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Heavy quarkonia: Wilson area law, stochastic vacuum model, and dual QCD
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The QQ semirelativistic interaction in QCD can be simply expressed in terms of the Wilson loop and its
functional derivatives. In this approach we present@®@ potential up to order i’ using the expressions for
the Wilson loop given by the Wilson minimal area I&MAL ), the stochastic vacuum mod&VM), and dual
QCD (DQCD). We confirm the original results given in the different frameworks and obtain new contributions.
In particular we calculate up to ordemi? the complete velocity-dependent potential in the SVM. This allows
us to show that the MAL model is entirely contained in the SVM. We compare and discuss also the SVM and
the DQCD potentials. It turns out that in these two very different models the spin-orbit potentials show up the
same leading nonperturbative contributions andr 1torrections in the long-range limit.
[S0556-282(197)03705-3

PACS numbeps): 12.38.Aw, 12.38.Lg, 12.39.Pn

[. INTRODUCTION lattice. The Eichten-Feinberg-Gromes results, at least in the
long-range behavior, have been reproduced on the lattice
Since the pioneering paper of Wilsdd] a real break- [6,7] (for a detailed discussion see Sec. .MRecently the
through was opened in the treatment of quark states and ispin-dependent potential was also studied in the context of
this framework a lot of work was devoted to the study of thethe heavy quark effective theofs].

QCD dynamics and hence confinement. The main charactelYere attempted in a Bethe-Salpeter context by constructing a
istics of the heavy meson and baryon spectrum are simplgthe-Salpeter kernel which gives back static and spin-
and cleanly connected to expectation value of annd dependent potentials. Using a simple convolution kefire|,

. ) depending only on the momentum transggy, this amounts
3Q potentials. The size of thie andc systems extends over P g onty ik

di h p readv ol | to considering a Lorentz scalar proportional t@Q4%/ The
istances where confinement already plays a relevant rolg,;, ity dependent relativistic corrections were also obtained
(only toponium can be described purely in terms of on

. ) Sut they are strongly dependent on the type of “instanta-
gluon exchange plus higher order perturbative correcfiBis  equs™ approximation chosen to define the potential and on
but, as is well known, we cannot access its speclymore- e gauge. These nonperturbative velocity-dependent correc-
over, because of the mean value of the quark velocities, thgons destroy the agreement with the df@a-11] and give
leading relativistic corrections can be appreciated and userigin to the puzzle of how reconciling the spin structure
fully tested on the data. Furthermore, a good understanding.e., the Lorentz nature of the kerpetlith the velocity cor-

of the heavy quark semirelativistic interaction is the first steprections in one Bethe-Salpeter kernel. In this paper we will
towards relativistic generalization. . not deal with this problem starting directly from thent/

At the static level, the linear confinin@Q interaction, expansion of the quark-antiquark interaction. However, a
corresponding to a constant energy densihe string ten- first step in its resolution seems to be the correct inclusion of
sion ) localized in a flux tube between the quarks, emergeshe low energy dynamics also in the spin-independemf 1/
in lattice formulation of QCD and is contained in all the corrections. Moreover from the knowledge of these and the
existing confining models, e.g., Wilson area law, flux tubespin-dependent corrections we will obtain some important
model, and all kinds of dielectric and dual models. This cor-insights in the nature of the kernel.
responds also to the static limit of Buchiiew's picture[3] Recently a method to obtain the completend/quark-
of a rotating quark-antiquark state connected by a purelgntiquark(and three-quarkspotential, based on the path in-
chromoelectric tube with a pure transverse velocity and withtegral representation of the Pauli-type quark propagator, was
chromomagnetic field vanishing in the comoving system ofgiven in[12] (see alsq13,14] and[15]). This formulation is
the tube. In this picture it follows simply that the nonpertur- gauge invariant. The potential is obtained as a function of a
bative spin interaction is given only by the Thomas precesgeneralized Wilson looji.e., any kind of trajectory for the
sion term. quark and the antiquark can appeand its functional de-

The spin-dependent relativistic corrections were calcufivatives. These are all measurable on the lattice. In short, a
lated first by Eichten, Feinbefd@| and Gromeg$5] as a cor-  constituent quark semirelativistic interaction was obtained
rection to the static limit(Wilson-Brown-Weisberger area with coefficients determined by the nonlinear gluodynamics.
law resul}. The potential is expressed in terms of averages ofhis is the ideal framework in which to formulate a hypoth-
electric and magnetic fields that can also be calculated on thesis on the Wilson loop behavi¢and so on the confinement
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mechanismto be checked on the lattice and on the experi- A careful comparison between the SVM and DQCD cor-
mental data. rections and an investigation of the approximations in which
First, to evaluate the nonperturbative behavior of the Wil-they coincide seem to be of great importance to the aim of
son loop, a modified minimal area IaMAL ) was usedsee  understanding the low energy gluodynamics contained in the
Sec. lll). This reproduces the Eichten-Feinberg-Gromes reWilson loop.
sults[4,5] and gives a velocity-dependent potential propor- The plan of the paper is the following one. In Sec. Il we
tional to the flux tube angular momentum squared, so thabriefly review the definition of the semirelativistic potential
by including velocity-dependent corrections, a ‘“string and the notations. In Sec. Il we collect the results obtained
model” emergegsee[11,16)). Also, the velocity-dependent in the MAL model. In Sec. IV we briefly present the SVM
potentials seem to agree with recent available lattice datand use it to evaluate the potential in the context of Sec. Il.
[17]. In particular, we also obtain the SVM velocity-dependent
However, the MAL represents an extreme approximatiorpotential which is new. We show that it satisfies important
that gives the correct result for very large interquark dis-identities and we give the short- and long-range limits. In
tances and does not give insight into open problems such &ec. V we introduce the DQCD potential and discuss the
the relation between the nonperturbative structure of spifong-range limit. In Sec. VI we discuss our results in con-
and velocity corrections. For these reasons we have takemection with the up to now available lattice data and draw
into account two models of confinement, the stochasticsome conclusions.
vacuum modelSVM) and dual QCD(DQCD) which both
give an expression for the whole behavior of the Wilson loop
and contain the area law in the long distance limit. It is
interesting to realize that both models reproduce essentially In [12] a Foldy-Wouthuysen transformation on the quark-
the perturbative plus MAL results, respectively, in the limit antiquark Green’s function was done and the result was writ-
of short and long distances but produce also subleading coten as a Feynman path integral over particle and antiparticle
rections. These allow us to understand better the physicaloordinates and momenta of a Lagrangian depending only
picture. For example, in the case of the nonperturbative spindpon the spin, coordinates, and momenta of the quark and
orbit interaction, it turns out that the magnetic term cancelsantiquark. Separating off the kinetic terms from this La-
in the area law limit(zero magnetic field in the comoving grangian it was possible to identify the heavy quark potential
framework but presents 1/suppressed corrections in the Vqg (closed loops of light quark pairs and annihilation con-
other two models. tributions were not included

