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We calculate in two-dimensional QCEQCD,) the ratios of baryonic matrix elements dfl=2 and
Al =0 four-fermion operators, with a view to understanding better the mechaniarh-01/2 enhancement in
QCD,. We find relatively small suppressions of both the scalar-scalar and vector-wdct® four-fermion
operators. We discuss the possible implications of these results, in view of a suggestion that gluon condensa-
tion may be an important contributing factor in thé=1/2 enhancement seen in Q& DAt the technical level,
our calculation of the vector-vector operator matrix element requires a treatment of the time dependence of the
QCD, soliton which had not been developed in previous phenomenological calculations within this model.
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[. INTRODUCTION perturbative matrix elements of local operators, such as
quark-antiquark condensates in bary@sqq|B) [4], with
Two-dimensional QCOQCD,) is often a useful testing result$ that compare well with Skyrme mod€ls] and phe-
ground for ideas concerning nonperturbative effects in QChomenological determinations in QGD6], and may cast
in four dimensions(QCD,). Among the issues studied in light on observations of apparent violations of the Okubo-
QCD, have been those associated with confinenightthe  Zweig-lizuka (OZI) rule in meson-baryon couplingg7].
appearance of baryon8] as solitong2], the existence of Nonleptonic weak decays are controlled by the matrix
constituent quarks and their relation to current qudfs elements of higher-dimensional operators, such as
and quark-antiquark condensafé$ However, care must be (B|(qq)(qq)|B), in QCD,. These matrix elements exhibit
exercised in carrying conclusions over directly from QCD some puzzling features, in particular large enhancements of
to QCD,, since there are essential differences between thal = 3 transitions compared with | =  transitions(for a re-
dynamics in the different dimensions. Among these differ-view, see, for exampldg]). It seems that calculable pertur-
ences are the dimensionless nature of the Q@auge cou- bative QCL renormalization effects below the weak scale
pling as opposed to the dimensional nature of the @QCD[9] cannot explain all the large\l =3 enhancement ob-
gauge coupling, the associated differences in the infrared b&erved, and hence that the major part of it must be nonper-
haviors of QCD and QCL) (at least in perturbation thedry turbative in nature. The main purpose of this paper is to
and the absence in QGIbf spontaneous chiral symmetry calculate an analogue in QGDf the enhancement of the
breaking and the pseudo-Goldstone boson interaction of th&| =1 component of nonleptonic decay amplitudes, the
light pions in QCD). Another important difference, to which hope of casting light on the nature of the nonperturbative
we shall return in this paper, is the fact that gluons inenhancement mechanism active in QCD
QCD, do not have any physical polarization states. Thus in This calculation requires certain improvements in the
two dimensiong2D) the analogue of the glue condensate intechnology developed previously for calculations in QCD
the vacuum(O|F?|0) may only come from mixing with [2]. As is well known, baryons in QCD may be described as
quark-antiquark pairs, and hence is expected to be mucéolitons in a bosonized formulation. The collective coordi-
smaller than in QCR In particular, it vanishes in the large- nates of the soliton must be quantized consistently, introduc-
N, limit. ing a time dependence into the soliton wave function which
QCD, has been used previously to calculate certain non-

10f particular interest have been ratios of quark condensates, such

*Electronic address: john.ellis@cern.ch as the ratio of the strange quark condensate to the sum of all con-
TElectronic address: fnfrishm@wicc.weizmann.ac.il densates, for which a smooth nonzero limit exists in the limit of
*Electronic address: hanany@sns.ias.edu vanishing quark masses.
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corresponds to the angular momentum of the baryonic solimalization group relation appropriate to two dimensions. The
ton (Skyrmion in QCD, [11]. Previous calculations of bary- semiclassical quantization of this soliton entails the introduc-
onic matrix elements of simple local operators such@$4]  tion of time-dependent coordinates, i=1,... N; [2]. In

did not require an explicit treatment of this collective- terms of these coordinates, the relations betwegbilinear
coordinate quantization. However, this is necessary for thélensities and the scalar fields follow from the standard
calculation of the baryonic matrix element of the nonleptonicbosonization correspondence:

weak Hamiltonian, which contains current-current terms _ )

J*J,, since the time componedf involves time deriva- qidi={1+(cosBe—1)|z]|}A, )
tives of the bosonic fields in the soliton.

