4) 0.701(4)
sy, 0.663(3) 0.670(4) 0.675(4) 0.670(4)
Su, 0.647(4) 0.655(4) 0.660(4) 0.656(4)
SU, 0.639(4) 0.646(4) 0.652(4) 0.647(4)
U,U, 0.626(3) 0.634(3) 0.640(3) 0.636(3)
u,U, 0.610(3) 0.617(3) 0.623(3) 0.619(3)
U U, 0.600(4) 0.607(4) 0.613(4) 0.609(4)
U,U, 0.592(4) 0.599(4) 0.605(4) 0.601(4)
U,U, 0.581(5) 0.588(4) 0.594(4) 0.590(4)
UsUs 0.571(6) 0.578(6) 0.583(6) 0.579(5)
APPENDIX A: ISSUES IN MATCHING LATTICE vector of lattice operators. By comparing matrix elements,
AND CONTINUUM OPERATORS one can calculate the matrix in perturbation theory. The

In this appendix we discuss the matching of lattice ::mo“-)m:"'IOOp result has the form
continuum operators. We also collect results for the anoma-
lous dimensions needed for the particular matrix elements Z(w,a)=1+\ c(ua) , (A2)
we calculate.
We wish to find the lattice regularized operators which
match with(i.e., have the same physical matrix elemenjs aswhere\ = g?/(167?) andc is the one-loop matching matrix.

the continuum operators of interest: Appendix B describes the calculation offor four-fermion
operators. The issue we address here is the choigamfise
OO 1) =Z( ,3) O a) (A1) in . Should it be the continuum couplingys(x), or the

bare lattice couplingy(a), or some sort of an average? The

uncertainty this introduces can be comparable to the statisti-
Here O is a vector of operators which is closed undercal error, as is the case in the calculationBgf using stag-
continuum and lattice mixing, an@?" the corresponding gered fermiong11].

TABLE VIII. The B parameter for the operat@; . The data are shown for all 15 mass combinations
and for various choices gi=q*.

gq*=2 GeV g*=1/a g*=2/a g*=mwla
cc 0.975(11) 0.991(11) 1.013(11) 1.011(11)
CS 0.940(9) 0.953(9) 0.967(9) 0.963(9)
cu, 0.920(10) 0.933(10) 0.946(10) 0.942(10)
cu, 0.910(12) 0.922(11) 0.935(11) 0.931(11)
CU, 0.902(14) 0.914(13) 0.927(12) 0.923(12)
SS 0.878(5) 0.885(5) 0.885(5) 0.878(5)
Sy, 0.850(5) 0.856(5) 0.855(5) 0.847(5)
SuU, 0.836(5) 0.842(5) 0.840(5) 0.832(5)
SU; 0.829(6) 0.835(6) 0.832(5) 0.824(5)
U,U,; 0.817(4) 0.822(4) 0.819(4) 0.811(4)
u,U, 0.802(5) 0.806(5) 0.802(4) 0.794(4)
U U, 0.793(5) 0.797(5) 0.792(5) 0.783(5)
U,U, 0.785(5) 0.788(5) 0.783(5) 0.774(5)
U,U, 0.775(6) 0.778(6) 0.771(6) 0.763(6)

UsUs 0.765(8) 0.768(8) 0.759(7) 0.750(7)
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TABLE IX. The B parameter for the operat@, andO/ after 0 Yia(9')
horizontal matching to the continuum at scafe. The CU; data J g’ N
have been extrapolated to(M 4) in the light quark mass. 9@  Pra(9
B, (v=0%) Bs (n=0*) _ fo dgus Yia(@' (Ims)) (A5)
q*=2 GeV 0.791(8) 0.927(10) osia”* ~k/a)|dgws(g')/dg’| —dg'(@)/dIna
g =1/a 0.798(8) 0.940(10) . ,
q*=2/a 0.799(8) 0.953(10) _ f q M_S%an(g (gws)) (A6)
g*=mla 0.792(8) 0.949(10) ows(a* =K/a) dgws/dIng*
_ J 0 do a9’ (9ws) A7)
is i i . = MST -
To address this issue we use the exact perturbative for gi(a* =K/a) Beond Ivis)

