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TheQQ̄ semirelativistic interaction in QCD can be simply expressed in terms of the Wilson loop and its
functional derivatives. In this approach we present theQQ̄ potential up to order 1/m2 using the expressions for
the Wilson loop given by the Wilson minimal area law~MAL !, the stochastic vacuum model~SVM!, and dual
QCD ~DQCD!. We confirm the original results given in the different frameworks and obtain new contributions.
In particular we calculate up to order 1/m2 the complete velocity-dependent potential in the SVM. This allows
us to show that the MAL model is entirely contained in the SVM. We compare and discuss also the SVM and
the DQCD potentials. It turns out that in these two very different models the spin-orbit potentials show up the
same leading nonperturbative contributions and 1/r corrections in the long-range limit.
@S0556-2821~97!03705-3#

PACS number~s!: 12.38.Aw, 12.38.Lg, 12.39.Pn

I. INTRODUCTION

Since the pioneering paper of Wilson@1# a real break-
through was opened in the treatment of quark states and in
this framework a lot of work was devoted to the study of the
heavyQQ̄. The challenge was understanding low energy
QCD dynamics and hence confinement. The main character-
istics of the heavy meson and baryon spectrum are simple
and cleanly connected to expectation value of theQQ̄ and
3Q potentials. The size of theb andc systems extends over
distances where confinement already plays a relevant role
~only toponium can be described purely in terms of one
gluon exchange plus higher order perturbative corrections@2#
but, as is well known, we cannot access its spectrum!; more-
over, because of the mean value of the quark velocities, the
leading relativistic corrections can be appreciated and use-
fully tested on the data. Furthermore, a good understanding
of the heavy quark semirelativistic interaction is the first step
towards relativistic generalization.

At the static level, the linear confiningQQ̄ interaction,
corresponding to a constant energy density~the string ten-
sions) localized in a flux tube between the quarks, emerges
in lattice formulation of QCD and is contained in all the
existing confining models, e.g., Wilson area law, flux tube
model, and all kinds of dielectric and dual models. This cor-
responds also to the static limit of Buchmu¨ller’s picture @3#
of a rotating quark-antiquark state connected by a purely
chromoelectric tube with a pure transverse velocity and with
chromomagnetic field vanishing in the comoving system of
the tube. In this picture it follows simply that the nonpertur-
bative spin interaction is given only by the Thomas preces-
sion term.

The spin-dependent relativistic corrections were calcu-
lated first by Eichten, Feinberg@4# and Gromes@5# as a cor-
rection to the static limit~Wilson-Brown-Weisberger area
law result!. The potential is expressed in terms of averages of
electric and magnetic fields that can also be calculated on the

lattice. The Eichten-Feinberg-Gromes results, at least in the
long-range behavior, have been reproduced on the lattice
@6,7# ~for a detailed discussion see Sec. VI!. Recently the
spin-dependent potential was also studied in the context of
the heavy quark effective theory@8#.

In the literature relativistic generalizations of these results
were attempted in a Bethe-Salpeter context by constructing a
Bethe-Salpeter kernel which gives back static and spin-
dependent potentials. Using a simple convolution kernel~i.e.,
depending only on the momentum transferQ), this amounts
to considering a Lorentz scalar proportional to 1/Q4. The
velocity-dependent relativistic corrections were also obtained
but they are strongly dependent on the type of ‘‘instanta-
neous’’ approximation chosen to define the potential and on
the gauge. These nonperturbative velocity-dependent correc-
tions destroy the agreement with the data@9–11# and give
origin to the puzzle of how reconciling the spin structure
~i.e., the Lorentz nature of the kernel! with the velocity cor-
rections in one Bethe-Salpeter kernel. In this paper we will
not deal with this problem starting directly from the 1/m2

expansion of the quark-antiquark interaction. However, a
first step in its resolution seems to be the correct inclusion of
the low energy dynamics also in the spin-independent 1/m2

corrections. Moreover from the knowledge of these and the
spin-dependent corrections we will obtain some important
insights in the nature of the kernel.

Recently a method to obtain the complete 1/m2 quark-
antiquark~and three-quarks! potential, based on the path in-
tegral representation of the Pauli-type quark propagator, was
given in @12# ~see also@13,14# and@15#!. This formulation is
gauge invariant. The potential is obtained as a function of a
generalized Wilson loop~i.e., any kind of trajectory for the
quark and the antiquark can appear! and its functional de-
rivatives. These are all measurable on the lattice. In short, a
constituent quark semirelativistic interaction was obtained
with coefficients determined by the nonlinear gluodynamics.
This is the ideal framework in which to formulate a hypoth-
esis on the Wilson loop behavior~and so on the confinement
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mechanism! to be checked on the lattice and on the experi-
mental data.

First, to evaluate the nonperturbative behavior of the Wil-
son loop, a modified minimal area law~MAL ! was used~see
Sec. III!. This reproduces the Eichten-Feinberg-Gromes re-
sults @4,5# and gives a velocity-dependent potential propor-
tional to the flux tube angular momentum squared, so that,
by including velocity-dependent corrections, a ‘‘string
model’’ emerges~see@11,16#!. Also, the velocity-dependent
potentials seem to agree with recent available lattice data
@17#.

However, the MAL represents an extreme approximation
that gives the correct result for very large interquark dis-
tances and does not give insight into open problems such as
the relation between the nonperturbative structure of spin
and velocity corrections. For these reasons we have taken
into account two models of confinement, the stochastic
vacuum model~SVM! and dual QCD~DQCD! which both
give an expression for the whole behavior of the Wilson loop
and contain the area law in the long distance limit. It is
interesting to realize that both models reproduce essentially
the perturbative plus MAL results, respectively, in the limit
of short and long distances but produce also subleading cor-
rections. These allow us to understand better the physical
picture. For example, in the case of the nonperturbative spin-
orbit interaction, it turns out that the magnetic term cancels
in the area law limit~zero magnetic field in the comoving
framework! but presents 1/r suppressed corrections in the
other two models.

A careful comparison between the SVM and DQCD cor-
rections and an investigation of the approximations in which
they coincide seem to be of great importance to the aim of
understanding the low energy gluodynamics contained in the
Wilson loop.

