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A continuum extrapolation of static two- and four-quark energies calculated in a quenched SU~2! lattice
Monte Carlo simulation is carried out based on Sommer’s method of setting the scale. Theb function is
obtained as a side product of the extrapolations. Four-quark binding energies are found to be essentially
constant atb>2.35 unlike the two-body potentials. A model for four-quark energies, with explicit gluonic
degrees of freedom removed, is fitted to these energies and the behavior of the parameters of the model is
investigated. An extension of the model using the first excited states of the two-body gluon field as additional
basis states is found to be necessary for quarks at the corners of regular tetrahedra.@S0556-2821~97!02407-7#

PACS number~s!: 11.15.Ha, 12.38.Gc, 13.75.2n, 24.85.1p

I. INTRODUCTION

Systems of many hadrons play a crucial role in nature and
it is important to understand the hadronic interactions from
first principles. This would shed light on multiquark bound
states and, e.g., meson-meson scattering. A convenient tool
for analyzing the problem would be a potential model for
multiquark systems with explicit gluonic degrees of freedom
removed. Such a model might be based on an effective two-
body interaction as in the case of valence electrons in metals
and nucleons in nuclei.

Perturbation theory of QCD cannot even treat the confine-
ment of quarks and gluons into hadrons, and the only known
way to make realistic calculations of interacting quark clus-
ters are Monte Carlo lattice techniques. Greenet al. have
been simulating systems of four static quarks in quenched
SU~2! mainly on 163332 lattices ~@1# and references
therein!. Four quarks, because it is the smallest number that
can be partitioned into different color-singlet groups. Ener-
gies of several configurations such as rectangular (R), linear
(L), and tetrahedral (T)—examples of which are shown in
Fig. 1—have been simulated to get a set of geometries rep-
resentative of the general case. Theb values used have been
2.4 and 2.5.

However, e.g., Boothet al. @2# conclude that asymptotic
scaling for SU~2! gauge theory begins atb.2.85, so there is
reason to suspect that the simulation results could contain
significant lattice artifacts. Previous estimates show that
finite-size effects of our simulations are unimportant, while
the conclusion that scaling~as opposed to asymptotic scal-
ing! has been achieved atb52.4 is somewhat more ques-
tionable for larger configurations and excited states@3#. It is
therefore expected that a continuum extrapolation could pos-
sibly yield different energies and point out artifacts in a pa-
rameterization of the energies while making the physical
content clearer. Such an extrapolation is the object of this
work.

The geometries to be simulated here were chosen to be
squares and tilted rectangles@~R! with x5y and~TR! in Fig.
1#, because the simple model described below works for

them and these geometries also exhibit the largest binding
energies. Theb values ~and lattice sizes! used were
b52.35, 2.4 (163332), 2.45 (203332), 2.5 (243332), and
2.55 (263332). In addition to these, two-body runs were
performed atb52.3 (123332) to set the scale at a lower
value ofb.

II. A MODEL FOR FOUR-QUARK ENERGIES

A model for the energy of four static quarks with explicit
gluonic degrees of freedom removed has been developed by
Greenet al. ~@1# and references therein!. In this model a
potential matrix is diagonalized with different two-body pair-
ings as basis states. The basis states for some simulated con-
figurations are shown in Fig. 1. For example, in the case of
two basis statesA and B, the eigenvaluesl i are obtained
from

@V2l iN#C i50, ~2.1!

with
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FIG. 1. Some of the simulated four-quark geometries and their

two-body pairings.
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N5S 1 f /Nc

f /Nc 1 D
and

V5S v131v24 ~ f /Nc!VAB

~ f /Nc!VBA v141v23
D , ~2.2!

wherev i j represents the static two-body potential between
quarksi and j . VAB comes from the perturbative expression

Vi j52N~Nc!Ti•Tjv i j , ~2.3!

where for a color singlet state@ i j #0 the normalization is cho-
sen to give^@ i j #0uVi j u@ i j #0&5v i j . The four-quark binding
energiesEi are obtained by subtracting the internal energy of
the basis state with the lowest energy, e.g.,

Ei5l i2~v131v24!.

A central element in the model is a phenomenological
factor f appearing in the overlap of the basis states
^AuB&5 f /Nc for SU(Nc). This factor is a function of the
spatial coordinates of all four quarks, making the off-
diagonal elements ofV in Eq. ~2.2! four-bodypotentials, and
attempts to take into account the decrease of overlap from
the weak coupling limit, wherêAuB&51/Nc . Perturbation
theory toO(a2) also produces the two-state model of Eq.
~2.1! with f51 @4#. Several parametrizations forf have been
suggested, a general form being

f5 f ce
2kAbSA2kPAbSP. ~2.4!