mula forZ given by Ji[18]. Generalized to the case of mix-
ing, this is Thus we end up with the same form, but with the continuum
B function in the denominator, a different lower limit, and
the anomalous dimension matrix expressed in terms of
9 Yeonk9") Ows- This change of variables makes no difference if we
Z(pm,a)=T ,,ex% —f g"m) work to all orders, but does affect the result when we trun-
eon cate perturbation theory. The hope is thaf, converges
0 Yiat(9") more quickly as a result of this reorganization.
XT ,exr{ f g ( ,)) (A3) In practice we know only the two-loop anomalous dimen-
) Padd sions for the operators of interest, and so we expand out Eq.
(A3) [with the substitution(A5)] to second order, following

the method of Ref[2]:
The y's are the anomalous dimension matrices, which are

different in the continuum and on the lattice. Th& are the X)) 51280

usual B8 functions, again different in the continuum and on Z(x,8)=[1+\(u)Jeonet O(X?)] 1 W™ (M *))

the lattice, though only aD(g’). The Ty's indicate that the a

exponential integrals arg ordered. This formula has a XW[L+M(g*) (¥ ) +O(ND)] . (A8)

simple physical interpretation: First use the renormalization

group to run on the lattice to a lattice spacing as small as ondlote that theg® in \ is in the MS scheme wherever it ap-

wants, then match with the continuum at the tree level, andPears. Note also that thee dependence comes in implicitly

finally run back to the desired scale in the continuum theorythroughg*. Here yg is the result of diagonalizing the one-

It is exact except for possible nonperturbative corrections. loop anomalous dimension matrip (which is the same in

To use Ji's formula we have to specify both the con-both lattice and continuum schemes

tinuum and lattice renormalization schemes. In the con- .

tinuum we take NDR(.e., MS plus a particular set of rules Yo =WyW . (A9)

for dealing withys in n dimensiong so thatg(u) is in the The two-loop contribution feeds in through

MS scheme. On the lattice, Ji uses the bare lattice coupling

constant and takes the scale tosb&he work of Lepage and B17o L

Mackenzie suggests, however, that it is better to reexpress all J= 252 —W MW, (A10)

lattice perturbative expressions in terms of a continuumlike 0

coupling[19]. Thus we suggest improving Ji's formula by where the matrix\ is

using the same definition of renormalized coupling constant

on the lattice as in the continuum. In other words, we imag- (Wy, W™y

ine expressing perturbative series on the lattice, e.g., that for Mi; ZZBO_(%?)“ +(y(f)>).. '

the anomalous dimension matrix, in terms g@fs(gq*), .

wheregq*a=K, with K a constant. This is just a change of J,, differs from J,,; because the two-loop anomalous di-

variables mension matrices differ. In practice, the lattid&s contain
more off-diagonal terms than those in the continuum. For
example, in the continuum the operatdlg and Qg only mix

gms(a*.,g(a))=g(a)+ci(q*a)g(a)®+0(g® , (A4)  with each othefand with evanescent operators which vanish

in four dimensiong while J,; mixes these operators also
with (914,5, as described in Appendix B. The structure of Eq.

with ¢; a known constant with known dependencedsra. (A8) means, however, that, working from left to right, we

The value ofg*a should be chosen so as to improve thecan stay in the two-dimensional space spanned®y, Og)

(A11)

convergence of perturbative series. until we encounted,,;. Thus we need only the rectangular
To implement this improvement, we change variables inpiece ofJ,; which connects ©;,Qg) to the full basis.
the integral over g’ in Eg. (A3), from g’ to Equation(A8) is (aside from a minor modification dis-

gws(g* =K/a,g’). The result is cussed beloywthe result which we propose using in place of
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TABLE X. Bilinear matching coefficients, with=In(ua). Tadpole improvemen(discussed in the main

text) adds tadC-=12.86 to each of these numbers.

