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Massive fermions in lattice gauge theory
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This paper presents a formulation of lattice fermions applicable to all quark masses, large and small. We
incorporate interactions from previous light-fermion and heavy-fermion methods, and thus ensure a smooth
connection to these limiting cases. The couplings in improved actions are obtained for arbitrary fermion mass
mg , without expansions around small- or large-mass limits. We treat both the action and external currents. By
interpreting on-shell improvement criteria through the lattice theory’s Hamiltonian, one finds that cutoff arti-
facts factorize into the forrb,(mqa)[ pa]® wherep is a momentum characteristic of the system under study,

S, is related to the dimension of tiveh interaction, and,(mga) is a bounded function, numerically always

of order 1 or less. In heavy-quark systemss typically rather smaller than the fermion masg. Therefore,
artifacts of order fn,a)° do not arise, even whemga=1. An important by-product of our analysis is an
interpretation of the Wilson and Sheikholeslami-Wohlert actions applied to nonrelativistic fermions.
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PACS numbdss): 11.15.Ha, 12.38.Gc, 12.39.Hg

I. INTRODUCTION Practical methods for determining tleg, such as blocking
fields[3] or Symanzik improvemern#], use criteria such as
The most promising avenue for a quantitative understandiocality [3] or the scaling dimensiof#] to truncate the space
ing of nonperturbative quantum chromodynamics—and otheof actions. Furthermore, the calculations of ttye are, in
field theories—is via numericdMonte Carlg integration of  practice, only approximate. For these reasons an improved
functional integrals defined on a lattif®]. Like any numeri-  action is only partially renormalized. Nevertheless, any prac-
cal technique this method has uncertainties that must be uttical action can be written
derstood and controlled before the results are useful. In par-
ticular, although the continuum theory is defined by the limit S=8r7— 6S, (1.2

of a sequence of lattice theories, the numerical calculations

are never carried out at the limit. Because the Monte Carld/"€ré Srr denotes(an action on the renormalized trajec-
introduces statistical errors, the extrapolation to the conlOry- Usually the truncations and/or approximations used to

tinuum limit is imperfect. The results for physical quantities 9nerateS will also yield estimates for the remaining cutoff

are consequently contaminated by lattice artifacts. For £f€CtSJS.

practical result, this uncertainty must be smaller than, say, 1S Paper treats massive fermions coupled to non-
relevant experimental uncertainties. Abelian gauge fields. The relevant couplings are the fermion

The way to reduce lattice artifacts is based on the renorMasses and the gauge coupling. So the renormalized trajec-
malization groud2]. One starts with a general action tory takes the form

-3 ¢, (1.1) Srr(mq/Aqep, Ageod) = 2 C(Moa,g)Sy, (1.3

wherem, denotes the fermion maésszCD is the scale char-
I%teristic of the gauge theory, and the argumégtpa la-

béls the renormalization point. TH&, are gauge-invariant
combinations_of four-component fermion and antifermion
fields (¢ and ) and the lattice gauge fieltJ ,). For later
calculational convenience we choose the bare, rather than
some physical, fermion mass,a and gauge coupling? to
parametrize the couplings, .

where theS, include all interactions with the desired field
content and the appropriate symmetries. One approach to t
continuum limit, which might be called brute force, is to
choose thec, in any way that drives the lattice spacing to
zero. An ideal approach would be to choose ¢heo lie on
a renormalized trajectorj2], where there are no lattice arti-
facts even though the lattice spaciag0. In the space of all
possible actions specified by Ed..1), the renormalized tra- ! .
jectories lie in a subspace, whose dimension equals the num-, As a—0 the fgrmlon masémqa 'S fozrmallzy frlnaller than
ber of relevant parameters. Once the relevant parametegs)' (By asymptotic freedomyg=[SoIn(Agepa“)] ~ asa—0.)
have been fixed by physics, they and the renormalization
scheme determine all ths, .

Unfortunately, a renormalized trajectory is mostly of ab- *we usem, for a quark mass defined by a physical condition and
stract value, because on one infinitely mamyare nonzero. mga for the coupling appearing in the action.

0556-2821/97/547)/393325)/$10.00 55 3933 © 1997 The American Physical Society



3934 EL-KHADRA, KRONFELD, AND MACKENZIE 55

It is therefore tempting to expand the couplinggmoa,g ) higher dimension, however, we retain Wilson’s time deriva-
in mpa, as in previous analysggl-7]. But there may be tive and incorporate “spatial-only” interactions into Eq.
fermions satisfyingn,/Aocp>1; the charm, bottom, and top (1.1, as in nonrelativistic theorigs10-12.
quarks are examples in nature. If, in practioga is not On the other hand, fom >Aqcp One can interpret the
small, perturbation theory imya need not be useful, even lattice theory in a nonrelativistic light. Indeed, all members
though perturbation theory igg might be. Indeed, this re- of our class of actions approach a universal static limit as
gime includes the charm and bottom quarks at currently achya—«. For mya large but finite, the Dhg corrections to
cessible lattice spacings. the static limit can be recovered systematically, provided the
The statid 8,9] and nonrelativisti¢10—17 effective theo-  fermion mass is defined through the kinetic energy, and pro-
ries address the problems of heavy fermions. Their restricvided the general action, E@1.3), is truncated only at di-
tion to my>Aqcp implies that couplings of interactions be- mension 4-s (or highej. Unlike previous implementations
tween particle and antiparticle states may be chosen tof nonrelativistic fermions, however, our approach crosses
vanish, and the remaining interactions in Et.1) are orga- smoothly over into the regime of tiny lattice spacings, where
nized according to ap/m, expansion. But for some mya<1l even for a heavy quark. Thus, after severahave
mq~2Aqcp the expansion is no longer useful. Furthermore,been tuned close to a renormalized trajectory, thereby re-
radiative corrections induce power-law terms, e.g.moving the worst lattice artifacts, a little brute force can
gé/(mqa), which must be canceled by adjusting thg. remove the rest.
These terms, which diverge as-0, are a reminder that the Because we make no assumptions about the ratio of ferm-
effective theories are to be used at scales bdlavge m,.  ion masses to other scales, our formulation is especially well
Their presence implies that cutoff effects in the effectivesuited to fermions too heavy for smatlya methods yet too
theories should be removed not by brute force, but by keeplight for large mg/Aqcp methods. With the actions given be-
ing a~m;l and constructing actions systematically closerlow one can test whether a given fermion is heavy enough to
to the renormalized trajectofi11,12]. be treated nonrelativistically, without resorting to brute-force
This paper presents a way to encompass both the smalimulations. A practical example might be the charm quark,
and large mass formulations. There are two fundamental ewhich has a mass only a few timég,cp, yet even on the
ements. First, to reacim,a~1 one must treat théull func- finest lattices available today.a is largish, at least.
tional dependence amya of the couplings in Eq(1.3). Sec- For a concrete determination of thg, one must choose a
ond, we enlarge the class of interactions considered in Eqenormalization group, a criterion for truncating the sum in
(1.3 to include all those usually used in the smalla and  Eq.(1.3), and a strategy for determining teg. For illustra-
the largem,/Aqcp limits. In particular, we do not impose a tion we adopt here a Symanzik-like proced{#g, organiz-
symmetry between couplings of interactions that would beng the interactions by dimension. Carrying out this program
related by interchanging the time axis with a spatial axis. to arbitrarily high dimension would produce a renormalized
The renormalization-group approach immediately impliestrajectory of a renormalization group generated by infinitesi-
that the irrelevant couplings depend on the relevant §2s mal changes ia. For simplicity, however, most of this paper
in this case the mass. But the choice of asymmetric couplingeats interactions only up to dimension five. Although a
is motivated, as in Ref§10-12, by the physics of heavy nonperturbative determination of the couplings is possible in
quarks. For anyn,a, the four-momentum of a quark in most principle, this paper makes the further approximation of per-
interesting physical systems satisfid&(p)—E(0)Ja<l turbation theory ing3, that is
wheneverpa<l. But whenmja>1 the characteristic four-
momentum of the physics does not respect time-space axis ) - 2 1
interchange. Under such circumstances it is inconvenient and Cn(moa,GO):IZO 96 Cn (Moa). (1.9
unnecessary to choose an axis-interchange symmetric action. -

Indeed, relinquishing axis-interchange symmetry is COMMONEycent for Sec. VIII we work to tree level, so we often

in treatments of heavy quarks with momentum-space andppreviatec %Ol(moa) by c,,(mea). (Explicit one-loop calcu-

dimensional regulators. It is possible tp derivc_a deviationgations are in progredd 8]). Within these approximations we
from heavy-quark symmetry from the Dirac actift¥,13,  getermine thec, by insisting that on-shell quantities take

while maintaining time-space axis interchange invariance ageir desired values. as first suggested bgdher and Weisz
a corollary to Euclidean invariance. But usually the deriva-[lg]_ '

tions are easier with a nonrelativistic actiptD,16], the so-

called heavy-quark effective theofg7]. _ _ shell Green functions via Feynman diagrams and tune them
In the appropriate limits, our formulation of lattice fermi- +y the continuum limit. to the appropriate order jin An

ons shares properties of previous ones. On one hand, at diyample is in Sec. IV. Because this strategy is limited to a
mension five or less, couplings related by axis interchang@nite number of quantities, it is nontrivial to assume that
becqme identical in the limitnya—0: the Wilson action and ey quantities are improved tdd]. An alternative is de-
the improved action of Refl6] are recovered. But when \gioneq in Sec. V. Starting from the transfer matrix we de-
mo_a;éo the mass—deper_1dent renormalization leaves latticge an expression for the fermion Hamiltonian, valéd tree
artifacts that are proportional i and Aqcpa, nNotmqa. At |eyel) for states withpa<1. Because the Hamiltonian is an
operator, improving it to some accuracy guarantees the im-
provement to the same accuracy of infinitely manpum-
At small mass the doubling problem is handled by Wilson’s bers. We show that by adjusting the couplirgémga) cor-
method[13]. rectly, and allowing physically unobservable redefinitions of

One calculational procedure is to work ootpoint on-
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the fermion field, one can tune the Hamiltonian to the con- —
tinuum limit, i.e., to the Dirac Hamiltonian, to the appropri- SE:iCEKSZ ¥n00iEnithn, (1.8
ate order inp. !
In addition to equations for the,, the analysis of the
Hamiltonian yields two important results. One is that thewhereB and E are suitable functions of the lattice gauge
Wilson time derivative needs no improvement. The other is dield U, as in Sec. Il. The light-quark formalism of Refs.
canonically normalized fermion field that, to the accuracy of[6,7] considers the special casg=cg, whereas the heavy-
the improvement, obeys Dirac’&ontinuun) equation of quark formalism of Refg[11,12 setscg=0.
motion. This field is a potent ingredient in calculations of The couplingsrg, {=«4/k;, Cg, andcg are specific ex-
matrix elements involving heavy-quark systems; see Se@amples of the couplings, in Eq. (1.3). On the renormalized
VII. trajectory they are, therefore, all functions mfa. Section
Owing to the approximations introduced—the truncationlV shows how to adjustg and ¢ so that the relativistic
of interactions and perturbation theory—some cutoff effectsenergy-momentum relatiok = \/mq2+ p?+ SE is obtained
remain. If these errors are small, they may be estimated bfor all mqa. With the correct choice, for whiclj#1 when
insertions of 5S in correlation functions. If the series for mya+0, the (tree-leve) lattice artifactSE,, is proportional
cn(Moa,gd) has been developed tgth order to p*a® for mya<1 andp*a/mj for mya>1. Similarly, re-
. sults in Sec. V include functionsg(mga) andcg(mga) that
5= S g2 (moa)s. ) reduzcg lattice artifacts in the quark-gluzon vertex functions to
=t 9o Cn (Mo ' ' O(p“a®) for mya<1, or(yet smalley O(p“a/m,) for mya>1.
In their on-shell improvement program Ref49,6] intro-
A typical term in S distorts an on-shell correlation function duced changes of variables, or isospectral transformations, to
by an amount of ordergZcl(moa)(pa)®, where €Xpose redundant interactions. Since the coupling of a redun-
s,=dimS,—4, andl=L,+1. (If S, is omitted from the ac- dant interaction does not influence physical quantities, one
tion altogether, then hete=0). The analysis presented below ¢&n choose it according to theoretical or computational cri-
shows that the tree-level, lower-dimensief®(mj,a) are  teria distinct from improvement. Section Ill examines the
well-behaved for all masses. We also show that loop dialSOSpectral  transformations ~when  time-space axis-
grams have the same or more benign behavior at large madgterchange symmetry is not imposed. In our formulation

In particular, asmya—c the cll(mya) either approach a many isospectral transformations are exploited to keep the
constant or fall asrfi;a) %, for somes=<s, . These results time discretization, and hence the transfer matrix, as simple

provide evidence that the higher-dimensiop(m,a) are s possible. o o

well behaved too. The remaining redundant directions can be classified in
In Monte Carlo programs it is customary to parametrizeth® Hamiltonian approach developed in Sec. V. In a Euclid-

the action by the hopping parameter instead of the mass. I@n version of the standard Dirac-matrix basis, given in Sec.

this notation the dimension-three and -four interactions ardl: matrices are either block diagonal or block off-diagonal.
written Block-diagonal transformations are absorbed into a general-

ized field normalization. On the other hand, bloufik-
— — — diagonal transformationgcalled Foldy-Wouthuysen-Tani
So=2 Ynthn— k2 [¥n(1=Y0)Unothn+ o+ transformationg20] in atomic physics generate leeway in
" " choosing the mass dependence of associated couplfgs.
example, in the actiors,+ Sg+ Sg one may freely choose

X (14 yo)U} gl - Ks; [n(rs= Yi)Unithn+i rs, as long as the choice circumvents the doubling problem.
o ’ Our approach breaks down, just as any lattice theory does,
+ i i(Tst U ¥l (1.9  Whenpa is too large. Fortunately, the typical momenta and

mass splittings of hadronic systems usually are bounded; the

Some terms of dimension five—to solve the doubling prob-energy scale around the fermion mass is dynamically unim-
lem [13]—are included here too. The relation between thePortant. In quarkonia the typical energy-momentum scales
bare massanga and the hopping parameters and g is are myu and mqv2/2, i.e., 200—800 MeV for charmonium
given below in Sec. Il. Equatiofil.6) illustrates how our and 200—1400 MeV for bottomonium. Similarly, in light and
program subsumes properties of the familiar small-mass andeavy-light hadrons the typical momentum scaleAisp,
large-mass formulations. Imposing axis-interchange invarii-€., 100-300 MeV. In some processes, such as a decaying
ance would sek = «, andr,=1, and therS, reduces to the heavy-quark system that transfers all its energy into light
Wilson action[13]. Rewritingr k= c, and settinge, to zero  hadrons, a large three-momentypf=m, does arise. Then
with c;#0 produces the simplest nonrelativistic act[dn]. our formulation and its predecessors all require further ex-

This pattern continues for dimension-five interactions.tensions. One should appreciate, however, that the break-
Aside from the Wilson terms i, the other dimension-five down arises not from the large fermion mass per se, but from
interactions are the chromomagnetic interaction the large momentum of the decay products.

