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Supersymmetric electroweak cosmic strings
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We study the connection betwedh=2 supersymmetry and a topological bound in a two-Higgs-doublet
system with a SU(2X U(1)yXU(1)y, gauge group. We derive the Bogomol'nyi equations from supersym-
metry considerations showing that they hold provided certain conditions on the coupling constants, which are
a consequence of the huge symmetry of the theory, are satisfied. Their solutions, which can be interpreted as
electroweak cosmic strings breaking one-half of the supersymmetries of the theory, are studied. Certain inter-
esting limiting cases of our model which have recently been considered in the literature are finally analyzed.
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[. INTRODUCTION supercharge algebra, the bound is expected to be quantum
mechanically exact.
SupersymmetridSUSY) grand unified theoriesGUTs) Since multi-Higgs-doublet models can be understood to

have attracted much attention in connection with the hierarbe motivated by SUSY GUTSs, supersymmetry provides a
chy problem in possible unified theories of strong and elechatural framework for studying Bogomol'nyi bounds. In fact,
troweak interactiong1,2]. In view of the requirement of we have recently considered in REE7] the supersymmetric
electroweak symmetry breaking, these models necessitate antension of the two-Higgs-doublet model first presented in
enrichment of the Higgs sectdB], thereby raising many [6], showing that Bogomol'nyi equations are a direct conse-
interesting questions both from the classical and the quantumuence of the underlyin=2 supersymmetry of the model.
point of view. In particular, many authors have explored theWe shall study in this paper a supersymmetric formulation of
existence of stable electroweak vortex solutions in a varietyg SU(2)XU(1)yXU(1)y, model with two Higgs doublets
of multi-Higgs-doublet systenig—6] that mimic the bosonic  which is a generalization of the one analyzed 17]. The
sector of SUSY GUTSs, in correspondence with what happentheory has the same gauge group structure as that of super-
in the Abelian Higgs moddl7]. It has also been argued that symmetric extensions of the Weinberg-Salam model that
GUT cosmic strings may exhibit superconducting propertiesarise as low energy limits of Ebased grand unified theories
[8], and this fact has recently stimulated the study of severabr EgX Eg superstring theories compactified on a Calabi-Yau
multi-Higgs-doublet models describing many interestingmanifold with a SUW3) holonomy. This gauge group was
phenomen49,10]. recently considered in Ref5] for the study of electroweak
Vortices emerging as finite energy solutions of gaugestrings and, generically, the inclusion of an extréd Jfactor
theories can be usually shown to satisfy a topological bounth multi-Higgs-doublet systems has been also taken into ac-
for the energy, the so-called Bogomol'nyi bouhtll,12. count in a variety of models exhibiting cosmic strif@s9].
Originally, these bounds were obtained by writing the energyin spite of being a simplified moddin the sense that its
of the configuratior{per unit length as a sum of squares plus Higgs structure is not so rich as that of grand unified theo-
a topological term. There exists another approach to studsies), it can be seen as the simplest extension of the standard
the Bogomol'nyi relationshipé.e., Bogomol'nyi bound and model necessary for having the Bogomol'nyi equations. We
equationg which exploits the huge symmetry of the theory: show that the Bogomol'nyi bound of the model, as well as
It is based on the observation that Bogomol'nyi bounds rethe Bogomol'nyi equations, is a direct consequence of the
flect the presence of an extended supersymmetric structurequirement oN=2 supersymmetry imposed on the theory.
[13-16. In particular, for gauge theories with spontaneouswWe also show explicitly that, as a necessary condition for
symmetry breaking and a topological charge, admitting of arachieving theN=2 model, certain relations between cou-
N=1 supersymmetric version, it was shown that Me2  pling constants must be satisfied. These “critical values” of
supersymmetric extension, which requires certain conditionthe coupling constants have physical relevance; e.g., the re-
on coupling constants, has a central charge coinciding witlguired relation between coupling constants in the Abelian
the topological charggl5,16. Having originated from the Higgs model corresponds to the limit between type-I and
type-Il superconductivity in the relativistic Ginsburg-Landau
model [16]. We discuss the solutions of the Bogomol'nyi
*On leave from Universidad Nacional de La Plata. Electronic ad-equations and present some interesting limiting cases.
dress: edels@ecm.ub.es The paper is organized as follows. In Sec. Il, we present
Electronic address: nunez@venus.fisica.unlp.edu.ar the SU(2)XU(1)yxU(1)y, two-Higgs-doublet model in
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2+ 1 dimensions admitting of nontrivial topological configu- the SU2) part of the gauge groupd andB are real scalar

