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We calculate in two-dimensional QCD~QCD2) the ratios of baryonic matrix elements ofDI52 and
DI50 four-fermion operators, with a view to understanding better the mechanism ofDI51/2 enhancement in
QCD4. We find relatively small suppressions of both the scalar-scalar and vector-vectorDI52 four-fermion
operators. We discuss the possible implications of these results, in view of a suggestion that gluon condensa-
tion may be an important contributing factor in theDI51/2 enhancement seen in QCD4. At the technical level,
our calculation of the vector-vector operator matrix element requires a treatment of the time dependence of the
QCD2 soliton which had not been developed in previous phenomenological calculations within this model.
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I. INTRODUCTION

Two-dimensional QCD~QCD2) is often a useful testing
ground for ideas concerning nonperturbative effects in QCD
in four dimensions~QCD4). Among the issues studied in
QCD2 have been those associated with confinement@1#, the
appearance of baryons (B) as solitons@2#, the existence of
constituent quarks and their relation to current quarks@3#,
and quark-antiquark condensates@4#. However, care must be
exercised in carrying conclusions over directly from QCD2
to QCD4, since there are essential differences between the
dynamics in the different dimensions. Among these differ-
ences are the dimensionless nature of the QCD4 gauge cou-
pling as opposed to the dimensional nature of the QCD2
gauge coupling, the associated differences in the infrared be-
haviors of QCD2 and QCD4 ~at least in perturbation theory!,
and the absence in QCD2 of spontaneous chiral symmetry
breaking and the pseudo-Goldstone boson interaction of the
light pions in QCD4. Another important difference, to which
we shall return in this paper, is the fact that gluons in
QCD2 do not have any physical polarization states. Thus in
two dimensions~2D! the analogue of the glue condensate in
the vacuum^0uF2u0& may only come from mixing with
quark-antiquark pairs, and hence is expected to be much
smaller than in QCD4. In particular, it vanishes in the large-
Nc limit.

QCD2 has been used previously to calculate certain non-

perturbative matrix elements of local operators, such as
quark-antiquark condensates in baryons^Buq̄quB& @4#, with
results1 that compare well with Skyrme models@5# and phe-
nomenological determinations in QCD4 @6#, and may cast
light on observations of apparent violations of the Okubo-
Zweig-Iizuka ~OZI! rule in meson-baryon couplings@7#.
Nonleptonic weak decays are controlled by the matrix
elements of higher-dimensional operators, such as
^Bu(q̄q)(q̄q)uB&, in QCD4. These matrix elements exhibit
some puzzling features, in particular large enhancements of
DI5 1

2 transitions compared withDI5
3
2 transitions~for a re-

view, see, for example,@8#!. It seems that calculable pertur-
bative QCD4 renormalization effects below the weak scale
@9# cannot explain all the largeDI5 1

2 enhancement ob-
served, and hence that the major part of it must be nonper-
turbative in nature. The main purpose of this paper is to
calculate an analogue in QCD2 of the enhancement of the
DI5 1

2 component of nonleptonic decay amplitudes,2 in the
hope of casting light on the nature of the nonperturbative
enhancement mechanism active in QCD4.

This calculation requires certain improvements in the
technology developed previously for calculations in QCD2
@2#. As is well known, baryons in QCD may be described as
solitons in a bosonized formulation. The collective coordi-
nates of the soliton must be quantized consistently, introduc-
ing a time dependence into the soliton wave function which
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1Of particular interest have been ratios of quark condensates, such
as the ratio of the strange quark condensate to the sum of all con-
densates, for which a smooth nonzero limit exists in the limit of
vanishing quark masses.
2For one previous approach to this problem using QCD2, see@10#.
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corresponds to the angular momentum of the baryonic soli-
ton ~Skyrmion! in QCD4 @11#. Previous calculations of bary-
onic matrix elements of simple local operators such asq̄q @4#
did not require an explicit treatment of this collective-
coordinate quantization. However, this is necessary for the
calculation of the baryonic matrix element of the nonleptonic
weak Hamiltonian, which contains current-current terms
Jm Jm , since the time componentJ0 involves time deriva-
tives of the bosonic fields in the soliton.

