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String theory in curved space-time
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Intrinsic and extrinsic geometric properties of string world sheets in a curved space-time background are
explored. In our formulation, the only dynamical degrees of freedom of the string are its immersion coordi-
nates. A classical equation of motion and the space-time energy-momentum tensor of the string are obtained.
One-loop divergent terms are calculated using the background field method. A divergent Euler characteristic
term appears in this order. The condition for one-loop finiteness is derived. The results obtained here differ
from those in the standard procedu80556-282(97)02406-5

PACS numbds): 11.25.Pm

I. INTRODUCTION gration overX* is easily done and the full power of the
theory of Riemann surfaces can be exploited when integrat-
String theory in curved space-times is an exciting subjecing over the space of all two-metrics. On the other hand, a
and, in fact, has been investigated by many authbr€] as  primary reason for not working with the NG action in the
a framework to study the physics of gravitation in the con-griginal form (2) where the world sheet is treated as an im-
text of string theory. In most investigations so far, the startmersion is that it is nonlinear iX*.
ing point for open or closed bosonic strings propagating in & |n investigating strings in a flat or curved background, it
D-dimensional space-time with the metrich,,(X)  will be shown in this paper that it is actually convenient to

(Osu,v<D—1) is the action work with the NG actior(2), where the only dynamical vari-
1 ables areX*(o,7) while the metric of the world sheet is

S= dod Hh (X induced from its immersion in background geometry. In this

2770/] 7 T\/§ga5(o INX) scheme we do not have to contend with the Weyl symmetry

of the two-dimensional2D) metric. It will also become evi-

dent below that, since the geometric properties of the world
sheet are described in terms of both its first and second fun-
damental forms, it is natural to take into account, besides the

either a fixed background or as dynamically generated by thﬂtSual th?] actior|1d, ar;] acttio_lp th%t. invol\{es tlhe e;(trinsi?hgetom-
string. The dynamical variables of the theory described b)f ry o ethwor Né ee .t' Wo- r']menf_'l'iofg sur ﬁces Hai ex-
Eq. (1) are the immersion coordinate$“(s,7) and the —enize he action —havern'=u, where

world sheet metrig,z. Let us recall that the above action is (i=1,... ’D_Z.) are the scalar mean curvatures O.f the sur-
obtained from the Nambu-GotNG) action face. Any solution for the NG equation of motion is also a

solution of the equation of motion for the extrinsic curvature
1 action. In addition there exist a whole new class of surfaces
S= 5 ,J \/§dodr, (2 that extremize the extrinsic curvature action. There exists a
es . . . .
large body of worK7—11] on strings with extrinsic curvature
action in Lorentzian space-time with the hope of describing
QCD strings. The necessity of including such a term for
1 QCD was emphasized i7]. The extrinsic geometry depen-
S= mf [Vo+NP(9,X"3pX"N,,~d.p)]dadr,  (3)  dent term in the action provides rigidity to the strings, while
the NG term provides tension. Rigidity effects are important
and presuming condensation of the Lagrange multiplier field@lso in determining the shapes of biological membranes
Nag [5], [12,13. In[14], the Nambu-Goto action with the square root
of a metric which is a sum of the induced metric and the
(N ap)=CONSK \GG,p- (4)  third fundamental form has been studied.
It is thus natural to investigate the role of extrinsic geom-
The reasons for starting with the alternati/® in string  etry on the properties of strings in curved space-time. String
theory are well known. The main points being that the inte-theory has a dimensional parameter, i.e., the string tension.
Rigid strings have a dimensionless coupling which in flat
background is asymptotically free. We shall see that this
*Electronic address: kviswana@sfu.ca coupling is asymptotically free in the curved background as
TElectronic address: sarathy@imsc.ernet.in well.