The plan of the paper is the following one. In Sec. II we
briefly review the definition of the semirelativistic potential
and the notations. In Sec. III we collect the results obtained
in the MAL model. In Sec. IV we briefly present the SVM
and use it to evaluate the potential in the context of Sec. II.
In particular, we also obtain the SVM velocity-dependent
potential which is new. We show that it satisfies important
identities and we give the short- and long-range limits. In
Sec. V we introduce the DQCD potential and discuss the
long-range limit. In Sec. VI we discuss our results in con-
nection with the up to now available lattice data and draw
some conclusions.

II. THE QUARK-ANTIQUARK POTENTIAL

In @12# a Foldy-Wouthuysen transformation on the quark-
antiquark Green’s function was done and the result was writ-
ten as a Feynman path integral over particle and antiparticle
coordinates and momenta of a Lagrangian depending only
upon the spin, coordinates, and momenta of the quark and
antiquark. Separating off the kinetic terms from this La-
grangian it was possible to identify the heavy quark potential
VQQ̄ ~closed loops of light quark pairs and annihilation con-
tributions were not included!:

E
t i

t f
dtVQQ̄5 i ln^W~G!&2(

j51
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G j

dxmSSjl ^^F̂ lm~x!&&2
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where

Fmn5]mAn2]nAm1 ig@Am ,An#,

F̂mn[ 1
2 «mnrsFrs , ~2.2!

DnFnm5]nFnm1 ig@An,Fnm#, ~2.3!

W~G![Pexp@ igrGdx
mAm~x!#, ~2.4!

and

^ f ~A!&[
1

3
Tr P

*DAeiSYM~A! f ~A!

*DAeiSYM~A! , ~2.5!

^^ f ~A!&&

[
*DAeiSYM~A!Tr P$ f ~A!exp@ igrGdx

mAm~x!#%

*DAeiSYM~A!Tr Pexp@ igrGdx
mAm~x!#

.

~2.6!

The closed loopG is defined by the quark~antiquark! trajec-
tories z1(t) @z2(t)# running from y1 to x1 (x2 to y2) as t
varies from the initial timet i to the final timet f . The quark
~antiquark! trajectoriesz1(t) @z2(t)# define the world lines
G1 (G2) running fromt i to t f (t f to t i). The world linesG1
andG2, along with two straight lines at fixed time connecting
y1 to y2 andx1 to x2, then make up the contourG ~see Fig.
1!.1 As usualAm(x)[Am

a (x)la/2, Tr means the trace over

1As a consequence *G j
dxm f m(x)5(21) j11* t i

t fdt@ f 0(zj )

2 żj•f(zj )#, wherezj5„t,zj (t)…. The factor (21) j11 accounts for
the fact that world lineG2 runs from t f to t i . We also use the
notation zj85„t8,zj (t8)….
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color indices,P prescribes the ordering of the color matrices
according to the direction fixed on the loop andSYM(A) is
the Yang-Mills action including a gauge fixing term.

As the 1/m2 terms in VQQ̄ are of two types, velocity-
dependentVVD and spin-dependentVSD, we can identify in
the full potential three types of contributions:

VQQ̄5V01VVD1VSD, ~2.7!

with V0 the static potential.
The spin-independent part of the potential,V01VVD , is

obtained in Eq.~2.1! from the zero order and the quadratic
terms in the expansion of ln^W(G)& for small velocities
ż1(t)5p1 /m1 and ż2(t)5p2 /m2. In the notation of@13,19#
the terms arising from this expansion can be rearranged as

i ln^W~G!&5E
t i

t f
dtV0@r ~ t !#1VVD@r ~ t !#, ~2.8!

VVD@r ~ t !#5
1

m1m2
H p1•p2Vb~r !1S 13 p1•p22p1•rp2•r

r 2 DVc~r !J
Weyl

1(
j51

2
1

mj
2H pj2Vd~r !1S 13 pj22pj•rp j•r

r 2 DVe~r !J
Weyl

,

~2.9!

where r (t)[z1(t)2z2(t) and the symbol$ %Weyl stands for
the Weyl ordering prescription among momentum and posi-
tion variables@12#.

The spin-dependent potentialVSD contains for each quark
term analogous to those obtained by making a Foldy-
Wouthuysen transformation on the Dirac equation in an ex-
ternal field ~where ^^Fmn&& plays the role of the external
field!, along with an additional termVSShaving the structure
of a spin-spin interaction. We can then write

VSD5VLS
mag1VThomas1VDarwin1VSS, ~2.10!

using a notation which indicates the physical significance of
the individual terms~mag denotes magnetic!. The correspon-
dence between Eqs.~2.10! and ~2.1! is given by

E
t i

t f
dtVLS

mag52(
j51

2
g
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E
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dxmSj
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E
t i

t f
dtVDarwin5(

j51

2
g

8mj
2E

G j

dxm^^DnFnm~x!&&,

~2.13!
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In the well-known Eichten and Feinberg notation@4# and
also taking into account the Darwin potential and similar
contributions arising from the spin-spin interaction@13,19#,
the terms inVSD can be rearranged as

VSD5
1

8 S 1

m1
2 1

1

m2
2DD@V0~r !1Va~r !#1S 1

2m1
2L1•S12

1

2m2
2L2•S2D1r d

dr
@V0~r !12V1~r !#1

1

m1m2
~L1•S22L2•S1!

3
1

r

d

dr
V2~r !1
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r 2
2
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1

3m1m2
S1•S2V4~r !, ~2.15!

FIG. 1. Quark-antiquark Wilson loop.
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with L j5r3pj . It is not possible to identify directly each
Eichten-Feinberg potential with the terms contained in Eq.
~2.1! without making some assumptions on the Wilson loop.
This will be the aim of the next sections. But some observa-
tions are just now possible. The contributions to
D(V01Va) come fromVDarwin and fromVSS with j5 j 8. In
the casejÞ j 8, VSS contributes to the tensor termV3 and to
the spin-spin termV4. Finally, V1 receives contributions
from both the magnetic (VLS

mag) and the Thomas precession
term (VThomas) while the contributions toV2 come only from
the magnetic term.

Due to the Lorentz invariance properties of the Wilson
loop some exact relations for the potentialsVi and
Va , . . . ,Ve can be obtained. The first was given by Gromes
@5# for the spin-related potentials

d

dr
@V0~r !1V1~r !2V2~r !#50, ~2.16!

and the other one by Barchielli, Brambilla, and Prosperi@14#
for the velocity-related potentials

Vd~r !1
1

2
Vb~r !1

1

4
V0~r !2

r

12

dV0~r !

dr
50, ~2.17!

Ve~r !1
1

2
Vc~r !1

r

4

dV0~r !

dr
50. ~2.18!