Our main physical result is a relatively small numerical
factor between the nonperturbatité =3 and Al =2 matrix
elements, which appears inadequate to explaimthe 3 en-
hancement observed in QgDeven allowing for the pertur-
bative enhancement factors calculated in QC®. We in-
terpret this re_:sult as indicating that thg observkb= 3 aqiq_jqj_<o|aqiq_jqj|o>
enhancement in QCPmay be due to particular features of
the nonperturbative QGpDdynamics that are absent in ={[1+(coBe—1)|z|?][1+(cosBe—1)|z|?]—1}A?
QCD,. A candidate for this is the gluon condensate, which _ 2 2 2o 1212 121 A 2
hasDizndeed been proposgt?] as thge main mechanism re- ={(cosBe—1)(|zi|*+[z]*) +(coBe—1)*|z[*z A%,
sponsible for the observetll = 1 enhancement in QCpand (3)
which is relatively small in two dimensions, even vanishing
in the largeN, limit.

whereA is an appropriate mass scqig.

On physical grounds, and in order to calculate finite terms
in the classical expression for the four-fermion operators, we
need to subtract the vacuum expectation values of the opera-
tors. This leads to the relations

where the term proportional te-1 at the end of first row

It is interesting to compare this result to previous calcu-COMes from the vacuum subtraction. .
lations in four-dimensional Skyrme mode[43], which Next we turn to the computation of the expectation values

found a magnitude oAl =1/2 enhancement that is sensitive (3). In the semiclassical approximation, we may separate out

to the model-dependent spatial wave function. In our tWO_the classical contribution, which amounts to an integral over

dimensional case, the integral over this wave function can pthe spatial coordinate. _Sett|ng,8\/§m:M, and using some
carried out analytically and exactly. The Skyrme models in-€lémentaryx integrals listed in the Appendix, we find
corporate correctly the physics of quark condensation and 16 A2

chiral symmetry breaking in four dimensions, but do not in (Eqiq_jqﬁz _|Zi|2|2j|2_4(|zi|2+|Zj|2) —, (@
general include representations of the gluonic degrees of 3 H

freedom in QCIL), and in particular the physics of gluon

condensation. where the angular brackets denote the integration of(8q.

overx.
In order to average over the quantum coordinatesve
Il. COMPUTATION OF THE MATRIX ELEMENTS must select a suitable wave function for the baryon. Since
FOR THE QUADRILINEAR SCALAR direct analogues of the lowest-lying baryon octet do not exist
INTERACTION in QCD,, we choose theé\ " state, which is the closest ana-

As a warmup exercise, we start in this section by calculogue of the proton in two_dimensioﬁsl';s wave function is
lating an analogue of thal =1/2 enhancement in the ratio prop_ortlonal tozy z,, and since we are interested in ratios of
between matrix elements of four-fermion scalar densities ifnatrix elements, the normalization of the state factors out.
QCD,. Our eventual aim is to calculate the analogous ratiddUr convention is to normalize treintegral (AS) to unity
between matrix elements of products of Lorentz-vector curfor N=1,P=2 whenN¢=N.=3, as is appropriate for the
rents, as this is more comparable to the quantity of interest iphysicalA™ state. ' .
four dimensions. However, the latter calculation involves We now discuss in_more detail the internal symmetry
more technical aspects of baryonic solitons in QC&b to ~ Properties of the bilineag;q; and quadrilineag;q;gxq, op-
get the flavor of the physics of the computation we firsterators. The isospin-one bilinear scalar densities are given in

tackle the simpler case of scalar densities wijr-0 and terms of theu andd fields by
| =2,0, which we denote b¥,oand Ty, respectively.

To calculate the matrix elements of these operators, we |1.9=(du),
first review the static classical soliton which describes a —
baryon in QCD [2]. In the strong-coupling limit this is given 1.~ 1)=—(ud), ®)
by a solution to a sine-Gordon equation, as seen in(kd) . —
of Ref.[2], namely 1.0- (uu)—(dd)
L \/E .

