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Multiple Reggeon exchange from summing QCD Feynman diagrams
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Multiple Reggeon exchange supplies subleading logarithms that may be used to restore unitarity to the
Low-Nussinov Pomeron, provided it can be proven that the sum of Feynman diagrams to all orders gives rise
to such multiple Regge exchanges. This question cannot be easily tackled in the usual way except for very
low-order diagrams, on account of delicate cancellations present in the sum which necessitate individual
Feynman diagrams to be computed to subleading orders. Moreover, it is not clear that sums of high-order
Feynman diagrams with complicated crisscrossing of lines can lead to factorization implied by the multi-Regge
scenario. Both of these difficulties can be overcome by using the recently developed non-Abelian cut diagrams.
We are then able to show that the sumsathannel-ladder diagrams to all orders does lead to such multiple
Reggeon exchangelsS0556-282(197)06007-4

PACS numbes): 12.38.Cy

[. INTRODUCTION is formally satisfied if all multiple RG exchanges are added
in, as shown in th&keggeized diagramis Fig. 1. To allow
The gluon in QCD Reggeizes in the leading-log approxi-for shadows produced by inelastic scatterings, we must in-
mation. The coupling constang) and the energy«(s) of  clude production of gluons from the RG’s in the intermediate
sum of one-Reggeized-gluoilRG) diagrams come in the states, though creation of quark pairs will be ignored in the
form g2(g?lns)?, where g?<1, g%lns~1, andp is a non- present discussion. Whether this proposal of unitarization
negative integer. The sum of 2RG diagrams are of the forni3], without including subleading terms in individual sums of
g*(g?Ins)P, and more generally theRG amplitude is given Feynman diagrams, is correct or not remains an open ques-
by sums of terms of the forrg?™(g2Iins)®. tion which we simply cannot discuss until more is known.
For quark-quark elastic scattering at high energy and fixed The necessity of including multiple-RG exchange dia-
momentum transfer, the color exchanged in a 1RG amplitudgrams can be understood in a completely different way, to-
is an octet, and that for a 2RG amplitude is either an octet otally within the framework of leading-log approximations.
a singlet. The 2RG amplitude being a facgf<1 down Imagine we are dealing with an SN{) color theory in
from the 1RG amplitude, its octet contribution can be ne-which quarks carry an arbitrary color. Then, there are many
glected, but its singlet part must be kept, for there is nandependent color amplitudes, more sd\if>1 and quarks
competing contribution from the 1RG amplitude. This sin-carrying a large color. To retain tHeading-logcontribution
glet part is just the Pomeron proposed by Low and Nussinoof every one of these independent color amplitudes, we must
[1]. retain themRG contributions for everyn. So, even staying
The leading-log Pomeron amplitude obtained this waywithin leading logarithms, those multiple-RG exchanges are
[2,3] violates unitarity. It leads to a total cross section with arequired for a color SUY.) theory with arbitrary quark col-
power growth ins, which is forbidden by the Froissart ors. For that reason we shall carry out our calculations below
bound. To unitarize the Balitskii-Fadin-Kuraev-Lipatov
(BFKL) equation[2] it is, therefore, necessary to include
subleading-log contributions. ]:
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Subleading logarithms are notoriously difficult to extract
from Feynman diagrams. This has been carried out in the
two-loop approximation where the correction to the (a) (b) (c) (d)
Reggeized gluon trajectory has been obtaifgdHowever,
it is almost certain that this cannot be carried out to all or- + 4+ H + +H + H .
ders. Nevertheless, subleading-log contributions to the
Pomeron do not necessarily require subleading logarithms (e) (£) (g) ()
from sums of Feynman diagrams. For example, leading-log
calculation of Feynman diagrams contributing to 2RG ex- + HH +« 1t + 1o + o
changes gives subleading-log correction to the octet ampli-
tude. Hence, there is a hope in unitarizing the Pomeron am- (1) (1) (k)
plitude without having to invoke difficult subleading-log
calculations. In facts-channel unitarity in all color channels +
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TElectronic address: lam@physics.mcgill.ca FIG. 1. Multi-Reggeon exchange diagrams.
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for an arbitraryN, and every quark color. Since spin is un- |
important in high energy scatteriig,3], this has the added ;
advantage that whatever we obtain is automatically valid for x

=]

gluon-gluon scattering as well.
What is missing in this scheme is the proof that the
Reggeized factorization hypothessndeed correct, that the qQ 9 q q,
sum of Feynman diagrams in the leading-log approximation
does factorize into sums of these multiple-RG amplitudes. FIG. 2. A tree diagram witm bosons emitted or absorbed.
To be sure, the hypothesis has been verified explicitly up
to the sixth order, and partially up to the eighth and tenth Il. NON-ABELIAN CUT DIAGRAMS

orders[2,5,6], but because of the presence of delicate can- . . .
Non-Abelian cut diagram7] represent a resummation of

cellations, it is difficult to carry similar calculations to higher F di TH t th Cutkosk ¢
orders. In fact, these delicate cancellations have not beercyMan diagrams. 1€y aré not theé same as LUtkosky cu

