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I. INTRODUCTION

It is by now a well-appreciated fact that non-Abelian
gauge theories display many interesting and beautiful prop-
erties which are, no doubt, indicative of their deeply geo-
metrical nature and symmetry. Already at the level of pertur-
bation theory, many of the scattering amplitudes, in quantum
chromodynamics~QCD!, for example, have a simple and
elegant form, although large numbers of Feynman diagrams
have to be summed up to arrive at these@1#. This feature was
originally understood in terms of calculational techniques
based on string theory as well as recursion rules@2–4#. ~A
field-theoretic understanding of the string-based techniques
has also emerged@5#.! There are also indications that there
are integrable field theories hidden in non-Abelian gauge
theories which describe some aspects of these theories, such
as scattering for certain specific choices of helicities as well
as scattering in the Regge regime@6–9#. Given these fea-
tures, it is clear that the theoretical exploration of the struc-
ture of even the perturbative scattering matrix can be quite
useful.

Within a field-theoretic approach, recursion rules for scat-
tering amplitudes have been very useful in understanding
color factorization and many other properties. These rules
were originally derived for tree-level amplitudes using dia-
grammatic analyses by Berends and Giele and have later
been extended up to the one-loop level@11,12#. Elaboration
and extension of this technique, we feel, can be very fruitful.
In this paper, we present a derivation of the recursion rules
within a functional formalism without reliance on diagram-
matic analysis and in a way valid for any field theory. From
the basic equations, recursion rules valid up to arbitrary loop
order can be obtained, although at the expense of increasing
algebraic complexity. We explicitly display the tree-level
and one-loop recursion rules. Renormalization constants,
which one must consider beyond the tree level, are also eas-
ily incorporated in a functional derivation.

II. S-MATRIX FUNCTIONAL

We start by considering a scalar field theory with action
of the form

S@f#5S0@f#1Sint@f#, ~2.1!

where S0@f# is the free action of the formS0@f#5* 1
2

fKf andSint is the interaction part of the action. Specifi-
cally, K can be taken to be of the formK52Z2(]

21m2).
The functional for theS-matrix elements can be written as
@10#

F@w#5eFE @df#eiS0[f]1 iSint~f1w!, ~2.2!

wherew(x) can be expanded as

w~x!5(
k
akuk~x!1ak* uk* ~x!. ~2.3!

uk(x),uk* (x) are the one-particle wave functions and are so-
lutions of the free field equationKw50. F is given by
(kak* ak and is introduced in Eq.~2.2! to give the matrix
elements for subscattering processes where some of the par-
ticles fly by unscattered. The matrix element for a process
where particles of momentak1 ,k2 , . . . ,kN scatter to par-
ticles of momentap1 ,p2, . . . ,pM is given by

Sk1 ,k2•••kN→p1p2•••pM
5F d

dak1

d

dak2
•••

d

dakN

d

dap1
*

3
d

dap2
*
•••

d

dapM
*
F@w#G

w50

.

~2.4!

SinceF is not particularly relevant for our calculations be-
low, we can drop it in what follows. Further, we consider
w(x) to be an arbitrary function rather than a solution to
Kw50. Eventually, in obtaining theS-matrix elements we
can choose it to be a solution toKw50. We thus define

F@w#5E @df#expS iS0@f#1 iSint~f1w!2 i
1

2E wKw D
5E @df#expS iS@f#2 i E wKf D , ~2.5!

where we added a term exp(2i/2*wKw) for simplifications
in what follows; this of course does not contribute when
Kw50. In terms of thisF, theS-matrix elements are given
by
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Sk1 ,k2•••kN→p1p2•••pM
5@ak1

•••akN
ap1
* •••apM

* F@w##w50 ,

~2.6!

where

ak5E uk~x!
d

dw~x!
. ~2.7!

From the second of equations~2.5!, we see thatF is the
generating functional of the connected Green functions with
source Kw and Eq. ~2.6! represents the well-known
Lehmann-Symanzik-Zimmermann~LSZ! reduction formula.

