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Continuum extrapolation of energies of a four-quark system in lattice gauge theory
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A continuum extrapolation of static two- and four-quark energies calculated in a quencligi |&tice
Monte Carlo simulation is carried out based on Sommer’s method of setting the scal@ flimetion is
obtained as a side product of the extrapolations. Four-quark binding energies are found to be essentially
constant at3=2.35 unlike the two-body potentials. A model for four-quark energies, with explicit gluonic
degrees of freedom removed, is fitted to these energies and the behavior of the parameters of the model is
investigated. An extension of the model using the first excited states of the two-body gluon field as additional
basis states is found to be necessary for quarks at the corners of regular tetiB@556-282(197)02407-1

PACS numbsdss): 11.15.Ha, 12.38.Gc, 13.75n, 24.85:+p

I. INTRODUCTION them and these geometries also exhibit the largest binding
energies. TheB values (and lattice sizgs used were
Systems of many hadrons play a crucial role in nature an@=2.35, 2.4 (18x 32), 2.45 (26x32), 2.5 (24x 32), and
it is important to understand the hadronic interactions from2.55 (26x32). In addition to these, two-body runs were
first principles. This would shed light on multiquark bound performed at3=2.3 (12x32) to set the scale at a lower
states and, e.g., meson-meson scattering. A convenient toehlue of 8.
for analyzing the problem would be a potential model for
multiquark systems with explicit gluonic degrees of freedom Il. A MODEL FOR FOUR-QUARK ENERGIES
removed. Such a model might be based on an effective two-
body interaction as in the case of valence electrons in metals A model for the energy of four static quarks with explicit
and nucleons in nuclei. gluonic degrees of freedom removed has been developed by
Perturbation theory of QCD cannot even treat the confineGreenet al. ([1] and references therginin this model a
ment of quarks and gluons into hadrons, and the only knowipotential matrix is diagonalized with different two-body pair-
way to make realistic calculations of interacting quark clus-ings as basis states. The basis states for some simulated con-
ters are Monte Carlo lattice techniques. Grestral. have  figurations are shown in Fig. 1. For example, in the case of
been simulating systems of four static quarks in quenche#ivo basis stateg\ and B, the eigenvalues; are obtained
SU(2) mainly on 16x32 lattices ([1] and references from
therein. Four quarks, because it is the smallest number that
can be partitioned into different color-singlet groups. Ener- [V—AiN]J¥;=0, 2.1
gies of several configurations such as rectangu®yr [inear )
(L), and tetrahedral)—examples of which are shown in With
Fig. 1—have been simulated to get a set of geometries rep-

resentative of the general case. The&alues used have been
2.4 and 2.5.

However, e.g., Bootlet al. [2] conclude that asymptotic ‘1—" T
scaling for SW2) gauge theory begins @&>2.85, so there is ® J 1 4 1 4

reason to suspect that the simulation results could contain
significant lattice artifacts. Previous estimates show that

l
finite-size effects of our simulations are unimportant, while
the conclusion that scalin(as opposed to asymptotic scal- (Tr)
ing) has been achieved @#=2.4 is somewhat more ques-
tionable for larger configurations and excited std@s It is

therefore expected that a continuum extrapolation could pos-
sibly yield different energies and point out artifacts in a pa-
rameterization of the energies while making the physical

content clearer. Such an extrapolation is the object of this
work.
The geometries to be simulated here were chosen to be (™ d
squares and tilted rectanglg®) with x=y and(TR) in Fig.
1], because the simple model described below works for ’ d

FIG. 1. Some of the simulated four-quark geometries and their
*Electronic address: Petrus.Pennanen@helsinki.fi two-body pairings.
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1 f/N, with c=1.65 forry/a, we get the equivalent of the con-
= ( fN. 1 ) tinuum valuer y=0.5 fm in lattice units. The constant on the
¢ right-hand side of Eq(3.1) has been chosen to correspond to
a distance scale where we have the best information on the
force between static quarks. According to the widely cited
( U1a+ Uy (f/Nc)VAB) paper of Buchmiler and Tye[6] various nonrelativistic ef-

and

(2.2  fective potentials which successfully model heavy quarkonia
agree in the radial region 0.1 to 1.0 fm and predict rms radii

wherev;; represents the static two-body potential betweer}crom 0210 1.5 fm forcc andbb systems. Even though these

uarksi andi. V.. comes from the perturbative expression effective potentials are not the same as the QCD potential
q I-Vas P P between static quarks, the distance scale where we have the

_ best experimental evidence seems to be around 0.5 fm. A

Vii==NNJ)T;-Tvii 2.3 . . e . .

