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I. INTRODUCTION

Several predictions obtained recently in the valence
~quenched! approximation to the infinite volume, continuum
limit of lattice QCD lie not far from experiment. For low-
lying hadron masses@1#, valence approximation results are
within 6%6 8% of experiment. For decay constants@2# the
valence approximation differs from experiment by incre-
ments ranging from 12%6 11% to 17%6 6%. Missing
from these calculations, however, is an independent theoreti-
cal estimate of the error arising from the valence approxima-
tion.

In the present article, we develop a systematic expansion
for lattice QCD including the full effect of quark vacuum
polarization. The leading term in this scheme is the valence
approximation. If an infinite collection of higher terms is
taken into account, full QCD is reproduced exactly. We then
derive a formula which can be used to estimate the error in
any vacuum expectation value obtained by truncation of this
expansion to some finite number of terms.

In an exact treatment of QCD, virtual quark-antiquark
pairs produced by a chromoelectric field reduce the field’s
intensity by a factor which depends both on the field’s mo-
mentum and on its intensity. In the valence approximation
this factor, analogous to a dielectric constant, is approxi-
mated by its zero-field-momentum zero-field-intensity limit
@3#. The approximation which we consider here may be pic-
tured as incorporating an inverse dielectric constant which is
a sum of terms which progressively more accurately repro-
duce the correct dependence of the inverse dielectric constant
on field momentum and field intensity. For this approxima-
tion to the inverse dielectric constant truncated to any finite
number of terms, our error estimate is obtained from a sec-
ond, independent expansion of full QCD, indexed by the
number of virtual quark loops each term includes. A prelimi-
nary version of the present work was reported in Ref.@4#.

The main motivation of the present article is to find a way
of determining directly from QCD the errors arising in va-
lence approximation calculations of hadron masses and de-
cay constants. Our expansion of the inverse dielectric con-
stant arising from quark-antiquark vacuum polarization itself
plays no direct role in this error estimate. The expansion is

included here largely because the mathematical machinery
needed to construct the valence approximation error estimate
leads naturally both to the complete expansion and to a cor-
responding error estimate.

A crucial question which we have not yet answered is
whether in practice the determination of valence approxima-
tion errors using the form of our algorithm discussed here, or
one of its possible variations, would be any faster than a
direct comparison of valence approximation results with
numbers found by the best present algorithms for full QCD.
Whether or not the method we propose turns out to be useful
in practice for quantitative error estimates, it appears to us
that it may help provide a useful qualitative picture of the
effect of vacuum polarization and of the physical mechanism
underlying the relatively close agreement found in Refs.
@1,2# between valence approximation predictions and the real
world. The results we present in Sec. VIII are evidence that
at least for moderately heavy quarks, the expansion we con-
struct converges rapidly and the main effect of vacuum po-
larization is absorbed by the dielectric constant implicit in
the valence approximation. How the expansion behaves as
quark mass is decreased we hope to return to elsewhere.

We are aware of two other strategies for evaluating the
relation between the valence approximation and full QCD.
The application of chiral perturbation theory to estimating
the errors introduced by the valence approximation has been
considered by several groups@5–7#. The asymptotic behav-
ior at small quark mass of a variety of predictions of the
valence approximation has been shown to be qualitatively
different from the behavior of full QCD. The quark mass
below which these difficulties become quantitatively signifi-
cant in the evaluation of low-lying hadron masses, however,
appears to be well below the average of the up and down
quark masses@8,9#. For physical values of quark mass, sev-
eral unknown parameters enter chiral perturbation theory
predictions of the errors in most valence approximation re-
sults. Quantitative determination of these errors is therefore
not possible at present. Another method for evaluating the
effect of virtual quark-antiquark pair production on QCD
predictions is discussed in Ref.@10#. This calculation uses a
weak-coupling expansion to leading order and is valid for
small values of the gauge coupling constant and large values
of the quark mass. The results we report in our trial calcula-
tion in Sec. VIII are qualitatively consistent with those de-
scribed in Ref.@10#. Reviews of a variety of other recent
valence approximation calculations are given in Ref.@11#.
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In Sec. II we introduce definitions. In Sec. III we con-
struct an expansion for the dependence of vacuum polariza-
tion on field momentum and field strength. In Sec. IV we
derive an expression for the error in any vacuum expectation
value arising from a truncation of the expansion of Sec. III.
In Secs. V, VI, and VII we present an algorithm for evalu-
ating the terms in the expansion and corresponding error
estimates. In Sec. VIII we describe a trial calculation using
our expansion and error estimates. The Appendix gives a
calculation of a set of parameters needed by the algorithm in
Sec. V.

II. DEFINITIONS

We consider Wilson’s formulation of euclidean QCD on
some finite lattice. A lattice gauge field consists of an assign-
ment of an elementu(x1 ,x2) of the fundamental representa-
tion of SU~3! to each oriented nearest neighbor pair of sites
(x1 ,x2) with the usual restriction thatu(x1 ,x2) is the adjoint
u(x2 ,x1)

†.
Define the Hilbert spaceF to consist of complex-valued

functionsf of the lattice gauge fields with finite value of the
norm:

i f i25z21E dmu f u2exp~S!, ~2.1!

z5E dmexp~S!.

The inner product onF is

~ f , f 8!5z21E dm f * f 8exp~S!, ~2.2!

z5E dmexp~S!.

Here S is some real valued function of the field which is
bounded in absolute value and invariant under all lattice
translations, rotations, reflections, and gauge transforma-
tions. A useful choice forS will be discussed in Sec. III. A
linearly independent basis forF consists of the collection
$ f i% of all possible products of matrix elements of irreducible
representations of SU~3! including exactly one matrix ele-
ment for each link, with links differing only by a flip of
orientation identified. Distinctf i are then orthogonal with
respect to the inner product of Eq.~2.2! for S of 0. We
choose thef i to be normalized with respect to the inner
product withS of 0.

Let di be the sum over all links of the dimension of the
SU~3! representation assigned to that link byf i . We assume
the sequence$ f i% is ordered in such a way thatdi is a non-
decreasing function ofi . Applying a Gram-Schmidt process
to $ f i% using the inner product of Eq.~2.2! for some nonzero
choice ofS gives an orthonormal basis$ f̂ i% for F.