Il. THE QUARK-ANTIQUARK POTENTIAL

2
1 . B g ol /B ol e 1 v
ft dtVog=iln(W(T) =2, o frjdx(S,-«F.M(x)» am, 51" PH(FL00)) — g (DR, 00))

1 : |gz ro C C ’ C C ’
3 2 T 0 [, XSS UEL RN (ELNE O, @
[
where ((f(A))
_ JDASMATY P{f(A)exrigdrdx“A ,(x)]}
Fuo=0,A,—3d,A,+ig[A, Al — JDASMATr Pexdiggrdx“A,(x)]
Frr= el oF (2.2 (2.6

The closed loogd’ is defined by the quartantiquark trajec-
tories z;(t) [z,(t)] running fromy; to x; (X, to y,) ast
e i v varies from the initial time; to the final timet;. The quark
DF =" t1gLA% @3 (antiquark trajectoriesz; (t) [z,(t)] define the world lines
I'y (T',) running fromt; to t; (t; to t;). The world linesl";
) andI’,, along with two straight lines at fixed time connecting
W(I) =Pexgigérdx“A,(x)], 24y, toy, andx, to x,, then make up the contoilit (see Fig.
1).! As usuaIA#(x)EAj‘L(x))\a/Z, Tr means the trace over

and
IAs  a  consequence frjdxf‘fﬂ(x)=(—1)i+1f:ifdt[fo(zj)
—27;-f(z)], wherez;=(t,z(t)). The factor 1) ** accounts for

— (2.5 the fact that world linel’, runs fromt; to t;. We also use the
[DAESMA notation z{ = (t',z(t")).

iSYM(A)
<f(A)>E%Tr p  PACTMTTA)
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color indices,P prescribes the ordering of the color matrices
according to the direction fixed on the loop a8g\,(A) is Xy
the Yang-Mills action including a gauge fixing term.

As the 1m? terms in Vqq are of two types, velocity-
dependen¥/\p and spin-dependengn, we can identify in
the full potential three types of contributions:

X2

Y =

VQa: VO+VVD+VSD! (27)

with V, the static potential.
The spin-independent part of the potentid}+Vyp, is
obtained in Eq(2.1) from the zero order and the quadratic
terms in the expansion of (W(I')) for small velocities
z,(t)=p;/m; andz,(t)=p,/m,. In the notation of13,19 Y, B
the terms arising from this expansion can be rearranged as tit
- Y

Y2

iIn(W(F))Z f:fdtvo[r(t)]JrVVD[r(t)], (2.8 FIG. 1. Quark-antiquark Wilson loop.

P TE v (r)] ,

2 1 1

2—2[ Vo +| 3

=1m Weyl
2.9

1 1 P1-P2
VVD[r(t)]— p1 P2 Vp(r) + ZP1 P27 — V()

Weyl

wherer (t)=z,(t) —z,(t) and the symbo{ }ey Stands for t 2 g

the Weyl ordering prescription among momentum and posi- f dtVinomas E — dx”S}s'k'p}‘«Fm(x))),

tion variableq12]. t =1 2miJr 01
The spin-dependent potentik contains for each quark (212

term analogous to those obtained by making a Foldy-

Wouthuysen transformation on the Dirac equation in an ex- t¢ g

ternal field (where ((F ,,)) plays the role of the external ) dtVpanin= Zl Wfr_dXM«DVFW(X)»,

field), along with an additional terndsghaving the structure ! = 1= (2.13

of a spin-spin interaction. We can then write '

ts
dtv. f dxﬂf dx' 7SS
VSD_VL +VThomas+VDarvv|n+VSS (2-1() f ss= 2 i’ meJ

X (((F 10 F (X)) = ((F1.(0))

using a notation which indicates the physical significance of
the individual termgmag denotes magneticThe correspon- A ,
dence between Eqé2.10 and(2.1) is given by X((Fra(X))))- (2.19

In the well-known Eichten and Feinberg notatipf] and
2

g .
J dtV]e%= — FJ’ dx“Si((Fi.(x)))), (2.1)  contributions arising from the spin-spin interactifts, 19,
—HT the terms inVgp can be rearranged as

A[Vo(r)+v (D1+13

1 1 1
VSD=§ m_i 2|—1 Si— 2|—2 Sz)r dr [Vo(r)+2V1(r)]+—(L1 S=L2-S)

(M L V4(r), (2.19

d
XegrVaD+ | — 2 _§SI'SZ>V3(r)+

also taking into account the Darwin potential and similar
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with Lj=rXp;. It is not possible to identify directly each next sections we will discuss some of these assumptions and
Eichten-Feinberg potential with the terms contained in Eqgive for each of them the explicit analytical expression of the
(2.1 without making some assumptions on the Wilson loop.potential.