completely verified even in the eighth and the tenth orders.g::g::mz which compute discontinuities of single Feynman
The problem is the following. In Feynman gauge calcula- A non-Abelian cut diagram differs from a Feynman dia-

tion, which we shall adopt throughout, the leading-log con- ram in having certain “high speed” propagators cut. The
tributions in some color amplitudes get canceled out whe ut lines occur among those carrying a large momengym
several Feynman diagrams are summigd-7]. Conse- it comparatively small amount of momerdatransferred

quently, to compute theumof diagrams to leading-log ac- 5ay at each interaction vertex. In that case, the approxima-
curacy, we need to calculate individual diagrams totjgn

subleading-log precision. Occasionally, this can be accom-
plished without much pain by using—u symmetry, but
more often not. To the extent that subleading logarithms are
very difficult to compute, calculations to higher-order dia-

o0
[ S )

B i ]

i 2 i i
p+ > qj) —m?=2p-> qi=2, o, (2.
=1 =1 =1

grams do appear to be quite forbidding. is valid, so the denominators of the Feynman propagators for
Even if we manage to overcome this hurdle, the verificathese lines are simplified t&_;'w;+ie) .
tion of Reggeizedactorizationfrom sums of Feynman dia- Within this approximation, the QCD tree diagram for a

grams, with lines crossing one another in very complicategpropagating quark shown in Fig. 2 is
ways, would still seem to be extremely difficult.

Fortunately, there is a chance to overcome both of these : . 1
=27 2 o]
=1

n—-1
i=1 E}=l(1)j+i6

difficulties by usingnon-Abelian cut diagramig7] in place of etV

the usual Feynman diagrams. Non-Abelian cut diagrams are
resummations of Feynman diagrams with these delicate can- =a[12---n]-t[12---n]-V , (2.2
cellations removed, so that each of them can be computed :
. : . S . where t; are the color matrices of the quark, and
just in the leading-log approximation. Moreover, factoriza- _ . .
S ) . t[12- - -n]=tqt,- - -t,. The numerator with the normaliza-
tion is natural to the non-Abelian cut diagrams, because the s .

. . . o . lon conventionuu=1 can be approximated by
are the graphical manifestation of a “multiple commutator
formula,” which in turn was derived from a “factorization 1"
formula” [8], and it is this same factorization formula that V= mﬂ (2p*) (2.3
will be used to demonstrate ReggeiZadtorizationhypoth- =1

esis for a C'?SS of dla_grams. . . . whereu; are the Lorentz indices of the gluons akidis the
Non-Abelian cut diagrams will be reviewed in the next guark Mass

section. Some of their properties, including the assertion o The tree diagram in Fig. 2 will be denoted py2- - -n],

the absence of delicate cancellations in these cut diagramg.cording to the order of the gluons. If the gluons are labeled
but thelr presence in u;ual Feynman d|agram§, will pe d'sdifferently, say as[a,0,---a,], then the corresponding
cussed in Sec. lll. In this paper we shall study in detail, andspacetime amplitude and color factor will be similarly des-
be able to prove, the Reggeized factorization hypothesis for gynated asa[ oy, - - o,,] andt[oy05- - - o]

particular simple class of diagrams, thehannel-ladder dia- Before discussing the non-Abelian cut diagrams it is nec-
grams. It is this class of diagrams in QED that can beessary to introduce some notation[T;] are tree diagrams,
summed up into an explicit eikonal form, so one would ex-then [T;T,---T,] represents the tree diagram obtained
pect it to be the simplest set to study in QCD as well forby merging theseA trees. For example, if T,]=[123]
multiple-RG exchanges and unitarization. However, withand [T,]=[45], then [T;T,]=[12345. The notation

color complication, the QCD case is much harder to dea{T,;T,;---;Ta}, on the other hand, is used to denote ské
with than the QED case, the details of which are discussed inf all tree diagrams obtained binterleaving the trees
Sec. IV. For more complicated non-Abelian cut diagrams inT,,T,, ..., T in all possible ways. This set contains

QCD, we are not yet able to prove the Reggeized factorizat= n,)!/I1,n,! trees ifn, is the number of gluon lines in the
tion, but the success for thechannel-ladder diagrams is treeT,. In the example abovéT,;T,} contains the follow-
encouraging. Finally, a short summary and outlook are proing 5!/3!12!1=10 trees: 12345, [12435, [12453, 142395,
vided in Sec. V. [14253, [14523, [41239, [41253, [41523, and[45123.
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Correspondingly,a{T,;T,;---;Ta} will represent the A Feynman diagram for quark-quark scattering can be
sum of the amplitudea[ T] for every treeT in this set. obtained by connecting two trees like Fig. 2 together via the

The non-Abelian cut diagraf¥] is derived from thenul-  gluon lines, perhaps with the help of triple-gluon and four-
tiple commutator formuld8], which states that gluon vertices and other propagators in between. Since Eq.

