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Multiple Reggeon exchange supplies subleading logarithms that may be used to restore unitarity to the
Low-Nussinov Pomeron, provided it can be proven that the sum of Feynman diagrams to all orders gives rise
to such multiple Regge exchanges. This question cannot be easily tackled in the usual way except for very
low-order diagrams, on account of delicate cancellations present in the sum which necessitate individual
Feynman diagrams to be computed to subleading orders. Moreover, it is not clear that sums of high-order
Feynman diagrams with complicated crisscrossing of lines can lead to factorization implied by the multi-Regge
scenario. Both of these difficulties can be overcome by using the recently developed non-Abelian cut diagrams.
We are then able to show that the sum ofs-channel-ladder diagrams to all orders does lead to such multiple
Reggeon exchanges.@S0556-2821~97!06007-4#

PACS number~s!: 12.38.Cy

I. INTRODUCTION

The gluon in QCD Reggeizes in the leading-log approxi-
mation. The coupling constant (g) and the energy (As) of
sum of one-Reggeized-gluon~1RG! diagrams come in the
form g2(g2lns)p, whereg2!1, g2lns;1, and p is a non-
negative integer. The sum of 2RG diagrams are of the form
g4(g2lns)p, and more generally themRG amplitude is given
by sums of terms of the formg2m(g2lns)p.

For quark-quark elastic scattering at high energy and fixed
momentum transfer, the color exchanged in a 1RG amplitude
is an octet, and that for a 2RG amplitude is either an octet or
a singlet. The 2RG amplitude being a factorg2!1 down
from the 1RG amplitude, its octet contribution can be ne-
glected, but its singlet part must be kept, for there is no
competing contribution from the 1RG amplitude. This sin-
glet part is just the Pomeron proposed by Low and Nussinov
@1#.

The leading-log Pomeron amplitude obtained this way
@2,3# violates unitarity. It leads to a total cross section with a
power growth in s, which is forbidden by the Froissart
bound. To unitarize the Balitskii-Fadin-Kuraev-Lipatov
~BFKL! equation@2# it is, therefore, necessary to include
subleading-log contributions.

Subleading logarithms are notoriously difficult to extract
from Feynman diagrams. This has been carried out in the
two-loop approximation where the correction to the
Reggeized gluon trajectory has been obtained@4#. However,
it is almost certain that this cannot be carried out to all or-
ders. Nevertheless, subleading-log contributions to the
Pomeron do not necessarily require subleading logarithms
from sums of Feynman diagrams. For example, leading-log
calculation of Feynman diagrams contributing to 2RG ex-
changes gives subleading-log correction to the octet ampli-
tude. Hence, there is a hope in unitarizing the Pomeron am-
plitude without having to invoke difficult subleading-log
calculations. In fact,s-channel unitarity in all color channels

is formally satisfied if all multiple RG exchanges are added
in, as shown in theReggeized diagramsin Fig. 1. To allow
for shadows produced by inelastic scatterings, we must in-
clude production of gluons from the RG’s in the intermediate
states, though creation of quark pairs will be ignored in the
present discussion. Whether this proposal of unitarization
@3#, without including subleading terms in individual sums of
Feynman diagrams, is correct or not remains an open ques-
tion which we simply cannot discuss until more is known.

The necessity of including multiple-RG exchange dia-
grams can be understood in a completely different way, to-
tally within the framework of leading-log approximations.
Imagine we are dealing with an SU(Nc) color theory in
which quarks carry an arbitrary color. Then, there are many
independent color amplitudes, more so ifNc@1 and quarks
carrying a large color. To retain theleading-logcontribution
of every one of these independent color amplitudes, we must
retain themRG contributions for everym. So, even staying
within leading logarithms, those multiple-RG exchanges are
required for a color SU(Nc) theory with arbitrary quark col-
ors. For that reason we shall carry out our calculations below

*Electronic address: feng@physics.mcgill.ca
†Electronic address: lam@physics.mcgill.ca FIG. 1. Multi-Reggeon exchange diagrams.
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for an arbitraryNc and every quark color. Since spin is un-
important in high energy scattering@2,3#, this has the added
advantage that whatever we obtain is automatically valid for
gluon-gluon scattering as well.

What is missing in this scheme is the proof that the
Reggeized factorization hypothesisis indeed correct, that the
sum of Feynman diagrams in the leading-log approximation
does factorize into sums of these multiple-RG amplitudes.

To be sure, the hypothesis has been verified explicitly up
to the sixth order, and partially up to the eighth and tenth
orders@2,5,6#, but because of the presence of delicate can-
cellations, it is difficult to carry similar calculations to higher
orders. In fact, these delicate cancellations have not been
completely verified even in the eighth and the tenth orders.

The problem is the following. In Feynman gauge calcula-
tion, which we shall adopt throughout, the leading-log con-
tributions in some color amplitudes get canceled out when
several Feynman diagrams are summed@5–7#. Conse-
quently, to compute thesumof diagrams to leading-log ac-
curacy, we need to calculate individual diagrams to
subleading-log precision. Occasionally, this can be accom-
plished without much pain by usings↔u symmetry, but
more often not. To the extent that subleading logarithms are
very difficult to compute, calculations to higher-order dia-
grams do appear to be quite forbidding.