i _
SBZE CBKsn%k Eijk ¥nTiiBnktn , (1.7

3The off-diagonal interactions are precisely the ones usually omit-
ted from nonrelativistic formulations, yet their presence in our for-
and the chromoelectric interaction mulation permits a smooth transition from large to small mass.
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A by-product of our formalism applies to existing numeri- — —
cal calculations, done with axis-interchange invariant ac- So=mof ¢(X)¢(X)+f [4(X)3(1+ ) Dg #(x)
tions. Formya=1 (and, furthermorem,/Aqcp>1) we derive
in Sec. 9 a nonrelativistic interpretation of such actions. One — —
then sees that, with a proper definition of the fermion mass, — (X)2(1— 79)Dg ¢h(x)] +§f P(X)y-Di(x)
any action described b$,+ Sz+ Sg, including the Wilson
and Sheikholeslami-Wohlert fermion actions, has the lattice- 1 AR
spacing and/or relativistic inaccuracies of a typical nonrela- —2arsl | YO)ATP(X), 2.3
tivistic action. A practical bonus of the nonrelativistic regime
is that it is no longer necessary to adjustdifferently from  Where the integral sign abbreviata®s., . The covariant dif-
K. In heavy-light systems, one may also sgt=cg . ference operators are conveniently defined via covariant
This paper is organized as follows. Section Il introducesfranslation operators
some notation, including a form of the action better suited to . ~
perturbation theory, and the Dirac-matrix convention used in Teuh(¥) =V, (X)p(xFap),
later sections. The isospectral transformation of R&f.is — s o~ -
reviewed and generalized in Sec. lll, to determine which YOO T, = d(xFap) U (X au),
cpgplings are redur_1dant. Then, to derive. improver_nent CO”WhereU,M(x)ZUT(x—a,&). Then
ditions, Feynman-diagram methods are discussed in Sec. IV, H

(2.4)

and the Hamiltonian method in Sec. V. With a Hamiltonian Dgyv=a YTo— 1)y,
description of the lattice theory in hand, Sec. VI estimates

cutoff effects in various hadronic systems. Section VIl con- Dow=aY1-T_o) ¢,
siders perturbations from the electroweak interactions,

needed for the phenomenology of the standard mfeigl Diy=(2a) Y T,—-T_)y,

Some of the issues beyond tree level are outlined in Sec.
VIII. The relationship of our work, fomq/AQCD>1, to non- 3) ,
relativistic QCD is pursued in Sec. IX. We discuss a few A¥y=a 241 (Ti+T_i=2)¢, (2.9
phenomenologically relevant applications more thoroughly
in Sec. X. Finally, Sec. Xl contains selected concluding re-define various covariant difference operators and the three-
marks, and the appendices contain various technical detailgimensional discrete Laplacian. We shall call the form of the
action in Eq.(2.3) the “mass form.”
The temporal kinetic energy in Eq2.3) is written in a
Il. NOTATION way that does not make the temporal Wilson term explicit.
We shall call the form of the action in Eq1.6) the Equation(2.3) is more convenient, hoyveve(, for constrqc.tin.g
“hopping-parameter form.” For studying the continuum the transfer matr!x, and for comparing with nonrelat|V|st|c
limit and developing perturbation theory it is useful to _QCD' The spacelike W|Ison_ term, the one proport_lona_ﬂstp
present a different form. Let us introduce some notation. Thés needed to prevent doubling. A convenient choice in com-

lattice spacin§jis a and the site labels amre=x/a. Rescale puter programs iss=1, but we keep it arbitrary, because
the fields other choices may have other advantages.

For constructing the transfer matrix and for examining the
nonrelativistic limit, a useful representation of the Euclidean

3

232 v matrices is
n= 2.1
W TKttﬂ(X) (2.1 _(1 0) _(0 0)
Yo= 0 -1 ’ Y= o 0 ’ (26)

and similarly for,. The bare mass is satisfying{y,,7,}=24,,. Another convention that we use is

— (i t .
0,,=(1/12)[y,,7] so thato,,=+o,,. Using Eq. (2.6,

1 ogi=iq; andUijZ_Sijkzk, where
moa= 5——[1+r{(d—1)], 2.2
03= 5, [1Hrsd(d=1)] 2.2 o L
a=%Y=|__ ol 3= 0 o 2.7

where d(=4) is the spacetime dimension, an-«d/«;.

With these substitutions the action reads The following split into upper and lower two-component

spinors

¢ M T
“With two hopping parameters, and . it would be possible to 'p_(x*)’ ’ﬂ_(d’T X))
introduce anisotropic lattice spacings. Anisotropy is not essential,
however; fully isotropic lattices can be maintained through approfollows from Eq.(2.6). This convention is chosen so tlitite
priate adjustment of the gauge action. Therefore, we choose equaperators corresponding)te and xy annihilate particle and
temporal and spatial lattice spacings in this paper, as in nonrelativantiparticle states, respectively. With these two-component
istic effective theorie$10—-12. fields the mass form of the action is

(2.9
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So=mg J [T(x) () + xT(X)x(X)]
+ f [¢T(X)Dg d(x)+ x"(X)Dg x(X)]
—zarg J [6TO)APB(x)+ xT(x) AP x(x)]

+§f[¢T(X)0- Dx*(X)—x"(x)o-Dg(x)]. (2.9

3937

TABLE I. Interactions that could appear in the action, with and
without axis-interchange symmettlS).

dim w/ AIS w/o AIS

3 Y _ o

4 YDy UyoDoy _Yv-Dy
5 D%y YD Y(y-D)*y

[ voDo,v- D]y

This form of the action exhibits explicitly that particles and times convenient to fix the kinetic energ?ﬂ)dz to have co-

antiparticles are treated on the same footi@ntiparticles

efficient unity, which is the mass form of the action, and

transform under the complex-conjugate representation of theometimes to fix the local termiys to have coefficient unity,

gauge group, however, dd0* appears instead df in the

rules[Egs.(2.4)] for covariant translations acting opn)

Writing B,=aB(x) andE,=a%E(x), the four- and two-

which is the hopping-parameter form. But neither interaction
is redundant, even though the normalization convention
drops out of physical quantities.

component mass forms of the chromomagnetic and chromo- Otherwise redundant directions are exposed by redefini-

electric interactions are
So=—(i12)acet | ¥0%-BOY(N)

=- (i/Z)aCB§f [¢(x) o B(X) $(x)

~xT(x)6* - B(X)x()], (2.10
and
Se=—lacel f P(X) @ E(X) (X)
=—tacel f [$T(x) o E(X) x* (X)
+XT(X) 0 E(X) $(X)], (2.12)

tions of the field. In the analysis of Ref6], with axis-
interchange symmetry, one considers the transformation

w,_>esa(l2)+m)¢’ IH%EI(ID+TTI)' (31)

wherea is chosen so thaa(D+m) is “small.” After car-
rying out the transformation on the target actigny(ID
+m), one expands the transformed actionQ¢a). One
finds changes in the normalization of the lower-dimension
terms and the additional interactiafie + ¢) /D 2y: from the

two independent transformation parameters, only one combi-
nation survives. Hence, of the dimension-five interactions
listed in Table I, ondi.e., yD?y) is redundant, and the other

is not.

On the lattice the nearest-neighbor discretizationDof
suffers from the doubling problem. Wilson's prescription
adds a nearest-neighbor discretizatiorDdfto eliminate the
unwanted states. By the preceding analy8isusing instead

respectively. Except in a technical step in Sec. V we take th@>=D?—i o ,,F ., would not change the spectrum@fa).
“four-leaf clover” lattice approximant to the field strength When the discretization is chosen to solve the doubling prob-

2 signuy)TT,T T 5—He,

p=*p

v==*vp

F,W(X)Z@

(2.12

as introduced in Ref[22]. In Egs. (2.10 and (2.1J),
Bi:%siijjk andEi:FOi. AS deﬁned herd: Bi y andEi

Oyl

are anti-Hermitian; similarly we take anti-Hermitian gauge-

group generatorg= —t3,

IIl. REDUNDANT COUPLINGS

lem, however, théD? interaction does change the spectrum
of high-momentum states. Since they communicate with the
low-momentum states through virtual processes, lattice arti-
facts proportional t@3 remain. They can be eliminated with
the other dimension-five interactiomyo,,F,,¢, with a
coupling proportional tay3.

Thus, with axis-interchange symmetry there are four in-
teractions up to dimension five, one of which goes with wave
function normalizatione.g., ¢/ID ). One coupling is redun-
dant, and it can be chosen to solve species doublii ).

The other couplings are fixed by the fermion magg/} and
a physical improvement conditiongo ,,F ,,¢).

Before trying to determine the mass dependence of the When axis-interchange symmetry is given up, the trans-

couplings ¢, rg, cg, and cg, one should establish which formation in Eq.(3.1) should be generalized to

combinations are physical. The fields in functional integrals

are integration variables, and a change of variables cannot yr—>exdea(D+m)+ say D],

change the integrals. Interactions that are induced by changes . . 3.2

of variables areredundant their couplings can be chosen Y exd ea(D+m)+ day-D].

with some leeway, dictated by calculational or technical con-

venience, rather than by physical criteria. Applying this transformation to the target action induces the
A subtle example of a redundancy in the space of interdimension-five interactions listed in Table I. From the four

actions is wave functiofre)normalization, which multiplies independent transformation parameters, only three combina-

the field by a constant. For fermions, for example, it is sometions survive:s+e¢, 6+ 8, and 5— 4. Therefore, the coeffi-
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cients of yD 2y, (D)%, and ¥{y,Do,y-D]w can be cho- IV. ON-SHELL CORRELATION FUNCTIONS
sen arbitrarily. The last of these has no redeeming features

s0 6— 6 should be chosen so that it never appears. gouplings, generically denote¢!®(moa) in Eq. (1.4),

The other two redundant interactions are again used tneeded to bring the action closer to the renormalized trajec-
solve the doubling problem. TH23 term is used to eliminate Thi 9 he fermi btai Jh
states that would make contributions to the fermion propagat-ory'. IS section uses the fermion propagator to obtain the
tor proportional to(—1)"; the factors %y, in Egs.(1.6) or relation between the physical mass and the coupiig,

(2.3) provide the unique choice. Low-energy states with.the correct tuning of the couplingmya), and the normal-

p;~ mla are lifted by adding the interaction proportional to 'rizts'zn dc;f t:r? dgﬁlge"b(xw)é ?jlgCr?o'llvsxat'fn:jntiir?ﬁ;e(fjelrrr]nggﬁ frl:]léss
rg in Egs.(1.6) or (2.3). When the mass is nonzero, it may P ' P '

fove convenient choose to be a function ofm.a. so we Section V uses the Hamiltonian of the lattice theory to
I?aave it arbitrary & 0 clarify and extend the analysis t andcg.

As with axis-interchange symmetry, the chromomagneti A well-known procedure for determining the couplings

and chromoelectric interactions are not redundant. Their 003—4] Is to calculaten-point correlation functions and expand in

plings can be used to remove cutoff effects once the dour_nomentump. In gauge theories, however, it is not known
bling problem has been eliminated. whether lattice artifacts can be removed systematically from

Thus, without axis-interchange symmetry there are eighghrgﬁ},f1 fggr?:ilt(i)gssir?gterggig] S_Pﬁg‘“:tigg)ehggg :ﬁg?gdzci_on'
interactions up to dimension five,_one of which goes with q : P

wave function normalizatior(e.qg., ¢yoDo#). Three cou- {'rﬁsr;@irﬁgﬁgggn?;uggéeqoSpaa;'aéxmgg?g;mSopig;?gﬁg
plings are redundant; two can be used to solve species dou- P P .

. e lyseg5—7] also expanded in the couplimgya. We sim-
bling [¢D2y and ¢(y-D)%4], and the other to eliminate 2N&YS€ . 0
ﬁygD[ol,pyﬁﬁw Thgf)?[/her) clé]uplings are fixed by the fermion ply avoid the latter expansion, and thus obtain the full mass

oE S dependence.
mass (Myy)_and three physical improvement conditions . i . L .
(¢4ry-Dif, ic S -By, andcera-Eg). The simplest on-shell correlation function is the fermion

Redundant combinations of higher-dimension interactiongmp""g‘5ltor as a function of time and spaual momentum. It IS
used to relate the bare mass to a physical mass and to derive

can be exposed by generalizing the transformation of eq'he mass dependence 6f In_the language of Sec. Ill, it

(3.2). In particular, after dispensing with axis-interchange . ; 4
symmetry, it is possible to transform away interactions withpmbes. the interactiongy, andyy- Dy, relative togyoD oy
Define C(t,p) through

higher time derivatives ofy and ¢, in favor of spatial de-
rivatives of ¢ and ¢, B and E, and time derivatives of the
latter. Indeed, any action with the Wilson time difference— ' p" ) (t,p))=(2m)38(p —p)C(t' —t,p), (4.1
the terms in brackets in Eg2.3—has an easy-to-construct (ALY P)) = (2m)7e(p" ~p)C( P, (4
transfer matrix.(This is reviewed in Sec. Y.Consequently, ‘ _

it is possible to implement Eq1.3) by adding “spatial- ~ where y(t,p)=a3Z,e” P *y(t,x) and similarly for i(t,p).

" We now turn to the mass dependence of the tree-level

only” interactions to0S;. Then, from Eq.(2.3),
T de eipot
Cltp)= f,w 27 i ySinpo+i ¢y S+ Mo+ 1—coPy+ (1/2)rLp?’ 4.2

whereS =a ™ !sinp;a andp;=2a"sin(p;a/2), but for brevity Eq(4.2) is given in lattice units. To integrate ovpg, proceed
as follows: rationalize the denominator; fox0 let z=€'Po, and fort<0 let z=e 'Po, yielding a contour integral over the
circle |z|=1; apply the residue theorem to obtain

gy Yo SIgNSInhE—i{y- S+ mg+1—costE+ (1/2)r £ p?

C(t,p)=2,e >sintE 4.3
|
for t#0,° where(restoringa) Expanding the energy-momentum relation in powers of
N ield
a1t [moa+ (1/2)rLp?a]?+ ;2S?a s pa yields
cost=a= 2[1+mpa+ (1/2)rp?a?] 4.4 s o My,
EIM1+M—D e, (45)
implicitly defines the energy of a state with momentipm 2
The residueZ,(p) is given below in Eq(4.12. where the “rest mass”
M;=E(0), (4.6)

5To obtainC(0) from Eq.(4.3), replacey,sigrt by 1 on the right-
hand side. and the “kinetic mass”
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M3 *=(5°E/9p}) p-o- (4.7)

(Any axisi will do to defineM,, by spatial axis-interchange

symmetry) The relativistic mass shell has,=M;=M,,
and it terminates g% From the tree-level E4.4),

M,;=a ! In(1+mya), (4.9
and
1 272 r
= d £ (4.9
M,a mpa(2+mpa) 1+mpa

Equation(4.8) shows how to adjustnga so thatmg=M;.
Similarly, Eq. (4.9 shows how to adjust andrg so that
mq=M2.6 Setting M;=M, and solving for{ yields the
(tree-level condition (settinga=1 again

B rsMp(2+mp)
= \/( 4(1+mg)

2 my(24+mg)  reme(2+mg)
2In(1+my)  4(1+mp)
(4.10
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momentump dependence can remain. Indeed, after integrat-
ing Eq. (4.2 over p, one finds

Zy(p)=(1+mea+ zrefp?a®) ~*. (4.12
Normally one identifies the residue with(ee)normalization
of the fermion field. Now, however, it is appropriate to ex-
pand Z,(p)=Z,+ O(p?), where

Z,=(1+mpa) t=e M2 (4.13
Then Z, Y2y(x) =eM122y(x) has the canonical normaliza-
tion. In the hopping-parameter notation the canonically nor-
malized field isy1—6rg¢xgi),. This notation shows clearly
that the approach to the static limit<<1 is smooth. Indeed,
Eq. (4.13 captures the dominant mass dependence of the
field normalization to all orders in perturbation theory, cf.
Sec. VIl and Ref[18].