Since these relations are due to the Lorentz invariance they
must be satisfied by any good choice of the Wilson loop
approximated behavior.

Summarizing, the static and velocity-dependent part of
the potential are given in terms of the expansion of the Wil-
son loop averagêW(G)&, while the spin-dependent poten-
tials are given as a sum of terms depending upon the quark
and antiquark spins, masses, and momenta with coefficients
which are expectation values of operators computed in the
presence of a moving quark-antiquark pair. These expecta-
tion values can be obtained as functional derivatives of
ln^W(G)& with respect to the path, i.e., with respect to the
quark trajectoriesz1(t) or z2(t). In fact, let us consider the
change in ^W(G)& induced by letting zj

m(t)→zj
m(t)

1dzj
m(t) wheredzj

m(t i)5dzj
m(t f)50:

g^^Fmn~zj !&&5~21! j11
d i ln^W~G!&

dSmn~zj !
, ~2.19!

dSmn~zj !5~dzj
mdzj

n2dzj
ndzj

m!.

Varying again the path

g2~^^Fmn~z1!Flr~z2!&&2^^Fmn~z1!&&^^Flr~z2!&&!

52 ig
d

dSlr~z2!
^^Fmn~z1!&&. ~2.20!

All contributions to the spin-dependent part of the potential
can be expressed as first and second variational derivatives
of ln^W(G)&. Therefore the whole quark-antiquark potential
depends only on the assumed behavior of^W(G)&. In the

next sections we will discuss some of these assumptions and
give for each of them the explicit analytical expression of the
potential.

III. MINIMAL AREA LAW MODEL „MAL …

In @12,14# ^W(G)& was approximated by the sum of a
perturbative part given at the leading order by the gluon
propagatorDmn and a nonperturbative part given by the
value of the minimal area of the deformed Wilson loop of
fixed contourG plus a perimeter contributionP:

i ln^W~G!&5 i ln^W~G!&SR1 i ln^W~G!&LR

52
4

3
g2 R

G
dx1

m R
G
dx2

niDmn~x12x2!

1sSmin1
C

2
P. ~3.1!

Denoting by um5um(s,t) the equation of any surface
with contour G (sP@0,1#,tP@ t i ,t f #,u

0(s,t)5t,u(1,t)
5z1(t),u(0,t)5z2(t)) and defining uT[u2(u•n)n with
n5(]u/]s)u]u/]su21, we can write

Smin5minE
t i

t f
dtE

0

1

dsF2S ]um

]t

]um

]t D S ]um

]s

]um

]s D
1S ]um

]t

]um

]s D 2G1/2
5minE

t i

t f
dtE

0

1

dsU ]u

]s UH 12F S ]u

]t D
T

G2J 1/2, ~3.2!

which coincides with the Nambu-Goto action. Up to the or-
der 1/m2 the minimal surface can be identified exactly~see
Appendix B @12#! with the surface spanned by the straight-
line joining „t,z1(t)… to „t,z2(t)… with t i<t<t f . The generic
point of this surface is

umin
0 5t, umin5sz1~ t !1~12s!z2~ t !, ~3.3!

with 0<s<1 andz1(t) andz2(t) being the positions of the
quark and the antiquark at the timet. Then, the exact expres-
sion for the minimal area at the order 1/m2 in the MAL turns
out to be

Smin5E
t i

t f
dtrE

0

1

ds$12@sż1T1~12s!ż2T#2%1/2

5E
t i

t f
dtrF12

1

6
~ ż1T

2 1 ż2T
2 1 ż1T• ż2T!1••• G . ~3.4!

The perimeter term is given simply by

P5ux12x2u1uy12y2u1(
j51

2 E
t i

t f
dtAżjmżjm, ~3.5!

and it is clear that we can neglect the time-independent pe-
rimeter contribution to the potential in the limit of a big time
interval t f2t i . By expanding also Eq.~3.5! at the 1/m

2 order
we have
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i ln^W~G!&LR5E
t i

t f
dtsr F12

1

6
~ ż1T

2 1 ż2T
2 1 ż1T• ż2T!G

1
C

2(
j51

2 E
t i

t f
dtS 12

1

2
żj
hżj

hD . ~3.6!

For what concerns the perturbative part in the limit for
larget f2t i the only nonvanishing contribution to the Wilson
loop is given by

i ln^W~G!&SR52
4

3
g2E

t i

t f
dt1E

t i

t f
dt2ż1

m~ t1!ż2
n~ t2!

3 iDmn~z12z2!. ~3.7!

In the infinite time limit this expression is still gauge invari-
ant. Expandingz2(t2) around t1 it is possible to evaluate
explicitly from Eq. ~3.7! the short-range potential up to a
given order in the inverse of the mass. Self-energy terms are
neglected.

So, in this framework the following~MAL ! static and
velocity-dependent potentials were obtained:

V052
4

3

as

r
1sr1C, ~3.8!

and the explicit expressions for the potentials are

Vb~r !5
8

9

as

r
2
1

9
sr , Vc~r !52

2

3

as

r
2
1

6
sr ,

Vd~r !52
1

9
sr2

1

4
C, Ve~r !52

1

6
sr . ~3.9!

These potentials satisfy the exact relations~2.17! and ~2.18!
Moreover, by evaluating the functional derivatives for the

Wilson loop, as given by Eqs.~2.19! and ~2.20!, we also
obtain the spin-dependent potentials

DVa~r !50,

d

dr
V1~r !52s,

d

dr
V2~r !5

4

3

as

r 2
, ~3.10!

V3~r !54
as

r 3
,

V4~r !5
32

3
pasd

3~r !.

These potentials reproduce the Eichten-Feinberg-Gromes re-
sults@4# and fulfill the Gromes relation~2.16!. Notice that, as
a consequence of the vanishing in this model of the long-
range behavior of the spin-spin potentialVSS and the spin-
orbit magnetic potentialVLS

mag there is no long-range contri-
bution to V2, V3, and V4. Instead V1 has only a
nonperturbative long-range contribution, which comes from
the Thomas precession potential~2.12!.

