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The Dirac structure of confinement is shown to be of a timelike-vector nature in the heavy quark limit of
QCD. This stands in contradiction with the phenomenological success of the Dirac scalar confining potential.
A resolution is achieved through the demonstration that an effective scalar interaction is dynamically generated
by nonperturbative mixing between ordinary and hybridQQ̄ states. The resolution depends crucially on the
collective nature of the gluonic degrees of freedom. This implies that dynamical gluonic effects are vital when
attempting to incorporate fine structure in models of theQQ̄ interaction.@S0556-2821~97!00707-8#
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I. INTRODUCTION

Although it has been postulated for more than 30 years,
the phenomenon of quark confinement remains an enigmatic
feature of QCD. Quenched lattice gauge theory and heavy
quark phenomenology indicate that the static (mq@LQCD),
long-range potential should be linear with a slope of
b'0.18 GeV2. The order 1/mq

2 quark-antiquark, long-range,
spin-dependent~SD! structure has also been studied. Com-
parisons with spin splittings in theJ/c andY spectra@1#
indicate that the spin dependence can only arise from the
nonrelativistic reduction of a scalar current quark-antiquark
interaction. This picture is also supported by calculations of
the long-range, spin-dependent effective potentials on the
lattice @2#.

Unfortunately, little analytical progress has been made on
this problem. The framework for most investigations on this
subject was provided by the Wilson loop approach of Eich-
ten and Feinberg@3# who extended the analysis of the spin-
independent potentials of Brown and Weisberger@4#. The
standard parametrization for the long-range SD quark-
antiquark interaction introduced in Ref.@3# is given by

VSD~r !5S sq•Lq
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4mq̄
2 D S 1r de

dr
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sq•sq̄V4~r !. ~1!

Here,e5e(r ) is the static potential,r5ur u5urq2r q̄u is the
Q̄Q separation, and theVi5Vi(r ) are determined by electric
and magnetic field insertions on quark lines in the Wilson

loop expectation value~explicit expressions are given in Sec.
II C!. As shown by Gromes@5#, covariance under Lorentz
transformations, leads to a constraint between the SD poten-
tials:

e~r !5V2~r !2V1~r !. ~2!

Other, more or less, fundamental relations were also derived
@3,6,7#.

In a model approach,QQ̄ interactions are typically de-
rived from a nonrelativistic reduction of a relativistic
current-current interaction. As far as long-range potentials
are concerned, only timelike-vector or -scalar currents are
relevant @8#. Performing a nonrelativistic reduction of a
vector-vector interaction yields V150, V25e,
V35e8/r2e9, andV452¹2e. Alternatively, the reduction
of a scalar interaction yields

V152e, V25V35V450. ~3!

It is the alternation in sign of the combinationV11V2 be-
tween vector and scalar currents which, through the analysis
of the heavy quarkonia spectrum, enabled Schnitzer to iden-
tify the scalar interaction as the likely structure for confine-
ment @1#.

Calculations@9,10# of the SD potentials based on sophis-
ticated models of the Wilson loop typically yield results
which are in agreement with Eq.~3!. In particular, the
‘‘minimal area law’’ model for the Wilson loop, a simple
extension of the strong coupling limit of lattice QCD, leads
to a picture which is very close to the classical flux tube
model of Buchmu¨ller @11#. He noted that if one assumes that
the chromoelectric field is confined within a tube between
the Q̄Q pair then the magnetic field generated by the flux
tube vanishes in the individual quark rest frames and the
only contribution to the fine structure comes from the kine-
matical Thomas precession. This results in a SD structure
which is identical to that of Eq.~3!.

A consistent picture of a QCD-generated effective scalar
confinement interaction appears to be emerging. It is there-
fore disconcerting that attempts to build Hamiltonian-based
models of QCD@12# seem to require vector confinement. For
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example, we have found@13,14# that it is impossible to con-
struct a stable BCS-like vacuum of QCD when scalar con-
finement is assumed. This is problematical if one wishes to
dynamically generate constituent quark masses. Furthermore,
attempts at modeling chiral pions will be hindered by the
explicit lack of chiral symmetry in a scalar interaction. These
observations appear to stand in contradiction to the well-
established scalar confinement hypothesis.