Action Scheme Cs Cy cr Ca Cp
Wilson NDR -12.952+6/  —20.618 —17.01-2/ —15.796 —22.596+6/
Wilson DRED-NDR 1 0.5 -1 0.5 1

Eq. (A2). It makes clear which scale to evaluate the coupling The remaining issue is the choice gf. That we have
at wherever it appears: the lattice scale in the lattice anomasuch a choice simply reflects the fact that we have truncated
lous dimension or the continuum scale in the continuumthe perturbative expansions ferand 8. Lepage and Mack-

anomalous dimension. It is valid evengfa is substantially

enzie have suggested a scheme for estimatjfigwhich

different from unity, for it sums up the large logarithms of works for finite lattice renormalizations9]. We have not,

pa. It can be applied to tadpole-improved operators—however, found a way to implement their scheme for diver-
tadpole improvement simply changes the two-loop latticegent operators. Presumably one could use the alternative
anomalous dimension, presumably making the perturbativBrodsky-Lepage-Mackenzi@LM) schemd25], but this in-

series converge more quickly.
To apply Eq.(A8) we need to know thd’s. In the con-

volves calculating a subset of diagrams for the two-loop
matching coefficientsor three-loop anomalous dimensigns

tinuum, the two-loop anomalous dimensions are known fowhich has not been done. Thus we have simply carried out

most of the operators of intere§hey are listed beloyy and
from these we can construdt,. Ji. can then be deter-

the calculation for a reasonable rangeqdf: 2 GeV, 1A,
2/a, and m/a. Previous work suggests that, for tadpole-

mined by comparing the one-loop matching result to the genimproved operators, the optimuqt lies towards the lower

eral formula, in the following way. We recall that, when end of this rangd19]. For this reason we quote our final
deriving Eq. (A2), one equates the lattice and continuumvalue usingg* = 1/a. It is important to realize, however, that
coupling constantétheir difference being a higher order ef- this intuition concerningj* may not apply to matching cal-
fect). For this to be true in the general formula we must sefculations such as those we are using here. Thus we use the

u=q*. Thus we have
Z(p=0g*,a)=[1+\(q*) c(q*a)+O(\?)]

:[1+)\(q*)~]cont+ O()\Z)]_l

X[1+M*) (%) + O] (A12)

and so

Jiat(9*) = Jeonct-c(q* @) (A13)

We now see explicitly thafl,,; depends omg* and upon
whether we tadpole improve or notwhich changes
c—c—tad, where tad is the tadpole contribution

To express the result at scale we have in fact used a
slight variant of Eq(A8), which we call “horizontal match-

ing”:

Aw)

ANO*)

XWLL1+N(*)Ieond[1+N(g%)c(g*a)] .
(A14)

D
70/2,30
Z(Mya):[1+7\(ﬂ)~]cont]71 wt )

This differs by corrections of size(g*)?, which turn out to

results from the entire range of values @f to estimate a
systematic error.

We close this appendix by collecting results needed to
carry out the matching just described. We quote all results
for n;=0 and give anomalous dimensions in the NDR
scheme. The operators are listed in E@@24)—(B27).

The coefficients B, and B; of the B function
(noglop=—Bog®— B19°— - --) are independent of the
renormalization scheme and are standard. The anomalous di-
mensions forQ are

Yo=4, m=-17. (A15)
The operatorsQ3? and Q3 mix, with anomalous dimen-
sions
2 —6
Y7o —16)"
71/3 —-99
M7\ _225/2 —1331/8 (A16)