This will be the aim of the next sections. But some observa-

tions are just now possible. The contributions to ll. MINIMAL AREA LAW MODEL  (MAL)
A(Vo+V,) come fromVpamin and fromVggwith j=j’. In _
the caseg #j’, Vss contributes to the tensor teri and to In [12,14 (W(I')) was approximated by the sum of a

the spin-spin termV,. Finally, V, receives contributions Perturbative part given at the leading order by the gluon
from both the magnetic(™9 and the Thomas precession PropagatorD,,, and a nonperturbative part given by the

term (V1homad While the contributions t&/, come only from \{alue of the minimal area of the defqrmgd Wilson loop of
the magnetic term. fixed contourl” plus a perimeter contributiof:

Due to the Lorentz invariance properties of the Wilson HI(W(T)) =i In(W(T))SR+i In(W(T"))LR
loop some exact relations for the potentials and
Va, ...,V can be obtained. The first was given by Gromes 4, u .
[5] for the spin-related potentials =—39 ﬁdxl jgrdxz'D,w(Xl—Xz)
d C
grLVo(r)+Va(r)=Va(r)]=0, (2.19 + oSt 5P (3.9
and the other one by Barchielli, Brambilla, and Prospéd Denoting by u#=u*(s,t) the equation of any surface
for the velocity-related potentials with contour T (se[0,4],te[t;,t;],u’(s,t)=t,u(1)
=2z4(t),u(0t)=2,(t)) and definingur=u—(u-n)n with
1 1 rodVy(r n=(dulds)|dul 9s| "1, we can write
Vo4 V(1) + 2 Vo) s S0 g (2,19 (ou/as)|auios
2 4 12 dr
i ftfdtfld _(9uT ouy) [9u” ouy,
v 1, rdVo(r) _ - Sin=min ¢ Jo at ot |\ as ds
(NFVeltg =g 70 (218 w2112
Since these relations are due to the Lorentz invariance they gt ds

must be satisfied by any good choice of the Wilson loop t 1 Ju\ 12) 22

approximated behavior. =minj dtJ ds 1— (_) . (3.2
Summarizing, the static and velocity-dependent part of t; 0 ot T

the potential are given in terms of the expansion of the Wil-

son loop averagéW(I')), while the spin-dependent poten- which coincides with the Nambu-Goto action. Up to the or-

tials are given as a sum of terms depending upon the quarder 1m? the minimal surface can be identified exacthee

and antiquark spins, masses, and momenta with coefficien&sppendix B[12]) with the surface spanned by the straight-

which are expectation values of operators computed in théne joining (t,z,(t)) to (t,z,(t)) with t;<t<t;. The generic

presence of a moving quark-antiquark pair. These expectgpoint of this surface is

tion values can be obtained as functional derivatives of 0

In(W(I')) with respect to the path, i.e., with respect to the Umin=t,  Umin=52Z1(t) +(1—-9)Zx(1), (3.3

quark trajectoriez;(t) or z,(t). In fact, let us consider the

change in (W(I')) induced by letting z{*(t)—z{(t)

+ 0z)(t) whereéz}(t;) = oz{(t;) =0:

ou
Js

with 0=s=<1 andz(t) andz,(t) being the positions of the
quark and the antiquark at the tirheThen, the exact expres-
sion for the minimal area at the ordemi? in the MAL turns

' b
9((F (zj)>>:(_1)j+1w 219 out to be |
mv T , ' | | |
oSH (Z]) Smin:ffdtrf ds{l_[sle+(1—S)22T]2}]_/2

t 0

05""(z;)=(dz''6zj —dzj' 6z}").

e 1., ., . .
Varying again the path = fti dtr[l— glartartarz)t. . 34
9P (((F 20 Frp(22))) = ((F uZ))){(Fp(22)))) The perimeter term is given simply by
) 6 2y —
~ 195y (P2 (220 Pbul iy« 3, [anE, @8

All contributions to the spin-dependent part of the potentialand it is clear that we can neglect the time-independent pe-
can be expressed as first and second variational derivativeésneter contribution to the potential in the limit of a big time
of In(W(T)). Therefore the whole quark-antiquark potential intervalt;—t;. By expanding also Ed3.5) at the 1/n? order
depends only on the assumed behavioffTI")). In the  we have
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sorbed in a redefinition of the quark masses—m;+C/2

(for details se¢14]). Then let us consider the moving quark
and antiquark connected by a chromoelectric flux tube and
let us describe the flux tube as a string with pure transverse
(3.6)  velocity v;. At the classical relativistic level the system is
described by the flux tube Lagrangif20,21]

t 1. . .
iIn(W(F))'-R=f "dtor 1—6(2§T+Z§T+21T~22T)
t.

2J lj:[ dt(l_izj J

For what concerns the perturbative part in the limit for
larget; —t; the only nonvanishing contribution to the Wilson

2
r
loop is given by L=—> mj\/l—vf—af dr'yi-v/?,  (3.1)
=1 0

t t
ingwr) = - 27 [ Mot [ a2
l f with v{ = vyt '/t + vy (1—r'/r). The semirelativistic limit of
XiD (21~ 2,). (3.7 this Lagrangian gives back the nonperturbative part of the
V, and Vyp potential in the MAL model(notice that the

In the infinite time limit this expression is still gauge invari- "0 ¢ . . . o e
minimal area law in the straight-line approximation is the

ant. Expandingz,(t,) aroundt; it is possible to evaluate _ ) ; )
explicitly from E2q.%3.7) the sﬁort-range potential up to a configuration given by a straight flux tub®The remarkable

given order in the inverse of the mass. Self-energy terms a@haracteri_stics of the obtainad,, potential is the fact that it
neglected. is proportional to the square of the angular momentum and

So, in this framework the followingMAL) static and ~ S° takes into account the energy and angular momentum of

velocity-dependent potentials were obtained: the string:
VO=—E%+UI’+C, (3.9 1 2 1
o _3 ' _ Vyp="— 2m.m r(Ll 2+L2'L1)_Z F_sz'
and the explicit expressions for the potentials are 172 j=16mg 1 (3.12
8a; 1 2as 1 |
Vb(r)=§——§(rr, Vc(r)=—§7—gar,