In the following we resolve this issue by first performing
a Foldy-Wouthuysen reduction of the full Coulomb gauge
Hamiltonian of QCD. This immediately establishes that the
Dirac structure of confinement for heavy quarks is of a
timelike-vector nature. It is commonly stated in the literature
that vector confinement is ruled out by its spin-dependent
structure. We wish to stress that one must be careful in this
judgement. In particular, the spin-dependent interactions
which are generated by QCD are more subtle than those
given by the simple nonrelativistic reduction of an effective
long-range interaction. Indeed, we shall demonstrate that the
scalar character of the spin splittings in heavy quarkonia is
dynamically generated through effective interactions which
crucially depend on the collective nature of the gluonic de-
grees of freedom.

II. HEAVY QUARK EXPANSION OF HQCD

Our starting point is the Coulomb gauge QCD Hamil-
tonian @15#

HQCD5E dxc†~x!@2 ia•¹1bm#c~x!1HYM1VC

2gE dxc†~x!a•A~x!c~x!, ~4!

where

VC5
1

2
g2E dxdyJ 21ra~x!Vab~x,y;A!Jrb~y!, ~5!

Vab~x,y;A!5^x,au~¹•D!21~2¹2!~¹•D!21uy,b&, ~6!

and

HYM5
1

2E dx@J 21P~x!J P~x!1B2~x!#. ~7!

The degrees of freedom are the transverse gluon field
A5AaTa, its conjugate momentumP5PaTa, and the quark
field in the Coulomb gauge. The Faddeev-Popov determinant
is written asJ5 Det@¹•D#, with Dab5¹dab2g fabcAc be-
ing the covariant derivative in the adjoint representation, and
the magnetic field is given byBa5¹3Aa1g fabcAb3Ac.
The static interactionVC is the non-Abelian analogue of the
Coulomb potential. It involves the full QCD color charge
density which has both quark and gluon components:

ra~x!5c†~x!Tac~x!1 f abcAb~x!•Pc~x!. ~8!

The most salient feature of the Coulomb gauge Hamil-
tonian is that all of the degrees of freedom are physical. This

makes it especially useful for identifying the physical
mechanisms which drive the spin splittings in heavy quarko-
nia.

A. The Foldy-Wouthuysen transformation

We proceed by performing a Foldy-Wouthuysen transfor-
mation on the QCD Hamiltonian. This is done in complete
analogy to the quantum-mechanical case where an operator
is constructed which removes the interactions between upper
and lower components of the quark wave function order by
order in the inverse quark mass@16#, except that the unitary
transformation is now constructed in Fock space. The result-
ing Hamiltonian is given by

HQCD→HFW5E dx@mqh
†~x!h~x!2mq̄x†~x!x~x!#1HYM

1VC1H11H21•••, ~9!

H15
1

2mq
E dxh†~x!~D22gs•B!h~x!2~h→x;mq→mq̄ !,

~10!

H25
1

8mq
2E dxh†~x!gs•@E,3D#h~x!1~h→x;mq→mq̄ !.

~11!

In this expression,h5(11b)c/2 andx5(12b)c/2 denote
the upper and lower components of the quark wave function
and correspond to the annihilation and creation operators of
the heavy quark and antiquark, respectively. The ellipsis de-
notes terms which are either ofO(1/m3) or are spin indepen-
dent at order 1/m2. Finally,D5 i¹1gA is the covariant de-
rivative in the fundamental representation. The electric field
contains both transverse and longitudinal components,
Ea52Pa1Ei

a where

Ei
a52¹A0

a2g¹¹22f abcAb
•¹A0

c ~12!

and

A0
a~x!5gE dyVab~x,y;A!rb~y!. ~13!

B. The static potential

To leading order in the quark mass the Hamiltonian de-
scribes two static, noninteracting quarks. AtO(m0) the
Hamiltonian reduces toH05HYM1VC . The eigenstates of
H0 may be labeled by the quark and antiquark coordinates
and by an index which classifies the adiabatic state of the
gluonic degrees of freedomnr ,

H0unr ;rqr q̄&5en~r !unr ;rqr q̄&. ~14!

