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Recursion rules for scattering amplitudes in non-Abelian gauge theories
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We present a functional derivation of recursion rules for scattering amplitudes in a non-Abelian gauge theory
in a form valid to arbitrary loop order. The tree-level and one-loop recursion rules are explicitly displayed.
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I INTRODUCTION S p1=Sol 1+ Sl #1, 2.1

It is by now a well-appreciated fact that non-Abelian where So[ ¢] is the free action of the fornSy[¢]=[3
gauge theories display many interesting and beautiful prop¢K ¢ and S;; is the interaction part of the action. Specifi-
erties which are, no doubt, indicative of their deeply geo-cally, K can be taken to be of the fori= —Z,(5°+m?).
metrical nature and symmetry. Already at the level of pertur-The functional for theS-matrix elements can be written as
bation theory, many of the scattering amplitudes, in quantunp10]
chromodynamicgQCD), for example, have a simple and
elegant form, although large numbers of Feynman diagrams . o
have to be summed up to arrive at thgsg This feature was ]:[‘P]zeFf [dg]e'Sol I+ ISl &), (2.2
originally understood in terms of calculational techniques
based on string theory as well as recursion riizs4]. (A where(x) can be expanded as
field-theoretic understanding of the string-based techniques
has _also emerg_ekﬁ].) There are also i_ndications that there <P(X)=E aUi(X) +ak uk (). 2.3
are integrable field theories hidden in non-Abelian gauge K
theories which describe some aspects of these theories, such
as scattering for certain specific choices of helicities as welVk(X), Ui (x) are the one-particle wave functions and are so-
as scattering in the Regge regif@-9]. Given these fea- lutions of the free field equatiolK¢=0. F is given by
tures, it is clear that the theoretical exploration of the struc=kax ax and is introduced in Eq(2.2) to give the matrix
ture of even the perturbative scattering matrix can be quit€lements for subscattering processes where some of the par-
useful. ticles fly by unscattered. The matrix element for a process

Within a field-theoretic approach, recursion rules for scatwhere particles of momenth, k,, ... ky scatter to par-
tering amplitudes have been very useful in understandingjcles of momentg,,p,, . .. ,py IS given by
color factorization and many other properties. These rules
were originally derived for tree-level amplitudes using dia- S, _ s 9 s 9
grammatic analyses by Berends and Giele and have later kg K= P1P2 P Say, day,  day, day
been extended up to the one-loop lejEl,17. Elaboration !

and extension of this technique, we feel, can be very fruitful. 6 1)

In this paper, we present a derivation of the recursion rules XQ‘ o gﬂﬁp]

within a functional formalism without reliance on diagram- P2 Pu ¢=0
matic analysis and in a way valid for any field theory. From (2.9

the basic equations, recursion rules valid up to arbitrary loop

order can be obtained, although at the expense of increasirginceF is not particularly relevant for our calculations be-
algebraic complexity. We explicitly display the tree-level low, we can drop it in what follows. Further, we consider
and one-loop recursion rules. Renormalization constantsp(X) to be an arbitrary function rather than a solution to
which one must consider beyond the tree level, are also ea&¢=0. Eventually, in obtaining th&-matrix elements we
ily incorporated in a functional derivation. can choose it to be a solution Kbp=0. We thus define

II. S-MATRIX FUNCTIONAL

) . 1
f[¢]=f [dﬁb]eXF{'SO[¢]+|Sint(¢+¢)_|Ef eKe
We start by considering a scalar field theory with action
of the form

: 2.5

:f [d¢]ex;{i8[¢]—ij eKe

*Permanent address: Physics Department, Seoul National Univewhere we added a term expi/2f ¢K ¢) for simplifications
sity,  Seoul, 151-742, Korea. Electronic  address:in what follows; this of course does not contribute when
cjkim@scisun.sci.ccny.cuny.edu Ke=0. In terms of this#, the S-matrix elements are given
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_ * *
Skl’k2'"kN_’p1p2"'pM_[akl. Tk Gpy 'apM}-[(’D]]‘PZO’

