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I. INTRODUCTION

Supersymmetric~SUSY! grand unified theories~GUTs!
have attracted much attention in connection with the hierar-
chy problem in possible unified theories of strong and elec-
troweak interactions@1,2#. In view of the requirement of
electroweak symmetry breaking, these models necessitate an
enrichment of the Higgs sector@3#, thereby raising many
interesting questions both from the classical and the quantum
point of view. In particular, many authors have explored the
existence of stable electroweak vortex solutions in a variety
of multi-Higgs-doublet systems@4–6# that mimic the bosonic
sector of SUSY GUTs, in correspondence with what happens
in the Abelian Higgs model@7#. It has also been argued that
GUT cosmic strings may exhibit superconducting properties
@8#, and this fact has recently stimulated the study of several
multi-Higgs-doublet models describing many interesting
phenomena@9,10#.

Vortices emerging as finite energy solutions of gauge
theories can be usually shown to satisfy a topological bound
for the energy, the so-called Bogomol’nyi bound@11,12#.
Originally, these bounds were obtained by writing the energy
of the configuration~per unit length! as a sum of squares plus
a topological term. There exists another approach to study
the Bogomol’nyi relationships~i.e.,Bogomol’nyi bound and
equations! which exploits the huge symmetry of the theory:
It is based on the observation that Bogomol’nyi bounds re-
flect the presence of an extended supersymmetric structure
@13–16#. In particular, for gauge theories with spontaneous
symmetry breaking and a topological charge, admitting of an
N51 supersymmetric version, it was shown that theN52
supersymmetric extension, which requires certain conditions
on coupling constants, has a central charge coinciding with
the topological charge@15,16#. Having originated from the

supercharge algebra, the bound is expected to be quantum
mechanically exact.

Since multi-Higgs-doublet models can be understood to
be motivated by SUSY GUTs, supersymmetry provides a
natural framework for studying Bogomol’nyi bounds. In fact,
we have recently considered in Ref.@17# the supersymmetric
extension of the two-Higgs-doublet model first presented in
@6#, showing that Bogomol’nyi equations are a direct conse-
quence of the underlyingN52 supersymmetry of the model.
We shall study in this paper a supersymmetric formulation of
a SU(2)3U(1)Y3U(1)Y8 model with two Higgs doublets
which is a generalization of the one analyzed in@17#. The
theory has the same gauge group structure as that of super-
symmetric extensions of the Weinberg-Salam model that
arise as low energy limits of E6-based grand unified theories
or E83E8 superstring theories compactified on a Calabi-Yau
manifold with a SU~3! holonomy. This gauge group was
recently considered in Ref.@5# for the study of electroweak
strings and, generically, the inclusion of an extra U~1! factor
in multi-Higgs-doublet systems has been also taken into ac-
count in a variety of models exhibiting cosmic strings@8,9#.
In spite of being a simplified model~in the sense that its
Higgs structure is not so rich as that of grand unified theo-
ries!, it can be seen as the simplest extension of the standard
model necessary for having the Bogomol’nyi equations. We
show that the Bogomol’nyi bound of the model, as well as
the Bogomol’nyi equations, is a direct consequence of the
requirement ofN52 supersymmetry imposed on the theory.
We also show explicitly that, as a necessary condition for
achieving theN52 model, certain relations between cou-
pling constants must be satisfied. These ‘‘critical values’’ of
the coupling constants have physical relevance; e.g., the re-
quired relation between coupling constants in the Abelian
Higgs model corresponds to the limit between type-I and
type-II superconductivity in the relativistic Ginsburg-Landau
model @16#. We discuss the solutions of the Bogomol’nyi
equations and present some interesting limiting cases.