Finally, the nonperturbative spin-dependent part of the po-
tential in this intuitive flux tube picture simply comes from
Va(r)=-— 97"~ ch Ve(r)=— 57" (3.9 the Buchmiller ansatz that the chromomagnetic field is zero
in the comoving framework of the flux tube.
We notice that even ¥/, seems to arise from an effective
the-Salpeter kernel which is a scalar and depends only on
the momentum transfer, a simple convolution kernel cannot
reproduce the correct velocity-dependent poteri8al2 or
AV,(r)=0, equivalently (3.9) [22]. Nevertheless the behavidB.12
seems to be important to reproduce the spectrum
[9-11,16,23,2%

These potentials satisfy the exact relati¢Rsl7) and (2.18

Moreover, by evaluating the functional derivatives for the Be
Wilson loop, as given by Eq92.19 and (2.20, we also
obtain the spin-dependent potentials

d
arVan=-o,

IV. STOCHASTIC VACUUM MODEL (SVM)

4
%Vz(r)= 37 — (3.10 The SVM (see[15,25 and for a review 26]) in the con-

° text of heavy quark bound state gives a justification of the
MAL model avoiding the artificial splitting of the Wilson
V3(r)=4%, loop in a perturbative_: a_nd a nonperturbative part. It repro-
duces the flux tube distribution measured on the laftd@.
Moreover it allows one to go beyond the MAL model in a
systematic way(e.g., with the so-called perturbation theory
in nonperturbative backgrour{@8]). The whole nonpertur-
bative physics is factorized in some correlation function
These potentials reproduce the Eichten-Feinberg-Gromes resich can be calculated on the lattice.
sults[4] and fulfill the Gromes relatiof2.16). Notice that, as The starting point is to express the Wilson loop average
a consequence of the vanishing in this model of the long¢W(T")) via the non-Abelian Stokes theord@0,30 in terms
range behavior of the spin-spin potentidds and the spin-  of an integral over a surfacd enclosed by the contodr,
orbit magnetic potentiaV/['¢9 there is no long-range contri- and then to perform a cluster expansi@1]. In order to
bution to V,, V3 and V,. Instead V; has only a allow lattice calculations all these quantities are given in the
nonperturbative long-range contribution, which comes fromEuclidean metric. Some care must be payed in converting it
the Thomas precession potentigal12). in the Minkowskian metric before putting in E¢R.1):
The MAL model strictly corresponds to the Buchibeu

picture[3] where the magnetic field in the comoving system
is taken to be equal to zero. Let us first notice that the pe- ?For a discussion of the relation between the two models in the
rimeter contributions at the i order can be simply ab- path integral formulation sed.2].

R

V4(r)—3 masd¥(r).
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<W(F)>:<P>6X% Ig JSdSMV(U)FIuV(UlXO)) (41)

o (ig)
:ex4 E j_!JSdS,ulvl(ul)' t fsdsﬂj”j(uj)<Fp‘1V1(ul’XO)' o F/.LjVj(uj 1XO)>cum . (42)

=1
The cumulantg )., are defined in terms of average values over the gauge fields
(F(1))eaum=(F(1)) (F(LF(2))oum=(F(1)F(2)) = (F(L)XF(2)), ... (4.3

and PF,, ,(u,xo)=Pexdig/ )L('de“A,L(x)]FW(u)exp[ig I z"dx"Aﬂ(x)] where X, is an arbitrary reference point on the surfage
appearing in the non-Abelian Stokes theor@ni). In general each cumulant dependsand onxg, but, as the left-hand side
of Eqg. (4.1) does not, it is expected that in the full resummation of all the cumulaigkt-hand side of Eq(4.2)] this
dependence will disappef80]. To minimize the required cancellatioSsis chosen to be the minimal area surface.

Equation(4.2) is exact. The first cumulant vanishes trivially. The second cumulant gives the first nonzero contribution to the
cluster expansioi4.2). In the SVM one assumes that in the context of heavy quark bound states higher cumulants can be
neglected and the second cumulant dominates the cluster expansion, or, in other words, that the vacuum fluctuations are of a
Gaussian-type:

2
W)=~ 5[ 4,.00) [ d5,,0)(F K00 0500 b .4

Neglecting the dependence ggpand on the arbitrary curves connectixgwith u andv which seems to be relegated to higher
correlators, the Lorentz structure of the bilocal cumulant implies that it can be expredss] as

<F,LLV(U1XO)F)\p(U 1X0)>cum= <F/.LV(U1XO)F)\p(U 1XO)>

B

0
:? _[(U_U))\éyp_(u_v)pgv)\]

u,

1
[(5M)\5Vp_ 5MP5V)\)D((U_U)2)+ E

J’_

d
&uv[(u_v)pé,u)\_(u_v))\g,up]

Dl[(u—v)z]], (4.5

_ 9 (TrF,,(0)F ,,(0))
P=35 D(0)+D4(0)

Equationg4.4) and(4.5 define the SVM for heavy quarks. The correlator functiBnandD, are unknown. The perturbative
part of D1, which is expected to be dominant in the short-range behaviour, can be obtained by means of the standard
perturbation theory:

16a. 1
pert;y,2y_ — S — ;
DY(x?) Epevay higher orders. (4.6)

Instead the only information which we know about the nonperturbative contributioDsated D, come from lattice simula-
tions. A good parametrization of the long-range behavior of the bilocal correlators seem§3@,3#

BDR(x?)=de ¥ §=(1+0.1) GeV, d=0.073 GeV, 4.7
BDFR(x?)=de M 5,=(1+0.1) GeV, d;=0.0254 GeV. (4.9

Up to order 1m? the minimal area surface can be identified, as in the previous section, with the straight-line €i8ace
In particular, sincedS,,(u) =dtdsiu,(t,s)/dtdu,(t,s)/ds, we have

dSyj(u)=dtdsr(t),

dS;(u)=dtdgsz,(t) +(1—5)z;(t)r;(1).