Even if we manage to overcome this hurdle, the verifica-
tion of Reggeizedfactorizationfrom sums of Feynman dia-
grams, with lines crossing one another in very complicated
ways, would still seem to be extremely difficult.

Fortunately, there is a chance to overcome both of these
difficulties by usingnon-Abelian cut diagrams@7# in place of
the usual Feynman diagrams. Non-Abelian cut diagrams are
resummations of Feynman diagrams with these delicate can-
cellations removed, so that each of them can be computed
just in the leading-log approximation. Moreover, factoriza-
tion is natural to the non-Abelian cut diagrams, because they
are the graphical manifestation of a ‘‘multiple commutator
formula,’’ which in turn was derived from a ‘‘factorization
formula’’ @8#, and it is this same factorization formula that
will be used to demonstrate Reggeizedfactorizationhypoth-
esis for a class of diagrams.

Non-Abelian cut diagrams will be reviewed in the next
section. Some of their properties, including the assertion of
the absence of delicate cancellations in these cut diagrams
but their presence in usual Feynman diagrams, will be dis-
cussed in Sec. III. In this paper we shall study in detail, and
be able to prove, the Reggeized factorization hypothesis for a
particular simple class of diagrams, thes-channel-ladder dia-
grams. It is this class of diagrams in QED that can be
summed up into an explicit eikonal form, so one would ex-
pect it to be the simplest set to study in QCD as well for
multiple-RG exchanges and unitarization. However, with
color complication, the QCD case is much harder to deal
with than the QED case, the details of which are discussed in
Sec. IV. For more complicated non-Abelian cut diagrams in
QCD, we are not yet able to prove the Reggeized factoriza-
tion, but the success for thes-channel-ladder diagrams is
encouraging. Finally, a short summary and outlook are pro-
vided in Sec. V.

II. NON-ABELIAN CUT DIAGRAMS

Non-Abelian cut diagrams@7# represent a resummation of
Feynman diagrams. They are not the same as Cutkosky cut
diagrams which compute discontinuities of single Feynman
diagrams.

A non-Abelian cut diagram differs from a Feynman dia-
gram in having certain ‘‘high speed’’ propagators cut. The
cut lines occur among those carrying a large momentump,
with comparatively small amount of momentaqi transferred
away at each interaction vertex. In that case, the approxima-
tion
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where t i are the color matrices of the quark, and
t@12•••n#[t1t2•••tn . The numerator with the normaliza-
tion conventionūu51 can be approximated by
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wherem i are the Lorentz indices of the gluons andM is the
quark mass.

The tree diagram in Fig. 2 will be denoted by@12•••n#,
according to the order of the gluons. If the gluons are labeled
differently, say as@s1s2•••sn#, then the corresponding
spacetime amplitude and color factor will be similarly des-
ignated asa@s1s2•••sn# and t@s1s2•••sn#.

Before discussing the non-Abelian cut diagrams it is nec-
essary to introduce some notation. If@Ti # are tree diagrams,
then @T1T2•••TA# represents the tree diagram obtained
by merging theseA trees. For example, if@T1#5@123#
and @T2#5@45#, then @T1T2#5@12345#. The notation
$T1 ;T2 ;•••;TA%, on the other hand, is used to denote theset
of all tree diagrams obtained byinterleaving the trees
T1 ,T2 , . . . ,TA in all possible ways. This set contains
((ana)!/)ana! trees ifna is the number of gluon lines in the
treeTa . In the example above,$T1 ;T2% contains the follow-
ing 5!/3!2!510 trees:@12345#, @12435#, @12453#, @14235#,
@14253#, @14523#, @41235#, @41253#, @41523#, and@45123#.

FIG. 2. A tree diagram withn bosons emitted or absorbed.
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Correspondingly,a$T1 ;T2 ;•••;TA% will represent the
sum of the amplitudesa@T# for every treeT in this set.

The non-Abelian cut diagram@7# is derived from themul-
tiple commutator formula@8#, which states that

(
sPSn

a@s#t@s#5 (
sPSn

a@s#ct@s#c8 . ~2.4!

This is a resummation formula for the non-Abelian tree am-
plitude ~2.2!, summed over all n! permutations
@s#[@s1s2•••sn# of @12•••n#. The spacetime part of the
cut amplitude a@s#c is obtained from thecut diagram
@s#c , and the color factort@s#c8 is obtained from the
complementary cut diagram@s#c8 . All of these will be ex-
plained below.

The multiple commutator formula in turn was derived
from the factorization formula@8#, which states that

a$T1 ;T2 ;•••;TA%5 )
a51

A

a@Ta# . ~2.5!

This is a sum rule expressing factorization of sums of certain
tree amplitudes. It is this same formula that proves to be
invaluable in showing the Reggeizedfactorizationlater.