The paper is organized as follows. In Sec. II, we present
the SU(2)3U(1)Y3U(1)Y8 two-Higgs-doublet model in
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211 dimensions admitting of nontrivial topological configu-
rations and we embed it in anN51 supersymmetric theory.
We show that theN52 supersymmetric extension can be
obtained provided some relations between coupling con-
stants, analogous to the critical relation appearing in the
Abelian Higgs model@16#, hold. In Sec. III, we construct the
N52 supercharges of the theory, and compute the corre-
sponding supersymmetry algebra. After static configurations
are considered, and restricting our calculations to the bosonic
sector, we find that the Bogomol’nyi relationships appear as
a direct algebraic consequence. This fact clarifies in our
theory the model-independent analysis established in Ref.
@15#. We further comment on some interesting features of the
classical field solutions saturating the Bogomol’nyi bound.
These could be interpreted as electroweak cosmic strings
breaking half of the supersymmetries of the theory.

Our approach being general and systematic, we finally
consider in Sec. IV some limiting cases describing various
models which have been recently considered in the literature.

II. SU„2…3U„1…Y3U„1…Y8 N52 SUPERSYMMETRIC
MODEL

We start with a SU(2)3U(1)Y3U(1)Y8 gauge theory,
which is described by the action

S5E d3x@2 1
4WW mn•WW

mn2 1
4 FmnF

mn2 1
4 GmnG

mn

1 1
2 uDm

~1!F~1!u21
1
2 uDm

~2!F~2!u21
1
2 ~]mA!21 1

2 ~]mB!2

1 1
2 ~DmWW !22V~F~1! ,F~2! ,A,B,WW !#, ~1!

whereF (1) andF (2) are a couple of Higgs doublets under

the SU~2! part of the gauge group,A andB are real scalar

fields, andWW 5Wata is a real scalar in the adjoint represen-
tation of SU~2!. The metric is choosen to begmn5(122)
and the specific form of the potential will be determined
below. The strength fields can be written in terms of gauge
fields as

Fmn5]mAn2]nAm , Gmn5]mBn 2]nBm, ~2!

and

Wmn
a 5]mWn

a2]nWm
a1g fabcWm

bWn
c , ~3!

while the covariant derivative is defined as

Dm
~q!F~q!5S ]m1

i

2
gWm

a ta1
i

2
a~q!Am1

i

2
b~q!BmDF~q! ,

q51,2, ~4!

whereg is the SU~2! coupling constant whilea (q) andb (q)

represents the different couplings ofF (q) with Am andBm .
A minimal N51 supersymmetric extension of this model

is given by an action which in superspace reads

SN515
1
2 E d3xd2uH V̄AVA1V̄BVB1V̄WW

a
VWW

a
2DADA2DBDB2DWaDWa1j1A1j2B

1 1
2 (
q51

2

@~¹̄~q!Y~q!!
a~¹~q!Y~q!!

a1 iY~q!
† ~A2l1

~q!A1A2l2
~q!B1A2l3Wata!Y~q!#J , ~5!

where

¹~q!Y~q!5SD1
i

2
gGWW 1

i

2
a~q!GA1

i

2
b~q!GBDY~q! . ~6!

This action is built from a couple of complex doublet superfieldsY (q)[(F (q) ,C (q) ,F (q)), three real scalar superfields
A[(A,xA ,a), B[(B,xB ,b), andW[(Wa,xWW

a ,wa)ta, and three spinor gauge superfields which in the Wess-Zumino gauge

read GA[(Am ,rA), GB[(Bm ,rB), and GWW [GWW
a

ta5(Wm
a ,la)ta. VA , VB , and VWW

a , are the corresponding superfield
strengths. Concerningl1

(q) , l2
(q) , l3, j1, andj2, they are real constants whose significance will be clear below. It must be

stressed that fermionsrA , rB , xA , andxB are Majorana,xWW
a

ta andlata are Majorana spinors in the adjoint representation
of SU~2!, while the Higgsino doubletsC (q) are Dirac spinors.A andB are real scalar fields andWata is a Hermitian field in
the adjoint representation of SU~2!. HereF (q) , a, b, andw

a are auxiliary fields which will be eliminated in what follows using
their equations of motion. Finally,D is the usual supercovariant derivative:

D5] ū 1 i ūgm]m , ~7!

with theg matrices being represented byg05t3, g15 i t1, andg252 i t2.
Written in components, action~5! takes the form
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S5S1Sfer , ~8!

where

Sfer5 1
2 E d3xF i2(q51

2
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i
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i

2
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~D” xWW !a1
i

2
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i

2
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i

2
x̄B]”xB1

i

2
r̄B]”rB2g fabcWaL̄bxWW

c

1 (
q51

2
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ataF~q!2A8l3C̄~q!xWW

a
taF~q!1 ia~q!C̄~q!rAF~q!2A8l1

~q!C̄~q!xAF~q!1 ib~q!C̄~q!rBF~q!