rations and we embed it in @4=1 supersymmetric theory. fields, andW=W?272 is a real scalar in the adjoint represen-
We show that theN=2 supersymmetric extension can be ation of SU2). The metric is choosen to = (+——)

obtained provided some relations between coupling conang the specific form of the potential will be determined

stants, analogous to the critical relation appearing in thgyg|o,, The strength fields can be written in terms of gauge
Abelian Higgs model16], hold. In Sec. Ill, we construct the fields as

N=2 supercharges of the theory, and compute the corre-
sponding supersymmetry algebra. After static configurations
are considered, and restricting our calculations to the bosonic
sector, we find that the Bogomol'nyi relationships appear as
a direct algebraic consequence. This fact clarifies in our
theory the model-independent analysis established in Ref.
[15]. We further comment on some interesting features of thé"
classical field solutions saturating the Bogomol'nyi bound.
These could be interpreted as electroweak cosmic strings a a a o
breaking half of the supersymmetries of the theory. W, =, W5— 3, W, +gfap W WS, 3
Our approach being general and systematic, we finally
consider in Sec. IV some limiting cases describing various
models which have been recently considered in the literaturevhile the covariant derivative is defined as

F=0,A,—d,A,, G,=d,B,—dB 2)

v wr— %u v

1. SU(2) x U(1)yx U(1)y: N=2 SUPERSYMMETRIC _ _ _
MODEL 1 1 [
. DV®q)=| 0, +59WL T+ S g Aut 5B@Bu| Pa)
We start with a SU(2X U(1)yxU(1)y, gauge theory,
which is described by the action

q=12, (4

s- f X — 2W,,,-Wi'— L, Fr— 1 G,,GH

nv
+ 3 [ DD |2+ 3 [DPD )2+ 5 (9,A)2+ 3(3,B)? whereg is the SU2) coupling constant whileyqy and Bq)
represents the different couplings &f, with A, andB,, .

A minimal N=1 supersymmetric extension of this model
is given by an action which in superspace reads

+%(DMW)2_V(¢(1),CD(2),A,B,W)], (1)

where® 1y and ®,) are a couple of Higgs doublets under

Sy_1=1% f d3xd20[ Qa0+ 005+ 0505 — DADA—DBDB— DWADWA+ £ A+ £,

2
+ 32 [(VOY )3V OY ()2 +i Y (V2N P A+ VAP B+ V20 WP Y ()11 (5)
g=1
where
i i i

This action is built from a couple of complex doublet superfie¥igy= (P ),V (g F(q). three real scalar superfields
A=(A,xa,a), B=(B,xg.,b), andWE(Wa,xf}v,Wa) 72, and three spinor gauge superfields which in the Wess-Zumino gauge
read ['n=(A,.pa), I's=(B,,ps), and FWEF%ITa:(WZ AN Qs Qp, and Qf,‘v are the corresponding superfield
strengths. Concerning{® , \{V, N3, &;, and&,, they are real constants whose significance will be clear below. It must be
stressed that fermions,, pg, xa, andyg are Majorana;(fk,ra andA?7® are Majorana spinors in the adjoint representation
of SU(2), while the Higgsino doublet¥ , are Dirac spinorsA andB are real scalar fields an®7% is a Hermitian field in

the adjoint representation of $2). HereF ), a, b, andw® are auxiliary fields which will be eliminated in what follows using
their equations of motion. Finally) is the usual supercovariant derivative:

D=d,+i6y"d,, @)
with the y matrices being represented =73, y'=i7!, and y?=—i .
Written in components, actiofb) takes the form
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S=S+ Sy, (8)

where

|2_ (q) i_a a iﬂ ai_ - - - ab aAb. C
qu‘l V(DY )+ FADA)+ S X (Pxw)*+ 5 xadxat 5 pabpat 5 xsdxet 5 pedpe—9f WA X,

Sfer:%f d®x
2 JE— R— — JR— JR—
+q§1 [igW A7 g~ VBASW ) Xy P (q) 1 ()W (q)pa® ()~ VBM W) Xa® () 1 B() V()PP (q)

2
— \/8x;q>qf(q)XBq>(q)]—§l [V (V2N P A+ 20 PB+ V20 W) W )]+ H.c.