The result forvy, is standard, while we have extracted
from the results of Ref.26] by considering only a subset of
the graphs required for the full operato@; g. The results
for the operators needed to calcul&gare given at the end

be much smaller than our statistical errors. The physical ingf Appendix B.
terpretation of horizontal matching is that we first match lat-
tice and continuum operators at the sagfe(using the same

coupling for both and then run, in the continuum, down to
the final scalew. The important practical advantage of both
horizontal matching and that based on Ji's approach is the In this appendix we give a general formula for the one-
improved treatment of terms involving, when\ () is sig-  loop matching coefficients for four-fermion operators of the
nificantly different from\(g*). We have, in effect, used the form I'®I'. This formula relates continuum operators de-
renormalization group to include a subset@f\?) terms. fined in the NDR scheme to lattice operators which are local,

APPENDIX B: ONE-LOOP MATCHING
FOR FOUR-FERMION OPERATORS
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i.e., reside on a single lattice site. All one needs to know are S= (b)) (3ihs)
the matching coefficients for the five bilineags P, V, A,
andT. The formula applies not only for Wilson fermions, but — —
for any improved Wilson fermion action, e.g., the v=> (Y1yuh2) (3y,¥pa) -
Sheikholeslami-Wohlert action. It is not useful for staggered a
fermions, where many of the operators of interest are not _ _
local (see, for example, Ref27)). =2 (1YYl (U3 vutba) | (B2)
Matching coefficients for a subset of four-fermion opera- ney
tors were calculated by Martinelli20] and Bernardet al. _ _
[21]. These authors use different regularization schemes in A=, (1Y ysb2) (P3y,vsha)
the continuum, namely, DRE@dimensional reductionand m
dimensional reduction with an easy subtraction schébie e —
EZ) (a variant of dimensional reductipnOne of our pur- P=hysiha) (Ys¥sia) -
poses here is to convert these results to the NDR schemgeeping the four flavors distinct eliminates “penguin” dia-
which is the standard scheme used in the evaluation of corgrams and allows only a single Wick contraction for each
tinuum coefficient functions. A second purpose is to extendbperator. In the text, we use subscripts to indicate incomplete
the calculations to operators of the folB®S+P®P and  summation over repeated Lorentz indices. For examgle,
T®T. As discussed in the text, the matrix elements of onedenotes that the sum over is only over 1-3 and not 4,
such operator has recently been shown to be of phenomengthile 7; indicates thatr=4 in the tensor operator. Each
logical interest. Our final purpose is to present all the result®perator also comes with two possible sets of color indices,
in a simple form which is easy to evaluate. which we distinguish with superscripts: e.g.,
Our method is adapted from that used for staggered fer- — — .
mions in Ref[27]. It proceeds in two stages. The first stage Sl:("b?‘/’g)(‘/’g@”i) and 82:(¢i¢§)(¢g¢2)' (B3)

uses the method of Martinel20], who pointed out that all g gynerscript is the number of loops that the color indices

the one-loop vertex diagrams for four-fermion operators cafym if we take a matrix element of the operators between
be brought into the form of bilinear corrections using Fierzstates created by@l“ #,) and (lﬂ_4r )

transformations and charge conjugation. This works, how-
ever, only if the continuum scheme keeps thenatrices in
four dimensions, which is why he chose DRED. Following
Ref. [27], we actually use a slightly different intermediate O/ =[SV, T, AP] (B4)
scheme, NDR In the second stage we convert from NDR . )

to NDR. This part of the calculation is done in the continuum@nd the “practical” basidrelated by a nonorthogonal trans-

and it cannot be reduced to that for bilinears. It is, howeverformation

In the following we use two bases for the Lorentz struc-
tures: the “original” basis

independent of the lattice fermion action. Much of the work _
: O,=[(V+A),(V-A),—2(S—P),(S+P),
for the second stage has been done in R&T]. Our only =l ) ) ( ) )
new result is the construction of amdimensional definition —(S+P-7)/2] . (B5)

of the operator&® S+ P® P andT® T which maintains Fi- ) ] ]
erz symmetries. This is not an essential condition, but it is' "€ @dvantages of each will become clear in the following.
desirable for aesthetic reasons. In each basis there is a matrix which implements Fierz trans-