HerebS is the string tension,f c a normalization constant, and
kA ,kP multiply the minimal area and perimeter bounded by
the four quarks respectively. In this work either the normal-
ization or the perimeter term is omitted from Eq.~2.4!.

This simple version of the ‘‘f -model’’ works for quarks in
the corners of squares and~tilted! rectangles@(R) and ~TR!
in Fig. 1#, but fails to predict some features of nonplanar
geometries, e.g., the doubly degenerate ground state energy
of a regular tetrahedron@(T) with r5d#. In Sec. V there will
be introduced a generalization of the model that is capable of
reproducing this degeneracy.

III. EXTRAPOLATING TO THE CONTINUUM

A. Setting the scale

Previously the scale in our simulations has been set by
equating to the experimental continuum value the string ten-
sionbS5 limr→`F(r ), whereF(r ) is the force between two
static quarks, in lattice units. The string tension, however,
was obtained by fitting the lattice parameterization of two-
body potential to values from simulations atr /a52, . . . ,6
and not asr→`.

Sommer@5# has designed a popular new way to set the
scale that uses only intermediate distances. First the force
F(r /a) between two static quarks at separationr /a is calcu-
lated. By solving

~r 0 /a!2F~r 0 /a!5c ~3.1!

with c51.65 for r 0 /a, we get the equivalent of the con-
tinuum valuer 0'0.5 fm in lattice units. The constant on the
right-hand side of Eq.~3.1! has been chosen to correspond to
a distance scale where we have the best information on the
force between static quarks. According to the widely cited
paper of Buchmu¨ller and Tye@6# various nonrelativistic ef-
fective potentials which successfully model heavy quarkonia
agree in the radial region 0.1 to 1.0 fm and predict rms radii
from 0.2 to 1.5 fm forc̄c andb̄b systems. Even though these
effective potentials are not the same as the QCD potential
between static quarks, the distance scale where we have the
best experimental evidence seems to be around 0.5 fm. A
different estimate is given by Leebet al. @7#, who fit modi-
fied Cornell and Martin potentials to meson masses and
claim that the known mesons determine the potential model
independently only betweenr50.7 fm andr51.8 fm.

In the Cornell@8# and Richardson@9# potential models the
constant 1.65 in Eq.~3.1! corresponds tor 050.49 fm. On the
other hand, the Martin model@10#, with the strange quark
counted as heavy, givesr 050.44 fm and the modified Cor-
nell and Martin potentials of Ref.@7# result in 0.56 and 0.44
fm respectively ~the published parameter values are in-
correct1!.

Choosingc52.44 as the scale setting constant makes the
Richardson, modified Cornell and modified Martin potentials
agree onr 050.66 fm with the basic Cornell and Martin
models givingr 050.64 and 0.625 fm respectively. These
models are clearly in better agreement atc52.44 than at
c51.65. However, it is not excluded that the agreement may
be accidental due to uncertainties in the models.

To set the scale, a lattice parametrization of the two-quark
potential was first fitted to values obtained from simulations
at r /a52, . . . ,6 foreachb. The parametrization used was

vL~r !52S er D
L

1bSr1v0 , ~3.2!

where the on-axis lattice Coulomb potential is@11#

S 1r D
L

5pa3E
2p/a

p/a dk1dk2dk3
~2p!3

e2 irk1

( i51
3 sin2~kia/2!

'
p

L83(q̄
cos~rq1!

( i51
3 sin2~qia/2!

aqi52p,
p

L8
, . . . ,

p~2L821!

L8
. ~3.3!

HereL8 is twice the number of spatial sites along one axis.
The fit results are presented in Table I for data from tilted
rectangle and square geometry runs performed in Helsinki,
andb52.5 square runs from Wuppertal.

The force was calculated from this parametrization by the
finite difference

F~r I !5
V~r !2V~r2d!

d
, ~3.4!

1Personal communication with H. Leeb.
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usingd5a. Here

r I5A d

@G~r2d!2G~r !#
, ~3.5!

where

G~r !5
1

a S 1r D
L

~3.6!

andr I has been defined to removeO@(a/r )2# lattice artifacts
from the argument ofF, and to makeF(r I) a tree-level im-
proved observable@5#.