2A8l2
~q!C̄~q!xBF~q!#2 (

q51

2

@C̄~q!~A2l1
~q!A1A2l2

~q!B1A2l3W
ata!C~q!#1H.c.G . ~9!

The potential in Eq.~8! reads

V~F~1! ,F~2! ,A,B,WW !5S (
q51

2

Al1
~q!F~q!

† F~q!2
j1

A2D
2

1S (
q51

2

Al2
~q!F~q!

† F~q!2
j2

A2D
2

12(
q51

2

u~Al1
~q!A1Al2

~q!B1Al3WW !F~q!u21l3S (
q51

2

F~q!
† taF~q!D 2. ~10!

The preceding action~8! is invariant under the following set ofN51 supersymmetry transformations with parameterh:

dWm
a52 i h̄gmLa, dLa52 i !Wlaglh, dWa5h̄xWW

a , dA5h̄xA , dB5h̄xB ,

dAm52 i h̄gmrA , drA52 i !Flglh, dBm52 i h̄gmrB , drB52 i !Glglh,

dF~q!5h̄C~q! , dxWW
a

52F (
q51

2

A2l3F~q!
† taF~q!1 i ~D”W!aGh,

dxA52F (
q51

2

A2l1
~q!F~q!

† F~q!2j11 i ]”AGh, ~11!

dxB52F (
q51

2

A2l2
~q!F~q!

† F~q!2j21 i ]”BGh,

dC~q!5@2 igmDm
~q!F~q!2~A8l1

~q!A1A8l2
~q!B1A8l3W

ata!F~q!#h,

where !Wla, !Fl, and !Gl are the dual field strengths,

!Wla5 1
2 emnlWmn

a, !Fl5 1
2 emnlFmn , and !Gl5 1

2 emnlGmn . ~12!

Now, in order to impose theN52 supersymmetric invariance of the theory, we can consider transformations with a complex
parameterhc ~an infinitesimal Dirac spinor!, since this implies the existence of two supersymmetries@14#. Here rA , rB ,
xA , andxB being real spinors, we combine them into Dirac fermionsSA andSB given by

SA[xA2 irA , SB[xB2 irB . ~13!

We also construct a Dirac fermionJa in the adjoint representation of SU~2! from La andxWW
a :

Ja[xWW
a

2 iLa. ~14!

Using the fermion field redefinitions~13! and ~14!, the fermionic contribution to the action in Eq.~9! can be rearranged into
the form
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Sfer5
1

2E d3xF i2(q51
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i

2
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i

2
S̄A]”SA1

i

2
S̄B]”SB2 ig f abcWaJ̄bJc2 (

q51

2 S C̄~q!~A2l1
~q!A1A2l2

~q!B

1A2l3W
ata!C~q!1

g2A8l3

2
C̄~q!J̃

ataF~q!2
g1A8l3

2
C̄~q!J

ataF~q!1
a~q!2A8l1

~q!

2
C̄~q!S̃AF~q!

2
a~q!1A8l1

~q!

2
C̄~q!SAF~q!1

b~q!2A8l2
~q!

2
C̄~q!S̃BF~q!2

b~q!1A8l2
~q!

2
C̄~q!SBF~q!D 1H.c.G . ~15!

HereJ̃a, S̃A , andS̃B are the charge conjugates~the complex
conjugates! of Ja, SA , andSB , respectively.

We shall be mainly interested in purely bosonic back-
grounds where all fermion fields vanish. Given a functional
F depending both on bosonic and fermionic fields, it will
then be convenient to defineF u for

F u[F uC~q! ,SA ,SB ,J
a50 . ~16!