(2.4) is valid for off-shell gluons, it can be applied to one of
_ , the two quark trees carrying large momentum even though it
zsn a[“]t["]—gsn aloldlole - (24 istied up in a loop diagram. Unless otherwise stated, relation
(2.4) will always be applied to the upper quark tree, so cuts
This is a resummation formula for the non-Abelian tree am-are normally made only on this line. The rest of the propa-
plitude (2.2, summed over all n! permutations gators remain uncut and the diagram is otherwise the same as
[o]=[010, --0,] of [12---n]. The spacetime part of the an ordinary Feynman diagram.
cut amplitude &o]. is obtained from thecut diagram
[o]c, and the color factort[c]. is obtained from the Ill. ABSENCE OF DELICATE CANCELLATIONS
complementary cut diagrafo], . All of these will be ex-
plained below.
The multiple commutator formula in turn was derived
from thefactorization formulda 8], which states that

We mentioned in the Introduction that complete cancella-
tion of the leading-log contributions to individual Feynman
diagrams may occur in their sum. When this occurs compu-
tations become extremely difficult as subleading contribu-

A tions must then be included to get a finite sum. We shall
a{Ty:To T =11 a[Tal . (2.5  show in this section that this will never happen in the sum of
a=1 non-Abelian cut diagramghat the high energy behavior of
the individual diagrams is the same as their sum, at least
This is a sum rule expressing factorization of sums of certaifyhen the Reggeized factorization hypothesis is correct. This
tree amplitudes. It is this same formula that proves to bgs why it is so much more advantageous to investigate Regge

invaluable in showing the Reggeizéactorizationlater. behavior with non-Abelian cut diagrams than with Feynman
A special case of the factorization formula is well known. diagrams.
If na=1 for everya so that the tre¢ T ]=[a] is simply a The color factor of a Feynman diagraf8,5] or a non-

vertex, then{1;2;- - - /A} is the set ofAl permutation of the  Abelian cut diagran{7] will be decomposed into sums of
tree[12- - - A], and the factorization formula is just the well- color factors of planar diagrams using the commutation rela-

known eikonal formula[9]. tion
We shall now proceed to define the cut diagrams and the
cut amplitudes. To each Feynman tree diagram [ta, tp]=ifapdc » 3.1

[o]=[0105- - - 0,] Of the type shown in Fig. 2, we associate
with it a cut diagram[ o] by putting cuts on specific ferm- as well as the sum rules
ion propagators as follows. Proceed from left to right, put a 3 i
cut after a gluon if and only if a smaller number does not fabcfaba=2C8ca »  1*faggfbedfcge=Cifanc » (32
occur to its right. Continuing thus until reaching the end of . .
the tree, and we get the cut diagram. An external line would"’her,ec_NC/2 for a.color SUN.) group, and, is Fhe colp( :
be considered equivalent to a cut so there is never an epric'iT‘amX of the quark in any representation. In particular, if it is
cut put in at the end of the tree. in the adjoint representation, thety),.=ifac, and this is
The written notation for a cut will be a vertical bar behind represt_anted graphically by a triple-gluon v_erte_x read in a
a gluon. Using that notation, here are some illustrations of OCkwise order. These relations are shown in Fig. 3 where a
where cuts are put into Feynman tree$1234lc cut represents a commutator. Using these figures, decompo-
—[1]2|3]4], [3241]c=[3241],and[2134,=[21|3|4] sition into planar diagrams can be accomplished in a graphi-
The corr,1plementary cut éiagranﬁa]’cis one w.here cal way. For details and concrete illustrations, see Héfs.
Cc

lines cut in[o]. are not cut in[o];,, and vice versa and[7].
r_i1 r_ o A The resulting planar color factors appearing in the Regge
12271[3}42]3%_[1234}’ [3241:=[3[2]4[1], and [2134;  Giagrams of Fig. 1 will be called thRegge color factorsif

) . L the Reggeized factorization hypothesis is correct, only Regge
The spacetime part of the cut amplitudeo]. is simply

X , color factors will survive when all the diagrams are summed.
the Feynman amplituda o'] with the cut propagator taken  color factors for the non-Abelian cut diagrams are com-
to be —27i 6(Zjw;) instead of the usualE(jije)‘l. In

) i \ puted from their complementary cut diagrams, and those
this way, it is the same cut propagator as in the Cutkosky cufith m— 1 uncutpropagators on the upper quark line contain

diagram, but here cuts are placed only on high speed fermiogeqge color factors witht most niRG exchanges. This state-
lines, and as Eq(2.4) indicates, the non-Abelian cut dia- ment is a simple consequence of the graphical construction
grams represent a resummation and not a discontinuity.  procedure for the Regge color factd. See Appendix A.
The color factort[o]; is determined from the comple- * The corresponding cut diagram for the spacetime ampli-
mentary cut diagranio] . It is obtained fromt[o] by re-  tude hasm—1 cut lines. Now, each loop in a spacetime
placing the product of color matrices separated by cuts witlliagram can contribute at most one factor, but this factor
their commutators. For examplet[1234]/=t[1234] will be absent in any loop containing a cut propagator. This
=tytotaty, t[3214.=t[3|2|4|1]=[ts,[t,,[t4,t1]]], and is so because the Feynman propagator giving rise to e In
t[2134) . =t[2|134]=[t,,t,]tst,. factor through integration is now replaced bydafunction



55 MULTIPLE REGGEON EXCHANGE FROM SUMMING QCD ... 4019

b 1 2 3 4 21 34 31 2 4

(a) a‘l_c

ifabe 2 3 4

a b a b a b a b (a) (b) (c)
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(e) ‘A_— = _J_ \ \
. . . . 3 (k)
FIG. 3. Color matrices and their relatior8.1) and (3.2) in
graphical forms. FIG. 4. Examples of eighth orderchannel-ladder cut diagrams.