X 3 XK (o, 7)d X" (0, T). (1)

Hereg,z(o,7)(a,=1,2) is the metric on the world sheet.
a' is the string tension. The metric,, may be taken as

which in turn can be written as
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Although we discuss primarily the string world sheet in antly conserved. In Sec. IV we discuss the one-loop diver-
the curved background, many of the results obtained hergences of the theory by integrating ovEf. As a conse-
may be used in the context of t§@+1) canonical formula- quence of reparametrization invariance only the fluctuations
tion of gravity. It may be recalled that in th@&+1) formu-  normal to the world sheet are dynamical. The longitudinal
lation of Arnowitt, Deser, and MisnefADM) [15,16], the  fluctuations are zero modes and their volume cancels the
Cauchy problem of general relativity can be tackled by convolume of the diffeomorphism group of the world sheet. It
structing a space—tim& out of a foliation of spacelike hy- will be seen that a dlvergent_EuIer characteristic term ap-
persurfaces with time coordinateas a parameter. In this P&ars at the one-loop level while such a term was previously
formalism the quantities needed for the description of th"OWn to appear only at the two-loop level in the conven-
four-dimensional line element are the lapse function, whictional approacts,30], where the dynamical degrees of free-
measures distance between nearby hypersurfaces, the stffm are the immersion coordinates and the metrlc.of the
vector that gives the relation between the spatial coordinat¥©rld sheet. Furthermore, only the background metric gets
systems on different hypersurfaces and the 3D space metj€nrmalized in our scheme while the renormalization of
to enable one to measure distances in spacefikeonst both the_ background metric and the Liouville _mode are
slices. In 4D space-time, Einstein’s theory leads to threeN€eded in the conventional scheides]. The condition for
momentum constraints, the Hamiltonian constraint, and si¥"® loop finiteness is also derived.
equations of motion. The hyperbolic form of Einstein’'s
theory can be obtainefll7,18 by imposition of a slicing Il. NG AND EXTRINSIC CURVATURE ACTIONS
condition on the space-time. One such condition involves IN CURVED SPACE-TIME

taking t=const surfaces to be constant mean curvature hy- In the previous section we discussed the NG action. If the
persurfaces. Thus, for example, using harmonic Gauss Mapatich  of space-time is taken as dynamical, then, we

one can sqlve the copstraints('m+1) gravity [19—2_]]...The must incllbljde the Hilbert-Einstein action

considerations in this paper offer other possibilities for

choosing hypersurfaces that extremize the extrinsic curvature 1 _

action. Two-dimensional surfaces of prescribed mean curva- Spe=— —J R\/ﬁdDX. (5)
ture are studied as solutions of the Einstein constraint equa- 87G

tions on closed manifolds if22,23.

Earlier studies in string theory in curved background, for X : o .
example, in[24—28, concentrated on the classical equation!Se the notation whereby geometric quantities of space-time
of motion in order to exhibit its nonlinearity. While the au- will be denoted with a tilde and the world sheet quantities

thors in[24,27,28 considered Nambu-Goto action in curved Will b& unadorned. L .

background, if25,26) the authors included an extrinsic cur- N order to understand rigid strings, it is necessary to re-

vature dependent term in the action. In these studies the firé@ll the structure equations for immersed surfacesMin

variation of the action giving the classical equations of mo-First, the equation of Gauss

tion is examined for various choices of the background ~ _

spacetime. Some of the classical aspects of strings in curved ~ dadpX*+ 17,3, X"9pXP =T 759, XF=HN'“,  (6)

background discussed in this paper have also been consid- _

ered recently by Capovilla and Guvé2Q]. They have con- defines  the  second  fundamental  formH,,

sidered the geometry of deformations of relativistic mem-(i=1,2,...,D—2). In Eq.(6) I';, is the connection iM

branes. In particular they have derived the second variatiodetermined by the metrin,,, while I'}; is the connection

of the NG action in a general curved space and that of theoefficient on string world shee¥! determined by the in-

extrinsic curvature action in a background Minkowski space-duced metricg,z on M. N'* (i=1,2,...,D—2) are the

time. In this paper we are interested in both the classical an¢b —2) normals to the string world sheet %t'(o,7). We

the quantum aspects of strings in curved space. We calculatthoose the normalization

the second variation of both the NG and the extrinsic curva- o

ture actions in arbitrary curved space-time which is then used N'“N!"h = & e(i), (7)

to calculate the renormalization of both the dimensionless

extrinsic curvature coupling and the background metric. Furand

thermore, in the path integral formalism adopted here, where .

