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This paper presents a formulation of lattice fermions applicable to all quark masses, large and small. We
incorporate interactions from previous light-fermion and heavy-fermion methods, and thus ensure a smooth
connection to these limiting cases. The couplings in improved actions are obtained for arbitrary fermion mass
mq , without expansions around small- or large-mass limits. We treat both the action and external currents. By
interpreting on-shell improvement criteria through the lattice theory’s Hamiltonian, one finds that cutoff arti-
facts factorize into the formbn(mqa)@pa#sn wherep is a momentum characteristic of the system under study,
sn is related to the dimension of thenth interaction, andbn(mqa) is a bounded function, numerically always
of order 1 or less. In heavy-quark systemsp is typically rather smaller than the fermion massmq . Therefore,
artifacts of order (mqa)

s do not arise, even whenmqa*1. An important by-product of our analysis is an
interpretation of the Wilson and Sheikholeslami-Wohlert actions applied to nonrelativistic fermions.
@S0556-2821~97!03607-2#

PACS number~s!: 11.15.Ha, 12.38.Gc, 12.39.Hg

I. INTRODUCTION

The most promising avenue for a quantitative understand-
ing of nonperturbative quantum chromodynamics—and other
field theories—is via numerical~Monte Carlo! integration of
functional integrals defined on a lattice@1#. Like any numeri-
cal technique this method has uncertainties that must be un-
derstood and controlled before the results are useful. In par-
ticular, although the continuum theory is defined by the limit
of a sequence of lattice theories, the numerical calculations
are never carried out at the limit. Because the Monte Carlo
introduces statistical errors, the extrapolation to the con-
tinuum limit is imperfect. The results for physical quantities
are consequently contaminated by lattice artifacts. For a
practical result, this uncertainty must be smaller than, say,
relevant experimental uncertainties.

The way to reduce lattice artifacts is based on the renor-
malization group@2#. One starts with a general action

S5(
n

cnSn , ~1.1!

where theSn include all interactions with the desired field
content and the appropriate symmetries. One approach to the
continuum limit, which might be called brute force, is to
choose thecn in any way that drives the lattice spacing to
zero. An ideal approach would be to choose thecn to lie on
a renormalized trajectory@2#, where there are no lattice arti-
facts even though the lattice spacingaÞ0. In the space of all
possible actions specified by Eq.~1.1!, the renormalized tra-
jectories lie in a subspace, whose dimension equals the num-
ber of relevant parameters. Once the relevant parameters
have been fixed by physics, they and the renormalization
scheme determine all thecn .

Unfortunately, a renormalized trajectory is mostly of ab-
stract value, because on one infinitely manycn are nonzero.

Practical methods for determining thecn , such as blocking
fields @3# or Symanzik improvement@4#, use criteria such as
locality @3# or the scaling dimension@4# to truncate the space
of actions. Furthermore, the calculations of thecn are, in
practice, only approximate. For these reasons an improved
action is only partially renormalized. Nevertheless, any prac-
tical action can be written

S5SRT2dS, ~1.2!

whereSRT denotes~an action on! the renormalized trajec-
tory. Usually the truncations and/or approximations used to
generateS will also yield estimates for the remaining cutoff
effectsdS.

This paper treats massive fermions coupled to non-
Abelian gauge fields. The relevant couplings are the fermion
masses and the gauge coupling. So the renormalized trajec-
tory takes the form

SRT~mq /LQCD,LQCDa!5(
n

cn~m0a,g0
2!Sn , ~1.3!

wheremq denotes the fermion mass,
1 LQCD is the scale char-

acteristic of the gauge theory, and the argumentLQCDa la-
bels the renormalization point. TheSn are gauge-invariant
combinations of four-component fermion and antifermion
fields ~c and c̄! and the lattice gauge field~Um!. For later
calculational convenience we choose the bare, rather than
some physical, fermion massm0a and gauge couplingg0

2 to
parametrize the couplingscn .

As a→0 the fermion massmqa is formally smaller than
g0
2. ~By asymptotic freedomg0

25@b0ln~LQCD
2 a2!#21 asa→0.!

1We usemq for a quark mass defined by a physical condition and
m0a for the coupling appearing in the action.
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It is therefore tempting to expand the couplingscn(m0a,g 0
2)

in m0a, as in previous analyses@4–7#. But there may be
fermions satisfyingmq/LQCD@1; the charm, bottom, and top
quarks are examples in nature. If, in practice,mqa is not
small, perturbation theory inm0a need not be useful, even
though perturbation theory ing0

2 might be. Indeed, this re-
gime includes the charm and bottom quarks at currently ac-
cessible lattice spacings.

The static@8,9# and nonrelativistic@10–12# effective theo-
ries address the problems of heavy fermions. Their restric-
tion to mq@LQCD implies that couplings of interactions be-
tween particle and antiparticle states may be chosen to
vanish, and the remaining interactions in Eq.~1.1! are orga-
nized according to ap/mq expansion. But for some
mq;2LQCD the expansion is no longer useful. Furthermore,
radiative corrections induce power-law terms, e.g.,
g 0
2/(mqa), which must be canceled by adjusting thecn .

These terms, which diverge asa→0, are a reminder that the
effective theories are to be used at scales below~large! mq .
Their presence implies that cutoff effects in the effective
theories should be removed not by brute force, but by keep-
ing a;mq

21 and constructing actions systematically closer
to the renormalized trajectory@11,12#.

This paper presents a way to encompass both the small2

and large mass formulations. There are two fundamental el-
ements. First, to reachmqa;1 one must treat thefull func-
tional dependence onm0a of the couplings in Eq.~1.3!. Sec-
ond, we enlarge the class of interactions considered in Eq.
~1.3! to include all those usually used in the smallm0a and
the largemq/LQCD limits. In particular, we do not impose a
symmetry between couplings of interactions that would be
related by interchanging the time axis with a spatial axis.

The renormalization-group approach immediately implies
that the irrelevant couplings depend on the relevant ones@2#,
in this case the mass. But the choice of asymmetric couplings
is motivated, as in Refs.@10–12#, by the physics of heavy
quarks. For anymqa, the four-momentum of a quark in most
interesting physical systems satisfies@E~p!2E~0!#a!1
wheneverpa!1. But whenmqa.1 the characteristic four-
momentum of the physics does not respect time-space axis
interchange. Under such circumstances it is inconvenient and
unnecessary to choose an axis-interchange symmetric action.
Indeed, relinquishing axis-interchange symmetry is common
in treatments of heavy quarks with momentum-space and
dimensional regulators. It is possible to derive deviations
from heavy-quark symmetry from the Dirac action@14,15#,
while maintaining time-space axis interchange invariance as
a corollary to Euclidean invariance. But usually the deriva-
tions are easier with a nonrelativistic action@10,16#, the so-
called heavy-quark effective theory@17#.

In the appropriate limits, our formulation of lattice fermi-
ons shares properties of previous ones. On one hand, at di-
mension five or less, couplings related by axis interchange
become identical in the limitm0a→0: the Wilson action and
the improved action of Ref.@6# are recovered. But when
m0aÞ0 the mass-dependent renormalization leaves lattice
artifacts that are proportional topa andLQCDa, notmqa. At

higher dimension, however, we retain Wilson’s time deriva-
tive and incorporate ‘‘spatial-only’’ interactions into Eq.
~1.1!, as in nonrelativistic theories@10–12#.

On the other hand, formq@LQCD one can interpret the
lattice theory in a nonrelativistic light. Indeed, all members
of our class of actions approach a universal static limit as
m0a→`. For m0a large but finite, the 1/mq

s corrections to
the static limit can be recovered systematically, provided the
fermion mass is defined through the kinetic energy, and pro-
vided the general action, Eq.~1.3!, is truncated only at di-
mension 41s ~or higher!. Unlike previous implementations
of nonrelativistic fermions, however, our approach crosses
smoothly over into the regime of tiny lattice spacings, where
m0a!1 even for a heavy quark. Thus, after severalcn have
been tuned close to a renormalized trajectory, thereby re-
moving the worst lattice artifacts, a little brute force can
remove the rest.

Because we make no assumptions about the ratio of ferm-
ion masses to other scales, our formulation is especially well
suited to fermions too heavy for smallm0a methods yet too
light for largemq/LQCD methods. With the actions given be-
low one can test whether a given fermion is heavy enough to
be treated nonrelativistically, without resorting to brute-force
simulations. A practical example might be the charm quark,
which has a mass only a few timesLQCD, yet even on the
finest lattices available todaymcha is largish, at least13.

For a concrete determination of thecn , one must choose a
renormalization group, a criterion for truncating the sum in
Eq. ~1.3!, and a strategy for determining thecn . For illustra-
tion we adopt here a Symanzik-like procedure@4#, organiz-
ing the interactions by dimension. Carrying out this program
to arbitrarily high dimension would produce a renormalized
trajectory of a renormalization group generated by infinitesi-
mal changes ina. For simplicity, however, most of this paper
treats interactions only up to dimension five. Although a
nonperturbative determination of the couplings is possible in
principle, this paper makes the further approximation of per-
turbation theory ing0

2, that is

cn~m0a,g0
2!5(

l50

`

g0
2lcn

@ l #~m0a!. ~1.4!

Except for Sec. VIII we work to tree level, so we often
abbreviatec n

[0] (m0a) by cn(m0a). ~Explicit one-loop calcu-
lations are in progress@18#!. Within these approximations we
determine thecn by insisting that on-shell quantities take
their desired values, as first suggested by Lu¨scher and Weisz
@19#.

One calculational procedure is to work outn-point on-
shell Green functions via Feynman diagrams and tune them
to the continuum limit, to the appropriate order inp. An
example is in Sec. IV. Because this strategy is limited to a
finite number of quantities, it is nontrivial to assume that
other quantities are improved too@4#. An alternative is de-
veloped in Sec. V. Starting from the transfer matrix we de-
rive an expression for the fermion Hamiltonian, valid~at tree
level! for states withpa!1. Because the Hamiltonian is an
operator, improving it to some accuracy guarantees the im-
provement to the same accuracy of infinitely manyc num-
bers. We show that by adjusting the couplingscn(m0a) cor-
rectly, and allowing physically unobservable redefinitions of

2At small mass the doubling problem is handled by Wilson’s
method@13#.
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the fermion field, one can tune the Hamiltonian to the con-
tinuum limit, i.e., to the Dirac Hamiltonian, to the appropri-
ate order inp.

In addition to equations for thecn , the analysis of the
Hamiltonian yields two important results. One is that the
Wilson time derivative needs no improvement. The other is a
canonically normalized fermion field that, to the accuracy of
the improvement, obeys Dirac’s~continuum! equation of
motion. This field is a potent ingredient in calculations of
matrix elements involving heavy-quark systems; see Sec.
VII.

Owing to the approximations introduced—the truncation
of interactions and perturbation theory—some cutoff effects
remain. If these errors are small, they may be estimated by
insertions ofdS in correlation functions. If the series for
cn(m0a,g 0

2) has been developed toLnth order

dS5(
n

(
l5Ln11

`

g0
2lcn

@ l #~m0a!Sn . ~1.5!

A typical term indS distorts an on-shell correlation function
by an amount of order g0

2lcn
@ l #(m0a)(pa)

sn, where
sn5dimSn24, andl>Ln11. ~If Sn is omitted from the ac-
tion altogether, then herel50!. The analysis presented below
shows that the tree-level, lower-dimensionc n

[0] (m0a) are
well-behaved for all masses. We also show that loop dia-
grams have the same or more benign behavior at large mass.
In particular, asm0a→` the c n

[ l ] (m0a) either approach a
constant or fall as (mqa)

2s, for somes<sn . These results
provide evidence that the higher-dimensioncn(m0a) are
well behaved too.

In Monte Carlo programs it is customary to parametrize
the action by the hopping parameter instead of the mass. In
this notation the dimension-three and -four interactions are
written

S05(
n

c̄ncn2k t(
n

@c̄n~12g0!Un,0cn10̂1c̄n10̂

3~11g0!Un,0
† cn#2ks(

n,i
@c̄n~r s2g i !Un,icn1 ı̂

1c̄n1 ı̂~r s1g i !Un,i
† cn#. ~1.6!

Some terms of dimension five—to solve the doubling prob-
lem @13#—are included here too. The relation between the
bare massm0a and the hopping parameterskt and ks is
given below in Sec. II. Equation~1.6! illustrates how our
program subsumes properties of the familiar small-mass and
large-mass formulations. Imposing axis-interchange invari-
ance would setks5k t andr s51, and thenS0 reduces to the
Wilson action@13#. Rewritingr sks5cs and settingks to zero
with csÞ0 produces the simplest nonrelativistic action@11#.

This pattern continues for dimension-five interactions.
Aside from the Wilson terms inS0, the other dimension-five
interactions are the chromomagnetic interaction

SB5
i

2
cBks (

n; i , j ,k
« i jk c̄ns i j Bn;kcn , ~1.7!

and the chromoelectric interaction

SE5 icEks(
n; i

c̄ns0iEn; icn , ~1.8!

whereB and E are suitable functions of the lattice gauge
field U, as in Sec. II. The light-quark formalism of Refs.
@6,7# considers the special casecB5cE , whereas the heavy-
quark formalism of Refs.@11,12# setscE50.

The couplingsr s , z5ks/k t , cB , andcE are specific ex-
amples of the couplingscn in Eq. ~1.3!. On the renormalized
trajectory they are, therefore, all functions ofm0a. Section
IV shows how to adjustr s and z so that the relativistic
energy-momentum relationE5Amq

21p21dElat is obtained
for all mqa. With the correct choice, for whichzÞ1 when
m0aÞ0, the ~tree-level! lattice artifactdElat is proportional
to p4a3 for mqa!1 andp4a/mq

2 for mqa@1. Similarly, re-
sults in Sec. V include functionscB(m0a) andcE(m0a) that
reduce lattice artifacts in the quark-gluon vertex functions to
O~p2a2! for mqa!1, or ~yet smaller! O~p2a/mq! for mqa@1.

In their on-shell improvement program Refs.@19,6# intro-
duced changes of variables, or isospectral transformations, to
expose redundant interactions. Since the coupling of a redun-
dant interaction does not influence physical quantities, one
can choose it according to theoretical or computational cri-
teria distinct from improvement. Section III examines the
isospectral transformations when time-space axis-
interchange symmetry is not imposed. In our formulation
many isospectral transformations are exploited to keep the
time discretization, and hence the transfer matrix, as simple
as possible.

The remaining redundant directions can be classified in
the Hamiltonian approach developed in Sec. V. In a Euclid-
ean version of the standard Dirac-matrix basis, given in Sec.
II, matrices are either block diagonal or block off-diagonal.
Block-diagonal transformations are absorbed into a general-
ized field normalization. On the other hand, block-off-
diagonal transformations~called Foldy-Wouthuysen-Tani
transformations@20# in atomic physics! generate leeway in
choosing the mass dependence of associated couplings.3 For
example, in the actionS01SB1SE one may freely choose
r s , as long as the choice circumvents the doubling problem.

