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Error estimate for the valence approximation and for a systematic expansion of full QCD
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We construct a systematic expansion for the lattice formulation of full QCD. The leading term is the valence
(gquenchegl approximation. An error estimate for any truncation of this expansion is then obtained from a
second expansion of full QCD, indexed by the number of virtual fermion loops included in each term.
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I. INTRODUCTION included here largely because the mathematical machinery
needed to construct the valence approximation error estimate
Several predictions obtained recently in the valencdeads naturally both to the complete expansion and to a cor-
(quenchegdapproximation to the infinite volume, continuum responding error estimate.
limit of lattice QCD lie not far from experiment. For low- A crucial question which we have not yet answered is
lying hadron massefl], valence approximation results are whether in practice the determination of valence approxima-
within 6% + 8% of experiment. For decay constaf@$ the tion errors using the form of our algorithm discussed here, or
valence approximation differs from experiment by incre-one of its possible variations, would be any faster than a
ments ranging from 12% 11% to 17%* 6%. Missing direct comparison of valence approximation results with
from these calculations, however, is an independent theorethumbers found by the best present algorithms for full QCD.
cal estimate of the error arising from the valence approximawhether or not the method we propose turns out to be useful
tion. in practice for quantitative error estimates, it appears to us
In the present article, we develop a systematic expansiothat it may help provide a useful qualitative picture of the
for lattice QCD including the full effect of quark vacuum effect of vacuum polarization and of the physical mechanism
polarization. The leading term in this scheme is the valenceinderlying the relatively close agreement found in Refs.
approximation. If an infinite collection of higher terms is [1,2] between valence approximation predictions and the real
taken into account, full QCD is reproduced exactly. We thenworld. The results we present in Sec. VIII are evidence that
derive a formula which can be used to estimate the error it least for moderately heavy quarks, the expansion we con-
any vacuum expectation value obtained by truncation of thistruct converges rapidly and the main effect of vacuum po-
expansion to some finite number of terms. larization is absorbed by the dielectric constant implicit in
In an exact treatment of QCD, virtual quark-antiquarkthe valence approximation. How the expansion behaves as
pairs produced by a chromoelectric field reduce the field'sjuark mass is decreased we hope to return to elsewhere.
intensity by a factor which depends both on the field's mo- We are aware of two other strategies for evaluating the
mentum and on its intensity. In the valence approximatiorrelation between the valence approximation and full QCD.
this factor, analogous to a dielectric constant, is approxi-The application of chiral perturbation theory to estimating
mated by its zero-field-momentum zero-field-intensity limit the errors introduced by the valence approximation has been
[3]. The approximation which we consider here may be picconsidered by several groufs—7]. The asymptotic behav-
tured as incorporating an inverse dielectric constant which igor at small quark mass of a variety of predictions of the
a sum of terms which progressively more accurately reprovalence approximation has been shown to be qualitatively
duce the correct dependence of the inverse dielectric constadifferent from the behavior of full QCD. The quark mass
on field momentum and field intensity. For this approxima-below which these difficulties become quantitatively signifi-
tion to the inverse dielectric constant truncated to any finitecant in the evaluation of low-lying hadron masses, however,
number of terms, our error estimate is obtained from a secappears to be well below the average of the up and down
ond, independent expansion of full QCD, indexed by thequark massef8,9]. For physical values of quark mass, sev-
number of virtual quark loops each term includes. A prelimi-eral unknown parameters enter chiral perturbation theory
nary version of the present work was reported in Réf. predictions of the errors in most valence approximation re-
The main motivation of the present article is to find a waysults. Quantitative determination of these errors is therefore
of determining directly from QCD the errors arising in va- not possible at present. Another method for evaluating the
lence approximation calculations of hadron masses and deffect of virtual quark-antiquark pair production on QCD
cay constants. Our expansion of the inverse dielectric conpredictions is discussed in R¢fL0]. This calculation uses a
stant arising from quark-antiquark vacuum polarization itselfweak-coupling expansion to leading order and is valid for
plays no direct role in this error estimate. The expansion ismall values of the gauge coupling constant and large values
of the quark mass. The results we report in our trial calcula-
tion in Sec. VIII are qualitatively consistent with those de-
*Permanent address: Department of Mathematics, Trinity Colscribed in Ref.[10]. Reviews of a variety of other recent
lege, Dublin 2, Ireland. valence approximation calculations are given in Réd].
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In Sec. Il we introduce definitions. In Sec. lll we con- transforms, and complex conjugation. Ligtbe the projec-
struct an expansion for the dependence of vacuum polarizaion of f; onto H. Since rotation, translation, reflection,
tion on field momentum and field strength. In Sec. IV wegauge transformation, and complex conjugation leave the
derive an expression for the error in any vacuum expectatiomalue ofd; unchangedh; will be a linear combination of a
value arising from a truncation of the expansion of Sec. lll.collection of f; all of which haved; equal tod;. Most h;

In Secs. V, VI, and VII we present an algorithm for evalu- obtained in this way will be linearly dependent on the set of
ating the terms in the expansion and corresponding erradf; with j<i. Working upwards froni of 0, we eliminate any
estimates. In Sec. VIII we describe a trial calculation usingh; which is dependent on survivinig; with j<i. A Gram-
our expansion and error estimates. The Appendix gives &chmidt process on the survivirlyg gives an orthonormal
calculation of a set of parameters needed by the algorithm iBasis{ﬁi} for H.

Sec. V. Typical vectors inH are the function with value 1 for all

gauge fields and the Wilson plaquette action
1. DEFINITIONS

We consider Wilson’s formulation of euclidean QCD on P= 2 tru(Xq,X2)U(Xo,X3)U(X3,X4)U(X4,X1) ],
some finite lattice. A lattice gauge field consists of an assign- SEEREES X4)
ment of an elemenii(x;,X,) of the fundamental representa- 2.3
tion of SU(3) to each oriented nearest neighbor pair of Site%/vhere the sum
(X41,X5) with the usual restriction that(x; ,x,) is the adjoint
u(x,,x7) "

Define the Hilbert spacé to consist of complex-valued
functionsf of the lattice gauge fields with finite value of the
norm:

is taken over all oriented plaquettes
(X4, - -,X4) consisting of sequences of four successive near-
est neighbors, with sequences related by a cyclic permutation
identified. Any sum of traces of products ofx,y) over all
rotations, translations, reflections and order reversals of some
closed path gives yet another elementbfThe basis vector