A special case of the factorization formula is well known.
If na51 for everya so that the tree@Ta#5@a# is simply a
vertex, then$1;2;•••;A% is the set ofA! permutation of the
tree@12•••A#, and the factorization formula is just the well-
knowneikonal formula@9#.

We shall now proceed to define the cut diagrams and the
cut amplitudes. To each Feynman tree diagram
@s#5@s1s2•••sn# of the type shown in Fig. 2, we associate
with it a cut diagram@s#c by putting cuts on specific ferm-
ion propagators as follows. Proceed from left to right, put a
cut after a gluon if and only if a smaller number does not
occur to its right. Continuing thus until reaching the end of
the tree, and we get the cut diagram. An external line would
be considered equivalent to a cut so there is never an explicit
cut put in at the end of the tree.

The written notation for a cut will be a vertical bar behind
a gluon. Using that notation, here are some illustrations of
where cuts are put into Feynman trees:@1234#c
5[1u2u3u4], [3241]c5[3241], and @2134#c5@21u3u4#.

The complementary cut diagram@s#c8 is one where
lines cut in @s#c are not cut in @s#c8 , and vice versa.
Thus @1234#c85@1234#, @3241#c85@3u2u4u1#, and @2134#c8
5@2u134#.

The spacetime part of the cut amplitudea@s#c is simply
the Feynman amplitudea@s# with the cut propagator taken
to be22p id(( jv j ) instead of the usual (( jv j1 i e)21. In
this way, it is the same cut propagator as in the Cutkosky cut
diagram, but here cuts are placed only on high speed fermion
lines, and as Eq.~2.4! indicates, the non-Abelian cut dia-
grams represent a resummation and not a discontinuity.

The color factort@s#c8 is determined from the comple-
mentary cut diagram@s#c8 . It is obtained fromt@s# by re-
placing the product of color matrices separated by cuts with
their commutators. For example,t@1234#c85t@1234#
5t1t2t3t4 , t@3214#c85t@3u2u4u1#5@ t3 ,@ t2 ,@ t4 ,t1###, and
t@2134#c85t@2u134#5@ t2 ,t1#t3t4.

A Feynman diagram for quark-quark scattering can be
obtained by connecting two trees like Fig. 2 together via the
gluon lines, perhaps with the help of triple-gluon and four-
gluon vertices and other propagators in between. Since Eq.
~2.4! is valid for off-shell gluons, it can be applied to one of
the two quark trees carrying large momentum even though it
is tied up in a loop diagram. Unless otherwise stated, relation
~2.4! will always be applied to the upper quark tree, so cuts
are normally made only on this line. The rest of the propa-
gators remain uncut and the diagram is otherwise the same as
an ordinary Feynman diagram.

III. ABSENCE OF DELICATE CANCELLATIONS

We mentioned in the Introduction that complete cancella-
tion of the leading-log contributions to individual Feynman
diagrams may occur in their sum. When this occurs compu-
tations become extremely difficult as subleading contribu-
tions must then be included to get a finite sum. We shall
show in this section that this will never happen in the sum of
non-Abelian cut diagrams, that the high energy behavior of
the individual diagrams is the same as their sum, at least
when the Reggeized factorization hypothesis is correct. This
is why it is so much more advantageous to investigate Regge
behavior with non-Abelian cut diagrams than with Feynman
diagrams.

The color factor of a Feynman diagram@3,5# or a non-
Abelian cut diagram@7# will be decomposed into sums of
color factors of planar diagrams using the commutation rela-
tion

@ ta ,tb#5 i f abctc , ~3.1!

as well as the sum rules

f abcf abd52cdcd , i 3f adgf bedf cge5ci f abc , ~3.2!

wherec5Nc/2 for a color SU(Nc) group, andta is the color
matrix of the quark in any representation. In particular, if it is
in the adjoint representation, then (ta)bc5 i f bac , and this is
represented graphically by a triple-gluon vertex read in a
clockwise order. These relations are shown in Fig. 3 where a
cut represents a commutator. Using these figures, decompo-
sition into planar diagrams can be accomplished in a graphi-
cal way. For details and concrete illustrations, see Refs.@5#
and @7#.

The resulting planar color factors appearing in the Regge
diagrams of Fig. 1 will be called theRegge color factors. If
the Reggeized factorization hypothesis is correct, only Regge
color factors will survive when all the diagrams are summed.

Color factors for the non-Abelian cut diagrams are com-
puted from their complementary cut diagrams, and those
with m21 uncutpropagators on the upper quark line contain
Regge color factors withat most mRG exchanges. This state-
ment is a simple consequence of the graphical construction
procedure for the Regge color factors@7#. See Appendix A.

The corresponding cut diagram for the spacetime ampli-
tude hasm21 cut lines. Now, each loop in a spacetime
diagram can contribute at most one lns factor, but this factor
will be absent in any loop containing a cut propagator. This
is so because the Feynman propagator giving rise to the lns
factor through integration is now replaced by ad function
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@5,7#. With m21 cut propagators,m21 potential lns factors
are lost, so the spacetime amplitude can grow at most like
g2m(g2lns)p.