the dynamical variables of the theory are the string’s immer- I XEN"h,, =0 (i=12,...,D-2). 8

sion coordinates only, it is shown here explicitly that the )

volume of the two-dimensional diffeomorphism group is €(1)=*1 depending on whether the world shé&thas an

cancelled by the volume of the space of tangential fluctualnduced metric which is Riemannian or pseudo-Riemannian.

tions of the world sheet of the string. This demonstration for=Or string theory, the world sheet metric has Lorentzian sig-

on shell amplitudes turns out to be nontrivial. nature and hencee(i) in Eq. (7) is +1 for
This paper is organized as follows. In Sec. II, we consided =1,2,...,D—2.In the context of canonicaB+1) gravity,

the classical properties of both the NG and the extrinsic curthe hypersurface has induced metric which is Riemannian

vature actions in a curved space-time. We derive their equa@nd soe(i)=—1. Note that Eq.(6) may be expressed in

tions of motion and discuss possible solutions. The spacecompact form as

time energy-momentum tens®f*” of the string is derived in .

Sec. Il and in the Appendix we establish that it is covari- VoV pX#=H,gN'*,

We denote the scalar curvature of space—tigmday R. We



3802

whereV , is the symbol for covariant derivative. Note that
\Y pXE=dpgX* is a world vector as well as a two-vector and

hence needs both connectioi, andI'}; to define its co-
variant derivative.
Next, we have the equation of Weingarten

9oN#+T# 9, X"NIP— AINI#= — e(i)H X . (9)

In Eq. (9)
Al=¢(i)(N"V ,N'#)h,,,,, (10)
VNi#=g,N#+ T 5 XINIP. (11)
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R=2, e(D)[H,zH'*P—(H."?], (18)

I
whereR is the scalar curvature of the world sheet. In two-
dimensions,

1
EJ dodT\/§R=)(, (19

where y is the Euler characteristic of the two-dimensional
manifold. On the other hand, each term on the right in Eq.
(18) is separately reparametrization invariant and hence can
be used as the extrinsic curvature action. For convenience,

Al is the 2D gauge field or gauge connection in the normafVe take this agsubscriptR for rigid strings

bundle.

We shall use the notation whereby we covariantize on all
indices. u is the world index,a,B, the two-dimensional

world sheet index, andj the “internal” indices of the nor-
mal bundle. Thus
V N#=g,N#+ T4 9, X'NIP— AllN#, (12

Note that inD-dimensional space-timé!! = — Al' are two-
dimensional gauge fields with the gauge group BOR).

1
sta—o f JgH2dod (20)

where

1 )2
H2=2 (EH';) : (21

We continue to take Eq.20) as the extrinsic curvature

In addition to the equations of Gauss and Weingartenaction for rigid strings in curved backgrourjécrom now on
there are three key equations we need in the sequel. Thewe shall drop the factoe(i) for convenience. In fact, for
are the equations of Gauss, Codazzi, and Ricci. These ag#rings all normals will be spacelike ardi)=+1.] ag in
well known and we merely give these below for complete-Eq. (20) is a dimensionless coupling. In a flat background, it

ness[31,32.
Equation of Gauss:

RuvpadaXF X" 3, X3 X7

:RQWJFZ €(i) (Hig HY s~ HigsHL ), (13

whereR 4,5 is the curvature of the string world sheet.
Equation of Codazzi:

V. Hp, =V gH,,= e(i)R I XHIpX 3, XTN'P, (14)

nvpo

and equation of Ricci:

RuvpodaXPdgX NIPNIT=FI + HIYH! —HYHI . (15
where
ij _ i ij ik aAKj jk A Ki
Flg=0.Ah—dgAL+AZAY —AFAG. (16)
In Eqg. (14) we have used the notation
[ i _ 196 i _ 196 i Al
VoHp,=dHpg,—TogHs, —T5 Hes—AlHEL . (17)

is known that this coupling is asymptotically fr¢&,10].
Note that if we considered an action

S= J Ryupoda X dpX 0, XP3:X7gPg?%[gdodr,  (22)

it will not take into account extrinsic curvature or bending
rigidity effects although such terms will probably arise in the
effective action starting from the NG term.