or K®+p(d+ )l (58) 1
(2.6 5P 59 d=D+iK~18/5¢ 01
where (219
The right-hand side involves the derivative®fwith respect
ak:f uk(x)L) (2.7 ¢ which is the two-point correlato®& given by
dp(x) '
= . -1 5 . -1 5 . -1 5 .
From the second of equatior8.5), we see thatF is the  G(Xy)=[iK 3o d(y)=|iK 3o iK b iC.
generating functional of the connected Green functions with x x (3’2 16

source K¢ and Eqg. (2.6) represents the well-known

Lehmann-Symanzik-Zimmermar(hSZ) reduction formula. |t satisfies the basic Schwinger-Dyson equation for the
Consider nowsF/ o¢. Differentiating with respect t@,  theory, viz.,

we find

sF ”L
iK*l(s—@:f [d¢]¢exp(i3[¢]—if ¢K¢). (2.8 yl 6P (x) oD (y)

) L ] o Equation(2.15 supplemented by Eq2.17) can thus be re-
Effectively, ¢'s inside the integral behave a& “6/6¢.  garded as a nonlinear equation fof®]. From the connect-
From Eq.(2.5 we also have the equation of motion ing relations(2.13 we find thatsT'/ s® =0 for Ke=0, as is
appropriate folS-matrix elements. In this case, from the defi-

eX[<iS[(f)]—if ¢K¢):0, (2.99  hition of ', we have

G(y,2)=is¥(x—2). (2.17)

oS
f [dd’]{é—(ﬁ—ch

. . Clel=T[®]|sr/s0=0- (2.18
which can be written as
The S matrix is then given by
SF . 4
I£+p(¢)f—(qu)f=0 , (2.10 F=[eMT 51 s0—0- (2.19

~ This relation gives a nonperturbative definition of thena-
wherep($)=(8S/5¢) and p=iK =5/5¢. trix. The free data in the solutions t6I'/8®=0 are the
J itself generates connected as }’(‘:’Fﬂ as disconnected scafyantities on whichF depends(Perturbatively, the free data
tering processes. If we writé] p]=e' "%, whereClg] de-  5pq the amplitudes, anda? in the solution fore.) The fact
scribes connected processes only, €410 reduces to that theS matrix can be obtained as the exponential iof (
times the action evaluated on solutions of the equations of
1. motion is rather well knowh10,13.

2 C—Ko—Fip(3)F=K k1250
5o O Ke p(d)F=Keo—p b ¢

(219 lll. S-MATRIX FUNCTIONAL

This can be regarded as a nonlinear functional differential FOR YANG-MILLS THEORY

equation for theS-matrix generating functional and can be  \ye start with the gauge-fixed Lagrangiahof an SU
used for deriving systematic recursion rules for scattering(N)_Y{mg_“,”"S theory given by

amplitudes. We shall do this for Yang-Mills theory in the

next section. L=—1F2 Fra_1(9.A)2-c(—3-D)c
Although it is not crucial to the discussion of recursion ey
rules, one may also work with the quantum effective action = ITrF, F#"+Tr(9-A)2+2Tic(—a-D)c,  (3.1)
or the generating functional for one-particle irreducible ver- K
ticesT'[®] defined by where
—Ea a_
riel=clel+ [ (<o), 212 Fur=FluT=dA, =0 A oA, AL

D,c=d,c+g[A,.c], (3.2
with the connecting relations
with [ T2, TP]= f2P°T¢ and TaTP= — 15,,. T2 are matrices

or B _,6C in the fundamental representation of SY( The free part
B Ke, =K S¢ =2. (213 and the interaction parts of the action are, respectively, iden-
tified as