Thus a non-Abelian cut diagram with anmRG Regge
color factor increases with energy at most likeg2m(g2lns)p.
If the Reggeized factorization hypothesis is correct, this is
also the energy behavior of the sum of all non-Abelian dia-
grams with this same Regge color factor. Hence no cancel-
lation of leading logarithms occurs in the sum of non-
Abelian cut diagrams.

This also means that in the leading-log approximation,
there is no need to include in a complementary cut diagram
with m21 uncut lines those Regge color factors with less
thanmRG exchanges.

From these discussions we can also see why delicate can-
cellations are generally expected for Feynman diagrams if
the Reggeization hypothesis is valid. A Feynman diagram
has no cut in its spacetime diagram, nor in its color factor.
The former tends to give rise to more lns factors than a
corresponding cut diagram, and the latter will generally yield
Regge color factors with largerm. For both reasons there are
too many lns powers compared to the Reggeized behavior of
g2m(g2lns)p, so delicate cancellations eliminating these pow-
ers must take place.

IV. s-CHANNEL-LADDER CUT DIAGRAMS

A. Description of the diagrams

s-channel-ladder diagrams are obtained by joining to-
gether the gluons of two quark trees like Fig. 2. If we num-
ber the gluons attached to the lower quark tree in the order
@123•••n#, then the order of gluons along the upper quark
tree can be used to specify thes-channel-ladder diagram. Cut
diagrams are determined by the rules discussed in Sec. II,
and cut propagators on the upper quark tree will be indicated
by a vertical bar as before. In this notation, Figs. 4~a!–4~k!

are, respectively,@1u2u3u4#, @21u3u4#, @31u2u4#, @1u32u4#,
@41u2u3#, @1u42u3#, @1u2u43#, @21u43#, @31u42#, @41u32#, and
@321u4#. Unless otherwise stated, propagators along the
lower quark tree will remain uncut, so when we refer to cut
and uncut propagators, we will usually be speaking of those
along the upper quark tree.

We will use the abbreviation SC to denote
s-channel-ladder cut diagram, and the notation SCC to de-
note s-channel-ladder complementary cut diagram. The
former is used to compute spacetime amplitudes, and the
latter to compute color factors. Cut propagators in SC be-
come uncut propagators in SCC and vice versa.

From the rules of Sec. II, we conclude that all propagators
of the planar SC diagram are to be cut, giving rise to
@1u2u•••un#, as illustrated in Fig. 4~a!. For other SC dia-
grams, cuts are placed behind a number if and only if there is
not a smaller number to its right.

We can phrase this in a way independent of the number-
ings of the gluon lines. All SC diagrams are obtained from
the planar diagram by pulling the upper ends of some gluon
lines leftward. Once a gluon line is moved, the cut to its right
disappears. Thus, cuts appear to the right of all vertical (v)
lines but do not appear to the right of any slanted (s) line.

According to the discussions in Sec. III, in the leading-log
approximation, we need to retain only themRG Regge color
factors from a SCC diagram withm21 uncut propagators,
and only the SC diagrams withm21 cuts on the upper tree
whose lnspower is given byg2m(g2lns)p, and not lower. It is
shown in Appendix B that thesesaturatedSC diagrams are
those without adjacent uncut propagators on the upper tree.
For example, Figs. 4~a!–4~j! are saturated, and should be
retained, but Fig. 4~k! is not, and can be discarded.

Accordingly, along theupper quark line, the line to the
right of ans line is always av line, and not anothers line
because diagrams of the latter kind will not contribute to the
leading logarithm. We shall refer to thev line to the right of

FIG. 3. Color matrices and their relations~3.1! and ~3.2! in
graphical forms. FIG. 4. Examples of eighth orders-channel-ladder cut diagrams.
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an s line as itsassociated vertical line, and this pair ofs,v
lines as askeleton cross.

B. Color factors and reduced diagrams

Given a saturated SCC diagram, we need to decompose
its color factor into combinations of Regge color factors.
This is accomplished by using Fig. 3 to pull thelower endof
everys line leftward, until it sits just to the right of its asso-
ciatedv line, a position to be referred to as itshome position.
Figure 5 gives an illustration of how this is done for ones
line; the same should be carried out with the others line as
well. As a result, the SCC diagram is given by a sum of
manyreduced diagrams. A reduced diagram is distinguished
by having cuts along thelower tree to the right of everys
line, except when it occurs in its home position, as illustrated
by the last diagram of Fig. 5, in which case a cut is not
necessary.