. €)
The potential in Eq(8) reads
2 f 2 2 g 2
V(@)@ ABW) = > WO & ——=| +| > Wl @ - =
(@1), P2 ) qzl 1 PaPa 5 q; 2 PoPa™ 5
2 2 2
+2q§=)l [(NPA+NTB+ N W) D ()| 2+ N5 q§=)l Dl D g (10

The preceding actiofB) is invariant under the following set =1 supersymmetry transformations with paramejer
SWa=—iny, A% SA%=—i"W'y, 5, SWA=7pxy, OSA=7nxa, OB=17xe,

5Ap,:_i7y,u,pA1 5pA:_i*F)\'y)\771 5B,u:_i?yp,p81 5pB:_i*G}\')/)\771

2
5 q= V() Xy~ q§=:1 V20 3® (g 7P )+ (DW)? | 7,

- _
Sxa=— qgl VAPl D~ E1+i0A |7, (11)

- .
Sxg=— qgl V2N DL D~ &,+i10B |7,

8Y (=~ i DI D g~ (VBN IVA+ VBNB+ VBN WA D )],
wnere , , an are the dual field strengths,
here *W*3, *FA, and *G* he dual field gth
*W)\a:% e./.w)\Wl“)a, *F)\:%e.,uv)\':

and *G*=1e*"G,,, . (12)

uvr

Now, in order to impose thBl=2 supersymmetric invariance of the theory, we can consider transformations with a complex
parameterz. (an infinitesimal Dirac spingr since this implies the existence of two supersymmetfrie8. Herep,, pg.,
XA, andyg being real spinors, we combine them into Dirac fermiénsand g given by

Sa=Xxa—"ipa, Zp=xg—ips- (13
We also construct a Dirac fermidg? in the adjoint representation of $2) from A2 andx\a,;,:
=a_ .2 _ ijra
Eo=xy 1A% (14

Using the fermion field redefinitiond 3) and (14), the fermionic contribution to the action in E() can be rearranged into
the form
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.2 . . . 2

1 — i — i — _ _

Ster= f Z VoDV g —:a<DE>a+ >ZalSpt Ezsﬂzs—igfabwsbsc—; (%( 2NTA+ 2218
g_\/8)\3— = g+ 8)\3— — a(q)_ 8)\((] —
+V2hsWiT W(q)*T‘I’<q>=a’faq’<q>_T‘I’m#aTa‘D(qﬂfT‘I’(mz/@
(a) — (q (a)
@t VBN — LB VBT - o Byt V8N —
- 2 Ya>a®ia) T\PWEB T Pig2eP | tHe. (15)

HereZ2, S,, anng are the charge conjugatéibe complex  Now, the transformation€l7)—(20) with complex parameter

conjugatesof 52, 3., and3 g, respectively. n.=mne '* are equivalent to transformations with real pa-
We shall be mamly interested in purely bosonic back-rametery followed by a phase transformation for fermions:

grounds where all fermion fields vanish. Given a functional S, 3. W, 1 Leegay S oy

F depending both on bosonic and fermionic fields, it will {(BA2a28 Vgl (B2 Vo)

then be convenient to defing | for Then, N=2 supersymmetry requires invariance under this

fermion rotation. One can easily see from Ep) that ferm-
FI=Flw g sa54.52=0- (16)  ion phase rotation invariance is achieved if and only if