Although the expansion to be constructed in Sec. III can
be defined using onlyF, for purposes of constructing an
algorithm to evaluate this expansion it is slightly more con-
venient to work with the subspaceH of F which is invariant
under all lattice translations, rotations, reflections, gauge

transforms, and complex conjugation. Lethi be the projec-
tion of f i onto H. Since rotation, translation, reflection,
gauge transformation, and complex conjugation leave the
value ofdi unchanged,hi will be a linear combination of a
collection of f j all of which havedj equal todi . Most hi
obtained in this way will be linearly dependent on the set of
hj with j, i . Working upwards fromi of 0, we eliminate any
hi which is dependent on survivinghj with j, i . A Gram-
Schmidt process on the survivinghi gives an orthonormal
basis$ĥi% for H.

Typical vectors inH are the function with value 1 for all
gauge fields and the Wilson plaquette action

P5 (
~x1 , . . . ,x4!

tr@u~x1 ,x2!u~x2 ,x3!u~x3 ,x4!u~x4 ,x1!#,

~2.3!

where the sum is taken over all oriented plaquettes
(x1 ,•••,x4) consisting of sequences of four successive near-
est neighbors, with sequences related by a cyclic permutation
identified. Any sum of traces of products ofu(x,y) over all
rotations, translations, reflections and order reversals of some
closed path gives yet another element ofH. The basis vector
ĥ0 is the function with constant value 1, andĥ1 is the nor-
malized projection ofP orthogonal toĥ0. The basis vectors
ĥ2, ĥ3, and ĥ4 are each found by continuing the Gram-
Schmidt process on the three different sums of traces of
products ofu(x,y) along one of the three distinct shapes of
closed paths consisting of six lattice links.

We now define the lattice vacuum expectation value. We
assume, for simplicity, quarks occur in degenerate pairs for
some set of masses strictly greater than 0. LetM be Wilson’s
coupling matrix among half the quark fields, one from each
degenerate pair. We impose periodic boundary conditions.
For any function of the gauge fieldsG with bounded abso-
lute value, a regulated form of the vacuum expectation value
obtained after integrating out quark fields is

^G&R5Z21E dm G det~M†M1R!expS b

6
PD ,

ZR5E dm det~M†M1R!expS b

6
PD , ~2.4!

whereb is 6/g2 for bare gauge coupling constantg, m is the
product of one copy of SU~3! Haar measure for each link
variable on the lattice, andR a small non-negative parameter.
The extension of Eq.~2.4! to vacuum expectations of prod-
ucts of quark and antiquark fields is not needed for the
present discussion and will be omitted for simplicity. Since
the determinant of the Wilson coupling matrixM is real, the
expectation̂ G&0 is the usual vacuum expectation of lattice
QCD. For any boundedG, ^G&R approacheŝG&0 asR goes
to 0.

We introduce the regulatorR in the definition of^G&R to
provide a mathematically convenient rule for handling rare
gauge configurations on whichM becomes singular in the
valence approximation. Monte Carlo valence approximation
calculations often find averages of quantities involving
M21 at values of the quark mass for which some configura-
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tions exist, such as all link variables close to the identity
matrix, for whichM has eigenvalues arbitrarily close to 0.
These configurations are not encountered in practice because
their total weight within the path integral is extremely small.
It is generally believed that for any positive choice of quark
masses, the total valence approximation measure of configu-
rations with minimalM†M eigenvalue belowO(mq

2) goes to
zero very rapidly in the limit of large lattice volume with
lattice spacing held fixed. The expansion to be considered
below will be done with some nonzero value ofR much
smaller thanO(mq

2). After taking a limit of infinite volume
of any vacuum expectation, a limit of zeroR should leave
the result essentially unchanged. For notational simplicity,
the R subscript will be deleted from̂G&R and ZR in the
following.

The extension of Eq.~2.4! to QCD with one or more
quark masses not in a degenerate pair follows from the pre-
ceding paragraph. For any coupling matrixN with all quark
masses nonzero, the spectra ofN andN† are identical. Thus
det(N) is real and non-negative unlessN has a negative real
eigenvalue. Fork less than 1/8, negative real eigenvalues of
N cannot occur. Since the spectrum ofN is a continuous
function of k, as k is made larger than 1/8, negative real
eigenvalues will occur with significant probability only once
eigenvalues close to 0 become probable. As explained in the
preceding paragraph, for the range of quark mass we con-
sider and sufficiently large physical volume this probability
is expected to be negligible. Thus for sufficiently large vol-
ume we can treat det(N) as real and non-negative. For a
quark coupling matrixN with all quark masses positive but
no other restrictions, a vacuum expectation value is therefore
given by replacing det(M†M1R) in Eq. ~2.4! with
Adet(N†N1R). With only minor changes, the expansion
discussed in the remainder of this paper can then be adapted
to QCD with one or more quark mass not in a degenerate
pair.

The regulation parameterR is needed only for the Wilson
quark coupling matrix. For Kogut-Susskind quarks the spec-
trum of M†M is bounded from below bymq

2 for all gauge
configurations. For Kogut-Susskind quarks with positive
quark mass, the probability of negative real eigenvalues of
M can also be proved to be 0 in any volume.

III. EXPANSION

Any S, bounded in absolute value and invariant under all
lattice translations, rotations, reflections, and gauge transfor-
mations, can be chosen in Eq.~2.2! to define a spaceH to
construct an expansion for ln@det(M†M1R)]. In the present
section we will construct an expansion for QCD vacuum
expectation values for any suchS. In Sec. IV we will be led
to a choice ofS which is likely to speed the convergence of
this expansion.

SinceM is a finite matrix with matrix elements bounded
uniformly over all gauge fields, the spectrum ofM†M1R is
bounded from above by some constantA. Thus
det(M†M1R) has a finite value of the norm defined by Eq.
~2.1! and is inF. In addition det(M†M1R) is real valued
and rotation, translation, reflection and gauge invariant. It is
therefore inH.

Since the spectrum ofM†M1R is bounded from below
byR, det(M†M1R) is bounded from both above and below.
Thus i ln@det(M†M1R)] i is finite and ln@det(M†M1R)] is
also inH. Using the orthonormal basis$ĥi% of H, we there-
fore have the convergent expansion

ln@det~M†M1R!]5(
i
ai ĥi , ~3.1!

ai5„ĥi , ln@det~M†M1R!] …. ~3.2!

An algorithm for the numerical evaluation of the coefficients
ai is presented in Sec. V.

For anyG bounded in absolute value, an approximation
to ^G& can be obtained by combining Eqs.~3.1! and ~3.2!
with Eq. ~2.4!. The expectation value defined by Eq.~2.4!
can be reexpressed as

^G&5Z21E dm G expS Ln1Qn1
b

6
PD ,

Z5E dm expS Ln1Qn1
b

6
PD , ~3.3!

wheren is some positive integer and the partial sumLn and
remainderQn are

Ln5(
i50

n

ai ĥi , ~3.4!