The MAL model strictly corresponds to the Buchmu¨ller
picture@3# where the magnetic field in the comoving system
is taken to be equal to zero. Let us first notice that the pe-
rimeter contributions at the 1/m2 order can be simply ab-

sorbed in a redefinition of the quark massesmj→mj1C/2
~for details see@14#!. Then let us consider the moving quark
and antiquark connected by a chromoelectric flux tube and
let us describe the flux tube as a string with pure transverse
velocity vt . At the classical relativistic level the system is
described by the flux tube Lagrangian@20,21#

L52(
j51

2

mjA12vj
22sE

0

r

dr8A12vt8
2, ~3.11!

with vt85v1tr 8/r1v2t(12r 8/r ). The semirelativistic limit of
this Lagrangian gives back the nonperturbative part of the
V0 and VVD potential in the MAL model~notice that the
minimal area law in the straight-line approximation is the
configuration given by a straight flux tube!.2 The remarkable
characteristics of the obtainedVVD potential is the fact that it
is proportional to the square of the angular momentum and
so takes into account the energy and angular momentum of
the string:

VVD
LR52

1

12m1m2

s

r
~L1•L21L2•L1!2(

j51

2
1

6mj
2

s

r
L j
2.

~3.12!

Finally, the nonperturbative spin-dependent part of the po-
tential in this intuitive flux tube picture simply comes from
the Buchmu¨ller ansatz that the chromomagnetic field is zero
in the comoving framework of the flux tube.

We notice that even ifV1 seems to arise from an effective
Bethe-Salpeter kernel which is a scalar and depends only on
the momentum transfer, a simple convolution kernel cannot
reproduce the correct velocity-dependent potential~3.12! or
equivalently ~3.9! @22#. Nevertheless the behavior~3.12!
seems to be important to reproduce the spectrum
@9–11,16,23,24#.

IV. STOCHASTIC VACUUM MODEL „SVM…

The SVM ~see@15,25# and for a review@26#! in the con-
text of heavy quark bound state gives a justification of the
MAL model avoiding the artificial splitting of the Wilson
loop in a perturbative and a nonperturbative part. It repro-
duces the flux tube distribution measured on the lattice@27#.
Moreover it allows one to go beyond the MAL model in a
systematic way~e.g., with the so-called perturbation theory
in nonperturbative background@28#!. The whole nonpertur-
bative physics is factorized in some correlation function
which can be calculated on the lattice.

The starting point is to express the Wilson loop average
^W(G)& via the non-Abelian Stokes theorem@29,30# in terms
of an integral over a surfaceS enclosed by the contourG,
and then to perform a cluster expansion@31#. In order to
allow lattice calculations all these quantities are given in the
Euclidean metric. Some care must be payed in converting it
in the Minkowskian metric before putting in Eq.~2.1!:

2For a discussion of the relation between the two models in the
path integral formulation see@12#.
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^W~G!&5^P&expS igE
S
dSmn~u!Fmn~u,x0! D ~4.1!

5expS (
j51

`
~ ig ! j

j ! E
S
dSm1n1

~u1!•••E
S
dSm jn j

~uj !^Fm1n1
~u1 ,x0!•••Fm jn j

~uj ,x0!&cumD . ~4.2!

The cumulantŝ &cum are defined in terms of average values over the gauge fields^ &:

^F~1!&cum5^F~1!& ^F~1!F~2!&cum5^F~1!F~2!&2^F~1!&^F~2!&, . . . ~4.3!

and PFm,n(u,x0)[Pexp@ig*x0
u dxmAm(x)#Fmn(u)exp@ig*u

x0dxmAm(x)# wherex0 is an arbitrary reference point on the surfaceS

appearing in the non-Abelian Stokes theorem~4.1!. In general each cumulant depends onS and onx0, but, as the left-hand side
of Eq. ~4.1! does not, it is expected that in the full resummation of all the cumulants@right-hand side of Eq.~4.2!# this
dependence will disappear@30#. To minimize the required cancellationsS is chosen to be the minimal area surface.

Equation~4.2! is exact. The first cumulant vanishes trivially. The second cumulant gives the first nonzero contribution to the
cluster expansion~4.2!. In the SVM one assumes that in the context of heavy quark bound states higher cumulants can be
neglected and the second cumulant dominates the cluster expansion, or, in other words, that the vacuum fluctuations are of a
Gaussian-type:

ln^W~G!&52
g2

2 ESdSmn~u!E
S
dSlr~v !^Fmn~u,x0!Flr~v,x0!&cum. ~4.4!

Neglecting the dependence onx0 and on the arbitrary curves connectingx0 with u andv which seems to be relegated to higher
correlators, the Lorentz structure of the bilocal cumulant implies that it can be expressed as@15#

^Fmn~u,x0!Flr~v,x0!&cum5^Fmn~u,x0!Flr~v,x0!&

5
b

g2 H ~dmldnr2dmrdnl!D~~u2v !2!1
1

2 F ]

]um
@~u2v !ldnr2~u2v !rdnl#

1
]

]un
@~u2v !rdml2~u2v !ldmr#GD1@~u2v !2#J , ~4.5!

b[
g2

36

^Tr Fmn~0!Fmn~0!&
D~0!1D1~0!

.

Equations~4.4! and~4.5! define the SVM for heavy quarks. The correlator functionsD andD1 are unknown. The perturbative
part of D1, which is expected to be dominant in the short-range behaviour, can be obtained by means of the standard
perturbation theory:

D1
pert~x2!5

16as

3p

1

x4
1higher orders. ~4.6!

Instead the only information which we know about the nonperturbative contributions toD andD1 come from lattice simula-
tions. A good parametrization of the long-range behavior of the bilocal correlators seems to be@32,33#

bDLR~x2!5de2duxu, d5~160.1! GeV, d50.073 GeV4, ~4.7!

bD1
LR~x2!5d1e

2d1uxu, d15~160.1! GeV, d150.0254 GeV4. ~4.8!

Up to order 1/m2 the minimal area surface can be identified, as in the previous section, with the straight-line surface~3.3!.
In particular, sincedSmn(u) [dtds]um(t,s)/]t]un(t,s)/]s, we have

dS4 j~u!5dtdsrj~ t !,

dSi j ~u!5dtds@sżi1~ t !1~12s!żi2~ t !#r j~ t !.

From Eqs.~4.4! and ~4.5! and taking in account Eq.~3.3! we have calculated explicitly ln^W(G)&. Considering a time
interval much larger than the typical correlation length ofD andD1, up to order 1/m

2 we have~for details see the Appendix!

V0~r !5bE
2`

1`

dtH E
0

r

dl~r2l!D~t21l2!1E
0

r

dl
l

2
D1~t21l2!J , ~4.9!
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Vb~r !5
b

6E2`

1`

dtH E
0

r

dlS 2
2

3
r2

l2

r
1
8

3

l3

r 2
23

t2

r DD~t21l2!1E
0

r

dlS 2
3

2

l2

r
1
3

2

t2

r DD1~t21l2!1
r 2

2
D1~t21r 2!J ,

~4.10!