Our approach breaks down, just as any lattice theory does,
whenpa is too large. Fortunately, the typical momenta and
mass splittings of hadronic systems usually are bounded; the
energy scale around the fermion mass is dynamically unim-
portant. In quarkonia the typical energy-momentum scales
aremqv andmqv

2/2, i.e., 200–800 MeV for charmonium
and 200–1400 MeV for bottomonium. Similarly, in light and
heavy-light hadrons the typical momentum scale isLQCD,
i.e., 100–300 MeV. In some processes, such as a decaying
heavy-quark system that transfers all its energy into light
hadrons, a large three-momentumupu'mq does arise. Then
our formulation and its predecessors all require further ex-
tensions. One should appreciate, however, that the break-
down arises not from the large fermion mass per se, but from
the large momentum of the decay products.

3The off-diagonal interactions are precisely the ones usually omit-
ted from nonrelativistic formulations, yet their presence in our for-
mulation permits a smooth transition from large to small mass.
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A by-product of our formalism applies to existing numeri-
cal calculations, done with axis-interchange invariant ac-
tions. Formqa*1 ~and, furthermore,mq/LQCD@1! we derive
in Sec. 9 a nonrelativistic interpretation of such actions. One
then sees that, with a proper definition of the fermion mass,
any action described byS01SB1SE , including the Wilson
and Sheikholeslami-Wohlert fermion actions, has the lattice-
spacing and/or relativistic inaccuracies of a typical nonrela-
tivistic action. A practical bonus of the nonrelativistic regime
is that it is no longer necessary to adjustks differently from
kt . In heavy-light systems, one may also setcB5cE .

This paper is organized as follows. Section II introduces
some notation, including a form of the action better suited to
perturbation theory, and the Dirac-matrix convention used in
later sections. The isospectral transformation of Ref.@6# is
reviewed and generalized in Sec. III, to determine which
couplings are redundant. Then, to derive improvement con-
ditions, Feynman-diagram methods are discussed in Sec. IV,
and the Hamiltonian method in Sec. V. With a Hamiltonian
description of the lattice theory in hand, Sec. VI estimates
cutoff effects in various hadronic systems. Section VII con-
siders perturbations from the electroweak interactions,
needed for the phenomenology of the standard model@21#.
Some of the issues beyond tree level are outlined in Sec.
VIII. The relationship of our work, formq/LQCD@1, to non-
relativistic QCD is pursued in Sec. IX. We discuss a few
phenomenologically relevant applications more thoroughly
in Sec. X. Finally, Sec. XI contains selected concluding re-
marks, and the appendices contain various technical details.

II. NOTATION

We shall call the form of the action in Eq.~1.6! the
‘‘hopping-parameter form.’’ For studying the continuum
limit and developing perturbation theory it is useful to
present a different form. Let us introduce some notation. The
lattice spacing4 is a and the site labels aren5x/a. Rescale
the fields

cn5
a3/2

A2k t

c~x! ~2.1!

and similarly forc̄n . The bare mass is

m0a5
1

2k t
2@11r sz~d21!#, ~2.2!

where d~54! is the spacetime dimension, andz5ks/k t .
With these substitutions the action reads

S05m0E c̄~x!c~x!1E @c̄~x! 12 ~11g0!D0
2c~x!

2c̄~x! 12 ~12g0!D0
1c~x!]1zE c̄~x!g•Dc~x!

2 1
2arszE c̄~x!D~3!c~x!, ~2.3!

where the integral sign abbreviatesa4Sx . The covariant dif-
ference operators are conveniently defined via covariant
translation operators

T6mc~x!5U6m~x!c~x6am̂ !,
~2.4!

c̄~x!TQ 6m5c̄~x7am̂ !U6m~x7am̂ !,

whereU2m(x)5Um
† (x2am̂). Then

D0
1c5a21~T021!c,

D0
2c5a21~12T20!c,

Dic5~2a!21~Ti2T2 i !c,

D~3!c5a22(
i51

3

~Ti1T2 i22!c, ~2.5!

define various covariant difference operators and the three-
dimensional discrete Laplacian. We shall call the form of the
action in Eq.~2.3! the ‘‘mass form.’’

The temporal kinetic energy in Eq.~2.3! is written in a
way that does not make the temporal Wilson term explicit.
Equation~2.3! is more convenient, however, for constructing
the transfer matrix, and for comparing with nonrelativistic
QCD. The spacelike Wilson term, the one proportional tor s ,
is needed to prevent doubling. A convenient choice in com-
puter programs isr s51, but we keep it arbitrary, because
other choices may have other advantages.

For constructing the transfer matrix and for examining the
nonrelativistic limit, a useful representation of the Euclidean
g matrices is

g05S 1 0

0 21D , g5S 0 s

s 0 D , ~2.6!

satisfying$gm ,gn%52dmn . Another convention that we use is
smn5~i /2!@gm ,gn# so that smn

† 51smn . Using Eq. ~2.6!,
s0i5 ia i ands i j52« i jkSk , where

a5g0g5S 0 s

2s 0 D , S5S s 0

0 s
D . ~2.7!

The following split into upper and lower two-component
spinors

c5S f
x* D , c̄5~f† 2xT! ~2.8!

follows from Eq.~2.6!. This convention is chosen so that~the
operators corresponding to! f andx annihilate particle and
antiparticle states, respectively. With these two-component
fields the mass form of the action is

4With two hopping parameterskt andks it would be possible to
introduce anisotropic lattice spacings. Anisotropy is not essential,
however; fully isotropic lattices can be maintained through appro-
priate adjustment of the gauge action. Therefore, we choose equal
temporal and spatial lattice spacings in this paper, as in nonrelativ-
istic effective theories@10–12#.
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S05m0E @f†~x!f~x!1x†~x!x~x!#

1E @f†~x!D0
2f~x!1x†~x!D0

2x~x!#

2 1
2arszE @f†~x!D~3!f~x!1x†~x!D~3!x~x!#

1zE @f†~x!s•Dx* ~x!2xT~x!s•Df~x!#. ~2.9!

This form of the action exhibits explicitly that particles and
antiparticles are treated on the same footing.„Antiparticles
transform under the complex-conjugate representation of the
gauge group, however, soU* appears instead ofU in the
rules @Eqs.~2.4!# for covariant translations acting onx.…

Writing Bn5a2B(x) andEn5a2E(x), the four- and two-
component mass forms of the chromomagnetic and chromo-
electric interactions are

SB52~ i /2!acBzE c̄~x!S•B~x!c~x!

52~ i /2!acBzE @f†~x!s•B~x!f~x!

2x†~x!s* •B~x!x~x!#, ~2.10!

and

SE52 1
2acEzE c̄~x!a•E~x!c~x!

52 1
2acEzE @f†~x!s•E~x!x* ~x!

1xT~x!s•E~x!f~x!#, ~2.11!

respectively. Except in a technical step in Sec. V we take the
‘‘four-leaf clover’’ lattice approximant to the field strength

Fmn~x!5
1

8a2 (
m̄ 56m
n̄ 56n

sign~m̄n̄ !Tm̄T n̄T2m̄T2 n̄ 2H.c.,

~2.12!

as introduced in Ref.@22#. In Eqs. ~2.10! and ~2.11!,
Bi5

1
2« i jkF jk andEi5F0i . As defined here,Fmn , Bi , andEi

are anti-Hermitian; similarly we take anti-Hermitian gauge-
group generatorsta†52ta.

III. REDUNDANT COUPLINGS

Before trying to determine the mass dependence of the
couplings z, r s , cB , and cE , one should establish which
combinations are physical. The fields in functional integrals
are integration variables, and a change of variables cannot
change the integrals. Interactions that are induced by changes
of variables areredundant; their couplings can be chosen
with some leeway, dictated by calculational or technical con-
venience, rather than by physical criteria.

A subtle example of a redundancy in the space of inter-
actions is wave function~re!normalization, which multiplies
the field by a constant. For fermions, for example, it is some-

times convenient to fix the kinetic energyc̄D” c to have co-
efficient unity, which is the mass form of the action, and
sometimes to fix the local termc̄c to have coefficient unity,
which is the hopping-parameter form. But neither interaction
is redundant, even though the normalization convention
drops out of physical quantities.

Otherwise redundant directions are exposed by redefini-
tions of the field. In the analysis of Ref.@6#, with axis-
interchange symmetry, one considers the transformation

c°e«a~D” 1m!c, c̄°c̄e«̄a~D” 1m!, ~3.1!

wherea is chosen so thata(D” 1m) is ‘‘small.’’ After car-
rying out the transformation on the target action*c̄(D”
1m)c, one expands the transformed action toO(a). One
finds changes in the normalization of the lower-dimension
terms and the additional interactiona(«1 «̄)c̄D” 2c: from the
two independent transformation parameters, only one combi-
nation survives. Hence, of the dimension-five interactions
listed in Table I, one~i.e., c̄D” 2c! is redundant, and the other
is not.

On the lattice the nearest-neighbor discretization ofD”
suffers from the doubling problem. Wilson’s prescription
adds a nearest-neighbor discretization ofD2 to eliminate the
unwanted states. By the preceding analysis@6#, using instead
D” 25D22 ismnFmn would not change the spectrum atO(a).
When the discretization is chosen to solve the doubling prob-
lem, however, theD2 interaction does change the spectrum
of high-momentum states. Since they communicate with the
low-momentum states through virtual processes, lattice arti-
facts proportional tog0

2 remain. They can be eliminated with
the other dimension-five interaction,i c̄smnFmnc, with a
coupling proportional tog0

2.
Thus, with axis-interchange symmetry there are four in-

teractions up to dimension five, one of which goes with wave
function normalization~e.g., c̄D” c!. One coupling is redun-
dant, and it can be chosen to solve species doubling (c̄D” 2c).
The other couplings are fixed by the fermion mass (c̄c) and
a physical improvement condition (i c̄smnFmnc).

When axis-interchange symmetry is given up, the trans-
formation in Eq.~3.1! should be generalized to

c °exp@«a~D” 1m!1dag•D#c,
~3.2!

c̄ °c̄ exp@ «̄a~D” 1m!1 d̄ag•D#.

Applying this transformation to the target action induces the
dimension-five interactions listed in Table I. From the four
independent transformation parameters, only three combina-
tions survive:«1«̄, d1d̄, and d2d̄. Therefore, the coeffi-

TABLE I. Interactions that could appear in the action, with and
without axis-interchange symmetry~AIS!.

dim w/ AIS w/o AIS

3 c̄c c̄c
4 c̄D” c c̄g0D0c c̄g•Dc
5 c̄D” 2c c̄D0

2c c̄~g•D!2c
i c̄smnFmnc i c̄S•Bc c̄a•Ec

c̄@g0D0,g•D#c
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cients ofc̄D 0
2c, c̄~g•D!2c, andc̄@g0D0,g•D#c can be cho-

sen arbitrarily. The last of these has no redeeming features,
so d2d̄ should be chosen so that it never appears.

The other two redundant interactions are again used to
solve the doubling problem. TheD 0

2 term is used to eliminate
states that would make contributions to the fermion propaga-
tor proportional to~21!t; the factors 16g0 in Eqs. ~1.6! or
~2.3! provide the unique choice. Low-energy states with
pi;p/a are lifted by adding the interaction proportional to
r s in Eqs. ~1.6! or ~2.3!. When the mass is nonzero, it may
prove convenient chooser s to be a function ofm0a, so we
leave it arbitrary.

As with axis-interchange symmetry, the chromomagnetic
and chromoelectric interactions are not redundant. Their cou-
plings can be used to remove cutoff effects once the dou-
bling problem has been eliminated.

Thus, without axis-interchange symmetry there are eight
interactions up to dimension five, one of which goes with
wave function normalization~e.g., c̄g0D0c!. Three cou-
plings are redundant; two can be used to solve species dou-
bling @c̄D 0

2c and c̄~g•D!2c#, and the other to eliminate
c̄@g0D0,g•D#c. The other couplings are fixed by the fermion
mass (m0c̄c) and three physical improvement conditions
~zc̄g•Dc, icBc̄S•Bc, andcEc̄a•Ec!.

Redundant combinations of higher-dimension interactions
can be exposed by generalizing the transformation of Eq.
~3.2!. In particular, after dispensing with axis-interchange
symmetry, it is possible to transform away interactions with
higher time derivatives ofc and c̄, in favor of spatial de-
rivatives ofc and c̄, B andE, and time derivatives of the
latter. Indeed, any action with the Wilson time difference—
the terms in brackets in Eq.~2.3!—has an easy-to-construct
transfer matrix.~This is reviewed in Sec. V.! Consequently,
it is possible to implement Eq.~1.3! by adding ‘‘spatial-
only’’ interactions toS0.

IV. ON-SHELL CORRELATION FUNCTIONS

We now turn to the mass dependence of the tree-level
couplings, generically denotedc n

[0] (m0a) in Eq. ~1.4!,
needed to bring the action closer to the renormalized trajec-
tory. This section uses the fermion propagator to obtain the
relation between the physical mass and the couplingm0a,
the correct tuning of the couplingz(m0a), and the normal-
ization of the fieldc(x). Since we are interested in the full
mass dependence, we do not expand in the fermion mass.
Section V uses the Hamiltonian of the lattice theory to
clarify and extend the analysis tocB andcE .

A well-known procedure for determining the couplings
@4# is to calculaten-point correlation functions and expand in
momentump. In gauge theories, however, it is not known
whether lattice artifacts can be removed systematically from
Green functions off mass shell. Hence, one expands ‘‘on-
shell’’ quantities instead@19#. The ~lattice! mass shell speci-
fies the energy at given spatial momentump, so on-shell
improvement amounts to an expansion inpa. Previous
analyses@5–7# also expanded in the couplingm0a. We sim-
ply avoid the latter expansion, and thus obtain the full mass
dependence.

The simplest on-shell correlation function is the fermion
propagator as a function of time and spatial momentum. It is
used to relate the bare mass to a physical mass and to derive
the mass dependence ofz. In the language of Sec. III, it
probes the interactionsc̄c andc̄g•Dc, relative toc̄g0D0c.

DefineC~t,p! through

^c~ t8,p8!c̄~ t,p!&5~2p!3d~p82p!C~ t82t,p!, ~4.1!

wherec(t,p)5a3(xe
2 ip•xc(t,x) and similarly for c̄~t,p!.

Then, from Eq.~2.3!,

C~ t,p!5E
2p

p dp0
2p

eip0t

ig0sinp01 i zg•S1m0112cosp01~1/2!r szp̂
2 , ~4.2!

whereSi5a21sinpia andp̂i52a21sin~pia/2), but for brevity Eq.~4.2! is given in lattice units. To integrate overp0, proceed
as follows: rationalize the denominator; fort>0 let z5eip0, and for t,0 let z5e2 ip0, yielding a contour integral over the
circle uzu51; apply the residue theorem to obtain

C~ t,p!5Z2e2Eutu g0 signtsinhE2 i zg•S1m0112coshE1~1/2!r szp̂
2

2sinhE
~4.3!

for tÞ0,5 where~restoringa!

coshEa511
@m0a1~1/2!r szp̂

2a2#21z2S2a2

2@11m0a1~1/2!r szp̂
2a2#

~4.4!

implicitly defines the energy of a state with momentump.
The residueZ2~p! is given below in Eq.~4.12!.

Expanding the energy-momentum relation in powers of
pa yields

E25M1
21

M1

M2
p21••• , ~4.5!

where the ‘‘rest mass’’

M15E~0!, ~4.6!

and the ‘‘kinetic mass’’

5To obtainC~0! from Eq.~4.3!, replaceg0signt by 1 on the right-
hand side.
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M2
215~]2E/]pi

2!p50. ~4.7!