Under condition(16) the only nonvanishing supersymmetric N _9 )\(q)_@ and )\(q)_@ (21)
transformations(11) are those corresponding to fermionic s g M1 T g 2 g
fields: That is, the model is invariant under an extended supersym-
metry provided relation&1) are imposed. This kind of con-
8,88 =— *Whay, + 2 \/TCD(q)r +|(DW)a} 7, dition appears in general when, starting fromNw 1 super-
symmetric gauge model, one attempts to impose a second
(17 supersymmetry: Conditions on coupling constants have to be
- 2 : imposed so as to accommodate differéht1 multiplets
— _|*ex oy (@t _ ; into an N=2 multiplet. We note that the same conditions
Syal I F 7“_;1 2P P §1+|/)A_ " take place in the model studied in Ref§,17]. Moreover,
(18 once Egs(21) are imposed, the Higgs potential of our model
i happens to be a simple generalization of that obtaing@é]in
by a different approach. In our case, however, it has been
8,28l =~ 7’h+2 V2)y! q)(q)q)(q 21148 |7, dictated just by supersymmetry considerations. As can be
(19 seenin Ref[16], this discussion is analogous to that in the
Abelian Higgs model.

S \p(q)|:[_i,yMD(Q)q)(q)_( s\ YA+ \/8\\"B Summarizing, we have arrived to the followilg=2 su-
K a persymmetric action associated to the SU{R)1)y
+ VBA WA D )] 7. (20 XU(1)y, model of our interest:
|
1 3 1 a \\/uva 1 1 uv (1) 2 (2) 2 2 2 R\ 2

2
—2V(® 1), D5 ,A,B,W) +i 2 q)+iHa(IZ) )R+ iS A0S A+ Sgd3 5 — g FPOWA(I EPEC+H.c)

2
- qzl [‘I’(q)(a(q)A-i- ﬁ(q)B+ gV\F’Ta)\I’(q)_ g(qf(q)EaTa(I)(q)+ HC) - a(q)(\I’(q)EAQD(q)-l- HC)

~Bio(VigZe®g+H.C)|. (22)

In the next section, the reasons why the conditi@®®, which ensureN=2 supersymmetry, are also needed for the
Bogomol'nyi bound will be clear in the light of the supercharge algebra.
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Ill. SUPERCHARGE ALGEBRA AND BOGOMOL'NYI EQUATIONS

We shall now analyze thd=2 algebra of supercharges for our model. To construct these charges we follow the Noether
method. The conserved current associated With2 supersymmetry is given by

oL
—gr
H-2= {% 50,® Orc® {E«v} 5o, OV~ O Lmel, (23

where{®} and{W¥} represent the whole set of bosonic and fermionic fields, respectively. Concetling], it is defined
through

8,.5= f d®xd,, 0" 7. (24)

The conserved charge is obtained from the cur(28t as

Q)= | @R 25
this giving the explicit expression
i B . —tal x
Q[nc]=—§J { T *FMJrE Lol D~ &y Ti0A|+ 3] "G ﬁE DD~ & +i0B +:*a[ Whay,
g 2
+ Eq; D 7D g +i(DW)? +q§1 \If{q)[—iyﬂpﬁﬁ@(q)—(a(q)A+3(q)B+gV\FTH)¢(q)]] e (26)

Since we are interested in connecting tie 2 supercharge algebra with the Bogomol'nyi relationships, we assume static
configurations withA,=B,=W§=0, and we restrict ourselves to a purely bosonic solution of the theory after computing the
algebra. We obtain, after some calculations

{Q[ 761, QL neT} = 27 v0 PO+ e meZ, 27)
where

PO=E f d?x

2
5 (W3)2+35 (Fi)%+ 3 GZ+E IDVD )2+ (5:A)2+(3B) %+ (D;W)2+ V(P (4), P 5), A, B,W?) |,

(28)
while the central charge is given by
2 2 2
1 a(q) t 1 . ,B(q g
fdz S€'Fy (E - PP~ & t5€'Gy (1217 (P~ &2 |+ ”Waz L I
2
+ie'Jqu (qukp(q))(pgf”q)(q))*] (29)

In Egs.(28) and(29) conditions(21) have been already im- This last equation can be shown to give the following

posed. asymptotic behavior for the Higgs doublets,
Finite energy configurations require the following _
asymptotic conditions on the fields, b0 0 o [ €XAN (2@
Q1= oon v Pp="p ;
J2\expng)e J2 0
W;;3,F;;,Gij ,diA,8,B,D;W3, DY® (,—0,  (30) (32)

and, at the same time, the scalar fields must solve
whereas the Higgs doublets as well as the scalar fields must
minimize the potential at infinity: (a(qAst B(q)Bet gWLTH) D (). =0. (33