Vc~r !5
b

2E2`

1`

dtH E
0

r

dlS 2
r

3
22

l2

r
1
4

3

l3

r 2 DD~t21l2!2
r 2

2
D1~t21r 2!J , ~4.11!

Vd~r !5
b

6E2`

1`

dtH E
0

r

dlS 2
2

3
r1

3

2
l1

1

2

l2

r
2
4

3

l3

r 2
1
3

2

t2

r DD~t21l2!1E
0

r

dlS 2
3

4
l1

3

4

l2

r
2
3

4

t2

r DD1~t21l2!J ,
~4.12!

Ve~r !5
b

2E2`

1`

dtE
0

r

dlS 2
r

3
1

l2

r
2
2

3

l3

r 2 DD~t21l2!. ~4.13!

Result~4.9! was found in@15#, whereas Eqs.~4.10!–~4.13! are new. We note that these expressions for the potentialsV0 and
Vb , . . . ,Ve satisfy identically the Barchielli-Brambilla-Prosperi relations~2.17! and~2.18!. Of particular interest seems to be
the potentialVe that has only nonperturbative contributions in the bilocal approximation.

To evaluate the spin-dependent part of the potential, the only terms which we need are those with one and two field strength
insertions~taking in account that̂^DnFnm(x)&&5]n^^Fnm(x)&&). By means of Eqs.~2.19!, ~2.20!, and~4.4!,

g^^F0l~zj !&&5br lE
2`

1`

dtH E
0

r

dl
1

r
D~t21l2!1

1

2
D1~t21r 2!J ,

g^^Fil ~z1!&&5b~ żl1r i2 żi1r l !E
2`

1`

dtE
0

r

dl
1

r S 12
l

r DD~t21l2!1b~ żl2r i2 żi2r l !

3E
2`

1`

dtH E
0

r

dl
l

r 2
D~t21l2!1

1

2
D1~t21r 2!J ,

g^^Fil ~z2!&&5b~ żl2r i2 żi2r l !E
2`

1`

dtE
0

r

dl
1

r S 12
l

r DD~t21l2!1b~ żl1r i2 żi1r l !

3E
2`

1`

dtH E
0

r

dl
l

r 2
D~t21l2!1

1

2
D1~t21r 2!J ,

g2~^^Fmn~z1!Flr~z2!&&2^^Fmn~z1!&&^^Flr~z2!&&!

5b~dmldnr2dmrdnl!@D~t21r 2!1D1~t21r 2!#1b~rmr ldnr2rmr rdnl1r nr rdml2r nr ldmr!
]

]t2
D1~t21r 2!,

r 4[t5t12t2.

In this way we obtain the following expressions for the spin-
dependent potentials in the SVM~confirming the results ob-
tained in@15# with a different derivation!:

DVa~r !5 self-energy terms, ~4.14!

d

dr
V1~r !52bE

2`

1`

dtE
0

r

dlS 12
l

r DD~t21l2!,

~4.15!

d

dr
V2~r !5bE

2`

1`

dtH E
0

r

dl
l

r
D~t21l2!

1
1

2
rD 1~t21r 2!J , ~4.16!

V3~r !52bE
2`

1`

dtr 2
]

]t2
D1~t21r 2!, ~4.17!

V4~r !5bE
2`

1`

dtH 3D~t21r 2!13D1~t21r 2!

12r 2
]

]t2
D1~t21r 2!J . ~4.18!
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Potentials ~4.9!, ~4.15!, and ~4.16! satisfy identically the
Gromes relation~2.16!. An application of the spin potentials
to thebb̄ andcc̄ spectrum, with a discussion on the different
types of parametrization of the correlation functions, can be
found in @33,34#.

In the short-range behavior (r→0), assuming that all the
relevant contributions come from the perturbative part of
D1 ~4.6!, Eqs.~4.9!–~4.15! exactly reproduce~after subtract-
ing the self-energy contributions! the as-depending part of
Eqs.~3.8!, ~3.9!, and~3.10! of the MAL model. We observe
that no gauge choice is necessary in this approach, which is
manifestly gauge invariant. Moreover, we note that the short-
range behavior of theD1 correlator is notad hoc but
emerges straightforwardly from the comparison with theas
expansion of the Wilson loop.

In the long-range behavior (r→`),

V0~r !5s2r1
1

2
C2

~1!2C2,
d

dr
V1~r !52s21

C2

r
,

d

dr
V2~r !5

C2

r
, ~4.19!

V3 andV4 fall off exponentially and

DVa~r !5 self-energy terms,

Vb~r !52
1

9
s2r2

2

3

D2

r
1
8

3

E2

r 2
,

Vc~r !52
1

6
s2r2

D2

r
1
2

3

E2

r 2
, ~4.20!

Vd~r !52
1

9
s2r1

1

4
C22

1

8
C2

~1!1
1

3

D2

r
2
2

9

E2

r 2
,

Ve~r !52
1

6
s2r1

1

2

D2

r
2
1

3

E2

r 2
,

with

s2[bE
2`

1`

dtE
0

`

dlD~t21l2!,

C2[bE
2`

1`

dtE
0

`

dllD~t21l2!,

C2
~1![bE

2`

1`

dtE
0

`

dllD1~t21l2!,

D2[bE
2`

1`

dtE
0

`

dll2D~t21l2!,

E2[bE
2`

1`

dtE
0

`

dll3D~t21l2!.

By means of parametrization~4.7! and ~4.8! we have

s25
pd

d2
.0.2 GeV2,

C25
4d

d3
.0.3 GeV,

C2
~1!5

4d1
d1
2 .0.1 GeV,

D25
3pd

d4
.0.7,

E25
32d

d5
.2.3 GeV21,

and

V3~r !51.2~6!d1Ad1r
3/2e2d1r ,

V4~r !51.2~6!
6d

Ad
r 1/2e2dr11.2~6!

6d1
Ad1

r 1/2e2d1r

22.5~2!d1Ad1r
3/2e2d1r .