Under condition~16! the only nonvanishing supersymmetric
transformations~11! are those corresponding to fermionic
fields:

dhJau52F !Wlagl1 (
q51

2

A2l3F~q!
† taF~q!1 i ~D”W!aGh,

~17!

dhSAu52F !Flgl1 (
q51

2

A2l1
~q!F~q!

† F~q!2j11 i ]”AGh,

~18!

dhSBu52F !Glgl1 (
q51

2

A2l2
~q!F~q!

† F~q!2j21 i ]”BGh,

~19!

dhC~q!u5@2 igmDm
~q!F~q!2~A8l1

~q!A1A8l2
~q!B

1A8l3W
ata!F~q!#h. ~20!

Now, the transformations~17!–~20! with complex parameter
hc5he2 ia are equivalent to transformations with real pa-
rameterh followed by a phase transformation for fermions:

$Ja,SA ,SB ,C~q!%→eia$Ja,SA ,SB ,C~q!%.

Then,N52 supersymmetry requires invariance under this
fermion rotation. One can easily see from Eq.~15! that ferm-
ion phase rotation invariance is achieved if and only if

l35
g2

8
, l1

~q!5
a~q!
2

8
, and l2

~q!5
b~q!
2

8
. ~21!

That is, the model is invariant under an extended supersym-
metry provided relations~21! are imposed. This kind of con-
dition appears in general when, starting from anN51 super-
symmetric gauge model, one attempts to impose a second
supersymmetry: Conditions on coupling constants have to be
imposed so as to accommodate differentN51 multiplets
into anN52 multiplet. We note that the same conditions
take place in the model studied in Refs.@6,17#. Moreover,
once Eqs.~21! are imposed, the Higgs potential of our model
happens to be a simple generalization of that obtained in@6#
by a different approach. In our case, however, it has been
dictated just by supersymmetry considerations. As can be
seen in Ref.@16#, this discussion is analogous to that in the
Abelian Higgs model.

Summarizing, we have arrived to the followingN52 su-
persymmetric action associated to the SU(2)3U(1)Y
3U(1)Y8 model of our interest:

SN525
1

2E d3xF2
1

2
Wmn

a Wmna2
1

2
FmnF

mn2
1

2
GmnG

mn1uDm
~1!F~1!u21uDm

~2!F~2!u21~]mA!21~]mB!21~DmWW !2

22V~F~1! ,F~2! ,A,B,WW !1 i(
q51

2

C̄~q!D” ~q!C~q!1 i J̄a~D” J!a1 i S̄A]”SA1 i S̄B]”SB2g fabcWa~ i J̄bJc1H.c.!

2 (
q51

2

@C̄~q!~a~q!A1b~q!B1gWata!C~q!2g~C̄~q!J
ataF~q!1H.c.!2a~q!~C̄~q!SAF~q!1H.c.!

2b~q!~C̄~q!SBF~q!1H.c.!#G . ~22!

In the next section, the reasons why the conditions~21!, which ensureN52 supersymmetry, are also needed for the
Bogomol’nyi bound will be clear in the light of the supercharge algebra.
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III. SUPERCHARGE ALGEBRA AND BOGOMOL’NYI EQUATIONS

We shall now analyze theN52 algebra of supercharges for our model. To construct these charges we follow the Noether
method. The conserved current associated withN52 supersymmetry is given by

JN52
m 5(

$F%

dL

d]mF
dhc

F1(
$C%

dL

d]mC
dhc

C2um@hc#, ~23!

where$F% and $C% represent the whole set of bosonic and fermionic fields, respectively. Concerningum@hc#, it is defined
through

dhc
S5E d3x]mum@hc#. ~24!

The conserved charge is obtained from the current~23! as

Q@hc#5E d2xJN52
0 , ~25!

this giving the explicit expression

Q@hc#52
i

2E d2xH SA
†F !Flgl1 (

q51

2
a~q!

2
F~q!

† F~q!2j11 i ]”AG1SB
†F !Glgl1 (

q51

2
b~q!

2
F~q!

† F~q!2j21 i ]”BG1J†aF !Wlagl

1
g

2(q51

2

F~q!
† taF~q!1 i ~D”W!aG1 (

q51

2

C~q!
† @2 igmDm

~q!F~q!2~a~q!A1b~q!B1gWata!F~q!#J hc . ~26!