. The last term of Eq(30) leads to expressions far;y and
V((D(]_)oc y(I)(Q)oo ,A:x: yBoc ,WOC)ZO (31) n(z) given by
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=~ 3(GWe+ a1)A,+B(1)B,)

(Qmed Q= [ o (5,295, 2%

and : "

+(5WCEA) (51702A)+(57]CEB) (577028)

Niy= %(QW?,;_ a A, — BBy, (39 2

+ 8, V)8, V)l 39

such that q; (05, ¥(q) (9, (qﬂ} (39)
M=ny,+ N = — %(a(l)Jra(z))A(P_ %(B(1)+ﬁ<2))3¢ it is immediate that
(35) e

{Q[ 7c], QL 7](:]}|20- (40)
is an integer which is mmed@tely identified as the topologl—.l_his lower bound is saturated if and only if
cal charge of the configuration.

Coming back to Eq(29) for the central charge, it can be 5. Ha=g =5 =5 W, =0 41
rewritten in the form e 72 a= On 2= 0y Wig=0. @1
In order to further analyze the solutions of E¢41), let us
z=1 f a.Vd3x, (36)  Write the parameter, as
i e i n+
whereV' is given by 7=\, | (42
: It i h btai ivial soluti
i L EB i + Q) i tis now easy to see that to obtain nontrivial solutions to
v (flAJ ¢2B) qul Pl P € @7 Egs.(41) we are forced to choose a parameter with definite

chirality. Moreover, one can see that the conditions

so that, after using Stokes’ theordand taking into account —a
the asymptotic behaviors given in EQ0)], we obtain 8, E%=0, %a=0, 2p=05, V=0 (43)

i - imply 8, E%#0, 8, 3,#0, §,, 2g#0, ands, ¥ #0
= § (E2Ai+ £,B)dX = — 27 dom; (38 for nontrivial solutions. Hence, if one is to look for
Bogomol'nyi equations corresponding to nontrivial configu-
that is, the central charge of th=2 algebra equals rations, it makes sense to consider thathas just one inde-
(modulo some normalization factdrthe topological charge Pendent chiral component, say,
of the configuration. This is one of the main points of our
work: Once the relation between the central charge and the .
topological charge is established, a Bogomol'nyi bound can =
be easily obtained from the supersymmetry alg¢hta-16.
This sort of identity between thid=2 central charge and Let us note, at this point, that for a parameter of this form,
topological charge was first obtained by Witten and Olivethe supercharge algebra can be seen to be
[13] in the SA3) Georgi-Glashow model. It was also dis- .
cussed for the self-dual Chern-Simons system by Lee, Lee, {9[7:1,9[ 71} = 771 7. (2P°+2), (45)
and Weinberg[14]. Hlousek and Spectdrl5] have thor-
oughly analyzed this connection by studying several modelgyith Z the central charge whose explicit value is given in Eq.
where the existence of ad=1 supersymmetry and a topo- (38). Then, the inequality (40) is nothing but the
logical current implies aN=2 supersymmetry with its cen- Bogomol'nyi bound of our model:
tral charge coinciding with the topological charge. More re-
cently, this connection was established for the Abelian Higgs M= w¢§m. (46)
model[16] where a condition on the coupling constants has
also been shown to be necessarily imposed. This condition iSonsequently, Eqg41) are the Bogomol'nyi equations of
unavoidable both for haviny=2 supersymmmetry and the the theory(once we identify the supersymmetry parameter
Bogomol'nyi equations. Also, in the study of self-dual with #.). Explicitly,
Chern-Simons systems, having a topological chargkated
to the magnetic fluxand anN=1 extension, a condition on -
the symmetry-breaking coupling constant must be imposed €'’ W;;®+ qu1 7P =0, (D;W—ig;D;W)?=0,

7+

0 (44

2

both to achieveN=2 extended supersymmetry and to obtain 47)
the Bogomolnyi equationgl4].
Coming back to our model, it is now easy to find the 2