For later discussions it would be convenient to have an
analytical notation for the reduced diagrams. We shall use
v i ,si to denote thei th pair of skeleton lines, andma to
denote the rest of the vertical lines. Then, a reduced diagram
can be labeled by the cut tree along its bottom line. For
example, the four diagrams in Fig. 6 can be labeled, respec-

tively, as@m#, @vs#, @vsum#, and@v1s1uv2s2um#.
The color factors for reduced diagrams can be rendered

planar using the rules of Fig. 3. See Fig. 6 for examples. The
resulting color factor of a reduced diagram may or may not
be connectedafter the upper and lower quark lines are re-
moved. For example, those in Fig. 6 are connected and the
one in Fig. 7 is not. It turns out that the only connected
Regge color factors encountered in the reduction of SCC
diagrams are those shown in Fig. 6, and those similar to Fig.
6~d! but withp.2 slanted lines. By using Fig. 3 these can be
turned intop horizontal lines, with the one to the right al-
ways lying at a higher level than the one to its left. These
connected Regge color factors will be denoted asHp , with
p521,0,1,2, . . . ~see Fig. 6!. Except forH215cH0, they
are all independent.

Potentially, there may also be those like Figs. 8 and 9, but
as shown in the figures and more generally in Appendix A,
they all turn out to be zero in the leading-log approximation.

It is also shown in Appendix A that in the leading-log
approximation, the color factor of a disconnected reduced
diagram is given just by the product of the color factors of its
connected components, and it is this special property that
allows Reggeized factorization to take place. Thus, the most
general color factor encountered in SCC diagrams is of the
form F5)p521

` (2)p fp(Hp)
f p.

We shall use@Hp# to denote the reduced diagram giving
rise to the connected Regge color factorHp . In cut-tree no-
tations, these are

@H21#5@vs#, ~4.1!

@H0#5@m#,

@H1#5@vsum#,

FIG. 5. An example of the decomposition of SCC diagrams into
sums of reduced diagrams.

FIG. 6. Examples of how primitive color factors are obtained
from reduced diagrams.

FIG. 7. An example of a disconnected reduced diagram and the
corresponding Regge color factor.

FIG. 8. An example of a connected reduced diagram that is not
primitive.
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@H2#5@v1s1uv2s2um#,

@Hp#5@v1s1uv2s2u•••vpspum# , ~p>1!.

For a generalF, there would be many reduced diagrams
giving rise to the same Regge color factor. They differ from
one another in having thef p copies of @Hp# for different
p’s merged in different ways. We shall denote this set of
reduced diagrams for a given color factorF by

$F%5H)
p

~2 !p fp~Hp!
f pJ

distinct

5$@H21#;•••;@H0#;•••;@H1#;•••;@H2#;•••;•••%

3)
p

~2 !p fp/ f p! , ~4.2!

where the ellipses after each@Hp# is an instruction to repeat
the same@Hp# f p times, separated by semicolons. The sign
(2)p associated withHp comes about because of the minus
sign associated with each cut. The notation in Eq.~4.2! for
interleaving the cut trees is similar to the notation
$T1 ;T2 ;•••% explained in Sec. II for interleaving uncut trees
Ti , but with two differences. First, lines separated by cuts
are to be thought of as being fused together by the cut, so
lines from other cut trees can never be inserted between
them. Second, each cut diagram in$@Hp#;•••% is going to
occur f p! times because of the identical nature of those dia-
grams. We allow only distinct diagrams in$F% so the divi-
sion by)pf p! in Eq. ~4.2! is a formal way of removing such
redundancies.

Given a reduced diagram in$F%, there are many different
SCC that can give rise to it. We shall denote the set of all
SCC diagrams that can give rise to a reduced diagram in
$F% by $F%S . These SCC diagrams can be obtained from
the cut trees in$F% by getting rid of their cuts by moving the
s-lines rightward in all possible ways. Instead of first inter-
leaving the cut trees@Hp# and then getting rid of the cuts,
$F%S can also be obtained by reversing the two operations,
by first getting rid of the cuts and then interleaving the uncut
trees, in the following way.

Start from an@Hp#, get rid of the cuts by moving the
s-lines rightward, to construct all SCC diagrams
hp
i ( i51,2, . . . ) that reduce to@Hp#. In cases such as Figs.

6~a!–6~c! where there is only one tree for each@Hp#,
the degeneracy indexi51 will be omitted. This index is,
however, needed in other cases. For example,
@H2#5@v1s1uv2s2um# in Fig. 6~d! gives rise to the
uncut treesh2

15@v1v2s1ms2#, h2
25@v1v2ms1s2#, and h2

3

5@v1v2ms2s1#. The set of allhp
i for a fixed p will be de-

noted by$Hp%S .
The set ofdistinct SC or SCC diagrams obtained by in-

terleavingf p trees in$Hp%S together is just$F%S .

C. Factorization of sums of spacetime amplitudes

We proceed to compute the sum of those spacetime am-
plitudes of all saturated SC diagrams with a common Regge
color factorF5)p„(2)pHp…

f p. The relevant spacetime dia-
grams to be summed are those in the set$F%S .

Using the factorization formula~2.5! on the lower tree,
one gets

a$F%S5 (
[T]P$F%S

a@T#5)
p

1

f p!
~a$Hp%S!

f p , ~4.3!

where

1

f p!
~a$Hp%S!

f p[(
1

mi !
~a@hp

i # !mi , ~4.4!

with the sum taken over allmi>0 subject to( imi5 f p .
Thus,a$Hp%S5( ia@hp

i #. The factorials in the denominators
of Eq. ~4.4! arise because of the necessity to keep only dis-
tinct diagrams in$F%S .