4
o(x)= Earctarﬁexp(ﬁx/imX)], (1)

3We note in passing that th&l =1/2 rule is known experimen-
where B=/4w/N, is the coupling constant of the sine- tally to be valid for Q" —E= decays in QCR the ratio of
Gordon theory,m/g is the mass of the soliton, and is  AI=3/2,1/2 amplitudes A;; is measured to beAz/A;
related to the common bare mass of the quarks by a renor —0.063+0.014[14].
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The corresponding relations between the=0 quadrilinear
scalar densities of isospins=2,0 and the quark fields are

2w —dd)]? 2 . —
T20=<\/;(UU)% —\—@(ud)(du)>
— _i TAVCATD O — (A 12
—< Jg{Z(ud)(dU) [(uu)—(dd)] }>, (6)
Tor | — 21 20ud) (du)+ (Uw)—(dd) 2
00— \/§ (ud)(du) \/E

_ _i T A TN (A} 12
—< 2\/5{4(ud)(dU)+[(UU) (dd)] }>- (7

We then use EqA2) to perform thex integrations, obtain-
ing

A2
Tog [2|21|2|22|2_(|21|2_|Zz|2)2]7

AZ
=[4]z1|3|z5|*~ (|1z|*+ |Zz|4)]7,

423zl + (122 |22 A2

Tan o<
00 \/5
2[21% 25|+ (|2o]*+ |22]*) A?
= — €S)
V2 M
for the different quadrilinear scalar densities with 2,0, re-
spectively.
The ratio of interest to us is
<T20> ZR_ 1
(Too) V2 R+1"’ ©
where the auxiliary ratidr is defined by
(1z4/%221%)
R=2—F—7. 10
(PP (10

Using the integralgA5), we getR=3, which leads to the

final result
(T20) \F
—=1\/==~0.28
(Too) S)
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Ill. FORMALISM FOR VECTOR CURRENTS
AND COLLECTIVE-COORDINATE
QUANTIZATION

The extra complications in the calculations of hadronic
matrix elements of Lorentz-vector currents and their bilinear
products arise because one must take into account the time
dependence of the hadronic wave functj@h an issue that
has not been confronted in previous QCEalculations[4],
including those in the previous section. These complications
appear for the first time because the expressions for the vec-
tor currents involve time derivatives of tlzg, corresponding
physically to the appearance of conjugate momenta.

To see how these arise, we first derive general expressions
for the vector-current operators in terms of the classical co-
ordinate x and the quantum coordinates The usual
bosonization rules yield, for the vector currents,

i
—— 1t
Ji=5-U'a,U,

i
J_=—Us_UT,

5 (12

whereU is a nonlinearr-model variable in the action of the
bosonized representation of Q&Drhe semiclassical quan-
tization rules give the field) in terms of a time-dependent
“zero-mode” rotation A(t) from the classical solution
U.(X):

U=A(t) Uy (x) AT(t). (13

The last column of the zero-mode matwxis expressed in
terms of the semiclassical variables
The light-front derivatives),. _U may now be evaluated:

dy _U=ADUAT1)+ADUAT ) AMULX)AT(1).
(14)

Using Eq.(14), we then find
UTo,U=AUl(ATA)UAT+AAT+AUIU/AT
=A[(Ul-1)+1]ATA[(U;—1)+1]AT
+AAT+AUULAT

=A(UI-1)ATA(U,—DAT+AU!-1)ATAAT

11 +A(U,—1)AT+AUIU AT (15)
for the ratio of quadrilinear scalar densities. which yields the expression for the curreht,
This ratio is not nearly as small as the corresponding ratio .
for current-current operators in QGDL4], even after allow- _ b t t; _ +
ing for Clebsch-Gordan coefficient factors of order unity and‘]+ - ZW{A(UC DAAU~DA
the calculable perturbative short-distance enhancement in the ] )
latter casg9]. However, before concluding anything about +[A(U.—DAT-AUI-1)AT+AUIUHAT,  (16)

the significance of different nonperturbative effects in

QCD, and QCDO, we must analyze the technically more and an analogous expression may be derived for
complicated case of bilinear products of Lorentz-vector cur- Defining®=exp(B¢)—1, we may rewrite Eq(16) in the
rents in QCD. form
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i : : S 1 . : i
_ 2
(J+)kl_ﬁ[zk|q)| z 7jzf + 7z P* pFE:m[zk—zk(zf‘z,)]Jr 5Nz (25)
I S ’ *
2z P=iBe (X2 ] 17 and there is a conjugate expression fir. It is convenient

which may be simplified to to rewrite the constraint€4) in the form

. 1 i
| . - —
(3 )u=5=[2(1-coBe)z(Z 7)) Pi=7p (P2t 5 Nezi,

_iﬂ(,D,ZkZ|*+.ZkZikq)_Zk'Z|*(D]. (18) Z*p:I—NC. (26)
The analogous calculation for the current yields