After getting the force at pointsr I /a, the expression
(r I /a)

2F(r I /a) was interpolated to getr 0 /a corresponding
to Eq. ~3.1!. Results for differentb ’s are presented in Table
II, with lattice spacinga corresponding tor 050.49 fm and
aII to r 0

II50.66 fm. For comparison, a value ofabS obtained
from equating the string tension to the somewhat arbitrary
continuum valueAbS50.44 GeV is presented. In all cases
the aII consistently agrees withabS, whereasa disagrees,
abS/a being'1.09 at eachb. ChoosingAbS50.478(4) GeV
would moveabS to the same value asa. A similar disagree-

ment with the ratio of spacings being'1.04 was found by
the SESAM Collaboration working in SU~3! and using
c51.65 in Eq.~3.1! @12#. However, one should keep in mind
that the quenched SU~2! string tension does not have to
equal a phenomenological value.

As usingc52.44 in the Sommer scheme produces better
agreement with various continuum potential models and
leads to agreement ofaII andabS at continuum string tension
value bS50.44 GeV, it seems thatc51.65 underestimates
the lattice spacing. Usingc52.44, corresponding to
r 0'0.66 fm, is in our case apparently a better choice than
c51.65 and was chosen for this work, although the possibil-
ity that the difference is accidental cannot be excluded.

Theb52.5@W# values are calculated from potential data
by a Wuppertal group doing simulations similar to ours@13#.
The scales given by our and their data using the same analy-
sis method agree well atb52.5 , but the scales obtained
from the publishedbs values@0.0826~14! fm vs 0.0864~5!
fm# using the same data do not agree, which hints of the
sensitivity of any intermediate distance determination of the
string tension to the details of the fitting procedure. The er-
rors in Table II were estimated by adding or subtracting the
one-s errors of the parameters of the lattice two-body poten-
tial, so systematic errors from, e.g., the choice ofr 0 are not
included. The values ofr 0 obtained agree with the relation
r 05A(c2e)/bS usingc from Eq.~3.1! ande,bS from the fit
of the two-body parametrization of Eq.~3.2!.

A criterion for scaling of the two-body potential is the
equality of the parametere for fits in the same physical dis-
tance range. In our case the fit range is shorter at higher
b ’s, and the values in Table I support scaling atb52.5 and
b52.55.

In an attempt to take into account nonperturbative effects
we can fit the values ofa using the perturbative three-loop
relation betweena andb but with two extra terms,

a5
1

L lat
e2~b/4Ncb0!S 2Ncb0

b D 2~b1/2b0
2
!H 11

b1
22b2

Lb0

2b0
3 2Nc /b

1A2 /b
21A3 /b

31O~1/b4!J . ~3.7!

Here, as usual, b0511/3(Nc/16p
2) and b1

534/3(Nc/16p
2)2, while the recently calculatedb2

L5(Nc/
16p2)3@2366.21(1433.8/Nc

2)2(2143/Nc
4)# @14#. Using

Michael’s result from Ref.@15#, let us fix AbS/L lat531.9.
Fitting to all the values ofaII in Table II results in
A2526.72(73), A3525.8(1.8) withx250.9. Thex2 value
is per degrees of freedom~DF! as elsewhere in this paper. A
modification of Eq.~3.7! with no two to fourth order terms in
1/b but only a fifth order term with coefficient
A5555.7(3) gives also a lowx251.1.

Theb functionb[]b/] lna obtained using the former fit
is presented in Table III with comparisons to three-loop pre-
dictions and also estimates by Engelset al. using a thermo-
dynamic approach@16#. The errors in our estimates were
obtained by fitting to the values ofa instead ofaII in Table II
and using the form of Eq.~3.7! with only fifth-order coeffi-

TABLE I. Parameters of the lattice two-quark potential.@W#
refers to data from Wuppertal,~TR! to tilted rectangles.

b e bSa
2 v0a x2

2.3 0.299~14! 0.1278~20! 0.588~11! 2.8
2.35 0.255~12! 0.0985~15! 0.557~9! 2.6
2.35~TR! 0.260~5! 0.0978~7! 0.562~4! 1.0
2.4 0.248~7! 0.0709~10! 0.554~6! 0.1
2.4~TR! 0.238~9! 0.0716~13! 0.546~7! 0.18
2.45 0.244~5! 0.0494~7! 0.551~4! 0.04
2.45~TR! 0.238~5! 0.0507~6! 0.545~4! 0.05
2.5 0.226~5! 0.0373~7! 0.531~4! 0.55
2.5~TR! 0.233~4! 0.0367~5! 0.534~3! 0.53
2.5@W# 0.234~4! 0.0371~4! 0.536~3! 0.11
2.55 0.223~2! 0.0271~3! 0.522~2! 0.03
2.55~TR! 0.224~5! 0.0268~6! 0.523~4! 0.13