[5,7]. With m—1 cut prqpagatorsp—l potential Irs factors are, respectively[1|2|3|4], [21/3]4], [31]2]4], [1|324],

a??n Io;t, so the spacetime amplitude can grow at most I|kf41|2|3], [1]423],[1]2|43], [21]43], [3142], [41]32], and

g-"(g"Ins)”. , , _ [321]4]. Unless otherwise stated, propagators along the
Thus a non-Abelian cut diagram with anRG Regge |o\er quark tree will remain uncut, so when we refer to cut

color factor INCreases V\."th energy at mO.St.IW(g Ins)p.. . and uncut propagators, we will usually be speaking of those

If the Reggeized factorization hypothesis is correct, this 'Salong the upper quark tree

also the energy behavior of the sum of all non-Abelian dia- We will use the ébbreviation SC to denote

grams with this same Regge color factor. Hence no cancel:_ i ) . A
lation of leading logarithms occurs in the sum of non-> channel-ladder cut diagranand the notation SCC to de

Abelian cut diagrams, note s-channel-ladder complementary cut diagrafhe

This also means that in the leading-log approximationformer is used to compute spacetime amplitudes, and the

there is no need to include in a complementary cut diagrarr|1atter to compute color factors. Cut propagators in SC be-

. . . come uncut propagators in SCC and vice versa.
with m—1 uncut lines those Regge color factors with less
From the rules of Sec. Il, we conclude that all propagators
thanmRG exchanges. . - .
: . . of the planar SC diagram are to be cut, giving rise to
From these discussions we can also see why delicate ¢

ap; . A, :
cellations are generally expected for Feynman diagrams §1|2|~--|n], as illustrated in Fig. @). For other SC dia-

the Reggeization hypothesis is valid. A Feynman diagrangrams’ cuts are placed behind a number if and only if there is

has no cut in its spacetime diagram, nor in its color factor.nOt a smaller number to its right.

The former tends to give rise to moreslfiactors than a We can phrase this in a way independent of the number-

. ) : . dings of the gluon lines. All SC diagrams are obtained from
corresponding cut diagram, and the latter will generally yleldthe lanar diaaram bv pulling the upper ends of some aluon
Regge color factors with largen. For both reasons there are b g y puting bp 9

too many Irs powers compared to the Reggeized behavior O#ines leftward. Once a gluon line is moved, the cut to its right
9°M(g%Ins)P, so delicate cancellations eliminating these pOW_dlsappears. Thus, cuts appear to the right of all vertiol (

ers must take place lines but do not appear to the right of any slantejl l{ne.

' According to the discussions in Sec. lll, in the leading-log
approximation, we need to retain only thlRG Regge color
IV. s-=CHANNEL-LADDER CUT DIAGRAMS factors from a SCC diagram witim—1 uncut propagators,
and only the SC diagrams witlhn— 1 cuts on the upper tree
whose Irs power is given byg?™(g?Ins)P, and not lower. It is

s-channel-ladder diagrams are obtained by joining to-shown in Appendix B that thessaturatedSC diagrams are
gether the gluons of two quark trees like Fig. 2. If we num-those without adjacent uncut propagators on the upper tree.
ber the gluons attached to the lower quark tree in the ordefor example, Figs. (4)—4(j) are saturated, and should be
[123 - .n], then the order of gluons along the upper quarkretained, but Fig. &) is not, and can be discarded.
tree can be used to specify teehannel-ladder diagram. Cut ~ Accordingly, along theupper quark ling the line to the
diagrams are determined by the rules discussed in Sec. llight of ans line is always a line, and not anothes line
and cut propagators on the upper quark tree will be indicatetiecause diagrams of the latter kind will not contribute to the
by a vertical bar as before. In this notation, Fig&a)44(k) leading logarithm. We shall refer to theline to the right of

A. Description of the diagrams
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~ : S; Vymy mj 8y Vy mj

Vi mySy my Vy §p My

FIG. 7. An example of a disconnected reduced diagram and the
corresponding Regge color factor.

tively, as[m], [vs], [vs|m], and[vS;|v,S,|m].