, . , ﬁo is the function with constant value 1, aﬁql is the nor-
IflI*=¢ f dul|f[“exp(S), (2.1) malized projection oP orthogonal toﬁo. The basis vectors

h,, hs, and h, are each found by continuing the Gram-
Schmidt process on the three different sums of traces of
ng’ duexp(S). products ofu(x,y) along one of the three distinct shapes of
closed paths consisting of six lattice links.
The inner product orf is We now define the lattice vacuum expectation value. We
assume, for simplicity, quarks occur in degenerate pairs for
some set of masses strictly greater than 0.Nlete Wilson’s
coupling matrix among half the quark fields, one from each
degenerate pair. We impose periodic boundary conditions.
For any function of the gauge fields with bounded abso-
{= f duexpS). lute value, a regulated form of the vacuum expectation value
obtained after integrating out quark fields is
Here S is some real valued function of the field which is
bounded in absolute value and invariant under all lattice
translations, rotations, reflections, and gauge transforma-
tions. A useful choice foS will be discussed in Sec. Ill. A
linearly independent basis faF consists of the collection B
{f.} of all possible products of matrix elements of irreducible Zg= J du de(M'™ + R)eXP(gP) : (2.9
representations of SB) including exactly one matrix ele-

ment for each link, with links differing only by a flip of whereg is 6/g? for bare gauge coupling constamity is the
orientation identified. Distinct; are then orthogonal with product of one copy of S(8) Haar measure for each link
respect to the inner product of E.2 for S of 0. We  yariable on the lattice, anid a small non-negative parameter.
choose thefi to be normalized with respect to the inner The extension of E(x24) to vacuum expectations of prod-
product withS of 0. ucts of quark and antiquark fields is not needed for the
Let d; be the sum over all links of the dimension of the present discussion and will be omitted for simplicity. Since
SU(3) representation assigned to that link hy We assume  the determinant of the Wilson coupling matiik is real, the
the sequencéf;} is ordered in such a way thalf is a non-  expectation(G), is the usual vacuum expectation of lattice
decreasing function df. Applying a Gram-Schmidt process QCD. For any bounde6, <G>R approache$G>o asR goes
to {f;} using the inner product of E@2.2) for some nonzero g 0.
choice ofS gives an orthonormal bas{$;} for . We introduce the regulatd® in the definition of(G)g to
Although the expansion to be constructed in Sec. Ill carprovide a mathematically convenient rule for handling rare
be defined using onlyF, for purposes of constructing an gauge configurations on whickl becomes singular in the
algorithm to evaluate this expansion it is slightly more con-valence approximation. Monte Carlo valence approximation
venient to work with the subspaé¢ of F which is invariant  calculations often find averages of quantities involving
under all lattice translations, rotations, reflections, gauge ! at values of the quark mass for which some configura-

(f,f’):(lf duf* frexpS), (2.2)

(G)R:Z’lf du G de(MTM+R)exp<§P),
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tions exist, such as all link variables close to the identity ~Since the spectrum d¥1™M + R is bounded from below

matrix, for whichM has eigenvalues arbitrarily close to 0. by R, det(M "M + R) is bounded from both above and below.

These configurations are not encountered in practice becauSeus|/In[det(M "M + R)]|| is finite and IfidetM ™ +R)] is

their total weight within the path integral is extremely small. 50 in7. Using the orthonormal bas{#;} of H, we there-

Itis generally believed that for any positive choice of quarkfore have the convergent expansion

masses, the total valence approximation measure of configu-

rations with minimalM ™™ eigenvalue belov@(mg) goes to

zero very rapidly in the limit of large lattice volume with In[de{M M +R)] :2 a; hy, (3.

lattice spacing held fixed. The expansion to be considered [

below will be done with some nonzero value Bf much

smaller thanO(mé). After taking a limit of infinite volume

of any vacuum expectation, a limit of zef® should leave

the result essentially unchanged. For notational simplicitysn 41g0rithm for the numerical evaluation of the coefficients

the R subscript will be deleted frondG)g and Zy in the a, is presented in Sec. V.

following. , _ For anyG bounded in absolute value, an approximation
The extension of Eq(2.4) to QCD with one or more 4, (G) can be obtained by combining Eq®.1) and (3.2

quark masses not in a degenerate pair follows from the prez i, Eq. (2.4). The expectation value defined by E@.4)
ceding paragraph. For any coupling matNxwith all quark ., pe reexpressed as

masses nonzero, the spectrahbndNT are identical. Thus

det(N) is real and non-negative unlellshas a negative real P

eigenvalue. Fok less than 1/8, negative real eigenvalues of o1 I

N cannot occur. Since the spectrum Mfis a continuous (G)=2 J dp G eXF("”JFQ”Jr 6 P)’

function of x, as k is made larger than 1/8, negative real

eigenvalues will occur with significant probability only once

eigenvalues close to 0 become probable. As explained in the 7= f du ex;{ L,+Q,+ Ep) (3.3

preceding paragraph, for the range of quark mass we con- 6

sider and sufficiently large physical volume this probability ) o .

is expected to be negligible. Thus for sufficiently large vol-Wheren is some positive integer and the partial sugnand

ume we can treat det() as real and non-negative. For a "émainderQ, are

qguark coupling matriXN with all quark masses positive but

no other restrictions, a vacuum expectation value is therefore no

given by replacing deM'™™+R) in Eq. (2.4 with Ln=2 a; h, (3.9

vdet(N'"N+R). With only minor changes, the expansion 1=0

discussed in the remainder of this paper can then be adapted

to QCD with one or more quark mass not in a degenerate .

pair, Qu=In[detM™M+R)]-L,=2> a h. (35
The regulation paramet& is needed only for the Wilson e

quark coupling matrix. For Kogut-Susskind quarks the specaq 1, becomes large, Eq3.2) implies Q, approaches 0 in

Y 2
trum of MM is bounded from below byn, for all gauge . Thys it appears reasonable to try to approximate Egs.
configurations. For Kogut-Susskind quarks with positive 3.3) by omitting Q. We obtain

guark mass, the probability of negative real eigenvalues og "

M can also be proved to be 0 in any volume.