Then, Eq.(2.11) becomes _
a LO=TrA#(—a2)A“+2Tr (—d)c,

KO=Kp—p(P+ )1 (2.14 .
(1) _ v ~ - 2
or, in terms of T[], Lint =20Tro ALAS AT STHALAL, - (33
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|(r12t)_29Tra c[A*c]. (3.4 From Eq.(2.10, F satisfies the equation
Following the discussion of Sec. I, the functior&lwhich —|—]:=62aa]—'+ SSing oiS
gives theS matrix can be constructed as oa, w da a
Fal= f exp(is—i f az(—aZ)Aﬂa)[dA][dc][dc_]. =aza37+J;(A)|A=i65_if+ f 29Trd,c[ T3 cle's,
3.
(3.9 37
The transition amplitude fax gluons of momenté&; , polar- where
izationse|}), and colors labeled,, .. . ay to go toM glu-
ons of momentap;, polarizations !, and color labels . oSy
Buit . Ay IS A =3 To= — 5 T == ga"[A, A ]+ gF A
o
Tk 62? it —1{p; ,Egj) aj}] @8
andG(x,y)=—(x|d"?|y). As we have written it, the term in
:f H e iki x,6(|> H eup,yJEm Eqg. (3.7) involving ghosts cannot immediately be replaced
[ i sa a' by derivatives onF. For this, we proceed as follows. Inte-
grating out the ghost fields if we get the Faddeev-Popov
determinant detf 9- D) =e"™(=?D) which is equivalent to a
(3.6 term in the action—itrin(—¢g-D). This leads to a ghost cur-
a=0 rent of the form
a H &rln(_ﬁ'D) H - n+1 a v v
Ju(Agn= —1—— 7= Zl (-9 THTA, (YD) - A, (Yn) Jagd" G (X,Y1) - - 9""G(Yn-1,Yn) 9, G(Yn X)),
" =

3.9
where we have introduced the adjoint representation T8fs by (T dJ)bc=—f""b°. (L‘i(,ﬁ) in this notation reads
L3 =—-00,CTaeAs.)
The trace in the above equation may be written in terms of the generators in fundamental representation using
fabl= —2TrT3 TP, T°],
Tr(TeaTa. - T) = 2 TATA TP, [ T2, [ T%,[ ... [T3-1,[ T2, TP]] ... ]. (3.10

Therefore we can finally write the ghost part of the curr@st a matrix in the fundamental representgtias

JP-(A)gh: ‘JZ(A)ghTa:inZl (_g)nJrlD,u/.Llu-/.Ln(vali e ,yn)[Tb,[Al’“l(yl),[ et ,[A/’“n—l(ynil),[Al-‘n(yn),Tb]] Tt ]=

(3.1
where
Dopy o (XiY1s oo Yn) =30, G(XY1) -3, G(Yn-1,Yn)3,G(Yn . X). (3.12
|
Then Eq.(3.7) finally becomes This is the basic equation for the scattering amplitudes.

The A expansion of this equation leads to recursion rules up
Ya to arbitrary order. We have explicitly displayed the factors of
- =%’ ]:+[J (A)+J23 2(A)ghlaic(ssa)F- f in EqQ. (3.14). Recall that the interaction part of the action
53# carries 1& and that each propagat@r carriesfi. The ghost
(313 terms, arising from the determinant, ha#®. C[a] in Eq.
(3.14 has an expansion of the form

For connected pa€[a]=—iInF[a], 1
Cla]=—ilnFa]= gC(°>+C(1)+hC(2)+ .

oC
h

Sat azaiJF [I5(A)+ 7 I5(A)gnla= - nc(scisa) +inG(srsa L (3.19
"

(3.149 Starting from Eq.(3.14) and using the above expansion
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for C[a], one can, in principle, systematically derive recur-[2] used to derive tree-level recursion relation for gluon scat-

sion relations to any desired orderfin

tering processes; if one expanﬂﬁo) in powers ofa,, the

Let us begin with a tree-level recursion formula for coefficient function of each term gives the one-gluon off-

Cc©). This is simply given by

sc®
W=a2ai+JZ(A(°)), (3.16
where
Af)az—J G%;Oa), (3.17
ie.,
PAY =%, +3,(AD). (3.18

This is just the equation of motion as it should k&his

equation has previously been obtainedid].) Al” is essen-

shell current of Ref{2] when multiplied by polarization vec-
tors of on-shell external gluons. More generally, if one con-
sidersa,’s off shell, it gives the generalized current with
off-shell gluons which has been used fgg—qqgg---g
process and some one-loop calculatiphk,12. Also, notice
that from the form of currend, in Eq. (3.8), it is obvious
that color factors are factorized from coefficient functions
and we can write

1Yn)aﬂl(y1)"'aﬂﬂ(Yny
(3.19

The coefficient function<(®’’s do not carry color indices.
We also haveC'?) (x,y1) = 8(X—Y1)d,,,. Using Eq.(3.19