~Any axis i will do to defineM2, by spatial axis-interchange
symmetry.! The relativistic mass shell hasmq5M15M2 ,
and it terminates atp2. From the tree-level Eq.~4.4!,

M15a21 ln~11m0a!, ~4.8!

and

1

M2a
5

2z2

m0a~21m0a!
1

r sz

11m0a
. ~4.9!

Equation~4.8! shows how to adjustm0a so thatmq5M1 .
Similarly, Eq. ~4.9! shows how to adjustz and r s so that
mq5M2 .

6 Setting M15M2 and solving for z yields the
~tree-level! condition ~settinga51 again!

z5AS r sm0~21m0!

4~11m0!
D 21 m0~21m0!

2 ln~11m0!
2
r sm0~21m0!

4~11m0!
.

~4.10!

The dimension-five couplingr s is treated here as redundant;
it is determined not by physics, but to solve the doubling
problem. To alleviate doubling anyr s~0!.0 will do, and the
most natural choice isr s~0!51.

For small mass the Taylor expansion of Eq.~4.10! is

z511 1
2 @12r s~0!#m02

1
24$123r s~0!@21r s~0!#

112r s8~0!%m0
21O~m0

3!. ~4.11!

At m050 the redundant couplingr s drops out, leaving
z~0!51 unambiguously. On the other hand, the full mass
dependence ofz can only be prescribed hand-in-hand with
r s . The origin of the link between the two couplings is that
both the kinetic~c̄g•Dc! and Wilson~c̄D~3!c! terms con-
tribute to E2 at O~p2!. This and analogous links between
couplings’ mass dependence are examined further in Sec. V
and Appendix A.

Beyond tree level~in perturbation theory or in Monte
Carlo calculations! one would tunez according to the same
physical principle that led to Eq.~4.10!: determine the mo-
mentum dependence of the energy of a suitable state and
demand thatM15E~0! andM25(]2E/]pi

2)p50
21 be equal.

When z and m0a have been adjusted so that
M15M25mq , one can rewrite Eq.~4.5! as E5Amq

21p2

1dElat . Expanding Eq.~4.4! to p4, one finds the lattice ar-
tifact dElat;p4a3 at small mass anddElat;p4a/M 2

2 at large
mass. To reducedElat further, one must incorporate higher-
dimension interactions into the analysis.

Finally, let us return to the residueZ2 in Eq. ~4.3!. In
general, the residue is a scalar function of four-momentump,
evaluated on shell. With a Euclidean invariant cutoff, scalar
functions can depend only onp2; on shell, withp252m2,
the spatial momentump drops out. With the lattice cutoff,
however, the mass shell is distorted, cf. Eq.~4.4!, so three-

momentump dependence can remain. Indeed, after integrat-
ing Eq. ~4.2! over p0 one finds

Z2~p!5~11m0a1 1
2 r szp̂

2a2!21. ~4.12!

Normally one identifies the residue with a~re!normalization
of the fermion field. Now, however, it is appropriate to ex-
pandZ2~p!5Z21O~p2!, where

Z25~11m0a!215e2M1a. ~4.13!

Then Z2
21/2c(x)5eM1a/2c(x) has the canonical normaliza-

tion. In the hopping-parameter notation the canonically nor-
malized field isA126r skscn . This notation shows clearly
that the approach to the static limitks!1 is smooth. Indeed,
Eq. ~4.13! captures the dominant mass dependence of the
field normalization to all orders in perturbation theory, cf.
Sec. VIII and Ref.@18#.

One might ask what to make of the momentum depen-
dence ofZ2, when the action is improved to higher dimen-
sions. The residue itself is not observable; physical quantities
are given by ratios ofn-point functions and the propagator.
With the correct on-shell improvement, thep2 dependence of
untruncatedn-point functions combines with that ofZ2 to
yield the desired results~to the order considered!.

V. THE HAMILTONIAN

This section introduces another method for deriving con-
ditions on the couplings in the action. The strategy is to
obtain an expansion in the lattice spacing for the Hamil-
tonian. For concreteness, we focus on the action
S5S01SB1SE . The couplings are then adjusted so that the
Hamiltonian of the lattice theory is equivalent to the Dirac
Hamiltonian. The idea is conceptually the same as on-shell
improvement, because the ‘‘spectral quantities’’ of Ref.@19#
are just eigenvalues of the Hamiltonian. But since the Hamil-
tonian is an operator, it contains the information of infinitely
many quantities, rather than the finite number accessible
when one computes correlation functions.

This approach reproduces thecn(m0a) derived with on-
shell correlation functions. But the analysis is explicitly rela-
tivistic, if noncovariant, so one sees clearly that the results
are general. On the other hand, we have not attempted to
extend the method to four-fermion operators, or to higher
orders ing0

2. The calculations required by those extensions
seem better handled with gauge-invariant on-shell correla-
tion functions.

There is a further conceptual advantage to the Hamil-
tonian. Lattice field theories are almost always formulated in
imaginary time. The interpretation of the results in real time
hinges on a good Hamiltonian fixing the dynamics of the
Hilbert space of states@2#. Hence the implicit, but seldom
stated, goal of improvement is an improved Hamiltonian;
this section merely takes direct aim on that goal. Moreover,
once one accepts the central role of the Hamiltonian, one
appreciates why a satisfactory HamiltonianĤ implies a sat-

isfactory time evolutione2Ĥa, no matter how largeĤa is.
In lattice field theory the Hamiltonian is defined through

the time evolution operator, or ‘‘transfer matrix’’@2#. There-
fore, Sec. V A starts by reviewing and extending the con-
struction of Ref.@24# to the actionsS0 andS5S01SB1SE .

6In the k t-ks parametrization@eliminatem0 with Eq. ~2.2!# this
condition is an implicit transcendental equation. In them0-z param-
etrization one can solve forz explicitly.
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A by-product of this analysis is the demonstration that there
is no need to improve the temporal derivative in Eq.~2.3!.
This feature is familiar from the static and nonrelativistic
formulations. It is a special blessing here, because a temporal
next-nearest-neighbor interaction would introduce unphysi-
cal states@6#, and at largem0a the physical and unphysical
levels cross. With the transfer matrix in hand, Sec. V B and
V C develop an expansion ina for the Hamiltonian itself.

A. Construction of the transfer matrix

The transfer-matrix construction with two hopping param-
eters differs little from the usual case@24#. The transfer ma-
trix acts as an integral operator in the space of gauge fields;
in theU051 axial gauge a wave functionalV t(U) at time t
evolves to

V t11~V!5E )
n,i

dUn,iK~V,U !V t~U ! ~5.1!

at time t11. The wave functionalV t(U) is also a vector in
the fermion Hilbert space. For the standard gauge action the
kernel may be written

K~V,U !5T̂ F†~V!TG† ~V!KG~V,U !TG~U !T̂F~U !. ~5.2!

The factors arising from the fermion actionT̂ F(†) are opera-
tors in the fermion Hilbert space. The factors arising from
the gauge field,TG andKG , are given in Ref.@24#; in the
following, they do not play a crucial role, so we do not
discuss them further.7

The fermion operator for actionS0 can be written

T̂F~U !5e@2ĤI ~U !#e2~1/2!Ĥ0~U !det~2k tBU!1/4, ~5.3!

where~see Ref.@24#!

Ĥ0~U !5CRMUĈ, ~5.4!

ĤI~U !5zCR 1
2 ~12g0!g•DUĈ, ~5.5!

in a matrix notation in whichC andC̄ are vectors, andBU ,
DU , andMU are matrices depending on gauge fieldU. The
vectors and matrices of this notation are labeled by spin,
color, and space. The covariant difference operatorD is as in
Eq. ~2.5! and

B512r sks(
i

~Ti1T2 i !, ~5.6!

eM5
B
2k t

511m02
1
2 r szD~3!. ~5.7!

The operatorsĈ andCR 5Ĉ†g0 obey canonical anticommu-
tation relations

$Ĉma ,Ĉnb
† %5dmndab , ~5.8!

wherem and n label spatial sites anda and b are multi-
indices for spin and color. The fields corresponding to these
operators are related to the original fields by

Cma5Bma, nb1/2 cnb . ~5.9!

This discrepancy in normalization between the integration
variables in the functional integral and the canonical opera-
tors in Hilbert space demonstrates again that the normaliza-
tion convention for the fieldc(x), cf. Eq. ~2.1!, is arbitrary.
On the other hand, the propagator ofC hasunit residue at
tree level, and a perturbative seriesZ2C51
1g 0

2Z 2C
[1] (m0a)1••• beyond tree level.

The generalization of Eqs.~5.2!–~5.9! to include the chro-
moelectric interactions suffers from a technical difficulty.
Usually one uses the ‘‘four-leaf clovers’’ in Eq.~2.12! as the
lattice approximants to the chromomagnetic and chromoelec-
tric fields. For the chromomagnetic interaction, this choice
poses no problem, becauseB involves link variables from
one time slice only. For the chromoelectric interaction, how-
ever, the time-space four-leaf clover involves link variables
from three time slices. In that case, the construction of the
gauge-field transfer matrix is more complicated and, if the
improved gauge action is any indication, it may no longer be
positive @25#.

To avoid this complication one can define a chromoelec-
tric field on only two time slices. Consider,

SE252cEks(
n,t

c̄n,t@
1
2 ~11g0!a•En,t21/2

1 1
2 ~12g0!a•En,t11/2#cn,t , ~5.10!

where

En,t61/2;i56 1
4 (
ı̄56 i

sign~ ı̄ !T60Tı̄T70T2 ı̄2H.c.,

~5.11!

is defined on atwo-leaf clover. The projection operators
1
2~16g0! in Eq. ~5.10! are chosen by analogy with the Wilson
time derivative, cf. Eq.~2.3!, and as a result the standard
transfer-matrix construction goes through with minor modi-
fications. The two-leaf versionSE2 differs from the four-leaf
versionSE by an interaction of dimension six, so it should
not alter the tree-level tuning ofcE .

Extending the transfer-matrix construction to
S01SB1SE2 @Eqs. ~1.6!, ~1.7!, and ~5.10!#, one finds the
following changes. The chromomagnetic interaction modi-
fies the matricesB andM to

B512r sks(
i

~Ti1T2 i !2 icBksS•B, ~5.12!

eM5
B
2k t

511m02
1
2 z~r sD

~3!1 icBS•B!. ~5.13!

7Different from Ref.@24# is the convention for the factors~16g0!
in the action~compare Eq.~1.6! with Eq. ~2! of Ref. @24#!. With our
convention it is natural for time-ordering to place later times to the
left. Thus, the kernelK(V,U) transfers the field fromU at timet to
V at time t11.
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Except for the newB, Eqs. ~5.8! and ~5.9! still hold. The
chromoelectric interaction, Eq.~5.10!, modifies the fermion
operatorT̂F so that it depends on initial and final gauge fields
U andV:

T̂F~V,U !5e2ĤI ~V,U !e2~1/2!Ĥ0~U ! det~2k tBU!1/4

~5.14!

with Ĥ0 as in Eq.~5.4! andM from Eq. ~5.13!, but

ĤI~V,U !5zCR 1
2 ~12g0!~g•DU2 1

2cEa•EV,U!Ĉ,

ĤI
†~V,U !5zCR 1

2 ~11g0!~g•DV2 1
2cEa•EV,U!Ĉ,

~5.15!

where the subscripts onD and E specify the spatial link
fields, out of which they are constructed. The sign of the
chromoelectric term inĤI

† can be checked as follows: in our
sign and i conventions ta†52ta and Euclidean electric
fields are anti-Hermitian operators in the gauge-field Hilbert
space,Êa†52Êa.

Comparing Eqs.~5.13! and ~5.15! with Eqs. ~5.7! and
~5.5!, respectively, one notices a pattern emerging. Interac-
tions with block-diagonal Dirac matrices append toeM,
whereas those with block-off-diagonal Dirac matrices
modify HI . This pattern depends only on the special Wilson
time derivative and the technical assumption that all interac-
tions live on only one or two time slices. It proves that there
is no need to alter the temporal derivative in Eq.~2.3!:
higher-dimension ‘‘spatial’’ interactions are enough to
achieve on-shell improvement, as asserted at the end of Sec.
III.

B. Small a expansion„general considerations…

From the transfer matrix one would like to derive the
exact lattice HamiltonianĤ52ln K̂. Of course, with this
definition the Hamiltonian cannot be represented by a finite
number of local operators. According to the Symanzik phi-
losophy, however, one ought to expand it in powers of the
lattice spacing. After obtaining the transfer matrix,~higher!
time derivatives are no longer a concern, so the lattice-
spacing expansion will hold if the quantitiesDa, Ba2,
Ea2,..., are small.

One can anticipate the expansion by enumerating the
terms allowed by symmetry:

Ĥ5CR @b0~m0a!mq1b1~m0a!g•Dcont1ab2~m0a!Dcont
2

1 iabB~m0a!S•Bcont1abE~m0a!a•Econt1•••#Ĉ,

~5.16!

where the subscript ‘‘cont’’ refers to an underlying con-
tinuum gauge field; below we usually suppress this subscript,
for brevity. The coefficientsbi depend onm0a, and since Eq.
~5.16! is to be interpreted as an expansion ina ~rather than
1/m0!, the bi for small m0a must beO„(m0a)

p
…, with p

nonnegative. The coefficients for the actionS01SB1SE ,
given in Sec. V C, satisfy this requirement.

The general objective is to adjust the couplings so that Eq.
~5.16! takes the relativistic Dirac form, i.e.,b05b151 and
b25bB5bE5...50. But, based on the considerations of

Sec. III, there must be some leeway in the redundant direc-
tions. In the operator formalism adopted here, unitary
changes of variables are possible, and these play the role of
the isospectral transformation, Eq.~3.2!. Under a change of
variables the Hamiltonian becomes

Ĥ85Û~Ĥ1] t!Û21, ~5.17!

where]t is a derivative with respect to imaginary time andÛ
is the unitary operator implementing the change of variables
in Hilbert space. Consider, for example, the following trans-
formation:

C°exp~2aj1g•D!C,

C̄°C̄ exp~2aj1g•D!, ~5.18!

for which

Û5exp~aj1Ĉ
†g•DĈ!. ~5.19!

Such transformations are familiar from studies of the nonrel-
ativistic limit of the Dirac equation, where they are called
Foldy-Wouthuysen-Tani transformations@20#. Their charac-
teristic feature is that the exponent is always a block-off-
diagonal Dirac matrix.

The transformed HamiltonianĤ8 has an expansion of the
same form as in Eq.~5.16!, but with transformed coefficients

b085b0 ,

b185b122mqab0j1 ,

b285b222b1j112mqab0j1
2,

bB85bB22b1j112mqab0j1
2,

bE85bE2j1 . ~5.20!

In light of the transformations, it is, therefore, enough to
adjustm0a, z, r s , cB , and cE , so that for some~hidden!
value ofj1 the transformed Hamiltonian takes the Dirac form
Ĥ85CR ~mq1g•D!Ĉ. That means that one wantsb085b1851
and b285bB85bE85•••50.