TABLE II. Values of r 0 /a anda for eachb. r 0
II/a andaII are

calculated usingc52.44 in Eq.~3.1!.

b r 0 /a a @fm# r 0
II/a aII @fm# abS @fm#

2.3 3.25~4! 0.1508~20! 4.09~5! 0.1613~18! 0.1603~13!
2.35 3.76~2! 0.1302~6! 4.71~5! 0.1401~14! 0.1408~11!
2.35~TR! 3.77~2! 0.1299~7! 4.72~3! 0.1397~6! 0.1402~5!

2.4 4.45~5! 0.1101~10! 5.56~5! 0.1186~10! 0.1194~9!

2.4~TR! 4.44~2! 0.1103~5! 5.55~2! 0.1190~4! 0.1200~11!
2.45 5.34~4! 0.0918~7! 6.62~5! 0.0997~8! 0.0997~7!

2.45~TR! 5.27~5! 0.0929~7! 6.59~5! 0.1002~7! 0.1010~6!

2.5 6.18~5! 0.0793~5! 7.71~8! 0.0856~9! 0.0866~9!

2.5~TR! 6.21~5! 0.0789~5! 7.75~6! 0.0851~6! 0.0859~6!

2.5@W# 6.18~3! 0.0793~3! 7.71~5! 0.0856~6! 0.0864~5!

2.55 7.26~5! 0.0675~5! 9.04~6! 0.0730~5! 0.0741~7!

2.55~TR! 7.29~10! 0.0673~9! 9.08~12! 0.0727~10! 0.0734~8!
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cientA5 fitted in order to account for systematic errors from
the choice ofc in Eq. ~3.1! and the assumed functional de-
pendence in Eq.~3.7!.

The agreement with Engelset al. is good except at the
lowestb—the decrease inb with decreasingb atb<2.37 is
not reproduced by our approach. An estimate of
b520.35(2) atb52.4 obtained using energy sum-rules
@17# seems somewhat low when compared to the values in
Table III.

At b52.5 a fit of the two-loop analogue of Eq.~3.7! gives
a value 78% of the perturbative two-loop prediction, which
is modestly improved to 80% for the corresponding three-
loop expressions. At these values of the bare coupling, addi-
tional terms in the perturbative series are thus not likely to
lead to a significantly better agreement with PT.

B. Extrapolating two-body potentials

To extrapolate to the continuum, we need values of ener-
gies at differentb ’s but corresponding to the same physical
size. Two-body potentials were interpolated from the values
given by the lattice parameterization. Figure 2 shows an ex-
trapolation of some of the two-body potentials involved in
tilted rectangles. Others~from a total of 29! look similar—
more pictures can be seen in Ref.@18#.

Linear ~quadratic! fits with all data points included give
x2 values from 15 to 35~1.8 to 3.5!, while cutting the
b52.35 point off improves these to from 8 to 17~0.5 to 1.5!.
Continuum energies given by the latter quadratic extrapola-

tions are 6–8 % higher than by the quadratic extrapolations
including theb52.35 data.

The 29 quadratically extrapolated continuum potentials
can be parametrized using Eq.~3.2! with the lattice Coulomb
term replaced bye/r ande50.21(11),bS55.11(80) fm22

and v059.38(11) fm21 (x250.4). The value of the string
tension corresponds toAbS50.446(37) GeV, which agrees
well with the continuum value used to obtain theabS in
Table II.

The lattice artifact at eachb, i.e., difference from qua-
dratically extrapolated continuum energy, has a linear depen-
dence on the inverse separation of the quarks in lattice units
squared (a/R)2. The slopes of this dependence at eachb are
within errors of each other, the average being 0.9~2!.