One might ask what to make of the momentum depen-
dence ofZ,, when the action is improved to higher dimen-
sions. The residue itself is not observable; physical quantities
are given by ratios of-point functions and the propagator.

The dimension-five coupling, is treated here as redundant; With the correct on-shell improvement, thédependence of
it is determined not by physics, but to solve the doublinguntruncatedn-point functions combines with that o, to

problem. To alleviate doubling amy(0)>0 will do, and the
most natural choice isg(0)=1.
For small mass the Taylor expansion of £4.10 is

{=1+3[1-r40)Imy—52{1—3rg(0)[2+r4(0)]
(4.10)

At my=0 the redundant coupling drops out, leaving

+12r(0)}m3+0O(m3).

yield the desired resultgo the order considered

V. THE HAMILTONIAN

This section introduces another method for deriving con-
ditions on the couplings in the action. The strategy is to
obtain an expansion in the lattice spacing for the Hamil-
tonian. For concreteness, we focus on the action
S=S5,+ Sg+ Sg. The couplings are then adjusted so that the

{(0)=1 unambiguously. On the other hand, the full massyamiltonian of the lattice theory is equivalent to the Dirac

dependence of can only be prescribed hand-in-hand with yamiltonian. The idea is conceptually the same as on-shell
rs. The origin of the link between theﬂvog couplings is that jnprovement, because the “spectral quantities” of F&g]

both the kinetic(yy-Dy) and Wilson (¢A"®'y) terms con-  are just eigenvalues of the Hamiltonian. But since the Hamil-
tribute to E“ at O(p®). This and analogous links between tonjan is an operator, it contains the information of infinitely
couplings” mass dependence are examined further in Sec. Many quantities, rather than the finite number accessible
and Appendix A. _ _ when one computes correlation functions.

Beyond tree level(in perturbation theo_ry or in Monte This approach reproduces tlg(mya) derived with on-
Carlo calculationsone would tune/ according to the same  ghe|| correlation functions. But the analysis is explicitly rela-
physical principle that led to Ed4.10: determine the mo- jyistic, if noncovariant, so one sees clearly that the results
mentum dependence of the energy of a suitable state ange general. On the other hand, we have not attempted to

demand thaM, =E(0) and M, = (4°E/dp;) 2, be equal.

extend the method to four-fermion operators, or to higher

When ¢ and mpa have been adjusted so that orders ing3. The calculations required by those extensions

M;=M,=m,, one can rewrite Eq(4.5 as E=\/mq2+ p?

seem better handled with gauge-invariant on-shell correla-

+ 6E,. Expanding Eq(4.4) to p*, one finds the lattice ar- tion functions.

tifact 5E,,~p”a® at small mass andE ,~p“*a/M3 at large

There is a further conceptual advantage to the Hamil-

mass. To reducék,, further, one must incorporate higher- tonian. Lattice field theories are almost always formulated in

dimension interactions into the analysis.
Finally, let us return to the residug, in Eq. (4.3. In

imaginary time. The interpretation of the results in real time
hinges on a good Hamiltonian fixing the dynamics of the

general, the residue is a scalar function of four-momentum Hilbert space of statef2]. Hence the implicit, but seldom
evaluated on shell. With a Euclidean invariant cutoff, scalarstated, goal of improvement is an improved Hamiltonian;

functions can depend only quf; on shell, withp?= —m?,
the spatial momenturp drops out. With the lattice cutoff,
however, the mass shell is distorted, cf. E414), so three-

8In the k-« parametrizatiorfeliminate m, with Eq. (2.2)] this
condition is an implicit transcendental equation. In the{ param-
etrization one can solve far explicitly.

this section merely takes direct aim on that goal. Moreover,
once one accepts the central role of the Hamiltonian, one
appreciates why a satisfactory Hamiltonignimplies a sat-

isfactory time evolutiore™ "2, no matter how largéia is.

In lattice field theory the Hamiltonian is defined through
the time evolution operator, or “transfer matriX2]. There-
fore, Sec. V A starts by reviewing and extending the con-
struction of Ref[24] to the actionsS; andS=S;+ S+ S¢.
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A by-product of this analysis is the demonstration that thererhe operatorsP andxfr:xiﬁyo obey canonical anticommu-

is no need to improve the temporal derivative in E2.3). tation relations

This feature is familiar from the static and nonrelativistic ) )

formulations. It is a special blessing here, because a temporal {¥na ,\Pﬁb}z Smnbab (5.9
next-nearest-neighbor interaction would introduce unphysi-

cal stated6], and at larganya the physical and unphysical where m and n label spatial sites and and b are multi-
levels cross. With the transfer matrix in hand, Sec. V B andndices for spin and color. The fields corresponding to these
V C develop an expansion ia for the Hamiltonian itself. operators are related to the original fields by

i
A. Construction of the transfer matrix Wma=Bma, nb¥nb - (5.9

The transfer-matrix construction with two hopping param-Thijs discrepancy in normalization between the integration
eters differs little from the usual caf24]. The transfer ma-  variables in the functional integral and the canonical opera-
trix acts as an integral operator in the space of gauge fieldgprs in Hilbert space demonstrates again that the normaliza-
in the Uy=1 axial gauge a wave functionfl(U) at timet  tjon convention for the fields(x), cf. Eq.(2.1), is arbitrary.
evolves to On the other hand, the propagator®fhasunit residue at

tree level, and a perturbative seriesZ,y=1
QM(V):f 1 du, KV, U)Q,U) (5.1  +95Z5H(mea)++- beyond tree level.
n,i ’ The generalization of Eq$5.2)—(5.9) to include the chro-
moelectric interactions suffers from a technical difficulty.
at timet+1. The wave functionaf)(U) is also a vector in  Usually one uses the “four-leaf clovers” in ER.12) as the
the fermion Hilbert space. For the standard gauge action thiattice approximants to the chromomagnetic and chromoelec-
kernel may be written tric fields. For the chromomagnetic interaction, this choice
R R poses no problem, becauBeinvolves link variables from
K(V,U)=TLV)TL(V)K(V,U)T5(U)T-(U). (5.2  one time slice only. For the chromoelectric interaction, how-
ever, the time-space four-leaf clover involves link variables
The factors arising from the fermion acti(if) are opera- from three time slices. In that case, the construction of the
tors in the fermion Hilbert space. The factors arising fromgauge-field transfer matrix is more complicated and, if the
the gauge field7g and K, are given in Ref[24]; in the improved gauge action is any indication, it may no longer be

following, they do not play a crucial role, so we do not positive[25]. o _
discuss them furthér. To avoid this complication one can define a chromoelec-

The fermion operator for actioB, can be written tric field on only two time slices. Consider,
To(U)=el HVle" 12HUideq2,c5,) %, (5.3 Se2= ~Cersd) Und 31+ y0)aEncre
where(see Ref{24]) +3(1— y0) @ En s 1l s (5.10
Ho(U) =MW, (5.4  where
Hi(U)= W3 (1 y0) - Dy ¥, (5.5 Encevzi=*5 2 SigTITooTT 50T~ Hec,
in a matrix notation in which? and ¥ are vectors, and,, _ (519

Dy, andM, are matrices dgpendm_g on gauge fieldThe . is defined on atwo-leaf clover. The projection operators
vectors and matrices of this notation are labeled by spin; . . .
color, and space. The covariant difference operBtis as in 5(1=%,) in Eq.(5.10 are chosen by analogy with the Wilson
Eq (é 5 ancFJI) ' P time derivative, cf. Eq(2.3), and as a result the standard

transfer-matrix construction goes through with minor modi-

fications. The two-leaf versio8, differs from the four-leaf
B=1-res> (Ti+T_), (5.6)  versionSg by an interaction of dimension six, so it should

[ not alter the tree-level tuning @i .

Extending the transfer-matrix  construction to

“ L @ Sy+Sg+ S, [Egs. (1.6), (1.7), and (5.10], one finds the
e :Z_Kt:1+ Mo—3rs{A™. (5.7 following changes. The chromomagnetic interaction modi-

fies the matrice®8 and M to

"Different from Ref.[24] is the convention for the factofd + y,) B=1- rSKSZi (Ti+T-i)—icgrsX-B, (5.12

in the action(compare Eq(1.6) with Eq. (2) of Ref.[24]). With our

convention it is natural for time-ordering to place later times to the B

left. Thus, the kernek’(V,U) transfers the field fron at timet to eM=——=1+mg— %g(rSA(a)_’_ icgX-B). (5.13
V at timet+1. 2Ky
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Except for the newi3, Egs. (5.8 and (5.9 still hold. The  Sec. lll, there must be some leeway in the redundant direc-
chromoelectric interaction, Eq5.10, modifies the fermion tions. In the operator formalism adopted here, unitary
operatorZg so that it depends on initial and final gauge fieldschanges of variables are possible, and these play the role of
U andV: the isospectral transformation, E@®.2). Under a change of
. . . variables the Hamiltonian becomes
ﬂ(vyu)=e7H|(V,U)ef(l/2)H0(U) de(thBU)lM

(5.14 H/ =U(H+ gl 2, (5.17
with I:|0 as in Eq.(5.4 and M from Egq. (5.13), but whered, is a derivative with respect to imaginary time dnd
. 5 . is the unitary operator implementing the change of variables
H(V,U)={¥3(1- y0)(y-Dy—3Cea-Ey )V, in Hilbert space. Consider, for example, the following trans-
. . A formation:
H(V,U)=¢Pi(1+ -Dy—3cea-Ey ) ¥,
1 (V,U)=0¥3(1+ y0)(y-Dy—3Cea-Ey y) Wisex—a,y D)V,
(5.15
where the subscripts oB and E specify the spatial link \ITH\ITGXF(_afl‘)/' D), (5.18

fields, out of which they are constructed. The sign of the

chromoelectric term ifd; can be checked as follows: in our for which

sign andi conventionst®'=—t® and Euclidean electric N - -

fields are anti-Hermitian operators in the gauge-field Hilbert U=expaé, 'y -DV). (5.19

S, ant

space E* - E*®. ) Such transformations are familiar from studies of the nonrel-
Comparing Egs(5.13 and (5.1 with Egs. (5.7 and  4yjistic limit of the Dirac equation, where they are called

(5.5), respectively, one notices a pattern emerging. Interacrq|gy-\Wouthuysen-Tani transformatiof0]. Their charac-

tions with block-diagonal Dirac matrices append @0',  teristic feature is that the exponent is always a block-off-
whereas those with block-off-diagonal Dirac MAtrices jiagonal Dirac matrix.

modify H, . This pattern depends only on the special Wilson
time derivative and the technical assumption that all interac
tions live on only one or two time slices. It proves that there

The transformed HamiltoniaH’ has an expansion of the
Same form as in Eq5.16), but with transformed coefficients

is no need to alter the temporal derivative in Hg.3): by=by,
higher-dimension “spatial” interactions are enough to
achieve on-shell improvement, as asserted at the end of Sec. bi=b1—2mqabo§1,

b,=b,—2b; & +2mgabyés,
B. Small a expansion(general consideration 2 2 ol qmros

From the transfer matrix one_would like to derive the b,’3=b3—2b1§1+2mqab05§,
exact lattice HamiltoniarH=—In IC. Of course, with this
definition the Hamiltonian cannot be represented by a finite be=bg—&;. (5.20

number of local operators. According to the Symanzik phi-

losophy, however, one ought to expand it in powers of thdn light of the transformations, it is, therefore, enough to
lattice spacing. After obtaining the transfer matrfrighey  adjustmga, ¢, rs, Cg, and cg, so that for somghidden
time derivatives are no longer a concern, so the latticevalue ofé; the transformed Hamiltonian takes the Dirac form
spacing expansion will hold if the quantitieBa, Ba?, H'=W¥(m,+y-D)¥. That means that one warttg=b;=1

Ea?..., are small. andb,=bg=Dbg=---=0.
One can anticipate the expansion by enumerating the The Foldy-Wouthuysen-Tani parametér drops out of
terms allowed by symmetry: on-shell quantities. It is preferable, therefore, to parametrize
~ a2 the redundant direction by one of the couplings. To this end,
H="¥[by(mMya) my+b1(Moa) ¥ Dggnrt aby(Moa) Dy it is efficient to note that the following combinations of the

+ i"3'11:)B(mo"’1)2' Bcont+ abE( moa) a: Econt"' o ]\ify bi s do not depend Ol&l:

(5.16 Bo=bo=Dy,
where the subscript “cont” refers to an underlying con- BlEbE_quabobzz bf_ 2mgabgby,
tinuum gauge field; below we usually suppress this subscript,
for brevity. The coefficienty; depend ommya, and since Eq. Bg=b,—bg=b}—bj. (5.20)

(5.1 is to be interpreted as an expansiorairfrather than
1/mg), the b; for small mya must beO((mya)®), with p A Hamiltonian unitarily equivalent to the Dirac Hamiltonian

nonnegative. The coefficients for the acti®y+ Sg+ Sg, is then obtained whenever
given in Sec. V C, satisfy this requirement.
The general objective is to adjust the couplings so that Eq. Bo=B;=1,

(5.16 takes the relativistic Dirac form, i.eby=b;=1 and
b,=bg=bg=...=0. But, based on the considerations of Bg=0. (5.22
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Equations(5.21) do not contain an invariant correspond-  For smallDa the Hamiltonian becomes
ing tobg . This is analogous to the result, E¢.11), that the
general mass dependencelafan only be determined hand- _ 4
in-hand withrg. In the present language, that connection 2(1+mg)
arises as follows. Consider truncating Ef.16) at dimen-
sion four. Then onlyb, and b; remain. The Foldy- — 22f(Mg) ©2
Wouthuysen-Tani transformation @&(pa), and superficially 22
not worth considering. If one introduces it anyway, one sees
immediately thab, changes, and in the transformation law, Where
Eq. (5.20, one power ofa has combined with the fermion . 1
mass to given,a. At mya=0 the conditiorb,=1 is enough ©=i(y Deontt 2(1~Cg) - Econy. (5.27
to determineZ(0) unambiguously. But to ob'galn fully the The rest mas
mass dependenc&m,) one _must consider simultaneously
the interactionsV y-DV¥ and ¥ (y-D)%¥.