a;=(h; ,In[detM ™™ +R)]). (3.2

(G)n:zglf du G exp( Ln+§P>,

Ill. EXPANSION
Any S, bounded in absolute value and invariant under all _ B
lattice translations, rotations, reflections, and gauge transfor- Z”_f dp ex;{ Lot EP ' (36

mations, can be chosen in E@.2) to define a spacé{ to
construct an expansion for[bet(M "M + R)]. In the present The expectatiofG), is pure QCD with the quark deter-
section we will construct an expansion for QCD vacuumminant simply removed and no shift j{@. The expectation
expectation values for any su¢h In Sec. IV we will be led (G), is the valence approximation including a shiftgn For
to a choice ofS which is likely to speed the convergence of any G bounded in absolute value, the approximate expecta-
this expansion. tion (G), approache¢G) asn becomes large. This conver-
SinceM is a finite matrix with matrix elements bounded gence holds for any admissibig in Eq. (2.2) defining the
uniformly over all gauge fields, the spectrumMfM +Ris  inner product of the space/ and, in particular, does not
bounded from above by some constamt. Thus require any particular relation betweéhand the action for
detM™™ +R) has a finite value of the norm defined by Eq. QCD. A rigorous proof of this result is given elsewhété].
(2.1) and is inF. In addition detl "M +R) is real valued We will show below, however, that the choice of &nre-
and rotation, translation, reflection and gauge invariant. It idated to the QCD action is likely to help maximize the rate at
therefore inH. which the expansion converges.
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It may be useful to mention here that the hopping constan®,,. This is conveniently organized by replacify, in Eqgs.
expansion for Ifdet(M TM)] expresses this quantity as a lin- (3.3) by A\Q,,, expanding(G) as an asymptotic series in
ear combination of Wilson loops formally similar to Eq. powers of\, and then setting to 1. We obtain
(3.2) and can be used to obtain an approximation(®
similar to Eq.(3.6). In two crucial ways, however, the ex-

pansion of Eq(3.1) differs from the hopping constant ex- <G>:<G>n+p§1 Spn(G), (4.
pansion, and approximatio(8.6) differs from the corre-

sponding approximation using the hopping constant _ B B

expansion. First, the validity of expansi¢8.1) and the ac- 91n(G) =((G=(G)n)(Qn=(Qn)n))n. (4.2
curacy of approximatiori3.6) are not restricted to the range )

of large quark mass to which the hopping constant expansion 820(G)=((G=(G)n)(Qn={Qn)n) In. 4.3

and its related approximation apply. As we have already
shown and as is discussed in more detail elsewh&?g
expansion(3.1) and approximationi3.6) apply as long as the
guark mass is greater than 0. Second, even for values of
quark mass at which the hopping constant expansion does
converge, Egs(3.1) and(3.2) differ from the hopping con-
stant expansion by an infinite rearrangement. That is, each
term which appears in Eq$3.1) and (3.2) is a linear com- The termd,,(G) in this series is of ordep in Q,. Thus
bination of an infinite set of the terms appearing in the hopif Q, is small, successive terms in this series should become
ping constant expansion and vice versa. progressively smaller. On the other hand, for a Monte Carlo
A crucial question concernin¢G), is how largen must  €valuation it is not hard to show that the statistical dispersion
be made to obtain reasonably accurate results. In particula®f pn(G) divided by its mean value will rise with system
it might seem that in analogy with the hopping constant exvolume as volume to the powgr. Thus succesive terms in
pansion, an extremely large value ofwill be needed to this series will become progressively more expensive to
obtain accurate results f@ which are sensitive to the low evaluate. It is therefore our intention primarily to use
momentum components of the gauge field. For s@nae  61,(G) as an estimate of the error (). If 5,,(G) turns
believe this is likely to be the case. In particular, for any out to be a small fraction afG),, we would expec{G), to
there will almost certainly be some length scale above whictbe a reliable approximation §G) and 6,,(G) to be a reli-
all Wilson loops are given very inaccurately. On the otherable approximation of the error iG),. Conversely, if
hand, relatively close agreement has been found betweet,(G) is not a small fraction ofG),,, we can say only that
light hadron masses in the valence approximation, witif ~ (G), is not a reliable approximation tG).
1, and hadron masses in the real world. This agreement sug- From the perspective of weak-coupling perturbation
gests the expansion, or one of its variations, may convergtheory, the index in Eq. (4.1) counts the number of internal
fairly rapidly for light hadrons. We hope to return to this quark loops entering each term of the expansion. In particu-
subject elsewhere. Examples for whiclof 1 gives accurate lar, §1,(G) gives the corrections to the valence approxima-
results andh of 4 gives still more accurate results will be tion arising from weak-coupling diagrams with a single
discussed in detail in Sec. VIII. quark loop, 8,,(G) gives the valence approximation error
A wide range of other possible expansions and approxifrom diagrams with two quark loops, and so on. Thus while
mate vacuum expectation values similar to E(1) and the expansion of Ed3.6) approximates the effect of vacuum
(3.6), respectively, can be constructed by various choices ofolarization with a sequence of progressively less local ef-
S or the expansion bas{#;}. Yet another class of possibili- fective actions, even the leading correction in E4.1),
ties is to choose tha; in Eq. (3.1) to force the first order 6,,(G) directly measures the difference between the effect
error 8;,(G), to be discussed in Sec. IV, to zero for a par-of arbitrarily large virtual quark loops and their local ap-
ticular G or set of G, such as ther propagator or thep ~ proximation in Eq.(3.6).
propagator. These alternatives to E@s1) and(3.6) will not Taking 61,(G) as an estimate of the error {G),, sug-
be discussed further here. gests a choice fof entering the norm defined in E¢R.1).
From Egs.(4.1) and(4.2) and the Cauchy-Schwarz inequal-
ity we obtain

53n(G):<(G_<G>n)(Qn_<Qn>n)3>n_3<(G_<G>n)
X (Qn_<Qn>n)>n<(Qn_<Qn>n)2>n ’ (4-4)

IV. ERROR ESTIMATE AND CHOICE OF S
(<G>_<G>n)2”(<(G_<G>n)(Qn_<Qn>n)>n)2

g<(Qn_<Qn>n)2>n<(G_<G>n)2>n-
(4.9

We now derive an estimate for the error in approximating
any (G) by some(G),. This estimate will then suggest a
choice of § which will tend to lead to a small error in
(G)n-

The difference betweeG),, and (G) arises from ap-
proximating Ifdet(M "M + R)] in the formula for(G) with
L, in the formula foG),, . If the remainder in this approxi-

This relation suggests that the error {G), will be
minimized by a choice of & which minimizes

mation Q,, defined by Eq.(3.5 as IfdetM'™ +R)]
—L,, is small, then we expe€G), to be close tqG). To
estimate the difference betweéB), and(G), we therefore