C. Extrapolating the binding energies

The continuum extrapolations were performed for the
square and tilted rectangle geometries, as the simplef model
works for them and allows the interpolation of binding ener-
gies to distances which are noninteger multiples of the lattice
spacing. The ground-state energy is given by

E05
2vs122vs21 f 2~vs22vd!1A@2vs222vs12 f 2~vs22vd!#

22 f 2~241 f 2!~vd2vs2!
2

2210.5f 2
, ~3.8!

wherevs1 ,vs2 ,vd denote the two-body potentials along the
shorter and longer side and the diagonal of the rectangle,
respectively.

The two-parameter model of Eq.~2.4! ~with f c , kA or
kA , kP) was fitted to the energies of squares and tilted rect-
angles separately. Result of extrapolating from these values
is presented in Fig. 3 for tilted rectangles. Similar interpola-
tions and extrapolations were performed for squares with
sizes 2a, . . . ,6a at b52.5. Slopes for 11 of the 13 extrapo-
lated energies were consistent with zero, supporting scaling
of the binding energies atb>2.35. Linear fits have lowx2

values and are more reliable than quadratic fits, which intro-
duce an unnecessary extra parameter and lead to very large
errors on the continuum values.

IV. THE f MODEL IN THE CONTINUUM

A. Extrapolation of the parameters of f

The parameters of the factorf were extrapolated from
values given by a fit to the combined energies of squares and
tilted rectangles, as shown in Table IV for parametrizations
with either the normalization or perimeter term omitted from
Eq. ~2.4!.

TABLE III. Comparison between values ofb[]b/] lna from
different methods.

b b from Eq. ~3.7! Ref. @16# Three-loop PT

2.3 20.298(9) 20.3393 20.3898
2.35 20.301(6) 20.3055 20.3896
2.4 20.305(6) 20.3018 20.3893
2.45 20.308(3) 20.3057 20.3891
2.5 20.312(2) 20.3115 20.3889
2.55 20.315(4) 20.3183 20.3887

FIG. 2. r 0V vs (a/r 0)
2 for some two-body potentials, dimen-

sionsx,y,z shown in lattice units atb52.5

55 3961CONTINUUM EXTRAPOLATION OF ENERGIES OF A . . .



Typical values off are quite constant at differentb ’s, as
shown in Fig. 4, having slopes from23.0(4) to 2.5(3).
These slopes are a reflection of the behavior of the two-body
potentials used to calculate thef ’s. The parametersf c , kA ,
andkP are extrapolated in Fig. 5.

The lattice artifacts of masses are known to behave
roughly asa2, but no theoretical justification exists for such
behavior of the artifacts off . Therefore extrapolation results
assuming this dependence should be given less weight than
fits of the model to continuum extrapolated energies pre-
sented below. These two approaches agree for values off in
the continuum, while for the parameters off the quadratic
extrapolations roughly agree with values obtained from con-
tinuum fits of the model as can be seen in Table VII.

B. Continuum fit

The fit data for all linear extrapolations is presented in
Table V and for all quadratic extrapolations in Table VI. Fit
and parameter extrapolation results can be seen in Table VII.
Fits were also performed with quadratic extrapolations for
two-body potentials and linear for four-bodies and are de-
noted ‘‘linear/quadratic’’ in the table. The parameter ex-
trapolations have twox2 values, one for each of the extrapo-
lated parameters.

All fits and extrapolations predictf c to be one or very
slightly above. If it is set to one the fit to linear data and
linear extrapolation give akA somewhat below one, while
the linear/quadratic fit haskA approximately one and the fit

to quadratic data has a value slightly above unity. Since the
linear/quadratic fits have lowx2 values and are most reliable
for two-body potentials and four-quark binding energies, our
best estimates for the continuum values aref c51,
kA51.0(1) andkP50. The perimeter term should become
unimportant in the continuum limit@19#, which is indeed
observed. Thus the only parameter with physical significance
is kA .

Continuum fits were also performed for squares extrapo-
lated using the original valuec51.65 in Sommer’s equation
~3.1!. The resulting values off c and kA for all linear and
quadratic fits were within errors with fits to extrapolations
usingc52.44. As another test linear/quadratic and quadratic
fits were performed with two-body potentials extrapolated
with theb52.35 point cutoff, with similar results but higher
x2 values.