Note that we have made explicit the dependence of the glu-
onic degrees of freedom on the position of the quarksr .

The corresponding eigenenergiesen(r ) may be identified
with the Wilson loop potentials calculated on the lattice.
Thus, for example,e0(r ) is the Coulomb plus linear potential
seen long ago@17#. Static hybrid states are collectively de-
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noted unr ;rqr q̄& with nrÞ0. In recent studies@18#, the
lowest-lying adiabatic hybrid potential,e1(r ) has been
evaluated.

While bothHYM andVC may contribute to the linearly
rising potential energy seen on the lattice, it is clear that the
quarks may only interact with the flux tube via the non-
Abelian Coulomb interaction. Therefore, the Dirac structure
of confinement corresponds tog0^ g0 from the product of
color charge densities@see Eqs.~5! and ~8!#. As stressed in
the introduction, this appears to be at odds with 20 years of
quark model phenomenology. Since the phenomenology is
based on spin splittings, it will be instructive to examine the
1/m2 perturbative corrections to the static potential.

C. Spin-dependent potentials

The spin-dependent first order correction to the static po-
tential is given by

den
~1!~r !5

g

8mq
2 ^nr ;rqr q̄u E dxh†~x!

3s•@E,3D#h~x!unr ;rqr q̄&

1~h→x;mq→mq̄ !. ~15!

The order 1/m term is not considered becauseD2 is not spin
dependent and the matrix element ofs•B vanishes. Equation
~15! may be simplified considerably as follows. Since we are
interested in spin-dependent terms only, the covariant deriva-
tive may be replaced by the ordinary derivativei¹, and the
electric field may be replaced by2¹A0. Contracting the
fermion field operators and using Eq.~13!, yields

den
~1!~r !;

2 ig2

8mq
2 e i jksq

i ^nr u¹ r q
j @TaVab~rq ,r q̄ ;A!Tb#unr&¹ r q

k

1~h→x;mq→mq̄ ;sq→2s q̄ !, ~16!

where the matrix elements are over gluonic degrees of free-
dom only. The approximation sign is meant to serve as a
reminder that the equality holds for spin-dependent terms
only. The above equation may be simplified further by using
the following relation:

^nr u@¹ r q
j g2TaVab~rq ,r q̄ ;A!Tb#unr&52¹ r q

j en~r !. ~17!

The physical content of this relationship is simply the state-
ment thatHYM does not explicitly depend on the quark po-
sitions. The minus sign is due to contracting the antiquark
operators. Quark line contraction also yields tadpole terms
which vanish in the color singlet background and self-energy
diagrams which are subsumed into the leading orderO(m)
Hamiltonian. Making the appropriate substitution yields the
standard classical plus Thomas precession spin-orbit interac-
tion

den
~1!5S sq•Lq

4mq
2 2

sq̄•L q̄

4mq̄
2 D 1r den

dr
. ~18!

Thus, the first term in Eq.~1!, generalized to any adiabatic
potential and, therefore, true for both ordinary and hybrid
Q̄Q states, is reproduced. At second order in perturbation
theory the SD corrections are given by

den
~2!~r !5 (

m5” n

u^nr ;rqr q̄uH1umr ;rqr q̄&u2

en~r !2em~r !
. ~19!

In this expression there are two terms which correspond to
the application of the magnetic field operator twice on a
single quark or antiquark line. These matrix elements are not
spin dependent since the product of the Pauli matrices col-
lapses to unity plus a single Pauli matrix. Alternatively, the
case where the magnetic fields act on different quark lines is
nontrivial and yields

den
~2!uBB5

g2

4mqmq̄

sq
i s q̄

j S (
m5” n

^nr ;rqr q̄u*dxh†~x!Bi~x!h~x!umr ;rqr q̄&^mr ;rqr q̄u*dyx†~y!Bj~y!x~y!unr ;rqr q̄&
en~r !2em~r !

1~h↔x! D . ~20!