The color factors for reduced diagrams can be rendered
planar using the rules of Fig. 3. See Fig. 6 for examples. The
resulting color factor of a reduced diagram may or may not

FIG. 5. An example of the decomposition of SCC diagrams intope connectedafter the upper and lower quark lines are re-
sums of reduced diagrams. moved. For example, those in Fig. 6 are connected and the

one in Fig. 7 is not. It turns out that the only connected
ans line as itsassociated vertical lineand this pair ofs,y ~ Regge color factors encountered in the reduction of SCC
lines as askeleton cross diagrams are those shown in Fig. 6, and those similar to Fig.
6(d) but with p>2 slanted lines. By using Fig. 3 these can be
turned intop horizontal lines, with the one to the right al-
ways lying at a higher level than the one to its left. These

Given a saturated SCC diagram, we need to decomposgnnected Regge color factors will be denotecHas with
its color factor into combinations of Regge color factors.p=—-10,1,2, ... (see Fig. 6. Except forH_,=cH,, they
This is accomplished by using Fig. 3 to pull thever endof  are all independent.
everys line leftward, until it sits just to the right of its asso- Potentially, there may also be those like Figs. 8 and 9, but
ciatedv line, a position to be referred to as fteme position  as shown in the figures and more generally in Appendix A,
Figure 5 gives an illustration of how this is done for agie they all turn out to be zero in the leading-log approximation.
line; the same should be carried out with the othdine as It is also shown in Appendix A that in the leading-log
well. As a result, the SCC diagram is given by a sum ofapproximation, the color factor of a disconnected reduced
manyreduced diagramsA reduced diagram is distinguished diagram is given just by the product of the color factors of its
by having cuts along théower treeto the right of everys  connected components, and it is this special property that
line, except when it occurs in its home position, as illustratedhllows Reggeized factorization to take place. Thus, the most
by the last diagram of Fig. 5, in which case a cut is notgeneral color factor encountered in SCC diagrams is of the
necessary. . . . form CI>=H;°:_1(—)pr(Hp)fp.

For later discussions it would be convenient to have an e shall usdH,] to denote the reduced diagram giving

analytical notation for the reduced diagrams. We shall usgjse to the connected Regge color fadtby. In cut-tree no-
v;,S; to denote theith pair of skeleton lines, andh, 10 tations, these are

denote the rest of the vertical lines. Then, a reduced diagram
can be labeled by the cut tree along its bottom line. For [H_{]1=[vs], (4.
example, the four diagrams in Fig. 6 can be labeled, respec-

B. Color factors and reduced diagrams

[Hol=[m],
S Vv m
S, R _m
[Hi]=[vs|m],
E =cC
T v - “m
H, =cH, H, $1 :Vl Sz: V2 m,
(a) (b)
s v m S) VySp Vo m ; '
y : N Vi V28 S Iy
= || = —
Vs m vlsl:vzsz:m ] - 0
H‘ H2 - »———T - —y h —4 -
(c) (d)

FIG. 6. Examples of how primitive color factors are obtained FIG. 8. An example of a connected reduced diagram that is not
from reduced diagrams. primitive.
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S; Vi Sy vV, m, 12345 6

\ 231564

Vi Vy Sy §; my

(a)
12 3456 1 2453 6
= J = —_ T = O \ \\
a— \
253614 253614
(b) (c)

FIG. 9. Another example of a connected reduced diagram that is

not primitive. FIG. 10. Two SC diagrams in the s&31;564. Diagram(b) is

[Hy]=[01Sy]v2S,m] identical to diagramc).

217 LV 1-11V 292 '
6(a)—6(c) where there is only one tree for eadt ],

[Hpl=[v1Si|v2Sy| - - -vpsplm] , (p=1). the degeneracy indek=1 will be omitted. This index is,

. however, needed in other cases. For example,
For a generafb, there would be many reduced dlagramS[Hz]2[0151|0282|m] in Fig. 6d) gives rise to the

giving rise to the same Regge color factor. They differ fromuncut treeshﬁz[vluzslmsz] h§=[v1v2mslsz] and hg

one another in having thé, copies of[Hy] for different  _ i - ; )
p’'s merged in different ways. We shall denote this set of [v1w2ms,sy]. The set of allhy for a fixed p will be de
noted by{H}s.

reduced diagrams for a given color factbrby The set ofdistinct SC or SCC diagrams obtained by in-
terleavingf, trees in{H } s together is jus{®}s.

{<I>}=[1;[ (—)pfp<Hp>fp]

distinct C. Factorization of sums of spacetime amplitudes
={[H_q11;--;[Hol;--;[Hal;--;[Ho1;---5- -} We proceed to compute the sum of those spacetime am-
plitudes of all saturated SC diagrams with a common Regge
XH (—)PTo/f ! (4.2 color factor<I>=Hp((—)pHp)fp. The relevant spacetime dia-
P P grams to be summed are those in the{se}s.

Using the factorization formulé2.5) on the lower tree,
where the ellipses after ea€hl] is an instruction to repeat one gets
the samdH] f, times, separated by semicolons. The sign L
(—)P associated withH , comes about because of the minus _ _ f
sign associated with each cut. The notation in &q2 for a{(D}s—[T]EE{(D}S a[T]_l—pI ﬁ(a{Hp}S) Pa (43
interleaving the cut trees is similar to the notation
{T1;T,;-- -} explained in Sec. Il for interleaving uncut trees where
T;, but with two differences. First, lines separated by cuts
are to be thought of as being fused together by the cut, so 1 B 1 -
lines from other cut trees can never be inserted between g(a{HD}S)fpzz m_i!(a[hp])m' '
them. Second, each cut diagram{iH];- - -} is going to
occurf,! times because of the identical nature of those diawith the sum taken over alinj=0 subject toX;m;=f,.
grams. We allow only distinct diagrams {d} so the divi- Thus,a{Hp}s=Zia[h'p]. The factorials in the denominators
sion byl f ! in Eqg. (4.2) is a formal way of removing such of Eq. (4.4) arise because of the necessity to keep only dis-
redundancies. tinct diagrams if®} .