In order to quantize the system of coordinates with con-
straints, we impose the commutation relations

i[Pk.Zf 1= 6u— 2z (27)

corresponding to the following commutation rules for the
t ‘momenta” ;:

(I )n=5-[2(1-cosBe)z (2] 7)7

—iBe'2Zf +2Zf d* — 7,28 D*]. (19

Equations(18) and (19) are the basis for our subsequen
discussion of the matrix elements of the current-current op-
erators.
It is convenient to rewrite Eqs19) and (18) in terms of  yhich maintain consistency with the constraints} =1 and

the “momentum” variables z¥ m=0. The first of these follows from the unitarity condi-

1 . _ tion on the matrixA, and the second follows from the first,

m= m[zl_zl(zj* zj)] (200  combined with the definition ofr,, Eq. (20).
We now represernitm, by

[z . m]=i(6u—2Z2) (29)

which are convenient for computational purposes, though 9 P
they differ from the conjugate momenta resulting from the T =— —ZZ§ = (29
action by terms linear iz, as seen below in Eq26). We 9z %
may rewrite the current&l8), (19) as follows in terms of the

This representation incorporates the commutation rules Eqg.
“momenta” (20): P P q

(28) and the constraint;* =0, given thatz]z,=1. Using
( i ) Eq. (29), we find

J =|=—1]{(1—co 2M) (zy i — m zf

(I )k P {( Le)(2M)(Zj | kZ') (22 =i f(2,2)] 30

—i(sinBe) 2M)(mz| +zem) —iBe'zz'}, (21)  \hich will be used in the calculations of the following sec-

tion.

()K=

i
—|{(1—co 2M)(zy 7y — mZ
277){( SG(P)( )( 1k ! k) IV. COMPUTATION OF THE MATRIX ELEMENTS

S . FOR THE VECTOR CURRENT-CURRENT
+|(S|nﬁ‘P)(2M)(7TIZE+Z|W:)_IB¢,Z|Z:} (22) INTERACTION

and are ready to address the computation of the matrix ele- We now apply the formalism developed above to the cal-
ments. culation of the ratio of matrix elements in which we are

We now formulate the quantization of the quantum-interested. As in the scalar case, we calculate the following
mechanical soliton problem. In terms of thez variables, ratio of flavor combinations, where the Lorentz indices are
the bosonized effective action of QGay be written ag2]  left implicit:

1 [ . . Too ([2(ud)(du)— (uu—dd)?])
_ = T _ t,_ St &
g z]= 2Mf dt(Dz)T(Dz)+ ZNCJ di[z'z-2z'z2] (23 T V2 (4030 T (o —aa )" (31)

where @Z)k:'zk_zk(zl* z) is the covariant derivative with The numerator and the denominator in E2{l) involve simi-
respect to the auxiliary (1) gauge field. The are subject to lar products of Lorentz components of the vector currents,

the constraints _ —
((ud)(du))=((I4) 123 -) 20 +{((I-)21(I4)12)

((Uu)(dd))oc((35)11(3-) 2 +((I-)11(I- )2, (32)
where the first constraint follows from th@PN~1 nature of '

the z-s and then the second follows from the definition of and similarly for((ﬁ)(ﬁ)),((@)(ﬁ)). Recalling the ex-
Dz. The canonical momenta are given by pressiong21),(22) for the components appearing in £§2),

z*z=1, z*(Dz)=0, (29
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we see that the evaluation of the matrix elements requires thdsing the relation between the two mass scalesand u
following commutation relations equations derived from Eq.which is given in the Appendix, as well as thkeintegrals