If we define (g2 times! the term in brackets as

F S r̂ i r̂ j2 1

3
d i j DV31

1

3
d i j V4G ,

then the third and fourth terms in the expression of the spin-
dependent potential in Eq.~1! follow. If time-dependent
fields are considered, Eq.~20! may be rewritten as

@~ r̂ i r̂ j2 1
3d i j !V31

1
3d i j V4#

5 lim
T→`

g2E
2T/2

T/2

dtdt8S 1TD
3^nr ;rqr q̄uBi~rq ,t !B

j~r q̄ ,t8!unr ;rqr q̄&. ~21!

Settingnr50 in this expression yields a result which agrees
with that of Eichten and Feinberg.1

1Their expressions are in terms of Wilson loops and, therefore,
project onto the ground state asT goes to infinity.
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There are four terms in Eq.~19! which contribute toV1. These involve the application of the magnetic field and the
covariant derivative on the same quark line:

2g

4mq
2 S (

mÞn

^nr ;rqr q̄u*dxh†~x!D2h~x!umr ;rqr q̄&^mr ;rqr q̄u*dyh†~y!s•B~y!h~y!unr ;rqr q̄&
en~r !2em~r !

1H.c.1~h→x;mq→mq̄ ! D .
~22!

Using the relationship~which holds for the spin-dependent
terms only!,

d

dt
h†~x!D2h~x!;22igh†~x!E~x!•¹h~x!, ~23!

allows one to replace the first factor in Eq.~22! by one in-
volving the electric field. Performing the time integral and
contracting the fermion field operators result in

den
~2!uV15

g2

2mq
2sq

j S (
mÞn

^nr uEi~rq!umr&^mr uBj~rq!unr&
@en~r !2em~r !#2

1H.c.D¹ r q
i 1~h→x;mq→mq̄ ;sq→2s q̄ !.

~24!

If g2 times the term in brackets is defined as

2 i
dV1

~n!~r !

dr

r k

r
e i jk , ~25!

then this yields a spin-orbit interaction, in agreement with
the second term in Eq.~1!. Alternatively, if the time integral
is retained after substituting Eq.~23! in Eq. ~22!, and the sum
over energy denominators is also represented by another
time integral, then the expression forV1 can be cast into the
form

r̂
dV1
dr

5 lim
T→`

ig2

2 E
2T/2

T/2

dtdt8S t82t

T D ^nr ;rqr q̄uB~rq ,t !

3E~rq ,t8!unr ;rqr q̄&, ~26!

which agrees with the result of Eichten and Feinberg@3#.
The remaining contributions to the second order energy

correction correspond to an interaction between the quark
and antiquark with both electric and magnetic operators at
the vertices. Similar manipulations as forV1 yield the por-
tion of VSD proportional toV2, once the following definition
is made:

2 i
dV2

~n!~r !

dr

r k

r
e i jk

5g2S (
m

^nr uBi~rq!umr&^mr uEj~r q̄ !unr&
@en~r !2em~r !#2

1H.c.D , ~27!

which is equivalent to

r̂
dV2
dr

5 lim
T→`

ig2

2 E
2T/2

T/2

dtdt8S t82t

T D ^nr ;rqr q̄uB~r q̄ ,t !

3E~rq ,t8!unr ;rqr q̄&. ~28!

The Faddeev-Popov determinants have not been carried
through the calculations shown above. They may easily be
restored without changing any of the results. The time inte-
gral representations of the potentials shall prove convenient
for subsequent calculations; however, they are rather opaque.
Alternatively, the application of the Foldy-Wouthuysen
transformation to the Coulomb gauge QCD Hamiltonian
shows that these may be simply interpreted as nonperturba-
tive mixing with hybrid states. This makes it clear that it is
possible for nonperturbative dynamical physics to generate
an effective spin-dependent interaction which mimics a sca-
lar interaction. Actually, demonstrating this requires that the
matrix elements be evaluated. In the next section we propose
to do this with the flux tube model of Isgur and Paton@19#.