The Foldy-Wouthuysen-Tani parameterj1 drops out of
on-shell quantities. It is preferable, therefore, to parametrize
the redundant direction by one of the couplings. To this end,
it is efficient to note that the following combinations of the
bi ’s do not depend onj1:

B0[b05b08 ,

B1[b1
222mqab0b25b18

222mqab08b28 ,

BB[b22bB5b282bB8 . ~5.21!

A Hamiltonian unitarily equivalent to the Dirac Hamiltonian
is then obtained whenever

B05B151,

BB50. ~5.22!
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Equations~5.21! do not contain an invariant correspond-
ing to bE . This is analogous to the result, Eq.~4.11!, that the
general mass dependence ofz can only be determined hand-
in-hand with r s . In the present language, that connection
arises as follows. Consider truncating Eq.~5.16! at dimen-
sion four. Then only b0 and b1 remain. The Foldy-
Wouthuysen-Tani transformation isO~pa!, and superficially
not worth considering. If one introduces it anyway, one sees
immediately thatb1 changes, and in the transformation law,
Eq. ~5.20!, one power ofa has combined with the fermion
mass to givemqa. At mqa50 the conditionb151 is enough
to determinez~0! unambiguously. But to obtain fully the
mass dependencez~m0! one must consider simultaneously
the interactionsC̄g•DC andC̄~g•D!2C.

A similar fate awaits the coefficientbE and its coupling
cE . Consider a two-parameter Foldy-Wouthuysen-Tani
transformation

C°exp~2aj1g•D2a2jEa•E!C,

C̄°C̄ exp~2aj1g•D2a2jEa•E!. ~5.23!

The new parameterjE introduces changes that are superfi-
cially O~p2a2!. The other coefficients are unaffected byjE ,
but

bE85bE2j122mqab0jE . ~5.24!

Again, one power ofa has combined with the fermion mass
to give mqa. Thus, the conditionbE2j150 is enough to
determine onlycE~0!. The full mass dependence ofcE can
only be revealed by considering simultaneouslyC̄a•EC and
the dimension-six interactionC̄$g•D,a•E%C. This analysis
is deferred to Appendix A.

The next subsection adjustsm0a, z, r s , andcB to ensure
Eq. ~5.22!, and cE~0! to ensurebE8 (0)50. For heavy-light
systems, the resulting lattice theory has cutoff artifacts of
O~LQCD

2 a2! and,only whenmQa@1, ~yet smaller! artifacts
of O~LQCD

2 a/mQ! and ofO~LQCD
2 /mQ

2 ! as well. See Sec. VI
for details. Moreover, for quarkonia, the lattice theory is
similarly correct throughO(v2).

C. Small a expansion forS01SB1SE

Combining Eqs.~5.2! and~5.14!, and omitting factors that
depend only on the gauge field, the fermion Hamiltonian of
the lattice theory is

Ĥ52 ln@e2~1/2!Ĥ0~V!e2ĤI
†
~V,U !•••e2ĤI ~V,U !e2~1/2!Ĥ0~U !#,

~5.25!

whereH0 is specified by Eqs.~5.4! and ~5.13!, andHI is
specified by Eq.~5.15!. To derive an expression for the ferm-
ion Hamiltonian, one must coalesce the four exponents in
Eq. ~5.25! into one. Owing to nontrivial commutators be-
tweenĤ0, ĤI , and ĤI

† , this is too difficult in general. But
through orderD2a2, Appendix B achieves the desired result
by a trick. There the field theory is mimicked by a toy model
with the same algebraic structure but only two degrees of
freedom. In the toy model one needs only to take the loga-
rithm of a two-by-two transfer matrix, and expand the result
in powers ofa.

For smallDa the Hamiltonian becomes

Ĥ'CR FM12
z

2~11m0!
~r sD

~3!1 icBS•B!2 i z f 1~m0!Q

2z2f 2~m0!Q
2GĈ1O~p3a2!, ~5.26!

where

Q5 i ~g•Dcont1
1
2 ~12cE!a•Econt!. ~5.27!

The rest massM1 and the terms in parentheses come from
expandingM, and the functionsf i are extracted from the toy
model:

f 1~x!5
2~11x!ln~11x!

x~21x!
, f 2~x!5

f 1
2~x!

2 ln~11x!
2

1

x~21x!
.

~5.28!

Note thatf 1~0!51 and f 2~0!51
2.

In the spirit of an underlying continuum gauge field one
can identifyD~3! with Dcont

2 , D3D with Bcont, and @]t ,D#
with Econt. With these identifications one can cast Eq.~5.26!
into the form of Eq.~5.16!. Thus, the Hamiltonian of the
actionS01SB1SE has coefficients

b05M1 /mq ,

b15z f 1~m0!,

b25z2f 2~m0!2
r sz

2~11m0!
,

bB5z2f 2~m0!2
cBz

2~11m0!
,

bE5 1
2 ~12cE!z f 1~m0!, ~5.29!

and the invariantsBi are

B05M1 /mq ,

B15M1 /M2 ,

BB5
1

2MB
2

1

2M2
. ~5.30!

The massesM1 andM2 are as before, and

1

MB
5

2z2

m0~21m0!
1

cBz

11m0
. ~5.31!

After imposing Eq.~5.22!, M1, M2, andMB all equal the
physical mass.

The mass dependence of the couplings follows immedi-
ately from Eqs.~5.30! and ~5.22!. The requirementB151
implies

z5AS r sm0~21m0!

4~11m0!
D 21 m0~21m0!

2 ln~11m0!
2
r sm0~21m0!

4~11m0!
~5.32!

3942 55EL-KHADRA, KRONFELD, AND MACKENZIE



precisely as in Eq.~4.10!. The requirementBB50 implies

cB5r s . ~5.33!

Finally, for small mass the chromoelectric coupling should
be tuned to

cE~0!5 1
2 @11r s~0!#, ~5.34!

to enforcebE8 (0)50. With the axis-interchange invariant
boundary conditionr s~0!51, one thus recovers the action of
Ref. @6#, with z(0)5r s(0)5cE(0)5cB(0)51.

Our analysis has not yet specified the relevant couplings
g0
2 andm0a. They, of course, are fixed not by theory but by

experiment. In the Hamiltonian language, the bare massm0a
is adjusted so thatB051, i.e.,M15mq . Then the improve-
ment conditions, Eqs.~5.32! and ~5.33!, guarantee that
mq5M25MB also.

There is a special case of Eqs.~5.32!–~5.34! that is of at
least passing interest, namely the one for which the Foldy-
Wouthuysen-Tani parameterj150. This is obtained by
choosingr s so that~untransformed! b250:

r s5
2~11m0!

2

m0~21m0!
2

1

ln~11m0!
. ~5.35!

Then the conditionb151 requires

z5
m0~21m0!

2~11m0!ln~11m0!
, ~5.36!

the conditionbE50 requires

cE51, ~5.37!

and, as before, the conditionbB50 requirescB5r s . After
substituting Eq.~5.35! into Eq.~5.32! one reobtains the right-
hand side of Eq.~5.36!. Appendix A shows that—withr s and
z from Eqs.~5.35! and~5.36!—cE51 can be maintained for
arbitrarym0a.

VI. TRUNCATION CRITERIA REVISITED

This section reexamines criteria for truncating a cutoff
theory, with some emphasis on the errors left over after trun-
cation. The analysis of the previous sections takes the scaling
dimension of the interaction as a guide. For massless quarks
that is certainly correct. But the most appropriate organiza-
tion may vary when the same cutoff theory is applied to
different physical systems. Thus, conclusions about the ac-
curacy of a massive-fermion action must be refined, after
deciding whether the action is to be applied to heavy-light
systems or to quarkonia.

After the couplings have been adjusted to some practical
accuracy, the Hamiltonian~possibly after a Foldy-
Wouthuysen-Tani transformation! is

Ĥ5CR ~mq1g0A01g•D!Ĉ1dĤ lat ; ~6.1!

the Coulomb potential appears if one transforms to a gauge
without A050. A lattice artifactdĤ lat remains, because one
cannot exactly incorporate infinitely many terms into Eq.
~1.3!.

One can estimate the errors induced bydĤ lat by treating it
as a perturbation. There is an advantage to estimating cutoff
effects from the Hamiltonian. In the action formalism, Eq.
~1.5!, it may not be clear how the time discretization trickles
down to physical quantities. But by proceeding through the
transfer matrix these effects are treated exactly.

From the line of argument leading to Eq.~5.16!, one ex-
pects thatdĤ lat consists of operators multiplied by mass-
dependent coefficients

dĤ lat5(
n

asn (
l5Ln11

`

g0
2lbn

@ l #~m0a!Ĥn , ~6.2!

where the powersn5dimHn24, andLn is the number of
loops already under control. One can determine the effect of
dĤ lat on a physical quantity from order-of-magnitude esti-
mates for the operatorsĤn and general properties of the co-
efficientsb n

[ l ] (m0a). While the former depend on the physi-
cal process under study, the latter are process independent.

The dimension-five, tree-level coefficients have two im-
portant properties, which we believe are generic. First, at
asymptotically largem0a the tree-level coefficients either ap-
proach a constant or fall as a power of 1/(m0a). An analysis
of higher-order Feynman diagrams~Sec. VIII! shows that
tree-level patterns persist to all orders in perturbation theory.
Indeed, the asymptotic behavior is presumably a conse-
quence of the heavy-quark symmetries obeyed by all lattice
actions under consideration. Second, the coefficients always
contain the recurring ingredients 11m0a, m0a(21m0a),
and ln~11m0a! in a way that makes implausible any combi-
nation that would blow up at an intermediate value ofm0a.
Indeed, all evidence suggests that the functionsb(m0a) are
smaller than their low-order Taylor expansions, once
m0a*1.

Let us now discuss the typical size of the operators in the
Hamiltonian. Table II gives ballpark estimates for the
dimension-three, -four, and -five interactions for three sys-
tems: those in which all quarks are light, those with one
heavy quark, and quarkonia. The row labeledE0 in Table II
gives the nontrivial dynamical scales, to which artifacts
should be compared. In all-light and heavy-light systems, the
estimates start from naive dimensional analysis, but heavy-
quark bilinears with an off-diagonal Dirac matrices are
LQCD/mQ times smaller still. In quarkonia, the estimates are
those of Ref.@12#, with v denoting the typical velocity of the
heavy~anti!quark in the bound state [v;as(mQ)].

TABLE II. Estimates of the size of dimension-three, -four, and
-five interactions in systems with only light quarks, with one heavy
quark, and in quarkonia. The latter two columns usemQ to empha-
size the heavy-quark mass.

Hn Only light Heavy-light Quarkonia

E0 LQCD LQCD mqv
2

C̄C 1 1 1
C̄g•DC LQCD LQCD

2 /mQ mQv
2

C̄D2C LQCD
2 LQCD

2 mQ
2 v2

i C̄S•BC LQCD
2 LQCD

2 mQ
2 v4

C̄a•EC LQCD
2 LQCD

3 /mQ mQ
2 v4
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A conservative estimate of the artifact is then as follows:
Choose a system, multiply byasn, and compare toE0. The
coefficientb(m0a) is a number of order 1~or less!, for any
value of m0a, so its numerical value doesnot affect the
~conservative! conclusion. If, after suitable adjustment of the
couplings, one findsb;mqa for mqa!1, orb;1/(mQa) for
mQa@1, the artifact might be even smaller.

Consider the chromoelectric interaction as an example.
For the sake of argument, suppose that the rest massM1 and
the kinetic massM2, and hencem0a and z, have been ad-
justed nonperturbatively. IfcE is not adjusted correctly, then
the ~transformed! coefficientbE8 of the chromoelectric term
in the Hamiltonian does not vanish. Then, relative to the
correspondingE0, there are artifacts ofO~LQCDa! for all-
light, O~LQCD

2 a/mQ! for heavy-light, andO(mQav
2) for

heavy-heavy. If insteadcE(m0a) is adjusted tocE~0! in Eq.
~5.34!, the artifacts in all-light systems fall toO~mqLQCDa

2!.
With heavy quarks the estimates depend onmQa. If a is so
tiny that mQa!1, then bE8;mQa, and the chromoelectric
artifact is reduced toO~LQCD

2 a2! for heavy-light and to
O(mQ

2 a2v2) for heavy-heavy. But ifmQa*1, it turns out
thatbE8 either remains constant or falls as 1/(mQa), depend-
ing on the mass dependence of the redundant couplingr s .
The artifacts are then eitherO~LQCD

2 a/mQ! for heavy-light
andO(mQav

2) for heavy-heavy, or 1/(mQa) times smaller.
The appearance of 1/(mQa) in coefficients, in addition to

the LQCD/mQ in heavy-light dynamics, makes the error
analysis of heavy-light systems somewhat delicate. Since the
1/(mQa) behavior arises only ifmQa@1, it leads only to
errors that aresmaller than the usual discretization errors,
relative toE0. On the other hand, occasionally one is inter-
ested in effects that are subleading in the heavy-quark expan-
sion. For a given lattice action, such quantities may have a
larger relative error. For example, even withcE~0! adjusted
correctly, the fine structure of the heavy-light spectrum,
which is O~LQCD

2 /mQ!, suffers a relative error of order
~LQCD

3 a/mQ!/~LQCD
2 /mQ!;LQCDa.

Similar comments apply to quarkonia. Though the chro-
momagnetic and chromoelectric interactions are of order
mQv

4/mQv
2;v2 smaller than the spin-independent kinetic

energy, they introduce relative errors on spin-dependent
structure of ordermQv

4/mQv
4;1. A full O(v4) analysis re-

quires a few dimension-six and -seven interactions, which
we consider in Appendix A.

Once the dimension-five couplingscB andcE have been
properly adjusted, lattice artifacts remain from dimension six
and higher. Table III lists bilinear operators that can appear
in the Hamiltonian. The conservative estimate of the absolute
errors caused by these operators is to multiply Table III by
a2. WhenmQa@1, however, some of the contributions may
be, as before, a factor of 1/(mQa) or 1/(mQa)

2 smaller. But,
again, this subtlety is crucial only when quantities subleading
in the heavy-quark expansion are at issue.

The four-fermion interactions, listed in Table IV, are also
of dimension six. To generalize the analysis of Sec. III to
encompass these operators, one must simultaneously treat
dimension-six gauge-field interactions@6#. The result is that
(c̄g0t

ac)2 and (c̄g i t
ac)2 are redundant@6#, even without

axis-interchange symmetry. The other four-fermion interac-
tions arise first at the one-loop level.

Let us summarize the main points of this section for
heavy-light spectroscopy with actionS01SB1SE . After the
tree-level adjustments of Sec. V C have been applied, the
largest remaining lattice artifacts areO~g0

2LQCDa! from the
one-loop maladjustment ofSB1SE andO~LQCD

2 a2! from un-
adjusted dimension-six interactions. The mass dependence of
the artifacts is solely in the coefficientsb(mqa), which is a
number of order unity at any mass.