Given a reduced diagram {wb}, there are many different The factorizationg4.3) and(4.4) for the lower tree can be
SCC that can give rise to it. We shall denote the set of alextended to a factorization for the SC amplitudes. To do so
SCC diagrams that can give rise to a reduced diagram ive need to use explicitly the cut property of thppertree,

{®} by {®}s. These SCC diagrams can be obtained fromthat the only uncut propagators are those inside the skeleton
the cut trees iIf®} by getting rid of their cuts by moving the crosses. To illustrate this point let us look at Fig. 10. Both
s-lines rightward in all possible ways. Instead of first inter- the (lower) tree[231564 in Fig. 10 and the tre¢253614
leaving the cut treefH,] and then getting rid of the cuts, in Fig. 10b) belong to the sef231;564, but if we keep the
{®}s can also be obtained by reversing the two operationsupper ends of the gluon lines fixed in Figs.(d0and 1@b),

by first getting rid of the cuts and then interleaving the uncutpermuting the lower ends of the lines to get from Figgalo
trees, in the following way. to 10(b) doesnot change the SC diagram, Fig. (&R back to

Start from an[H,], get rid of the cuts by moving the another SC diagram. Figure (), with lines 5 and 6 slanting
s-lines rightward, to construct all SCC diagrams the wrong way, cannot be an SC diagram. However, by mak-
h'p (i=1,2,...) that reduce tgH,]. In cases such as Figs. ing explicit use of the commuting properties of the amplitude

(4.4



4022 Y. J. FENG AND C. S. LAM 55

for the upper tree a[123|45/6]=a[12]a[3]a[45]a[6] 1

=a[12453|6], Fig. 1ab) can be redrawn as Fig. (), A(Gy) =~ 5K,

which is an SC diagram. This can always be done so factor-

ization of the lower tree does lead to a factorization of thewhere the color factor§;, G,, G,, Gs are the color fac-

sum of saturated SC amplitudes. _ torsHy, H3, HE, H, in the present paper, and where
An SC diagram contains the lower tree, but it also con-

tains gluon propagators, quark propagators along the upper o g

tree, vertex factors, and loop integrations. In light-cone co- Ka(A)=i""1(*K)"  Ky(A)= AZ - (4.10

ordinatesg. =q°+q?®, the measure of loop integration is

2

o a. dad The transverse functions, are related to the ones used in
_ — q2n

q4= Chz a+ 2q . 4.5 Ref.[7] by K,=g“"l,. . _ _

(2m)* (2m)° 8w The general result foD(g°®) according to Eq(4.9) is

If the Dirac spinors are normalized tami=1, and a common a b 1 ca

factor is taken out of the T-matrix amplitude [AI(=H1)(Ho)"}s](A) = m[A{Hl}S] *[CA{H-a}s
T=—(sl2M 2)A., then each factorized amplitude .
a{Hp}s=S;alhy] corresponds to a saturated SC amplitude +A{Ho}s]*(A) . (4.1
A{Hp}s(A)=3A[h,](A), where we have indicated explic-
itly the dependence on the momentum trangfeiThe prod-
uct of two lower-tree amplitudea{H ,}a{H,} is turned into
convolutions of two SC amplitudes:

Substituting into Eq(4.11) the explicit result obtained from
Eq. (6.2) of Ref.[7],

2

| «Q

A{Hols="7=Kq,

Nl

d?q, A

[A{Has ATHRISIA)= (1) | Gl AHI(A ) 2 1
AN §

<[A{Hp}1(a,) - 4.6 AlH-1}s= = ¢, (B2 = —Insko,

In obtaining Eq.(4.6), the identity

A{Hl}sz—gzl(cGz—G3)(CZOC)=InsZI—TrKg, (4.12
if%(—zwnzaﬁqn&(@q><2s>=—i 4D e get
has been used. [A{(—H1)3(Ho)"}s](A)
The sum of all satu_rated SC amplitudes with the Regge i va . b
color factor® is then given by =S |nSEK3} *[Kl_lnsﬂKZ (A). (4.13
[A{‘D}s](ﬁ):l;[ %[A{Hp}s]*fp(A) . (48  The color factors G;, G,, G, correspond to 4,b)

=(0,1),(0,2),(0,3), and the color fact@; corresponds to
(a,b)=(1,0) but with an extra minus sign. Expanding Eg.
(4.13, keeping only leading-log contributions and only up to
Q(g%), the result is the same as E.9).

In particular,O(g®) diagrams receive only contribution
from K3 of Eqg. (4.9), so that the total amplitude at leading
logarithm is given by

All the products in Eq(4.8) are meant to be convolutions. In
particular,[A{Hp}s]*fp is taken to mear, convolutions of
the same amplitude. In impact-parameter space, such convi
lutions are replaced by simple products.