Since we are interested in connecting theN52 supercharge algebra with the Bogomol’nyi relationships, we assume static
configurations withA05B05W0

a50, and we restrict ourselves to a purely bosonic solution of the theory after computing the
algebra. We obtain, after some calculations

$Q̄@hc#,Q@hc#%u52h̄cg0hcP
01h̄chcZ, ~27!

where

P05E5 1
2 E d2xF 1

2 ~Wij
a !21 1

2 ~Fi j !
21 1

2 Gi j
21 (

q51

2

uDi
~q!F~q!u21~] iA!21~] iB!21~DiWW !21V~F~1! ,F~2! ,A,B,W

a!G ,
~28!

while the central charge is given by

Z52E d2xF12 e i j Fi j S (
q51

2
a~q!

2
F~q!

† F~q!2j1D 1
1

2
e i j Gi j S (

q51

2
b~q!

2
F~q!

† F~q!2j2D 1
g

4
e i jWi j

a (
q51

2

F~q!
† taF~q!

1 i e i j (
q51

2

~Di
~q!F~q!!~Dj

~q!F~q!!* G . ~29!

In Eqs.~28! and ~29! conditions~21! have been already im-
posed.

Finite energy configurations require the following
asymptotic conditions on the fields,

Wij
a,Fi j ,Gi j ,] iA,] iB,DiW

a,Di
~q!F~q!→0, ~30!

whereas the Higgs doublets as well as the scalar fields must
minimize the potential at infinity:

V~F~1!` ,F~2!` ,A` ,B` ,W`
a !50. ~31!

This last equation can be shown to give the following
asymptotic behavior for the Higgs doublets,

F~1!`5
f0

A2
S 0

expin ~1!w
D , F~2!`5

f0

A2
S expin ~2!w

0 D ,
~32!

and, at the same time, the scalar fields must solve

~a~q!A`1b~q!B`1gW`
a ta!F~q!`50. ~33!

The last term of Eq.~30! leads to expressions forn(1) and
n(2) given by

55 3815SUPERSYMMETRIC ELECTROWEAK COSMIC STRINGS



n~1!52 1
2 ~gWw

31a~1!Aw1b~1!Bw!

and

n~2!5
1
2 ~gWw

32a~2!Aw2b~2!Bw!, ~34!

such that

m[n~1!1n~2!52 1
2 ~a~1!1a~2!!Aw2 1

2 ~b~1!1b~2!!Bw

~35!

is an integer which is inmediately identified as the topologi-
cal charge of the configuration.

Coming back to Eq.~29! for the central charge, it can be
rewritten in the form

Z5 1
2 E ] iV id2x, ~36!

whereV i is given by

V i5S j1Aj1j2Bj1 i(
q51

2

F~q!
† Dj

~q!F~q!D e i j , ~37!

so that, after using Stokes’ theorem@and taking into account
the asymptotic behaviors given in Eq.~30!#, we obtain

Z5 R ~j1Ai1j2Bi !dx
i522pf0

2m; ~38!

that is, the central charge of theN52 algebra equals
~modulo some normalization factors! the topological charge
of the configuration. This is one of the main points of our
work: Once the relation between the central charge and the
topological charge is established, a Bogomol’nyi bound can
be easily obtained from the supersymmetry algebra@13–16#.

This sort of identity between theN52 central charge and
topological charge was first obtained by Witten and Olive
@13# in the SO~3! Georgi-Glashow model. It was also dis-
cussed for the self-dual Chern-Simons system by Lee, Lee,
and Weinberg@14#. Hlousek and Spector@15# have thor-
oughly analyzed this connection by studying several models
where the existence of anN51 supersymmetry and a topo-
logical current implies anN52 supersymmetry with its cen-
tral charge coinciding with the topological charge. More re-
cently, this connection was established for the Abelian Higgs
model @16# where a condition on the coupling constants has
also been shown to be necessarily imposed. This condition is
unavoidable both for havingN52 supersymmmetry and the
Bogomol’nyi equations. Also, in the study of self-dual
Chern-Simons systems, having a topological charge~related
to the magnetic flux! and anN51 extension, a condition on
the symmetry-breaking coupling constant must be imposed
both to achieveN52 extended supersymmetry and to obtain
the Bogomolnyi equations@14#.