We begin with some notation. The one-loop matching coformations. This is simplest in the practical basis

efficients for bilinears are defined by 1000 0
0 01 00O

BIP"=B1+Ce X ci(na)], (B1) e 0 1 0 0 O (B6)
0 0 0 0 1
wherei=S,V,T,A,P, Ce=4/3,\ =g%/167?, u is the renor- 0 0010

malization scale of the continuum operator, anthe lattice | aither basis this satisfie&2=1. There is also a matrix

spacing. The values of tfe are given in Table X for Wilson hich implements “charge conjugation,” which here means
fermions in both DRED and NDR schemes. These values arg s effect of transposing the Dirac matrices in one of the

taken from Refs[20,21] and converted to NDR using the pjjinears, and conjugating the result wi= yoy,. This is
conversion fz_ictors given in Reff28]. Note_ that the correc- simplest in the original basis
tions are uniformly small after tadpole improvemens)].
For completeness we mention that the analogous results of C*"9=diag1,—1,—1,1,1) . (B7)
the renormalization constants for bilinears with the
Sheikholeslami-Wohleftcloven action have been calculated Again, in either basis one h&€=1. Note that this definition
by Gockeleret al. [29]. is specific to four-dimensional Dirac matrices.

The four-fermion operators we consider are linear combi- To combine the Lorentz and color indices we use the
nations of the five Lorentz scalars notation
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. [OF
Oi = OIZ

Refs.[26,30, and we use these. Definitions faf-€ P) and
(B8)  Twere given in Ref[27], but the choices made there did not
maintain Fierz symmetry. We have found Fierz-symmetric
Then, as shown in Ref27], one-loop matching has the form choice, which we now explain.
We work in the “practical” basis. The operators are ex-
> > -~ - - > tended ton=4-2¢ dimensions such that they are the even
o= Olaty Qj) (MECa+ MECyt+ MECo) O, parity parts of

(B9)

O1= (Y1 v, L) (W3, L) | B15
There are three types of diagram which contribute, denoted 1= Wyl d2) (Payl da) (B13

a, b, andc, each giving rise to a color matri@ and a matrix

acting on the Lorentz indices. The color matrices are Oy= (17, Lh2) I3y, Ripa) (B16)
1/—-1 3 1/8 O — —
=~_Z =~_ = O5=—2(d1L b)) (sRbs) (B17)
C. 6( 0 8)’ Co 6(3 _1), 3 (1L ih2) (3Repy
. 1/-1 3 O4= (L pa) (sl pa) (B19)
C=5l 5 | (B10) B B
Os=— 5 (1+3eld) (17,7, L) (b3, 7L ha) .
The core of the calculation is of the® correction matrices ° ’ o RO (B19)
M

The first stage of this calculation is to determifné in a
scheme in which they matrices are four dimensional, say,
DRED. The “a” diagrams are just those in which the two
bilinears in the four-fermion operator are matched indepen
dently (see Ref.[27]). Thus M, is simple in the original
basis:

Here we are implicitly summing repeated indices ovemall
values, and defining=(1—vys) andR=(1+ vys). The odd
parity parts of these operators are not important for the fol-
Towing discussion, but we include them for generality. The
analysis is unchanged if we change the signyef The pe-
culiar factor of (1+3€/4) in Oz is necessary in order that, in
M,=2 diagcs,Cy,Cr,Ca,Cp] - (B11) the final result,M, is Fierz self-conjugate. When we calcu-
late one-loop corrections in NDR the resulting operators
Following Ref.[20] one can then obtait, and M, using  have the form
Fierz and charge conjugation transformations:

Mp=FMF, (B12) o=, d; O;+evanescent operators , (B20)
i=15

M=—CFMFC . (B13)
) ) where the evanescent operators vanish whert. We de-
These results can then be inserted in the general formula Egarmine thed, using projection operators. Fierz-symmetric
(B9). Fierz symmetry also requires thabi. be self- projectors onta®;_; have been given in Ref§26,30. To

conjugate: determined, andds [up to terms ofO(€?)] we use
Mc=FMF . (B14)
dy 1+5€/12( (1+€/4)  2(1—€ld)) [P4(O)
This result, together with EqB13) and the peculiar fact that ds/ 3 2 1 Ps(0))

FCFCF=C, requires thafC,M,]=0. This is trivially true
given thatM, andC are diagonal in the original basis.
This cqnstrqction. fails f.or NDR, h(_)wever,. because one iSwhere, in the notation of Ref30], the projectors are
then dealing witm-dimensionaly matrices. It is useful, nev-
ertheless, to introduce an intermediate scheme, N@Rich
is defined by Eq(B11), with NDR bilinear matching coeffi-
cients, together with Eq$B12) and (B13). That is, we en-
force Fierz and charge-conjugation symmetries by hand.
The second stage is the extension of the calculation to 1 (4

1
Pi=gplel (B22)

2
NDR. Fo_r this, we need to Qefine_the continuation of the 5= ~ 555 Y7, L®y, 7L . (B23)
four-fermion operators tan dimensions. There are many

ways to do thigcorresponding to different choices of “eva-

nescent” operatojs and we wish to make a choice which The matrix in Eq.(B21) has been determined by requiring
maintains the Fierz relation®12) and(B14). We have not d;=1 if O=0;; i.e., the basis operators project back onto
found a way of simultaneously maintaining E@®13) and themselves.

suspect that this is not possible. Thus, in NDR,, can be Using these definitions, we have calculated the matching
obtained from M,, while M. is independent. Fierz- between NDR and NDRand, thus, between NDR and lat-

symmetric choices for¥=.4) and (S—7P) were given in tice operators. We find, for our final results,

n
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Cv+a Cv-a 0 0 0
Cv-a Cvin 0 0 0
M, = 0 0 Csip —2Cs_p 0 ,
0 0 —3csp Cs+p -1
0 0 iCs—p 3(2ct—cCsip) 207
—(Cs+pt6) 0 0 2s-p 2Cs-p
0 _(CV+A+ 6) CV_A O 0
M= 0 Cy_a —(Cysat6) 0 0
iCs p 0 0 —3(Csipt2cr+4) — 7 (Csip—207+2)
iCs-p 0 0 — 3(Cspp—2Cr+2) — 3(Csipt2crt4)
|
where all thec; are in the NDR scheme, and we have defined 03205, (B30)
Cs+p=CgtCp, etc. M, continues to be determined from
Eqg. (B12). Note thatM, is Fierz self-conjugate. The results 032, oF (B31)
f . . 8 3
for NDR' and DRED can be obtained by deleting the nu-
merical constants, i.e., keeping only the terms involving the N
Ci Qs—20, , (B32)

We conclude by presenting the explicit results needed for

the matrix elements we study in this paper. The operators o¥here the factors of 2 come from the additional Wick con-

interest are

tractions forQ and Q5 compared to the four-flavor operators.

Fierz symmetry forbids mixing between ti@" and O;,

(B24)

Q3= (547,Lda)[ (Up Y, RUp) ~ (dyy, R 1+ (Sa7,Luo)

Q3= (Sa¥uLdp)[(Upy,RU) — (d_bVMRda)] +(Sa¥ul Up)
X(Upy,Rdy) | (B26)

Q5= 3 [(b,Ls,)(bpLsy) — & (1+3€/4)(byy, y,LSp)
(B27)

Following Ref.[31], we have extende@ and Qg to n di-
mensions in such a way that the Fierz symmetry is explicit.
None of these operators have penguin contractigmghe
isospin-symmetric limjt and so all can be matched onto the
lattice using the approach explained above.