Qn5 ln@det~M†M1R!]2Ln5(
i.n

ai ĥi . ~3.5!

As n becomes large, Eq.~3.2! impliesQn approaches 0 in
F. Thus it appears reasonable to try to approximate Eqs.
~3.3! by omittingQn . We obtain

^G&n5Zn
21E dm G expS Ln1 b

6
PD ,

Zn5E dm expS Ln1 b

6
PD . ~3.6!

The expectation̂G&0 is pure QCD with the quark deter-
minant simply removed and no shift inb. The expectation
^G&1 is the valence approximation including a shift inb. For
anyG bounded in absolute value, the approximate expecta-
tion ^G&n approacheŝG& asn becomes large. This conver-
gence holds for any admissibleS in Eq. ~2.2! defining the
inner product of the spaceH and, in particular, does not
require any particular relation betweenS and the action for
QCD. A rigorous proof of this result is given elsewhere@12#.
We will show below, however, that the choice of anS re-
lated to the QCD action is likely to help maximize the rate at
which the expansion converges.
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It may be useful to mention here that the hopping constant
expansion for ln@det(M†M )] expresses this quantity as a lin-
ear combination of Wilson loops formally similar to Eq.
~3.1! and can be used to obtain an approximation to^G&
similar to Eq.~3.6!. In two crucial ways, however, the ex-
pansion of Eq.~3.1! differs from the hopping constant ex-
pansion, and approximation~3.6! differs from the corre-
sponding approximation using the hopping constant
expansion. First, the validity of expansion~3.1! and the ac-
curacy of approximation~3.6! are not restricted to the range
of large quark mass to which the hopping constant expansion
and its related approximation apply. As we have already
shown and as is discussed in more detail elsewhere@12#,
expansion~3.1! and approximation~3.6! apply as long as the
quark mass is greater than 0. Second, even for values of
quark mass at which the hopping constant expansion does
converge, Eqs.~3.1! and ~3.2! differ from the hopping con-
stant expansion by an infinite rearrangement. That is, each
term which appears in Eqs.~3.1! and ~3.2! is a linear com-
bination of an infinite set of the terms appearing in the hop-
ping constant expansion and vice versa.

A crucial question concerninĝG&n is how largen must
be made to obtain reasonably accurate results. In particular,
it might seem that in analogy with the hopping constant ex-
pansion, an extremely large value ofn will be needed to
obtain accurate results forG which are sensitive to the low
momentum components of the gauge field. For someG we
believe this is likely to be the case. In particular, for anyn
there will almost certainly be some length scale above which
all Wilson loops are given very inaccurately. On the other
hand, relatively close agreement has been found between
light hadron masses in the valence approximation, withn of
1, and hadron masses in the real world. This agreement sug-
gests the expansion, or one of its variations, may converge
fairly rapidly for light hadrons. We hope to return to this
subject elsewhere. Examples for whichn of 1 gives accurate
results andn of 4 gives still more accurate results will be
discussed in detail in Sec. VIII.

A wide range of other possible expansions and approxi-
mate vacuum expectation values similar to Eqs.~3.1! and
~3.6!, respectively, can be constructed by various choices of
S or the expansion basis$hi%. Yet another class of possibili-
ties is to choose theai in Eq. ~3.1! to force the first order
error d1n(G), to be discussed in Sec. IV, to zero for a par-
ticular G or set ofG, such as thep propagator or ther
propagator. These alternatives to Eqs.~3.1! and~3.6! will not
be discussed further here.

IV. ERROR ESTIMATE AND CHOICE OF S

We now derive an estimate for the error in approximating
any ^G& by some^G&n . This estimate will then suggest a
choice of S which will tend to lead to a small error in
^G&n .

The difference between̂G&n and ^G& arises from ap-
proximating ln@det(M†M1R)] in the formula for^G& with
Ln in the formula for̂ G&n . If the remainder in this approxi-
mation Qn , defined by Eq.~3.5! as ln@det(M†M1R)]
2Ln , is small, then we expect^G&n to be close tôG&. To
estimate the difference between^G&n and^G&, we therefore
to take Eqs.~3.3! for ^G& and expand as a power series in

Qn . This is conveniently organized by replacingQn in Eqs.
~3.3! by lQn , expanding^G& as an asymptotic series in
powers ofl, and then settingl to 1. We obtain

^G&5^G&n1 (
p>1

dpn~G!, ~4.1!

d1n~G!5^~G2^G&n!~Qn2^Qn&n!&n , ~4.2!

d2n~G!5^~G2^G&n!~Qn2^Qn&n!
2&n , ~4.3!

d3n~G!5^~G2^G&n!~Qn2^Qn&n!
3&n23^~G2^G&n!

3~Qn2^Qn&n!&n^~Qn2^Qn&n!
2&n , ~4.4!

A

The termdpn(G) in this series is of orderp in Qn . Thus
if Qn is small, successive terms in this series should become
progressively smaller. On the other hand, for a Monte Carlo
evaluation it is not hard to show that the statistical dispersion
of dpn(G) divided by its mean value will rise with system
volume as volume to the powerp. Thus succesive terms in
this series will become progressively more expensive to
evaluate. It is therefore our intention primarily to use
d1n(G) as an estimate of the error in^G&n . If d1n(G) turns
out to be a small fraction of̂G&n , we would expect̂G&n to
be a reliable approximation tôG& andd1n(G) to be a reli-
able approximation of the error in̂G&n . Conversely, if
d1n(G) is not a small fraction of̂G&n , we can say only that
^G&n is not a reliable approximation tôG&.

From the perspective of weak-coupling perturbation
theory, the indexp in Eq. ~4.1! counts the number of internal
quark loops entering each term of the expansion. In particu-
lar, d11(G) gives the corrections to the valence approxima-
tion arising from weak-coupling diagrams with a single
quark loop,d21(G) gives the valence approximation error
from diagrams with two quark loops, and so on. Thus while
the expansion of Eq.~3.6! approximates the effect of vacuum
polarization with a sequence of progressively less local ef-
fective actions, even the leading correction in Eq.~4.1!,
d1n(G) directly measures the difference between the effect
of arbitrarily large virtual quark loops and their local ap-
proximation in Eq.~3.6!.

Taking d1n(G) as an estimate of the error in̂G&n sug-
gests a choice forS entering the norm defined in Eq.~2.1!.
From Eqs.~4.1! and ~4.2! and the Cauchy-Schwarz inequal-
ity we obtain

~^G&2^G&n!
2'~^~G2^G&n!~Qn2^Qn&n!&n!