Bogomol'nyi bounq from the correqunding supersymmetry %6”,:”_ + 2 @‘I’Iq@(q)—fl:(l (0~ ie;d)A=0,
algebra. Indeed, since the brackets given by 2@ can be =1 2

written as a sum of fermionic bilinears, (48)
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2
- B . Loy=— W, -WH'— F, F*'~ G, G*"
FelGy+ 2 PP 6=0, (4-igd)B=0, - #Tw ‘e te
gq=1 2 2 2
49 32, DDl —Na| 2, @70,
=1 =1
(DV~i€;D|") P =0, — &\°
q§=:1 ’\(1‘”‘1)<Tq>q><q> \/—
(@At BgB+gWr?) P g =0. (50) ,
2
&
Owing to Eq.(46), their solutions also solve the static Euler- —( 21 \/k(zq)q);rq)‘l)(q)— E : (52
&

Lagrange equations of motion.

h LeBt us ren;arlg on thte_ factkt)hat Iiler:dlfor;flgrjluratlons SOIV'ng_It is immediately seen that the results given in R6f.can be
1€ Bogomolnyl equations break hall ol the SUPErSymmes, ;a4 just by considering bosonic configurations satisfy-
tries, a feature common to all models presenting, - ;
. . ) . g the constraint
Bogomol'nyi bounds with supersymmetric extensi(see,
for example,[17] and references therginindeed, as was A=B=W2=0 (53)
seen above, supersymmetry transformations generated by the
antichiral parameter;_ are broken. If we attempt to keep all in our equations. These conditions are consistent with the
the supersymmetries of our model, we will find that the re-asymptotic behaviors (30) and (31) and with the
sulting field configuration has zero energyhe trivial  Bogomol'nyi equationg47)—(50) of our model. It is inter-
vacuun) as easily seen from Eq#&4l). Had we been faced esting to note that condition®1), imposed by the require-
with an antichiral parameter in E¢44), we would have ob- ment of extended supersymmetry, also fix in this case the
tained antisoliton solutions with a breaking of the supersym<coupling constants exactly as they appear in the above-
metry transformation generated by, . Analogous results mentioned reference. Thus, we have shown that the potential
also hold in four-dimensional models as the one originallyand the coupling constants of the SU&RY(1)yXU(1)y:
studied by Witten and Olivgl3]. pure Higgs model studied if6] are simply dictated by
A careful analysis of the whole set of Bogomol'nyi equa- N=2 supersymmetry. A simple ansatz for stringlike solu-
tions makes evident that the scalar fiehlsB, andW must  tions of arbitrary topological charge in this system has been
vanish. In the special case in which explored in[6]. It is shown there that, interestingly enough,
these configurations do not correspond to an embedding of
_ the Nielsen-Olesen vortex solution.
2B~ 2B,

L . B. U(1) x U(1) model
a nonvanishing solution can be found to be _ (DU _ _ _
It is well known that superconducting cosmic strings

could have appeared as topological defects in the early Uni-
A= B=— o __ % We=0 (51  verse, owing to the presence of a charged field condensate in
b, ¢ @, )
B B2 the core of the strin§)18]. The superconducting string mod-
els are commonly based on a UAY(1) gauge symmetry
with ¢ a real parameter describing an infinite set of vacud 10,18, where one of the (1) factors is unbroken. The same
that, nevertheless, are physically equivalghtis,o=0 does gauge group has been recently considered in order to con-
not imply any loose of generalityStrikingly, we see that the struct the so-called binary cosmic string modgd$ How-
configurations that saturate the Bogomol'nyi bound are exever, in these models, the U(XJ(1) symmetry is com-
actly the same as those found in Rie], in spite of the fact pletely broken in the Higgs vacuum. In view of this, we will
that our model is an extension of the electroweak theorconsider the following Lagrangian density:
analyzed there. Let us finally mention that, starting from Egs.
(47—(50), it is possible to decouple an equation involving  Lscs= — § F,.,F*'— 1G,,G*"+ 5(D'}Y ¢)* (D ¢)
only the Higgs doublet in the same vein as it was previously
done in the abelian Higgs modgd2]. +3(D'Pe* (DHBE) - V(4,8), (54

which can be obtained as a limiting case of our
IV. LIMITING CASES SU(2)XU(1)yxU(1)y, system, whergp and¢ are Abelian

As a by-product of our systematic approach, we can easiljcomplex Higgs fields, whileD® andD(® are the covari-
obtain Bogomol'nyi boundsicoming from an underlying ant derivatives with respect #, andB,,, respectively. In
N=2 supersymmetric structurfor a variety of models order to simplify our discussion, we will restrict ourselves to
which have recently acquired physical interest. those solutions of the model satisfying conditi@3), which