Our main physical result is a relatively small numerical
factor between the nonperturbativeDI5 1

2 andDI5 3
2 matrix

elements, which appears inadequate to explain theDI5 1
2 en-

hancement observed in QCD4, even allowing for the pertur-
bative enhancement factors calculated in QCD4 @9#. We in-
terpret this result as indicating that the observedDI5 1

2

enhancement in QCD4 may be due to particular features of
the nonperturbative QCD4 dynamics that are absent in
QCD2. A candidate for this is the gluon condensate, which
has indeed been proposed@12# as the main mechanism re-
sponsible for the observedDI5 1

2 enhancement in QCD4, and
which is relatively small in two dimensions, even vanishing
in the large-Nc limit.

It is interesting to compare this result to previous calcu-
lations in four-dimensional Skyrme models@13#, which
found a magnitude ofDI51/2 enhancement that is sensitive
to the model-dependent spatial wave function. In our two-
dimensional case, the integral over this wave function can be
carried out analytically and exactly. The Skyrme models in-
corporate correctly the physics of quark condensation and
chiral symmetry breaking in four dimensions, but do not in
general include representations of the gluonic degrees of
freedom in QCD4, and in particular the physics of gluon
condensation.

II. COMPUTATION OF THE MATRIX ELEMENTS
FOR THE QUADRILINEAR SCALAR

INTERACTION

As a warmup exercise, we start in this section by calcu-
lating an analogue of theDI51/2 enhancement in the ratio
between matrix elements of four-fermion scalar densities in
QCD2. Our eventual aim is to calculate the analogous ratio
between matrix elements of products of Lorentz-vector cur-
rents, as this is more comparable to the quantity of interest in
four dimensions. However, the latter calculation involves
more technical aspects of baryonic solitons in QCD2, so to
get the flavor of the physics of the computation we first
tackle the simpler case of scalar densities withI 350 and
I52,0, which we denote byT20 andT00, respectively.

To calculate the matrix elements of these operators, we
first review the static classical soliton which describes a
baryon in QCD2 @2#. In the strong-coupling limit this is given
by a solution to a sine-Gordon equation, as seen in Eq.~5.4!
of Ref. @2#, namely

w~x!5
4

b
arctan@exp~bA2mx!#, ~1!

where b5A4p/Nc is the coupling constant of the sine-
Gordon theory,m/b is the mass of the soliton, andm is
related to the common bare mass of the quarks by a renor-

malization group relation appropriate to two dimensions. The
semiclassical quantization of this soliton entails the introduc-
tion of time-dependent coordinateszi , i51, . . . ,Nf @2#. In
terms of these coordinates, the relations betweenq̄q bilinear
densities and the scalar fields follow from the standard
bosonization correspondence:

q̄iqi5$11~cosbw21!uzi u2%L, ~2!

whereL is an appropriate mass scale@4#.
On physical grounds, and in order to calculate finite terms

in the classical expression for the four-fermion operators, we
need to subtract the vacuum expectation values of the opera-
tors. This leads to the relations

q̄iqi q̄ jqj2^0uq̄iqi q̄ jqj u0&

5$@11~cosbw21!uzi u2#@11~cosbw21!uzj u2#21%L2

5$~cosbw21!~ uzi u21uzj u2!1~cosbw21!2uzi u2uzj u2%L2,

~3!

where the term proportional to21 at the end of first row
comes from the vacuum subtraction.

Next we turn to the computation of the expectation values
~3!. In the semiclassical approximation, we may separate out
the classical contribution, which amounts to an integral over
the spatial coordinatex. SettingbA2m5m, and using some
elementaryx integrals listed in the Appendix, we find

^q̄iqi q̄ jqj&5F163 uzi u2uzj u224~ uzi u21uzj u2!GL2

m
, ~4!

where the angular brackets denote the integration of Eq.~3!
over x.