III. MODEL EVALUATION OF THE SPIN-DEPENDENT
POTENTIALS

Before proceeding to a model evaluation of the matrix
elements we note that it is possible to make some general
statements on their expected properties. The results of lattice
gauge theory make it clear that a flux tube-like configuration
of glue exists between static quarks. If one thinks of this as a
localized object with an infinite number of degrees of free-
dom, then it is apparent thatV2 must evaluate to zero. This is
because the electric field operator creates a local excitation in
the flux tube at positionrq @cf. Eq. ~28!#. This must then be
deexcited atr q̄ by the magnetic field operator. However, the
two operators become decorrelated because infinitely many
degrees of freedom intervene. Similarly, the long-range por-
tions of V3 andV4 both vanish. Thus, by Gromes’ relation
@Eq. ~2!#, the only nonzero long-range interaction must be
given byV152e. This is precisely the situation required for
‘‘scalar’’ confinement. It is, therefore, entirely plausible that
an effective scalar confinement is generated by nonperturba-
tive mixing with hybrids. Furthermore, the structure of the
spin-dependent terms depends crucially on the nature of the
ground-state gluonic degrees of freedom and clearly favors a
collective rather than a single particle picture of them.

These simple expectations are borne out in an explicit
model calculation. We shall employ the flux tube model of
Isgur and Paton@19# for this purpose. The model is extracted
from the strong coupling limit of the QCD lattice Hamil-
tonian. The authors first split the Hamiltonian into blocks of
distinct ‘‘topologies’’ ~in reference to the possible gauge-
invariant flux tube configurations! and then make adiabatic
and small oscillation approximations of the flux tube dynam-
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ics to arrive at anN-body discrete stringlike model Hamil-
tonian for gluonic degrees of freedom. This is meant to be
operative at intermediate scalesa;b21/2 where the strong
coupling is order unity. The lattice spacing is denoted bya
and there areN ‘‘beads’’ ~or links! evenly spaced between
the QQ̄ pair. These considerations led Isgur and Paton to
write the model Hamiltonian

HFT5b0r1 (
n51

N
1

2b0a
pn
21

b0a

2 (
n51

N11

@x~n!2x~n21!#2.

~29!

Here,b0 is the bare string tension,pn is the conjugate mo-
mentum, andx(n) is the transverse displacement vector at
site n. It has been generalized to include color degrees of
freedom:x5xl

c(n), c51, . . . ,8,n51, . . . ,N, andl51,2.
The ends of the string are fixed atn50 andn5N11 by the
static quark and antiquark positions andr5a(N11).

In normal coordinates, the flux tube Hamiltonian is

HFT5b0r1 (
n51

N

(
l51

2 S 1

2b0a
pnl
2 1b0avn

2qnl
2 D , ~30!

where the normal mode frequencies are given by
vn52/asin@np/2(N11)#. This Hamiltonian may be trivially
diagonalized with the canonical transformation

anl
a 5Ab0avn

2
qnl
a 1

ipnl
a

A2b0avn

, ~31!

and one obtains

HFT5(
nl

vnanl
† anl1br2

1

a
2

p

12r
1•••. ~32!

The string tension has been renormalized by the zero-point
energy which also introduces a~divergent! constant and
terms higher order in 1/r as shown above.

Evaluating the spin-dependent potentials in the flux tube
model requires explicit expressions for the electric and mag-
netic fields in a flux tube. It is, therefore, necessary to extend
the flux tube model somewhat. We shall find it convenient to
work in an ‘‘intermediate’’ coupling regime where we shall
use the strong coupling lattice Hamiltonian for intuition and
the weak coupling limit for the identification of the electric
and magnetic fields. In the strong coupling limit the electric
field operator simply counts links. It is, therefore, natural to
map it onto a link displacement,

El
a~n!;

k

a3
@xl

a~n11!2xl
a~n!#. ~33!

For the sake of clarity, we shall takerq50 andr q̄5r ẑ from
now on. This implies thatl5x,y. The factork is an arbi-
trary constant and will be identified later.