A~ M, (rsA®+icgX-B)—if1(my)O

T+ 0(p3a?), (5.26

, and the terms in parentheses come from
expandingM, and the function$; are extracted from the toy

o : - . . del:
A similar fate awaits the coefficiertiz and its coupling mode
ce- Consider a two-parameter Foldy-Wouthuysen-Tani 2(1+x)IN(1+x) fi(x) 1
transformation fl(x):W’ 20)=75 N1+x)  X(25%)°
Ysexp—aé y-D—a’épa-E)V, (5.28
- — ) Note thatf,(0)=1 andf,(0)=3.
V>V exp(—ag,y-D-a*feaE). (5.23 In the spirit of an underlying continuum gauge field one

, _can identify A® with D2, DXD with B, and[4,D]
The new parametef; introduces changes that are superfi-| i) E.... With these identifications one can cast E5,26

cially O(p“a?). The other coefficients are unaffected &y, into the form of Eq.(5.16. Thus, the Hamiltonian of the

but action Sy+ Sg+ S¢ has coefficients
bé:bE_él_zmqabofE. (52‘9 bOZMllmqv
Again, one power oh has combined with the fermion mass by=¢f1(mg),
to give mga. Thus, the conditiorbg—£,=0 is enough to
determine onlycg(0). The full mass dependence of can rel
only be revealed by considering simultaneouglg-EWV and b,=¢2f,(mg) — m
0

the dimension-six interactiod {y-D,a-E}V¥. This analysis
is deferred to Appendix A.

The next subsection adjustsya, ¢, rg, andcg to ensure bg= ?f (M) — Ca¢ ,
Eqg. (5.22, and cg(0) to ensurebg(0)=0. For heavy-light 2(1+m)
systems, the resulting lattice theory has cutoff artifacts of .
O(A3cp@d and, only when sza>12, (yet smalley artifacts bg=3(1—cg){f1(mg), (5.29
of O(AQ_CDa/mQ) and ofO(AQCD/mQ) as well. See Sec. VI and the invariants; are
for details. Moreover, for quarkonia, the lattice theory is
similarly correct througtO(v?). Bo=M,/m,
C. Small a expansion for Sg+ Sg + Sg B,=M;/M,,
Combining Eqs(5.2) and(5.14), and omitting factors that
depend only on the gauge field, the fermion Hamiltonian of B.— 1 _ 1 (5.30
the lattice theory is 5 2Mp 2M, '
Fi= —In[e”(¥2HoVg—H(V.U)... g=Hi(V.U) g~ (12Ho(U)], The masse#1; andM, are as before, and
(5.29 1 % cal
where H, is specified by Eqs(5.4) and (5.13, andH, is Mg mp(2+mg) T Mo’ (5.3D

specified by Eq(5.15. To derive an expression for the ferm-

ion Hamiltonian, one must coalesce the four exponents i\fter imposing Eq.(5.22, M4, M,, and My all equal the
Eq. (5.29 into one. Owing to nontrivial commutators be- physical mass.

tweenH,, H,, andH/, this is too difficult in general. But The mass dependence of the couplings follows immedi-
through ordeiD??, Appendix B achieves the desired result ately from Egs.(5.30 and (5.22. The requiremenB;=1

by a trick. There the field theory is mimicked by a toy modelimplies
with the same algebraic structure but only two degrees of >
freedom. In the toy model one needs only to take the loga- ,_ \/< rsMo(2+mo) Mo(2+mMg)  TgMo(2+ M)
rithm of a two-by-two transfer matrix, and expand the result 4(1+mg) 21In(1+my) 4(1+mg)

in powers ofa. (5.32
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precisely as in Eq4.10. The requiremenBg=0 implies TABLE Il. Estimates of the size of dimension-three, -four, and
-five interactions in systems with only light quarks, with one heavy
Cg=Ts. (5.3 quark, and in quarkonia. The latter two columns oggto empha-

) ] ] size the heavy-quark mass.
Finally, for small mass the chromoelectric coupling should

be tuned to H, Only light Heavy-light Quarkonia
ce(0)=3[1+r40)], (539 Eo Aqcp Aqep mqv?

to enforcebg(0)=0. With the axis-interchange invariant v 1 ) 1 1 )

boundary conditiormr¢(0)=1, one thus recovers the action of \ILY'ZD\I' AgCD AQCZD/mQ mgvz

Ref. [6], with £(0)=r(0)=cg(0)=cg(0)=1. Yo Ageo Ageo mov’

Our analysis has not yet specified the relevant couplings¥ >-BY Agep Aqep mgu

g3 andmya. They, of course, are fixed not by theory but by ¥ @ E¥ Adeo Adeomg m&v*

experiment. In the Hamiltonian language, the bare mags n

is adjusted so thaB,=1, i.e., M;=m,. Then the improve- One can estimate the errors induceddy;,, by treating it

ment conditions, Eqs(5.32 and (5.33, guarantee that as a perturbation. There is an advantage to estimating cutoff

my=Mj,=Mg also. effects from the Hamiltonian. In the action formalism, Eq.

There is a special case of Eq5.32—(5.34) that is of at  (1.5), it may not be clear how the time discretization trickles
least passing interest, namely the one for which the Foldydown to physical quantities. But by proceeding through the
Wouthuysen-Tani parametef;=0. This is obtained by transfer matrix these effects are treated exactly.
choosingr so that(untransformegb,=0: From the line of argument leading to E¢.16), one ex-
pects thatéH,,; consists of operators multiplied by mass-

2
r :2(1+m0) _ - (5.35 dependent coefficients
S my(2+mg)  In(1+mg)’ '
Then the conditiorb;=1 requires 5|:||at:2 as > gé'bﬂ](moa)lqn, (6.2
n I=L,+1
(= Mg(2+ mg) (5.36
2(1+mp)In(1+mp)’ ' where the powes,=dimH,—4, andL, is the number of

loops already under control. One can determine the effect of

6H;; on a physical quantity from order-of-magnitude esti-

cem1 (5.37 mates for the operatotd,, and general properties of the co-
BT ' efficientsb [l!(mya). While the former depend on the physi-

and, as before, the conditidn,=0 requirescg=r.. After cal process under study, the latter are process independent.
’ ’ S

substituting Eq(5.35 into Eq.(5.32 one reobtains the right- The dimension-five, tree-level coefficients have two im-

hand side of Eq(5.36. Appendix A shows that—uwith, and portant properties, which we believe are generic. First, at
¢ from Egs.(5.35 and (5.36—cg=1 can be maintairied for asymptotically largengya the tree-level coefficients either ap-
arbitrary mo.a. ' ' E proach a constant or fall as a power ofrif@a). An analysis

of higher-order Feynman diagraniSec. VIIl) shows that
tree-level patterns persist to all orders in perturbation theory.
Indeed, the asymptotic behavior is presumably a conse-
This section reexamines criteria for truncating a cutoffquence of the heavy-quark symmetries obeyed by all lattice
theory, with some emphasis on the errors left over after trunactions under consideration. Second, the coefficients always
cation. The analysis of the previous sections takes the scalirgpntain the recurring ingredients+inga, mya(2+mya),
dimension of the interaction as a guide. For massless quarkd IN1+mga) in a way that makes implausible any combi-
that is certainly correct. But the most appropriate organizahation that would blow up at an intermediate valuengfa.
tion may vary when the same cutoff theory is applied tolndeed, all evidence suggests that the functib(sya) are
different physical systems. Thus, conclusions about the agmaller than their low-order Taylor expansions, once
curacy of a massive-fermion action must be refined, afteMoa=1.
deciding whether the action is to be applied to heavy-light Let us now discuss the typical size of the operators in the
systems or to quarkonia. Hamiltonian. Table 1l gives ballpark estimates for the
After the couplings have been adjusted to some practicalimension-three, -four, and -five interactions for three sys-
accuracy, the Hamiltonian(possibly after a Foldy- tems: those in which all quarks are light, those with one

the conditionb=0 requires

VI. TRUNCATION CRITERIA REVISITED

Wouthuysen-Tani transformatipis heavy quark, and quarkonia. The row labelgdin Table II
o A . gives the nontrivial dynamical scales, to which artifacts
H :\if(qur YoAgt+ ¥- D)W+ SH 4; (6.1)  should be compared. In all-light and heavy-light systems, the

estimates start from naive dimensional analysis, but heavy-
the Coulomb potential appears if one transforms to a gaugguark bilinears with an off-diagonal Dirac matrices are
without A,=0. A lattice artifactéH,, remains, because one Agcp/Mg times smaller still. In quarkonia, the estimates are
cannot exactly incorporate infinitely many terms into Eg.those of Ref[12], with v denoting the typical velocity of the
1.3. heavy(antiquark in the bound state [~ ag(mg)].
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TABLE Ill. Estimates of the size of dimension-six bilinear in- TABLE IV. Estimates of the size of dimension-six four-fermion
teractions in systems with only light quarks, with one heavy quark,jnteractions in systems with only light quarks, with one heavy
and in quarkonia. For the actions considered here, the interactiorguark, and in quarkonia. The role of these interactions can only be

below the gap do not arise at tree level. treated consistently in concert with the gauge-field action. The in-
teractions above the line can then be considered redundant, while

Hp only light  heavy-light quarkonia  those below the gap do not arise at tree level.

W 3 3 3 4

Vyly-D,y-EJ¥ Agep Adep mau H, only light heavy-light quarkonia

V¥ (y-D)*¥ Adco Adeo/mg mgv*

¥ y,D 3 Adcp Adep/Mg mav* (yot?)? Adcp Adep mdv®

— . a2 3 3 36

V{y-D,i%-BW Adco Adeo/mg mgu® (Pyit?y) Adep Adep mau

iV yo3- (DB Adcp Abep/mg mv° (JTt2)2 T+ 3 3 36

v , T#y, Adep Adep mqu

W y-(DE)¥ Adco Adcomd mgv® #

qT_’)/o(DE*ED)\P A%CD A%CD m%U4 . . . .

iWy-(DXB+DXB)W Adco Abco/mg m3p® Once the dimension-five couplingg andcg have been

properly adjusted, lattice artifacts remain from dimension six
and higher. Table 11l lists bilinear operators that can appear

A conservative estimate of the artifact is then as follows: " the Hamiltonian. The conservative estimate of the absolute
‘errors caused by these operators is to multiply Table 11l by

Choose a system, multipl n, and compare t&,. The A
y ply by’ P 0 a’. When mpa>1, however, some of the contributions may

coefficientb(mya) is a number of order {or lesg, for any be, as before, a factor of hia) or 1/(mQa)2 smaller. But,

value of mpa, so its numerical value doesot affect the ; : g . " :
(conservativgconclusion. If, after suitable adjustment of the again, this subtlety is crucial only when quantities subleading

couplings, one findb~mga for mya<1, orb~ 1/(mya) for In t_lr_‘ﬁ hfeaV):c-qugrk QxFanstn ar? at‘t (ljs_su?r. ble IV |
mpa>1, the artifact might be even smaller. € four-fermion interactions, fisted in 1able 1V, are also

Consider the chromoelectric interaction as an example(.)f dimension six. To generalize the analysis of Sec. lll to

For the sake of argument, suppose that the rest iMgsand encompass .these operators, one must simultane_ously treat
the kinetic massvl,, and hencenoa and ¢, have been ad- dimension-six gauge-field interactiof@]. The result is that
justed nonperturbatively. i is not adjusted correctly, then (¥¥ot*#)? and (yt*%)* are redundanfé], even without

the (transformedl coefficientb.. of the chromoelectric term axis-interchange symmetry. The other four-fermion interac-
in the Hamiltonian does not vanish. Then, relative to thelions arise first at the one-loop level. _ _
correspondingE,, there are artifacts OO(AQCDa) for all- Let us summarize the main pomts of this section for
light, O(Aécoa/mq) for heavy-light, andO(mQavz) for  heavy-light spectroscopy with actidy+ Sg+ Sg . After 'Fhe
heavy-heavy. If insteads(m,a) is adjusted tace(0) in Eq. tree-level ad!ugtment_s of S_ec. VC hazve been applied, the
(5.34), the artifacts in all-light systems fall ©0(myA ocpa?). largest remaining lattice artifacts ac93(‘-310!\2QCD‘32) from the

With heavy quarks the estimates dependnage. If a is so one-loop maladjustment & + Sg andO(Agcpa®) from un-

tiny that mpa<1, thenbg~mga, and the chromoelectric adjusted dimension-six interactions. The mass dependence of
artifact is reduced toO(AéCDaZ) for heavy-light and to the artifacts is solely in the coefficientgm,a), which is a
O(m3a?v?) for heavy-heavy. But ifmga=1, it turns out number of order unity at any mass.

thatbg either remains constant or falls asra), depend-

ing on the mass dependence of the redundant coupling VIl. ELECTROWEAK PERTURBATIONS

The artifacts are then eith@(AéCDa/mQ) for heavy-light

40 2 for h h 1 i i This section extends the formalism of the previous sec-
anTh (mgav?) for e?vy— eavy, or ff.m.Qai Imes dsdr.rt].a etr. tions to the two- and four-quark operators of the electroweak
e appearance of Ia) in coefficients, in addition to Hamiltonian, which may be treated as first-order perturba-

the Aqcp/Mq in heavy-light dynamics, makes the error yono"+o OCD. The construction of the renormalizéat

analysis of hea\_/y-llght systems somewhgt delicate. Since th(‘fontinuum-limi’p operator is analogous to the construction of
1/(mga) behavior arises only imga>1, it leads only to

: o the renormalized trajectory. L& denote the continuum op-
errors that aresmaller than the usual discretization errors

. ; .~~~ > erator. Then
relative toE,. On the other hand, occasionally one is inter-

ested in effects that are subleading in the heavy-quark expan-

sion. For a given lattice action, such quantities may have a O= Zo({moa},gé) oo+2 cn({moa},gg)on , (7.0

larger relative error. For example, even with(0) adjusted n

correctly, the fine structure of the heavy-light spectrum, _ _

which is O(A2 co/Mg), suffers a relative error of order where the sum runs over aI!3 lattice operat@g with the
b ) ! .

(AQQDQ/mQ)/(AQCD/mQ)NAQCDa- . same quantum numbers &° Like the couplings in the
Similar comments apply to quarkonia. Though the chro-

momagnetic and chromoelectric interactions are of order

mQU4/mQU2~v_2 smaller than the spin-independent kinetic 8gy convention, the zeroth lattice operatop, has the same di-

energy, they |ntrodu4ce reLaUVe errors 0[11 Spm'd?pende%ension as the continuum-limit operatéx The role of the other

structure of ordemqu™/mqu”~1. A full O(v") analysis re- ~ C,0, s to remove terms suppress@ enhancegby apowerof a.

quires a few dimension-six and -seven interactions, whichrhe role ofZ,, is to convert to a preferred renormalization conven-

we consider in Appendix A. tion.
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action, the coefficientZ, and C, are functions of the rel-
evant couplings, all fermion massésya} and the gauge
couplingg3. Equation(7.1) is general, but we again consider
perturbative expansions iy,

Zo({moa},g9) = 2, 952! ({moal),
(7.2
Ca({moa},g) = 2, o5 Ch'({moa}),
and focus on tree level. Previous wdrk| applied to small

masses, but we treat the mass dependence
ZB)({mpa}) and Cl'({mya}) exactly. We also do not im-
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which corresponds t®, in Eq. (7.1). Recall thaty(x) is the
field appearing in the mass form of the action, Eg3). At
tree level the matrix elements are

(aP(&',p")| I a?(£,p))
=U(&',p )T UL & P)NA(P)NG(P') 8787,

CREHBINERLEN )
= ol EPTE(E P INA(P )N,(p) 81629,

(01319%(&,p)aP(¢",p"))

of =0ul(&,p )TUR(£P)Na(P)NG(p') 81 6%,

pose axis-interchange invariance in classifying the lattice op¢q®(£,p)q°(&’,p’)|319|0)

eratorsO,, .