In order to average over the quantum coordinateszi , we
must select a suitable wave function for the baryon. Since
direct analogues of the lowest-lying baryon octet do not exist
in QCD2, we choose theD1 state, which is the closest ana-
logue of the proton in two dimensions.3 Its wave function is
proportional toz1

2 z2, and since we are interested in ratios of
matrix elements, the normalization of the state factors out.
Our convention is to normalize thez integral ~A5! to unity
for N51,P52 whenNf5Nc53, as is appropriate for the
physicalD1 state.

We now discuss in more detail the internal symmetry
properties of the bilinearq̄iqj and quadrilinearq̄iqj q̄kql op-
erators. The isospin-one bilinear scalar densities are given in
terms of theu andd fields by

u1 ,1&5~ d̄u!,

u1 ,21&52~ ūd!, ~5!

u1 ,0&5
~ ūu!2~ d̄d!

A2
.

3We note in passing that theDI51/2 rule is known experimen-
tally to be valid for V2→Jp decays in QCD4: the ratio of
DI53/2,1/2 amplitudes A3,1 is measured to beA3 /A1

520.06360.014@14#.
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The corresponding relations between theI 350 quadrilinear
scalar densities of isospinsI52,0 and the quark fields are

T205KA2

3F ~ ūu!2~ d̄d!

A2 G 22 2

A6
~ ūd!~ d̄u!L

5K 2
1

A6
$2~ ūd!~ d̄u!2@~ ūu!2~ d̄d!#2%L , ~6!

T005K 2
1

A3 H 2~ ūd!~ d̄u!1F ~ ūu!2~ d̄d!

A2 G 2J L
5K 2

1

2A3
$4~ ūd!~ d̄u!1@~ ūu!2~ d̄d!#2%L . ~7!

We then use Eq.~A2! to perform thex integrations, obtain-
ing

T20 } @2uz1u2uz2u22~ uz1u22uz2u2!2#
L2

m

5@4uz1u2uz2u22~ uz1u41uz2u4!#
L2

m
,

T00 }
4uz1u2uz2u21~ uz1u22uz2u2!2

A2
L2

m

5
2uz1u2uz2u21~ uz1u41uz2u4!

A2
L2

m
~8!

for the different quadrilinear scalar densities withI52,0, re-
spectively.

The ratio of interest to us is

^T20&

^T00&
5A2

2R21

R11
, ~9!

where the auxiliary ratioR is defined by

R[2
^uz1u2uz2u2&

^uz1u41uz2u4&
. ~10!

Using the integrals~A5!, we getR5 2
3, which leads to the

final result

^T20&

^T00&
5A2

5
'0.28 ~11!

for the ratio of quadrilinear scalar densities.
This ratio is not nearly as small as the corresponding ratio

for current-current operators in QCD4 @14#, even after allow-
ing for Clebsch-Gordan coefficient factors of order unity and
the calculable perturbative short-distance enhancement in the
latter case@9#. However, before concluding anything about
the significance of different nonperturbative effects in
QCD2 and QCD4, we must analyze the technically more
complicated case of bilinear products of Lorentz-vector cur-
rents in QCD2.

III. FORMALISM FOR VECTOR CURRENTS
AND COLLECTIVE-COORDINATE

QUANTIZATION

The extra complications in the calculations of hadronic
matrix elements of Lorentz-vector currents and their bilinear
products arise because one must take into account the time
dependence of the hadronic wave function@2#, an issue that
has not been confronted in previous QCD2 calculations@4#,
including those in the previous section. These complications
appear for the first time because the expressions for the vec-
tor currents involve time derivatives of thezi , corresponding
physically to the appearance of conjugate momenta.