2

<^~Qn2^Qn&n!
2&n^~G2^G&n!

2&n .

~4.5!

This relation suggests that the error in̂G&n will be
minimized by a choice of S which minimizes
^(Qn2^Qn&n)

2&n . But recall thatQn is defined by Eq.~3.4!
as the remainder ln@det(M†M1R)]2Ln with Ln defined, in
effect, to be the n term approximation to
ln@det(M†M1R)] which minimizes
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iQni25z21E dm uQnu2exp~S!, ~4.6!

z5E dmexp~S!.

SinceiQni2 has been minimized with respect to variations in
Ln and since we would like to makê(Qn2^Qn&n)

2&n small,
it seems reasonable to try to turn the second expression into
the first. If we chooseS to beLn1bP/6, then forn greater
than 1,^Qn&n vanishes and we have

^~Qn2^Qn&n!
2&n5^~Qn!

2&n5iQni2.

Thus for the calculation of̂G&n a good choice ofS appears
to beLn1bP/6 itself.

The choice ofLn1bP/6 asS leads to a set of nonlinear
equations forLn . For the valence approximation, a single
equation results which can be solved fairly easily. By a trick
it can also be avoided completely. In the valence approxima-
tion, S becomes

S5L11
b

6
P5a1

b8

6
P, ~4.7!

with a andb8 given by

a5a01
a1^P&1

A@^P2^P&1#
2&
,

b85b1Db,

Db5
6a1

A@^P2^P&1#
2&
. ~4.8!

For any choice ofb, the valence approximation value
b8 is the solution to

b85b1Db~b8!. ~4.9!

With any reasonable number of flavors of quarks, less than
10 for example, it is easily confirmed numerically that
Db(b8) is a monotone increasing function ofb8 with de-
rivative significantly less than 1. For two flavors of quarks
with k of 0.1600 considered in Sec. VIII, we find thatDb
rises from below 0.1 atb8 of 0 to below 0.3 atb8 near 6.0.
Thus Eq.~4.9! can be solved by a fixed point iteration, taking
b as an initial value ofb8. A simpler procedure, however, is
to choose the valence approximationb8 first, then use Eq.
~4.9! to determine the correspondingb for full QCD. This
procedure will be adopted in the example to be discussed in
Sec. VIII.

For the evaluation of̂G&n with n larger than 1, aS of
Ln1bP/6 which minimizes ^(Qn2^Qn&n)

2&n could be
found by iterating equations similar to Eq.~4.9!. Just as an
iteration of Eq.~4.9! converges rapidly, numerical experi-
ments suggest that the equations forLn would also converge
rapidly. A simpler alternative, however, is to leaveS fixed at
its valence approximation value in Eq.~4.7!. As mentioned
above, the expansion we construct converges for a wide
range of differentS, and Eq.~4.7! is certainly an admissible

choice ofS no matter what value ofn we intended to use for
^G&n . On the other hand, it appears to us unlikely that
spending the computer time needed to find an improvedS
will decrease significantly the error in an expansion carried
out to somen larger than 1. A more efficient use of computer
time would probably be to work to highern with S still fixed
at its valence approximation value.

For an expansion withn larger than 1, we can still begin
by specifying a value for theb8 occuring in the valence
approximation. The correspondingb parameter for full
QCD, if needed explicitly, can then be found fromb8 using
Eq. ~4.9!. The higher order terms entering the effective ac-
tion Ln , however, do not depend onb and can be deter-
mined directly from Eq.~3.4!. To test the accuracy of some
approximation^G&n and the corresponding error estimate
d1n(G) an explicit value ofb for full QCD is useful. In other
calculations withn greater than 1, however, a determination
of b is not necessary.

V. TRACE LOG ALGORITHM

The quantity ln@det(M†M1R)] needed for Eq.~3.1!
obeys the identity

ln@det~M†M1R!]5tr@ ln~M†M1R!#. ~5.1!

We now consider an algorithm for finding trln(M†M1R).
The algorithm exploits properties of the Chebyshev polyno-
mials. Combined with Eq.~3.1!, this algorithm gives the co-
efficientsai . As discussed in Sec. II, we will assume the
quark masses, lattice volume, and Monte Carlo ensemble
size have been chosen in such a way that for all gauge con-
figurations encountered the minimal eigenvalueB of M†M
lies well aboveR. The effect ofR in tr@ ln(M†M1R)# is then
negligible, and we omitR in the remainder of the paper.

It is perhaps useful to mention that the application of
Chebyshev polynomials to an algorithm for the effect of
quark-antiquark vacuum polarization in full QCD has also
been discussed recently in Ref.@16#. The algorithm dis-
cussed in the present paper, however, and our use of Cheby-
shev polynomials are unrelated to the work in Ref.@16#.

To evaluate tr@ ln(M†M)# we begin by generating an en-
semble of Gaussian random complex-valued pseudoquark
fieldsf i(x), wherei is a multi-index ranging over all com-
binations of quark spin, color, and flavor andx ranges over
lattice sites. For eachi and x we choosef i(x) to be an
independent random variable such that the average over this
ensemblê ^•••&& gives

^^f i~x! f j~y!&&50,

^^f i* ~x! f j~y!&&5d i j dxy . ~5.2!

We then have

tr@ ln~M†M !#5^^~~f, ln~M†M !f!!&&, ~5.3!

where ((. . . , . . . )) is theinner product on the vector space
of pseudoquark fields:

~~ f ,g!!5(
ix

f i* ~x! gi~x!. ~5.4!
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Finding the inner product of two such vectors requires a
comparatively small amount of arithmetic. The problem of
evaluating the trace tr@ ln(M†M)# is thus reduced to finding
ln(M†M)f for a large ensemble off.

For the evaluation of ln(M†M)f we combine properties of
the Chebyshev polynomials with the restriction that the ei-
genvalues ofM†M lie between upper and lower boundsA
andB, respectively. Define the operatorY and the parameter
e to be

Y5
M†M

A
, ~5.5!

e5
B

A
. ~5.6!

In the Appendix we will show that for anyn greater than 1
there are a set of coefficientsbi , such that, for any number
y betweene and 1,

ln~y!5(
i50

n

biTi* S 12y

12e D1d ln~y!, ~5.7!

udu,2 exp~22nAe!, ~5.8!

where theTi* are Chebyshev polynomials. For large values
of n, the inequality of Eq.~5.7! is nearly saturated. SinceY is
a self-adjoint operator with all eigenvalues betweene and 1,
for any vectorf,

ln~Y!f5(
i50

n

biTi* S 12Y

12e Df1d ln~Y!f, ~5.9!

with d bounded according to Eq.~5.7!.
An iterative algorithm to evaluate the sum in Eq.~5.9! can

be obtained from the recursion relation

Ti11* ~z!5~4z22!Ti* ~z!2Ti21* ~z! ~5.10!

and initial values

T0* ~z!51,,

T21* ~z!52z21. ~5.11!