! MNe)Ti- Tjojj @3 different estimate is given by Leedt al. [7], who fit modi-
where for a color singlet staféj ]° the normalization is cho- fied Cornell and Martin potentials to meson masses and
sen to give([ij ]°|Vij|[ij]0)=vij . The four-quark binding claim that the known mesons determine the potential model

energiesE; are obtained by subtracting the internal energy ofifdependently only between=0.7 fm andr=1.8 fm.

(fINo)Vga  v1atvas

the basis state with the lowest energy, e.g. In the Cornell[8] and Richardsof®] potential models the
T constant 1.65 in E¢3.1) corresponds to,=0.49 fm. On the
Ei=Ni—(v13tvaa). other hand, the Martin mod¢[LO], with the strange quark

counted as heavy, giveg=0.44 fm and the modified Cor-

A central element in the model is a phenomenologicalnell and Martin potentials of Ref7] result in 0.56 and 0.44
factor f appearing in the overlap of the basis statesfm respectively (the published parameter values are in-
(A|B)=f/N, for SU(N.). This factor is a function of the correct).
spatial coordinates of all four quarks, making the off- Choosingc=2.44 as the scale setting constant makes the
diagonal elements of in Eq. (2.2) four-bodypotentials, and Richardson, modified Cornell and modified Martin potentials
attempts to take into account the decrease of overlap froragree onry=0.66 fm with the basic Cornell and Martin
the weak coupling limit, wheréA|B)=1/N.. Perturbation ~models givingr,=0.64 and 0.625 fm respectively. These
theory toO(«?) also produces the two-state model of Eq.models are clearly in better agreementcat2.44 than at
(2.1) with f=1 [4]. Several parametrizations forhave been ¢=1.65. However, it is not excluded that the agreement may

suggested, a general form being be accidental due to uncertainties in the models.
To set the scale, a lattice parametrization of the two-quark
f=f e kabsA—kp\bsP, (2.4  potential was first fitted to values obtained from simulations
atr/a=2,...,6 foreachB. The parametrization used was

Herebg is the string tensiorf,; a normalization constant, and
ka, kp multiply the minimal area and perimeter bounded by _
the four quarks respectively. In this work either the normal- o (r)= r
ization or the perimeter term is omitted from EG.4).

This simple version of th_e f-model” works for quarks in  \yhere the on-axis lattice Coulomb potentiali<]
the corners of squares af(ilted) rectangle§(R) and (TR)
in Fig. 1], but fails to predict some features of nonplanar 1 5 [™2 dk,dk,dks e irky
geometries, e.g., the doubly degenerate ground state energy - =7a fﬁ 2% 33 sird(kal?
of a regular tetrahedrdr{T) with r=d]. In Sec. V there will wla (2m) i=asim(kial2)

+bsr+l)0, (32)
L

T

be introduced a generalization of the model that is capable of - cogrqy)
reproducing this degeneracy. ~ F%— —Eiszlsinz(qiaIZ)
lll. EXTRAPOLATING TO THE CONTINUUM - m(2L'—1)
A. Setting the scale A= =TT T (3.3

Previously the scale in our simulations has been set b'y_| L’ is twice th ber of tial sit | .
equating to the experimental continuum value the string ten: ere’- IS twice the number ot spatial Sites along one axis.

sionbg=lim,_..F(r), whereF(r) is the force between two The fit results are presented in Table | for data from tilted
static Squarkts_,m;n Iatt,ice units. The string tension, however,rectangle and square geometry runs performed in Helsinki,

was obtained by fitting the lattice parameterization of two-and'g = 2.5 square runs from Wuppgrtal. o
body potential to values from simulations @a=2, . . . ,6 The force was calculated from this parametrization by the

and not ag — finite difference

Sommer[5] has designed a popular new way to set the V(r)—V(r —d)
scale that uses only intermediate distances. First the force F(r)=———1——,
F(r/a) between two static quarks at separatida is calcu- d

lated. By solving

(3.9

(ro/a)®F(ryla)=c (3.1 Ipersonal communication with H. Leeb.
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TABLE |. Parameters of the lattice two-quark potentiplV]
refers to data from Wupperta[TR) to tilted rectangles.