{((Qn—{(Qnn)?)n. But recall thatQ,, is defined by Eq(3.4)
as the remainder [det(M "M +R)] —L, with L,, defined, in
effect, to be the n term approximation to

to take Eqgs(3.3 for (G) and expand as a power series in In[det(M ™™ + R)] which minimizes



55 ERROR ESTIMATE FOR THE VALENE . .. 4029

2 .1 ) choice ofS no matter what value af we intended to use for
1QnlI*=¢ Jd'“ |Qnl*exp(S), (4.6 (G),. On the other hand, it appears to us unlikely that
spending the computer time needed to find an improfed
will decrease significantly the error in an expansion carried
(= j duexp.s). out to somen larger than 1. A more efficient use of computer
time would probably be to work to higherwith S still fixed
Since||Q,|? has been minimized with respect to variations inat its valence approximation value.
L, and since we would like to makgQ,,—(Qn)n)%)n small, For an expansion with larger than 1, we can still begin
it seems reasonable to try to turn the second expression intgy specifying a value for thes’ occuring in the valence
the first. If we chooses to bel,+ BP/6, then forn greater  approximation. The corresponding parameter for full

than 1,(Q,), vanishes and we have QCD, if needed explicitly, can then be found frgs4 using
) ) ) Eq. (4.9. The higher order terms entering the effective ac-
((Qn={(Qn)n)n={(Qn)n=Qnl". tion L,,, however, do not depend of and can be deter-

mined directly from Eq(3.4). To test the accuracy of some
approximation(G), and the corresponding error estimate
61n(G) an explicit value of3 for full QCD is useful. In other
calculations withn greater than 1, however, a determination
of B is not necessary.

Thus for the calculation ofG),, a good choice o appears
to belL,+ BP/6 itself.

The choice ofL,+ 8P/6 asS leads to a set of nonlinear
equations forL,. For the valence approximation, a single
equation results which can be solved fairly easily. By a trick
it can also be avoided completely. In the valence approxima-

tion, S becomes V. TRACE LOG ALGORITHM

The quantity Ifhdet(M "M +R)] needed for Eq.(3.1)

S=L,+ gp: a+ %p, (4.7  obeys the identity
In[detMT™™M +R)] =t In(MTM +R)]. (5.1
with @ and B8’ given by
We now consider an algorithm for finding trM{M+R).
a(P), The algorithm exploits properties of the Chebyshev polyno-
a=ap+ m mials. Combined with Eq(3.1), this algorithm gives the co-
! efficientsa;. As discussed in Sec. I, we will assume the
B =B+AB, quark masses, lattice volume, and Monte Carlo ensemble

size have been chosen in such a way that for all gauge con-
6a figurations encountered the minimal eigenvaBief MM
AB= S S (4.8 lies well aboveR. The effect ofR in tr[IN(M'™M+R)] is then
VI{P—=(P)11%) negligible, and we omiR in the remainder of the paper.
It is perhaps useful to mention that the application of
For any choice ofg, the valence approximation value Chebyshev polynomials to an algorithm for the effect of

B’ is the solution to quark-antiquark vacuum polarization in full QCD has also
B AR been discussed recently in Réfl6]. The algorithm dis-
B =B+ABB). (4.9 cussed in the present paper, however, and our use of Cheby-

ghev polynomials are unrelated to the work in Réb].

With any reasonable number of flavors of quarks, less tha To evaluate fin(M'M)] we begin by generating an en-

10 for example, it is easily confirmed numerically that .
AB(B') is a monotone increasing function @f with de- semble of Gaussian random complex-valued pseudoquark

rivative significantly less than 1. For two flavors of quarksg_elds’_ ¢i(x)} wherlfi s a mtljlti-ind(ejxﬂranging (;Jver all com-
with « of 0.1600 considered in Sec. VIII, we find thaiB Inations of quark spin, color, and flavor ardanges over

rises from below 0.1 g8’ of 0 to below 0.3 aj3’ near 6.0. !attice sites. For each a_nd x we choosed;(x) to be an .
Thus Eq.(4.9) can be solved by a fixed point iteration, taking independent random variable such that the average over this

B as an initial value of3’. A simpler procedure, however, is ensemblg(- - -)) gives

to choose the valence approximatign first, then use Eq. (%) &b -0
(4.9 to determine the correspondirg) for full QCD. This (i(x) ¢i(y)))=0,
gr:cce\cjﬁlre will be adopted in the example to be discussed in (¥ (%) ¢j(y)>>:5” Sy 5.2

For the evaluation ofG), with n larger than 1, aS of  \We then have
L,+BP/6 which minimizes ((Q,—(Qn)n)?)n could be

found by iterating equations similar to E@.9). Just as an tr InN(MTM) 1= ((((p,IN(MTM) $)))), (5.3
iteration of Eq.(4.9) converges rapidly, numerical experi- _ .
ments suggest that the equationslfqrwould also converge Wwhere ((. .., ...)) is theinner product on the vector space

rapidly. A simpler alternative, however, is to leagdixed at ~ Of pseudoquark fields:

its valence approximation value in E@t.7). As mentioned

above, the expansion we construct converges for a wide f _ £5 (%) 0:(x 54
range of differentS, and Eq.(4.7) is certainly an admissible ((f.9)) % F 0 Gi%)- ©4
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Finding the inner product of two such vectors requires a
comparatively small amount of arithmetic. The problem of
evaluating the trace fin(M™™)] is thus reduced to finding

In(M™™)¢ for a large ensemble ap.
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Ci= —. (514)

Equations(5.10—(5.14) imply that by,C,, gives the sum in

For the evaluation of IM"M)¢ we combine properties of Eq. (5.9) and is therefore an approximation to ¥a¢ with
the Chebyshev polynomials with the restriction that the eiyelative error less thahs|.

genvalues oM ™™ lie between upper and lower bounds

andB, respectively. Define the operatérand the parameter

e to be
~M™™ 5
- A ] ( '5)
B
E—K. (56)

In the Appendix we will show that for ang greater than 1

there are a set of coefficients, such that, for any number

y betweene and 1,

In(y)=>, biTi*(l_—y +8In(y), (5.7)
i=o 1-¢€
|8|<2 expg(—2nYe), (5.8

where theT; are Chebyshev polynomials. For large values

of n, the inequality of Eq(5.7) is nearly saturated. Sinééis
a self-adjoint operator with all eigenvalues betweesnd 1,
for any vectorg,

1-Y

|n(Y)¢>:__ZO biTi*(— o+on(Y)p, (5.9

1—€

with 6 bounded according to E@5.7).
An iterative algorithm to evaluate the sum in £§.9) can
be obtained from the recursion relation

T 1(2=(42=2)TF (2) - T 1(2) (5.10
and initial values
0(2=1,
T*,(z)=2z—-1. (5.11
Define the sequencés andD; for 0<i<n by
Ci=Ts(Y)o+c Hféwcifl_ljifl ,
Di=TZ(Y)¢p+ciCi_y, (5.12
with initial values
Co=Ts(Y),
Do=T*,(Y) . (5.13

The coefficientg; in Eq.(5.12 are found from thév; in Egs.
(5.7 and(5.9 by

The final result, by Eq95.3 and(5.5), is

trin(M™M) =({((#,boCp)))) +duIn(A), (5.1

whered,, is the dimension of the matrii.