Coming back to our model, it is now easy to find the
Bogomol’nyi bound from the corresponding supersymmetry
algebra. Indeed, since the brackets given by Eq.~27! can be
written as a sum of fermionic bilinears,

$Q̄@hc#,Q@hc#%u5E d2xF ~dhc
Ja!†~dhc

Ja!

1~dhc
SA!†~dhc

SA!1~dhc
SB!†~dhc

SB!

1 (
q51

2

~dhc
C~q!!

†~dhc
C~q!!G , ~39!

it is immediate that

$Q̄@hc#,Q@hc#%u>0. ~40!

This lower bound is saturated if and only if

dhc
Ja5dhc

SA5dhc
SB5dhc

C~q!50. ~41!

In order to further analyze the solutions of Eqs.~41!, let us
write the parameterhc as

hc[S h1

h2
D . ~42!

It is now easy to see that to obtain nontrivial solutions to
Eqs.~41! we are forced to choose a parameter with definite
chirality. Moreover, one can see that the conditions

dh1
Ja5dh1

SA5dh1
SB5dh1

C~q!50 ~43!

imply dh2
JaÞ0, dh2

SAÞ0, dh2
SBÞ0, anddh2

C (q)Þ0
for nontrivial solutions. Hence, if one is to look for
Bogomol’nyi equations corresponding to nontrivial configu-
rations, it makes sense to consider thathc has just one inde-
pendent chiral component, say,

hc[S h1

0 D . ~44!

Let us note, at this point, that for a parameter of this form,
the supercharge algebra can be seen to be

$Q̄@h1#,Q@h1#%u5h1
† h1~2P01Z!, ~45!

with Z the central charge whose explicit value is given in Eq.
~38!. Then, the inequality ~40! is nothing but the
Bogomol’nyi bound of our model:

M>pf0
2m. ~46!

Consequently, Eqs.~41! are the Bogomol’nyi equations of
the theory~once we identify the supersymmetry parameter
with h1). Explicitly,

e i jWi j
a1g(

q51

2

F~q!
† taF~q!50, ~DiW2 i e i j D jW!a50,

~47!

1
2 e i j Fi j1 (

q51

2
a~q!

2
F~q!

† F~q!2j150, ~] i2 i e i j ] j !A50,

~48!

3816 55JOSÉD. EDELSTEIN AND CARLOS NÚÑEZ



1
2 e i j Gi j1 (

q51

2
b~q!

2
F~q!

† F~q!2j250, ~] i2 i e i j ] j !B50,

~49!

~Di
~q!2 i e i jDj

~q!!F~q!50,

~a~q!A1b~q!B1gWata!F~q!50. ~50!

Owing to Eq.~46!, their solutions also solve the static Euler-
Lagrange equations of motion.

Let us remark on the fact that field configurations solving
the Bogomol’nyi equations break half of the supersymme-
tries, a feature common to all models presenting
Bogomol’nyi bounds with supersymmetric extension~see,
for example,@17# and references therein!. Indeed, as was
seen above, supersymmetry transformations generated by the
antichiral parameterh2 are broken. If we attempt to keep all
the supersymmetries of our model, we will find that the re-
sulting field configuration has zero energy~the trivial
vacuum! as easily seen from Eqs.~41!. Had we been faced
with an antichiral parameter in Eq.~44!, we would have ob-
tained antisoliton solutions with a breaking of the supersym-
metry transformation generated byh1 . Analogous results
also hold in four-dimensional models as the one originally
studied by Witten and Olive@13#.