The commutation relation between the electric and mag-
netic fields is

@Ei
a~x!,Bj

b~y!#5 i e i jk¹y
kd~x2y!dab1O~g!, ~34!

which implies that the magnetic field operator may be de-
fined as the momentum conjugate toxl @20#

Bl
a~n!5

2 i

ka

]

]x
l̄

a
~n!

. ~35!

The e i jk of the commutator in Eq.~34! is taken into account
by the indexl̄, x x̄(n)52xy(n) and x ȳ(n)5xx(n). Note
that this relationship is physically sensible because the mag-
netic field operator maps onto the plaquette in the strong
coupling limit and the application of a plaquette to a flux
tube has the effect of moving a link one unit in one of the
directions transverse to theQ̄Q axis with the magnetic field
pointing in the other transverse direction.

Substituting Eqs.~33! and ~35! into Eq. ~29! and setting
k5aAb0, yields

HFT5b0r1
1

2E dx@„E'
a ~x!…21„B'

a ~x!…2#. ~36!

This is reminiscent of the Coulomb gauge Hamiltonian
whereHYM involves transverse fields only and where the
non-Abelian Coulomb interaction has been replaced by a lin-
ear potential. Thus, a satisfying consistency has been
achieved with this approach.

It is now a simple matter to write the field operators in
terms of the collective phonon operatorsa. One obtains

El
a~xn ,t !5

k

a3Ab0r
(
m

FsinS mp

N11
~n11! D

2sinS mp

N11
nD G 1

Avm

~aml
a e2 ivmt1aml

a† e1 ivmt!

~37!

and

Bl
a~xn ,t !5

2 i

k
Ab0

r (
m

sinS mp

N11
nD

3Avm~aml
a e2 ivmt2aml

a† e1 ivmt!. ~38!

Substituting these expressions into Eqs.~26! and ~28!,
taking the phonon operator matrix elements in the 0-phonon
number Q̄Q ground state, doing the time integrals, and
evaluating the sum over modes, yields

V1~r !52
g2

2a2
CFr ~39!

and

V2~r !5 lim
N→`

g2

2a2
CF

r

N
. ~40!

In the strong coupling limit one hasb5g2/(2a2)CF so that
the anticipated expression forV1 emerges in a natural way.
Furthermore,V2 approaches zero like 1/N; this is also true
for V3 andV4. The latter point is illustrated in Fig. 1 where
the correlation of electric and magnetic fields versus separa-
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tion along the flux tube is shown. As expected, the fields
become completely decorrelated as the number of interven-
ing degrees of freedom becomes large. Notice that this im-
plies that a constituent gluon model of hybrids would not
have been able to produce an effective scalar interaction.

IV. CONCLUSIONS

Spin splittings and lattice calculations indicate that con-
finement is scalar in nature. This conflicts with many relativ-
istic models of QCD which require vector confinement. For
example, a chirally symmetric interaction is needed if
pseudo-Goldstone pions and spontaneous chiral symmetry
breaking are to be generated dynamically. Furthermore, it
appears to be impossible to build a stable vacuum with a
scalar kernel. We have examined this issue with the heavy
quark limit of the Coulomb gauge QCD Hamiltonian. This
approach is physically intuitive and is simpler to interpret
and implement than methods based on the Wilson loop. We
found that the static confinement potential must indeed be a
Dirac timelike vector. Effective scalar interactions are gen-
erated at order 1/m2 by nonperturbative mixing with hybrid
states.

We have argued that the long-range spin-spin (V3 and
V4) and the vectorlike spin-orbit potentials (V2) should all
be zero since they involve field correlation functions evalu-
ated between quark and antiquark. This statement follows by
assuming that the gluonic degrees of freedom collapse into a
flux tube-like configuration, as shown by lattice gauge
theory. Alternatively, the scalarlike spin-orbit potential
(V1) is proportional to the matrix element of the electric and
magnetic fields evaluated at the same point and hence is
expected to be nonzero. Explicit calculations of the relevant
matrix elements were carried out in the flux tube model. The
model was extended to include color degrees of freedom and
to map the chromoelectric and chromomagnetic fields to flux
tube phonon operators. The results obtained were in agree-
ment with our general arguments and with Gromes’ relation.