D. O(g®) results

Let us now compare the general result of B8 with . 1
the O(g®) result of Ref[7]. Except for the second-order tree M= —isins iz Kl €Go Gal (4.14
diagram, they are shown in Fig. 7 of Ref7] as
Bl., B2., andC15, to C20,. The spacetime amplitudes This result can be compared with the one contained in Egs.
are given in Eq(6.1) of that reference and were expressed in(56) and (68) of the JETP, Vol.44, paper cited in Ref{2],
terms of M= — A/g?; hence, where the color group is SB). According to these equa-
tions, the symmetric part of the amplitude is equal to

c
A(G)=K;—Ins—

5 K,, 4.9

- — 4772M 2 [A<O)FAA!FBB! +A(2>FXAVFIBJB,]

1 c
A(Gz): - EiK2+i|nSzK3,

_ 1 .
:_IS|nSWB3[FAA'FBB'_ZFXA'FEB’]’ (413
where thd tensors are given in their Eqd.4) and(15), and

) 1
A(Gg)=~iIns 57K, A,B and A’,B’ are, respectively, the initial and the final
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isospin components of the external gluons. In the presergighth and tenth orders, by explicit calculations.
case,c=1, and the symmetric part of the color factor ap- We prove in this paper the Reggeized factorization hy-

pearing in our Eq(4.14 can be computed to be pothesis fors-channel-ladder diagrams of any complexity.
Both of the difficulties mentioned above are solved by using
G2~ G3=6ap0ae’ + Oa Sar8—20aA  SBB" - (4.16  instead the technique of non-Abelian cut diagrams discussed

o ) ] in previous publicationf7,8]. These cut diagrams are resum-
When this is substituted back into E4.14), the result y5iiong of Feynman diagrams and are different from the
agrees with Eq(4.15 when the explicit expressions for the Cutkosky cut diagrams.
I' tensors are used, and when we notice that tgirs the For other diagrams the validity of the Reggeized factor-
same as OuKgs. ization hypothesis is still under investigation.

E. Reggeized factorization

The expressiond{Hg}s+cA{H _;}s=K;—(c/27)InsK, i ) o ]
in Egs. (4.1) and (4.13 is the first two terms of the We thank Jean-Rer@udell and Omid Hamidi-Ravari for

Reggeized-gluon propagator interesting discussions. This research was supported in part
by the Natural Science and Engineering Research Council of
g _ Canada, and the Fonds pour la Formation de Chercheurs et
Ri(A,8)= gzexd —a(A)ins] IAide a la Recherche of Queec, and Y.J.F. wishes to ac-
knowledge the support of the Carl Reinhart Foundation.
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a(A)=

2
AZKy(A) . (4.17 APPENDIX A: COLOR FACTORS

OF NON-ABELIAN CUT DIAGRAMS

2mg?

The other terms come fromchannel-ladder and associated . )

diagrams[2,3,5 not considered here. The ters{H,}g in _Color factor (_)f non-Ab¢I|aq cut diagrams are calculated
Eq. (4.1D) is one of the many terms contributing to the emis-USiNg the graphical rules in Fig. 3. Some explicit examples
sion and reabsorption of an ordinary gluon from a Reggeize@'® Shown in Figs. 6-9. In what follows, we shall discuss
gluon, as indicated by the pattern H. EvenQ¢g®), it re-  SOMe of the general properties in the leading-log approxima-
ceives contributions from other diagrams as W&l When t|on.. .

all these are taken into account, it is known that such emis- Figure 3¢) can be used to get rid of cuts on the comple-
sion and absorption can be constructed from the Lipatov verM€ntary cut diagrams. As a result, diagrams with 1 un-
tex[2]. cut propagators al_ong the upper tree have at mogluon_

So, the factorized result@.8 and (4.11) are the begin- lines attached to it. We say “at most,” becausg relations
ning of contributions that lead eggeizedactorization, but ~ 3(0), 3(d), and 3e) can sometimes be used to get rid of more
the Reggeization property cannot be seen fully without inliN€s-
cluding other diagrams. However, the Reggeized nature of SiNCe cuts are made on the upper tree, the number of

the color factors does seem to emerge rather naturally. ~ 9luonsn attached to the lower tree is often larger than the
numberm attached to the upper tree. However, by using Fig.