A careful analysis of the whole set of Bogomol’nyi equa-
tions makes evident that the scalar fieldsA, B, andWW must
vanish. In the special case in which

a~1!b~2!5a~2!b~1! ,

a nonvanishing solution can be found to be

A5w, B52
a~1!

b~1!
w52

a~2!

b~2!
w, Wa50, ~51!

with w a real parameter describing an infinite set of vacua
that, nevertheless, are physically equivalent~thus,w50 does
not imply any loose of generality!. Strikingly, we see that the
configurations that saturate the Bogomol’nyi bound are ex-
actly the same as those found in Ref.@6#, in spite of the fact
that our model is an extension of the electroweak theory
analyzed there. Let us finally mention that, starting from Eqs.
~47!–~50!, it is possible to decouple an equation involving
only the Higgs doublet in the same vein as it was previously
done in the abelian Higgs model@12#.

IV. LIMITING CASES

As a by-product of our systematic approach, we can easily
obtain Bogomol’nyi bounds~coming from an underlying
N52 supersymmetric structure! for a variety of models
which have recently acquired physical interest.

A. SU„2…3U„1…Y3U„1…Y8 pure-Higgs model

The dynamics of this model, first considered in Ref.@6#, is
dictated by the following Lagrangian density:

LpH52 1
4WW mn•WW

mn2 1
4 FmnF

mn2 1
4 GmnG

mn

1 1
2 (
q51

2

uDm
~q!F~q!u22l3S (

q51

2

F~q!
† taF~q!D 2

2S (
q51

2

Al1
~q!F~q!

† F~q!2
j1

A2D
2

2S (
q51

2

Al2
~q!F~q!

† F~q!2
j2

A2D
2

. ~52!

It is immediately seen that the results given in Ref.@6# can be
obtained just by considering bosonic configurations satisfy-
ing the constraint

A5B5Wa50 ~53!

in our equations.1 These conditions are consistent with the
asymptotic behaviors ~30! and ~31! and with the
Bogomol’nyi equations~47!–~50! of our model. It is inter-
esting to note that conditions~21!, imposed by the require-
ment of extended supersymmetry, also fix in this case the
coupling constants exactly as they appear in the above-
mentioned reference. Thus, we have shown that the potential
and the coupling constants of the SU(2)3U(1)Y3U(1)Y8
pure Higgs model studied in@6# are simply dictated by
N52 supersymmetry. A simple ansatz for stringlike solu-
tions of arbitrary topological charge in this system has been
explored in@6#. It is shown there that, interestingly enough,
these configurations do not correspond to an embedding of
the Nielsen-Olesen vortex solution.

B. U„1…3U„1… model

It is well known that superconducting cosmic strings
could have appeared as topological defects in the early Uni-
verse, owing to the presence of a charged field condensate in
the core of the string@18#. The superconducting string mod-
els are commonly based on a U(1)3U(1) gauge symmetry
@10,18#, where one of the U~1! factors is unbroken. The same
gauge group has been recently considered in order to con-
struct the so-called binary cosmic string models@9#. How-
ever, in these models, the U(1)3U(1) symmetry is com-
pletely broken in the Higgs vacuum. In view of this, we will
consider the following Lagrangian density:

LSCS52 1
4 FmnF

mn2 1
4GmnG

mn1 1
2 ~Dm

~A!f!* ~Dm~A!f!

1 1
2 ~Dm

~B!j !* ~Dm~B!j !2V~f,j!, ~54!

which can be obtained as a limiting case of our
SU(2)3U(1)Y3U(1)Y8 system, wheref andj are Abelian
~complex! Higgs fields, whileDm

(A) andDm
(B) are the covari-

ant derivatives with respect toAm andBm , respectively. In
order to simplify our discussion, we will restrict ourselves to
those solutions of the model satisfying condition~53!, which

1Note that our algebraic approach is not modified by any con-
straint imposed on purely bosonic configurations, as all the fermion
fields are put to zero after computing the algebra.
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are decoupled from the non-Abelian gauge fieldWm
a . That is,

we are interested in topological classical field configurations
in the region of the parameter space whereg→0. We then
ask for solutions where the disconnected non-Abelian field
strength is constrained to vanish:

Wmn
a 50. ~55!

Now, we make the following ansatz for the Higgs sector:

F~1!5S f

0 D and F~2!5S 0
j
D , ~56!

after which the Higgs potential~10! takes the form

V~f,j!5l1~ ufu22v1
2!21l2~ uju22v2

2!2

1l3~ ufu22v1
2!~ uju22v2

2!. ~57!