From Egs.(4.4) and (4.5 and taking in account Eq3.3) we have calculated explicitly {i\(T")). Considering a time
interval much larger than the typical correlation lengtiDofindD;, up to order Ith?> we have(for details see the Appendix

, 4.9

+o r r A
Vo(r)=,8j_m d7'| fod)\(r—)\)D(72+)\2)+ fod)\EDl(TZ‘F)\z)
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_B(* r 2 2 8a\ A 2 [ 3N 37 L
Vb(r)—EJ;OCdT Jod)\ —§r—T+§r7—3T D(7°+A\ )+fod)\ _§T+§T Di(7°+A )+?D1(T +r) ¢,
(4.10
v —Bf+md er r 2>‘2 4)\3D 2+ \? rzo 2+ r? 4.1
C(r)—E . T 0 A _§— T+§r—2 (T +A )—E 1(1’ +I’) , ( 1)

r 2 3 1A% 42\® 37 ) r 3 3\ 37 ) o
fd)\ —3TtsM s T3t T D(7+X\ )+fd>\ — =Nt —— = —|D(P+A\D)},
0

f—

o (T oA 2\8
Ve(r)== drfodx(——+———7)D(72+A2). (4.13

Result(4.9) was found in[15], whereas Eqs4.10—(4.13 are new. We note that these expressions for the poteijadsid
Vp, ..., V. satisfy identically the Barchielli-Brambilla-Prosperi relatiq@sl?) and(2.18). Of particular interest seems to be

the potentialV, that has only nonperturbative contributions in the bilocal approximation.
To evaluate the spin-dependent part of the potential, the only terms which we need are those with one and two field strength

insertions(taking in account tha¢(D"F,,(x)))=4d,((F,.(xX)))). By means of Egs(2.19, (2.20, and(4.4),

se (11 1
o((Faz)=pn | dr{ |/ Eo4a%) 4 5Dy

. . +o ro 1 A ) ) . .
g<<FiI(Zl)>>:B(ZI1ri_Zilrl)j_w deod?\F 1=+ |D(r"+A )+ B(Z2ri—2zior))

+oo r A\ 1
xf dTH ANz D(7*+\?)+ 5Dy (72 +17)
— 0

. . +o r 1 A . .
g<<FiI(ZZ)>>:IB(ZI2ri_Zizrl)J'_w deo d)\r 1- F) D(7*+\%)+ B(z11—zi11))

oo TN 1
xf dr fdxr—zD(72+>\2)+§D1(r2+r2)
o 0

gz(<<F/.Lv(Zl)F7\p(ZZ)>>_<<F;LV(21)>><<F)\;)(ZZ)>>)
J
=B(8,18,,— 8,,0,)[D(T?+r1?)+ D1(7-2+rz)]+,8(er)\§Vp—erp(SVpLrvrpém—rvrxéup)WDl(errrz),

4= T:tl—tz.

In this way we obtain the following expressions for the spin- 1 o
dependent potentials in the SVidonfirming the results ob- +5rDy(r T )], (4.16
tained in[15] with a different derivatioh

AV, (r)= self-energy terms, (4.14 +oo 9
vg(r)z—ﬂj dTrZFDl(TZ—HZ), (.17

d te A
gr Va(n= —ﬁf_x drfodx( 1- F) D(72+\?),

(4.19 V4(r)=ﬁf+md7[3D(72+r2)+3D1(72+r2)

. (4.18

van=p[ "arl [T 2 Dy
gr Va(n=2g A7) ANy (7 ) +2r2 5 Dy(r2+17)
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Potentials (4.9), (4.15, and (4.16 satisfy identically the
Gromes relatior{2.16). An application of the spin potentials
to thebb andcc spectrum, with a discussion on the different
types of parametrization of the correlation functions, can be
found in[33,34.

In the short-range behavior {-0), assuming that all the
relevant contributions come from the perturbative part of
D, (4.6), Egs.(4.9—(4.15 exactly reproducéafter subtract-
ing the self-energy contributiopshe a-depending part of
Egs.(3.8), (3.9, and(3.10 of the MAL model. We observe
that no gauge choice is necessary in this approach, which is
manifestly gauge invariant. Moreover, we note that the short-
range behavior of theD; correlator is notad hoc but
emerges straightforwardly from the comparison with the
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4d
C2=gg20.3 GeV,

4d
Cl=—3=~0.1 GeV,
51

3md
DZIF:O.Z

expansion of the Wilson loop.
In the long-range behaviorr {-x),

1

d c,
ZC(Zl)_CZv avl(r):_O—Z—’—Tr

Vo(r):(Tzr+

d C
—V,(r)=—2,

dr r (4.19

V3 andV, fall off exponentially and
AV, (r)= self-energy terms,

1 2D,

8 E,
Vb(r):—§0'2r—§T+

312

D, 2E

Ve(r)= 6 r

with

+ oo o
UZEBJ de dAD(72+\?),

— 0
+ oo oo

czzﬂf dffo dAAD(72+\?),
+ oo s}

c<21>sﬁf de dAAD,(7%+)?),
— % 0
+ oo o

Dzzﬁf drfo dANZD(7*+\?),

+ oo o]
Ezzﬁf de dAA3D(72+\2).
— % 0
By means of parametrizatiod.7) and (4.8) we have