In the strong-coupling limit a factor exp(2bSA) appears in
the diagonal elements of the Wilson loop matrix,A being the
minimal surface bounded by straight lines connecting the
quarks. The factor is closely related tof and originates from
the sum of spatial plaquettes tiling the transition surface be-
tween two basis states. When moving to weaker couplings

TABLE IV. Two-parameterf models fitted to the square and
tilted rectangle data.

b f c kA x2 kA kP x2

2.55 0.974~17! 0.77~6! 0.9 0.71~10! 0.020~16! 1.0
2.5 0.992~17! 0.76~4! 0.3 0.73~8! 0.008~13! 0.3
2.45 0.925~10! 0.64~3! 1.0 0.49~4! 0.057~8! 1.2
2.4 0.864~15! 0.57~2! 1.25 0.38~4! 0.087~10! 1.25
2.35 0.843~8! 0.57~2! 1.4 0.36~3! 0.101~5! 1.1

FIG. 3. r 0E0 vs (a/r 0)
2 for tilted rectangles with dimensions in

lattice units shown atb52.5

FIG. 4. A continuum extrapolation off ’s for squares with length
of a side from 2a ~top! to 6a ~bottom! at b52.5.

FIG. 5. f c , kA andkP continuum extrapolations.
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there exist correlated flux configurations for which the tran-
sition area is much smaller thanA, which has been expected
to lead to larger mixing among basis states@20#. If this is the
case, it is not reflected in our best estimate of akA about one.
A larger transition area could be explained by the finite
width of actual flux tubes instead of simply lines as in the
strong-coupling approximation.

V. HOW CAN THE MODEL BE DEVELOPED

The failure of the simplef model of Eqs.~2.1! and ~2.2!
to predict the energies of the tetrahedral geometry has been
proposed to be due to a dependence of the four-quark energy
on the first excited state~s! of the gluonic field in the static
two-quark potential@1#. A higher-lying basis state would
make the ground-state attractive with increasing attraction
when the size of the system gets larger, since the excited
state gets closer to the ground state energy. Such a trend of
increasing attraction is observed in the tetrahedral energies
unlike in the case of squares, whose energies get smaller
with increasing size.

The lowest-lying gluonic excitation has nonzero angular
momentum about the interquark axis, transforming in the
Eu representation of the cubic symmetry groupD4h , while

the second lowest excitation has the sameA1g symmetry as
the ground state. In our calculation the two-body paths used
as a variational basis differ in the amount of fuzzing~also
known as smearing, blocking! applied to the lattice. Fuzzing
only changes the overlap with the excited states~to be de-
noted with a prime! possessing theA1g symmetry and does
not bring in any of the lowestEu excited state. The question
remains which one of these excited states has more effect on
the tetrahedral energy.

The dependence of the four-quark energies on theA1g8
excited states can be investigated using the fact that an in-
creasing fuzzing level reduces the overlapsCi ,i>1 of these
excited states in the energy eigenstate expansion of the Wil-
son loop

^W~R,T!&5(
n

Cn~R!e2Vn~R!T. ~5.1!

The overlapsCn(R)>0 have a normalization condition

(
n

Cn~R!51.

TABLE V. Continuum fit data with linear extrapolations.

x/a,y/a,z/a f(E0) E0 @fm21# vs1 @fm21# vs2 @fm21# vd @fm21#

2,2,0 0.92~6! –0.515~25! 7.44~34! 8.26~30!
3,2,2 0.88~6! –0.379~15! 8.34~39! 8.432~40! 9.14~40!
3,3,0 0.77~2! –0.439~10! 8.38~39! 9.17~39!
3,3,1 0.84~4! –0.358~11! 8.43~40! 8.55~40! 9.28~40!
4,3,2 0.69~3! –0.261~12! 8.84~40! 9.07~40! 9.84~40!
4,4,0 0.62~2! –0.430~9! 8.98~31! 9.89~31!
4,4,1 0.65~2! –0.376~15! 9.08~40! 9.15~40! 10.02~40!
5,4,3 0.48~2! –0.406~19! 9.63~40! 9.63~40! 10.68~40!
5,5,0 0.46~2! –0.388~14! 9.55~30! 10.59~31!
5,5,1 0.48~2! –0.354~20! 9.63~40! 9.69~40! 10.71~40!
6,5,3 0.35~2! –0.281~27! 10.07~40! 10.15~40! 11.30~40!
6,6,0 0.33~2! –0.334~19! 10.06~31! 11.25~32!
6,6,1 0.32~2! –0.296~25! 10.15~40! 10.19~40! 11.38~40!