VII. ELECTROWEAK PERTURBATIONS

This section extends the formalism of the previous sec-
tions to the two- and four-quark operators of the electroweak
Hamiltonian, which may be treated as first-order perturba-
tions to QCD. The construction of the renormalized~or
continuum-limit! operator is analogous to the construction of
the renormalized trajectory. LetO denote the continuum op-
erator. Then

O5ZO~$m0a%,g0
2!FO01(

n
Cn~$m0a%,g0

2!OnG , ~7.1!

where the sum runs over all lattice operatorsOn with the
same quantum numbers asO.8 Like the couplings in the

8By convention, the zeroth lattice operatorO0 has the same di-
mension as the continuum-limit operatorO. The role of the other
CnOn is to remove terms suppressed~or enhanced! by apowerof a.
The role ofZO is to convert to a preferred renormalization conven-
tion.

TABLE III. Estimates of the size of dimension-six bilinear in-
teractions in systems with only light quarks, with one heavy quark,
and in quarkonia. For the actions considered here, the interactions
below the gap do not arise at tree level.

Hn only light heavy-light quarkonia

C̄g0@g•D,g•E#C LQCD
3 LQCD

3 mQ
3 v4

C̄~g•D!3C LQCD
3 LQCD

4 /mQ mQ
3 v4

C̄g iD i
3C LQCD

3 LQCD
4 /mQ mQ

3 v4

C̄$g•D,iS•B%C LQCD
3 LQCD

4 /mQ mQ
3 v6

i C̄g0S•~D0B!C LQCD
3 LQCD

4 /mQ mQ
3 v6

C̄g•~D0E!C LQCD
3 LQCD

5 /mQ
2 mQ

3 v6

C̄g0~D•E2E•D!C LQCD
3 LQCD

3 mQ
3 v4

i C̄g•~D3B1D3B!C LQCD
3 LQCD

4 /mQ mQ
3 v6

TABLE IV. Estimates of the size of dimension-six four-fermion
interactions in systems with only light quarks, with one heavy
quark, and in quarkonia. The role of these interactions can only be
treated consistently in concert with the gauge-field action. The in-
teractions above the line can then be considered redundant, while
those below the gap do not arise at tree level.

Hn only light heavy-light quarkonia

(c̄g0t
ac)2 LQCD

3 LQCD
3 mQ

3 v6

(c̄g i t
ac)2 LQCD

3 LQCD
3 mQ

3 v6

(c̄Gtac)2, GÞgm LQCD
3 LQCD

3 mQ
3 v6

3944 55EL-KHADRA, KRONFELD, AND MACKENZIE



action, the coefficientsZO andCn are functions of the rel-
evant couplings, all fermion masses$m0a% and the gauge
couplingg0

2. Equation~7.1! is general, but we again consider
perturbative expansions ing0

2,

ZO~$m0a%,g0
2!5(

l50

`

g0
2lZO

@ l #~$m0a%!,

~7.2!

Cn~$m0a%,g0
2!5(

l50

`

g0
2lCn

@ l #~$m0a%!,

and focus on tree level. Previous work@7# applied to small
masses, but we treat the mass dependence of
ZO

@ l #($m0a%) andCn
[ l ] ($m0a%) exactly. We also do not im-

pose axis-interchange invariance in classifying the lattice op-
eratorsOn .

The coefficientsZO andCn can be determined from low-
momentum matrix elements of allOn , analogously to Sec.
IV. At tree level it is enough to compute matrix elements
between quark and antiquark states. It is essential to impose
consistent normalization conditions. Appendix C derives
external-state rules for lattice perturbation theory. There one
finds that the contraction ofc(x) with a normalized fermion
state corresponds to a factorulat~j,p!N~p!, whereulat is a
normalized spinor on thelatticemass shell. The factor

N~p!5S m~p!2coshE

m~p!sinhE D 1/2, ~7.3!

where ~for S0! m~p!511m0a1 1
2 r szp̂

2a2. A relativistic
theory has insteadure(j,p)Amq /E, whereurel andE comply
with the relativistic mass shell.

Consider the bilinear operatorJ G
f g that creates flavorf

and annihilates flavorg with spin couplingG. At tree level
its matrix elements should be

^qb~j8,p8!uJ G
f guqa~j,p!&

5ūrel
b ~j8,p8!Gurel

a ~j,p!Amamb /EaEb8d
b fdag,

^q̄a~j8,p8!uJ G
f guq̄b~j,p!&

52 v̄ rel
b ~j,p!Gv rel

a ~j8,p8!Amamb /Ea8Ebd
b fdag,

^0uJ G
f guqa~j,p!q̄b~j8,p8!&

5 v̄ rel
b ~j8,p8!Gurel

a ~j,p!Amamb /EaEb8d
b fdag,

^qa~j,p!q̄b~j8,p8!uJ G
f gu0&

5ūrel
a ~j,p!Gv rel

b ~j8,p8!Amamb /EaEb8d
a fdbg, ~7.4!

whereEf
(8) is the energy of flavorf with momentump~8! and

massmf . Note that the relativistic spinorsurel andv rel appear
on the right-hand side.

With the right-hand side of Eq~7.4! as a target, we now
consider lattice operatorsOn . The simplest lattice bilinear
with the correct dimension and quantum numbers is

JG
f g~x!5c̄ f~x!Gcg~x!, ~7.5!

which corresponds toO0 in Eq. ~7.1!. Recall thatc(x) is the
field appearing in the mass form of the action, Eq.~2.3!. At
tree level the matrix elements are

^qb~j8,p8!uJG
f guqa~j,p!&

5ūlat
b ~j8,p8!Gulat

a ~j,p!Na~p!Nb~p8!db fdag,

^q̄a~j8,p8!uJG
f guq̄b~j,p!&

52 v̄ lat
b ~j,p!Gv lat

a ~j8,p8!Na~p8!Nb~p!db fdag,

^0uJG
f guqa~j,p!q̄b~j8,p8!&

5 v̄ lat
b ~j8,p8!Gulat

a ~j,p!Na~p!Nb~p8!db fdag,

^qa~j,p!q̄b~j8,p8!uJG
f gu0&

5ūlat
a ~j,p!Gv lat

b ~j8,p8!Na~p!Nb~p8!da fdbg, ~7.6!

whereNf~p! is the normalization factor of flavorf , cf. Eq.
~7.3!. Note that thelattice spinorsulat andv lat appear on the
right-hand side.

Settingp5p850, the matrix elements differ only because
of the factors N~0!. Thus ZGJG has the same zero-
momentum matrix elements as the targetJG , in all four
channels, if the~re!normalization factor

ZG~m0 fa,m0ga!5Am f~0!mg~0!5exp@ 1
2 ~M1 fa1M1ga!#.

~7.7!

This is a tree-level result, but the mass dependence shown
here remains dominant to all orders, cf. Sec. VIII.

Further terms in the three-momentum expansion cannot
be matched without considering higher-dimension terms in
Eq. ~7.1!. At tree level one sees the differences between Eqs.
~7.4! and ~7.6! in the factors NÞAm/E and spinors
ulatÞurel . Equation~7.1! can therefore be extended to higher
dimension by introducing an improved field. To first order in
pa consider

C I~x!5eM1a/2@11ad1g•D#c~x!, ~7.8!

with flavor labels implied. Then

J G
f g5C̄I

fGC I
g~x! ~7.9!

is the target operator of interest, through first order inpa, if
d1 is adjusted properly. Comparing the bracket in Eq.~7.8!
with those in Eqs.~C25! and ~C27!, one finds

d15
z~11m0a!

m0a~21m0a!
2

1

2M2a
, ~7.10!

identifyingmq5M2 .
9

For small mass one findsd1}m0a; the onlyO(a) im-
provement needed is the normalization factoreM1a/2. At
large mass, however, the rotation of Eq.~7.8! becomes im-

9The substitution of the kinetic massM2 for the rest massM1 is
done so that the expression remains valid under a nonrelativistic
interpretation explained in Sec. IX.
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portant. Analogously to the Hamiltonian coefficients dis-
cussed in Sec. VI, whenm0a@1, one hasd1'1/(2mq). Con-
sequently, the contribution ofd1g•D is essential for
computing the 1/mq correction to the static limit of matrix
elements ofJG . Similarly, higher-dimension generalizations
of Eq. ~7.8! are needed to obtain 1/mq

2 and corrections of
higher order in 1/mq .

The improved fieldC I(x) in Eq. ~7.8! coincides, through
O~p!, with the one denoted byC in Sec. V. Combining Eqs.
~5.9! and ~5.18!, the Foldy-Wouthuysen-Tani transformed
field is

C~x!5exp~aj1g•D!eM/2c~x!, ~7.11!

wherej1 parametrizes the solution of the tuning conditions.
This expression is~numerically! cumbersome, but one may
expand consistently the exponentials ina. This exercise
identifiesj1 with d1. Indeed, solvingb1851 for j1 yields the
right-hand side of Eq.~7.10!, after replacing the rest mass
M1 with the kinetic massM2 ~see footnote 9!.

The special role ofC should not be too surprising, be-
cause it possesses two important properties. First, it satisfies
canonical anticommutation relations and is thus properly
normalized. Second its dynamics are given by the Dirac
Hamiltonian Ĥ5CC ~mq1g0A01g•D!Ĉ—at least at tree
level and up toO~p2!. Therefore, any operator built out of
the transformed field yields the desired matrix elements, also
at tree level and up toO~p2!.

Let us conclude this section with some comments on two
other Ansa¨tze for the currents. A formal argument based on
the Ward identity suggests that a conserved current10 is es-
pecially suited to the determination of form factors of a vec-
tor current or the decay amplitude of a vector meson. But
although the Ward identity implies a certain universality in
radiative corrections, it doesnot imply any special mass de-
pendence at tree~or any other! level.

With standard Feynman rules and Appendix C, straight-
forward algebra yields the tree-level on-shell matrix ele-
ments. ToO~p! the ~conserved! gauge currentV m

G has the
matrix elements

^q~j8,p8!uV0
Guq~j,p!&5dj8j,

^q~j8,p8!uVi
Guq~j,p!&52 idj8j

pi81pi
2M2

1ū~j8,0!s i j u~j,0!
pj82pj
2MB

,

~7.12!

^0uV0
Guq~j,p!q̄~j8,p8!&5 v̄~j8,0!

ig•~p81p!

2MG
u~j,0!,

~7.13!

^0uVi
Guq~j,p!q̄~j8,p8!&5 v̄~j8,0!g iu~j,0!

sinhM1a

MGa
,

throughO~pa!, whereM1, M2, andMB are the tree-level
masses,11 but

1

MG
5

2z

m0~21m0!
1
cEz@11~11m0!

2#

2~11m0!
2 . ~7.14!

The Ward identity asserts that these tree-level masses all
renormalize in a coherent way. But although the ‘‘forward-
scattering’’ matrix elements in Eq.~7.12! are correct~assum-
ing M25MB5mq!, the ‘‘annihilation’’ matrix elements in
Eq. ~7.13! are not~unlessmqa!1!. We conclude, therefore,
thatV m

G is not useful for determining the decay constant of a
massive vector meson.

Reference@7# suggests using a ‘‘~four-dimensional! ro-
tated current’’

JG,rot
f g 5c̄ f~11 1

2aD”Q !G~12 1
2aD” !cg~x!. ~7.15!

To ascertain ifJG,rot
f g matches the target continuum operator,

one must evaluate matrix elements, as above. The timelike
translations inD0 greatly change the mass dependence. One
finds that ZGrotJG,rot

f g has correctly normalized matrix ele-
ments only if

ZG,rot~m0 fa,m0ga!5
4ZG~m0 fa,m0ga!

~21sinhM1 fa!~21sinhM1ga!
,

~7.16!

whereZG is the normalization factor of the unrotated bilin-
ear, Eq.~7.7!. Moreover, whenmqa!” 1 the rotation of Eq.
~7.15! must be supplemented a` la Eq.~7.8!, with the samed1
as in Eq.~7.10!. Thus, mass-dependent improvement of Eq.
~7.15! is analogous to improvement of Eq.~7.5!, but the
latter is simpler.

In summary, the mass dependence of electroweak opera-
tors is tractable, if one proceeds as follows. First, start with a
simple operatorO0 and expand its on-shell elements in ex-
ternal, spatial momenta small in lattice units. As usual, there
is no need to expand inm0a. Second, add additional terms
CnOn to correct the momentum dependence of the matrix
elements. At least to tree level this step can be accomplished
by field rotations, as in Eqs.~7.8! and ~A17!. Finally, nor-
malizeO01SnCnOn to obtain the fully renormalized opera-
tor O in the desired renormalization scheme. For example,
throughO~pa! the renormalized bilinearJ G

f g is given by
Eqs.~7.9!, ~7.8!, and~7.10!.

VIII. BEYOND TREE LEVEL

In the previous sections, them0a dependence of the cou-
plings in the action is derived at tree level. This section con-
siders what happens beyond tree level.

In perturbation theory the expressions for the masses in-
troduced previously become power series ing0

2. For ex-
ample,

10Both ‘‘Noether’’ and ‘‘gauge’’ currents are conserved; they dif-
fer by smn terms.

11For the Noether current the terms proportional tocB ~implicitly
in 1/MB! and cE ~in 1/MG! in Eqs. ~7.12! and ~7.13! would not
appear.
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E~0![M15M1
@0#1(

l51

`

g0
2lM1

@ l # ~8.1!

and

S ]2E

]pi
2 D

p50

21

[M25M2
@0#1(

l51

`

g0
2lM2

@ l # , ~8.2!

whereM 1
@0# andM 2

@0# are given by Eqs.~4.8! and ~4.9!, re-
spectively. After calculating the self-energy tol loops, one
can extract the coefficientsM i

[ l ] as functions ofm0a. The
requirementM15M25mq subsequently yields the perturba-
tive power series for the couplingsr s and z. ~Based on the
arguments of Secs. III and V, the Wilson term’s couplingr s
should be redundant to all orders ing0

2.! In the same vein,
the on-shell fermion-gluon vertex function tol loops yields
c B
[ l ] (m0a) and c E

[ l ] (m0a), and electroweak matrix elements
to l loops yieldZO

@ l #(m0a) andd i
[ l ] (m0a).

A complete derivation of one-loop corrections is beyond
the scope of this paper. It is easy, however, to assess two
qualitative features: the mass dependence of loop diagrams
~Sec. VIII A! and the expected size of corrections from tad-
pole diagrams~Sec. VIII B!.

A. Mass dependence of loop diagrams

This subsection shows that the mass dependence of loop
diagrams is benign. Although we focus on the specific action
S5S01SB1SE , the conclusions hold for any action with
the Wilson time derivative and arbitrary spatial interactions.
Actions with next-nearest-neighbor interactions in time are
problematic starting at tree level@6#, so they are not consid-
ered here.

Let us first consider vacuum polarization. At one loop it is
easy to see that the lattice-regulated Feynman integrals for
vacuum polarization are smooth functions of the fermion
mass. Moreover, for large fermion mass the integrals vanish
as (m0a)

22; rigorously so, because the momentum-
dependent terms in the fermion propagator are bounded. The
behavior is the same for a closed fermion loop with any
number of gluons attached. Hence, internal heavy-fermion
loops decouple precisely as expected.

The self-energy and vertex corrections are less trivial, be-
cause the external momenta are set on shell. Figure 1 shows
the one- and two-gluon vertices. For the action
S5S01SB1SE ~with the four-leaf clover forSE!,

L0
@0#5g0cos~p1 1

2k!0a2 i sin~p1 1
2k!0a

1 1
2cEzs0 jcos

1
2k0a sinkja, ~8.3!