In Minkowski space-time, Eq(20), in addition to being
reparametrization invariant on the world sheet, is scale in-
variant underX#— \X*. Although not usually emphasized
in the literature, the actiofi20) is actually invariant under
space-time conformal transformatiof84—36. It is not too
difficult to show that Eq.(20) is invariant under four-
translations, scale transformation, Lorentz transformations
and special conformal transformatiof&v]

XK —pHX?
,lu’:—
X1 2b X p2x2 @3
whereb* is a constanD vector. Invariance under the first
three is manifest. It is readily verified that under infinitesimal
special conformal transformation, EQO) is transformed

In general, these are the only relations between the curvanto a total divergence and hence either vanishes for closed

ture tensor of the space-time and the extrinsic curvature ofyrfacegwithout boundary or turns into a boundary contri-
the world sheet. In the case wha is a hypersurface in  pytion.

space-time there is only one normal andAéﬂ{;EO. Further

Let us concentrate on the properties of E2f) in curved

relations may be obtained when the space-time metric i®ackground. In order to appreciate the nature of the string

written in terms of, say, the isothermal coordinaf&6,33.

world sheet that satisfies the equation of motion of &§),

The choice of the extrinsic curvature action for strings isit is instructive to start with the NG actiof@). A straightfor-

motivated from the relation that follows from E@L3) when

Ruvps=0 (M is Minkowski). In this case,

ward computation shows that the equation of motion of Eq.
(2) can be written as
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. 1/1 .
Ei Ni#H =0. (24) 6SR=—<§J \/agaﬁégaBszcrdr-l-Zj H'5H'\/§dcrdr).

o
o , . _ (27)
This is equivalent toH'=0, i=1,2,...,D—2. In other

words, surfaces with zero mean curvature, i.e., minimal sur- A Simple calculation yields

faces, extremize the NG action. This co_nclu_sion is indepen- 8Gap="V o SXFdgX"N )+ V 4(8XFIX"D,,)
dent of whether the background space-time is flat or curved. T
Note that the equation of motion for the NG action is alge- —25X/‘hMVN'VH'aﬁ, (28
braic in the scalar mean curvature. In flat space-time it re- , )
duces to SN+ 5X0N“T'g'v
(9= 9%)XH=0, (25) =— 9 XM V4N"6X’h,,)
upon using isothermal coordinates on the string world sheet. + Hia'gaﬁxy‘sxphvp]' (29)

In curved background it reads SHi= _Va(HiagéxuaﬁX,,hW)+(VaHiaﬁ)&ﬁXV5Xth

apB "—
9V adpX*=0. 9 +H*BH] NIYoX#h,,+ 3 9“PSH., 4, (30
whereV ,dX* is defined in Eq(6). i 4 . .
In the path integral formulation, classical solutions pro-9“°H'6H.z=V[(V,6X*)N""h  H'— 6X*h,,V ,(N""H')]
vide a starting point for non-perturbative calculations. Thus

aBfiD v N1
one can integrate over minimal surfaces for the NG action. In +GPHR,,pp 0, X" 9 pX OXIN'
fact the present authors have carried out such a calculation + 8XPh, [HI — (VHI) 9 X"
for minimal and harmonic H'=const) surfaces for rigid o o _
strings in a flat background space-time and obtained a modi- —H'HJaBH'“ﬁNJV]—2H"W((97X”)VC,H'
fied Coulomb gas picture of QCD effective string action oo
[11]. This demonstratio{11] utilized the notion of the +NPVAH'Y. (31)
gzlrﬁ%ldmap from the world sheet into the Grassmannian In Eq. (31), ﬁwm is the curvature tensor of the back-
Next, consider the equation of motion of rigid string ac-ground space-time defined by
tion in curved space-time. Surprisingly, the derivation is ﬁfpg:5pfﬁa_5ofﬁp+Fﬁafgx_f§pfﬁx- (32)

rather involved in this case. The special case of an hypersur- _

face inD-dimensions has been discussed38]. We sketch ~ Let us note from Eq(29) that SN'# is not a covariant vector,

below the main steps. but that SN'#+ 6X°T'%4 N'" is. Using Eqs(28)—(31) in Eq.
Starting from Eq.(20) we have, undeK*— X*+ §X*, (27) one finds

5SR:a—0f (VE[(H?gap— 2H'HY,5) 8XH9PX D, + (V. 8XFINh , H = 8X#h, , VA(NPHY) ] +{[ = 2(V*H")H'

+H'V gH %P1 9, X" 8XH N ,,+ (V2H! = 2H2H+ HIH/, gH!*P) sX“N'*h ,,— gaﬁHiaaxvaBXPNwax”'F"em(,})\/adadr.