VI. MAXIMUM AND MINIMUM EIGENVALUES

Since for small values ob the number of iterations re-
quired to obtain a fixed value af in Eq. (5.7) becomes a
linear function of JA/B, the optimal choices foA and B
becomeh ., and\ i, respectively.

An efficient algorithm[14] for estimating the maximum
and minimum eigenvalues & "M uses the Lanczos method
to construct a tridiagonal approximationt'™ . Define the
sequences of real numbets,...,a, andB,,...,B, and the
sequences of pseudoquark fiells....qy andrg,....r, by

Oi+1=(B) 'y,
ai+1:[(qi+1vMTMQi+1)],

ri+1=MTMqi+1_ai+1Qi+l_Biqi )

Bir1=V((riz1.ri+1)),

with Bq of 1, qq identically 0, andry, a randomly chosen
pseudoquark field with norm 1. Hema is the number of
distinct eigenvalues o1 M.

It can be shown that the sequence of pseudoquark fields
d1, - - -Om generated by Eq(6.1) is orthonormal, and the
space spanned by these vectors is invariant under the action
of MTM. The space spanned Iy, . . . 0, is smaller than
the whole space of pseudoquark fields only if one or more of
the eigenvalues ofM™ is degenerate. In the basis

(6.9

A1, - - - .Om. MM is tridiagonal. All matrix elements of
Tij
Ti=[(a;,M™™q))], (6.2
vanish except
Ti—1i=Bi-1,
Tii=a,
Tit1i=8i- (6.3

Each distinct eigenvalue dfl "M occurs exactly once as
an eigenvalue of the matrix of Eq6.3. As n grows, the
maximum and minimum eigenvalues;., and A5y, of the
submatrixT{} with 1<i,j=<n approach the true maximum
and minimum eigenvalues,,,, and\ i, of MM with errors
falling exponentially inn.

To extract\|1., and A, from T", define the polynomial

p"(\) to be the determinant
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p"(A)=de(T"—\I"), (6.4) fast Fourier transforms provide an efficient way to carry out
the multiplication by negative powers MEEMO needed to
wherel" is thenX n identity matrix. Thep"(\) can be cal-  determine INK'N)¢ by the algorithm of Sec. V. A rough
culated from the iteration guess might be tha{/\ /A min for NTN will go to a con-
%) =1 stant if the gauge couplingg is made small, while
' VA mas/ A min fOr MTM will progressively grow. Thus it seems
P L) = (ans 1= N)P"N) = (B 1)2P" L(\). (6.5 plau5|ble that for small enougdi the addltlonal cost of Fou-
rier transforms required to apply the algorithm of Sec. V to
The eigenvalue3" are the zeros gb"(\). Thus we wish the preconditioned operator will be more than made up for
to find the largest and smallest of these zeros. It can bby the decrease iQ\ max/ A min and corresponding decrease in
shown[14] that the number of zeros @"(\) lying below  the number of iterations of E¢5.12). At least for the set of
some\ is given by the number of sign changes in the separameters at which we run the algorithm in the example

guence described in the next section, this expectation turns out to be
correct.
P°(N),p*(N), ... p"(N). (6.6
This relation can then be used to guide a search for the maxi- Vill. EXAMPLE
mum and minimum zeros gi"(\). As a first test, we have applied the algorithms of Secs.
V-=VII to QCD with two flavors of quarks both with of
VIl. PRECONDITIONER 0.1600 on a 6 lattice. Taking from Ref[1] the p mass in

lattice units and critical hopping constast, and using the

p mass to set the lattice scale, the quark mass for the calcu-
lations in this section is about 235 MeV, or about twice the
strange quark mass. We calculated a variety of vacuum ex-

With A andB given by \ . and \ iy, respectively, the
amount of arithmetic required by the algorithm of Sec. V is
proportional toy\ max/ A min- W€ now show how the calcula-
tion of tfIn(M™™)] can be converted into the calculation of pectation values using EG3.6) with n of 0, with n of 1
tr[In(N'N)] for an operatorN with a smaller value of \inich is the valence approximation, and withof 4, for
VAmax/Amin- This change also tends to decrease the numbegich |, in Eq. (3.6) includes each of the three different
of pseudoquark fields needed for a reliable evaluation of the;, _jink loops. We found also the corresponding error esti-

trace. _ - o _ _ . mates fom of 1 from Eq.(4.2) and corrected vacuum expec-
The expression [tin(M 'M)] is gauge invariant since it is  ta(ions including these error estimates. All of the expectation

t MY i invar i _ : o
Indet(M "M) and Tdet(\/l M) is gauge invariant. Prior t0 yajyes obtained from our algorithms we compared with di-
evaluating fin(M'M)] we can therefore transform to a lat- et calculations in full QCD.

tice transverse gauge, defined to give a local maximum of the The calculations in this section were done on an IBM

sum over all nearest neighboxsandy: RS/6000 workstation sustaining approximately 10 Mflops.
The final production runs with our algorithm required about

E trfu(x,y)]. (7.2 1 week of machine time. The final comparison calculation

Xy with full QCD took about another 1 week. Another month or

so of machine time was spent checking and exploring.

As discussed in Sec. lll, rather than fixigg) we fixed
38’ given by the sumB+ApB. Our first task was then to
calculateAB. From B’ and AB we determinedB for full
QCD. For 8’ we chose the value 5.700. Thén- -}, be-
comes simply a pure gauge vacuum expectation with pure
gaugeB’ of 5.700, and - - - )¢ is a pure gauge vacuum ex-

ectation with the sameB as used in full QCD,
. 700-AB.