ment with the ratio of spacings beirg1.04 was found by
the SESAM Collaboration working in SB8) and using
c=1.65in Eq.(3.1) [12]. However, one should keep in mind

B e bsa® Vol X2 that the quenched SP) string tension does not have to
23 0.29914) 0.127820) 0.58811) 28 equal a phenomeno_logical value.
235 0.25612) 0.098515) 0.5579) 26 As usingc= 2.44 in the Sommer scheme _produces better
2.35TR) 0.2605) 0.09787) 0.5624) 10 agreement with various continuum .potentlal. model; and
leads to agreement af' andaPs at continuum string tension
2.4 0.2487) 0.070910) 0.5546) 0.1 . .
value bg=0.44 GeV, it seems that=1.65 underestimates
2.4TR) 0.2389) 0.071613) 0.5447) 0.18 . . . - .
the lattice spacing. Usingc=2.44, corresponding to
2.45 0.2445) 0.04947) 0.551(4) 0.04 ~0.66 fm, is in our case apparently a better choice than
2.45TR) 0.23§5) 0.05076) 0.5454) 0.05 r°_ : ' bp y o
c¢=1.65 and was chosen for this work, although the possibil-
25 0.2265) 0.03737) 0.5314) 0.55 ity that the difference is accidental cannot be excluded.
25TR) 0.2334) 0.03675) 0.5343) 0.53 The B=2.9 W] values are calculated from potential data
2.9w] 0.2344) 0.03714) 0.5363) 0.11 by a Wuppertal group doing simulations similar to oLt8].
2.55 0.2282) 0.02713) 0.5222) 003 The scales given by our and their data using the same analy-
2.55TR) 0.2245) 0.02686) 0.5234) 013 gjs method agree well g8=2.5 , but the scales obtained
from the publishedbs values[0.082614) fm vs 0.08645)
. fm] using the same data do not agree, which hints of the
usingd=a. Here sensitivity of any intermediate distance determination of the
string tension to the details of the fitting procedure. The er-
r= \/ d (3.5 rors in Table Il were estimated by adding or subtracting the
[G(r—d)=G(n)] onew errors of the parameters of the lattice two-body poten-
tial, so systematic errors from, e.g., the choice ghare not
where included. The values af, obtained agree with the relation
ro=+v(c—e)/bg usingc from Eq.(3.1) ande,bg from the fit
G(r)= E = (3.6) of the two-body parametrization of E¢3.2).
a\r/, A criterion for scaling of the two-body potential is the

equality of the parametex for fits in the same physical dis-

andr, has been defined to remo®@# (a/r)?] lattice artifacts  tance range. In our case the fit range is shorter at higher

from the argument oF, and to make-(r,) a tree-level im-  B3’s, and the values in Table | support scalingGat 2.5 and
proved observablEs]. B=2.55.

After getting the force at points,/a, the expression In an attempt to take into account nonperturbative effects

(r,/a)F(r,/a) was interpolated to gat,/a corresponding Wwe can fit the values o& using the perturbative three-loop
to Eq. (3.1). Results for differenp3’s are presented in Table relation betweera and B8 but with two extra terms,
[I, with lattice spacinga corresponding ta@,=0.49 fm and
a' to ry=0.66 fm. For comparison, a value afs obtained ,
i i i i — (B4
from equating the string tension to the somewhat arbitrary 1 —(B/4Ncﬁo)(2N°Bo) (B1 2Bo)[ . Bf—ﬂéﬂo

continuum valueybs=0.44 GeV is presented. In all cases a=j.¢e +2—,8(3)
al

2N./B
the a'' consistently agrees with"s, whereasa disagrees,

aPs/a being~1.09 at eackB. Choosingy/bs=0.478(4) GeV , , ,
would movea®s to the same value @ A similar disagree- TALI B+ A B+ O(1IB) (. 3.7