The coefficient&Z, andC,, can be determined from low-
momentum matrix elements of ab,, analogously to Sec.
IV. At tree level it is enough to compute matrix elements
between quark and antiquark states. It is essential to impo

consistent normalization conditions. Appendix C derives

external-state rules for lattice perturbation theory. There on
finds that the contraction af(x) with a normalized fermion
state corresponds to a factay,(£&,p)M(p), whereu,, is a
normalized spinor on thiattice mass shell. The factor

) 12

where (for Sy w(p)=1+mya+ir.ip%a® A relativistic
theory has instead,¢(¢,p) Vmy/E, whereu,, andE comply
with the relativistic mass shell.

Consider the bilinear operatgf® that creates flavof
and annihilates flavog with spin couplingl’. At tree level
its matrix elements should be

(QP(&',p")| T ¥la?(£,p))

:U?_el(frap’)ru?el(gap) Vmamb/EaEéébfaag,
(@& ,p")| T ¥[aP(£,p))

= — (&P Toi(&,p")\m.my/ELE,8°16%,
(017 19|93(£,p)aP(£",p"))

=05,(&,p)TU(£,p)mam, /EE} 8 6%9,

(q®(&p)a°(¢',p")| T 19|0)
=W (&P)Tok(&',p')Vmamy /ELEf 82159,

whereE{") is the energy of flavof with momentunp”’ and
massm; . Note that the relativistic spinotg, andv . appear
on the right-hand side.

With the right-hand side of E¢7.4) as a target, we now
consider lattice operator®,. The simplest lattice bilinear
with the correct dimension and quantum numbers is

m(p) —costE

m(p)sinhE 73

N(p)=(

(7.9

I8 =g ()T Yo%), (7.5

=UR(EP)TuR( €, INA(P)No(p') 6269, (7.6

where NV;(p) is the normalization factor of flavaf, cf. Eq.

4@.3). Note that thdattice spinorsu,,; andv,; appear on the

right-hand side.

e Settingp=p’ =0, the matrix elements differ only because
of the factors M0). Thus ZpJr has the same zero-
momentum matrix elements as the targgt, in all four
channels, if thgre)normalization factor

Zr(mgra,Moga) = ut(0) ug(0) =exf 5(Mra+Miqa)].

(7.7
This is a tree-level result, but the mass dependence shown
here remains dominant to all orders, cf. Sec. VIII.

Further terms in the three-momentum expansion cannot
be matched without considering higher-dimension terms in
Eq. (7.1). At tree level one sees the differences between Egs.
(7.4 and (7.6) in the factors N#{m/E and spinors
Ui# Ue- Equation(7.2) can therefore be extended to higher
dimension by introducing an improved field. To first order in
pa consider

¥, (x)=eM1@1+ad,; y- D]y(x), (7.9
with flavor labels implied. Then
T 9=wTw(x) (7.9

is the target operator of interest, through first ordepa if
d, is adjusted properly. Comparing the bracket in E§8)
with those in Eqs(C25 and(C27), one finds

_ {(1+mea) 1
mea(2+mpa) 2Mja’

(7.10

1

identifying my=M,.°

For small mass one findd;<mya; the only O(a) im-
provement needed is the normalization face3t1¥2. At
large mass, however, the rotation of E@.8) becomes im-

The substitution of the kinetic mad4, for the rest mas$/, is
done so that the expression remains valid under a nonrelativistic
interpretation explained in Sec. IX.
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portant. Analogously to the Hamiltonian coefficients dis-throughO(pa), whereM,, M,, and M are the tree-level
cussed in Sec. VI, whemya>1, one hasl;~1/(2m,). Con-  masses; but

sequently, the contribution ofd;y-D is essential for

computing the Ih, correction to the static limit of matrix 1 27 Cel[1+(1+mgy)?] 71
elements of7-. Similarly, h|gher-_d|men5|on generqhzaﬂons Mg  mo(2+my) 2(1+mp)? - (714
of Eq. (7.8) are needed to obtain rih/é and corrections of
higher order in Ih, .

; . ) . The Ward identity asserts that these tree-level masses all
The improved fieldV",(x) in Eq. (7.8) coincides, through  ranormalize in a coherent way. But although the “forward-

O(p), with the one denoted by in Sec. V. Combining EQS. gcattering” matrix elements in E7.12) are correctassum-
(_5.9) _and (5.18, the Foldy-Wouthuysen-Tani transformed ing M,=Mg=m,), the “annihilation” matrix elements in
field is Eq. (7.13 are not(unlessm,a<1). We conclude, therefore,
MJ2 thatvﬁ is not useful for determining the decay constant of a
W (x)=exp(ag,y-D)e (), (7.1) massive vector meson.

. . ) . Reference] 7] suggests using a (four-dimensional ro-
where ¢, parametrizes the solution of the tuning conditions.;,aq curren(ta'[’ 1 sugg g al 3

This expression isnumerically cumbersome, but one may
expand consistently the exponentials an This exercise fg _ T 1A 1 g
identifies&; with d,. Indeed, solving;=1 for ¢, yields the Irror= ¥ (11 2aD)I'(1 = 2aD) §3(x). (7.19

right-hand side of Eq(7.10), after replacing the rest mass N )
M, with the kinetic massV, (see footnote 9 To ascertain ifJ;°,,, matches the target continuum operator,

The special role off’ should not be too surprising, be- ON€ Must evaluate matrix elements, as above. The timelike
cause it possesses two important properties. First, it satisfid&nslations |rD?ggreatIy change the mass dependence. One
canonical anticommutation relations and is thus properlyfinds thatZpJr'r has correctly normalized matrix ele-
normalized. Second its dynamics are given by the Diragnents only if
Hamiltonian H=W¥(my+ y,Aq+y-D)¥—at least at tree

level and up toO(p?). Therefore, any operator built out of 7 . 4Zr(mgra,Moga)
the transformed field yields the desired matrix elements, also rrof Mor@ Mog@) = (2+sinhM yza)(2+sinhiM y4a) ’
at tree level and up t®(p?). (7.1

Let us conclude this section with some comments on two
other Anséze for the currents. A formal argument based onwhereZ;- is the normalization factor of the unrotated bilin-
the Ward identity suggests that a conserved culféstes-  ear, Eq.(7.7). Moreover, whemmga«1 the rotation of Eq.
pecially suited to the determination of form factors of a vec-(7.15 must be supplementedaEq.(7.8), with the samed,
tor current or the decay amplitude of a vector meson. Buts in Eq.(7.10. Thus, mass-dependent improvement of Eq.
although the Ward identity implies a certain universality in(7.15 is analogous to improvement of E¢7.5), but the
radiative corrections, it doesot imply any special mass de- latter is simpler.
pendence at tre@r any other level. In summary, the mass dependence of electroweak opera-
With standard Feynman rules and Appendix C, straighttors is tractable, if one proceeds as follows. First, start with a
forward algebra yields the tree-level on-shell matrix ele-simple operatoO, and expand its on-shell elements in ex-
ments. ToO(p) the (conserveyl gauge current/,c;‘ has the ternal, spatial momenta small in lattice units. As usual, there
matrix elements is no need to expand impa. Second, add additional terms
C,0, to correct the momentum dependence of the matrix
(q(&,p")|VE|a(g,p))= 8¢, elements. At least to tree level this step can be accomplished
by field rotations, as in Eqg7.8) and (A17). Finally, nor-
b/ +p, malizeOy+ 3 ,C,0, to obtain the fully renormalized opera-
(q(&,p)|VE|a(&,p))y=—is'¢ o7 tor O in the desired renormalization scheme. For example,
2M; through O(pa) the renormalized bilinear7i? is given by
Egs.(7.9), (7.8, and(7.10.

o p.’ —pi
FU(E 00 U(£,0)
5 VIIl. BEYOND TREE LEVEL
(7.12
In the previous sections, theya dependence of the cou-
_ _ iy-(p'+p) plings in the action is derived at tree level. This section con-
(0[V§la(&.pyale’.p"))y=v(¢',0) oMo U(£0), siders what happens beyond tree level.
G ) . -
(7.13 In perturbation theory the expressions for the masses in
. troduced previously become power seriesgif. For ex-
G e I\ T siniM, a ample
(O|VPlacgpac¢’,p))=v(¢&',0)yu(,0) “Mea '

For the Noether current the terms proportionatgo(implicitly
10Both “Noether” and “gauge” currents are conserved; they dif- in 1/M g) andcg (in 1/Mg) in Egs. (7.12 and (7.13 would not
fer by o, terms. appear.
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W a Wa v, b A= ry,cogp+ 3k)a—irg sin(p+3k);a

—3Celogcosskja sinkea+ 3cglojcos; kia sink;a,
= —at*A}) = agi X, (8.4

wherep andk are the incoming fermion and gluon momenta,
respectively. The expression fxr;k; is not needed, except to
note that its mass dependence is qualitatively the same as
FIG. 1. Notation for one- and two-gluon vertices. AE?]-
A formal way of going to the mass shell is to put
% po=IiE vy, with E from Eq. (4.4). The 7y, in the analytic
E(0)=M,= |\/|[10]+ > gS'M[l'] (8.1 continuation is not rigorous when applied under an integral,
=1 but themya dependence comes out right. The temporal ver-
tex Al is proportional toe'v'[lo]a= 1+ mga. The spatial ver-
tex A% is proportional toz, which, when it is tuned so that
2E\ -1 o M;=M,, sati;fieer§~(1+ moa)/Mla_for large ‘mass.
(F) EMzzM[zo]+2 gS'M['], (8.2) Similar b(_ehawor holds for q'uark—multlgluo_n vertices. Fi-
p; =1 nally, the inverse propagator is also proportional teniya,
for p close to the mass shell.
where M [10] and M [20] are given by Eqs(4.8) and (4.9), re- Consider any process with an external fermion line. Loop
spectively. After calculating the self-energy ltdoops, one diagrams can be built up from the tree diagram by adding
can extract the coefficients!['! as functions ofm,a. The  more gluons. Each additional vertex on the external line re-
requiremenM ;=M ,=m, subsequently yields the perturba- quires an additional fermion propagator. The dominant mass
tive power series for the couplingg and /. (Based on the dependence of the propagator-and-vertex combination is
arguments of Secs. lll and V, the Wilson term’s couplipg  (1+mg)/(1+mg) or /(1+mg), and thus cancels always.
should be redundant to all orders @3.) In the same vein, For example, all diagrams in the self-energy are propor-
the on-shell fermion-gluon vertex function tdoops yields tional to 1+mga. After summing the geometric series and
cll(mya) andcfl(mya), and electroweak matrix elements integrating ovemp, one finds
to | loops yieldZl}(mya) andd"(mya).

and

p=0

A complete derivation of one-loop corrections is beyond eVi2= eM[l()]a[lJrggM Himea)+---1, (8.9
the scope of this paper. It is easy, however, to assess two
gualitative features: the mass dependence of loop diagrams Zz’l(moa)=e'\"la[1—ggz[2”(moa)+-~], (8.6
(Sec. VIII A) and the expected size of corrections from tad-
pole diagramgSec. VI B). where M [M(mga) and z[(mya) depend mildly on the

mass, varying smoothly from the value obtained for massless
fermions to the value in the static formulation.
The same happens to the fermion-gluon vertex. The

~ This subsection shows that the mass dependence of logfauge-coupling renormalization factor is defined through the
diagrams is benign. Although we focus on the specific actiofermion-gluon vertex via

S=5,+ Sg+ Sk, the conclusions hold for any action with

the Wilson time derivative and arbitrary spatial interactions. _ mg

Actions with next-nearest-neighbor interactions in time are ZGN(P) Uil P)A (P P) Ui P)M(P) = E Urel(P) ¥uUrel(P)
problematic starting at tree levp], so they are not consid- (8.7
ered here.

Let us first consider vacuum polarization. At one loop itiswhere A (p’,p) is the full vertex function, including leg
easy to see that the lattice-regulated Feynman integrals faontributions'? In perturbation theory one usually organizes
vacuum polarization are smooth functions of the fermionthe calculation by treating the legs and the proper vertex
mass. Moreover, for large fermion mass the integrals vanisbeparately. By gauge invariance
as (mya) % rigorously so, because the momentum-

A. Mass dependence of loop diagrams

dependent terms in the fermion propagator are bounded. The Z, ZiF
behavior is the same for a closed fermion loop with any Zg:Z—gfz: -—, (8.9
3 Zz\/Z—s

number of gluons attached. Hence, internal heavy-fermion

loops decouple precisely as expecte(_j. - whereZ; (Z,) and Z; (Z,¢) are the gluon(fermion) wave
The self-energy and vertex corrections are less trivial, beg,notion” and proper vertex renormalization factors. The

cause the external momenta are set on shell. Figure 1 Sho"g?‘rong mass dependencezfmust, therefore, cancel against

the one- and two-gluon vertices. For the action ;
, Z,¢. (The residual mass dependenceZef/Z, should be the
S=S,+ Sg+ Sg (with the four-leaf clover forSg), i ( P %/Z,

A= yocod p+ Sk)ga—i sin(p+Lk)oa
12At tree level one verifieg ["1=1 from A, and also fromA [°]
+3Celogjcosskoa sink;a, (8.3 if my=Ms.
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same asZ;/Z; to satisfy the expectations of decoupling. sorbed into the couplings, and into renormalization factors
Indeed, at tree level the temporal vertex provides theZ,.When a numerical value fary is needed, for example in
asymptotic factor ¥mgya, and, by the general argument, the a Monte Carlo calculation, it should be taken from the Monte
full proper vertex has the santdominanj mass behavior to Carlo itself.
all orders. Hence, With this prescription the hopping-parameter formSyf
remains as in Eq1.6), but withU ,—U ,/ug and
Z,¢(mea) =M 1-ggZi(mea) +--1, (8.9
where Z[H(mya) again depends only mildly on the mass. Ks,t— Ks,t = UoKs ¢ - (8.12
With the spatial vertexi [) the factor compensates for the
missing factor of #mga to ensure that M, appears, so the
1+mpa counting is the same.

For electroweak currents and four-quark operators, the ~ 1
analysis of the mass dependence is similar. Again, loop dia- Tepy=Ug Ty, 8.13
grams have the same leading mass dependence as tree dia-
grams for the same process. For example, the bilidégr instead ofT.,, and mass
defined in Eq(7.5), has renormalization constant

The mass form of; is given by Eqgs(2.3) but with differ-
ence operators defined with

- 1
Zp(mea,mga) = M@+ Mg/ 1 + g27{H(myca, mpga) Mod= o~ [1+rsd(d—1)]
Lo (8.10

The mass dependence of the loop corrections
ZP](mofa,moga) smoothly connects massless and static re-
sults. Such behavior is borne out in Sec. X's nonperturbativénstead ofm,. Finally, an overall factor ofi, multiplies each
check of the local vector current, for whidh=y,. term in the action.