(29):
i[7%,22]=22,(1- 2% 77),
i[7],22]=—212,,

i[ 7%, 222,]=212,(2—32% 71),

i[5 ,212,1=71(1- 32 2,). (33
We will also need the results
i(zym% — mZ3)Za2,=23(1— 225 2,) (34
and
i(mZ5 +2,75)2222,=23(1- 425 2,). (35)

Using these relations, it is possible to rewritéud)
X(du)) in the form

((I) 123 )21t H.eyxApg+ Agpt Agst (Agi+Agg),
(36)
where the different terms appearing in E§6) may be ex-

pressed as
2(2M)?
J |22%(2

(2m)°

“ dx(1—cosBe)?

11—

_2|22|2)2!

A22:_ (2 2m? [f dx(sinBe) “' EANG!

- 4|Z2|2)21

2
A33:(27)4j dX(B@')Z}f EANEZIRe

2(2M)
A31+A13:(ZT)2(277)f 2182, %(1 2| 2,)?)

(37

collected there, we obtain finally the numerical value

10 [2)\?
n10 (2
7|27 77) }
for the first terms in the numerator and denominator of Eq.

(3D).
Turning now to the remaining terms, we recall that

((ud)(du))= (39

i
(J+)kk= (E){(l_COSG‘P)(ZkW: —mZg )(2M)
Fi(sinBe)(mzg +z¢m ) (2M) —i B’ 2z }

i
5){(2M)(1—c058<p)
X[zymy — Z§ m+i(1—2zZ5)]Fi(2M)(sinBe)

X[zZf mtzemy —i1(1—zZ5)]1—iBe' zzi ). (40)

The commutation relations may then be used to evaluate

(4% — 2,73 ) Z52,=222,(2— 3ZF 2,) — Z52,(1— 325 2,)

=222,[1-3(|1z1|?~ 25?1 (41)

Using this relation, we see that the action of the currents on
the proton state gives

[(‘Ji)ll_(‘Ji)Zl-l |p>

i2M 1- 1-2(|z4)%—2,)?
51 2M(1-coBe)[1-2(|21*~ 2]

Fi(sinBe)(2M)[1—4(|z,]2—|2z5]»)]
+B¢'(|21°— 20 } (Z820) |g) (42)

which results in the amplitude

These different terms come from products and combinations

of the three parts of Eq$21) and(22). It is easy to see that
the only interference terms that survive the integral over
are theA 3 3, terms exhibited in Eq(38).

Performing thex integrals over the classical configuration
parametrized byp(x), and using formulas given in the Ap-
pendix, we obtain

2M2 1 (16
_-" 2\2
A1 e M( )f 12/%(1-2|z,]%)?,
2M? 1 . 5
A22=—— f|21| (1-4z,%)?,
1 6|, |4
Asz=52(8) |24]®[Z5|%,
(AgitAg)=

M
“rom [ laltr-2zn. @9

Z(x,21,2)=(P|[(I+) 11— (1) 22l[ (I-) 11— (I2) 20| P)

(L1010

2
= (ZT)z|Zl|4|Zz|2{(2M)2(1—003390)2

X[1-2(|z2*= |z *)1?~ (2M)*(sinB )
X[1=4(129?= 2o 12+ (47IN,)
X (¢")%(|21]?—|2o|*)*+ 4M B’ (1~ coBe)
X[1-2(1z4|*~ 2|1z~ 125} (43)
for the second terms in the numerator and denominator of
Eq. (31).

The next step is to perform the integration over the
classical soliton configuration, which results in
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2 2

32M
[1-2(2:f~ |2~ =5

[1-4(]z1]2~122|?)7?

f dx T _ 1 4l 12 64M
X (X,Zl,zz)—ﬁ|21| |z, 3u

+(81)(|21]2—120)%)%+ (M) (2m)[ 1 2(|24|2— | 2,]?) 1(|24|>— |22|2>]

o[ [52m

7 1 7\ a\?
e NG = pea R AL (=27 @9
C C

Specializing to the choiced;=N.=3, we find scatteringd 6], and with four-dimensional Skyrme model cal-
5 ) culations[5].
J dx T(x.21.2,) = M Iz |4|z |2 1+7T—(|z |2—|z |2) The feeble enhancement of tidd =0 four-fermion op-
el pp2ial 192l 5g T g A 2 erators is to be compared with the model-dependent result

found in the four-dimensional Skyrme modé&B]. Might the
)(|21|2— |Zz|2)2]- (45) problem of the small enhancem.ent thqt we find Iie_z with th.e

fact that the gluon condensate is relatively small in two di-

mensions, even vanishing in the lariyg-limit and in the
This may be evaluated using elementary integrals listed ijersions of the Skyrme model used [ib3]? It has indeed