TABLE II. Values ofrq/a anda for eachg. ri/a anda' are

calculated using=2.44 in Eq.(3.1). Here, as usual, By=11/3(N,/167?) and B,

B ro/a  alfm]  rl/a  a'[fm] abs[fm] =34/3(N/167%)2, while the recently calculategd?gz(NC/
167)°[ —366.2+ (1433.8N2) — (2143N2)] [14]. Using
2.3 3.2%4) 0.150820) 4.095) 0.161318) 0.160313  Michael's result from Ref[15], let us fix Vbg/A = 31.9.
2.35 3.762) 0.13026) 4.715 0.140114) 0.140811)  Fitting to all the values ofa" in Table Il results in
235TR) 3.772) 0.12997) 4.723) 0.13976) 0.14025)  A,=—6.72(73), A;=25.8(1.8) withy2=0.9. They? value
2.4 4.4%5) 0.110110) 5.565) 0.118610) 0.11949) is per degrees of freedot®F) as elsewhere in this paper. A

24TR) 4.442) 0.11035 5.552) 0.119@4) 0.120Q11)  modification of Eq(3.7) with no two to fourth order terms in
2.45 5.344) 0.09187) 6.625 0.09978) 0.09977) 1/8 but only a fifth order term with coefficient
2.45TR) 5.275) 0.09297) 6.595) 0.10027) 0.101@6)  As;=55.7(3) gives also a low?=1.1.

2.5 6.185) 0.07935 7.71(8) 0.08589) 0.086§9) The B function b=/ dlna obtained using the former fit

25TR) 6.215) 0.07895) 7.756) 0.08516) 0.08596) is presented in Table Il with comparisons to three-loop pre-

29W] 6.183) 0.07933) 7.715) 0.08566) 0.08645) dictions and also estimates by Engetsal. using a thermo-
2.55 7.265) 0.06755) 9.046) 0.07305) 0.07417) dynamic approach16]. The errors in our estimates were

2.55TR) 7.2910) 0.06739) 9.0812) 0.072710) 0.07348) obtained by fitting to the values afinstead ofa' in Table Il
and using the form of Eq3.7) with only fifth-order coeffi-
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TABLE Ill. Comparison between values &f=dp/dlna from
different methods.

5[: 33,0 ]
B b from Eq.(3.7) Ref.[16] Three-loop PT ; I
2.3 —0.298(9) —0.3393 —0.3898 7=£
2.35 —0.301(6) —0.3055 —0.3896 gﬂE
24 —0.305(6) —0.3018 —0.3893 4l
2.45 —0.308(3) —0.3057 —0.3891
2.5 -0.312(2) ~0.3115 —0.3889 = ]
2.55 —0.315(4) —0.3183 —0.3887 6
5 L

-
cientA; fitted in order to account for systematic errors from o S-:'l:
the choice ofc in Eqg. (3.1 and the assumed functional de- 6
pendence in Eq3.7). s . . . .
The agreement with Engekst al. is good except at the 0.000 0.010 0.020 ar 20030 0.040 0.050
lowest B—the decrease ih with decreasing3 at 8<2.37 is 0
not reproduced by our approach. An estimate of FiG. 2. roV vs (a/rg)? for some two-body potentials, dimen-
b=-0.35(2) atB=2.4 obtained using energy sum-rules sionsx,y,z shown in lattice units aB=2.5
[17] seems somewhat low when compared to the values in
Table IlI. tions are 6—8 % higher than by the quadratic extrapolations
At B=2.5 a fit of the two-loop analogue of E(3.7) gives  including the=2.35 data. , _
a value 78% of the perturbative two-loop prediction, which The 29 quadratically extrapolated continuum potentials

is modestly improved to 80% for the corresponding three.Can b€ parametrized using E§.2) with the lattice Coulomb

— — —2
loop expressions. At these values of the bare coupling, addfe™m replaced by/r ande—0.21(11),bs=>5.11(80) fm

— —1 2_ H
tional terms in the perturbative series are thus not likely toandvo_9'38(1l) fm™ (x*=0.4). The value of the string

NP . tension corresponds tgbs=0.446(37) GeV, which agrees
lead to a significantly better agreement with PT. well with the Eontinuumsvalue u(sec} to obtain tlaésgin
Table Il