Identifying s2 with s andC2
(1)/22C2 with C then at the

leading order inr→` the spin-dependent and velocity-
dependent SVM potentials reproduce the long-range behav-
ior of the potentials~3.8!, ~3.9!, and ~3.10! in the MAL
model. Notice that the constant terms in the static and
velocity-dependent potentials turn out in the same combina-
tion as necessary to be reabsorbed in a redefinition of the
quark masses. Some differences emerge at the next orders. In
the SVM the magnetic contribution to the spin-orbit potential
~which we calledVLS

mag in Sec. II! is not exactly zero in the
long-range behavior but gives some 1/r corrections. For this
reason the potentialdV2 /dr does not vanish and the poten-
tial dV1 /dr presents a 1/r correction to the Thomas preces-
sion term. Notice, also, that in the SVM the tensor potential
V3 and the spin-spin potentialV4 are exponentially decreas-
ing with the distancer but not identically zero as in the MAL
model. In the next section we will see how the dual QCD
model is able to reproduce this behavior. Finally a very rich
structure of entirely nonperturbative 1/r and 1/r 2 corrections
emerges in the velocity-dependent part of the potential. A
lattice study of this kind of contribution is in progress@17#
and in light of Eqs.~4.20! should give an interesting check
on the validity of the stochastic vacuum approach in the
velocity-dependent sector of the potential and possibly some
new indications on the behavior of the correlator function
D. A last comment on the fact thatDVa is not r dependent.
This is a direct consequence of the bilocal approximation
which we have adopted. In principle, nothing prevents us
from the existence ofr dependent contributions coming from
higher order cumulants. We think it will be an important task
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to estimate such a contribution and compare it with lattice
results~for a more detailed discussion see@35#!.

V. DUAL QCD „DQCD…

The duality assumption that the long distance physics of a
Yang-Mills theory depending upon strong coupled gauge po-
tentialsAm is the same as the long distance physics of the
dual theory describing the interactions of weakly coupled
dual potentialsCm[(a51

8Cm
ala /2 and monopole fields

Bi[(a51
8Bi

ala/2, forms the basis of DQCD@18#.3 The
model is constructed as a concrete realization of the
Mandelstam–t’Hooft@36# dual superconductor mechanism
of confinement. Indeed, the explicit form of the Lagrangian
expressed in terms of the dual potentials is not known in a
non-Abelian Yang-Mills theory. Since the main interest is
solving such a theory in the long-distance regime, the La-
grangianLeff is explicitly constructed as the minimal dual
gauge invariant extension of a quadratic Lagrangian with the
further requisite to give a mass to the dual gluons~and to the
monopole fields! via a spontaneous symmetry breaking of
the dual gauge group.

We denote bŷWeff(G)& the average over the fields of the
Wilson loop of the dual theory@19#:

^Weff~G!&

5
*DCmDBDB3exp~ i*dx@Leff~Gmn

S !1LGF# !

*DCmDBDB3exp~ i*dx@Leff~Gmn
S 50!1LGF# !

,

~5.1!

whereLGF is a gauge fixing term and the effective dual La-
grangian in the presence of quarks is given by

Leff~Gmn
S !52Tr$2 1

4GmnGmn1 1
2 ~DmBi !2%2U~Bi !.

~5.2!

U(Bi) is the Higgs potential with a minimum at a nonzero
valueB015B0l7, B0252B0l5, andB035B0l2. It was also
takenB15B25B. In Eq. ~5.1! we have taken the dual po-
tential proportional to the hypercharge matrixCm5CmY.

4

Moreover,

DmBi5]mBi1 ie@Cm ,Bi #, e[
2p

g
, ~5.3!

Gmn5~]mCn2]nCm1Gmn
S !Y, ~5.4!

Gmn
S ~x![g«mnabE dsE dt

]ya

]s

]yb

]t
d@x2y~s,t!#,

~5.5!

and y(s,t) is a world sheet with boundaryG swept out by
the Dirac string. Notice that dual potentials couple to electric
color charge like ordinary potentials couple to monopoles
@18,37#.

The functional integral̂Weff(G)& determines in DQCD
the same physical quantity as^W(G)& in QCD. The coupling
in Leff(Gmn

S ) of the dual potentials to the Dirac string plays
the role in expression~5.1! of the Wilson loopW(G) of QCD
~2.4! in ^W(G)&. The assumption that the dual theory de-
scribes the long distanceQQ̄ interaction in QCD then takes
the form

^W~G!&5^Weff~G!& for large loopsG. ~5.6!

Large loop means that the sizeR of the loop is large com-
pared to the inverse mass@M21. ~600 MeV! 21# of the
Higgs particle~monopole field!. Furthermore, since the dual
theory is weakly coupled at large distances, we can evaluate
^Weff(G)& via a semiclassical expansion to which the classi-
cal configuration of dual potentials and monopoles gives the
leading contribution. This then allows us to picture heavy
quarks~or constituent quarks! as sources of a long distance
classical field of dual gluons determining the heavy quark
potential. We mention here that DQCD reproduces the lattice
flux tube distribution@38#.

Equation~5.6! defines the DQCD model for heavy quark
bound states. ReplacinĝW(G)& by ^Weff(G)& in Eq. ~2.1!,
we obtain expressions forV0 andVVD and by considering the
variation in ^Weff(G)& produced by the change
Gmn
S (x)→Gmn

S (x)1dGmn
S (x) we obtain also the field aver-

ages in terms of dual quantities:

g^^Fmn~zj !&&5~21! j11
d i ln^Weff~G!&

dSmn~zj !
5
4

3
g^^Ĝmn~zj !&&eff

5~21! j11
g

2
«mnls

d i ln^Weff~G!&
dGls

S ~zj !
. ~5.7!

This gives a correspondence between local quantities in the
Yang-Mills theory and in the dual theory. A similar expres-
sion can be obtained for the double field strength insertion in
Eq. ~2.1!.

The weak coupling of the dual theory permits the explicit
evaluation of^Weff(G)& by means of the classical approxi-
mation. Hence we have

i ln^Weff~G!&52E dxLeff~Gmn
S !, ~5.8!

with Leff(Gmn
S ) evaluated at the solution of the classical

equations of motion:

]a~]aCb2]bCa!52]aGab
S 1 j b

mon, ~5.9!

~]m1 ieCm!2B52
1

4

dU

dB
, ~5.10!

]2B352
1

4

dU

dB3
, ~5.11!