d
0=~z =0.2 GeV,

3 .
E2=?z2.3 GeV -,

and

V3(r)=1.26)d,\ 8 r¥%e o,

6d 6d
Va(r)=1.26) fsrlfze—fsr +1.26) J—(S_lrlfze—ﬁlr
1

—2.52)d;\/8,r%% %,

Identifying o, with o and C§"/2— C, with C then at the
leading order inr—« the spin-dependent and velocity-
dependent SVM potentials reproduce the long-range behav-
ior of the potentials(3.8), (3.9, and (3.10 in the MAL
model. Notice that the constant terms in the static and
velocity-dependent potentials turn out in the same combina-
tion as necessary to be reabsorbed in a redefinition of the
quark masses. Some differences emerge at the next orders. In
the SVM the magnetic contribution to the spin-orbit potential
(which we calledVv{'€9in Sec. I) is not exactly zero in the
long-range behavior but gives some tbrrections. For this
reason the potentiaV,/dr does not vanish and the poten-
tial dV,/dr presents a i/correction to the Thomas preces-
sion term. Notice, also, that in the SVM the tensor potential
V3 and the spin-spin potenti&l, are exponentially decreas-
ing with the distance but not identically zero as in the MAL
model. In the next section we will see how the dual QCD
model is able to reproduce this behavior. Finally a very rich
structure of entirely nonperturbativerland 1f2 corrections
emerges in the velocity-dependent part of the potential. A
lattice study of this kind of contribution is in progregs7]
and in light of Eqs.(4.20 should give an interesting check
on the validity of the stochastic vacuum approach in the
velocity-dependent sector of the potential and possibly some
new indications on the behavior of the correlator function
D. A last comment on the fact thatV, is notr dependent.
This is a direct consequence of the bilocal approximation
which we have adopted. In principle, nothing prevents us
from the existence af dependent contributions coming from
higher order cumulants. We think it will be an important task
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to estimate such a contribution and compare it with latticeandy(s, 7) is a world sheet with boundary swept out by

results(for a more detailed discussion sE&5)). the Dirac string. Notice that dual potentials couple to electric
color charge like ordinary potentials couple to monopoles
V. DUAL QCD (DQCD) [18,37.

The functional integrakW.u(T")) determines in DQCD
The duality assumption that the long distance physics of ghe same physical quantity &8/(T")) in QCD. The coupling
Yang-Mills theory depending upon strong coupled gauge pom Ler(GS,) of the dual potentials to the Dirac string plays
tentialsA,, is the same as the long distance physics of thgne role in expressio(b.1) of the Wilson loopW(I") of QCD
dual theory_describing tr;e ainteractions of weakly c'oupled(2_4) in (W(T')). The assumption that the dual theory de-
dual potentialsC,=%,-,°C,\a/2 and monopole fields gqyihes the long distand@Q interaction in QCD then takes
Bi=3,.,%B2\,/2, forms the basis of DQCI18].3 The  the form
model is constructed as a concrete realization of the
Mandelstam—t'Hooft[36] dual superconductor mechanism (W(T))=(Weg(I)) for large loopd". (5.6)
of confinement. Indeed, the explicit form of the Lagrangian
expressed in terms of the dual potentials is not known in darge loop means that the sigof the loop is large com-
non—.AbeIian Yang-MiII; theory. Singe the maiq interest is pared to the inverse mas# 1= (600 MeV) 1] of the
solving such a theory in the long-distance regime, the Layjiggs particle(monopole field. Furthermore, since the dual
grangianLey is explicitly constructed as the minimal dual {heory is weakly coupled at large distances, we can evaluate
gauge invar_ia_nt exte_nsion of a quadratic Lagrangian with th?weﬁ(l“)) via a semiclassical expansion to which the classi-
further requisite to give a mass to the dual gluémsd to the 5| configuration of dual potentials and monopoles gives the
monopole fields via a spontaneous symmetry breaking of jeading contribution. This then allows us to picture heavy
the dual gauge group. ] quarks(or constituent quarksas sources of a long distance
‘We denote by Weq(I')) the average over the fields of the ¢|assical field of dual gluons determining the heavy quark
Wilson loop of the dual theor{/19]: potential. We mention here that DQCD reproduces the lattice
flux tube distribution38].
(Wer(I')) Equation(5.6) defines the DQCD model for heavy quark
fDC#DBDBgeXKifdx[ﬁeff(GiV)_}'ﬁGF]) bound states. Replacir(gW(F)) by (Wei(T')) in Eq. (2.1),
= - 5 , we obtain expressions f&f, andV\,p and by considering the
JDC, DBDBsexpifdX Lei( G, =0) + Ler]) variation in (We(T')) produced by the change
(5.) G,(X)—GS,(x)+8G (x) we obtain also the field aver-
ages in terms of dual quantities:
where Lgr is a gauge fixing term and the effective dual La-

grangian in the presence of quarks is given by L 0In(Wegr(T)) 4
g<<F,u.y(Zj)>>:(_1)]+l 58/1.1»?;) = §g<<G/.LV(Z])>>eff
]

Lei(Gy,)=2TH— §G*'G,,+ 3 (D,B) = U(B)). _
(5.2) :(—1)i+198 SiIN(Wer(I')) 5.7

. . o . 27HNT 8GR, (2)) '
U(B;) is the Higgs potential with a minimum at a nonzero
value Boy=Bo\ 7, Boz= — Boks, andBog=Bo) . It was also  1hjs gives a correspondence between local quantities in the

takenB,=B,=B. In Eq. (5.1) we have taken the dual PO~ yang-Mills theory and in the dual theory. A similar expres-
tential proportional to the hypercharge mat@x=C,Y. sion can be obtained for the double field strength insertion in

Moreover, Eq. (2.2).
) The weak coupling of the dual theory permits the explicit
. ﬂ- i i ._
DB=0,B+ielC, B], e=—, (5.3 ?nvgliléﬁflzneﬁi(ewvsfgﬂé)\/:y means of the classical approxi

=(4,C,—39,C,+G3 )Y, 5.4 .
T OuCm Gt ) o4 {In(Weg(I")) = f dXLer(GP,), (5.8
s gy ayP
GL(X)=08upap | dS| dT—— ——8[x—Y(s,7)], with Ler(G3,) evaluated at the solution of the classical
(5.5 equations of motion:
9(9,Cp— 35Co)=—"Gop+ ™" (5.9
3The name dual QCD has historical reasons, but can give rise to
some confusion. We emphasize that the duality assumption concern oU
only the long dist hysics of the strongl led Yang-Mill (9,+ieC,)?B=—— —, (5.10
y g distance physics of the strongly coupled Yang-Mills m w 4 5B
sector.
4Doing s0, L Without quark sources generates classical equa- 1 85U
tions of motion with solutions dual to the Abrikosov-Nielsen- 52 3= (5.11)

Olesen magnetic vortex solutions in a superconduct8rl9. 4 5B3’
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wherej °"= — 6eC B is the monopole current. The Dirac thatV, is determined by the nonperturbative gluodynarhics

String is chosen to be a Straight line Connect@gandQ_ and the second is the color magnetic COﬂtribUfﬁH.P sat-
since this is the configuration having the minimum field en-isfies the equation
ergy. As a consequence of the classical approximation, all
guantities in brackets are replaced by their classical values
((Gu(X)))efi=G,,(x) which are obtained by solving nu-
merically the nonlinear equatiori§.9—(5.11). An interpola-
tion of the numerical results for the potentials can be found The potentials depend on the two free parameters
in [18] (in particular, in the first of these references it is 4 = 7/e? and o. In [18] the values
possible to find also an application of the DQCD potentials
to the heavy quarkonia spectrunin the following we will
give and discuss only the large distance limit of these poten- 0=0.18 GeV, «s=0.39, (5.23
tials.