The lattice artifact at eacl, i.e., difference from qua-
To extrapolate to the continuum, we need values of enerdratically extrapolated continuum energy, has a linear depen-
gies at diﬁerenw’s but Corresponding to the same physica| dence on the inverse Separation of the quarkS in lattice units
size. Two-body potentials were interpolated from the value$quared &/R)?. The slopes of this dependence at eficlre
given by the lattice parameterization. Figure 2 shows an exWithin errors of each other, the average being®.9
trapolation of some of the two-body potentials involved in
tilted rectangles. Otherdrom a total of 29 look similar— C. Extrapolating the binding energies

more pictures can be seen in REE8]. The continuum extrapolations were performed for the
Linear (quadrati¢ fits with all data points included give square and tilted rectangle geometries, as the sifpiedel

x? values from 15 to 351.8 to 3.5, while cutting the  works for them and allows the interpolation of binding ener-

B=2.35 point off improves these to from 8 to {7.5t0 1.5.  gies to distances which are noninteger multiples of the lattice

Continuum energies given by the latter quadratic extrapolaspacing. The ground-state energy is given by

B. Extrapolating two-body potentials

209200+ FPug—vg) tV[2060— 200 — P —vg) P — FA(— 4+ %) (04— ve)
o —2+0.5 ’

(3.9

wherevg;,vs ,v4 denote the two-body potentials along the values and are more reliable than quadratic fits, which intro-
shorter and longer side and the diagonal of the rectanglgluce an unnecessary extra parameter and lead to very large
respectively. errors on the continuum values.

The two-parameter model of Eq42.4) (with f., ky or
ks, Kp) was fitted to the energies of squares and tilted rect-
angles separately. Result of extrapolating from these values A. Extrapolation of the parameters of f

is presented in Fig. 3 for tilted rectangles. Similar interpola- Tpe parameters of the factdr were extrapolated from
tions and extrapolations were performed for squares witlyajues given by a fit to the combined energies of squares and
sizes 2, ... @ at f=2.5. Slopes for 11 of the 13 extrapo- tilted rectangles, as shown in Table IV for parametrizations
lated energies were consistent with zero, supporting scalingith either the normalization or perimeter term omitted from
of the binding energies g8=2.35. Linear fits have low? Eq. (2.4).

IV. THE f MODEL IN THE CONTINUUM
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FIG. 3. roE, vs (alr,)? for tilted rectangles with dimensions in
lattice units shown aB=2.5

Typical values off are quite constant at differe@'s, as
shown in Fig. 4, having slopes from3.0(4) to 2.5(3).

PETRUS PENNANEN
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FIG. 4. A continuum extrapolation dfs for squares with length
of a side from 2 (top) to 6a (bottom) at 3=2.5.

to quadratic data has a value slightly above unity. Since the
linear/quadratic fits have low? values and are most reliable
for two-body potentials and four-quark binding energies, our

These slopes are a reflection of the behavior of the two-bodigest estimates for the continuum values afg=1,

potentials used to calculate tlits. The parameter§;, ka,
andkp are extrapolated in Fig. 5.

ka=1.0(1) andkp=0. The perimeter term should become
unimportant in the continuum limif19], which is indeed

The lattice artifacts of masses are known to behavebserved. Thus the only parameter with physical significance

roughly asa?, but no theoretical justification exists for such
behavior of the artifacts of. Therefore extrapolation results

is Ka .
Continuum fits were also performed for squares extrapo-

assuming this dependence should be given less weight thaated using the original value=1.65 in Sommer’s equation
fits of the model to continuum extrapolated energies pre¢3.1). The resulting values of . and k, for all linear and

sented below. These two approaches agree for valugsnof
the continuum, while for the parameters fothe quadratic

quadratic fits were within errors with fits to extrapolations
usingc=2.44. As another test linear/quadratic and quadratic

extrapolations roughly agree with values obtained from confits were performed with two-body potentials extrapolated

tinuum fits of the model as can be seen in Table VII.

B. Continuum fit

The fit data for all linear extrapolations is presented in

Table V and for all quadratic extrapolations in Table VI. Fit

and parameter extrapolation results can be seen in Table vif
Fits were also performed with quadratic extrapolations for!

two-body potentials and linear for four-bodies and are de
noted “linear/quadratic” in the table. The parameter ex-
trapolations have twg? values, one for each of the extrapo-
lated parameters.