3 again to manipulate the lines attached to the lower tree, at
least in all cases encountered in Sec. IV, one can reduce the
In this paper we initiated a leading-log investigation onlines attached to the lower tree to tve Hence, complemen-

sums of Feynman diagrams contributing to multipletary cut diagrams wittm—1 uncut propagators along the
Reggeized-gluon exchanges. These diagrams are importampper tree contribute color factors with-Reggeized gluons,
because they supply non-leading-log contributions to ther less. It was then argued in Sec. Ill of the text that we need
SU(3) gluon and Pomeron amplitudes, thereby restoring unifot keep those with less tham Reggeons in the leading-log
tarity. In any case, they supply the leading contributions inapproximation.
an SUN,) color theory in which the colliding beams carry It is conceivable, for very complicated diagrams, that we
large color so they must be taken into account. cannot reducen to m with the rules of Fig. 3 alone. The
The central question studied in this paper is whether sumeesulting color factor has#m, so it cannot possibly con-
of Feynman diagrams in the leading-log approximation willtribute if Fig. 1 is the final result. For that reason we shall
factorize into multiple-Reggeon-exchange diagrams as dedefine the leading-log approximation to exclude all such
picted in Fig. 1. This “Reggeized factorization hypothesis” color factors that cannot be reducedne m.
is nontrivial to prove for at least two reasons. First, it is Using Figs. 8b) and 3c) again, the positions of gluon
known that there are delicate cancellations in sums of Feyrlines attached to the upper or the lower tree can be reversed,;
man diagrams, so individual diagrams must be computed ttheir difference being a diagram with one less gluon line
subleading-log accuracy to ensure a finite contribution to thattached to the upper or lower tree and, hence, can be ig-
sum. This is a very difficult task for high order diagrams. nored in the leading-log approximation. This is why primi-
Second, high order Feynman diagrams are very complicatediye color factors can cross one another in any way along the
with lines crisscrossing in a complex pattern, so it is far fromupper and the lower trees, yet giving exactly the same result
obvious that they will sum up and factorize into neat patternsn the leading-log approximation.
as those displayed in Fig. 1. To date, factorization had been Finally, we want to prove that any color factor with an
proved completely only to the sixth order, and partially to thes-line climbing onto the underside of a horizontal line, such

V. SUMMARY AND OUTLOOK
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FIG. 11. Proof that an SCC diagram cannot yield a nonvanis

ing connected diagram that is not primitive. Within the leading-log

approximation, Fig. 1(t)=Fig. 11(b) and Fig. 11d)=Fig. 11(a).

as those found in Figs. 8 and 9, would be zero. The proof
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seen that this assertion is valid@{g®). If one now follows

the calculation of these examples with the method of R&f.
and Appendix B of Ref[7], one can see that these calcula-
tions can easily be generalized to a multiloop situation as
follows.

Consider an SC diagram with=1—1 gluon lines. Let
gi=(qi+,9i—.q,) (1=<i=<lI) be the gluon momenta in the
light-cone coordinates, ang|_=x;/s.

We shall follow Ref.[5] by calculating the high energy
behavior using residue calculus and flow diagrams to carry
out the “+ " integrations. For SC diagrams without adjacent
uncut propagators, there is a unique flow path for each dia-
gram, and the poles for the+" integration can always be
taken along the lower tree. The gluon propagators are then
~1/g? , and are considered to be of order 1. This leaves the

puncut propagators along the upper tree to the™integra-
tion, each of which contributes to a factor oklaia “ —"
integration of the typef,-1dx;/x;. Hence, such diagrams
have their full share of kfactors and are saturated.

is For diagrams with two adjacent uncut propagators, the

shown in Fig. 11, where the shaded area can contain a vefiPW Ppath is never unique: the flow direction along the

complicated structure. Use Figs(bB and 3c) (for four-
gluon lines to move the point joining the bottom of the
horizontal line to the right, one gets Figs.(4land 11b).
Moving that point to the left, one gets Figs.(&land 11d).

boundary of the two adjacent uncut loops cannot be deter-
mined. See Figs. 10.7 and 10.8 of RiH] for concrete ex-
amples. As a result, at least one pole from the'integra-

tion mustnot come from the lower tree. Explicit calculation

Within the leading-log approximation, we can pull the then shows that such diagrams are at leassbéwer down

middle vertical line of Fig. 1(c) to the extreme right to get
Fig. 11(b), hence Fig. 1(b)=Fig. 11(c). Similarly, Fig. 11a)
=Fig. 1X(d). Therefore, Fig. 1@—Fig. 11(b)=—[Fig.
11(a)—Fig. 11(b)]=0.

APPENDIX B: SATURATED LADDER DIAGRAMS

from the saturated ones.

The origin of this reduction can be seen as follows. The
“ +" momentum is inversely proportional to the—"" mo-
mentum at the poles. Elsewhere, theé ™ momenta are de-
termined by momentum conservation. Now the-* mo-
mentum flows predominantly along the lower tree, so if the
pole is off it on a gluon line, the 4" momentum flowing

We want to show in this appendix that an SC diagramthrough that line would be relatively large. By momentum

(see Sec. IV for notatignwith two adjacent uncut propaga-
tors is unsaturated. By definition, a saturated diagram
(2n)th order andmRG exchangeri—1 cut lineg have a
g ands dependencg®™(g?ins)" ™. An unsaturated diagram
is one with a slowes growth in comparison.

Referencd 7] contains explicit calculations t0(g®). By
examining Fig. 7 and Eq6.1) of that reference, it can be

conservation, there must be a return flow passing through
opart of the lower tree and another gluon line, and the Feyn-

man propagators of these are large because of the latge “

flow through them. This brings about at least two small fac-

torsx; overcompensating the large factox1from the resi-

due of the pole. This costs at least afactor to be lost from

the “—"" integration. Hence, the diagram is unsaturated.
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