Consider nowdF/dw. Differentiating with respect tow,
we find

iK21
dF
dw

5E @df#fexpS iS@f#2 i E wKf D . ~2.8!

Effectively, f ’s inside the integral behave asiK21d/dw.
From Eq.~2.5! we also have the equation of motion

E @df#F dS

df
2Kw GexpS iS@f#2 i E wKf D50, ~2.9!

which can be written as

i
dF
dw

1r~f̂!F2~Kw!F50 , ~2.10!

wherer(f)5(dSint /df) and f̂5 iK21d/dw.
F itself generates connected as well as disconnected scat-

tering processes. If we writeF@w#5eiC[w] , whereC@w# de-
scribes connected processes only, Eq.~2.10! reduces to

2
d

dw
C5Kw2F21r~f̂!F5Kw2rS 2K21

dC

dw
1f̂ D1 .

~2.11!

This can be regarded as a nonlinear functional differential
equation for theS-matrix generating functional and can be
used for deriving systematic recursion rules for scattering
amplitudes. We shall do this for Yang-Mills theory in the
next section.

Although it is not crucial to the discussion of recursion
rules, one may also work with the quantum effective action
or the generating functional for one-particle irreducible ver-
ticesG@F# defined by

G@F#5C@w#1E ~Kw!F, ~2.12!

with the connecting relations

dG

dF
5Kw, 2K21

dC

dw
5F. ~2.13!

Then, Eq.~2.11! becomes

KF5Kw2r~F1f̂ !1 ~2.14!

or, in terms ofG@F#,

dG

dF
5KF1r~F1f̂ !15S dS

df D
f5F1 iK21d/dw

1 .

~2.15!

The right-hand side involves the derivative ofF with respect
to w which is the two-point correlatorG̃ given by

G̃~x,y![S iK21
d

dw D
x

F~y!5S iK21
d

dw D
x
S iK21

d

dw D
y

iC.

~2.16!

It satisfies the basic Schwinger-Dyson equation for the
theory, viz.,

E
y
F d2G

dF~x!dF~y!GG̃~y,z!5 id~4!~x2z!. ~2.17!

Equation~2.15! supplemented by Eq.~2.17! can thus be re-
garded as a nonlinear equation forG@F#. From the connect-
ing relations~2.13! we find thatdG/dF50 for Kw50, as is
appropriate forS-matrix elements. In this case, from the defi-
nition of G, we have

C@w#5G@F#udG/dF50 . ~2.18!

TheSmatrix is then given by

F5@eiG[F] #dG/dF50 . ~2.19!

This relation gives a nonperturbative definition of theSma-
trix. The free data in the solutions todG/dF50 are the
quantities on whichF depends.~Perturbatively, the free data
are the amplitudesak andak* in the solution forw.! The fact
that theS matrix can be obtained as the exponential of (i
times! the action evaluated on solutions of the equations of
motion is rather well known@10,13#.

III. S-MATRIX FUNCTIONAL
FOR YANG-MILLS THEORY

We start with the gauge-fixed LagrangianL of an SU
(N)-Yang-Mills theory given by

L52 1
4 Fmn

a Fmna2 1
2 ~]•A!22 c̄~2]•D !c

5 1
2 TrFmnF

mn1Tr~]•A!212Trc̄~2]•D !c, ~3.1!

where

Fmn5Fmn
a Ta5]mAn2]nAm1g@Am ,An#,

Dmc5]mc1g@Am ,c#, ~3.2!

with @Ta,Tb#5 f abcTc and TrTaTb52 1
2dab . T

a are matrices
in the fundamental representation of SU(N). The free part
and the interaction parts of the action are, respectively, iden-
tified as

L05TrAm~2]2!Am12Trc̄~2]2!c,

Lint~1!52gTr]mAn@Am,An#1
g2

2
Tr@Am ,An#2, ~3.3!
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Lint~2!52gTr]mc̄@Am,c#. ~3.4!

Following the discussion of Sec. II, the functionalF which
gives theSmatrix can be constructed as

F@a#5E expS iS2 i E am
a ~2]2!AmaD @dA#@dc#@dc̄#.