All fits and extrapolations predict; to be one or very
slightly above. If it is set to one the fit to linear data and
linear extrapolation give &, somewhat below one, while
the linear/quadratic fit hak, approximately one and the fit

TABLE IV. Two-parameterf models fitted to the square and
tilted rectangle data.

B fe Ka X2 Ka Kp )(2

255 0.97417 0.746) 0.9 0.71100 0.02016) 1.0
2.5 0.99217) 0.764) 0.3 0.738) 0.00813) 0.3
245 0.925100 0.643) 1.0 0.494) 0.0578) 1.2
2.4 0.86415 0.572) 1.25 0.384) 0.08410 1.25
2.35 0.848) 0.572) 1.4 0.363) 0.1015) 1.1

with the 8= 2.35 point cutoff, with similar results but higher
x? values.

In the strong-coupling limit a factor expb<A) appears in
the diagonal elements of the Wilson loop matéxbeing the
minimal surface bounded by straight lines connecting the
uarks. The factor is closely relatedft@nd originates from
he sum of spatial plagquettes tiling the transition surface be-
tween two basis states. When moving to weaker couplings

11
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FIG. 5. f., ka andkp continuum extrapolations.
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TABLE V. Continuum fit data with linear extrapolations.

xl/a,yla,zla f(Eo) Eo [fm 1] v [fm~1] vep [fM 1] vg [fm 1]
2,2,0 0.926) —0.51525) 7.4434) 8.2630)
3,2,2 0.886) —-0.37915) 8.34(39) 8.43240) 9.1440)
3,3,0 0.772) —0.43910) 8.3939) 9.1739)
331 0.844) —0.35811) 8.4340) 8.5540) 9.28140)
4,3,2 0.693) -0.26112) 8.84(40) 9.0740) 9.8440)
4,40 0.622) —0.43@9) 8.9831) 9.8931)
4,41 0.6%2) -0.37615) 9.0840) 9.1540) 10.0240)
54,3 0.482) —0.40619) 9.6340) 9.6340) 10.6840)
5,5,0 0.462) —0.38814) 9.5530) 10.5931)
55,1 0.482) —0.35420) 9.6340) 9.6940) 10.71(40)
6,5,3 0.3%2) -0.28127) 10.0740) 10.1540) 11.3Q040)
6,6,0 0.382) —0.33419) 10.0631) 11.2532)
6,6,1 0.322) —0.29625) 10.1540) 10.1940) 11.3840)

there exist correlated flux configurations for which the tran-the second lowest excitation has the sag symmetry as
sition area is much smaller thax which has been expected the ground state. In our calculation the two-body paths used
to lead to larger mixing among basis stat2@]. If this is the  as a variational basis differ in the amount of fuzzifaso
case, it is not reflected in our best estimate &f@about one. known as smearing, blockingpplied to the lattice. Fuzzing

A larger transition area could be explained by the finiteonly changes the overlap with the excited stdtesbe de-
width of actual flux tubes instead of simply lines as in thenoted with a primg possessing thé,;, symmetry and does

strong-coupling approximation. not bring in any of the lowedE,, excited state. The question
remains which one of these excited states has more effect on
V. HOW CAN THE MODEL BE DEVELOPED the tetrahedral energy.

, . The dependence of the four-quark energies onAIﬁ&
The failure of the simpld model of Eqs(2.1) and(2.2)  gxcited states can be investigated using the fact that an in-
to predict the energies of the tetrahedral geometry has beeé?easing fuzzing level reduces the overlahsi =1 of these

proposed to be due to a dependence of the four-quark enerqy iteq states in the energy eigenstate expansion of the Wil-
on the first excited state of the gluonic field in the static son loop

two-quark potentiall1]. A higher-lying basis state would
make the ground-state attractive with increasing attraction
when the size of the system gets larger, since the excited (W(R T)>=E C.(R)e Vn(RIT, (5.1)
state gets closer to the ground state energy. Such a trend of ' mo
increasing attraction is observed in the tetrahedral energies
unlike in the case of squares, whose energies get smallgi, overlap<C
with increasing size.