TABLE VI. Continuum fit data with quadratic extrapolations.

x/a,y/a,z/a f(E0) E0 @fm21# vs1 @fm21# vs2 @fm21# vd @fm21#

2,2,0 0.90~16! –0.40~11! 9.29~17! 9.95~18!
3,2,2 0.86~8! –0.46~13! 9.70~18! 9.73~18! 10.52~20!
3,3,0 0.75~11! –0.43~10! 10.09~19! 10.88~21!
3,3,1 0.68~5! –0.29~14! 9.73~18! 9.89~19! 10.65~20!
4,3,2 0.55~6! –0.20~11! 10.22~19! 10.45~20! 11.22~22!
4,4,0 0.56~9! –0.40~10! 10.68~20! 11.59~23!
4,4,1 0.52~5! –0.30~15! 10.45~20! 10.53~20! 11.40~23!
5,4,3 0.37~4! –0.33~19! 11.00~22! 11.00~22! 12.07~25!
5,5,0 0.35~7! –0.32~11! 11.24~22! 12.31~26!
5,5,1 0.36~4! –0.27~18! 11.00~22! 11.07~22! 12.10~25!
6,5,3 0.27~4! –0.23~18! 11.46~23! 11.52~23! 12.69~28!
6,6,0 0.19~5! –0.22~11! 11.76~24! 12.99~29!
6,6,1 0.21~4! –0.20~29! 11.52~23! 11.56~23! 12.77~28!
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Increasing the fuzzing level used in the calculation of four-
body energies should worsen the convergence of any four-
body energy with a significant dependence on the excited
state~s! with the symmetry of the ground state. Our group has
been using fuzzing level 20 with the factor multiplying the
link to be fuzzedc54, while a group in Wuppertal doing
related work has chosen 150 withc52 to maximize the
ground-state overlap. Atb52.5 they obtainC0 values from
0.81 to 0.98 on a 164 lattice.

We made runs atb52.5 on a 243332 lattice with three
different fuzzing levels used to calculate the four-quark en-
ergy of a regular tetrahedron. Ground-state overlapsC0 of
two-quark paths at different separationsr /a,d/a and at dif-
ferent fuzzing levels are shown in Table VIII. The four-body
operators are constructed from the same paths, and the rela-
tive quality of convergence of the binding energyE4 as a
series inT is also shown.

The table shows that best convergences of the four-quark
energies are obtained when the two-body paths have practi-
cally no overlap with gluonic excitations. Therefore the only
way excitations can contribute is through overlaps of two-
quark paths with excited states of gluon fields betweenother
quark pairs. This contribution is likely to be significant; e.g.,
the Isgur-Paton string model@21# with N52 predicts over-
laps between 1s, 1p ~corresponding toA1g , Eu) and 1s,

2s ~corresponding toA1g , A1g8 ) states to be'0.4 when the
centers of two parallel flux tubes are separated by'0.4 and
'0.7 fm respectively. This can be seen from Fig. 6. The
rapid worsening of convergence in Table VIII with decreas-
ing ground-state overlap and increasing overlap withA1g8
excitations suggests that the lowest-lying gluonic excitation
with Eu symmetry has a more important effect on the four-
quark energies than the higher-lyingA1g8 excitations.

The simplef model of Eqs.~2.1! and ~2.2! can now be
extended by using~in addition to theA,B,C shown in Fig. 1!
three additional basis states describing the same quark parti-
tions but involving the first excited state of the two-body
potential. The resulting 636 matrices contain two new
gluon field overlap factorsf a and f c similar to f , which,
however, measure the overlap between an excited and
ground-state basis state and two excited basis states respec-
tively. Solving the determinant analogous to Eq.~2.1! gives
for a regular tetrahedron two degenerate and two nondegen-
erate energy eigenvalues. The degenerate negative ground-
state energy of a regular tetrahedron would correspond to the
lower of the degenerate eigenvalues, while it is harder for the
model to predict the third eigenenergy from simulations
since it is dominated by gluonic excitations as argued in Ref.
@1#.

To estimate these eigenvalues, a parametrization forf
from Table IV can be used with the minimal transition areas
for regular tetrahedra calculated in Ref.@22#. A parametriza-
tion for the energy of the first excited two-body state is found
from Ref. @17#. Because all the quarks in a regular tetrahe-
dron have the same distance from each other, all the excited
basis states have the same energy. Using these values, the
simulation results for regular tetrahedra and a self-
consistency argument allows estimation of other parameters
of the model.

The values obtained give the lower degenerate eigenvalue
as the lowest eigenvalue whenf c.1 because of a nondegen-
erate eigenvalue being unstable aroundf c51. This unstable
eigenvalue is probably stabilized by a minor contribution
from theA1g8 excited state, requiring treatment with nine ba-
sis states.