~3.5!

The transition amplitude forN gluons of momentaki , polar-
izationsem

( i ), and colors labeleda1 , . . . ,aN to go toM glu-
ons of momentapj , polarizationsen

( j ), and color labels
aN11 , . . . ,aM is

T@$ki ,em i

~ i ! ,ai%→$pj ,en j
~ j ! ,aj%#

5E )
i
e2 iki xiem i

~ i !
d

dam i

ai )j eip j yjen j
~ j !

3
d

dan j

aj
F@a#U

a50

. ~3.6!

From Eq.~2.10!, F satisfies the equation

2 i
dF
dam

a 5]2am
aF1E dSint

dam
a e

iS

5]2am
aF1Jm

a ~A!uA5 iG
d

da
F1E 2gTr]mc̄@Ta,c#eiS,

~3.7!

where

Jm„A~x!…5Jm
aTa[

dSint
~1!

dAm
a Ta52g]n@Am ,An#1g@Fmn ,A

n#

~3.8!

andG(x,y)52^xu]22uy&. As we have written it, the term in
Eq. ~3.7! involving ghosts cannot immediately be replaced
by derivatives onF. For this, we proceed as follows. Inte-
grating out the ghost fields inF we get the Faddeev-Popov
determinant det(2]•D)5etrln(2]•D), which is equivalent to a
term in the action2 i trln(2]•D). This leads to a ghost cur-
rent of the form

Jm
a ~A!gh52 i

dtrln~2]•D !

dAm
a 5 i(

n51

`

~2g!n11E Tr@TaAn i
~y1!•••Ann

~yn!#adj]
n1G~x,y1!•••]

nnG~yn21 ,yn!]mG~yn ,x!,

~3.9!

where we have introduced the adjoint representation ofTa’s by (Tadj
a )bc52 f abc. (Lint(2) in this notation reads

Lint(2)52g]mc̄Tadj
a cAm

a .)
The trace in the above equation may be written in terms of the generators in fundamental representation using

f abc522TrTa@Tb,Tc#,

Tr~Ta1Ta1•••Tan!adj52TrTa@Tb,@Ta1,@Ta2,@ . . . ,@Tan21,@Tan,Tb## . . . #. ~3.10!

Therefore we can finally write the ghost part of the current~as a matrix in the fundamental representation! as

Jm~A!gh5Jm
a ~A!ghT

a5 i(
n51

`

~2g!n11Dmm1•••mn
~x,y1 , . . . ,yn!@T

b,@Am1~y1!,@ . . . ,@A
mn21~yn21!,@A

mn~yn!,T
b## . . . #,

~3.11!

where

Dmm1•••mn
~x,y1 , . . . ,yn![]m1

G~x,y1!•••]mn
G~yn21 ,yn!]mG~yn ,x!. ~3.12!

Then Eq.~3.7! finally becomes

2 i
dF
dam

a 5]2am
aF1@Jm

a ~A!1Jm
a ~A!gh#A5 iG~d/da!F.

~3.13!

For connected partC@a#52 i lnF@a#,

\
dC

dam
a5]2am

a1@Jm
a ~A!1\Jm

a ~A!gh#A52\G~dC/da!1 i\G~d/da!1.

~3.14!

This is the basic equation for the scattering amplitudes.
The\ expansion of this equation leads to recursion rules up
to arbitrary order. We have explicitly displayed the factors of
\ in Eq. ~3.14!. Recall that the interaction part of the action
carries 1/\ and that each propagatorG carries\. The ghost
terms, arising from the determinant, have\0. C@a# in Eq.
~3.14! has an expansion of the form

C@a#[2 i lnF@a#5
1

\
C~0!1C~1!1\C~2!1•••.

~3.15!

Starting from Eq.~3.14! and using the above expansion
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for C@a#, one can, in principle, systematically derive recur-
sion relations to any desired order in\.