The factorizations~4.3! and~4.4! for the lower tree can be
extended to a factorization for the SC amplitudes. To do so
we need to use explicitly the cut property of theupper tree,
that the only uncut propagators are those inside the skeleton
crosses. To illustrate this point let us look at Fig. 10. Both
the ~lower! tree@231564# in Fig. 10~a! and the tree@253614#
in Fig. 10~b! belong to the set$231;564%, but if we keep the
upper ends of the gluon lines fixed in Figs. 10~a! and 10~b!,
permuting the lower ends of the lines to get from Figs. 10~a!
to 10~b! doesnot change the SC diagram, Fig. 10~a!, back to
another SC diagram. Figure 10~b!, with lines 5 and 6 slanting
the wrong way, cannot be an SC diagram. However, by mak-
ing explicit use of the commuting properties of the amplitude

FIG. 9. Another example of a connected reduced diagram that is
not primitive.

FIG. 10. Two SC diagrams in the set$231;564%. Diagram~b! is
identical to diagram~c!.
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for the upper tree, a@12u3u45u6#5a@12#a@3#a@45#a@6#
5a@12u45u3u6#, Fig. 10~b! can be redrawn as Fig. 10~c!,
which is an SC diagram. This can always be done so factor-
ization of the lower tree does lead to a factorization of the
sum of saturated SC amplitudes.

An SC diagram contains the lower tree, but it also con-
tains gluon propagators, quark propagators along the upper
tree, vertex factors, and loop integrations. In light-cone co-
ordinates,q65q06q3, the measure of loop integration is

d4q

~2p!4
5

d2q'

~2p!2
dq1dq2

8p2 . ~4.5!

If the Dirac spinors are normalized toūu51, and a common
factor is taken out of the T-matrix amplitude
T52(s/2M2)A, then each factorized amplitude
a$Hp%S5( ia@hp

i # corresponds to a saturated SC amplitude
A$Hp%S(D)5( iA@hp

i #(D), where we have indicated explic-
itly the dependence on the momentum transferD. The prod-
uct of two lower-tree amplitudesa$Ha%a$Hb% is turned into
convolutions of two SC amplitudes:

@A$Ha%S*A$Hb%S#~D![~2 i !E d2q'

~2p!2
@A$Ha%#~D2q'!

3@A$Hb%#~q'! . ~4.6!

In obtaining Eq.~4.6!, the identity

i E dq1dq2

8p2 ~22p i !2d~Asq1!d~Asq2!~2s!52 i ~4.7!

has been used.
The sum of all saturated SC amplitudes with the Regge

color factorF is then given by

@A$F%S#~D!5)
p

1

f p!
@A$Hp%S#*

f p~D! . ~4.8!

All the products in Eq.~4.8! are meant to be convolutions. In
particular,@A$Hp%S#*

f p is taken to meanf p convolutions of
the same amplitude. In impact-parameter space, such convo-
lutions are replaced by simple products.

D. O„g6… results

Let us now compare the general result of Eq.~4.8! with
theO(g6) result of Ref.@7#. Except for the second-order tree
diagram, they are shown in Fig. 7 of Ref.@7# as
B1c , B2c , andC15c to C20c . The spacetime amplitudes
are given in Eq.~6.1! of that reference and were expressed in
terms ofM52A/g2; hence,

A~G1!5K12 lns
c

2p
K2 , ~4.9!

A~G2!52
1

2
iK 21 i lns

c

2p
K3 ,

A~G3!52 i lns
1

2p
K3 ,

A~G4!52
1

6
K3,

where the color factorsG1, G2, G4, G3 are the color fac-
torsH0 , H0

2 , H0
3 , H1 in the present paper, and where

Kn~D!5 i n21~*K1!
n, K1~D!5

g2

D2 . ~4.10!

The transverse functionsKn are related to the ones used in
Ref. @7# by Kn5g2nI n .

The general result forO(g6) according to Eq.~4.8! is

@A$~2H1!
a~H0!

b%S#~D!5
1

a!b!
@A$H1%S#*

a
* @cA$H21%S

1A$H0%S#*
b~D! . ~4.11!

Substituting into Eq.~4.11! the explicit result obtained from
Eq. ~6.1! of Ref. @7#,

A$H0%S5
g2

D2 5K1 ,

A$H21%S52
g2

cG1
~B2c!52 lns

1

2p
K2 ,

A$H1%S52g2/~cG22G3!~C20c!5 lns
i

2p
K3, ~4.12!

we get

@A$~2H1!
a~H0!

b%S#~D!

5
1

a!b! F lns i

2p
K3G* a* FK12 lns

c

2p
K2G* b~D!. ~4.13!

The color factors G1, G2, G4 correspond to (a,b)
5(0,1),(0,2),(0,3), and the color factorG3 corresponds to
(a,b)5(1,0) but with an extra minus sign. Expanding Eq.
~4.13!, keeping only leading-log contributions and only up to
O(g6), the result is the same as Eq.~4.9!.