A. SU(2)xU(1)yx U(1)y- pure-Higgs model INote that our algebraic approach is not modified by any con-

The dynamics of this model, first considered in Rél, is  straint imposed on purely bosonic configurations, as all the fermion
dictated by the following Lagrangian density: fields are put to zero after computing the algebra.
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are decoupled from the non-Abelian gauge fwg. Thatis, or (58), imposed in order to arrive to our quite simplified
we are interested in topological classical field configurationsystem, one could obtain Bogomol'nyi relationships for a
in the region of the parameter space whgre 0. We then variety of models. This analysis will be carried out else-
ask for solutions where the disconnected non-Abelian fieldvhere.

strength is constrained to vanish:

C. SU(2) giobarX U(1) oca SEMilocal model

a
Wy, =0. (59) Finally, it is also interesting to explore hoW=2 super-

symmetry guarantees the existence of a Bogomol’nyi bound
Now, we make the following ansatz for the Higgs sector: for the neutral semilocal string defects with
SU(2)gi0bar< U(1)iocas Symmetry discussed in R€fL9], even

D= ¢ d B 0 56 though the vacuum manifold is simply connected. The La-
@D 1o and )= g (56) grangian density of this model takes the form
after which the Higgs potentidllL0) takes the form Lsi=— i F F*+ 3[(9,—i1eA) D] (*—ieA")D]
—N@TDd—0v?)?, (63)

V(,€) =Nl d[> =02+ \y(|£]2—0v3)?

+N3(| 12— v2)(|€]>—v3). (570 Where® is a Higgs doublet charged only under the Abelian
subgroup U(1).y. The potential is minimum when
®dTd=yp?. Sinced is a complex doublet, the minimum of
the potential is a three-sphere and is simply connected. This
is in contrast with the situation in the Abelian Higgs model
where the potential minimum is a circle and a vortex solution
2= B1=0, (58) correpond§ toa conf_ig_uration wh_ich winds aroun.d the circle.
However, it was explicitly shown in Ref19] that this model
which is equivalent to a vanishing, in Eq. (57), such that admits of stable string solutions by a simple generalization of

the effective Lagrangian looks exactly as E§4), with the ~ Bogomol'nyi’'s proof. We can reproduce their proof as a par-
Higgs potential ticular case of our model. In fact, it is easy to see that im-

, , posing conditiong53) and (55), and working in the param-
@) B2 eter space region whe S—0, we just have to restrict
V(¢,8)= T(| ¢|2_Ui)2+7(|§|2_05)2- (59 ourselves to those configurations satisfying the constraint

It is worthwhile to point out that this potential satisfies the
conditions for the existence of binary strinf@]. We will
further simplify the system imposing the condition

With this Higgs potential, the U(¥U(1) symmetry is ®;=G,,=0. (64)
spontaneously broken. The manifold of vacua has nontrivial
topology, IT;[U(1) X U(1)]=Zx Z, this implying the exis-  Then, the Bogomol'nyi bound obtained h9] can be easily
tence of two kinds of strings: those with a flux &f, and  reproduced following the same steps as above. Let us men-
those with a flux ofB,, which can be called type-A and tjon that the Bogomol'nyi bound survives the coupling of
type-B vortices, respectively. If we consider the possibility this system to the gravitational fie@0]. It is also possible,
that both U1) symmetries be broken roughly at the samejy this case, to show that this bound can be thought of as
scale, finite energy leads to the following asymptotic behavroming from an underlying supergravity modatt].
ior for the Higgs fields: Let us end our paper remarking that we have considered a
- . SU(2)XU(1)yxU(1)y, gauge model with a symmetry-
$p—v1e™’ and {—ve, (60) breaking potential, which can be seen to be a simple exten-
sion of the electroweak standard model. The requirement of
N=2 supersymmetry forces a relation between coupling
constants and at the same time, through its supercharge al-
gebra, imposes the Bogomol'nyi equations on certain classi-
cal field configurations. The connection of our model with
realistic supersymmetric extensions of the standard model
and the possible existence of stringlike solutions in its cou-
pling to supergravity remain open problems. We hope to