The first step is to rewrite the operators using the four-
flavor notation. For this purpose it is useful to introduce a
third operator basis, that of Fierz self-conjugate and anticon-
jugate operators:

X(bb7V7MLSa)] .

O (NDR)—-O; (latt) =\ ¢ O; (latt) ,

with
Z, 0
0o 2z
ci=| 0 Zg
0O O
0 O
0
-12
Z*
+— —4
24
2
2

0 0 0
Zig 0 0
Z, 0 0
0 Z4 Zus
0 Zsy Zs
—22 2 12
-6 2 -—24
2 -6 —64
-1 -13 0
2 2 0

O O O ® Kk

and so the matching coefficient falls into two<% blocks.
We give the results for the Fierz self-conjugate operators:

(B33)

(B34)

The expressions and numerical results for #ig are col-

OF=[(O2=0}),(03+ 03),(03+ 0}) (0= OF),(OF

lected in Table XI. Our results in the DRED scheme for the

matching coefficients o0, ,, O,,, and O3, agree with

0] . (B28)

those of Ref[20]. The results of Refl4] for Z, , Z;, and

Z, using NDR are, however, wrong and are corrected by
The operators of interest can be written in this new basis athose given here.

The matrix elements needed in the studyBofifetimes

0—20], (B29)

are those of operatok8; andOz . Since these are new, we
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TABLE XI. Matching coefficients, as defined in Eq833) and (B34), needed for Fierz self-conjugate
four-fermion operators. The expressions are given for the NDR scheme and are valid for any local lattice
operator. Expressions for DRED are obtained by keeping onlg;tterms. The numerical values are for the
NDR scheme with unimproved Wilson lattice fermions, witk= In(ua), and tae= 17.14 being the effect of
tadpole improvement. The last column gives the difference between the numerical values for DRED and
NDR schemes.

NDR result NDR value DRED-NDR
Z, 3(5¢y+5ca—Cs—Cp) —2 ~50.8414/+2 tad 3
Z, (90, +9ca—cs—Cp) +1 ~47.698-2/+2 tad L
Z, i(cstep)+1 —46.398+ 16/ +2 tad g
Zzg 3(cstcp—cy—ca)—3 —2.567+6/ z
Zg -3 -3 3
Zy 5(10cr+1lcg+ 1cp—2) —46.894+ &/ +2 tad z
Zs 3(10cr—cs—cp—2) —~45.384- 2/ + 2 tad -y
Zys (2¢7r—Cs—Cp—26) ~2.033-4 2
Zs, 3(2cr—cs—cp—2) -0.131- 5/ -3
z* Cs—Cp=2(Cpr—Cy) 9.644 0

write them in a form which is more directly practical. In the TheB parameters are obtained by dividing the above by their
four-flavor notation these operators are VSA forms

O =(S+P?)— 3 (S+P—-Th ,
O (VSA)=+ 2[1+A\Zp]?(P®P) ,

Of =(8'+PH)— 3 (S+P*-T?) . (B35)
The one-loop continuum operators, in the NDR scheme, are 4 1 2
O5 (VSA)=— 5[1+NZp]9(P®P) . (B37)
O, (cont={1+\[ —46.894+ 2tadt 28/3 In nwa) ]} O, (latt)
+N\[—2.033-4/3 In(na)]O; (latt) These two operators mix under the renormalization group
* flow. The one-loop anomalous dimension matrix governing
+ >4 [28Y+ 2652 — 2P — 26P2— 111 +)2 this flow is
+1654%+3.47],
] —28/3 4/3
Oz (conh={1+\[ —45.384+ 2tad—32/3 In na)]} Oz (latt) 16/3 32/3°
+A[—0.131-16/3 In na)]O; (latt)
NZ* and the two-loop contribution is yet to be calculated. Conse-
+ 5 [(Pt=8Y) +(P*—S?)+ V1 +)1?] . quently, we state our results f& parameters after the one-
loop matching at scalg=q*, i.e., without any running in
(B36)  the continuum which requires the two-loop results.
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