In particular,O(g6) diagrams receive only contribution
from K3 of Eq. ~4.9!, so that the total amplitude at leading
logarithm is given by

M52 islns
1

4pM2K3@cG22G3# . ~4.14!

This result can be compared with the one contained in Eqs.
~56! and ~68! of the JETP, Vol.44, paper cited in Ref.@2#,
where the color group is SU~2!. According to these equa-
tions, the symmetric part of the amplitude is equal to

M52
1

4p2M2 @A~0!GAA8GBB81A~2!GAA8
i j GBB8

i j
#

52 islns
1

4pM2b3@GAA8GBB822GAA8
i j GBB8

i j
#, ~4.15!

where theG tensors are given in their Eqs.~14! and~15!, and
A,B and A8,B8 are, respectively, the initial and the final
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isospin components of the external gluons. In the present
case,c51, and the symmetric part of the color factor ap-
pearing in our Eq.~4.14! can be computed to be

G22G35dABdA8B81dAB8dA8B22dAA8dBB8 . ~4.16!

When this is substituted back into Eq.~4.14!, the result
agrees with Eq.~4.15! when the explicit expressions for the
G tensors are used, and when we notice that theirb3 is the
same as ourK3.

E. Reggeized factorization

The expressionA$H0%S1cA$H21%S5K12(c/2p)lnsK2
in Eqs. ~4.11! and ~4.13! is the first two terms of the
Reggeized-gluon propagator

R1~D,s!5
g2

D2 exp@2ā~D!lns# ,

ā~D!5
c

2pg2
D2K2~D! . ~4.17!

The other terms come fromt-channel-ladder and associated
diagrams@2,3,5# not considered here. The termA$H1%S in
Eq. ~4.11! is one of the many terms contributing to the emis-
sion and reabsorption of an ordinary gluon from a Reggeized
gluon, as indicated by the pattern H. Even toO(g6), it re-
ceives contributions from other diagrams as well@7#. When
all these are taken into account, it is known that such emis-
sion and absorption can be constructed from the Lipatov ver-
tex @2#.

So, the factorized results~4.8! and ~4.11! are the begin-
ning of contributions that lead toReggeizedfactorization, but
the Reggeization property cannot be seen fully without in-
cluding other diagrams. However, the Reggeized nature of
the color factors does seem to emerge rather naturally.

V. SUMMARY AND OUTLOOK

In this paper we initiated a leading-log investigation on
sums of Feynman diagrams contributing to multiple
Reggeized-gluon exchanges. These diagrams are important
because they supply non-leading-log contributions to the
SU~3! gluon and Pomeron amplitudes, thereby restoring uni-
tarity. In any case, they supply the leading contributions in
an SU(Nc) color theory in which the colliding beams carry
large color so they must be taken into account.

The central question studied in this paper is whether sums
of Feynman diagrams in the leading-log approximation will
factorize into multiple-Reggeon-exchange diagrams as de-
picted in Fig. 1. This ‘‘Reggeized factorization hypothesis’’
is nontrivial to prove for at least two reasons. First, it is
known that there are delicate cancellations in sums of Feyn-
man diagrams, so individual diagrams must be computed to
subleading-log accuracy to ensure a finite contribution to the
sum. This is a very difficult task for high order diagrams.
Second, high order Feynman diagrams are very complicated,
with lines crisscrossing in a complex pattern, so it is far from
obvious that they will sum up and factorize into neat patterns
as those displayed in Fig. 1. To date, factorization had been
proved completely only to the sixth order, and partially to the

eighth and tenth orders, by explicit calculations.
We prove in this paper the Reggeized factorization hy-

pothesis fors-channel-ladder diagrams of any complexity.
Both of the difficulties mentioned above are solved by using
instead the technique of non-Abelian cut diagrams discussed
in previous publications@7,8#. These cut diagrams are resum-
mations of Feynman diagrams and are different from the
Cutkosky cut diagrams.

For other diagrams the validity of the Reggeized factor-
ization hypothesis is still under investigation.
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APPENDIX A: COLOR FACTORS
OF NON-ABELIAN CUT DIAGRAMS

Color factor of non-Abelian cut diagrams are calculated
using the graphical rules in Fig. 3. Some explicit examples
are shown in Figs. 6–9. In what follows, we shall discuss
some of the general properties in the leading-log approxima-
tion.

Figure 3~c! can be used to get rid of cuts on the comple-
mentary cut diagrams. As a result, diagrams withm21 un-
cut propagators along the upper tree have at mostm gluon
lines attached to it. We say ‘‘at most,’’ because relations
3~b!, 3~d!, and 3~e! can sometimes be used to get rid of more
lines.

Since cuts are made on the upper tree, the number of
gluonsn attached to the lower tree is often larger than the
numberm attached to the upper tree. However, by using Fig.
3 again to manipulate the lines attached to the lower tree, at
least in all cases encountered in Sec. IV, one can reduce the
lines attached to the lower tree to bem. Hence, complemen-
tary cut diagrams withm21 uncut propagators along the
upper tree contribute color factors withm-Reggeized gluons,
or less. It was then argued in Sec. III of the text that we need
not keep those with less thanm Reggeons in the leading-log
approximation.