In the long-range behavior {~»), the interpolation of
Ref.[18] gives

6e?B2(x)

_ 2p2 NP_ _ ~~ = V7
(—A+6e2B2)G P

(5.22

were used. The dual gluon mabk is related to these two
parameters and is approximately given by

Vo(r)=or—0.646Joas, (5.12 T
0 ° M2=— —=(600 MeV)2. (5.24
4 ag
d 0.681
g Vi =—o+ ——oas (5.13 Finally we observe that all these potentials satisfy identi-

cally the Gromes relatio(2.16) and the equivalent relations
for the velocity-dependent potential®.17) and (2.18).

d 0.681 From the comparison of Eq$5.12 and (5.13 with Eq.

EVZ(” = —‘/‘T_“s (5.14 (4.19, it follows immediately that in the long-range behavior
the static and the spin-orbit potentials coincide completely in
DQCD and in the SVM. The agreement, between the 1/
corrections in the two models seems to be very important.
These corrections come from the physics beyond the mini-

Vp(r)=—0.09%r1 —0.226J 0 «ay, (5.15 mal area law assumption and, in fact, are not present in the

MAL model [see Eq(3.10]. The coefficient of the t/con-
tribution in dV, /dr anddV,/dr is the same in DQCD and

and

V¢(r)=—0.146r - 0.516J0 s, (5.16  svM and in both cases compatible with the constant term in
the static potentiaV/y. The little difference between the con-
Vy(r)= —0.1187r+0.275JES, (5.17 stant indV, /dr, dV,/dr, andV, can be understood in the

SVM language as due to the presence of the small positive

constantC(zl)lz. The spin-spin interaction falls off exponen-
V(r)=—-0.17%r +0.258| 0 as. (5.18 tially in both the models. In DQCD the behavior is like a

Yukawa interaction, while Eq$4.17) and(4.18 seem not to

For the spin-spin interaction and for large distances it is posf€Produce this behavior at least with parametrizatiGhg)

sible to give the exact analytical expression of the otentials"?‘nd(""s)' This is, at the mome”t’ an importan; disagreement
g y P P because one of the basic features of DQCD is that the mag-

netic interaction(as in the spin-spin cagés carried by a
(5.19 massive particle. Differences arise for large distances also in
r '’ ' the velocity-dependent sector and with respect to the MAL
model. The factors in front of ther leading contributions to
—Mr Vp, ... Vg are slightly different from those of Eg$3.9).
_ (5.20 The potentials/y,, V., andV, present some additional con-
r stant terms which do no arise from the area law. Finally there
are not I¢ corrections as in the SVM. Some of these dis-
While V, is, at the moment, lacking either in an analytical or Crépancies can be interpreted as due to a finite thickness of

a numerical evaluation, and is formally given [18] the flux tube in DQCD opposite to the infinitely thin flux
tube in the MAL model[19]. Therefore in the two models

the flux tube will have a different moment of inertia and give

—Mr

4 ) 3
V3(r)=§as M +FM+r—2

e

4 2
V4(I’)= §C¥SM

3 2 . - I -
4 slightly different contributions to the velocity-dependent po-
— NP, _ N2 NP, ’
AVa(r)=—AVp'(r) 39 = dxjdxj’G (x.x") o tential. It is possible that these discrepancies will disappear if
X’X(E:Zzi]) including higher order cumulants contributions in the SVM

predictions. Other differences between the predictions of the
two methods could have origin from the very delicate inter-
where the first term is the color electric contributionMg  polating procedure of the numerical solutions of the DQCD
[VB‘P(r) is the nonperturbative part of the static potential, sononlinear equations. The lattice results on the velocity-
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dependent potentia[d7], which will be available soon, will rametrizations which differ at the next-to-leading order in the
possibly clarify the situation. distancer. However they contain more information about the
short-range region of the interacti¢typically below the cor-
relation length of 0.2 fi(n Generally the data reproduce the
VI. DISCUSSION AND CONCLUSIONS perturbative result§which at first order inag can be read

Using the same gauge invariant and physically transparerffom Ed. (3.10 putting o equal q. The only exception is
approach to calculate the complete semirelativistic quarkdiven by the short distance behaviord, /dr which seems
antiquark interaction for three different modélgAL, SvM, o be negative and proportional tord/ This contradicts the
and DQCD we have shown the following points. ordera§ calculation of theQ Q potential(which contains the

We have obtained the velocity-dependent corrections irffirst nonvanishing perturbative contribution tdV,/dr)
the SVM model which are new and present an interestingiven, for example, by Pantaleone and T¢6]. The reason
nonperturbative structure. of this discrepancy could be explained by higher order per-

We have demonstrated that the minimal area law model igurbative contributions or by some, at the moment, unknown
exactly reproduced in both the spin dependent and thshort-range nonperturbative contributin the language of
velocity-dependent sector of the potential by the long-rangéhe SVM this contribution could arise from the correlation
behavior of the stochastic vacuum model. From now we caifiunctionD; an investigation in this sense of the recent short-
consider the MAL model simply as the—c limit of the  range data o given in the last reference quoted[B82] is
SVM for heavy quarks. Moreover, this limit realizes also thegoing on. The problem is still open. Only recently some
intuitive Buchmiller’s picture of zero magnetic field in the data on the velocity-dependent potentials appe&i&q7].
flux tube comoving system. Probably more accurate data will be available in the next