To evaluate the expectations --), and {---),;, en-
sembles of pure gauge configurations were generated using
the Cabbibo-Marinari-Okawa algorithm. Fdr--)q, B is

N=(Mg) M, (7.2) comparatively small and we were not concerned with obtain-

ing great precision. We found it sufficient to use 100 con-

should be closer to the identity than M. In particular, figurations with 100 sweeps to equilibrate and 100 sweeps
N mad Nmin fOr NTN should be smaller than it is favTM.  between successive pairs. Ker - );, however, we used 160

Using the preconditioned operator we have the relation ~ configurations with 1000 sweeps to equilibrate and 1000
sweeps between successive pairs. For all of the quantities for

tr[In(MTM)]=tr[IN(N'N) ]+t In(M{Mo)]. (7.3 which(...); was measured, we found 1000 sweeps to be
more than sufficient to produce equilibrium values and to
The additional term Eﬂn(MgMo)] required to find decorrelate successive values. The full QCD results were
tr[In(M™1)] by Eqg.(7.3) does not depend on the gauge con-found using the hybrid Monte Carlo algorithm. Hamiltonian
figuration and needs to be calculated only once. On the othdrajectories were generated using the algorithm of R,
hand, the operatdvl, is diagonal in momentum space. Thus which is faster than leapfrog by about a factor of 2. Vacuum

Using, for example, the algorithm described in Réf], the
number of arithmetic operations required for gauge fixing i
relatively small in comparison to the arithmetic needed t
find In(M™M)¢ for an ensemble of random pseudoquark
fields ¢.

Now defineMg to be the fermion coupling matrix with
hopping constank, and allu(x,y) equal to 1. SincéM has
been transformed to a smooth gauge, if the bare gauge co
pling constantg is made small and, is chosen optimally,
we expectM to be an approximation té. Thus the pre-
conditioned operatoN,
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TABLE I. Comparison of work required to evaluate ¢ for TABLE lll. Expectation values and 8 found from 160 gauge
different choices of0. configurations for various choices of the number of randbmsed
in the evaluation of traces.
@ Ko (VN maxd N min) Work/sweep Work
" Ny \% C AB
M™™ 58.1 1.0 58.1
NN 0.091 221 2.0 44.2 10 416.8-2.1 2340+ 508 0.2470.049
20 416.081.7 2343- 387 0.248-0.029
30 415.8:1.5 2483- 367 0.262-0.028
expectations were taken over an equilibrium ensemble ojg 415.4-1.4 2531 343 0.2670.026
250 accepted trajeCtorieS, each of Iength 0.25 time Unitﬁ:)o 414.72-1.3 2517344 0.266-0.024
Equilibrium was reached with 150 trajectories of 0.25 timeg, 414.8-1.3 2499+ 318 0.264-0.023
units, each apg of 5.44, followed by 25 trajectories of 0.25 - 414.9-1.2 2484+ 309 0.262- 0.020
time units, each 8 of 5.439. 414.7-1.2 2470-294 0.261-0.018
To tgne the algorithm of Sec. VI fqgr- - 1 we began by _ 2147411 2420+ 290 0.256-0.017
evaluating on each gauge configuration the ratio 214811 2483-307 0.262-0.017
VW mas/ Amin for MTM. For the preconditioned operator 110 414'& 1'1 2523+ 309 0'26&0'015
NTN, we evaluated this ratio for a range &f and found the 120 414'& 1'0 2501 296 0'26t0'014
Ko Which minimizesy\ max/ \ min- RESUItS %re shown in Table 7, 414'2 1.0 2489+ 290 0'26&0'014
I. The total work required to calculate M(M)¢ is expected o ' '
to be about 35% greater than the work required to ﬁnd140 414510 2472288 0.261-0.014

In(N"N)¢ to the same accuracy. Trial calculations were con-

sistent with this estimate. In the remainder of this section we sjng the final ensemble of 160 gauge configurations and
therefore_: consmle[r only the preconditioned operator and Eg range of values of the numbay, of random ¢ for each
(7.3 to find trin(M'M). _ _ gauge configuration we calculatdtlandC of Eq. (8.1). We
Using the preconditioned operatd with th.e optimal 5150 evaluated the dispersigfiP—(P);]?),. We obtained
xo, We then calculated the vacuum expectation value anghe yalue (5.68 0.61)x 10*. FromC and([P—(P),1%), we
correlation then foundA 8. The results are shown in Table Ill. As ex-
V= t pected, the values we obtained are consistent within errors as
=(trIn(N'N)])4, . . . )
n, is varied while the size of the errors themselves tends to
C=([tr[ln(NTN)]—(tr[ln(NTN)])l][P—(P>1]>1, fall asn, increases. The optlmgl choice mj? producing the
8.1 smallest statistical uncertainty g for a fixed amount of
computation can be shown to be roughly 100.
for a range of different choices of the number of iterations of The error bars on the numbers in these tables are statisti-
the Chebyshev algorithm, E¢.12. The results are shown cal, found by the bootstrap method. From the ensemble of
in Table Il. The averages in Table Il were found using al60 data sets, each consisting of a gauge configuration and
collection of 16 gauge configurations and 20 randénfor ~ an associated collection of, randome, we randomly chose
each configuration. For each configuration, we first calcu160 new data sets to generate a bootstrap ensemble. On each
lated VA max/ A min- The number of iterations of the Chebyshev bootstrap ensemble we then foudd In this way 100 boot-
algorithm, Eq.(5.12), was then chosen to be proportional to strap ensembles and 100 values/ofvere found. From these
VA max/ Amin- The value ofngy, shown in Table Il is the num- we evaluated the difference between the value/darger
ber of iterations which would result for the average over allthan all but 15 results and the value\dmaller than all but
160 configuration$ A max/ Amin) 1- AS Ny is increased above 15 results. Half of this difference is shown as the statistical
50, the change in the two measured expectations shown #@fTor. The errors foC andA B were found similarly. In the
Table Il is significantly less than the statistical errors in thecalculation of the error fod 8, ([P—(P);]%; was calcu-
expectations we found with our final, full ensemble of gaugelated independently on each bootstrap ensemble and used to
configurations andp. For the remaining calculations, we determine the corresponding bootstrap valueNgr.
choseng;, to be 50. The most reliable value fak 8 is 0.261+0.014, obtained
with n, of 140. Our algorithm then predicts that expectation
TABLE Il. Expectation values found from 16 gauge configura- values in full QCD with two flavors of quarks¢ of 0.1600
tions each with 20 randorp, for various choices of the number of
iterations of the Chebyshev algorithm used in the calculation of TABLE IV. Coefficients in the expansion df, as a linear com-

IN(NTN) . bination ofhy, . .. h,.