Define the sequencesCi andDi for 0, i<n by

Ci5T0* ~Y!f1ci S 212e24Y

12e
Ci212Di21D ,

Di5T21* ~Y!f1ciCi21 , ~5.12!

with initial values

C05T0* ~Y!f,

D05T21* ~Y!f. ~5.13!

The coefficientsci in Eq. ~5.12! are found from thebi in Eqs.
~5.7! and ~5.9! by

ci5
bn112 i

bn2 i
. ~5.14!

Equations~5.10!–~5.14! imply that b0Cn gives the sum in
Eq. ~5.9! and is therefore an approximation to ln(Y)f with
relative error less thanudu.

The final result, by Eqs.~5.3! and ~5.5!, is

trln~M†M !5^^~~f,b0Cn!!&&1dM ln~A!, ~5.15!

wheredM is the dimension of the matrixM .

VI. MAXIMUM AND MINIMUM EIGENVALUES

Since for small values ofd the number of iterations re-
quired to obtain a fixed value ofd in Eq. ~5.7! becomes a
linear function ofAA/B, the optimal choices forA andB
becomelmax andlmin , respectively.

An efficient algorithm@14# for estimating the maximum
and minimum eigenvalues ofM†M uses the Lanczos method
to construct a tridiagonal approximation toM†M . Define the
sequences of real numbersa1 ,...,am andb0 ,...,bm and the
sequences of pseudoquark fieldsq0 ,...,qm and r 0 ,...,rm by

qi115~b i !
21r i ,

a i115@~qi11 ,M
†Mqi11!#,

r i115M†Mqi112a i11qi112b iqi ,

b i115A~~r i11 ,r i11!!, ~6.1!

with b0 of 1, q0 identically 0, andr 0 a randomly chosen
pseudoquark field with norm 1. Herem is the number of
distinct eigenvalues ofM†M .

It can be shown that the sequence of pseudoquark fields
q1 , . . .qm generated by Eq.~6.1! is orthonormal, and the
space spanned by these vectors is invariant under the action
of M†M . The space spanned byq1 , . . . ,qm is smaller than
the whole space of pseudoquark fields only if one or more of
the eigenvalues ofM†M is degenerate. In the basis
q1 , . . . ,qm , M

†M is tridiagonal. All matrix elements of
Ti j ,

Ti j5@~qi ,M
†Mqj !#, ~6.2!

vanish except

Ti21 i5b i21 ,

Ti i5a i ,

Ti11 i5b i . ~6.3!

Each distinct eigenvalue ofM†M occurs exactly once as
an eigenvalue of the matrix of Eq.~6.3!. As n grows, the
maximum and minimum eigenvalueslmax

n and lmin
n of the

submatrixTi j
n with 1< i , j<n approach the true maximum

and minimum eigenvalueslmaxandlmin of M
†M with errors

falling exponentially inn.
To extractlmax

n andlmin
n from Tn, define the polynomial

pn(l) to be the determinant
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pn~l!5det~Tn2lI n!, ~6.4!

whereI n is then3n identity matrix. Thepn(l) can be cal-
culated from the iteration

p0~l!51,

pn11~l!5~an112l!pn~l!2~bn21!
2pn21~l!. ~6.5!

The eigenvaluesTn are the zeros ofpn(l). Thus we wish
to find the largest and smallest of these zeros. It can be
shown @14# that the number of zeros ofpn(l) lying below
somel is given by the number of sign changes in the se-
quence

p0~l!,p1~l!, . . . ,pn~l!. ~6.6!

This relation can then be used to guide a search for the maxi-
mum and minimum zeros ofpn(l).

VII. PRECONDITIONER

With A andB given bylmax andlmin , respectively, the
amount of arithmetic required by the algorithm of Sec. V is
proportional toAlmax/lmin. We now show how the calcula-
tion of tr@ ln(M†M)# can be converted into the calculation of
tr @ ln(N†N)# for an operatorN with a smaller value of
Almax/lmin. This change also tends to decrease the number
of pseudoquark fields needed for a reliable evaluation of the
trace.

The expression tr@ ln(M†M)# is gauge invariant since it is
lndet(M†M ) and det(M†M ) is gauge invariant. Prior to
evaluating tr@ ln(M†M)# we can therefore transform to a lat-
tice transverse gauge, defined to give a local maximum of the
sum over all nearest neighborsx andy:

(
x y

tr@u~x,y!#. ~7.1!

Using, for example, the algorithm described in Ref.@1#, the
number of arithmetic operations required for gauge fixing is
relatively small in comparison to the arithmetic needed to
find ln(M†M)f for an ensemble of random pseudoquark
fieldsf.

Now defineM0 to be the fermion coupling matrix with
hopping constantk0 and allu(x,y) equal to 1. SinceM has
been transformed to a smooth gauge, if the bare gauge cou-
pling constantg is made small andk0 is chosen optimally,
we expectM0 to be an approximation toM . Thus the pre-
conditioned operatorN,

N5~M0!
21M , ~7.2!

should be closer to the identity than isM . In particular,
Almax/lmin for N

†N should be smaller than it is forM†M .
Using the preconditioned operator we have the relation

tr@ ln~M†M !#5tr@ ln~N†N!#1tr@ ln~M0
†M0!#. ~7.3!

The additional term tr@ ln(M0
†M0)# required to find

tr @ ln(M†M)# by Eq.~7.3! does not depend on the gauge con-
figuration and needs to be calculated only once. On the other
hand, the operatorM0 is diagonal in momentum space. Thus

fast Fourier transforms provide an efficient way to carry out
the multiplication by negative powers ofM0

†M0 needed to
determine ln(N†N)f by the algorithm of Sec. V. A rough
guess might be thatAlmax/lmin for N

†N will go to a con-
stant if the gauge couplingg is made small, while
Almax/lmin for M

†M will progressively grow. Thus it seems
plausible that for small enoughg the additional cost of Fou-
rier transforms required to apply the algorithm of Sec. V to
the preconditioned operator will be more than made up for
by the decrease inAlmax/lmin and corresponding decrease in
the number of iterations of Eq.~5.12!. At least for the set of
parameters at which we run the algorithm in the example
described in the next section, this expectation turns out to be
correct.