To see how these arise, we first derive general expressions
for the vector-current operators in terms of the classical co-
ordinate x and the quantum coordinatesz. The usual
bosonization rules yield, for the vector currents,

J15
i

2p
U†]1U,

J25
i

2p
U]2U

†, ~12!

whereU is a nonlinears-model variable in the action of the
bosonized representation of QCD2. The semiclassical quan-
tization rules give the fieldU in terms of a time-dependent
‘‘zero-mode’’ rotation A(t) from the classical solution
Uc(x):

U5A~ t ! Uc~x! A†~ t !. ~13!

The last column of the zero-mode matrixA is expressed in
terms of the semiclassical variableszi .

The light-front derivatives]1,2U may now be evaluated:

]1,2U5Ȧ~ t !UcA
†~ t !1A~ t !UcȦ

†~ t !6A~ t !Uc8~x!A†~ t !.
~14!

Using Eq.~14!, we then find

U†]1U5AUc
†~A†Ȧ!UcA

†1AȦ†1AUc
†Uc8A

†

5A@~Uc
†21!11#A†Ȧ@~Uc21!11#A†

1AȦ†1AUc
†Uc8A

†

5A~Uc
†21!A†Ȧ~Uc21!A†1A~Uc

†21!A†ȦA†

1Ȧ~Uc21!A†1AUc
†Uc8A

† ~15!

which yields the expression for the currentJ1 ,

J15
i

2p
$A~Uc

†21!A†Ȧ~Uc21!A†

1@Ȧ~Uc21!A†2A~Uc
†21!Ȧ†#1A~Uc

†Uc8!A†%, ~16!

and an analogous expression may be derived forJ2 .
DefiningF[exp(ibw)21, we may rewrite Eq.~16! in the

form
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~J1!kl5
i

2p
@zkuFu2zj* żjzl*1 żkzl*F*

2zkżl*F2 ibw8~x!zkzl* # ~17!

which may be simplified to

~J1!kl5
i

2p
@2~12cosbw!zk~zj* żj !zl*

2 ibw8zkzl*1 żkzl*F2zkżl*F#. ~18!

The analogous calculation for the currentJ2 yields

~J2! lk5
i

2p
@2~12cosbw!zl~zj* żj !zk*

2 ibw8zlzk*1 żlzk*F*2zl żk*F* #. ~19!

Equations~18! and ~19! are the basis for our subsequent
discussion of the matrix elements of the current-current op-
erators.

It is convenient to rewrite Eqs.~19! and ~18! in terms of
the ‘‘momentum’’ variables

p l[
1

2M
@ żl2zl~zj* żj !# ~20!

which are convenient for computational purposes, though
they differ from the conjugate momenta resulting from the
action by terms linear inz, as seen below in Eq.~26!. We
may rewrite the currents~18!, ~19! as follows in terms of the
‘‘momenta’’ ~20!:

~J1!kl5S i

2p D $~12cosbw!~2M !~zkp l*2pkzl* !

2 i ~sinbw!~2M !~pkzl*1zkp l* !2 ibw8zkzl* %, ~21!

~J2! lk5S i

2p D $~12cosbw!~2M !~zlpk*2p lzk* !

1 i ~sinbw!~2M !~p lzk*1zlpk* !2 ibw8zlzk* % ~22!

and are ready to address the computation of the matrix ele-
ments.

We now formulate the quantization of the quantum-
mechanical soliton problem. In terms of thez, ż variables,
the bosonized effective action of QCD2 may be written as@2#

S@z#5
1

2ME dt~Dz!†~Dz!1
i

2
NcE dt@ ż†z2z†ż# ~23!

where (Dz)k5 żk2zk(zl* żl) is the covariant derivative with
respect to the auxiliary U~1! gauge field. Thez are subject to
the constraints

z* z51, z* ~Dz!50, ~24!