0)— (0)
AL —ngl fcwl-wn(x'yl’ Ce

tially the same object as the current that Berends and Gielm Eq. (3.18),

P> fcﬁf’)(x,v)a(v)—azaﬂzaﬂ(A)z—Z f[Za”Cif’)(x,Y)CS,O)(X,Z)—Z&VCLO)(X,Z)CV(O)(X,Y)

+CP(x,Y)3,C"%(x,2) +C\Y(Y)3,C"%(x,2) - C'Y(x,2)a"C(x,Y) Ja(X)a(Y)

- f [2C?(x,X)C2(x,Y)C"%(x,2) - CP(x,X)C"%(x,Y)C(x,2)

—CP(x,X)CP(x,Y)C"(x,2)]a(X)a(Y)a(2),

(3.20

where X, Y, andZ are collective indices and(Y) stands forHia#i(yi), etc. If a, is restricted to be on shell, the terms

containinga”C(VO) in the third line vanish because of current conservation. We can transform this equation to momentum space

by writing

Ciz,o,lz,l...ﬂn(x!yll s lyn):f (277)4( k+2 pl)

C o (Prs ,pn)exp(ik-x)exp<i2 pi-yi),

(3.21

where momentum conservation has been taken into account. ThdB.20.becomes

n-1

PI.C(1,. .. ,n)=mZ:1 V3, (P1m, Py CO(L, ... mCO(m+1, ... n)

n-2 n-1

+ 2 > Ve, . mcP(m+1, ... CP(k+1,... n),

m=1 k=m+1

where P; ;=p;+---+p; and V5" and V;"*” are color-
ordered vertices,

VE"(p,a)=—09{g""(p—a)*+g°*(29"+p")
_ gMV(2p0+ qp)}'

Vi"7=—g(2g"g" - g""g"" ~g"7g").  (3.23

(3.22

This equation is the recursion relation for currents with off-
shell gluons derived if2,11].

In deriving higher order recursion relations fSfmatrix
elements, we must correct E&.14) by including the appro-
priate renormalization constants. As usual, we interpret fields
and coupling constants as renormalized ones and assume that
renormalization counterterms are included A%, of Eq.
(3.3. Explicitly,
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L=~ 36Z3Tr(d,A,—3,A,)2=29Z,Trd A LA, A,]
g S
72525 TiA, A, 12—26Z5Trc(— d?)c

(3.29

whereZ;A,,, @c, andgZz,Z; ** are bare quantities with
6Z3=2Z3—1andéZ3=2Z3—1. Correspondingly], becomes

—292,741Z5Trd,c[A,, cl,

‘]/A(A) == gﬁv[A,u iAv] + g[F/AV !Av] - %5Z3ﬁv(a,uAv
- aVA;L) - g(zl_ 1)((9V[A,u ’AV] - [Fp,v !Av])
+0%°21(Z11Z5— D[[A, ALA,L (3.29

The extra counterterms contribute to one-loop or higher or-

ders and will cancel ultraviolet divergences from loop inte-
grals. In addition, to account for the freedom of arbitrary
finite renormalization we include a finite wave function
renormalization constantzz in the external field, i.e.,

a,—a,=a,/\z.

Now we are ready to discuss one-loop recursion relations.

Keeping terms relevant up to one-loop order,

sclo scH 1 scl®
=G5 |G T 30%C
— A0 L A(D)
=A A+ (3.2
The current can similarly be expanded as
J,(A)=3D+3D+ ... with

I0=—ga' ALY AP+ g[F,,(A®),A0],
IP=—ga"([AY AVT+[AD APDY)

0 v (H_ (1) A(0)v
+9[F . (A?),AM"]+g[D ,AY-D AL A©"]

—6Z, 3V (A) = —=5"(9,A - ,A?)