L i
@0#5zg icos~p1 1

2k! ia2 ir sz sin~p1 1
2k! ia

2 1
2cEzs0 jcos

1
2kja sink0a1 1

2cBzs i jcos
1
2kia sinkja,

~8.4!

wherep andk are the incoming fermion and gluon momenta,
respectively. The expression forX mn

ab is not needed, except to
note that its mass dependence is qualitatively the same as
Lm

@0# .
A formal way of going to the mass shell is to put

p05 iEg0 , with E from Eq. ~4.4!. The g0 in the analytic
continuation is not rigorous when applied under an integral,
but them0a dependence comes out right. The temporal ver-

tex L0
@0# is proportional toeM1

@0#a511m0a. The spatial ver-
texL i

[0] is proportional toz, which, when it is tuned so that
M15M2 , satisfies r sz'(11m0a)/M1a for large mass.
Similar behavior holds for quark-multigluon vertices. Fi-
nally, the inverse propagator is also proportional to 11m0a,
for p close to the mass shell.

Consider any process with an external fermion line. Loop
diagrams can be built up from the tree diagram by adding
more gluons. Each additional vertex on the external line re-
quires an additional fermion propagator. The dominant mass
dependence of the propagator-and-vertex combination is
(11m0)/(11m0) or z/(11m0), and thus cancels always.

For example, all diagrams in the self-energy are propor-
tional to 11m0a. After summing the geometric series and
integrating overp0 one finds

eM1a5eM1
@0#a@11g0

2M1
@1#~m0a!1•••#, ~8.5!

Z2
21~m0a!5eM1a@12g0

2Z2
@1#~m0a!1•••#, ~8.6!

where M 1
[1] (m0a) and Z 2

[1] (m0a) depend mildly on the
mass, varying smoothly from the value obtained for massless
fermions to the value in the static formulation.

The same happens to the fermion-gluon vertex. The
gauge-coupling renormalization factor is defined through the
fermion-gluon vertex via

ZgN~p!ūlat~p!Lm~p,p!ulat~p!N~p!5
mq

E
ūrel~p!gmurel~p!,

~8.7!

where Lm~p8,p! is the full vertex function, including leg
contributions.12 In perturbation theory one usually organizes
the calculation by treating the legs and the proper vertex
separately. By gauge invariance

Zg5
Z1
Z3
3/25

Z1F

Z2AZ3
, ~8.8!

whereZ3 ~Z2! andZ1 (Z1F) are the gluon~fermion! wave
function and proper vertex renormalization factors. The
strong mass dependence ofZ2 must, therefore, cancel against
Z1F. ~The residual mass dependence ofZ1F/Z2 should be the

12At tree level one verifiesZg
[0]51 fromL0

@0# , and also fromL i
[0]

if mq5M2 .

FIG. 1. Notation for one- and two-gluon vertices.
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same asZ1/Z3 to satisfy the expectations of decoupling.!
Indeed, at tree level the temporal vertex provides the
asymptotic factor 11m0a, and, by the general argument, the
full proper vertex has the same~dominant! mass behavior to
all orders. Hence,

Z1F
21~m0a!5eM1a@12g0

2Z1F
@1#~m0a!1•••#, ~8.9!

whereZ 1F
[1] (m0a) again depends only mildly on the mass.

With the spatial vertexL i
[0] the factorz compensates for the

missing factor of 11m0a to ensure that 1/M2 appears, so the
11m0a counting is the same.

For electroweak currents and four-quark operators, the
analysis of the mass dependence is similar. Again, loop dia-
grams have the same leading mass dependence as tree dia-
grams for the same process. For example, the bilinearJ G

f g,
defined in Eq.~7.5!, has renormalization constant

ZG~mfa,mga!5e~M1 f a1M1ga!/2@11g0
2ZG

@1#~m0 fa,m0ga!

1•••#. ~8.10!

The mass dependence of the loop corrections
Z G
[ l ] (m0 fa,m0ga) smoothly connects massless and static re-

sults. Such behavior is borne out in Sec. X’s nonperturbative
check of the local vector current, for whichG5g0.

The considerations of this subsection argue that the large-
mass limit of actions described by Eq.~1.3! is well behaved
in perturbation theory. More generally, the physical masses
and, hence, the couplings could depend on the gauge cou-
pling in anonperturbativeway. But because the origin of the
gauge-coupling dependence is the region of momentum
space near the cutoff, it seems unlikely that nonperturbative
contributions would overwhelm the perturbative contribu-
tion, at least once the cutoff is large enough. Should pertur-
bation theory prove inadequate, however, a nonperturbative
renormalization group could, in principle, substitute for per-
turbative calculations.13 Nevertheless, it seems implausible
that nonperturbative effects are more worrisome at large
mass than at small. Thus, the main conclusion, that the large-
mass behavior of interacting fermions is benign, is probably
valid nonperturbatively.

B. Mean field theory

To estimate the one-loop corrections, recall that the domi-
nant contributions come~in Feynman gauge! from tadpole
diagrams, which originate from higher-order terms in the ex-
pansion of the link matrixUm511g0Am1 1

2g 0
2A m

21.... It is
possible to make this observation more systematic@23#.
Wherever the gauge field appears, substitute

Um~x!→u0@Um~x!/u0#, ~8.11!

whereu0 is a gauge-invariant average of the link matrices.
The substitution should be understood in the following
sense: The second factor [Um/u0] produces perturbative se-
ries with small coefficients. The first factoru0, which has a
nasty tadpole-dominated perturbative series, should be ab-

sorbed into the couplingscn and into renormalization factors
ZO . When a numerical value foru0 is needed, for example in
a Monte Carlo calculation, it should be taken from the Monte
Carlo itself.

With this prescription the hopping-parameter form ofS0
remains as in Eq.~1.6!, but withUm→Um/u0 and

ks,t→k̃s,t5u0ks,t . ~8.12!

The mass form ofS0 is given by Eqs.~2.3! but with differ-
ence operators defined with

T̃6m5u0
21T6m , ~8.13!

instead ofT6m , and mass

m̃0a5
1

2k̃ t
2@11r sz~d21!#

5
m0a

u0
1@11r sz~d21!#~u0

2121! ~8.14!

instead ofm0. Finally, an overall factor ofu0 multiplies each
term in the action.

The clover-leaf construction used to define the chromo-
magnetic and chromoelectric fields contains products of four
U matrices. If one replaces the gauge fieldsB andE with
tadpole-improved clovers, the interactionsSB and SE are
given by Eqs.~1.7! and ~1.8!, respectively, but with

c̃B5u0
3cB , c̃E5u0

3cE , ~8.15!

instead ofcB andcE , andk̃s instead ofks . The fourth factor
of u0 corresponds to the overall factor mentioned above.

After these rearrangements one can immediately general-
ize the expressions in Secs. IV and V to the mean-field level.
They remain the same as before, but withm0→m̃0 , cB→ c̃B ,
and cE→ c̃E . Consequently, the couplingsz, c̃B , and c̃E~0!
should be adjusted to the right-hand sides of Eqs.~5.32!–
~5.34!, but withm0→m̃0 . The resulting conditions represent
a set of mean-field-theory predictions atg0

2Þ0, given a non-
perturbative input foru0. One-loop calculations withm0Þ0,
cBÞ0, andcEÞ0 will test and correct mean-field theory es-
timates.

At currently accessible lattice spacings Ref.@23# has
shown that, with this mean-field reorganization and a sen-
sible choice of expansion parameter, the bare perturbative
series converges quickly in many cases. Calculations@18# in
one-loop perturbation theory of Feynman diagrams needed to
determine thec n

[1] (m0a) show a smooth transition from the
massless to the static limits.14 One therefore expects the es-
sential concepts of Ref.@23# to apply to thec̃n and to the
coefficients in Eq.~7.1! too. Indeed, in the one case for
which a nonperturbative check is unambiguous, the normal-
ization of the vector current, there is excellent agreement
with mean-field theory, cf. Fig. 4 in Sec. X.

13For example, to tunez nonperturbatively, compute the energy of
a meson and imposeM15M2 .

14For tadpole and scale-choice improvement@23# of the static
limit and of nonrelativistic QCD, see Refs.@26,27#.
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IX. THE NONRELATIVISTIC LIMIT

It is illuminating to adapt the methods of Sec. V to the
nonrelativistic and static limits. Rather than adjusting the
couplings to obtain the Dirac Hamiltonian, one could instead
aim for the nonrelativistic Pauli Hamiltonian~and generali-
zations thereof!. An advantage of this avenue is that it pro-
vides a useful physical picture even when the couplings are
maladjusted, in particular whenz51. Many Monte Carlo
studies have used actions withz51, and it would be helpful
to have a framework for interpreting their data in the heavy-
quark regime. Indeed, the analysis of this section shows that
z51 is acceptable for nonrelativistic fermions. Even the Wil-
son action~somewhat crudely! approximates the properties
of nonrelativistic or heavy-quark effective theory, provided
m0a is adjusted correctly. Similarly, the Sheikholeslami-
Wohlert action is a better approximation.

The Hamiltonian of the actionS01SB1SE can be
brought to the nonrelativistic Pauli form with the Foldy-
Wouthuysen-Tani transformation. Imagine transforming the
g•D anda•E terms away completely. Afterwards, the trans-
formed Hamiltonian reads

Ĥ8'CR SM11g0A02
D2

2M2
2
iS•B

2MB
2g0

@g•D,g•E#

8ME
2 D Ĉ,

~9.1!

whereM1, M2, andMB are as in Secs. IV and V. The new
massME reduces toM2 with suitable mass dependence ofcE
~see Appendix A!, or asm0a→0. The specific expression is
not needed here. The Pauli form of Eq.~9.1! has no coupling
between the upper~particle! and lower~antiparticle! compo-
nents ofC, as in the explicitly nonrelativistic formulations
@11,12#. Here, however, Eq.~9.1! is derived within the lattice
theory, rather than being an Ansatz for an effective lattice
theory.

Let us discuss the physics of each term in Eq.~9.1!. The
first three are the rest mass, Coulomb potential, and kinetic
energy15 of the fermion. TheS•B term, as one recalls from
atomic physics, produces the hyperfine splitting. The last
term can be rewritten

@g•D,g•E#5 iS•~D3E2E3D!1~D•E2E•D!.
~9.2!

The two parentheses give the~non-Abelian! spin-orbit and
Darwin interactions, respectively.

The Pauli Hamiltonian is quantitatively useful only if the
fermion is nonrelativistic. Given nonrelativistic velocities,
however, Eq.~9.1! remains applicable even when the various
masses are unequal. Figure 2 is a sketch of the quarkonium
spectrum, illustrating how the masses affect the spectrum.
The interesting gross feature of the spectrum is not the over-
all mass gap—close to 2M1—but the pattern of radial and
orbital excitations, e.g.,m2S2m1S orm1P2m1S. These split-
tings are dictated by the kinetic massM2. Following the
analysis of Ref.@12# they are of orderM2v

2, wherev is the
typical velocity of a heavy quark in quarkonium.~v;0.3 for

charmonium, andv;0.1 for bottomonium.! Further applica-
tion of the velocity counting in Ref.@12# to Eq. ~9.1! shows
that the hyperfine splittings areS•B/MB;M 2

2v4/MB , and
the spin-orbit splittings are@g•D,g•E#/M E

2;M 2
3v4/M E

2.
The preceding paragraph merely reviews the well-known

argument that the rest mass of a nonrelativistic particle de-
couples from the interesting dynamics. In our formalism the
reasoning suggests the following strategy: forget aboutM1
and adjust the bare mass so that thekineticmassM2 takes
the physical value. Meanwhile, choose the couplingz by
convenience. The obvious example is to takez51, as in the
Wilson and Sheikholeslami-Wohlert actions.

Since the Wilson and Sheikholeslami-Wohlert actions
represent viable nonrelativistic field theories, it makes sense
to compare them to the explicitly nonrelativistic theories.
The ~tree-level! masses for the Wilson action are plotted as a
function ofm0a in Fig. 3. Assumingm0a is chosen so that
M25mq , the other masses satisfyM1,mq , M B

21,mq
21,

andM E
21,mq

21. The simplest form of nonrelativistic QCD
@11# has HamiltonianĤNR5CC D2Ĉ/(2mq). Thus, in our no-
tation, ĤNR has M150 and M B

215M E
2150. Thus, the

Hamiltonians of the Wilson and simplest nonrelativistic
theories make the same errors qualitatively. For example, in
both one expects the fine and hyperfine splittings to be too

15Because of this physical interpretation the quantityM2, defined
in Eq. ~4.7!, is called the kinetic mass.

FIG. 2. Quarkonium spectrum and the influence of the masses
M1,M2,MB , andME . ~A similar picture applies to the heavy-light
spectrum, except the overall gap isM1 instead of 2M1, and orbital
and radial excitations are set byLQCD instead ofM2v

2.!

FIG. 3. The ~tree-level! masses for Wilson fermions~z51,
r s51!. By happenstanceM2 is always within 15% ofm0, which is
a result of a conspiracy between theg•D and Wilson terms.
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small. Similarly, for the Sheikholeslami-Wohlert action one
finds MB5M2 , and thus good hyperfine splittings, but
M E

21.mq
21, so the splittings betweenxJ states ought to be

too large. To obtain the correct spin-orbit splittings, one
needs the mass dependence ofcE , see Appendix A.

A parallel set of remarks applies to heavy-light systems.
The Hamiltonian of the lattice theory satisfies the usual
heavy-quark symmetries asmq→`, no matter whatM2,MB ,
andME are. On the other hand, the lattice theory possesses
the right16 1/mQ corrections only ifM25MB5mQ . A com-
putation with the Wilson action andmQ5M2 obtains spin
averaged featureus correctly, but underestimates the chro-
magnetic 1/mQ corrections. Compared to corrections from
the kinetic energy, the spin dependent effects are thought to
be small @17#, so again the most essential adjustment is
M25mQ . A better computation with the Sheikholeslami-
Wohlert action andmQ5M25MB obtains all16 1/mQ fea-
tures correctly.

Despite the similarity between previous nonrelativistic
field theories@8–12# and the view adopted in this section,
there are significant technical differences. The four-
component approach explicitly includes the terms
m0c̄(x)c(x) and terms that couple upper and lower compo-
nents, such asc̄(x)g•Dc(x) and c̄(x)a•Ec(x). The pro-
gram of Lepageet al., @12# omits these interactions in prac-
tice, though perhaps not in principle. There are advantages to
leaving out the Dirac block-off-diagonal interactions. Ferm-
ion propagators are the solution of a~one-sweep! initial-
value problem, whereas they are otherwise the solution of a
boundary-value problem, solvable only by iteration; with
fewer interactions, perturbation theory is easier@27#. On the
other hand, these interactions are necessary to takea→0 ~by
brute force! without the scourge of power-law divergences,
or to reach into the semirelativistic regime.

X. NUMERICAL TESTS AND APPLICATIONS

With a few examples this section tests the results of the
previous sections with Monte Carlo data. All data were gen-
erated with the axis-interchange symmetric Wilson or
Sheikholeslami-Wohlert actions, so asmqa increases, we
rely on the nonrelativistic interpretation of Sec. IX. The tests
verify the most important lessons. The bare mass should be
adjusted until the kinetic massM2, defined in Eq.~4.7!, takes
the desired value. In particular, in an extrapolation to vanish-
ing lattice spacing, one ought to hold the kinetic mass17

fixed. On the other hand, the dynamically irrelevant rest
mass may deviate frommq . For matrix elements, it is also
important to use the improved fieldCI of Eq. ~7.8! or ~A17!.
The factoreM1a/2 is more important than the bracket in Eq.