It is worthwhile to point out that this potential satisfies the
conditions for the existence of binary strings@9#. We will
further simplify the system imposing the condition

a~2!5b~1!50, ~58!

which is equivalent to a vanishingl3 in Eq. ~57!, such that
the effective Lagrangian looks exactly as Eq.~54!, with the
Higgs potential

V~f,j!5
a~1!
2

8
~ ufu22v1

2!21
b~2!
2

8
~ uju22v2

2!2. ~59!

With this Higgs potential, the U(1)3U(1) symmetry is
spontaneously broken. The manifold of vacua has nontrivial
topology,P1@U(1)3U(1)#5Z3Z, this implying the exis-
tence of two kinds of strings: those with a flux ofAm and
those with a flux ofBm , which can be called type-A and
type-B vortices, respectively. If we consider the possibility
that both U~1! symmetries be broken roughly at the same
scale, finite energy leads to the following asymptotic behav-
ior for the Higgs fields:

f→v1e
inYu and j→v2e

inY8u, ~60!

wherenY andnY8 are integers that characterize the topologi-
cal sector ofZ3Z to which the solution belongs. Then, in
view of Eqs.~36! and ~37!, it is immediately clear that the
central charge of the correspondingN52 supersymmetric
theory becomes

Z̃522p~v1
2nY1v2

2nY8!. ~61!

Thus, the Bogomol’nyi bound of the U(1)3U(1) model
presented above is

M>p~v1
2nY1v2

2nY8!. ~62!

The bound is proportional to a linear combination of the
topological charges that appear do to the fact that both U~1!
subgroups have been broken. To end this paragraph, let us
comment that provided one relax any of the conditions~53!

or ~58!, imposed in order to arrive to our quite simplified
system, one could obtain Bogomol’nyi relationships for a
variety of models. This analysis will be carried out else-
where.

C. SU„2…global3U„1… local semilocal model

Finally, it is also interesting to explore howN52 super-
symmetry guarantees the existence of a Bogomol’nyi bound
for the neutral semilocal string defects with
SU(2)global3U(1)local symmetry discussed in Ref.@19#, even
though the vacuum manifold is simply connected. The La-
grangian density of this model takes the form

LSL52 1
4 FmnF

mn1 1
2 @~]m2 ieAm!F#†@~]m2 ieAm!F#

2l~F†F2v2!2, ~63!

whereF is a Higgs doublet charged only under the Abelian
subgroup U(1)local. The potential is minimum when
F†F5v2. SinceF is a complex doublet, the minimum of
the potential is a three-sphere and is simply connected. This
is in contrast with the situation in the Abelian Higgs model
where the potential minimum is a circle and a vortex solution
correponds to a configuration which winds around the circle.
However, it was explicitly shown in Ref.@19# that this model
admits of stable string solutions by a simple generalization of
Bogomol’nyi’s proof. We can reproduce their proof as a par-
ticular case of our model. In fact, it is easy to see that im-
posing conditions~53! and ~55!, and working in the param-
eter space region whereg,b (q)→0, we just have to restrict
ourselves to those configurations satisfying the constraint

F~2!5Gmn50. ~64!

Then, the Bogomol’nyi bound obtained in@19# can be easily
reproduced following the same steps as above. Let us men-
tion that the Bogomol’nyi bound survives the coupling of
this system to the gravitational field@20#. It is also possible,
in this case, to show that this bound can be thought of as
coming from an underlying supergravity model@21#.

Let us end our paper remarking that we have considered a
SU(2)3U(1)Y3U(1)Y8 gauge model with a symmetry-
breaking potential, which can be seen to be a simple exten-
sion of the electroweak standard model. The requirement of
N52 supersymmetry forces a relation between coupling
constants and at the same time, through its supercharge al-
gebra, imposes the Bogomol’nyi equations on certain classi-
cal field configurations. The connection of our model with
realistic supersymmetric extensions of the standard model
and the possible existence of stringlike solutions in its cou-
pling to supergravity remain open problems. We hope to
report on these issues in a forthcoming work.
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