+02%(82,— 6Z)[[AY AP, AQ], (3.27)
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whereD,,=d,+g[A?,]. In Eq.(3.14 we need
S , o 0) ) S
J. A+|G§ 1=J,(A)—gd IGW’A +g 'a“GBT\V
1)
0)v
—id GW,A( ) }
e
0 ic | A0
AP G 5| A )+ (3.28

Up to one-loop order, the functional derivative term in the
ghost current has no contribution:

. 0)
JArie ] 123, At (329
9
Collecting all these, we get an equation g
) S
PAY =343, (A)g—gd"|iG 5a#,A<V°>}
1) o
i 0)
+0|id 65 id GgawAv}
Al
+|AY i — 0 AL (3.30
® éa, '

whereA() is the solution of Eq(3.18. Notice that, in this
case;G(&/ da,) terms contract color indices when acting on
A(O) and so the color decomposition does not occur as in the
tree level case. However, it is possible to ng) as a sum
of color-factorized amplitudes and the proof has been given
using a string-theory argumefit5] and color flow diagrams
[17]. Here we give a simple proof based on E8.30.

First we study the action oiG(&/8a,) on Al From
Eqg. (3.19,

8 S
GW,NO)}: Zl m§=:1 J C(V?)l v g YL Ymo 1Y Yme1s -+ - Yn)G(XY)
X[T2a,,(yD) 8, Ym0, | (Y1) -2, (Vo). (3.30
With the help of Fierz identity for SWN),
av—a 1 1
(T XT )ij:_i 5|lTrX_NX|] , (332
it becomes
8 S
GQ,A@}: > > f C,u(x1, ... mim+1...na(l)---a(mTra(m+1)---a(n)], (3.33
n=1 m=0

where
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- 1
C,u(x}.., mm+1l., n)=- ELG(x,y)[C(V?)l‘”VmeH,_.Vn(x,yl, e YmaYsYma1s - oYn)
—cl©

m+1"°

gt (Yt - Y Y Ve - Y- (3.34

[Here the 1N term in Eq.(3.32 does not contribute because of the commutator; notice also that the summation3138q.
starts withm=0.] Thus differentiation oﬂif’)a produces terms with trace over substringsagfs. Also, from Eq.(3.11), we
see that the ghost current has the same structure:

A= 2 (=9)" D, (61, . ) 2 {2} {TPAQi) - - AOGITPAO iy, 1) - - A
n= ]

k=0
=A(iy)- - AT AV (iyyq) - - AO(I ) T, (3.39
whereE{il} is the sum over all permutations £f, . . . n} such thai;<- - - <i, andi,,>--->i,. Using Eq.(3.32, we get

JM(A(O))gh=—|§ZlkE > g =)D (x,0q, o) AQ(L)- - AQKTTAO (k+1)---AQ(n)], (336

=0 oeSyk
whereS, . is the set of all permutations ¢1,2, . . . ,n} that preserves the ordering pf}={1, . .. k} and the cyclic ordering
of {B}={n,n—1, ... k+1}, while allowing for all possible relative orderings between elements in the twdfeetsxample,

(In,2,...kn=1,...)isinS,y, but (2,1,... k,n,n—1,...) is nof; BM is given by
D,(x1, ... M=D,(x1, ... N)—(—1)"D,(x,n,n—1,...,]. (3.37)

Since EQq.(3.30 is at most linear im® it is clear thatAE}) can be written as

AL (x)= 21 20 J Chu(x.1, ...mm+1, ... ma(l)---a(mTrfa(m+1)- - -a(n)]. (3.39

Then in Eq.(3.30 we can separately equate terms with theA(®), there are potential discrepancies between both sides.
same trace structure amﬁr};’s with differentm’s do not mix ~ This is because in Eq3.39 the sumation is over alir
with each other. The functions we need are theff)  Sym while, in Eq. (3.3, we sum only overoe S

=CW(x,1, ... n) corresponding to the term in E¢3.39  (k<m), which does not include such permutations that mix
with no trace. These obey the recursion rule obtained byndices from both{«} set and{g} set within one tree struc-
substituting AM=37_, fcM(x,1, ... n)a(1)---a(n) in ture. However, the extra terms in E¢3.39 cancel out

Eq. (3.30. The other amplitudes can be obtained fromthanks to the symmetry properties of color-ordered vertices:
ci,

“ nvp mpv —

The coefficient functions corresponding to different trace VET(p.a) V5T (Q,p) =0,
structures have simple relations among th@rhich allow us
to construct the amplitudes with subtraces frdrﬁlj). We

have[15,16 which, when applied to Eq.3.22 together with induction,
leads to identities for £m<n,