~7.8!, because it guarantees a smooth approach to the static
limit.18

First, consider the mass spectrum, in particular the hyper-
fine splitting in heavy-light systems. By heavy-quark spin
symmetry the vector-pseudoscalar mass differencemV2mP
is expected to be proportional to 1/mQ . Obviously the lead-
ing term in the summV1mP is proportional tomQ , so the
combinationmV

22mP
2 should be nearly independent ofmQ .

Numerical work@28,29# found, however, thatmV
22mP

2 de-
creases for increasingmQ , with lattice spacing a held fixed.
These analyses takemV andmP from the rest mass. From
Sec. IX the rest massM1 of the quark governs the rest mass
of the mesons, while the chromomagnetic massMB governs
the hyperfine splitting. The computed lattice quantity, there-
fore, is proportional toM1/MB , which decreases for increas-
ing quark mass, see Fig. 3. GivenM1 , MB is not as large
with the Sheikholeslami-Wohlert action as with the Wilson
action. Numerical data withcB51 show behavior@29# quali-
tatively similar tocB50.

To improve the determination ofmV2mP one should tune
to the kinetic mass instead of the rest mass and use the mean-
field or one-loop estimate ofcB . The chosen value ofcB
could be tested in quarkonia. Then in heavy-light systems
one could verify two predictions of heavy-quark symmetry,
as applied to the lattice theory: a fallingM1/MB behavior
when using the mesons’ rest masses, and a flatM2/MB be-
havior when using the mesons’ kinetic masses.

Next, consider the improvement and normalization of
multiquark operators from Sec. VII. The normalization of the
vector current can be checked nonperturbatively. The ferm-
ion number

Nh~H !5^Hu2k tZVc̄x
hg0cx

huH&5
^FH2k tZVc̄x

hg0cx
hFH

† &

^FHFH
† &

~10.1!

counts the number ofh-flavored fermions inuH&. If uH& has
one and only oneh in it, the conditionNh51 definesthe
factor 2k tZV @19#. Figure 4 compares this nonperturbative
definition of 2kZV with the mean-field-improved, tree-level
perturbative approximation. The symbols are from Monte
Carlo calculations@30# of Eq. ~10.1!, with uH& a meson with
a spectator antiquark of different flavor, and the solid curve
is the mean-field improved, tree-level approximation
2k~11m̃0h!. Figure 4 exhibits several interesting features.
The solid curve accurately tracks the dominant mass depen-
dence fromm̃050 to m̃05`. From Eq.~8.10! one expects a
subdominant mass dependence from loop corrections
ZV
[ l ] (m0ha). Indeed, nearm̃050 the massless one-loop cor-

rection @31,32# accounts quantitatively for the discrepancy,
and nearm̃05` the discrepancy becomes smaller, in accord
with a Ward identity, which requires 2kZV51 at infinite
mass@33#. Neglecting the dominant mass dependence, as in
the dashed curve, is obviously completely wrong form̃0*1.

Finally, consider the decay constant of a heavy-light pseu-
doscalar meson, computed with the local axial current
J m5
ub(x)5c̄u(x)gmg5c

b(x). Figure 5 shows Monte Carlo
data@34,35# at b55.7 ~for which a21'1 GeV! for

16Many phenomenological applications require matrix elements of
operators of the electroweak Hamiltonian. These operators must
also be constructed to the appropriate order in 1/mQ , see Sec. VII.
In particular, to first order in 1/mQ the coefficientd1 must be chosen
according to Eq.~7.10!.
17This can be done nonperturbatively with a meson instead of a

quark state.

18Neglecting the bracket introduces onlyO~m0pa
2! lattice arti-

facts atm0a!1, butO~p/mq! atm0a*1.
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fPvm5&^0uZA
ubJm5

ub uP,0&5AmPf Pvm , ~10.2!

where vm is the meson’s four velocity.~The vacuum and
one-meson states are normalized to unity.! We have deliber-
ately chosen a largish lattice spacing to enhance lattice arti-
facts, and thus test our control over them. We analyze the
data two different ways. The lower set of points takes the
meson mass from the rest mass and neglects the factor19

ZA
ub5eM1ba/2 in Eq. ~7.8!. As suggested by the curve, the

neglectful analysis would produce a locus of points that ap-
proaches zero in the static limit. The upper set of points uses
the normalization factor, and—just as important—it defines
the meson mass through a mean-field approximation to the
kinetic mass.20 Figure 5 shows how crucial both refinements
are, if the Wilson-action data are to approach the static limit
smoothly.

An important application of a plot like Fig. 5 is to com-
pute the slope in 1/mq . In the heavy-quark effective theory
the slope is seen to arise from three sources: the kinetic en-
ergy, the chromomagnetic interaction, and a correction to the
infinite-mass current@17#. The lattice theory has direct ana-
logs: the kinetic energy requires tuningM25mq , the chro-
momagnetic contribution requires tuningMB5mq , and the
local lattice current requires a correction, given most com-
pactly by Eqs.~7.8! and ~7.10!. All three ingredients are
needed to obtain the correct slope@36#.

XI. CONCLUSIONS

This paper~and conference reports@37,18,36# anticipating
it! provides the foundations of a theory of lattice fermions,

valid at any mass—large or small. The action starts with a
set of interactions that encompasses those of both light-
fermion actions@13,6# and heavy-fermion actions@10–12#.
The couplings of such a general action are then tuned in
successive approximations to the renormalized trajectory. In
applying renormalization-group techniques to analyze and
reduce cutoff effects we do not, however, expand in either
mqa or LQCD/mq .

Although there are several methods for tuning the action
~for example, Refs.@38,39#!, our analysis is based on
Symanzik-like, on-shell improvement criteria. This entails
the computation of on-shell correlation functions, or, equiva-
lently, of the Hamiltonian. Enforcing continuum-limit
behavior—for example the relativistic mass shell—yields
conditions on couplings of higher-dimension interactions. In
practice, we here compute on-shell quantities in~tadpole-
improved! perturbation theory.

An examination of the lattice theory’s Hamiltonian, de-
rived from the transfer matrix, is especially illuminating. It
shows that it is unnecessary to improve Wilson’s discretiza-
tion of the time derivative. Instead higher-dimension interac-
tions can be built from fields on one~or, in some cases, two
adjacent! time slices. Thus, our class of improved lattice ac-
tions automatically has an easy-to-construct transfer matrix.
The actions, consequently, all automatically satisfy heavy-
quark symmetries in the limit of large mass.

The Hamiltonian is a useful tool for examining lattice
artifacts. A term of dimensions14 factorizes as

dĤ lat5asb~mqa,g
2!Ĥ, ~11.1!

with dependence on the theory’s relevant couplingsmqa and
g2 in the coefficientb. From this expression it is plain how
the artifacts behave as the mass increases: the absolute error
induced by Eq.~11.1! is ^dĤ lat&;~pa!sp, wherep is the typi-
cal three-momentum of the process. At small mass it is stan-
dard that the associated coefficient is a benign numerical

19In the notation of sect. 8,ZV5Zgm
andZA5Zgmg5

.
20Ref. @34# provides hopping parameters and rest masses only, but

the mean-field approximation is adequate for illustrative purposes.

FIG. 5.fP5AmPf P vs 1/mq . Squares represent results from the
conventional zero-mass normalization, plotted versus 1/M1. Circles
represent the same results with the correct normalization, plotted
versus 1/M2. The points formq

21.0 are obtained with the Wilson
action@34#. The static~mq

2150! point is from Ref.@35#. The curves
guide the eye, and the approximate location of the physicalB andD
mesons is shown.

FIG. 4. The charge normalization factor 2kZV vs
(kc2k)/(kc23k/4)5(128k̃)/(126k̃)5m̃0/(11m̃0), with
u051/8kc . The symbols are Monte Carlo determinations with
r s5z51 and cB5cE5c. The solid square is the exact result for
k50. The solid curve is the mean-field approximation to Eq.~7.7!,
2kZV5126k̃. The dashed curve is a mean-field ansatz 2k̃, which
~foolishly! neglects the mass dependence.
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factor b~0!. At large mass the lattice action’s heavy-quark
symmetry implies that it is a~generally different! numerical
factorb~`!. Our explicit results at tree level and our analysis
of higher orders show thatb(mqa) is a smooth, gentle func-
tion connecting the two extremes. In a nutshell, therefore, the
characteristic measures of cutoff artifacts areLQCDa andpa,
but nevermqa.

In general our actions have two hopping parameters. Then
it is possible to maintain equality between the rest mass@en-
ergy at zero momentum, Eq.~4.6!# and the kinetic mass@in-
ertial response, Eq.~4.7!#. In nonrelativistic systems, how-
ever, there is a noteworthy simplification. Embracing the
philosophy of the static@8# or nonrelativistic@10,11# theo-
ries, one can ignore the rest mass and, hence, forgo one of
the hopping parameters. The obvious application is to set
them equal, as in the Wilson@3# and Sheikholeslami-Wohlert
@6# actions. Therefore, the correct interpretation of numerical
data generated with these actions atmqa;1 is a nonrelativ-
istic one. In particular, the hopping parameter must be ad-
justed so that thekineticmass agrees with the physical mass.

If one knowsa priori that a quark is nonrelativistic, it is
computationally cheaper to use a two-component formalism
@12#. But there are many instances in which one would like
to trace the mass dependence from the static limit down to,
say, the strange quark. One example is Fig. 5, which, with
reliable calculations, should indicate how and where the
heavy-quark expansion deteriorates.

The results of this paper can be extended in several ways.
The couplings have been computed at tree level with mean-
field improvement. One-loop calculations are desirable, and
better still would be a nonperturbative determination, per-
haps in a mass-dependent generalization of Ref.@40#. Once
one is confident thatO(a) artifacts are under control, one
can extend the analysis to dimension-six interactions. The
tree-level,O(a2) improvement should be manageable; be-
yond tree level the bothersome four-fermion interactions en-
ter the fray.

One would like to use the actions presented here in Monte
Carlo calculations of QCD. If one uses theO(v4)-improved
action to compute the spectrum of charmonium and bottomo-
nium, then, without more tuning, one could calculate prop-
erties ofD andB mesons, including the electroweak matrix
elements needed to determine the unknown elements of the
Cabibbo-Kobayashi-Maskawa matrix.21 Note that for these
matrix elements, as well as for the quark mass in theMS
scheme, a small lattice spacing is helpful to reduce perturba-
tive corrections. Once the lattice spacing is small enough so
that mQa&1, our formulation is especially advantageous.
The two-component nonrelativistic theory breaks down as
mQa gets smaller@11#, yet the old small-mass theory would
have leading lattice artifacts of orderasmQa and (mQa)

2.
Our improved action, on the other hand, remains viable for
any mass, and its cutoff effects are small, of orderasLQCDa
and~LQCDa!2. To obtain comparable accuracy through brute
force in the old theory, one would have to reduce the lattice
spacing by a factor ofmQ/LQCD—about five for the charm

quark. Even for a perfect algorithm the savings in computer
time is, therefore, a factor of 54.

ACKNOWLEDGMENTS

We would like to thank Peter Lepage for numerous dis-
cussions and Bart Mertens for collaboration on the one-loop
calculations mentioned in Sec. VIII. During this work we
have also had useful conversations with Claude Bernard, Es-
tia Eichten, Jim Labrenz, Martin Lu¨scher, Maarten Golter-
man, and Jim Simone. A.X.K. would like to thank the Fer-
milab Theory Group for hospitality. Fermilab is operated by
Universities Research Association, Inc., under Contract No.
DE-AC02-76CH03000 with the U.S. Department of Energy.

APPENDIX A: QUARKONIUM TO O„v4…

This appendix extends the analysis of the main text to
incorporate interactions that contribute in quarkonium
throughO(v4). Naively, this would entail close scrutiny of
all interactions throughO~p4!, i.e., up to dimension seven.
Some dimension-seven bilinear interactions are listed in
Table V, with their magnitude in quarkonium estimated by
the velocity-counting rules of Ref.@12#. Together with Table
III, one sees that not all dimension-six and -seven interac-
tions are necessary toO(v4); this Appendix considers only
the entries that are.

One must consider the dimension-six interaction

Sso5csoks(
n

c̄ng0@g•D,g•E#cn , ~A1!

with couplingcso, and the dimension-six and -seven interac-
tions

S4522ks(
n

c̄n@c4Dg•D2 1
2 r sc4LD

~3!#D~3!cn ,

~A2!

with couplings c4D and c4L. Further dimension-six and
-seven interactions contribute inO(v6) or higher @12#. We
discuss the adjustment ofcso in Eq. ~A1! in Sec. A 1, and the
adjustment ofc4D andc4L in Eq. ~A2! in Sec. A 2.

The discretization of the covariant differenceD and La-
placianD~3! also must be improved, to removeC̄g iD i

3C and
C̄D i

4C, respectively. These interactions break rotational in-
variance, and we treat them in Sec. A 2.

1. Chromoelectric interactions toO„v4…

It is easiest to treat the ‘‘spin-orbit’’ interactionSso in the
Hamiltonian formalism of Sec. V. The couplingcso can only

21For relevant reviews, see Refs.@41,21#.

TABLE V. Estimates of the size of the dimension-seven inter-
actions that arise in designing an action for quarkonia with an ac-
curacy ofmQv

4. @There are many other interactions needed to en-
sureO~~LQCDa!4! accuracy in all-light and heavy-light systems.#

Hn Only light Heavy-light Quarkonia

C̄~D2!2C LQCD
4 LQCD

4 mQ
4 v4

C̄D i
4C LQCD

4 LQCD
4 mQ

4 v4
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appear in a dimension-six term implied by the ellipsis in Eq.
~5.16!. The spin-orbit Hamiltonian is

Ĥso5a2bso~m0a!CR g0@g•D,g•E#Ĉ. ~A3!

Under the two-parameter Foldy-Wouthuysen-Tani transfor-
mation of Eq.~5.23!,

bso8 5bso2
1
2 j1

21bEj11b1jE22mqab0j1jE . ~A4!

With bso it is possible to give an invariant involvingbE :

BE5b1
224mqab0b1bE28~mqab0!

2bso

5b18
224mqab08b18bE828~mqab08!2bso8 , ~A5!

and one wantsBE51. Just as the redundancy associated with
the Foldy-Wouthuysen-Tani parameterj1 intertwines the
mass dependence ofz and r s , the redundancy associated
with the other Foldy-Wouthuysen-Tani parameterjE inter-
twines the mass dependence ofcE andcso too.

Assuming a discretization ofSso that resides on two time
slices only, it is straightforward to generalize the transfer-
matrix construction to the actionS01SB1SE1Sso. After ex-
panding the transfer matrix in powers ofa one finds

bso52 1
2 ~12cE!z2f 2~m0!1

csoz

2~11m0!
. ~A6!

Combining Eqs.~A5!, ~5.29!, and ~A6! and settingBE51
yields the mass-dependent condition

cE5
z221

m0~21m0!
1

r sz

11m0
1
r s
2m0~21m0!