+(8 m
27

the Appendix, yielding been suggested that the large enhancement of\the1/2
2 operator matrix elements in QGDnight be due to gluon
<(m—%)2>: ﬁ[ — __,_(_) } (46)  condensate effec{si2]. Our results are certainly consistent
721 \w with this idea, though by no means conclusive. How could

this suggestion be tested more directly? One possibility

Substituting this and EQ39) into Eq. (31), we obtain our  might be to use a formulation of chiral soliton models in

final result QCD, in which gluon condensation effects are taken more
T into account.
—2_054 (47) Even though our present calculations are not conclusive
Too for the resolution of the long-standingl =1/2 puzzle, we

believe that they may help build up a conceptual framework
in which it might be resolved. Some of the calculational

formalism developed here may also be useful in future ap-
V. COMMENTS AND DISCUSSION plications of QCD.

for the vector-current case.

We have shown in this paper that the matrix elements of
Al =2 four-fermion operators in QCpDare not suppressed ACKNOWLEDGMENTS
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that had not been required for previous calculations in
QCD, [4].

What might be the significance of our results for the in-
terpretation of the Al=1/2 enhancement observed in In this appendix we collect some formulae useful at inter-
QCD,? Clearly, QCD and QCD differ in many respects, mediate stages in the derivation of our results for the vector
particularly in the ultraviolet and the infrared. The currents.

APPENDIX

asymptotic freedom of QCDyields logarithmic factors in Some relevank integrals include

the ultraviolet region, which are known to leading and next-

to-leading ordef9]. Evaluating these factors at any plausible * _ _ f
renormalization scale, and multiplying them by the ratios of _w(COSG‘P 1)dx= o (A1)

Too/ Ty that we find does not give anything like the
Al=1/2 enhancement factor that is found in Q¢CBven if and
one allows for Clebsch-Gordan factors of order unity.
What about the infrared features of Qgland QCLR? * 2
Both theories are known to haygl condensates, and calcu- fﬁx(cos&p—l) dx= 3u (A2)
lations in QCD [4] of ratios of the differen{B|qq|B) are
known to be in qualitative agreement with determinationsused in the scalar-density calculation in Sec. Il, and in addi-
based on the magnitude of the term extracted frommN tion
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8 >; nj=N;. The latter constraint is a quantum consistency
j dX(Sinﬁ€0)2=3—. condition imposed by the Wess-Zumino term in the effective
H bosonic action, whose coefficienth. . To evaluate the ma-
trix elements represented in E@) we use
| axperr-su, (A3
) n+1
used in the vector-current calculation in Sec. IV. For com- (1z2[%= No+N;’
pleteness, we also recall the relation between the two mass ¢
scales we have in the problem

m T 3/2
M:m(N—J -
(ni+21)(n;+2)

Generic integrals over soliton wave functions are given by (|zi|*)= (No+ N (Net N+ 1) (A6)
expressions of the general form ¢ ¢

(i 1)(nj+1)
X ) (Ad) <|Zi|2|zj|2>_(NC+Nf)(Nc+Nf+1)
8N,/

(i#]),

NI (2P (N+n)!(P+n))! in particular. In the casglszc=3_, and normalizing_to l
(|zi|"N|z;|*") = [(N,+Ng +(N+P)—1]! whenN=2 andP=1, as is appropriate for the normalization
fr e ' of the A™ state, we have the general formula

n;!n;! o
([(Nf+Nc)—1]! (=) (A%) (22N |22y =2 NP (A7)
2 (N+P+2)!
which is the matrix element dfz|*N|z|?" in a normalized
state of the formzj*- .-z -z;':f, with the constraint used in Secs. Il and IV.
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