where the first constraint follows from theCPN21 nature of
the zi-s and then the second follows from the definition of
Dz. The canonical momenta are given by

pk5
]S

] żk*
5

1

2M
@ żk2zk~zl* żl !#1

i

2
Nczk ~25!

and there is a conjugate expression forpk* . It is convenient
to rewrite the constraints~24! in the form

pk5
1

2M
~Dz!k1

i

2
Nczk ,

z* p5
i

2
Nc . ~26!

In order to quantize the system of coordinates with con-
straints, we impose the commutation relations

i @pk ,zl* #5dkl2zkzl* ~27!

corresponding to the following commutation rules for the
‘‘momenta’’ p i :

@zk* ,p l #5 i ~dkl2zk* zl ! ~28!

which maintain consistency with the constraintszkzk*51 and
zl*p l50. The first of these follows from the unitarity condi-
tion on the matrixA, and the second follows from the first,
combined with the definition ofp l , Eq. ~20!.

We now representip l by

ip l5
]

]zl*
2zlzk*

]

zk*
. ~29!

This representation incorporates the commutation rules Eq.
~28! and the constraintzl*p l50, given thatzl* zl51. Using
Eq. ~29!, we find

ip l f ~z,z* !5 i @p l , f ~z,z* !# ~30!

which will be used in the calculations of the following sec-
tion.

IV. COMPUTATION OF THE MATRIX ELEMENTS
FOR THE VECTOR CURRENT-CURRENT

INTERACTION

We now apply the formalism developed above to the cal-
culation of the ratio of matrix elements in which we are
interested. As in the scalar case, we calculate the following
ratio of flavor combinations, where the Lorentz indices are
left implicit:

T20
T00

5A2
^@2~ ūd!~ d̄u!2~ ūu2d̄d!2#&

^@4~ ūd!~ d̄u!1~ ūu2d̄d!2#&
. ~31!

The numerator and the denominator in Eq.~31! involve simi-
lar products of Lorentz components of the vector currents,

^~ ūd!~ d̄u!&}^~J1!12~J2!21&1^~J2!21~J1!12& ,

^~ ūu!~ d̄d!&}^~J1!11~J2!22&1^~J2!11~J2!22&, ~32!

and similarly for^(ūu)(ūu)&,^(d̄d)(d̄d)&. Recalling the ex-
pressions~21!,~22! for the components appearing in Eq.~32!,
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we see that the evaluation of the matrix elements requires the
following commutation relations equations derived from Eq.
~28!:

i @p1* ,z1
2#52z1~12z1* z1!,

i @p1* ,z2#52z1* z2 ,

i @p1* ,z1
2z2#5z1z2~223z1* z1!,

i @p2* ,z1
2z2#5z1

2~123z2* z2!. ~33!

We will also need the results

i ~z1p2*2p1z2* !z1
2z25z1

3~122z2* z2! ~34!

and

i ~p1z2*1z1p2* !2z1
2z25z1

3~124z2* z2!. ~35!

Using these relations, it is possible to rewrite^(ūd)
3(d̄u)& in the form

^~J1!12~J2!211H.c.&}A111A221A331~A311A13!,
~36!

where the different terms appearing in Eq.~36! may be ex-
pressed as

A115
2~2M !2

~2p!2
F E dx~12cosbw!2G E uz1u6~1

22uz2u2!2,

A2252
2~2M !2

~2p!2
F E dx~sinbw!2G E uz1u6~1

24uz2u2!2,

A335
2

~2p!2
F E dx~bw8!2G E uz1u6uz2u4,

A311A135
2~2M !

~2p!2
~2p!E uz1u6uz2u2~122uz2u2!.

~37!

These different terms come from products and combinations
of the three parts of Eqs.~21! and~22!. It is easy to see that
the only interference terms that survive the integral overx
are theA13,31 terms exhibited in Eq.~38!.

Performing thex integrals over the classical configuration
parametrized byw(x), and using formulas given in the Ap-
pendix, we obtain

A115
2M2

p2

1

m S 163 D E uz1u6~122uz2u2!2,

A2252
2M2

p2

1

m S 83D E uz1u6~124uz2u2!2,

A335
1

2p2 ~8m!E uz1u6uz2u4,

~A311A13!5
2M

p2 ~2p!E uz1u6uz2u2~122uz2u2!. ~38!