Nch \% C i a; a; /62
10 390.22 6870 0 414.5(10) 11.513(29)
20 412.25 2733 1 10.4(7) 0.288(20)
50 412.74 2843 2 2.9(5) 0.079(15)
100 412.79 2848 3 1.9(5) 0.053(15)
200 412.79 2848 4 0.7(5) 0.020(15)
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10.0 Figure 1 shows vacuum expectations of a collection of
different Wilson loops. All loops are rectangular with dimen-
. 4x1 5x1 8x2 4x2 3x3 sions as shown_ except for the nonplan.ar glx-llnk loops 6
10 8 2 8 . and 6, we have just defined. The normalization of each loop
2 2 a is
A o o #& ’
g ol 5 R ¢ trlu(Xy,X2)u(Xz,X3) - - - U(Xn , X1) ], (8.2
et a
v so that if all link matricesu(x,y) were given by the identity
0.01 "o matrix, all loops would become 3. Each loop expectation
T 1x12x18; 6, 3x12x2 shown in the figure is obtained in four different ways. Boxes
indicate Eq.(3.6) with n of 0 and 8 of 5.439. Triangles
0.001 represent the valence approximation, E86) with n of 1

andB+ A g of 5.700. Circles give the vacuum expectation of
FIG. 1. Vacuum expectations of various Wilson loops found byEQ. (3.6) with n of 4 and3+ A g8 of 5.700. Plus signs show
four different methods. Boxes represent 0 with 3=5.439, tri-  full QCD with 8 of 5.439 and two flavors of quarks with
angles are the valence approximatios 1 with 8’ =5.700, circles  « 0f 0.1600.
are n=4 with 8'=5.700, and plus signs are full QCD with For all but the X 1 loop, clear differences can be seen in
B=5.439 and two quark flavors witk=0.1600. Fig. 1 between data points with of 0 and 8 of 5.439 and
) . ) points for the full theory with@ of 5.439. For the largest
and g of 5.439, will agree with(---); at 8’ given by |oops these two results differ by as much as a factor of 10.
B+Ap which is 5.700:0.014. A still more accurate ap- For most loops, nearly all of this shift is correctly reproduced
vors, x of 0.1600 andB of 5.439, is given by - - ), of EQ.  For the largest loops the valence approximation reproduces
(3.6) with L4 including contributions from the plaquette and most of the shift due to vacuum polarization, but falls notice-
from ea:Ch of the six-link closed paths. The coefficients in th%b|y below the results of full QCD. The vacuum expecta’[ion,
expansion of Eq(3.4) are found from the inner product of gq (3.6), with n of 4, with L, including a plaquette contri-
Eq. (2.2 with S of Eq.(4.7) and B’ of 5.700. Table IV gives  pution and contributions from the three different six-link
the coefficientsy, . ..,a4 of hg, ... hs in Eq. (3.4). Here loops, agrees with full QCD within statistical errors for all
ho, ...h, as discussed in Sec. Il, are found by Gram-but the three largest loops. Even for these, the expectation
Schmidt orthonormalization app“ed to the sequencéNith n of 4 corrects more than 3/4 of the difference between

ho, ... hs. The functionh, is the constant 1y, is Wilson’s  the valence approximation and full QCD.

plaquette action Eq2.3), andh,,hs;, andh,, respectively, Since the error bars on all points in Fig. 1 are smaller than
are the rotation- and translation-invariant linear combinathe symbols, in Table V we also give numerical values. In
tions of the planar six-link loop, the loop six-consisting of Table V we list, in addition to the data shown in the figure,
the 6 link boundary of three orthogonal plaquettes joined td=d- (3.6) with n of 1 and3+AB of 5.700 but corrected by
form half the surface of a cube, and the |Omnsisting of the error _eStlmate of EC(42) This result is consistent with
the six-link boundary of a pair of orthogonal plaquettesfull QCD in all cases. _
joined on an edge. Having normalized theto 1, eacha; Overall, it appears that at least for the parameters consid-
with i=1 contains, in effect, a factor of the square root of€red here, the valence expansion of Ei6) converges rap-
the number of sites in the lattice. Table IV therefore lists alsddly to full QCD and the error estimate of E.2) is quite
values fora; divided by the square root of the number of reliable as a error estimate for the valence approximation.
lattice sites, 6. As i is increased, the; in Table IV fall The difference between the valence approximation expecta-

rapidly. The coefficient, is about 1.4 standard deviations tion (- - -)1 and the expectatiog- - - ), is almost as reliable
as a valence approximation error estimate.

away from 0.

TABLE V. Vacuum expectation of various Wilson loops found by five different methods.
n=1 n=1 + error Full QCD

n=0 B’'=5.700 n=4 B’'=5.700 B=5.439

Loop B=5.439 (valence B’'=5.700 (valence+ erron k=0.16
1x1 1.4480(15) 1.6503(11) 1.6554(17) 1.6504(94) 1.6629(5)
2X1 0.7313(19) 0.9784(16) 1.0013(22) 0.9974(138 1.0090(6)
61 0.6637(19) 0.9426(19) 0.9668(26) 0.9620(127) 0.9757(6)
6, 0.8243(19) 1.0850(16) 1.1013(24) 1.0963(113 1.1099(6)
3x1 0.3729(16) 0.5898(15) 0.6167(22) 0.6107(144) 0.6254(7)
2x2 0.2033(14) 0.4024(16) 0.4367(27) 0.4436(142 0.4480(7)
4x1 0.1906(12) 0.3563(13) 0.3815(21) 0.3747(127) 0.3899(6)
5x1 0.0584(10) 0.1775(12) 0.2042(22) 0.2138(99) 0.2166(6)
3x2 0.0977(9) 0.2160(12) 0.2363(16) 0.2322(103 0.2438(6)
4X2 0.0172(7) 0.0793(10) 0.0978(16) 0.1037(66) 0.1085(4)
3X3 0.0115(8) 0.0618(8) 0.0803(18) 0.0922(85) 0.0901(4)
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TABLE VI. Square of the distance betweén and trin(N'N). found to be simply a coupling constant shif{3. As ma
The calculation uses 160 gauge configurations each with 140 ratranges from 0.05 to 1.00, the shiftegifor full QCD runs

dom ¢. from 5.34 to 5.63.