A consistent picture of the Dirac structure of confinement
has emerged. The static central potential is timelike vector

while the spin-dependent structure mimics the nonrelativistic
reduction of an effective scalar interaction. This implies that
it is incorrect to employ a scalar confinement kernel when
doing calculations with light quarks. Note, however, that it
would be acceptable to use scalar confinement when working
explicitly in the chiral symmetry-broken phase, i.e., with
constituent quarks in the nonrelativistic limit. The work pre-
sented here also implies that a constituent gluon picture of
hybrids will yield incorrect results for certain observables.
For example,V1 andV2 would be of comparable magnitude
in a constituent gluon model. In general, these types of mod-
els must fail when nonlocal properties of the gluonic con-
figuration are considered. Alternatively, it is possible that
they perform quite well when evaluating global properties of
gluonics such as the hybrid spectrum.

The application of these results to spin splittings in heavy
quarkonia is not straightforward. For example, there is the
possibility of largeO(1/m3) corrections to the splittings.
Light quark loop effects may also contribute to spin-
dependent forces. It is, unfortunately, rather difficult to quan-
tify these effects. Perhaps, the best hope is with high preci-
sion nonrelativistic QCD~NRQCD! lattice calculations.
Light quark loops may be studied by examining shifts in the
predicted spin splittings between quenched and unquenched
calculations. One naively expects that these effects will be
independent of the~heavy! valence quark mass. Alterna-
tively, the higher order corrections should become larger as
one moves from theY system to theJ/c system ~the
quenched approximation may be used to test this!. Lattice
results for the quenchedY spectrum@21# appear to be very
close to experiment, supporting the idea that light quark loop
effects are negligible~or at least may be absorbed into the
parameters!. Indeed, the calculated value of the ratio of
P-wave splittings, r5@M (3P2)2M (3P1)#/@M (3P1)
2M (3P0)# yields 0.7~3! @22#, in good agreement with the
experimental value of 0.66~2!. Unfortunately, this may not
be regarded as definitive sincer was evaluated at
b56/g256.0; a similar calculation atb55.7 gives
r51.4(4), very far from the experimental ratio. The situa-
tion in theJ/c spectrum is somewhat worse. There, Davies

FIG. 1. Field correlation functions~for
N5100).

3992 55ADAM P. SZCZEPANIAK AND ERIC S. SWANSON



et al. @22# find r51.2(2), while the experimental value is
0.48~1!. Thus, it appears that higher order corrections in the
inverse quark mass may become substantial at the charm
quark scale. Clearly, further lattice work is required to settle
this issue. The effects of unquenching may also be studied
theoretically~although this will necessarily be model depen-
dent!. For example, Eichtenet al. @23# have used the
Wigner-Weisskopf method in a vector confinement model to
study the importance of virtual meson decays. Geiger and
Isgur @24# have also studied such effects on the structure of
the nucleon using the3P0 model to incorporate meson loops.

The methodology which we have adopted here—using the
heavy quark expansion of the Coulomb gauge QCD Hamil-
tonian to identify pertinent matrix elements and then using
the ~extended! flux tube model to calculate these—is poten-
tially very useful. For example, we may calculate the spin-
independent shifts to the static potential in precisely the same
manner. This should prove interesting since we expect that
they may not be obtained through the nonrelativistic reduc-
tion of an assumed kernel. Rather, we will see for the first
time evidence of the dynamical nature of confinement in the

effective 1/m2 structure. Spin-orbit splittings in baryons have
been something of a mystery for a long time@25#. These
should be accessible with the same techniques used here,
assuming that one can find a satisfactory quantum flux tube
model of gluonic excitations in baryons. It should also be
possible to examine the strong decays of heavy quarkonia
with this approach. This is of interest since these processes
are poorly understood and are of central importance to many
phenomena of current interest. Finally, most current models
of hadrons do not contain dynamical~nonperturbative! glu-
onic degrees of freedom. It should, however, be possible to
include them in a way which is consistent with the flux tube
model. We are currently investigating this possibility in the
context of the dynamical quark model@14#.
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