It is conceivable, for very complicated diagrams, that we
cannot reducen to m with the rules of Fig. 3 alone. The
resulting color factor hasnÞm, so it cannot possibly con-
tribute if Fig. 1 is the final result. For that reason we shall
define the leading-log approximation to exclude all such
color factors that cannot be reduced ton5m.

Using Figs. 3~b! and 3~c! again, the positions of gluon
lines attached to the upper or the lower tree can be reversed;
their difference being a diagram with one less gluon line
attached to the upper or lower tree and, hence, can be ig-
nored in the leading-log approximation. This is why primi-
tive color factors can cross one another in any way along the
upper and the lower trees, yet giving exactly the same result
in the leading-log approximation.

Finally, we want to prove that any color factor with an
s-line climbing onto the underside of a horizontal line, such

55 4023MULTIPLE REGGEON EXCHANGE FROM SUMMING QCD . . .



as those found in Figs. 8 and 9, would be zero. The proof is
shown in Fig. 11, where the shaded area can contain a very
complicated structure. Use Figs. 3~b! and 3~c! ~for four-
gluon lines! to move the point joining the bottom of the
horizontal line to the right, one gets Figs. 11~a! and 11~b!.
Moving that point to the left, one gets Figs. 11~c! and 11~d!.
Within the leading-log approximation, we can pull the
middle vertical line of Fig. 11~c! to the extreme right to get
Fig. 11~b!, hence Fig. 11~b!5Fig. 11~c!. Similarly, Fig. 11~a!
5Fig. 11~d!. Therefore, Fig. 11~a!2Fig. 11~b!52@Fig.
11~a!2Fig. 11~b!#50.

APPENDIX B: SATURATED LADDER DIAGRAMS

We want to show in this appendix that an SC diagram
~see Sec. IV for notation! with two adjacent uncut propaga-
tors is unsaturated. By definition, a saturated diagram of
(2n)th order andmRG exchange (m21 cut lines! have a
g ands dependenceg2m(g2lns)n2m. An unsaturated diagram
is one with a slowers growth in comparison.

Reference@7# contains explicit calculations toO(g6). By
examining Fig. 7 and Eq.~6.1! of that reference, it can be

seen that this assertion is valid toO(g6). If one now follows
the calculation of these examples with the method of Ref.@5#
and Appendix B of Ref.@7#, one can see that these calcula-
tions can easily be generalized to a multiloop situation as
follows.

Consider an SC diagram withn5 l21 gluon lines. Let
qi5(qi1 ,qi2 ,q') (1< i< l ) be the gluon momenta in the
light-cone coordinates, andqi2[xiAs.

We shall follow Ref.@5# by calculating the high energy
behavior using residue calculus and flow diagrams to carry
out the ‘‘1 ’’ integrations. For SC diagrams without adjacent
uncut propagators, there is a unique flow path for each dia-
gram, and the poles for the ‘‘1 ’’ integration can always be
taken along the lower tree. The gluon propagators are then
;1/qi'

2 , and are considered to be of order 1. This leaves the
uncut propagators along the upper tree to the ‘‘2 ’’ integra-
tion, each of which contributes to a factor of lns via ‘‘2 ’’
integration of the type*s21dxi /xi . Hence, such diagrams
have their full share of lns factors and are saturated.

For diagrams with two adjacent uncut propagators, the
flow path is never unique: the flow direction along the
boundary of the two adjacent uncut loops cannot be deter-
mined. See Figs. 10.7 and 10.8 of Ref.@5# for concrete ex-
amples. As a result, at least one pole from the ‘‘1 ’’ integra-
tion mustnot come from the lower tree. Explicit calculation
then shows that such diagrams are at least 1 lns power down
from the saturated ones.

The origin of this reduction can be seen as follows. The
‘‘ 1’’ momentum is inversely proportional to the ‘‘2’’ mo-
mentum at the poles. Elsewhere, the ‘‘1 ’’ momenta are de-
termined by momentum conservation. Now the ‘‘2 ’’ mo-
mentum flows predominantly along the lower tree, so if the
pole is off it on a gluon line, the ‘‘1 ’’ momentum flowing
through that line would be relatively large. By momentum
conservation, there must be a return flow passing through
part of the lower tree and another gluon line, and the Feyn-
man propagators of these are large because of the large ‘‘1’’
flow through them. This brings about at least two small fac-
tors xi overcompensating the large factor 1/xi from the resi-
due of the pole. This costs at least a lns factor to be lost from
the ‘‘2 ’’ integration. Hence, the diagram is unsaturated.
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FIG. 11. Proof that an SCC diagram cannot yield a nonvanish-
ing connected diagram that is not primitive. Within the leading-log
approximation, Fig. 11~c!5Fig. 11~b! and Fig. 11~d!5Fig. 11~a!.
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