4~11m0!
2

1
csom0~21m0!

z~11m0!
. ~A7!

Here the rest massM1 has been eliminated in favor of the
kinetic massM2 as appropriate to the nonrelativistic inter-
pretation of Sec. IX.

The redundant direction associated tojE permits a free
choice of cso. In our framework, which stresses a smooth
matching to the massless limit, the most convenient choice is
probably cso50. But for purely nonrelativistic applications
Ref. @12# would choosecE50 andzcso}mq

22. Other possi-
bilities correspond to the special choice forr s in Eq. ~5.35!.
Then Eq.~A7! reduces to

cE5112 ln~11m0!cso. ~A8!

The further special case corresponding tojE50 is cE51 ~in-
dependent ofm0a! andcso50.

2. Kinetic energy toO„v4…

The interactionS4 produces corrections to the kinetic en-
ergy. It is easiest to analyze from the energy-momentum re-
lation, as in Sec. IV. Expanding Eq.~4.4! to O~p4! yields

E5M11
p2

2M2
2 1

6w4a
2(

i
pi
42

~p2!2

8M4
3 1••• , ~A9!

where

M452S ]4E

]pi
2]pj

2D
p50

21/3

, iÞ j ~A10!

and

w452
1

4

]4E

]pi
4U
p50

2
3

4M4
3 . ~A11!

The relativistic mass shell satisfiesM45M25M1 , and a
nonrelativistic mass shell with leading relativistic correction
satisfiesM45M2 . In both cases rotational invariance re-
quiresw450.

A straightforward way is enforcew450 is to take an im-
proved covariant difference

aDi5
2
3 ~Ti2T2 i !2 1

12 ~Ti
22T2 i

2 ! ~A12!

and an improved covariant Laplacian

a2D~3!5(
i

@ 4
3 ~Ti1T2 i22!2 1

12 ~Ti
21T2 i

2 22!#.

~A13!

The coefficients are chosen so that the Fourier transforms
have nop i

3 or S i p i
4 terms, respectively. Then~at tree level!

w450 automatically.
SinceS4 contains no higher time derivatives, the transfer-

matrix construction proceeds as usual. After derivingM4 for
S01S4 ~M1 andM2 are unchanged!, one findsM45M2 at
tree level if the couplingsc4D andc4L obey

4z2c4D~11m0!1r szc4Lm0~21m0!

5
z4~11m0!@2~12z2!1m0~21m0!#

m0
2~21m0!

2

1
r sz

3@2~11m0!
223z2#

m0~21m0!
1
r s
2z2@m0~21m0!26z2#

4~11m0!

2
r s
3z3m0~21m0!

4~11m0!
2 . ~A14!

This result holds whetherz is tuned so thatM15M2 or not.
As with z andcE , only the massless limit ofc4D is unam-
biguous. For the full mass dependence the redundantc4L
must be specified, for examplec4L50.

It is instructive to look explicitly at the consequences of
omitting S4 from Monte Carlo calculations. Withunim-
provedD andD~3! and noS4

w45
2z2

m0~21m0!
1

r sz

4~11m0!
, ~A15!

and

1

M4
3 5

8z4

m0
3~21m0!

3 1
4z3@z12r s~11m0!#

m0
2~21m0!

2 1
r s
2z2

~11m0!
2 .

~A16!

The rotational-invariance breaking artifact is, thus,
O(p i

4a2/mq) for mqa large or small. The rotationally in-
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variant, relativity-breaking artifact isO~p4a2/mq! at small
mqa, andO~p4a1/mq

2! at largemqa.

3. Electroweak operators

For electroweak decays of quarkonia toO(v4), one needs
a higher-dimensional generalization of Eq.~7.8!:

C~x!5eM1a/2@11ad1g•D1 1
2a

2d2D
~3!1~ i /2!a2dBS•B

1 1
2a

2dEa•E#c~x!. ~A17!

The d’s are easiest to derive from the Foldy-Wouthuysen-
Tani transformed field. Combining Eqs.~5.9! and ~5.23!,

C~x!5exp~aj1g•D1a2jEa•E!eM/2c~x!, ~A18!

wherej1 andjE parametrize the solution of the tuning con-
ditions. Expanding the cumbersome exponentials to
O~a2@p2,B,E#! and eliminatingj1 andjE in favor of the cou-
plings z, r s , cB , andcE , one finds

d25d1
22

r sz

2~11m0!
,

dB5d1
22

cBz

2~11m0!
,

dE5
z~12cE!~11m0!

m0~21m0!
2

d1
M2

, ~A19!

andd1 as in Eq.~7.10!. In Eqs.~A19! the kinetic massM2
has been substituted for the rest massM1. Thus, these for-
mulae remain valid under the nonrelativistic interpretation
explained in Sec. IX.

APPENDIX B: COMBINING EXPONENTS

This appendix presents a proof of Eq.~5.26!, i.e., that the
functions f 1 and f 2 are given by the expressions in Eq.
~5.28!. If H0, HI , andHI

† were to commute, it would be
trivial to combine the exponents. They do not, so the com-
bined exponent depends on their commutators as well. The
commutators are

@Ĥ0 ,ĤI #522M1ĤI1O~p3a3!,

@Ĥ0 ,ĤI
†#52M1ĤI

†1O~p3a3!,

@ĤI ,ĤI
†#52z2CR Q2Ĉ1O~p4a4!. ~B1!

To obtain the last commutator we have written
DU5~D21

2E!cont and DV5~D11
2E!cont, and we have ne-

glected higher powers ofEcont. The operatorsQ and D~3!

carry one and two powers ofpa, respectively; thusM
5M12

1
2r sze

2M1D (3)1O(p4a4). Note that although
@ĤI ,ĤI

†# is O~p2a2!, further commutators such as
†Ĥ0 ,@ĤI ,ĤI

†#‡ are at leastO~p4a4!.
Instead of solving the field theory, it is enough to consider

a toy model with two degrees of freedom, a fermion~anni-
hilated by â! and an antifermion~annihilated byb̂!. With
discrete time the action is

S5(
t
at
†~]0

21m!at1bt
†~]0

21m!bt2 iq~at
†bt

†2btat!.

~B2!

The transfer matrix has the same form as Eq.~5.25! with

Ĥ05 ln~11m!~Â†Â1B̂†B̂!, ĤI5 iqB̂Â, ~B3!

whereA5(11m)1/2a, andB5(11m)1/2b. With the identi-
fication ofq with zQ andm with eM21, the operatorsĤ0

andĤI
(†) of the toy model and the field theory have the same

algebraic structure.
This model has only four states, the vacuum, fermion,

antifermion, and a fermion-antifermion state. The strategy is
to work out the transfer matrix elements explicitly, and then
take the logarithm. These steps are easier in the Grassman-
number approach, where the matrix elements of the transfer
matrix are the coefficients of monomials in~Grassman num-
bers! A, A†, B, andB†, when

T~A†,B†;A,B!5eiqa
†b†ea

†a1b†be2 iqba ~B4!

is expressed as a polynomial. Up to factors analogous to
det(2k tB), which we can drop without loss, the transfer ma-
trix in the neutral sector is

^ i uT̂ u j &5S ~11m! 2 iq

iq ~11q2!/~11m!
D . ~B5!

Writing T5VDV†, whereD is diagonal, the Hamiltonian is
H52V ln (D)V†. Expanding the result toO~q2! one finds

^ i uĤu j &5S 2m11 f 2~m!q2 i f 1~m!q

2 i f 1~m!q m12 f 2~m!q2D , ~B6!

whereem1511m. Expressed in terms of Fock-space opera-
tors

Ĥ5@m12 f 2~m!q2#~Â†Â2B̂B̂†!2 i f 1~m!q~Â†B̂†2B̂Â!.
~B7!

Substitutingm1 andq forM andzQ completes the deriva-
tion of Eq. ~5.26!.

APPENDIX C: SPINORS, CREATION,
AND ANNIHILATION OPERATORS

This Appendix gives the construction of spinors and of
creation and annihilation operators ind54 space-time di-
mensions. These are needed to calculate amplitudes of on-
shell fermions via Feynman diagrams.

Consider an arbitrary bilinear fermion action

S5(
x,y

c̄~x!@gmK̃m~x,y!1L̃~x,y!#c~y! ~C1!

with an implied sum overm. We assume thatK̃m and L̃ are
translation invariant. With parityL̃(x,y) is symmetric, and
K̃m(x,y) antisymmetric, under interchange ofx and y. The
field c(x) has the following equation of motion
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(
y

@gmK̃m~x,y!1L̃~x,y!#c~y!50. ~C2!

In such a free theory, one searches for solutions of the form
c(x)5eip0t1 ip•xu(p). The four-component spinoru(p)
must satisfy

@ igmKm~p!1L~p!#u~p!50. ~C3!

The Fourier transformsKm(p) andL(p) are real functions of
p by parity and translation invariance. Multiplying by
2igmKm(p)1L(p) one sees that solutions exist only if

K2~p!1L2~p!50. ~C4!

This mass shell coincides with the one derived from the
propagator, as in Sec. IV.

The actions that we consider all have the Wilson time
derivative. Writingp5~p0,p!, one then has

K0~p!5sinp0 ,

Ki~p!5Ki~p!

L~p!5m~p!2cosp0 ; ~C5!

Ki~p! is an odd, andm~p! an even, function ofp. Thus,
solutions exist only when

p056 iE~p!, ~C6!

where

coshE~p!5
11m~p!21K2

2m~p!
>1. ~C7!

It is convenient to label the solutions of Eq.~C3! by the sign
in Eq. ~C6!. For each sign there are two solutionsu~61,p!
andu~62,p!. Settingp50 the equation of motion simplifies
to

sinhM1~2g0signj11!u~j,0!50, ~C8!

whereM15E~0!5ln@m~0!#. Choosingg0 as in Eq.~2.6! the
four solutions atp50 are

u1~1,0!5u2~2,0!5u3~21,0!5u4~22,0!51, ~C9!

where the subscript is the Dirac index, and all other compo-
nents are zero. Direct substitution verifies that

u~j,p!5
2 igmKm1L

A2L~L1sinhE!
u~j,0! ~C10!

solves Eq. ~C3! for pÞ0, if sin p05 i signj sinhE and
L5m~p!2coshE~p!. The denominator yields the normaliza-
tion convention in Eq.~C14!.

The two solutions with ‘‘negative energy’’~j,0! corre-
spond to antiparticle states. As usual we introduce

v~j,p!5u~2j,2p!, j51,2. ~C11!

The spinorsv obey the equation of motion

@2 igmKm~p!1L~p!#v~p!50, ~C12!

which is solved by

v~j,p!5
1 igmKm1L

A2L~L1sinhE!
v~j,0!, ~C13!

now with sinp051 i sinhE. From now on we shall useu and
v with jP$1,2% and sinp051 i sinhE only.

The spinors obey the conventional orthonormality proper-
ties

ū~j8,p!u~j,p!52 v̄~j8,p!v~j,p!5dj8j,

ū~j8,p!v~j,p!5 v̄~j8,p!u~j,p!50, ~C14!

whereū5u†g0 and v̄5v†g0 . Moreover,

ū~j8,p!g0u~j,p!5 v̄~j8,p!g0v~j,p!5dj8j
sinhE

m~p!2coshE
,

ū~j8,p!g0v~j,2p!5 v̄~j8,p!g0u~j,p!50. ~C15!

In a relativistic theoryE/m would appear here.
The general solution to Eq.~C2! is a linear superposition

c~ t,x!5E d3p

~2p!3
N~p!(

j51

2

@b~j,p!u~j,p!e1 ip0t1 ip•x

1d†~j,p!v~j,p!e2 ip0t2 ip•x# ~C16!

with sinp05 i sinhE. The normalization factorN~p! is fixed
below, after invoking this expansion for Hilbert-space opera-
tors. The operator-valued expansion coefficientsb̂†~j,p! and
d̂†~j,p! create particle and antiparticle states, respectively:

uq~j,p!&5b̂†~j,p!u0&, uq̄~j,p!&5d̂†~j,p!u0&,
~C17!

where u0& is the Fock state annihilated by allb̂~j,p! and
d̂~j,p!. Assuming the vacuum is normalized to^0u0&51, the
fermion states are normalized to

^q~j8,p8!uq~j,p!&5~2p!3d~p82p!dj8jf~p!,
~C18!

and similarly for the antifermion stateuq̄~j,p!&, if and only if
the anticommutator

$b̂~j8,p8!,b̂†~j,p!%5~2p!3d~p82p!dj8jf~p!,
~C19!

and similarly for$d̂~j8,p8!,d̂†~j,p!%.
The transfer-matrix construction provides the anticommu-

tation relation forĉ~t,x! andcC ~t,x!. Equation~5.9! becomes

C~ t,x!5(
y
E d3p

~2p!3
e1 ip•~x2y!m~p!1/2c~ t,y!.

~C20!

After inverting the Fourier series and evaluating the anticom-
mutators one finds
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f~p!5
m~p!2coshE

m~p!N2~p!sinhE
, ~C21!

The conventionf51 is the most convenient.22 Then

N~p!5S m~p!2coshE

m~p!sinhE D 1/2. ~C22!

Note thatN(0)5e2M1/2.
With all this machinery we can now state the main result

of this appendix. The Feynman rules for vertices in standard
references~e.g., Ref.@42# for the Wilson action! are derived
from the functional integral, i.e., usingc(x). To obtain on-
shell matrix elements, these rules must be supplemented by
rules for contractions betweenc(x) and conventionally nor-
malized external states. They are

~C23!

multiplied by the sign appropriate to the anticommutation
implied by the ••• . For all states the momentum flow is
physical, i.e., with~against! the charge flow for particles~an-
tiparticles!.

For the specific action discussed in this paperS0 one finds
~restoringa!

Ki~p!5z sinpia

m~p!511m0a1 1
2 r szp̂

2a2. ~C24!

The chromomagnetic and chromoelectric interactions do not
modify these functions, but the kinetic corrections in Appen-
dix A do.

It is useful to record the smallp expansion of the external
line factor here:

N~p!ulat~j,p!5e2M1a/2F12
i zg•pa

2 sinhM1a
2

p2

8MX
2 Gu~j,0!

1O~p3!, ~C25!

where the subscript ‘‘lat’’ abbreviates lattice, andMX is an
‘‘external line mass.’’ ForS0

1

MX
2a2

5
z2

sinh2M1a
1
2r sz

eM1a
. ~C26!

For a unified treatment of fermions and antifermions in ini-
tial and final states, it is handy to note that Eq.~C25! holds
for positive and negativej. The analogous expression for
N~p!v lat~j,p! then follows from Eq.~C11!.

Unless m0a!1 the lattice external line factor
N~p!ulat~j,p! deviates from the relativistic one. With our nor-
malization conventions the relativistic analog of Eq.~C25! is

Amq

E
urel~j,p!5F12

ig•p

2mq
2

p2

8mq
2Gu~j,0!1O~p3!,

~C27!

where the subscript ‘‘rel’’ abbreviates relativistic. The rota-
tions in Secs. VII and A 3 are needed to convert the bracket
of Eq. ~C25! into the bracket of Eq.~C27!, assuming
mq5M2 .
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