Thus, the Bogomol'nyi bound of the U(X)U(1) model report on these issues in a forthcoming work.
presented above is

whereny andny, are integers that characterize the topologi-
cal sector ofZXZ to which the solution belongs. Then, in
view of Egs.(36) and (37), it is immediately clear that the
central charge of the correspondify=2 supersymmetric
theory becomes

z=—2w(v§nY+vgnY,). (61

2 5 ACKNOWLEDGMENTS
M=m(vinyt+ovsny:). (62
This work was partially supported by CONICET, Argen-
The bound is proportional to a linear combination of thetina. We would like to thank F. Schaposnik for a critical
topological charges that appear do to the fact that bdt) U reading of the manuscript. J.D.E. is pleased to thank the
subgroups have been broken. To end this paragraph, let iBepartament d’Estructura i Constituents de la Matéor its
comment that provided one relax any of the conditi(h® kind hospitality.



55 SUPERSYMMETRIC ELECTROWEAK COSMIC STRINGS 3819

[1] G. G. RossGrand Unified TheoriesFrontiers in Physics Vol. Peter, Phys. Lett. B58 197 (1995.

60 (Benjamin-Cummings, New York, 1984 [9] R. Rohm and I. Dasgupta, Phys. Rev5B, 1827(1996.
[2] Particle Data Group, L. Montanet al,, Phys. Rev. 50, 1173 [10] J. R. Morris, Phys. Rev. B3, 2078(1996.

(1994. _ [11] E. B. Bogomol'nyi, Sov. J. Nucl. Phy24, 449 (1976.
[3] See, for example, P. Nath, R. Arnowitt, and A. H. Chamsed-[12] H. de Vega and F. Schaposnik, Phys. Rev14)1100(1976.
dine, Applied N=1 Supergravity ICTP Series on Theoretical [13] E. Witten and D. Olive, Phys. Let78B, 97 (1978.

Physics, Vol. (World Scientific, Singapore, 1984and refer- [14] C. Lee, K. Lee, and E. J. Weinberg, Phys. Lett2&3 105
ences therein. (1990.

[4] G. Dvali and G. Senjanovich, Phys. Rev. Leltl, 2376 [15] Z. Hlousek and D. Spector, Nucl. PhyB370, 143 (1992

(Al9§3; '-'hperi"oija;\‘/l’pg”'os’ ng' '-;“- T65582188(11%%3?_'\4 B397, 173 (1993; Phys. Lett. B283 75 (1992; Mod. Phys.
. Earnshaw an . James, Phys. Rev4® (1993; T. Lett. A 7, 3403(1992.

N. Tomaras, irSearch for Sol!tons In Two-Higgs Exten‘?lon§ of [16] J. D. Edelstein, C. Nuez, and F. A. Schaposnik, Phys. Lett. B
the Standard ModelProceedings of the Conference “Topics

in Quantum Field Theory: Modern Methods in Fundamental 1 \?ZQD 3:;1;3?4 C. (e dE A Sch ik Nucl. Ph
Physics,” Maynooth, Ireland, 1995, edited by D. H. Tchrakian L17] J- D- Edelstein, C. ez, and F. A. Schaposnik, Nucl. Phys.

(World Scientific, Singapore, 1995C. Bachas and T. N. 5458‘_ 165(1996.
Tomaras, Phys. Rev. Leff6, 356 (1996. [18] E. Witten, Nucl. PhysBZ4Q, 557(1985.
[5] M. Goodband and M. Hindmarsh, Phys. Lett. 30, 29 [19] T. Vachaspati and A. Acluarro, Phys. Rev. D44, 3067
(1996. (1997).
[6] G. Bimonte and G. Lozano’ Phys Let’[ﬂa 270 (1994’ [20] G.W. G|bb0ns, M. E. OI’tIZ, F. Ruiz RUiZ, and T. M. Samols,
[7] H. B. Nielsen and P. Olesen, Nucl. Ph{61, 45 (1973. Nucl. Phys.B385 127(1992.

[8] P. Peter, Phys. Rev. B9, 5052 (1994; A-C. Davies and P. [21] J. D. Edelstein, Phys. Lett. B90, 101(1997.