The lowest-lying gluonic excitation has nonzero angular
momentum about the interquark axis, transforming in the Z C,(R)=1.
E, representation of the cubic symmetry grobp;,, while i

n(R)=0 have a normalization condition

TABLE VI. Continuum fit data with quadratic extrapolations.

xl/a,yla,zla f(Eo) Eo [fm 1] v [fm~1] vep [fm 1] vg [fm~1]
2,2,0 0.9016) ~0.4012) 9.2917) 9.9518)
3,2,2 0.868) -0.4613) 9.70(18) 9.73198) 10.5220)
3,3,0 0.7511) -0.4310) 10.0919) 10.8821)
33,1 0.685) -0.2914) 9.7318) 9.8919) 10.6520)
4,3,2 0.5%6) -0.2011) 10.2319) 10.4520) 11.2322)
4,40 0.569) -0.4Qq10) 10.6820) 11.5923)
44,1 0.525) -0.3015) 10.4520) 10.5320) 11.4023)
5,4,3 0.374) -0.3319) 11.0022) 11.0022) 12.0725)
55,0 0.3%7) -0.3311) 11.2422) 12.3126)
55,1 0.364) -0.2718) 11.0022) 11.0722) 12.1Q025)
6,5,3 0.274) -0.2318) 11.4623) 11.5223) 12.6928)
6,6,0 0.195) -0.2211) 11.7624) 12.9929)

6,6,1 0.214) —-0.2029) 11.52323) 11.5623) 12.7728)




3964 PETRUS PENNANEN 55

TABLE VII. Continuum fit and parameter extrapolation results. ] T T T T r T r T r
3 1s-1s —

Type fe Ka Kp X \ i
all linear 1083 1045 0 0.8 o 087 loo
all linear, fo=1 1 0943 0 1.3 T 1p-2s
linear extrapol. 1.08) 0.836) 0 2.6/3.3 E 0.6
linear extrapol(ll) 1 0.859) -0.022) 2.3/2.6 %
linear/quadratic 1.04) 1.046) 0 0.7 5 04l
linear/quadraticf.=1 1 0.983) 0 0.8 2 ' P
all quadratic 1.08) 1.3913 0 0.4 g
all quadratic,f.=1 1 1.276) 0 0.5 02t
quadratic extrapol. 1.18) 1.0911) 0 2.7/0.4
quadratic extrapolcll) 1 1.22) -0.084) 0.8/1.6 _ W, BN T

06 08 1 12 14 16 18 2
flux tube separation in fm

0 s 1 s
0 02 04

Increasing the fuzzing level used in the calculation of four- FIG. 6. Overlaps of fluxtube wave functions as functions of flux
body energies should worsen the convergence of any fouitbe separation in the Isgur-Paton model witk2.

body energy with a significant dependence on the excite . ,
statds) with the symmetry of the ground state. Our group hasgS (corresponding tdhq, Ayg) States to be-0.4 when the

been using fuzzing level 20 with the factor multiplying the ieg t? rmeOfrgggeF();?i:/ae”l)e/l f_Irum;u;);ns S(raesS:epr?rf? g?g?; %ndThe
link to be fuzzedc=4, while a group In Wupp(_ertgl doing rapid worsening of convergence in Table VIII with decreas-
related work has chosen 150 wittF2 to maximize the

o . ing ground-state overlap and increasing overlap
ground-state overlap. %_2'5 they obtairC, values from excitations suggests that the lowest-lying gluonic excitation
0.81 to 0.98 on a Tblattice.

A ) ) with E,, symmetry has a more important effect on the four-
_We made runs g8=2.5 on a 24X 32 lattice with three a1 energies than the higher-lyiRd , excitations.
different fuzzing levels used to calculate the four-quark en-" 1,4 simplef model of Eqs.(2.1) and (2.2 can now be

ergy of a regular tetrahedron. Ground-state overl@f  eytended by usingin addition to theA,B,C shown in Fig. 1
two-quark paths at different separatiaris,d/a and at dif-  three additional basis states describing the same quark parti-
ferent fuzzing levels are shown in Table VIIl. The four-body tions but involving the first excited state of the two-body
operators are constructed from the same paths, and the relgotential. The resulting 6 matrices contain two new
tive quality of convergence of the binding enerBy as a  gluon field overlap factor§?® and f¢ similar to f, which,
series inT is also shown. however, measure the overlap between an excited and
The table shows that best convergences of the four-quarround-state basis state and two excited basis states respec-
energies are obtained when the two-body paths have practively. Solving the determinant analogous to E2.1) gives
cally no overlap with gluonic excitations. Therefore the only for a regular tetrahedron two degenerate and two nondegen-
way excitations can contribute is through overlaps of two-erate energy eigenvalues. The degenerate negative ground-
quark paths with excited states of gluon fields betwerer  state energy of a regular tetrahedron would correspond to the
quark pairs. This contribution is likely to be significant; e.g., lower of the degenerate eigenvalues, while it is harder for the
the Isgur-Paton string modg21] with N=2 predicts over- model to predict the third eigenenergy from simulations
laps between ¢, 1p (corresponding toA,4, E;) and Is, since it is dominated by gluonic excitations as argued in Ref.