For Wilson quarks, the mass is
i ([rTIN(N'N)]—- L)y

1 1

0 123.7:17.4 ma= - — =—. 9.9
1 16.0-6.7 2k 2k
2 7.9t7.8 Here k. is the critical hopping constant at which the pion
3 4.2-6.2 mass becomes 0. With our choice of 0.1600 #oand with
4 3.7+4.6 k. 0f 0.1694[1] at B’ of 5.700,ma becomes 0.1734. To a

first approximation, corresponding versions of QCD with
Wilson quarks and with staggered quarks should have equal
_ As a further check of our _method, we calculated expectay g es of quark mass argl Thus the parameters of our trial
tion values of the squared differences calculation fall nearly within the range considered in the per-
— TNY— 1 .12 turbative calculation of Ref.10] and our results are qualita-
Di=([In(N'N) = Li%)1, ®3 tively consistent with theirs. For two flavors of staggered
for L; given by Eq.(3.4 with i of O,...,4. As aconse- quarks withma of 0.1734 andB’ of 5.68, the perturbative
quence of the definition df, the termD, is just the squared ~calculation predicts & 8 of 0.226 in comparison to our pre-

dispersion diction of 0.2610.014 for two flavors of Wilson quarks.
Do=({tIn(NTN)]—(tr[In(NTN) )1}2),.  (8.9) X. CONCLUSION
To find Dy, we evaluated For the heavy quark mass used in the example of Sec.

VIII, the computer time required to obtain an error estimate

N ; ; on loop expectation in the valence approximation by our
E=— 21 ((IN(N'N) ¢;,In(N'N) &) | ) algorithm was roughly comparable to that required to simply
L= 1 calculate these expectation values directly in full QCD. The

ny crucir?llquestionvt\)/hich we gave ncl)t );]et almsvyired ishhow
it _ + _ much time would be required to apply the algorithm we have
Do= g < ( 21 ((¢1,In(N'N) 61)) described to QCD and determine, from E4.2) with n of 1,
N ) the error in the valence approximation to hadron propagators
¢ + for more realistic choices of quark mass, lattice spacing, and
—;1 (((i,In(N N)¢i))>1> > . (85  |attice volume than we chose in the test in the preceding
1 section. If the algorithm can be run in reasonable time with
n of 1, it might be possible to use largerand obtain smaller
errors in hadron propagators. If the error found in this way
for some small value of is itself small for at least one
quantity from which the physical value of the lattice spacing
can be determined, it will be possible to calculatgs for
E full QCD, whereMS denotes the modified minimal subtrac-
Do=Do——. (8.6)  tion scheme.
¢ A perturbation theory estimate, which we will not discuss
OtherD; were found similarly. here, suggests that the optimal number of randpmwhich
Results obtained from 160 gauge field configurations withour method requires will grow more slowly than a power of
ng4 of 140 are given in Table VI. A increased th®; fall the_lnverse lattice spacing or the inverse quark mass. S|m|_lar
rapidly to 0, withD,, D3, andD, all statistically consistent estimates suggest similar growth rates for the number of in-

with 0. Thus asi increased, the.; approachs fin(N'N)] ~ dependent gauge configurations needed to evaluate the ex-
rapidly in the norm of the Hilbert spack of Sec. IL. pectation values entering the determination of the coeffi-

cients a; in the expansion in Eq(3.1). The remaining
question is how large an ensemble of gauge configurations
may be required for small values of lattice spacing and quark

A calculation of the effect of quark-antiquark vacuum po- mass to find the valence approximation error in hadron
larization using a weak-coupling perturbation expansion tqropagators using Ed4.2). If the differenceQ,, for some
leading order was reported recently in REf0]. Staggered small value ofn turns out to be quite small, as occurs for the
quarks are considered in R¢1L0] in place of our choice of parameter values in Sec. VIII, or @, is sensitive only to
Wilson quarks. The weak-coupling expansion in R&f] is low momentum fluctuations of the gauge field, the calcula-
expected to be reliable for sufficiently small gauge couplingtion of propagator errors may be possible with reasonable
and sufficiently large quark mass. For two flavors of quarksensembles sizes. We do not know at present whether one of
with degenerate massa in lattice units ranging from 0.05 these conditions might be realized for values of lattice spac-
to 1.00 and a parameter correspondingBtofixed at 5.68, ing and quark mass which would permit an extrapolation to
the main effect of quark-antiquark vacuum polarization isthe physical limit of hadron masses.

As in Sec. V, since for eachandx the ¢;(x) are Gaussian
random variables with covariance given by H§.2), the
averages ovep in the definition ofE andD can be evalu-
ated analytically. FoD, we then obtain

IX. COMPARISON WITH PERTURBATION EXPANSION
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APPENDIX CHEBYSHEV EXPANSION

We now derive the coefficienty; needed for the Cheby-
shev expansion of InEg. (5.7). From standard results on
Chebyshev polynomialgl5], it follows that

|

B (1+coshy)sinf (n+1—k)x]

n

> T

k=0

1-y

1—€

1-y

=

1—

*
n+1

LT ) (A1)
y|1te :

where, for I=k=n,

k= sinhycosh (n+1) x] (A2)
and, in addition,
_(1+cosb()sinr[(n+ Lx]
" sinhycosh(n+1)x]
_ -1
P~ Cosi(n+1)x]’ (A3)
with y defined by
B 1+e
coshy= 1< (A4)

Equation(Al) can be integrated from to 1 using, fork
greater than 1, the relation

_ :+1(X)_ E—l(x)
T 4(k+1) 4(k—1)’

f x (x)dx (A5)
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along with

T3(x) To(x)
fT’{(x)dx= g
TI(X) To5(x)
[ mso0ax= 22420 (A6)
We obtain
S *(1—3/
In(y)—k:0 b, Ty 11—« + sin(y), (A7)
where, for I=k=n,
_ (1—e€)(1+coshy)cosh(n+1—k)x]
b=~ kcosh(n+1)x] (A8)
and, in addition,
B (1—e€)(1+coshy)
b“+1__2(n+1)cosr[(n+1)x]’
n+1
bo=— k; (—1)*oy. (A9)

The bound, Eq(5.8), on § follows from the integral of Eq.
(A1) combined with Eq(A2) for p and the bound
TR (0[=1, (A10)

for 0=sx<1.
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