Let us begin with a tree-level recursion formula for
C(0). This is simply given by

dC~0!

dama 5]2am
a1Jm

a ~A~0!!, ~3.16!

where

Am
~0!a[2E G

dC~0!

dama , ~3.17!

i.e.,

]2Am
~0!5]2am1Jm~Am

~0!!. ~3.18!

This is just the equation of motion as it should be.~This
equation has previously been obtained in@14#.! Am

(0) is essen-
tially the same object as the current that Berends and Giele

@2# used to derive tree-level recursion relation for gluon scat-
tering processes; if one expandsAm

(0) in powers ofam , the
coefficient function of each term gives the one-gluon off-
shell current of Ref.@2# when multiplied by polarization vec-
tors of on-shell external gluons. More generally, if one con-
sidersam’s off shell, it gives the generalized current with
off-shell gluons which has been used forqq̄→qq̄gg•••g
process and some one-loop calculations@11,12#. Also, notice
that from the form of currentJm in Eq. ~3.8!, it is obvious
that color factors are factorized from coefficient functions
and we can write

Am
~0!5 (

n51

` E Cmm1•••mn

~0! ~x,y1 , . . . ,yn!a
m1~y1!•••a

mn~yn!.

~3.19!

The coefficient functionsC(0)’s do not carry color indices.
We also haveCmm1

(0) (x,y1)5d(x2y1)dmm1
. Using Eq.~3.19!

in Eq. ~3.18!,

]2( E Cm
~0!~x,Y!a~Y!2]2am5Jm~A!52( E @2]nCm

~0!~x,Y!Cn
~0!~x,Z!22]nCm

~0!~x,Z!Cn~0!~x,Y!

1Cn
~0!~x,Y! ]JmC

n~0!~x,Z!1Cm
~0!~Y!]nC

n~0!~x,Z!2Cm
~0!~x,Z!]nCn

~0!~x,Y!#a~X!a~Y!

2( E @2Cn
~0!~x,X!Cm

~0!~x,Y!Cn~0!~x,Z!2Cn
~0!~x,X!Cn~0!~x,Y!Cm

~0!~x,Z!

2Cm
~0!~x,X!Cn

~0!~x,Y!Cn~0!~x,Z!#a~X!a~Y!a~Z!, ~3.20!

whereX, Y, andZ are collective indices anda(Y) stands for) iam i
(yi), etc. If am is restricted to be on shell, the terms

containing]nCn
(0) in the third line vanish because of current conservation. We can transform this equation to momentum space

by writing

Cmm1 . . .mn

~0! ~x,y1 , . . . ,yn!5E ~2p!4S k1( pi DCmm1•••mn

~0! ~p1 , . . . ,pn!exp~ ik•x!expS i( pi•yi D , ~3.21!

where momentum conservation has been taken into account. Then Eq.~3.20! becomes

P1,n
2 Cm

~0!~1, . . . ,n!5 (
m51

n21

V3m
nr~P1,m ,Pm11,n!Cn

~0!~1, . . . ,m!Cr
~0!~m11, . . . ,n!

1 (
m51

n22

(
k5m11

n21

V4m
nrsCn

~0!~1, . . . ,m!Cr
~0!~m11, . . . ,k!Cs

~0!~k11, . . . ,n!, ~3.22!

where Pi , j5pi1•••1pj and V3
mnr and V4

mnrs are color-
ordered vertices,

V3
mnr~p,q!52g$gnr~p2q!m1grm~2qn1pn!

2gmn~2pr1qr!%,

V4
mnrs52g~2gmrgns2gmngrs2gmsgnr!. ~3.23!

This equation is the recursion relation for currents with off-
shell gluons derived in@2,11#.