VIII. EXAMPLE

As a first test, we have applied the algorithms of Secs.
V–VII to QCD with two flavors of quarks both withk of
0.1600 on a 64 lattice. Taking from Ref.@1# the r mass in
lattice units and critical hopping constantkc , and using the
r mass to set the lattice scale, the quark mass for the calcu-
lations in this section is about 235 MeV, or about twice the
strange quark mass. We calculated a variety of vacuum ex-
pectation values using Eq.~3.6! with n of 0, with n of 1,
which is the valence approximation, and withn of 4, for
which L4 in Eq. ~3.6! includes each of the three different
six-link loops. We found also the corresponding error esti-
mates forn of 1 from Eq.~4.2! and corrected vacuum expec-
tations including these error estimates. All of the expectation
values obtained from our algorithms we compared with di-
rect calculations in full QCD.

The calculations in this section were done on an IBM
RS/6000 workstation sustaining approximately 10 Mflops.
The final production runs with our algorithm required about
1 week of machine time. The final comparison calculation
with full QCD took about another 1 week. Another month or
so of machine time was spent checking and exploring.

As discussed in Sec. III, rather than fixingb, we fixed
b8 given by the sumb1Db. Our first task was then to
calculateDb. From b8 and Db we determinedb for full
QCD. For b8 we chose the value 5.700. Then^•••&1 be-
comes simply a pure gauge vacuum expectation with pure
gaugeb8 of 5.700, and̂ •••&0 is a pure gauge vacuum ex-
pectation with the sameb as used in full QCD,
5.7002Db.

To evaluate the expectationŝ•••&0 and ^•••&1, en-
sembles of pure gauge configurations were generated using
the Cabbibo-Marinari-Okawa algorithm. For^•••&0, b is
comparatively small and we were not concerned with obtain-
ing great precision. We found it sufficient to use 100 con-
figurations with 100 sweeps to equilibrate and 100 sweeps
between successive pairs. For^•••&1, however, we used 160
configurations with 1000 sweeps to equilibrate and 1000
sweeps between successive pairs. For all of the quantities for
which ^ . . . &1 was measured, we found 1000 sweeps to be
more than sufficient to produce equilibrium values and to
decorrelate successive values. The full QCD results were
found using the hybrid Monte Carlo algorithm. Hamiltonian
trajectories were generated using the algorithm of Ref.@13#,
which is faster than leapfrog by about a factor of 2. Vacuum
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expectations were taken over an equilibrium ensemble of
250 accepted trajectories, each of length 0.25 time units.
Equilibrium was reached with 150 trajectories of 0.25 time
units, each atb of 5.44, followed by 25 trajectories of 0.25
time units, each atb of 5.439.

To tune the algorithm of Sec. VI for̂•••&1, we began by
evaluating on each gauge configuration the ratio
Almax/lmin for M†M . For the preconditioned operator
N†N, we evaluated this ratio for a range ofk0 and found the
k0 which minimizesAlmax/lmin. Results are shown in Table
I. The total work required to calculate ln(M†M)f is expected
to be about 35% greater than the work required to find
ln(N†N)f to the same accuracy. Trial calculations were con-
sistent with this estimate. In the remainder of this section we
therefore consider only the preconditioned operator and Eq.
~7.3! to find trln(M†M).

Using the preconditioned operatorN with the optimal
k0, we then calculated the vacuum expectation value and
correlation

V5^tr@ ln~N†N!#&1 ,

C5^@ tr@ ln~N†N!#2^tr@ ln~N†N!#&1#@P2^P&1#&1 ,
~8.1!

for a range of different choices of the number of iterations of
the Chebyshev algorithm, Eq.~5.12!. The results are shown
in Table II. The averages in Table II were found using a
collection of 16 gauge configurations and 20 randomf for
each configuration. For each configuration, we first calcu-
latedAlmax/lmin. The number of iterations of the Chebyshev
algorithm, Eq.~5.12!, was then chosen to be proportional to
Almax/lmin. The value ofnCh shown in Table II is the num-
ber of iterations which would result for the average over all
160 configurationŝAlmax/lmin&1. As nCh is increased above
50, the change in the two measured expectations shown in
Table II is significantly less than the statistical errors in the
expectations we found with our final, full ensemble of gauge
configurations andf. For the remaining calculations, we
chosenCh to be 50.

Using the final ensemble of 160 gauge configurations and
a range of values of the numbernf of randomf for each
gauge configuration we calculatedV andC of Eq. ~8.1!. We
also evaluated the dispersion^@P2^P&1#

2&1. We obtained
the value (5.6860.61)3104. FromC and^@P2^P&1#

2&1 we
then foundDb. The results are shown in Table III. As ex-
pected, the values we obtained are consistent within errors as
nf is varied while the size of the errors themselves tends to
fall asnf increases. The optimal choice ofnf producing the
smallest statistical uncertainty inDb for a fixed amount of
computation can be shown to be roughly 100.

The error bars on the numbers in these tables are statisti-
cal, found by the bootstrap method. From the ensemble of
160 data sets, each consisting of a gauge configuration and
an associated collection ofnf randomf, we randomly chose
160 new data sets to generate a bootstrap ensemble. On each
bootstrap ensemble we then foundV. In this way 100 boot-
strap ensembles and 100 values ofV were found. From these
we evaluated the difference between the value ofV larger
than all but 15 results and the value ofV smaller than all but
15 results. Half of this difference is shown as the statistical
error. The errors forC andDb were found similarly. In the
calculation of the error forDb, ^@P2^P&1#

2&1 was calcu-
lated independently on each bootstrap ensemble and used to
determine the corresponding bootstrap value forDb.

The most reliable value forDb is 0.26160.014, obtained
with nf of 140. Our algorithm then predicts that expectation
values in full QCD with two flavors of quarks,k of 0.1600

TABLE I. Comparison of work required to evaluate ln(O)f for
different choices ofO.