VAPT L HPTY L\ = (3.40

Co(x1, ... mm+1,...n)

> C9%o0y,....00=0, (3.41

r
(TESn;m

=(-pr ™ Es Cfi)(x,o-l, ce0n),
Tge n;m
(3.39  whereS],, is the same a§,., defined above except that it

. . ) does not include the cyclic permutations {g8} set. (This
For this, we show that the right-hand side of E8.39 sat-  gquation can be considered as a generalization of the so-

isfies the same equation as that for the left-hand side. This isy1ed “dual Ward identity” for tree amplitudes which cor-
most e_zasily seen for the ghost_ current which we shall CONtesponds ton=1 case[3,18].) Thus Eq.(3.39 holds for
sider first. Obviously, an equation like E.39 holds for ghost current.

D,'s [with the identification of the summation indices = e shall now show that the relation E®.39 connecting

k in Eq. 3.3 and m in Eq. (3.39], if AlD(x)  amplitudes with different trace structures holds for the non-
=fC§f)(x,X)a(X) in (3.36 is replaced by its lowest order ghost terms in Eq(3.38 as well. Towards this, consider the
terma,, . For the terms with more than oreg,’s from one  terms with differentiationG(é6/a) in Eq. (3.30. Diagra-
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FIG. 1. A typical term inC)(x,1, ... my,m+1,... n).yis
connected tox and the loop encloses legs+1, ... n which are
under a trace.

matically, those terms correspond to one-loop gluon dia- *
grams with the external leg directly connected to the loop. 1
* . - *e*’n o o @

(b)

In our setting, we can proceed as follows. Applying Eq. m+1 m o
(3.22 repeatedly t€€(V(x,1, . .. m,y,m+1,... n) we can _ _ _ _
identify the internal line for each term from E¢B.22. It FIG. 2. (a) A diagram obtained by changing the relative order of

connects andy, and the other external legs are ordered in dfaced legs and the others from Fig. 1. 1t contributes to
clockwise direction in such a way that 1 . ,mth legs are  Cmu(*1, ... mm+1,...n). (b) A diagram obtained by pulling

. - 1
below the line whilem+1, . . . nth legs are above the line the legs out of the loop ife). It contributes taC{,)(x.1, . .. ).
(Fig. 1). Then we draw a line connecting and y which Now it remains to consider the term frodf) which con-
enclosem+1, ... nth legs so that it represents that the legsi5ins c(U's with less number of legs. It corresponds to the

inside the loop are traced. Then, it is easy to see which tem@luon-loop diagram with the external legattached to a tree.
generate which color structures. Obviously, given such a diaThjs case, however, is not much different from the previous
gram, we get the same subtrace structure from diagramsne and we can argue in the same way with the help of Eq.
made by altering the relative order of trees belonging to dif3.41) if needed. Finally, there are counterterm contribu-

ferent sets while keeping the order {f, ... m} and the tions for the CM(x,1 n) case in contrast to
. . nu by o
cyclic order of{m+1,... n} (Fig. 2. Moreover, they are  c(l(x1,... mim+1,...n) (m<n). But again the iden-

trivially related to terms which contribute 16(}); i.e., we  tity'Eq. (3.41) guarantees that those terms cancel out when
can simply pull out the trees inside the loop to outside with ahe summation in Eq(3.39 is done. This completes the
minus sign, using the symmetry property of vertices, Eqproof that both the left- and the right-hand sides of 8039
(3.40. Notice that during this procedure the order of satisfy the same recursion relation. Since E439 trivially
{m+1,...n} is also reversed. Thus, essentially we haveholds forn=3, they are indeed equal to each other.

the same situation as in the case of ghost current and a rela- Beyond one loop, it is clear from E¢B.14) thatAEf) will

tion of the type(3.39 holds in this case as well. in general have terms witk subtraces,

APx)=> > | c¥ (X,1,- -, my;mg+1, ... My ... me+1...n)

=1 5 mym, ...Mu
xa(l)---a(my)Trla(m;+1)---a(my)]---Trla(m+1)---a(n)], (3.42
and each:ﬂjimz, g with differentk will satisfy its own equation. It might be possible to find simple relations between them
as in the one-loop case.
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