The considerations of this subsection argue that the large- The clover-leaf construction used to define the chromo-
mass limit of actions described by Ed..3) is well behaved ~magnetic and chromoelectric fields contains products of four
in perturbation theory. More generally, the physical masse§ matrices. If one replaces the gauge fieRisind E with
and, hence, the couplings could depend on the gauge cotfdpole-improved clovers, the interactioSg and Sz are
pling in anonperturbativevay. But because the origin of the given by Eqs(1.7) and(1.8), respectively, but with
gauge-coupling dependence is the region of momentum
space near the cutoff, it seems unlikely that nonperturbative Cg=U3Cg, Cg=uSCe, (8.1
contributions would overwhelm the perturbative contribu-
tion, at least once the cutoff is large enough. Should perturinstead ofcg andcg, and, instead ofx,. The fourth factor
bation theory prove inadequate, however, a nonperturbativef u, corresponds to the overall factor mentioned above.
renormalization group could, in principle, substitute for per-  After these rearrangements one can immediately general-
turbative calculation&® Nevertheless, it seems implausible ize the expressions in Secs. IV and V to the mean-field level.
that nonperturbative effects are more worrisome at largghey remain the same as before, but with—mg, cg—Cg,
mass than at small. Thus, the main conclusion, that the largemnd cc—Cr. Consequently, the couplings Cg, andCTg(0)
mass behavior of interacting fermions is benign, is probablyshould be adjusted to the right-hand sides of H§s32—

Mpa 1
=u—0+[1+r3§(d—1)](u0 _1) (814)

valid nonperturbatively. (5.34), but with my— M, . The resulting conditions represent
a set of mean-field-theory predictionsgg+0, given a non-
B. Mean field theory perturbative input fouy. One-loop calculations witimg#0,
.cg#0, andcg#0 will test and correct mean-field theory es-

To estimate the one-loop corrections, recall that the doml;[. ¢
nant contributions comén Feynman gaugefrom tadpole Imates.

diagrams, which originate from higher-order terms in the ex- hAvtvncgk:r?n%tﬁiﬁfsiblenlgtt:ger SpraCIQingtinm;\dhas N
pansion of the link matri}) , =1+ oA, + 1g2A2+.... Itis >0 at, S mean-field reorganization and a se

possible to make this observation more system2ial. sible choice of expansion parameter, the bare perturbative

) : series converges quickly in many cases. Calculati@Bsin
Wherever the gauge field appears, substitute one-loop perturbation theory of Feynman diagrams needed to

U, (x)—Up[U ,(x)/Ug] @.11) determine the['l(mya) show a smooth transition from the
s oLY u 0ds AR
massless to the static limit$.One therefore expects the es-

whereu, is a gauge-invariant average of the link matrices.sential concepts of Ref23] to apply to thec, and to the
The substitution should be understood in the followingcoefficients in Eq.(7.1) too. Indeed, in the one case for
sense: The second factdd [/ug] produces perturbative se- which a nonperturbative check is unambiguous, the normal-
ries with small coefficients. The first factog, which has a ization of the vector current, there is excellent agreement
nasty tadpole-dominated perturbative series, should be alwith mean-field theory, cf. Fig. 4 in Sec. X.

3For example, to tuné nonperturbatively, compute the energy of “For tadpole and scale-choice improvem¢®8g] of the static
a meson and impodd ;=M. limit and of nonrelativistic QCD, see Refi6,27].
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IX. THE NONRELATIVISTIC LIMIT A
E
It is illuminating to adapt the methods of Sec. V to the — —_— Y — o2
nonrelativistic and static limits. Rather than adjusting the A M vingt i :

couplings to obtain the Dirac Hamiltonian, one could instead E— —i MM
aim for the nonrelativistic Pauli Hamiltoniagand generali-
zations theregf An advantage of this avenue is that it pro-
vides a useful physical picture even when the couplings are NS VS AP 1P XD 10D
maladjusted, in particular wheti=1. Many Monte Carlo o+ - - o+ e pon
studies have used actions wigkr1, and it would be helpful

to have a framework for interpreting their data in the heavy-
guark regime. Indeed, the analysis of this section shows that
{=1is acceptable for nonrelativistic fermions. Even the Wil-
son action(somewhat crudelyapproximates the properties
of nonrelativistic or heavy-quark effective theory, provided
mpa is adjusted correctly. Similarly, the Sheikholeslami-

Wohlert action is a better approximation. . _ .
The Hamiltonian of the actionSy+Sgz+Se can be charmonium, an@ ~0.1 for bottomonium). Further applica-

brought to the nonrelativistic Pauli form with the Foldy- tion of the velocity counting in Ref.12] to Eq.(9.1) shows

. e 2 4
Wouthuysen-Tani transformation. Imagine transforming théhat the hyperfine splittings ar-B/Mg~M 5v"/Mpg, and

i ; it 2 3 4yng 2
y-D anda-E terms away completely. Afterwards, the trans- t€ Spin-orbit splittings argy-D,y-EJ/Mg~M30"/M .
formed Hamiltonian reads The preceding paragraph merely reviews the well-known

argument that the rest mass of a nonrelativistic particle de-
~ 2 D2 i3.B [y-D,y-E]\ ~ couples from the interesting dynamics. In our formalism the
H' =W M1+ voAp— oM. oM. Y0 T am? ) reasoning suggests the following strategy: forget abdyt
2 B E 9.1) and adjust the bare mass so that kirgetic massM, takes
' the physical value. Meanwhile, choose the couplihdpy
whereM, M,, andMg are as in Secs. IV and V. The new co_nvenience. The obvious_example is to tédkel, as in the
massM ¢ reduces tMl , with suitable mass dependencecef ~ Wilson and Sheikholeslami-Wohlert actions. _
(see Appendix A or asmya—0. The specific expression is Since th_e Wilson an(_j _Shel!(holeslam|—W9hlert actions
not needed here. The Pauli form of E§.1) has no coupling  fepresent viable nonrelat|V|st|c. f!eld theones_, it makes sense
between the uppeparticle and lower(antiparticlé compo- {0 compare them to the expllc[tly nonrglaﬂwsﬂc theories.
nents of ¥, as in the explicitly nonrelativistic formulations The (tree-leve] masses for the Wilson action are plotted as a
[11,12). Here, however, Eq9.1) is derived within the lattice function of mga in Fig. 3. Assumingmoa is cho§eln softlhat
theory, rather than being an Ansatz for an effective latticeM2=Mq, the other masses satisM,<mq, Mg'<m, ",
theory. andM ¢ <mg . 'I'.heAS|mpI§st2f9rm of nonrelatlylst|c QCD
Let us discuss the physics of each term in By1). The  [11] has HamiltoniarH yz=¥D W/(2my). Thus, in our no-
first three are the rest mass, Coulomb potential, and kinetigtion, Hyr has M;=0 and Mg"=Mg"=0. Thus, the
energy?® of the fermion. TheX-B term, as one recalls from Hamiltonians of the Wilson and simplest nonrelativistic

atomic physics, produces the hyperfine splitting. The lastheories make the same errors qualitatively. For example, in
term can be rewritten both one expects the fine and hyperfine splittings to be too

2M,

FIG. 2. Quarkonium spectrum and the influence of the masses
M1, M,, Mg, andMg . (A similar picture applies to the heavy-light
spectrum, except the overall gapNs, instead of M, and orbital

and radial excitations are set by, instead ofM 22

[y-D,y-E]=i%-(DXE—EXD)+(D-E—E.D).

923 W7

The two parentheses give tlipon-Abelian spin-orbit and | o . ]
Darwin interactions, respectively. 15} .

The Pauli Hamiltonian is quantitatively useful only if the 2 ]
fermion is nonrelativistic. Given nonrelativistic velocities, y
however, Eq(9.1) remains applicable even when the various | .
masses are unequal. Figure 2 is a sketch of the quarkonium ’ ]
spectrum, illustrating how the masses affect the spectrum. .
The interesting gross feature of the spectrum is not the over- 5| ]
all mass gap—close toM;—but the pattern of radial and 7 .
orbital excitations, e.gm,s—m;g Or m;p—m;s. These split- | LS ]
tings are dictated by the kinetic mas4,. Following the =T T ‘ o T
analysis of Ref[12] they are of ordeM,v“, wherev is the 0 2 4 6 8 10
typical velocity of a heavy quark in quarkoniura.~0.3 for mg

FIG. 3. The (tree-leve] masses for Wilson fermiong/=1,
Because of this physical interpretation the quaritity, defined  r,=1). By happenstanchl, is always within 15% ofn,, which is
in Eq. (4.7), is called the kinetic mass. a result of a conspiracy between tigeD and Wilson terms.
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small. Similarly, for the Sheikholeslami-Wohlert action one (7.8), because it guarantees a smooth approach to the static
finds Mg=M,, and thus good hyperfine splittings, but limit.*8
M g1>m;1, so the splittings betweeyg; states ought to be First, consider the mass spectrum, in particular the hyper-
too large. To obtain the correct spin-orbit splittings, onefine splitting in heavy-light systems. By heavy-quark spin
needs the mass dependencegf see Appendix A. symmetry the vector-pseudoscalar mass differange mp

A parallel set of remarks applies to heavy-light systemsiS expected to be proportional tomé . Obviously the lead-
The Hamiltonian of the lattice theory satisfies the usualNd term in the sunm, +mp is proportional tomg, so the
heavy-quark symmetries as,—c, no matter whaM,, Mg, combinationmy—m5 should be nearly independent g, .

: 2_ 2
andM¢ are. On the other hand, the lattice theory possessdyumerical work[28,29 found, however, thamy—mp de-
the right® 1/mq corrections only ifM,=Mg=mg,. A com- creases for increasingy, with lattice spacing a held fixed.

putation with the Wilson action anth,=M, obtains spin These analyses taka, andmg from the rest mass. From

averaged featureus correctly, but underestimates the chr§—ec' IX the rest mgle of the quark governs the rest mass
. . : of the mesons, while the chromomagnetic mislss governs
magnetic Ih, corrections. Compared to corrections from

L . the hyperfine splitting. The computed lattice quantity, there-
the kinetic energy, the.spm dependent effgcts are thought. re, is proportional toM ;/M g, which decreases for increas-
be small[17], so again the most essential adjustment i

> , ) X _ing quark mass, see Fig. 3. Givé,, Mg is not as large
Mz=mg. A better computation with the Sheikholeslami- it the Sheikholeslami-Wohlert action as with the Wilson

Wohlert action andng=M,=Mg obtains aft® 1/mg fea-  action, Numerical data witbg =1 show behaviof29] quali-
tures correctly. _ ~ tatively similar tocg=0.

_ Desp|te_ the similarity betvyeen previous no_nrelat|v_|st|c To improve the determination afi,—mp one should tune
field theories[8-12 and the view adopted in this section, to the kinetic mass instead of the rest mass and use the mean-
there are significant technical differences. The four-field or one-loop estimate ofz. The chosen value ofg
component approach explicitly includes the termscould be tested in quarkonia. Then in heavy-light systems
moy(X) ¥(x) and terms that couple upper and lower compo-one could verify two predictions of heavy-quark symmetry,
nents, such ag/(x)y-Dy(x) and ¢(X)a-Ey(x). The pro- as applied to the lattice theory: a falling /Mg behavior
gram of Lepageet al, [12] omits these interactions in prac- when using the mesons’ rest masses, and avlg@M g be-
tice, though perhaps not in principle. There are advantages teavior when using the mesons’ kinetic masses.

leaving out the Dirac block-off-diagonal interactions. Ferm-  Next, consider the improvement and normalization of
ion propagators are the solution of (ane-sweep initial- multiquark operators from Sec. VII. The normalization of the
value problem, whereas they are otherwise the solution of ¥ector current can be checked nonperturbatively. The ferm-
boundary-value problem, solvable only by iteration; with ion number

; : : : _ — D212yl vl ]
fewer interactions, perturpatlon theory is ea$&f]. On the No(H) = (H| 26,2 ¢h|H>=< H2 ki Zyilg Yo @yy)
other hand, these interactions are necessary toaake (by h eV Yovx (D ®])

brute force without the scourge of power-law divergences, (10.1)

or to reach into the semirelativistic regime. . )
g counts the number di-flavored fermions ifH). If |[H) has

one and only oné in it, the conditionN,=1 definesthe
factor 2«,Zy, [19]. Figure 4 compares this nonperturbative
definition of 2«Z,, with the mean-field-improved, tree-level

With a few examples this section tests the results of thderturbative approximation. The symbols are from Monte
previous sections with Monte Carlo data. All data were gen-Carlo calculation$30] of Eq. (10.1), with |H) a meson with
erated with the axis-interchange symmetric Wilson ora spectator antiquark of different flavor, and the solid curve
Sheikholeslami-Wohlert actions, so asa increases, we IS the mean-field improved, tree-level approximation
rely on the nonrelativistic interpretation of Sec. IX. The tests2«(1+Mgy). Figure 4 exhibits several interesting features.
verify the most important lessons. The bare mass should bEhe solid curve accurately tracks the dominant mass depen-
adjusted until the kinetic mad4.,, defined in Eq(4.7), takes ~ dence fromm,=0 to my=c. From Eq.(8.10 one expects a
the desired value. In particular, in an extrapolation to vanishsubdominant mass dependence from loop corrections
ing lattice spacing, one ought to hold the kinetic mass Z{'(Mgna). Indeed, neamy=0 the massless one-loop cor-
fixed. On the other hand, the dynamically irrelevant restection[31,32 accounts quantitatively for the discrepancy,
mass may deviate frorm,. For matrix elements, it is also and neamy=< the discrepancy becomes smaller, in accord
important to use the improved fielH, of Eq.(7.8) or (A17). ~ With a Ward identity, which requires &Z, =1 at infinite
The factoreM122 is more important than the bracket in Eq. mass[33]. Neglecting the dominant mass dependence, as in

the dashed curve, is obviously completely wrong ifg=1.
Finally, consider the decay constant of a heavy-light pseu-

16 _ o ) ) doscalar_meson, computed with the local axial current
Many phenomenological applications require matrix elements oﬁu%(x)zwu(x))/#%wb(x)_ Figure 5 shows Monte Carlo

operators of the electroweak Hamiltonian. These operators mu%gta[34,3ﬂ at 8=5.7 (for which al~1 Ge\) for
also be constructed to the appropriate order ingl/ see Sec. VII.
In particular, to first order in big the coefficientd; must be chosen
according to Eq(7.10.
"This can be done nonperturbatively with a meson instead of a ®Neglecting the bracket introduces ony(mgpa?) lattice arti-
quark state. facts atmpa<1, butO(p/m;) at mpa=1.

X. NUMERICAL TESTS AND APPLICATIONS
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FIG. 4. The charge normalization factor k2, vs FIG. 5. ¢p=Vmpfp vs Ling. Squares represent results from the
(ke— k) (ko—3k/4)=(1—8K)/(1—6K) =M/ (1+ M), with conventional zero-mass normalization, plotted verst¥s; 1/Circles

Up=1/8k.. The symbols are Monte Carlo determinations with fepresent the same results with the correct normalization, plotted
r<={=1 andcg=cg=c. The solid square is the exact result for Versus 1. The points form;1>0 are obtained with the Wilson
«x=0. The solid curve is the mean-field approximation to &q7), ~ action[34]. The statim *=0) point is from Ref[35]. The curves
2kZy=1—-6%. The dashed curve is a mean-field ansatz ®hich  guide the eye, and the approximate location of the phy&iGaidD
(foolishly) neglects the mass dependence. mesons is shown.

=2(0|Z4234 P 0y = mof , 10. valid at any mgss—large or small. The action starts Wi'Fh a
P, =V20[Z3' 3,5 P.0) Pleve, (102 (o of interactions that encompasses those of both light-
fermion actiong13,6] and heavy-fermion actionsl0—12.