O k0 ^Almax/lmin& Work/sweep Work

M†M 58.1 1.0 58.1
N†N 0.091 22.1 2.0 44.2

TABLE II. Expectation values found from 16 gauge configura-
tions each with 20 randomf, for various choices of the number of
iterations of the Chebyshev algorithm used in the calculation of
ln(N†N)f.

nCh V C

10 390.22 6870
20 412.25 2733
50 412.74 2843
100 412.79 2848
200 412.79 2848

TABLE III. Expectation values andDb found from 160 gauge
configurations for various choices of the number of randomf used
in the evaluation of traces.

nf V C Db

10 416.862.1 23406508 0.24760.049
20 416.061.7 23436387 0.24860.029
30 415.861.5 24836367 0.26260.028
40 415.461.4 25316343 0.26760.026
50 414.761.3 25176344 0.26660.024
60 414.861.3 24996318 0.26460.023
70 414.961.2 24846309 0.26260.020
80 414.761.2 24706294 0.26160.018
90 414.761.1 24206290 0.25660.017
100 414.861.1 24836307 0.26260.017
110 414.861.1 25236309 0.26760.015
120 414.561.0 25016296 0.26460.014
130 414.261.0 24896290 0.26360.014
140 414.561.0 24726288 0.26160.014

TABLE IV. Coefficients in the expansion ofL4 as a linear com-
bination ofh0 , . . . ,h4.

i ai ai /6
2

0 414.5~10! 11.513~28!
1 10.4~7! 0.288~20!
2 2.9 ~5! 0.079~15!
3 1.9 ~5! 0.053~15!
4 0.7 ~5! 0.020~15!
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and b of 5.439, will agree with^•••&1 at b8 given by
b1Db which is 5.70060.014. A still more accurate ap-
proximation to the full QCD expectation with two quark fla-
vors,k of 0.1600 andb of 5.439, is given bŷ •••&4 of Eq.
~3.6! with L4 including contributions from the plaquette and
from each of the six-link closed paths. The coefficients in the
expansion of Eq.~3.4! are found from the inner product of
Eq. ~2.2! with S of Eq. ~4.7! andb8 of 5.700. Table IV gives
the coefficientsa0 , . . . ,a4 of ĥ0 , . . . ,ĥ4 in Eq. ~3.4!. Here
ĥ0 , . . . ĥ4, as discussed in Sec. II, are found by Gram-
Schmidt orthonormalization applied to the sequence
h0 , . . . ,h4. The functionh0 is the constant 1,h1 is Wilson’s
plaquette action Eq.~2.3!, andh2 ,h3 , andh4, respectively,
are the rotation- and translation-invariant linear combina-
tions of the planar six-link loop, the loop six-consisting of
the 6 link boundary of three orthogonal plaquettes joined to
form half the surface of a cube, and the loop 62 consisting of
the six-link boundary of a pair of orthogonal plaquettes
joined on an edge. Having normalized thehi to 1, eachai
with i>1 contains, in effect, a factor of the square root of
the number of sites in the lattice. Table IV therefore lists also
values forai divided by the square root of the number of
lattice sites, 62. As i is increased, theai in Table IV fall
rapidly. The coefficienta4 is about 1.4 standard deviations
away from 0.

Figure 1 shows vacuum expectations of a collection of
different Wilson loops. All loops are rectangular with dimen-
sions as shown except for the nonplanar six-link loops 61
and 62 we have just defined. The normalization of each loop
is

tr@u~x1 ,x2!u~x2 ,x3!•••u~xn ,x1!#, ~8.2!

so that if all link matricesu(x,y) were given by the identity
matrix, all loops would become 3. Each loop expectation
shown in the figure is obtained in four different ways. Boxes
indicate Eq.~3.6! with n of 0 and b of 5.439. Triangles
represent the valence approximation, Eq.~3.6! with n of 1
andb1Db of 5.700. Circles give the vacuum expectation of
Eq. ~3.6! with n of 4 andb1Db of 5.700. Plus signs show
full QCD with b of 5.439 and two flavors of quarks with
k of 0.1600.

For all but the 131 loop, clear differences can be seen in
Fig. 1 between data points withn of 0 andb of 5.439 and
points for the full theory withb of 5.439. For the largest
loops these two results differ by as much as a factor of 10.
For most loops, nearly all of this shift is correctly reproduced
by the valence approximation,n of 1 andb1Db of 5.700.
For the largest loops the valence approximation reproduces
most of the shift due to vacuum polarization, but falls notice-
ably below the results of full QCD. The vacuum expectation,
Eq. ~3.6!, with n of 4, with L4 including a plaquette contri-
bution and contributions from the three different six-link
loops, agrees with full QCD within statistical errors for all
but the three largest loops. Even for these, the expectation
with n of 4 corrects more than 3/4 of the difference between
the valence approximation and full QCD.

Since the error bars on all points in Fig. 1 are smaller than
the symbols, in Table V we also give numerical values. In
Table V we list, in addition to the data shown in the figure,
Eq. ~3.6! with n of 1 andb1Db of 5.700 but corrected by
the error estimate of Eq.~4.2!. This result is consistent with
full QCD in all cases.

Overall, it appears that at least for the parameters consid-
ered here, the valence expansion of Eq.~3.6! converges rap-
idly to full QCD and the error estimate of Eq.~4.2! is quite
reliable as a error estimate for the valence approximation.
The difference between the valence approximation expecta-
tion ^•••&1 and the expectation̂•••&4 is almost as reliable
as a valence approximation error estimate.

FIG. 1. Vacuum expectations of various Wilson loops found by
four different methods. Boxes representn50 with b55.439, tri-
angles are the valence approximationn51 with b855.700, circles
are n54 with b855.700, and plus signs are full QCD with
b55.439 and two quark flavors withk50.1600.

TABLE V. Vacuum expectation of various Wilson loops found by five different methods.

n51 n51 1 error Full QCD
n50 b855.700 n54 b855.700 b55.439

Loop b55.439 ~valence! b855.700 ~valence1 error! k50.16

131 1.4480~15! 1.6503~11! 1.6554~17! 1.6504~94! 1.6629~5!

231 0.7313~19! 0.9784~16! 1.0013~22! 0.9974~138! 1.0090~6!

61 0.6637~19! 0.9426~18! 0.9668~26! 0.9620~127! 0.9757~6!

62 0.8243~18! 1.0850~16! 1.1013~24! 1.0963~113! 1.1099~6!

331 0.3729~16! 0.5898~15! 0.6167~22! 0.6107~144! 0.6254~7!

232 0.2033~14! 0.4024~16! 0.4367~27! 0.4436~142! 0.4480~7!

431 0.1906~12! 0.3563~13! 0.3815~21! 0.3747~127! 0.3899~6!

531 0.0584~10! 0.1775~12! 0.2042~22! 0.2138~99! 0.2166~6!

332 0.0977~9! 0.2160~12! 0.2363~16! 0.2322~103! 0.2438~6!

432 0.0172~7! 0.0793~10! 0.0978~16! 0.1037~66! 0.1085~4!

333 0.0115~8! 0.0618~8! 0.0803~18! 0.0922~85! 0.0901~4!
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As a further check of our method, we calculated expecta-
tion values of the squared differences

Di5^@ ln~N†N!2Li #
2&1 , ~8.3!

for Li given by Eq.~3.4! with i of 0, . . . ,4. As aconse-
quence of the definition ofL0, the termD0 is just the squared
dispersion

D05^$tr@ ln~N†N!#2^tr@ ln~N†N!#&1%
2&1 . ~8.4!