The values for the new overlap factorf a have a similar
linear behavior with the size of the system as is observed in
Fig. 6 in the overlap of 1s-1p Isgur-Paton fluxtubes with

TABLE VII. Continuum fit and parameter extrapolation results.

Type f c kA kP x2

all linear 1.08~3! 1.04~5! 0 0.8
all linear, f c51 1 0.94~3! 0 1.3
linear extrapol. 1.04~3! 0.83~6! 0 2.6/3.3
linear extrapol.~II ! 1 0.85~9! –0.02~2! 2.3/2.6
linear/quadratic 1.04~4! 1.04~6! 0 0.7
linear/quadratic,f c51 1 0.98~3! 0 0.8
all quadratic 1.08~8! 1.39~13! 0 0.4
all quadratic,f c51 1 1.27~6! 0 0.5
quadratic extrapol. 1.10~5! 1.09~11! 0 2.7/0.4
quadratic extrapol.~II ! 1 1.2~2! –0.08~4! 0.8/1.6

TABLE VIII. Ground-state overlaps andE4 convergence at dif-
ferent fuzzing levels~FL! and interquark distances.

FL5150 FL520 FL50
r /a,d/a C0 % C0 % C0 %

2,2 N/A 100.0~1! 98.2~1!

interm. best worst
3,3 98.7~1! 100.0~1! 96.7~1!

interm. best worst
4,4 98.2~2! 99.7~1! 94.3~1!

‘‘best’’ ‘‘best’’ worst
5,5 97.9~2! 99.5~1! 91.1~1!

interm. best worst
6,6 98.0~2! 99.1~1! 85.3~1!

interm. best worst
7,7 99.1~4! 98.0~1! N/A

interm. best worst

FIG. 6. Overlaps of fluxtube wave functions as functions of flux
tube separation in the Isgur-Paton model withN52.
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separation in the same distance range, supporting reliability
of the estimation scheme. Work is in progress on applying
this extended model to geometries more complicated than
the regular tetrahedron@23#.

VI. CONCLUSIONS

The conclusions in this work can be summarized as fol-
lows.

~1! Choosingc52.44 ~corresponding tor 0'0.66 fm! in
Eq. ~3.1! leads to better agreement of various continuum
potential models with each other, and in our case gives lat-
tice spacings that agree with those obtained from the string
tension. This value ofc thus seems a better choice than the
original choicec51.65 (r 0'0.49 fm! by Sommer, although
it cannot be excluded that the difference is accidental due to
uncertainties in the potential models and the quenched SU~2!
string tension.

~2! The lattice spacingsa at the six values ofb used in
simulations give theb function b[]b/] lna in agreement
with Ref. @16# whenb>2.35. Atb52.5 the measured value
accounts for 80% of the three-loop perturbative prediction,
presenting a very modest improvement of 2% from the two-
loop case.

~3! A quadratic extrapolation is preferred for two-body
potentials, whose continuum parametrization is given in Sec.
III B. Four-quark binding energies are scaling from
b>2.35 and their values do not change significantly in the
range ofb values simulated. In practice the simulation re-
sults for the binding energies can thus be used directly,
whereas it is recommended to use the continuum parametri-
zation for two-body potentials to avoid introducing lattice
artifacts into a four-quark energy model.

~4! Parameter extrapolations and continuum fits of the

simple f model show that in the continuum, the normaliza-
tion of the gluon field overlap factorf can be safely set to
one and the perimeter term to zero, leaving the constantkA
multiplying the area as the only physically relevant param-
eter. Its value is about one and not!1 as predicted for the
transition area in Ref.@20#.

~5! In our simulations, the effect on the four-quark ener-
gies of excited states of the gluon field between two quarks
comes from the overlap of two-body paths with excited two-
body fields of other quark pairings. An extendedf model
using the excited states of the two-body potentials can repro-
duce the negative, degenerate ground-state energy of a regu-
lar tetrahedron unlike the simple model based on ground-
state potentials.

Other possible extensions of the simplef model include
instanton effects~Ref. @24#! and four-body interactions in the
strong-coupling limit~Ref. @25#!. A study using microscopi-
cal flux distributions would be helpful in determining the
relation of the shape of two- and four-quark fluxtubes and
their overlaps to the parametrization off . Our next project
attempts this by using sum rules similar to those derived by
Michael @26#.
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