The couplings of such a general action are then tuned in

ately chosen a largish lattice spacing to enhance lattice artpuccessive approximations to the renormalized trajectory. In

facts, and thus test our control over them. We analyze thgpplying renormalization-group techniques to analyze and

data two different ways. The lower set of points takes thereduce Cutoff effects we do not, however, expand in either
q@ Or Agcp/My -

meson mass from the rest mass and neglects the Ycto . .
78— eM1v92 iy Eq. (7.8). As suggested by the curve, the Although there are several methods for tuning the action
A T ’ (for example, Refs.[38,39), our analysis is based on

neglectful analysis would produce a locus of points that apSymanzik-Iike on-shell improvement criteria. This entails
proaches zero in the static limit. The upper set of points USCthe computati(;n of on-shell correlation functioﬁs or, equiva-
the normalization factor, and—just as important—it dEﬁneﬁently, of the Hamiltonian. Enforcing continuum-limit
L?ﬁei?cesmogsgaézut:]erOSUgﬂoiv;nﬁg&'zﬂii;p&?ﬁ'Ezgzrrhézttshsehavior—for example the relativistic mass shell—yields
. ; . .. ~.conditions on couplings of higher-dimension interactions. In
are, if the Wilson-action data are to approach the static l'm'bractice, we here compute on-shell quantities(tadpole-

smoothly. ; .
. L : . : improved perturbation theory.
ugntr']rgg?;taer]tinaﬁl'C?;'OtEeOLZaplo_t ILIJZEikFIe%e?:t:;S/;Oth?oT- An examination of the lattice theory’s Hamiltonian, de-
p P q- VY=g Y rived from the transfer matrix, is especially illuminating. It

Lhre Sl?hpgéﬁriﬁgr;g ar1rclastec f;}?g;g{%ﬁ S:#(;Caeigtr?gcgg]ﬁg ti@’hows that it is unnecessary to improve Wilson’s discretiza-
gy, ghetic 1 lon, : flon of the time derivative. Instead higher-dimension interac-

:gf'g!t%rgi?se%lérfgiﬂ' Lhiilraggctﬁntreogrzas t?]'éegﬁ]r%r_]a' tions can be built from fields on orfer, in some cases, two
gs- dy req Mg, =mg, adjacenttime slices. Thus, our class of improved lattice ac-

momagnetic contribution requires tunids=mg, and the tions automatically has an easy-to-construct transfer matrix.

logstll Iakt)tlc?z cgr(;eg fr? dUI(r7ei(; C:ﬁr?ﬁ:g)g’ir?'\:ggi;?;ta?gm"rhe actions, consequently, all automatically satisfy heavy-
pactly by £as.(7. o 9 guark symmetries in the limit of large mass.

needed to obtain the correct slof#6] The Hamiltonian is a useful tool for examining lattice
artifacts. A term of dimensios+4 factorizes as

wherev, is the meson’s four velocity(The vacuum and
one-meson states are normalized to uhiye have deliber-

Xl. CONCLUSIONS

This paperand conference reporf87,18,34 anticipating SHa=2a’b(mga,g*)H, 11y

it) provides the foundations of a theory of lattice fermions, ]
with dependence on the theory’s relevant couplimga and

g2 in the coefficientb. From this expression it is plain how
19 . the artifacts behave as the mass increases: the absolute error
In the notation of sect. &y=2, andZx=2, ,.. induced by Eq(11.1) is (SH )~ (pa)p, wherep is the typi-
20Ref.[34] provides hopping parameters and rest masses only, bugal three-momentum of the process. At small mass it is stan-
the mean-field approximation is adequate for illustrative purposesdard that the associated coefficient is a benign numerical
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factor b(0). At large mass the lattice action’s heavy-quark TABLE V. Estimates of the size of the dimension-seven inter-

symmetry implies that it is #&generally different numerical actions that arise in designing an action for quarkonia with an ac-
.. . 4 . .

factorb(e). Our explicit results at tree level and our analysisCuracy ofmgu”, [There are many other interactions needed to en-

of higher orders show th&t(m,a) is a smooth, gentle func- sureO((Aqgcpa)?) accuracy in all-light and heavy-light systerhs.

tion connecting the two extremes. In a nutshell, therefore, th

Only light Heavy-light Quarkonia

characteristic measures of cutoff artifacts Agg-pa andpa, "
but nevermga. ' . V(D?2w Adep Abep mév*
In general our actions have two hopping parameters. ThewD ¥ Adeo Adep mév*

it is possible to maintain equality between the rest njass
ergy at zero momentum, E¢.6)] and the kinetic masfsn-
ertial response, Eq4.7)]. In nonrelativistic systems, how- duark. Even for a perfect algorithm the savings in computer
ever, there is a noteworthy simplification. Embracing thetime is, therefore, a factor of'

philosophy of the stati¢8] or nonrelativistic[10,11] theo-

ries, one can ignore the rest mass and, hence, forgo one of ACKNOWLEDGMENTS
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istic one. In particular, the hopping parameter must be adta Eichten, Jim Labrenz, Martin Ischer, Maarten Golter-
justed so that thkineticmass agrees with the physical mass.man, and Jim Simone. A.X.K. would like to thank the Fer-
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computationally cheaper to use a two-component formalisnUniversities Research Association, Inc., under Contract No.
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to trace the mass dependence from the static limit down to,
say, the strange quark. One example is Fig. 5, which, with APPENDIX A: QUARKONIUM TO O(v?)
reliable calculations, should indicate how and where the , ) ) ,
heavy-quark expansion deteriorates. ' This appendlx ex.tends the analygls of the main text to
The results of this paper can be extended in several waydcO'Porate interactions that contribute in quarkonium
The couplings have been computed at tree level with meant—thUQho(? ). Naively, th'f V\.'OUId entail (_:Iose _scrutmy of
field improvement. One-loop calculations are desirable, an Il interactions througlO(p’), i.e., up to dimension seven.

better still would be a nonperturbative determination, per—orc dimension-seven bilinear interactions are listed in
. P o » Pelraple V, with their magnitude in quarkonium estimated by
haps in a mass-dependent generalization of Rf. Once

: , . the velocity-counting rules of Reff12]. Together with Table
one is confident thaD(a) artifacts are under control, one y g ef12]. Tog

; ; . o , Ill, one sees that not all dimension-six and -seven interac-
can extend thze gnalyss to dimension-six interactions. Th@ons are necessary ©(v?); this Appendix considers only
tree-level,O(a“) improvement should be_ mgnageable; be-the entries that are.
yond tree level the bothersome four-fermion interactions en- ope must consider the dimension-six interaction
ter the fray.

One would like to use the actions presented here in Monte —
Carlo calculations of QCD. If one uses th&v4)-improved Sso= CSO"S? ¥nvol 7D,y El¢n, (A1)
action to compute the spectrum of charmonium and bottomo-
nium, then, without more tuning, one could calculate prop-with couplingc,,, and the dimension-six and -seven interac-
erties ofD andB mesons, including the electroweak matrix tions
elements needed to determine theﬁ;nknown elements of the
Cabibbo-Kobayashi-Maskawa matfixNote that for these _ - A1 (3)71A(3)
matrix elements, as well as for the quark mass in M® Ss 2KS}n: Ynl Capy- D= 21 Ca ATIA T,
scheme, a small lattice spacing is helpful to reduce perturba- (A2)
tive corrections. Once the lattice spacing is small enough so ) . ) .
that mga=<1, our formulation is especially advantageous.With couplings c,p and c, . Further dimension-six and
The two-component nonrelativistic theory breaks down asSeven interactions contribute @(v") or higher[12]. We
moa gets smallef11], yet the old small-mass theory would discuss the adjustment of,in Eq. (A1) in Sec. A 1, and the
have leading lattice artifacts of ordermga and (noa)?. ~ adjustment o, andcy, in Eq. (A2) in Sec. A 2.
Our improved action, on the other hand, remains viable for The d(lss“;cretlzatlon of the covarant differenfeand La-
any mass, and its cutoff effects are small, of ordgkgcpa  PlacianA™ also must be improved, to remotey; DV and -
and(AQCDa)z- To obtain comparable accuracy through brute‘I’D ¥, respectively. These interactions break rotational in-
force in the old theory, one would have to reduce the lattice/ariance, and we treat them in Sec. A 2.
spacing by a factor omg/Aqcp—about five for the charm

1. Chromoelectric interactions to O(v*%)

It is easiest to treat the “spin-orbit” interactidd,, in the
2lFor relevant reviews, see Refé1,21]. Hamiltonian formalism of Sec. V. The couplirg, can only
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appear in a dimension-six term implied by the ellipsis in Eq. P'E \T¥
(5.16). The spin-orbit Hamiltonian is My=— —2—2) 1#] (A10)
R IPTIP; ) o
Hso= azbso( mea) Ve[ v-D,y-E]V. (A3) and
Under the two-parameter Foldy-Wouthuysen-Tani transfor- 4
mation of Eq.(5.23, we_t9E _ 3 (ALD)
4 4 9p! aM3’

ble=bso— 3 &5+ beér+biée—2maaboéiée.  (Ad) p=0

With b, it is possible to give an invariant involvinigg : The relativistic mass shell satisfidd,=M,=M,, and a

nonrelativistic mass shell with leading relativistic correction

Be= b§—4mqab0b1bE— 8(mqabo)2bso sansﬂesM[é) M,. In both cases rotational invariance re-
quireswy,
:b£2—4mqab{)bib’E—8(mqab0)2bg0, (A5) A straightforward way is enforcer,=0 is to take an im-

proved covariant difference
and one want8g=1. Just as the redundancy associated with

the Foldy-Wouthuysen-Tani parameté intertwines the aD=2(T,—T_)—&(T?-T%) (A12)
mass dependence d@fand rg, the redundancy associated
with the other Foldy-Wouthuysen-Tani paramefgrinter-  and an improved covariant Laplacian
twines the mass dependencecgfandc,, too.

Assuming a discretization that resides on two time 20 (3)_ 4 1,42, 12
slices only, it is straightforw;?dsoto generalize the transfer- 2 Al )_Ei [(TiATi=2) = (TP + T -2)].
matrix construction to the actio®,+ Sg+ Sg+ S,,. After ex- (A13)
panding the transfer matrix in powers afone finds

The coefficients are chosen so that the Fourier transforms

Csol have nop? or 3;p{ terms, respectively. Thefat tree level

2(1+mg) (AB) w,=0 automatically.
SinceS, contains no higher time derivatives, the transfer-

Combining Egs.(A5), (5.29, and (A6) and settingBe=1  matrix construction proceeds as usual. After derivihgfor
yields the mass-dependent condition So+S4 (M and M, are unchanged one findsM,=M, at
tree level if the couplings,p andc,_ obey

bso= — 3(1—Cg) {%f2(mg) +

B St S r3mg(2-+mp)
CE T mo(2tmg) | 1t my A1+ m)2 4¢2Cap(1+mg) +T5{Ca Mo(2+ M)
CedMo(2+ M) A7 _ {H(1+mg)[2(1— %)+ my(2+mg)]
{1+ my) (&7) 32+ mo)?

Here the rest mas®l; has been eliminated in favor of the r[2(1+mg)2—3¢%] 3L mo(2+mg) —67%]
kinetiq massM, as appropriate to the nonrelativistic inter- Mo(2+ mg) 4(1+mg)
pretation of Sec. IX. 3.3

The redundant direction associated o permits a free _ rs{"mo(2+mg) AL4
choice ofcg,. In our framework, which stresses a smooth 4(1+ mo)2 ' (A14)

matching to the massless limit, the most convenient choice is

probably c,,=0. But for purely nonrelat|V|st|c applications This result holds whethef is tuned so thaM ;=M or not.

Ref. [12] would choosecg=0 and gcsoocm . Other possi- As with { andcg, only the massless limit of,p is unam-
bilities correspond to the special choice fqun Eq. (5.39. biguous. For the full mass dependence the redundgnt

Then Eq.(A7) reduces to must be specified, for examptg, =0
It is instructive to look explicitly at the consequences of
Ce=1+21In(1+mg)Cso. (A8)  omitting S, from Monte Carlo calculations. Withunim-

. : . . D andA®
The further special case correspondinge-0 iscg=1 (in- provedD and and nos,

dependent ofmga) andcg,=0. 22 rd
W= + , (Al15)
+ +
2. Kinetic energy to O(v?) Mo(2:+Mo) - 4(1+M)
The interactionS, produces corrections to the kinetic en- and
ergy. It is easiest to analyze from the energy-momentum re- . . 2
lation, as in Sec. IV. Expanding E.4) to O(p*) yields 1 8 A0 {+2rg(1+mg)] rs¢
L 2)2 M ma2+mgd T mg(2+mg? (1+mg)*
E=M, 2M 22 pt— o (A9) (A16)

4
The rotational-invariance breaking artifact is, thus,

where O(pia®/m,) for ma large or small. The rotationally in-
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variant, relativity-breaking artifact i©(p*a®m,) at small

mga, andO(p“a’/m3) at largemga. al(d5 +m)a,+b{ (9, +mb,—id(alb{ —beay).

(B2)

3. Electroweak operators

For electroweak decays of quarkonia@¢v?), one needs 'ne transfer matrix has the same form as €429 with

a higher-dimensional generalization of E@.8): - An An A A
Ho=In(1+m)(ATA+B'B), H,=i9BA, (B3

¥(x)=eM¥1+ad;y-D+1a’d,A® +(i/2)a’dgX-B

whereA=(1+m)¥2a, andB=(1+m)¥?b. With the identi-

fication of ¢ with {® and m with eM-1, the operatorsi

andH{" of the toy model and the field theory have the same

algebraic structure.