In deriving higher order recursion relations forS-matrix
elements, we must correct Eq.~3.14! by including the appro-
priate renormalization constants. As usual, we interpret fields
and coupling constants as renormalized ones and assume that
renormalization counterterms are included inLint of Eq.
~3.3!. Explicitly,
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Lint52 1
2dZ3Tr~]mAn2]nAm!222gZ1Tr]mAn@Am ,An#

2
g2

2
Z1
2Z3

21Tr@Am ,An#222dZ̃3Trc̄~2]2!c

22gZ1Z̃3 /Z3Tr]mc̄ @Am ,c#, ~3.24!

whereAZ3Am , AZ̃3c, andgZ1Z323/2 are bare quantities with
dZ35Z321 anddZ̃35Z̃321. Correspondingly,Jm becomes

Jm~A!52g]n@Am ,An#1g@Fmn ,An#2 1
2dZ3]n~]mAn

2]nAm!2g~Z121!~]n@Am ,An#2@Fmn ,An#!

1g2Z1~Z1 /Z321!@@Am ,An#,An#. ~3.25!

The extra counterterms contribute to one-loop or higher or-
ders and will cancel ultraviolet divergences from loop inte-
grals. In addition, to account for the freedom of arbitrary
finite renormalization we include a finite wave function
renormalization constantz3 in the external field, i.e.,
am→ãm[am /Az3.

Now we are ready to discuss one-loop recursion relations.
Keeping terms relevant up to one-loop order,

Am52G
dC~0!

dam 2SG dC~1!

dam 2
1

2
dz3G

dC~0!

dam D 1•••

5Am
~0!1Am

~1!1•••. ~3.26!

The current can similarly be expanded as
Jm(A)5Jm

(0)1Jm
(1)1•••, with

Jm
~0!52g]n@Am

~0! ,An
~0!#1g@Fmn~A~0!!,A~0!n#,

Jm
~1!52g]n~@Am

~0! ,An
~1!#1@Am

~1! ,An
~0!# !

1g@Fmn~A~0!!,A~1!n#1g@DmAn
~1!2DnAm

~1! ,A~0!n#

2dZ1Jm
~0!~A~0!!2

dZ3
2

]n~]mAn
~0!2]nAm

~0!!

1g2~dZ12dZ3!@@Am
~0! ,An

~0!#,A~0!n#, ~3.27!

whereDm[]m1g@Am
(0) ,#. In Eq. ~3.14! we need

JmSA1 iG
d

daD15Jm~A!2g]nF iG d

dam ,An
~0!G1gF i ]mG

d

dan

2 i ]nG
d

dam ,A
~0!nG

2g2S F F iG d

dam ,An
~0!G ,A~0!nG

1F FAm
~0! ,iG

d

dan
G ,An

~0!G D1•••. ~3.28!

Up to one-loop order, the functional derivative term in the
ghost current has no contribution:

JmSA1 iG
d

daD
gh

15Jm~A~0!!gh1•••. ~3.29!

Collecting all these, we get an equation forAm
(1) :

]2Am
~1!5Jm

~1!1Jm~A~0!!gh2g]nF iG d

dam ,An
~0!G

1gF i ]mG
d

dan
2 i ]nG

d

dam ,An
~0!G

2g2S F F iG d

dam ,An
~0!G ,A~0!nG

1F FAm
~0! ,iG

d

dan
G ,An

~0!G D , ~3.30!

whereAm
(0) is the solution of Eq.~3.18!. Notice that, in this

case,iG(d/dam) terms contract color indices when acting on
Am
(0) and so the color decomposition does not occur as in the

tree-level case. However, it is possible to writeAm
(1) as a sum

of color-factorized amplitudes and the proof has been given
using a string-theory argument@15# and color flow diagrams
@17#. Here we give a simple proof based on Eq.~3.30!.

First we study the action ofiG(d/dam) on Am
(0) . From

Eq. ~3.19!,

FG d

dam ,An
~0!G5 (

n51

`

(
m51

n E Cnn1•••nm21mnm11•••nn
~0! ~x,y1 , . . . ,ym21 ,y,ym11 , . . . ,yn!G~x,y!

3@Ta,an1
~y1!•••anm21

~ym21!T
aanm11

~ym11!•••ann
~yn!#. ~3.31!