3The name dual QCD has historical reasons, but can give rise to
some confusion. We emphasize that the duality assumption concern
only the long distance physics of the strongly coupled Yang-Mills
sector.
4Doing so,Leff without quark sources generates classical equa-

tions of motion with solutions dual to the Abrikosov-Nielsen-
Olesen magnetic vortex solutions in a superconductor@18,19#.
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where j m
mon526e2CmB

2 is the monopole current. The Dirac
string is chosen to be a straight line connectingQ and Q̄
since this is the configuration having the minimum field en-
ergy. As a consequence of the classical approximation, all
quantities in brackets are replaced by their classical values
^^Gmn(x)&&eff5Gmn(x) which are obtained by solving nu-
merically the nonlinear equations~5.9!–~5.11!. An interpola-
tion of the numerical results for the potentials can be found
in @18# ~in particular, in the first of these references it is
possible to find also an application of the DQCD potentials
to the heavy quarkonia spectrum!. In the following we will
give and discuss only the large distance limit of these poten-
tials.

In the long-range behavior (r→`), the interpolation of
Ref. @18# gives

V0~r !5sr20.646Asas, ~5.12!

d

dr
V1~r !52s1

0.681

r
Asas, ~5.13!

d

dr
V2~r !5

0.681

r
Asas, ~5.14!

and

Vb~r !520.097sr20.226Asas, ~5.15!

Vc~r !520.146sr20.516Asas, ~5.16!

Vd~r !520.118sr10.275Asas, ~5.17!

Ve~r !520.177sr10.258Asas. ~5.18!

For the spin-spin interaction and for large distances it is pos-
sible to give the exact analytical expression of the potentials:

V3~r !5
4

3
asSM21

3

r
M1

3

r 2D e
2Mr

r
, ~5.19!

V4~r !5
4

3
asM

2
e2Mr

r
. ~5.20!

While Va is, at the moment, lacking either in an analytical or
a numerical evaluation, and is formally given by@19#

DVa~r !52DV0
NP~r !2

4

3
g2(

j51

3
d2

dxjdxj8
GNP~x,x8!U

x5x85zi

,

~5.21!

where the first term is the color electric contribution toVa

@V0
NP(r ) is the nonperturbative part of the static potential, so

thatVa is determined by the nonperturbative gluodynamics#
and the second is the color magnetic contribution.GNP sat-
isfies the equation

~2D16e2B2!GNP52
6e2B2~x!

4pux2x8u
. ~5.22!

The potentials depend on the two free parameters
as5p/e2 ands. In @18# the values

s50.18 GeV2, as50.39, ~5.23!

were used. The dual gluon massM is related to these two
parameters and is approximately given by

M2.
p

4

s

as
.~600 MeV!2. ~5.24!

Finally we observe that all these potentials satisfy identi-
cally the Gromes relation~2.16! and the equivalent relations
for the velocity-dependent potentials~2.17! and ~2.18!.

From the comparison of Eqs.~5.12! and ~5.13! with Eq.
~4.19!, it follows immediately that in the long-range behavior
the static and the spin-orbit potentials coincide completely in
DQCD and in the SVM. The agreement, between the 1/r
corrections in the two models seems to be very important.
These corrections come from the physics beyond the mini-
mal area law assumption and, in fact, are not present in the
MAL model @see Eq.~3.10!#. The coefficient of the 1/r con-
tribution in dV1 /dr anddV2 /dr is the same in DQCD and
SVM and in both cases compatible with the constant term in
the static potentialV0. The little difference between the con-
stant indV1 /dr, dV2 /dr, andV0 can be understood in the
SVM language as due to the presence of the small positive
constantC2

(1)/2. The spin-spin interaction falls off exponen-
tially in both the models. In DQCD the behavior is like a
Yukawa interaction, while Eqs.~4.17! and~4.18! seem not to
reproduce this behavior at least with parametrizations~4.7!
and~4.8!. This is, at the moment, an important disagreement
because one of the basic features of DQCD is that the mag-
netic interaction~as in the spin-spin case! is carried by a
massive particle. Differences arise for large distances also in
the velocity-dependent sector and with respect to the MAL
model. The factors in front of thesr leading contributions to
Vb , . . . Ve are slightly different from those of Eqs.~3.9!.
The potentialsVb , Vc , andVe present some additional con-
stant terms which do no arise from the area law. Finally there
are not 1/r corrections as in the SVM. Some of these dis-
crepancies can be interpreted as due to a finite thickness of
the flux tube in DQCD opposite to the infinitely thin flux
tube in the MAL model@19#. Therefore in the two models
the flux tube will have a different moment of inertia and give
slightly different contributions to the velocity-dependent po-
tential. It is possible that these discrepancies will disappear if
including higher order cumulants contributions in the SVM
predictions. Other differences between the predictions of the
two methods could have origin from the very delicate inter-
polating procedure of the numerical solutions of the DQCD
nonlinear equations. The lattice results on the velocity-
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dependent potentials@17#, which will be available soon, will
possibly clarify the situation.

VI. DISCUSSION AND CONCLUSIONS

Using the same gauge invariant and physically transparent
approach to calculate the complete semirelativistic quark-
antiquark interaction for three different models~MAL, SVM,
and DQCD! we have shown the following points.

We have obtained the velocity-dependent corrections in
the SVM model which are new and present an interesting
nonperturbative structure.

We have demonstrated that the minimal area law model is
exactly reproduced in both the spin dependent and the
velocity-dependent sector of the potential by the long-range
behavior of the stochastic vacuum model. From now we can
consider the MAL model simply as ther→` limit of the
SVM for heavy quarks. Moreover, this limit realizes also the
intuitive Buchmüller’s picture of zero magnetic field in the
flux tube comoving system.

In the spin-dependent sector of the potential, both the
SVM and DQCD not only reproduce the long-range behavior
given by the area law, but also give 1/r corrections to
dV1 /dr and dV2 /dr. These corrections are equal in both
models and very near to the absolute value of the constant
term in the static potential~the SVM also supplies for the
explication of this fact!. This perfect agreement is absolutely
not trivial and seems to be very meaningful, since it arises
from two very different models in a region of distances in
which the physics cannot be described by the area law alone.
This is also remarkable to understand the kind of effective
kernel that would describe the nonperturbative bound states
of constituent quarks. For example, it seems clear now that
the vanishing of the magnetic part, given by the field average
of Eq. ~2.11!, in the nonperturbative region takes place only
at the leading level in the long-range limit. Therefore, work-
ing in a Bethe-Salpeter context, there is no need to assume
an effective pure convolution kernel which is a Lorentz sca-
lar ~a recent proposed Bethe-Salpeter kernel can be found in
@39#!.