In the spin-dependent sector of the potential, both themonths. These results seem to confirm the long-range behav-
SVM and DQCD not only reproduce the long-range behavioiior contained in Eq(3.9) (o dependent termsMore inter-
given by the area law, but also giverltorrections to esting is the case of the potential/, which appears to be
dV,;/dr anddV,/dr. These corrections are equal in both different from zero for — and show up a t/short-range
models and very near to the absolute value of the constaiiehavior. This behavior has been recently explained in terms
term in the static potentiafthe SVM also supplies for the of SVM and DQCDI[35].
explication of this fagt This perfect agreement is absolutely  In conclusion SVM and DQCD reproduce the flux tube
not trivial and seems to be very meaningful, since it ariseslistribution measured on the lattice and the general features
from two very different models in a region of distances in coming from the area law. Both give analytical expressions
which the physics cannot be described by the area law alonéor the Wilson loop[Egs.(4.4) and(5.1)] which describe the
This is also remarkable to understand the kind of effectiveevolving behavior of W(T')) from the short to the long dis-
kernel that would describe the nonperturbative bound statet@nces(we note that this can be useful in many different
of constituent quarks. For example, it seems clear now thaapplications, see, e.d41]) and both give some predictions
the vanishing of the magnetic part, given by the field averagavhich go beyond the asymptotic behavior. But not all pre-
of Eqg. (2.11), in the nonperturbative region takes place onlydictions are equal in the two models in the intermediate dis-
at the leading level in the long-range limit. Therefore, work-tances region, in particular, in the velocity-dependent sector
ing in a Bethe-Salpeter context, there is no need to assun@f the potential, but also in the spin-spin interaction. There-
an effective pure convolution kernel which is a Lorentz sca-fore, new lattice data sensitive to such kind of corrections
lar (a recent proposed Bethe-Salpeter kernel can be found iseem to be urgent. Finally, work is in progress in evaluating
[39)). the correlation functio® andD; in the DQCD context and

Velocity-dependent contributions to the quark-antiquarkin producing an extensive phenomenological analysis of the
potential are important. In fact, the string behavior of thecontribution of the new obtained potentials to the heavy and
nonperturbative interaction shows up when we consider thbeavy-light quark spectrum.
velocity-dependent part of the potent{dl6,19 and this is
also what the data requirg23]. The derivation of the ACKNOWLEDGMENTS

velocity-dependent part using E@.1) and the SVM is com- . o
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pletely gauge invariant and seems not to suffer from th osch, D. Gromes, G. M. Prosperi, and Yu. A. Simonov for
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1/r and 1f? corrections, suppressed in the long-range behavagzzlcs Institut of Heidelberg where part of this work was
ior. The velocity-dependent structure which arises from the '
DQCD model differs slightly in the coefficients with respect
to the area law behavior. The main reason seems to be that
the flux tube in DQCD has a finite thickness. It is possible In this appendix we derive the static potential in the SVM
that higher order cumulants can reabsorb this difference. [Eq. (4.9)]. The same technique was used to obtain the other
The spin-dependent potentials have first been evaluatggbtentials. Since the velocity-dependent potentials involve
on the lattice. The data if6] confirm the long-range behav- long and tedious calculations, a program of symbolic ma-
ior given in Eq.(3.10 and contained also in Eq&4.19 and  nipulations was used in that cast2].
(5.12—(5.14. Recent dat@7] show the same long-range be-  From Eqgs.(4.4), (4.5, and in the straight-line parametri-
havior and do not yet allow are to distinguish between pazation of the surface, it follows that

APPENDIX
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8{D[ 7+ (u=V)?]+Dy[ 7+ (u—V)?]}

|n<W(F)> = gJSdSm(U) deS4J(U)

2 d 2 2 202
+[728+ (U=0)i(u=v)}]gzDa[ 7+ (u=v)?]| +0(Z 2), (A1)
with dSy;(u) =dt,ds;ri(ty), dS5(v) =dtds,ri(ty), and 7=t; —t,. Expanding the functions df, aroundt,,
ri(ty)=rj(t)—r(t) 7+ ...,
(U=v);=2j(ty) = Zp5(ty) + 11 (t) =Sor j(tp) = (S —S)rj(ty) +- - -,
and taking for simplicityr;(t;)=r; andA=s,—s;, we obtain

t t 1 1
In<W(F)>=—§f fdtlffdtzf dle’ dszrirj[5”-[D(72+)\2r2)+D1(7-2+)\2r2)]

d -
+(728; +Nrir 5D (P4 M%) | +0(21,2)). (A2)

Since
1 1 1 1-s1 1
f dsif dszf[(sz—sl)z]zf dslf d)\f(kz)zzf dr(1—N)f(N?),
0 0 0 -5 0
we can write

+0(22,23).

(A3)

In(W(T")) = —Bﬁfdtlf:fdtzjold)\(l—)\)rz{D(7'2+ N2r2)+ D (724 N22)+ (724 >\2r2)d£7201(72+ A2r2)

Replacingr A — \ and taking in account that the time variables in ) are in a Euclidean space while the equation for the
potential(2.1) is in Minkowski, the static potential is given by

Vo(r)=,8£+:drford)\(r—)\)D(72+)\2)+,8f_+:er:d)\(r—)\) D1(72+>\2)+(72+>\2)%D1(72+>\2) . (Ad)

where, also, the large time limit was performed. Finally, the identities
f+xd 2 OID 2+>\2—1J+md OID 2+ \?%) = 1j+xd Dy (2 4+\?
A1 DTN =5 | drr Dy (7MY = -5 ) d7Dy( )
and

erx —)\)\ZdD 2+>\2—1frd>\ —)\)\dD 2+>\2——1fd>\ —20M)D (7% +\?
0(r )del(T )—20(r )d)\l(T )—Zo(r )D4(7 )

give back the static potential in the form of E@.9). Taking in account th€©(z2,23) contributions in Eq(Al) and in the
following equations, we obtain the velocity-dependent potenti@as0—(4.13).
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