With the help of Fierz identity for SU(N),

~TaXTa! i j52
1

2 S d i jTrX2
1

N
Xi j D , ~3.32!

it becomes

FG d

dam ,An
~0!G5 (

n51

`

(
m50

n E C̃nm~x,1, . . . ,m;m11 . . . ,n!a~1!•••a~m!Tr@a~m11!•••a~n!#, ~3.33!

where
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C̃nm~x,1,..., m;m11..., n!52
1

2EyG~x,y!@Cnn1•••nmmnm11•••nn
~0! ~x,y1 , . . . ,ym ,y,ym11 , . . . ,yn!

2Cnnm11•••nnm1•••nm
~0! ~x,ym11 , . . . ,yn ,y,y1 , . . . ,ym!#. ~3.34!

@Here the 1/N term in Eq.~3.32! does not contribute because of the commutator; notice also that the summation in Eq.~3.33!
starts withm50.# Thus differentiation ofAm

(0)a produces terms with trace over substrings ofam’s. Also, from Eq.~3.11!, we
see that the ghost current has the same structure:

Jm~A~0!!gh5 i(
n51

`

~2g!n11Dm~x,1, . . . ,n!(
k50

n

(
$ i l %

$TbA~0!~ i 1!•••A
~0!~ i k!T

bA~0!~ i k11!•••A
~0!~ i n!

2A~0!~ i 1!•••A
~0!~ i k!T

bA~0!~ i k11!•••A
~0!~ i n!T

b%, ~3.35!

where($ i l %
is the sum over all permutations of$1, . . . ,n% such thati 1,•••, i k andi k11.•••. i n . Using Eq.~3.32!, we get

Jm~A~0!!gh52
i

2(n51

`

(
k50

n

(
sPSn;k

gn11~21!kD̃m~x,s1 , . . . ,sn!A
~0!~1!•••A~0!~k!Tr@A~0!~k11!•••A~0!~n!#, ~3.36!

whereSn;k is the set of all permutations of$1,2, . . . ,n% that preserves the ordering of$a%[$1, . . . ,k% and the cyclic ordering
of $b%[$n,n21, . . . ,k11%, while allowing for all possible relative orderings between elements in the two sets@for example,
(1,n,2, . . . ,k,n21, . . . ) is inSn;k , but (2,1,. . . ,k,n,n21, . . . ) is not#; D̃m is given by

D̃m~x,1, . . . ,n!5Dm~x,1, . . . ,n!2~21!nDm~x,n,n21, . . . ,1!. ~3.37!

Since Eq.~3.30! is at most linear inAm
(1) , it is clear thatAm

(1) can be written as

Am
~1!~x!5 (

n51

`

(
m50

n E Cmm
~1! ~x,1, . . . ,m;m11, . . . ,n!a~1!•••a~m!Tr@a~m11!•••a~n!#. ~3.38!

Then in Eq.~3.30! we can separately equate terms with the
same trace structure andCmm

(1) ’s with differentm’s do not mix
with each other. The functions we need are thenCnm

(1)

5C(1)(x,1, . . . ,n) corresponding to the term in Eq.~3.38!
with no trace. These obey the recursion rule obtained by
substituting A(1)5(n51

` *C(1)(x,1, . . . ,n)a(1)•••a(n) in
Eq. ~3.30!. The other amplitudes can be obtained from
Cnm
(1) .
The coefficient functions corresponding to different trace

structures have simple relations among them~which allow us
to construct the amplitudes with subtraces fromCnm

(1)). We
have@15,16#

Cmm
~1! ~x,1, . . . ,m;m11, . . . ,n!

5~21!n2m (
sPSn;m

Cnm
~1!~x,s1 , . . . ,sn!,

~3.39!