Velocity-dependent contributions to the quark-antiquark
potential are important. In fact, the string behavior of the
nonperturbative interaction shows up when we consider the
velocity-dependent part of the potential@16,19# and this is
also what the data require@23#. The derivation of the
velocity-dependent part using Eq.~2.1! and the SVM is com-
pletely gauge invariant and seems not to suffer from the
problems connected with the strong reduction dependence of
the potentials obtained from Bethe-Salpeter kernels. In this
way we reproduce the area law results and give a lot of new
1/r and 1/r 2 corrections, suppressed in the long-range behav-
ior. The velocity-dependent structure which arises from the
DQCD model differs slightly in the coefficients with respect
to the area law behavior. The main reason seems to be that
the flux tube in DQCD has a finite thickness. It is possible
that higher order cumulants can reabsorb this difference.

The spin-dependent potentials have first been evaluated
on the lattice. The data in@6# confirm the long-range behav-
ior given in Eq.~3.10! and contained also in Eqs.~4.19! and
~5.12!–~5.14!. Recent data@7# show the same long-range be-
havior and do not yet allow are to distinguish between pa-

rametrizations which differ at the next-to-leading order in the
distancer . However they contain more information about the
short-range region of the interaction~typically below the cor-
relation length of 0.2 fm!. Generally the data reproduce the
perturbative results@which at first order inas can be read
from Eq. ~3.10! putting s equal 0#. The only exception is
given by the short distance behavior ofdV1 /dr which seems
to be negative and proportional to 1/r 2. This contradicts the
orderas

2 calculation of theQQ̄ potential~which contains the
first nonvanishing perturbative contribution todV1 /dr)
given, for example, by Pantaleone and Tye@40#. The reason
of this discrepancy could be explained by higher order per-
turbative contributions or by some, at the moment, unknown
short-range nonperturbative contribution~in the language of
the SVM this contribution could arise from the correlation
functionD; an investigation in this sense of the recent short-
range data onD given in the last reference quoted in@32# is
going on!. The problem is still open. Only recently some
data on the velocity-dependent potentials appeared@17,7#.
Probably more accurate data will be available in the next
months. These results seem to confirm the long-range behav-
ior contained in Eq.~3.9! (s dependent terms!. More inter-
esting is the case of the potentialDVa which appears to be
different from zero forr→` and show up a 1/r short-range
behavior. This behavior has been recently explained in terms
of SVM and DQCD@35#.

In conclusion SVM and DQCD reproduce the flux tube
distribution measured on the lattice and the general features
coming from the area law. Both give analytical expressions
for the Wilson loop@Eqs.~4.4! and~5.1!# which describe the
evolving behavior of̂W(G)& from the short to the long dis-
tances~we note that this can be useful in many different
applications, see, e.g.,@41#! and both give some predictions
which go beyond the asymptotic behavior. But not all pre-
dictions are equal in the two models in the intermediate dis-
tances region, in particular, in the velocity-dependent sector
of the potential, but also in the spin-spin interaction. There-
fore, new lattice data sensitive to such kind of corrections
seem to be urgent. Finally, work is in progress in evaluating
the correlation functionD andD1 in the DQCD context and
in producing an extensive phenomenological analysis of the
contribution of the new obtained potentials to the heavy and
heavy-light quark spectrum.
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APPENDIX

In this appendix we derive the static potential in the SVM
@Eq. ~4.9!#. The same technique was used to obtain the other
potentials. Since the velocity-dependent potentials involve
long and tedious calculations, a program of symbolic ma-
nipulations was used in that case@42#.

From Eqs.~4.4!, ~4.5!, and in the straight-line parametri-
zation of the surface, it follows that
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ln^W~G!&52
b

2ESdS4i~u!E
S
dS4 j~v !Fd i j $D@t21~u2v!2#1D1@t21~u2v!2#%

1@t2d i j1~u2v ! i~u2v ! j #
d

dt2
D1@t21~u2v!2#G1O~ ż1

2 ,ż2
2!, ~A1!

with dS4i(u)5dt1ds1r i(t1), dS4 j (v)5dt2ds2r j (t2), andt[t12t2. Expanding the functions oft2 aroundt1,

r j~ t2!5r j~ t1!2 ṙ j~ t1!t1 . . . ,

~u2v ! j5z2 j~ t1!2z2 j~ t2!1s1r j~ t1!2s2r j~ t2!5~s12s2!r j~ t1!1•••,

and taking for simplicityr j (t1)[r j andl[s22s1, we obtain

ln^W~G!&52
b

2Et i
t f
dt1E

t i

t f
dt2E

0

1

ds1E
0

1

ds2r i r jFd i j @D~t21l2r 2!1D1~t21l2r 2!#

1~t2d i j1l2r i r j !
d

dt2
D1~t21l2r 2!G1O~ ż1

2 ,ż2
2!. ~A2!

Since

E
0

1

ds1E
0

1

ds2f @~s22s1!
2#5E

0

1

ds1E
2s1

12s1
dl f ~l2!52E

0

1

dl~12l! f ~l2!,

we can write

ln^W~G!&52bE
t i

t f
dt1E

t i

t f
dt2E

0

1

dl~12l!r 2FD~t21l2r 2!1D1~t21l2r 2!1~t21l2r 2!
d

dt2
D1~t21l2r 2!G1O~ ż1

2 ,ż2
2!.

~A3!

Replacingrl→l and taking in account that the time variables in Eq.~A3! are in a Euclidean space while the equation for the
potential~2.1! is in Minkowski, the static potential is given by

V0~r !5bE
2`

1`

dtE
0

r

dl~r2l!D~t21l2!1bE
2`

1`

dtE
0

r

dl~r2l!FD1~t21l2!1~t21l2!
d

dt2
D1~t21l2!G , ~A4!

where, also, the large time limit was performed. Finally, the identities

E
2`

1`

dtt2
d

dt2
D1~t21l2!5

1

2E2`

1`

dtt
d

dt
D1~t21l2!52

1

2E2`

1`

dtD1~t21l2!

and

E
0

r

dl~r2l!l2
d

dt2
D1~t21l2!5

1

2E0
r

dl~r2l!l
d

dl
D1~t21l2!52

1

2E0
r

dl~r22l!D1~t21l2!

give back the static potential in the form of Eq.~4.9!. Taking in account theO( ż1
2 ,ż2

2) contributions in Eq.~A1! and in the
following equations, we obtain the velocity-dependent potentials~4.10!–~4.13!.
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