Using the relation between the two mass scalesM and m
which is given in the Appendix, as well as thez integrals
collected there, we obtain finally the numerical value

^~ ūd!~ d̄u!&5
m

7 F10271S 2p D 2G ~39!

for the first terms in the numerator and denominator of Eq.
~31!.

Turning now to the remaining terms, we recall that

~J6!kk5S i

2p D $~12cosbw!~zkpk*2pkzk* !~2M !

7 i ~sinbw!~pkzk*1zkpk* !~2M !2 ibw8zkzk* %

5S i

2p D $~2M !~12cosbw!

3@zkpk*2zk*pk1 i ~12zkzk* !#7 i ~2M !~sinbw!

3@zk*pk1zkpk*2 i ~12zkzk* !#2 ibw8zkzk* %. ~40!

The commutation relations may then be used to evaluate

i ~z1p1*2z2p2* !z1
2z25z1

2z2~223z1* z1!2z1
2z2~123z2* z2!

2

5z1
2z2@123~ uz1u22uz2u2!#. ~41!

Using this relation, we see that the action of the currents on
the proton state gives

@~J6!112~J6!22# up&

5
1

2p
$ 2M ~12cosbw!@122~ uz1u22uz2u2!#

7 i ~sinbw!~2M !@124~ uz1u22uz2u2!#

1bw8~ uz1u22uz2u2! % ~z1
2z2! ug& ~42!

which results in the amplitude

I~x,z1 ,z2![^pu@~J1!112~J1!22#@~J2!112~J2!22#up&

1^@•••#2@•••#1&

5
2

~2p!2
uz1u4uz2u2$~2M !2~12cosbw!2

3@122~ uz1u22uz2u2!#22~2M !2~sinbw!2

3@124~ uz1u22uz2u2!#21~4p/Nc!

3~w8!2~ uz1u22uz2u2!214Mbw8~12cosbw!

3@122~ uz1u22uz2u2!#~ uz1u22uz2u2!% ~43!

for the second terms in the numerator and denominator of
Eq. ~31!.

The next step is to perform thex integration over the
classical soliton configuration, which results in
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E dx I~x,z1 ,z2!5
1

2p2 uz1u4uz2u2H 64M2

3m
@122~ uz1u22uz2u2!#22

32M2

3m
@124~ uz1u22uz2u2!#2

1~8m!~ uz1u22uz2u2!21~4M !~2p!@122~ uz1u22uz2u2!#~ uz1u22uz2u2!J
5

m

2p2 uz1u4uz2u2H 16 S p

Nc
D 21NcS p

Nc
D 2~ uz1u22uz2u2!1F82S p

Nc
D 2S 4312NcD G~ uz1u22uz2u2!2J . ~44!

Specializing to the choicesNf5Nc53, we find

E dx I~x,z1 ,z2!5
m

2p2 uz1u4uz2u2H p2

54
1

p2

3
~ uz1u22uz2u2!

1S 82
22p2

27 D ~ uz1u22uz2u2!2J . ~45!

This may be evaluated using elementary integrals listed in
the Appendix, yielding

^~ ūu2d̄d!2&5
m

7 F2
4

27
1S 2p D 2G . ~46!

Substituting this and Eq.~39! into Eq. ~31!, we obtain our
final result

T20
T00

50.54 ~47!

for the vector-current case.

V. COMMENTS AND DISCUSSION

We have shown in this paper that the matrix elements of
DI52 four-fermion operators in QCD2 are not suppressed
greatly by comparison with the correspondingDI50 opera-
tors. This conclusion holds true for both scalar-scalar and
vector-vector four-fermion operators. The calculation of the
latter case required the development of some formal machin-
ery, including collective-coordinate quantization and the
treatment of the time dependence of the quantized soliton,
that had not been required for previous calculations in
QCD2 @4#.