To find D0, we evaluated

E5
1

nf
K F(

i51

nf

~~ ln~N†N!f i , ln~N†N!f i !!G L
1

,

D085
1

nf
2 K S (

i51

nf

~~f i , ln~N†N!f i !!

2(
i51

nf

^~~f i , ln~N†N!f i !!&1D 2L
1

. ~8.5!

As in Sec. V, since for eachi andx thef i(x) are Gaussian
random variables with covariance given by Eq.~5.2!, the
averages overf in the definition ofE andD08 can be evalu-
ated analytically. ForD0 we then obtain

D05D082
E

nf
. ~8.6!

OtherDi were found similarly.
Results obtained from 160 gauge field configurations with

nf of 140 are given in Table VI. Asi increased theDi fall
rapidly to 0, withD2, D3, andD4 all statistically consistent
with 0. Thus asi increased, theLi approachs tr@ ln(N†N)#
rapidly in the norm of the Hilbert spaceH of Sec. II.

IX. COMPARISON WITH PERTURBATION EXPANSION

A calculation of the effect of quark-antiquark vacuum po-
larization using a weak-coupling perturbation expansion to
leading order was reported recently in Ref.@10#. Staggered
quarks are considered in Ref.@10# in place of our choice of
Wilson quarks. The weak-coupling expansion in Ref.@10# is
expected to be reliable for sufficiently small gauge coupling
and sufficiently large quark mass. For two flavors of quarks
with degenerate massma in lattice units ranging from 0.05
to 1.00 and a parameter corresponding tob8 fixed at 5.68,
the main effect of quark-antiquark vacuum polarization is

found to be simply a coupling constant shiftDb. As ma
ranges from 0.05 to 1.00, the shiftedb for full QCD runs
from 5.34 to 5.63.

For Wilson quarks, the mass is

ma5
1

2k
2

1

2kc
. ~9.1!

Here kc is the critical hopping constant at which the pion
mass becomes 0. With our choice of 0.1600 fork and with
kc of 0.1694@1# at b8 of 5.700,ma becomes 0.1734. To a
first approximation, corresponding versions of QCD with
Wilson quarks and with staggered quarks should have equal
values of quark mass andb. Thus the parameters of our trial
calculation fall nearly within the range considered in the per-
turbative calculation of Ref.@10# and our results are qualita-
tively consistent with theirs. For two flavors of staggered
quarks withma of 0.1734 andb8 of 5.68, the perturbative
calculation predicts aDb of 0.226 in comparison to our pre-
diction of 0.26160.014 for two flavors of Wilson quarks.

X. CONCLUSION

For the heavy quark mass used in the example of Sec.
VIII, the computer time required to obtain an error estimate
on loop expectation in the valence approximation by our
algorithm was roughly comparable to that required to simply
calculate these expectation values directly in full QCD. The
crucial question which we have not yet answered is how
much time would be required to apply the algorithm we have
described to QCD and determine, from Eq.~4.2! with n of 1,
the error in the valence approximation to hadron propagators
for more realistic choices of quark mass, lattice spacing, and
lattice volume than we chose in the test in the preceding
section. If the algorithm can be run in reasonable time with
n of 1, it might be possible to use largern and obtain smaller
errors in hadron propagators. If the error found in this way
for some small value ofn is itself small for at least one
quantity from which the physical value of the lattice spacing
can be determined, it will be possible to calculateaMS for
full QCD, whereMS denotes the modified minimal subtrac-
tion scheme.

A perturbation theory estimate, which we will not discuss
here, suggests that the optimal number of randomf which
our method requires will grow more slowly than a power of
the inverse lattice spacing or the inverse quark mass. Similar
estimates suggest similar growth rates for the number of in-
dependent gauge configurations needed to evaluate the ex-
pectation values entering the determination of the coeffi-
cients ai in the expansion in Eq.~3.1!. The remaining
question is how large an ensemble of gauge configurations
may be required for small values of lattice spacing and quark
mass to find the valence approximation error in hadron
propagators using Eq.~4.2!. If the differenceQn for some
small value ofn turns out to be quite small, as occurs for the
parameter values in Sec. VIII, or ifQn is sensitive only to
low momentum fluctuations of the gauge field, the calcula-
tion of propagator errors may be possible with reasonable
ensembles sizes. We do not know at present whether one of
these conditions might be realized for values of lattice spac-
ing and quark mass which would permit an extrapolation to
the physical limit of hadron masses.

TABLE VI. Square of the distance betweenLi and trln(N†N).
The calculation uses 160 gauge configurations each with 140 ran-
domf.

i ^@ tr@ ln(N†N)#2Li#
2&1

0 123.7617.4
1 16.066.7
2 7.967.8
3 4.266.2
4 3.764.6
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APPENDIX CHEBYSHEV EXPANSION

We now derive the coefficientsni needed for the Cheby-
shev expansion of lny Eq. ~5.7!. From standard results on
Chebyshev polynomials@15#, it follows that

1

y F11rTn11* S 12y

12e D G5 (
k50

n

ckTk* S 12y

12e D , ~A1!

where, for 1<k<n,

ck52
~11coshx!sinh@~n112k!x#

sinhxcosh@~n11!x#
~A2!

and, in addition,

c05
~11coshx!sinh@~n11!x#

sinhxcosh@~n11!x#
,

r5
21

cosh@~n11!x#
, ~A3!

with x defined by

coshx5
11e

12e
. ~A4!

Equation~A1! can be integrated fromy to 1 using, fork
greater than 1, the relation

E Tk* ~x!dx5
Tk11* ~x!

4~k11!
2
Tk21* ~x!

4~k21!
, ~A5!

along with

E T1* ~x!dx5
T2* ~x!

8
2
T0* ~x!

8
,

E T0* ~x!dx5
T1* ~x!

2
1
T0* ~x!

2
. ~A6!

We obtain

ln~y!5 (
k50

n11

bkTk* S 12y

12e D1d ln~y!, ~A7!

where, for 1<k<n,

bk52
~12e!~11coshx!cosh@~n112k!x#

kcosh@~n11!x#
~A8!

and, in addition,

bn1152
~12e!~11coshx!

2~n11!cosh@~n11!x#
,

b052 (
k51

n11

~21!kbk . ~A9!

The bound, Eq.~5.8!, on d follows from the integral of Eq.
~A1! combined with Eq.~A2! for r and the bound

uTk* ~x!u<1, ~A10!

for 0<x<1.
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