[1].
TABLE VIII. Ground-state overlaps anél, convergence at dif- To estimate these eigenvalues, a parametrizationf for
ferent fuzzing level$FL) and interquark distances. from Table IV can be used with the minimal transition areas
for regular tetrahedra calculated in REZ2]. A parametriza-
FL=150 FL=20 FL=0 tion for the energy of the first excited two-body state is found
r/a,d/a Co % Co % Co % from Ref.[17]. Because all the quarks in a regular tetrahe-
dron have the same distance from each other, all the excited
2,2 N/A 100.a1) 98.241) basis states have the same energy. Using these values, the
interm. best worst simulation results for regular tetrahedra and a self-
33 98.11) 100.01) 96.71) consistency argument allows estimation of other parameters
interm. best worst of the model.
4,4 98.22) 99.711) 94.31) The values obtained give the lower degenerate eigenvalue
“pbest” “pbest” worst as the lowest eigenvalue whéfi>1 because of a nondegen-
5,5 97.92) 99.51) 91.1(1) erate eigenvalue being unstable arotifiet 1. This unstable
interm. best worst eigenvalue is probably stabilized by a minor contribution
6,6 98.@2) 99.1(1) 85.31) from theAig excited state, requiring treatment with nine ba-
interm. best worst sis states.
7.7 99.14) 98.0(1) N/A The values for the new overlap facté? have a similar
interm. best worst linear behavior with the size of the system as is observed in

Fig. 6 in the overlap of &1p Isgur-Paton fluxtubes with
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separation in the same distance range, supporting reliabilitgimple f model show that in the continuum, the normaliza-
of the estimation scheme. Work is in progress on applyingion of the gluon field overlap factof can be safely set to
this extended model to geometries more complicated thaone and the perimeter term to zero, leaving the condtant
the regular tetrahedrqr23]. multiplying the area as the only physically relevant param-
eter. Its value is about one and ngtl as predicted for the
transition area in Ref.20].
) ) . . (5) In our simulations, the effect on the four-quark ener-
The conclusions in this work can be summarized as folyies of excited states of the gluon field between two quarks
lows. , , _ comes from the overlap of two-body paths with excited two-
(1) Choosingc=2.44 (corresponding tao~0.66 fm in 1,4y fields of other quark pairings. An extendédnodel
Eq. (3.1 leads to better agreement of various continuumysing the excited states of the two-body potentials can repro-

potential _models with each_ other, and in_ our case gives I_atduce the negative, degenerate ground-state energy of a regu-
tice spacings that agree with those obtained from the stringy. tatrahedron unlike the simple model based on ground-

VI. CONCLUSIONS

tension. This value o€ thus seems a better choice than thegisie potentials.

original choicec=1.65 (ry~0.49 fm by Sommer, although

Other possible extensions of the simglenodel include

it cannot be excluded that the difference is accidental due thstanton effectéRef.[24]) and four-body interactions in the

uncertainties in the potential models and the quenche@)SU
string tension.

(2) The lattice spacinga at the six values of3 used in
simulations give theB function b=4dg/dlna in agreement
with Ref.[16] when3=2.35. At 3= 2.5 the measured value

strong-coupling limit(Ref. [25]). A study using microscopi-
cal flux distributions would be helpful in determining the
relation of the shape of two- and four-quark fluxtubes and
their overlaps to the parametrization fif Our next project
attempts this by using sum rules similar to those derived by

accounts for 80% of the three-loop perturbative predictionyjichael [26].
presenting a very modest improvement of 2% from the two-

loop case.

(3) A quadratic extrapolation is preferred for two-body
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