This model has only four states, the vacuum, fermion,
antifermion, and a fermion-antifermion state. The strategy is
to work out the transfer matrix elements explicitly, and then
where ¢, and & parametrize the solution of the tuning con- take the logarithm. These steps are easier in the Grassman-
ditions. Expanding the cumbersome exponentials tacumber approach, where the matrix elements of the transfer
O(a?p?B,E]) and eliminatingé, and&; in favor of the cou-  matrix are the coefficients of monomials (@rassman num-

plings ¢, rg, Cg, andcg, one finds berg A, A", B, andB', when

+1a’dea- E](x). (A17)

The d’'s are easiest to derive from the Foldy-Wouthuysen-
Tani transformed field. Combining Eq&%.9) and (5.23),

W (x)=expaé, y-D+a’éga- E)eM?y(x), (A18)

d,—d?— rsl ﬂAT,BT;A,B)=eiﬁaTbTeaTa+bTbefi1?ba (B4)
2= 2(1+mg)’
is expressed as a polynomial. Up to factors analogous to
) cgl det(2«,B), which we can drop without loss, the transfer ma-
dg=di— 201t mg)’ trix in the neutral sector is

—id

B o ((1+m)
{(1—cg)(1+my)  dy <I|T|J>:( i (1+9)/(1+m))

-1 (B5)
Mo(2+mg) My’

Writing 7=VDV', whereD is diagonal, the Hamiltonian is

andd; as in Eq.(7.10. In Egs.(A19) the kinetic masM,
H=—VIn (D)V'. Expanding the result t®(9?) one finds

has been substituted for the rest mdés. Thus, these for-
mulae remain valid under the nonrelativistic interpretation

explained in Sec. IX. m, + f,(m)9? if (M)

—ify(m)d ml—fz(m)ﬂz)' (B6)

<i|H|i>=(
APPENDIX B: COMBINING EXPONENTS
wheree™=1+m. Expressed in terms of Fock-space opera-

This appendix presents a proof of £§.26), i.e., that the tors

functions f; and f, are given by the expressions in Eg.
(5.28. If Hy, H,, andH/ were to commute, it would be B=m.—
trivial to combine the exponents. They do not, so the com- =[m,
bined exponent depends on their commutators as well. The
commutators are

fo(m)92J(ATA—BB") —if ,(m)H(ATBT—BA).
(B7)

Substitutingm, and ¥ for M and {® completes the deriva-
~ o~ o tion of Eq. (5.26.
[Flo.H,1= —2M 41, + O(pad), a.(5-28
(A, AT]=2M AT+ 0(p%ad) APPENDIX C: SPINORS, CREATION,
071 o ' AND ANNIHILATION OPERATORS

[H, A= - 22v02¥+0(pa%). (B1) This Appendix gives the construction of spinors and of
creation and annihilation operators @h=4 space-time di-
To obtain the last commutator we have written mensions. These are needed to calculate amplitudes of on-

Dy=(D—3E)con and Dy=(D+3E),,n, and we have ne— shell fermions via Feynman diagrams.
glected higher powers oE.,,. The operatord® and A® Consider an arbitrary bilinear fermion action
carry one and two powers gba, respectively; thusm
=M, —3rsle MA®+O(pa®). Note that although
[H/H/1 is O(p%a?®, further commutators such as
[Ho.[H,,HT] are at leasO(p*a).

Instead of solving the field theory, it is enough to considerwith an implied sum ovep. We assume thaKM andL are

S=X2y POOLy, KO +LGy)]wy) (€D

a toy model with two degrees of freedom, a fermi@mni-
hilated bya) and an antifermior(annihilated byb). With
discrete time the action is

translation invariant. With pant)L(x y) is symmetric, and
K,(X,y) antisymmetric, under interchange »fandy. The
field ¢(x) has the following equation of motion



; [7,K (%) +L(x,y)]¢(y)=0. (C2
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In such a free theory, one searches for solutions of the form

#(x)=ePot*iPXy(p). The four-component spinou(p)
must satisfy
[17,K.(p)+L(p)]u(p)=0. (C3

The Fourier transformk ,(p) andL(p) are real functions of
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[—i7.Ku(p)+L(p)]v(p)=0, (C12
which is solved by
iy, K, +L
BT e0), (Cc13

v (&P = o L snE)

now with sirpy= +i sinhE. From now on we shall use and
v with ¢e{1,2} and sipy= +i sinhE only.
The spinors obey the conventional orthonormality proper-

p by parity and translation invariance. Multiplying by iag

—iy,K,(p)+L(p) one sees that solutions exist only if

K?(p)+L3(p)=0. (C4

This mass shell coincides with the one derived from the

propagator, as in Sec. IV.

The actions that we consider all have the Wilson time

derivative. Writingp=(pg.p), one then has
Ko(p)=sinpo,
Ki(p)=Kj(p)

L(p)= u(p) —coo; (CH

Ki(p) is an odd, andu(p) an even, function ofp. Thus,
solutions exist only when

Po= *iE(p), (Co)
where
1+ pu(p)?+K?
CcoslE(p) = W> (C7)

It is convenient to label the solutions of H&3) by the sign
in Eq. (C6). For each sign there are two solution&+1,p)
andu(*+2p). Settingp=0 the equation of motion simplifies
to

sinhM 1 (— yosigné+1)u(&,0)=0, (C8)
whereM ; =E(0)=In[«(0)]. Choosingy, as in Eq.(2.6) the
four solutions ap=0 are

ui(1,0)=uy(2,00=uz(—1,0)=us(—20)=1, (C9

u(é’,pu(é,p)=—v(¢,pv(&p) =6,

u(& ,p)v(&,p)=v(&,p)u(ép)=0,

whereu=u"y, andv=v"y,. Moreover,

(C19

sinhE

(&' P)vou(£:R) =0 (€' p) vou(£,p)= 07 e

u(€',p)yov(€,—p)=v(€,p)you(é,p)=0. (C1H

In a relativistic theoryE/m would appear here.
The general solution to EC?2) is a linear superposition

d°p : -
‘ﬂ(t’x>=f W/\/(p)gl [b(&,p)u(é p)e”PorP

+d'(£,pv(£,p)e PP (C16
with sinpy=i sinhE. The normalization factaM(p) is fixed
below, after invoking this expansion for Hilbert-space opera-
tors. The operator-valued expansion coefficiénlig,p) and
d'(¢p) create particle and antiparticle states, respectively:

la(é,p))=b"(£p|0), [a(ép))=d"(£p)|0),
(C17)

where |0) is the Fock state annihilated by aﬁal(g,p) and
d(&p). Assuming the vacuum is normalized ¢@0)=1, the
fermion states are normalized to

(q(¢',p")lacé,p)y=(2m)38(p’ —p) & €h(p),
(C18

and similarly for the antifermion stafg(¢,p)), if and only if

where the subscript is the Dirac index, and all other compothe anticommutator

nents are zero. Direct substitution verifies that

—iy,K,+L
V2L(L +sinhE)

solves Eq.(C3) for p#0, if sinpy=i signésinkE and

u(é,p)= u(é,0) (C10

L=pu(p)—coshE(p). The denominator yields the normaliza-

tion convention in Eq(C14).
The two solutions with “negative energy(é<0) corre-
spond to antiparticle states. As usual we introduce

v(é,p)=u(=§—p), (C11

The spinorsy obey the equation of motion

£=1,2.

{b(¢".p").b'(&p)}=(2m)38(p' —p) 6 £(p),
(C19
and similarly for{d(¢,p),d"(&p)L.
The transfer-mAatrix construction provides the anticommu-
tation relation fory(t,x) and (t,x). Equation(5.9 becomes

\If(t,x):§y: f

dp

(27)

5 €7 P Y (p) V2t y).
(C20

After inverting the Fourier series and evaluating the anticom-
mutators one finds
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u(p)— costE For the specific action discussed in this pafgone finds
d(p)= () NE(p)SINE” (C21)  (restoringa)
The conventionp=1 is the most convenieAt. Then K(p)={ sinp;a
Aﬂp)=(5%%gé%$25)yz (C22 p(p)=1+mea+ 3rylp’a’. (C24
Note that\(0)=e M2, The chromomagnetic and chromoelectric interactions do not

With all this machinery we can now state the main resyltModify these functions, but the kinetic corrections in Appen-

of this appendix. The Feynman rules for vertices in standard' A do. .
referencede.g., Ref[42] for the Wilson actiopare derived 't iS useful to record the smafl expansion of the external
from the functional integral, i.e., using(x). To obtain on- line factor here:
shell matrix elements, these rules must be supplemented by

. : 2
rules for contractions betweef(x) and conventionally nor-

ily-pa p

—a—Mja/2l q _
malized external states. They are NP ui §,p) =717 1 2sintMj.a 8M% u(¢,0
.
P (6,%) 0] q(ER) I Mp)uo(£ip)eTE TR, +0(p%), (C29
| | where the subscript “lat” abbreviates lattice, aht is an
%) | T 6Dy Mg e B, Texternal line mass.” Fo,

1 IS 2rd

- , = — + . (C26
(D) |+ Falt,0) > Mp)iT(£p)e T H TP, Mia®  sinfM,a * e

For a unified treatment of fermions and antifermions in ini-
e g(Ep)e ] £,5) - > Np)v (& p)e T EIPX tial and final states, it is handy to note that EG25 holds
(- q(ep)l valrx) (P)va(&p) for positive and negativé. The analogous expression for
(C23  Mp)v(&p) then follows from Eq(C1I).

Unless mga<<l the Ilattice external line factor
Np)u&p) deviates from the relativistic one. With our nor-
malization conventions the relativistic analog of EG25) is

1 -

;mq _la
E ul’e|(§!p)_ qu 8mg

22Another candidate is the relativistic convention, which is not at (€27
all natural in nonperturbative calculations. How can one normalize ] . S
to ¢= m?+ pZ/m without solving the theory? Even here, in a foot- Where the subscript “rel” abbreviates relativistic. The rota-
note to an appendix, one may not forget that the aim of these peﬂiOﬂS in Secs. VIl and A 3 are needed to convert the bracket

turbative calculations is to understand, interpret, and improve th@f Eg. (C25 into the bracket of Eq.(C27), assuming

multiplied by the sign appropriate to the anticommutation
implied by the---. For all states the momentum flow is
physical, i.e., with(against the charge flow for particle@n-

tiparticles. ) )
ly-p p
u(¢,0)+0(p°),

nonperturbative calculations. my=M,.
[1] K. G. Wilson, Phys. Rev. 10, 2445(1974). [7] G. Heatlie, C. T. Sachrajda, G. Martinelli, C. Pittori, and G. C.
[2] K. G. Wilson and J. Kogut, Phys. Rep., Phys. L&2C, 75 Rossi, Nucl. PhysB352 266 (1991).
(1974. [8] E. Eichten, inField Theory on the LatticeProceedings of the
[3] K. G. Wilson, in Recent Developments in Gauge Theqries International Conference, Seillac, France, 1987, edited by A.
edited by G. 't Hooftet al. (Plenum, New York, 1980 Billoire et al. [Nucl. Phys. B(Proc. Supp). 4, 170(1987].

[4] K. Symanzik, inRecent Developments in Gauge Theofi&ls [9] E. Eichten and B. Hill, Phys. Lett. B43 427 (1990.
G. Curci, P. Menotti, and G. Paffuti, Phys. Letf30B, 205 [10] W. E. Caswell and G. P. Lepage, Phys. L&87B, 437(1986.
(1983; 135B, 516) (1984; P. Weisz, Nucl. PhysB212, 1 [11] G. P. Lepage and B. A. Thacker, field Theory on the Lattice

(1983. [8], p. 199; B. A. Thacker and G. P. Lepage, Phys. Re#3D

[5] H. W. Hamber and C. M. Wu, Phys. Let33B, 351 (1983; 196 (199)).
136B, 255(1984; T. Eguchi and N. Kawamoto, Nucl. Phys. [12] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.
B237, 609(1984; W. Wetzel, Phys. Lett136B, 407 (1984). Hornbostel, Phys. Rev. B6, 4052(1992.

[6] B. Sheikholeslami and R. Wohlert, Nucl. PhyB259, 572 [13] K. G. Wilson, inNew Phenomena in Subnuclear Physied-
(1985. ited by A. Zichichi(Plenum, New York, 1977



55 MASSIVE FERMIONS IN LATTICE GAUGE THEORY 3957

[14] J. E. Paschalis and G. J. Gounaris, Nucl. PHB222 473 (Proc. Supp). 30, 389(1993]; S. Coallins, Ph.D. thesis, Edin-
(1983; S. Nussinov and W. Wetzel, Phys. Rev.38, 130 burgh University, 1993.
(1989. [30] J. N. Simone, inLattice '94, Proceedings of the International
[15] M. B. Voloshin and M. A. Shifman, Yad. Fi#5, 463(1987), Symposium, Bielefeld, Germany, edited by F. Karsthal.
[Sov. J. Nucl. Phys45, 292 (1987)]. [Nucl. Phys. B(Proc. Supp). 42, 434(1995].
[16] H. Georgi, Phys. Lett. B40, 447 (1990; B. Grinstein, Nucl. ~ [31] G. Martinelli and Y.-C. Zhang, Phys. Lett23B, 433 (1983;
Phys.B339, 253(1990. R. Groot, J. Hoek, and J. Smit, Nucl. Ph{3237, 111(1984.
[17] See M. Neubert, Phys. Rep45, 259 (1994, [32] E. Gabrielli, G. Martinelli, C. Pittori, G. Heatlie, and C. T.

[18] A. S. Kronfeld and B. P. Mertens, inattice '93 Proceedings Sachrajda, Nucl. Phy8362, 475(199).
of the International Symposium, Dallas, Texas, edited by T.[33] J. Labrenz, Ph.D. thesis, University of California, Los Ange-

Orapert al Nl Py, BPoe. Supp 34 51004} . |, 65,1992 . W gemard e osligpar
X. El-Khadra, A. S. Kronfeld, P. B. Mackenzie, and B. P. : Lo per, ©. Y, ' s TNYS. '

Mert . i 38, 3540(1988.
ertens(in preparation [35] A. Duncan, E. Eichten, J. Flynn, B. Hill, and H. Thacker, Phys.

[19] M. Luscher and P. Weisz, Commun. Math. Phg§, 59 Rev. D51, 5101 (1995.

(1989; 98, 433E) (1985; Phys. Lett.158B, 250 (1985. [36] A. S. Kronfeld, inLattice '94[30], p. 415.

[20] L. L. Foldy and S. A. Wouthuysen, Phys. R&8, 29(1950;  [37] A. S. Kronfeld, inLattice '92[29], p. 445: P. B. Mackenzie,

S. Tani, Prog. Theor. Phys§, 267 (1951). ibid., p. 35.

[21] A. S. Kronfeld and P. B. Mackenzie, Annu. Rev. Nucl. Part. [38] T. L. Bell and K. G. Wilson, Phys. Rev. B1, 3431(1975; P.

Sci. 43, 793(1993. Hasenfratz and F. Niedermayer, Nucl. PH§414, 785(1994;
[22] R. Wohlert, DESY Report No. DESY 87-06@npublished T. DeGrand, A. Hasenfratz, P. Hasenfratz, F. Niedermayer,
[23] G. P. Lepage and P. B. Mackenzie, Phys. Rev4®) 2250 ibid. B454, 615(1995.

(1993. [39] U.-J. Wiese, Phys. Lett. B15 417(1993; W. Bietenholz and
[24] M. Luscher, Commun. Math. Phys4, 283(1977). U. J. Wiese, irLattice '93[18], p. 516; Nucl. PhysB464, 319
[25] M. Luscher and P. Weisz, Nucl. Phy&240, 349 (1984. (1996.

[26] O. Hernandez and B. Hill, Phys. Rev. B0, 495 (1994. [40] K. Janseret al,, Phys. Lett. B372 275 (1996.

[27] C. Morningstar, Phys. Rev. B0, 5902(1994. [41] F. Gilman and Y. Nir, Annu. Rev. Nucl. Part. Sel0, 213

[28] M. Bochicchio, G. Martinelli, C. R. Allton, C. T. Sachrajda, (1992); Y. Nir, in Perspectives in the Standard ModeUited
and D. B. Carpenter, Nucl. PhyB372 403(1992; A. Abada by R. K. Ellis, C. T. Hill, and J. D. LykkerfWorld Scientific,
et al, ibid. B376, 172(1992. Singapore, 1992 G. Buchalla, A. J. Buras, and M. E. Lauten-

[29] UKQCD Collaboration, D. G. Richards, ibattice '92, Pro- bacher, Rev. Mod. Phy$€8, 1125(1996.

ceedings of the International Symposium Amsterdam, Thg42] H. Kawai, R. Nakayama, and K. Seo, Nucl. Ph§d.89 40
Netherlands, edited by J. Smit and P. van Baalcl. Phys. B (1981).