What might be the significance of our results for the in-
terpretation of the DI51/2 enhancement observed in
QCD4? Clearly, QCD2 and QCD4 differ in many respects,
particularly in the ultraviolet and the infrared. The
asymptotic freedom of QCD4 yields logarithmic factors in
the ultraviolet region, which are known to leading and next-
to-leading order@9#. Evaluating these factors at any plausible
renormalization scale, and multiplying them by the ratios of
T00/T20 that we find does not give anything like the
DI51/2 enhancement factor that is found in QCD4, even if
one allows for Clebsch-Gordan factors of order unity.

What about the infrared features of QCD2 and QCD4?
Both theories are known to haveq̄q condensates, and calcu-
lations in QCD2 @4# of ratios of the different̂ Buq̄quB& are
known to be in qualitative agreement with determinations
based on the magnitude of thes term extracted frompN

scattering@6#, and with four-dimensional Skyrme model cal-
culations@5#.

The feeble enhancement of theDI50 four-fermion op-
erators is to be compared with the model-dependent result
found in the four-dimensional Skyrme model@13#. Might the
problem of the small enhancement that we find lie with the
fact that the gluon condensate is relatively small in two di-
mensions, even vanishing in the large-Nc limit and in the
versions of the Skyrme model used in@13#? It has indeed
been suggested that the large enhancement of theDI51/2
operator matrix elements in QCD4 might be due to gluon
condensate effects@12#. Our results are certainly consistent
with this idea, though by no means conclusive. How could
this suggestion be tested more directly? One possibility
might be to use a formulation of chiral soliton models in
QCD4 in which gluon condensation effects are taken more
into account.

Even though our present calculations are not conclusive
for the resolution of the long-standingDI51/2 puzzle, we
believe that they may help build up a conceptual framework
in which it might be resolved. Some of the calculational
formalism developed here may also be useful in future ap-
plications of QCD2.
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APPENDIX

In this appendix we collect some formulae useful at inter-
mediate stages in the derivation of our results for the vector
currents.

Some relevantx integrals include

E
2`

`

~cosbw21!dx52
4

m
~A1!

and

E
2`

`

~cosbw21!2dx5
16

3m
~A2!

used in the scalar-density calculation in Sec. II, and in addi-
tion
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E dx~sinbw!25
8

3m
,

E dx~bw8!258m, ~A3!

used in the vector-current calculation in Sec. IV. For com-
pleteness, we also recall the relation between the two mass
scales we have in the problem

M5
m

2A2
S p

Nc
D 3/25S p

8Nc
Dm. ~A4!

Generic integrals over soliton wave functions are given by
expressions of the general form

^uzi u2Nuzj u2P&5H ~N1ni !! ~P1nj !!

@~Nf1Nc!1~N1P!21#! J Y
H ni !nj !

@~Nf1Nc!21#! J ~ iÞ j ! ~A5!

which is the matrix element ofuzi u2Nuzj u2P in a normalized

state of the formz1
n1
•••zi

ni
•••z

Nf

nNf , with the constraint

( i ni5Nc . The latter constraint is a quantum consistency
condition imposed by the Wess-Zumino term in the effective
bosonic action, whose coefficient isNc . To evaluate the ma-
trix elements represented in Eq.~4! we use

^uzi u2&5
ni11

Nc1Nf
,

^uzi u2uzj u2&5
~ni11!~nj11!

~Nc1Nf !~Nc1Nf11!
~ iÞ j !,

^uzi u4&5
~ni11!~ni12!

~Nc1Nf !~Nc1Nf11!
, ~A6!

in particular. In the caseNf5Nc53, and normalizing to 1
whenN52 andP51, as is appropriate for the normalization
of theD1 state, we have the general formula

^uz1u2N uz2u2P&5
5!

2

N! P!

~N1P12!!
~A7!

used in Secs. II and IV.
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