For this, we show that the right-hand side of Eq.~3.39! sat-
isfies the same equation as that for the left-hand side. This is
most easily seen for the ghost current which we shall con-
sider first. Obviously, an equation like Eq.~3.39! holds for
D̃m’s @with the identification of the summation indices
k in Eq. ~3.36! and m in Eq. ~3.39!#, if Am

(0)(x)
5*Cm

(0)(x,X)a(X) in ~3.36! is replaced by its lowest order
term am . For the terms with more than oneam’s from one

A(0), there are potential discrepancies between both sides.
This is because in Eq.~3.39! the sumation is over alls
PSn;m while, in Eq. ~3.36!, we sum only oversPSn;k
(k,m), which does not include such permutations that mix
indices from both$a% set and$b% set within one tree struc-
ture. However, the extra terms in Eq.~3.39! cancel out
thanks to the symmetry properties of color-ordered vertices:

V3
mnr~p,q!1V3

mrn~q,p!50 ,

V4
mnrs1V4

mrsn1V4
msnr50 , ~3.40!

which, when applied to Eq.~3.22! together with induction,
leads to identities for 1<m,n,

(
sPSn;m8

Cm
~0!~s1 , . . . ,sn!50 , ~3.41!

whereSn;m8 is the same asSn;m defined above except that it
does not include the cyclic permutations of$b% set. ~This
equation can be considered as a generalization of the so-
called ‘‘dual Ward identity’’ for tree amplitudes which cor-
responds tom51 case@3,18#.! Thus Eq.~3.39! holds for
ghost current.

We shall now show that the relation Eq.~3.39! connecting
amplitudes with different trace structures holds for the non-
ghost terms in Eq.~3.38! as well. Towards this, consider the
terms with differentiationG(d/da) in Eq. ~3.30!. Diagra-
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matically, those terms correspond to one-loop gluon dia-
grams with the external legx directly connected to the loop.
In our setting, we can proceed as follows. Applying Eq.
~3.22! repeatedly toCm

(0)(x,1, . . . ,m,y,m11, . . . ,n) we can
identify the internal line for each term from Eq.~3.22!. It
connectsx andy, and the other external legs are ordered in a
clockwise direction in such a way that 1, . . . ,mth legs are
below the line whilem11, . . . ,nth legs are above the line
~Fig. 1!. Then we draw a line connectingx and y which
enclosem11, . . . ,nth legs so that it represents that the legs
inside the loop are traced. Then, it is easy to see which terms
generate which color structures. Obviously, given such a dia-
gram, we get the same subtrace structure from diagrams
made by altering the relative order of trees belonging to dif-
ferent sets while keeping the order of$1, . . . ,m% and the
cyclic order of $m11, . . . ,n% ~Fig. 2!. Moreover, they are
trivially related to terms which contribute toCnm

(1) ; i.e., we
can simply pull out the trees inside the loop to outside with a
minus sign, using the symmetry property of vertices, Eq.
~3.40!. Notice that during this procedure the order of
$m11, . . . ,n% is also reversed. Thus, essentially we have
the same situation as in the case of ghost current and a rela-
tion of the type~3.39! holds in this case as well.

Now it remains to consider the term fromJ(1) which con-
tainsCm

(1)’s with less number of legs. It corresponds to the
gluon-loop diagram with the external legx attached to a tree.
This case, however, is not much different from the previous
one and we can argue in the same way with the help of Eq.
~3.41! if needed. Finally, there are counterterm contribu-
tions for the Cnm

(1)(x,1, . . . ,n) case in contrast to
Cmm
(1) (x,1, . . . ,m;m11, . . . ,n) (m,n). But again the iden-

tity Eq. ~3.41! guarantees that those terms cancel out when
the summation in Eq.~3.39! is done. This completes the
proof that both the left- and the right-hand sides of Eq.~3.39!
satisfy the same recursion relation. Since Eq.~3.39! trivially
holds forn53, they are indeed equal to each other.

Beyond one loop, it is clear from Eq.~3.14! thatAm
(k) will

in general have terms withk subtraces,

Am
~k!~x!5 (

n51

`

(
$ml %

E Cm1m2 . . .mkm
~k! ~x,1,•••,m1 ;m111, . . . ,m2 ; . . . ;mk11 . . .n!

3a~1!•••a~m1!Tr@a~m111!•••a~m2!#•••Tr@a~mk11!•••a~n!#, ~3.42!

and eachCm1m2•••mkm
(k) with differentk will satisfy its own equation. It might be possible to find simple relations between them

as in the one-loop case.
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