(33
|
Equations of motion can be obtained by decomposii : i i
into normal and tangential variations of the world sheet. Ac- ZI H'[V gH'*#—2V“H
cordingly, we write
— R, 1ped X dsXPGT°9* X N#]=0. (36)

SXH=ENI#+ g, Xrge, (34)
The equations of motion for the action that is a sum of the
Then it follows from Eq.(33) that the equation of motion for NG and extrinsic curvature actions is easily seen to be
normal variations is
_ S V2H'—2H/(H2+ k) + HIHI*PH
VZH' = 2H?H'+ HIHI*AH| ~ .
—g*PHIR,,,),0, X 3 sXPNIENIT=0, (37)

HVpo

—gPHIR,,,,,0,X"0gXPNIENI"=0,  (35)

uvpo
where k= —ag/27a’. Equation (36) is, however, un-
wherei=1,2,...,D—2. The tangential variations yield changed. In Eq(35),
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V2=g*fy Vg It is worth remarking here that the extrinsic curvature action
_ o contains a fourth derivative operator acting Xt. Neverth-
V H=d,H-AHIL. (38) less, its equation of motion is expressible as a second-order

. ) ] ] o nonlinear partial differential equation in the mean scalar cur-
Equation(36) is actually not an equation of motion. Itis just yatureH' of the world sheet. Once one has a solution of Eq.
the structure equation of Coda44i4) once contracted. This (35) for Hi then one can solve for immersion coordinates
is a consequence of reparametrization invariance of the a9 from Edq. (6). Alternatelv. expressindd! and H' . in
tion. Thus the surfaces with mean curvathi'esatisfying Eq. terms ofX“q.w(e)find E (35)y(’:an Ee writtg-rll as @B
(35) extremize the rigid string action in curved background. ' q:

VAXE =20, (9, VEXP) (9YXT)(V ,0“KH) = h, ,(V2XP) (9, X7) (9YVZXH) = 5 h,,(VEXP) (VEXT) (V2XH)

—LRE 59%7. 9 XP(V2X")=0, (39

opv

which is a fourth-order nonlinear partial differential equation curvature oﬂ, which is given byﬁﬂvpgh"”h"". This would

for X*~. _ imply that 9,X*3,XPg*”=h** which is, of course, wrong
Minimal surfaces, i.e.H'=0, trivially satisfy the equa- [see Eq(61) below.
tion of motion(39) for rigid strings. Solutions to EQ39) in In string theory, it would be most interesting to investi-

flat Minkowski background have been studied both analytigate solutions to Eq35) in cosmological backgrounds. Let
cally and numerically in[8,9]. In particular, for closed us however restrict here to de Sitter or anti—de Sitter space-

strings, finite energy static configurations are found whichtimes, i.e., space-times of constant curvature. We can write
have nonlinear Regge trajectories at the low energy end dbr these space-times

the spectrum. Solutions to NGonrigid) strings in cosmo-

logical space times have been investigatefGih(and refer-

ences cited thereinThey develop a method for solving Eq. R wo=K(h h,o.—h,h,). (43)
(26) written in the form of the geodesic equation of motion e e Hee

and find both stable and unstable configurations. It wouldThe equation of motiori35) reads[we chooses(i)=1]
thus be interesting to investigate similar stability consider-

ations for rigid strings. In flat space-time, solutions to Eq.

(35) in three-dimensional Euclidean space are referred to as V2H'—2H'(H2+K) + HIH] jH'*f=0. (44)
Willmore surfaces[36] and have been investigated in the

context of biological membranes [B9]. This equation takes The corresponding equation of moti¢®6) for the Nambu-

the form([after using Eq(13)] Goto action can be written, using E), as
R T v _ _
V2H+2H HZ_ E) =O, (40) &a(?ﬁ)('“—l— I"ffp(?aX &BXP FgﬁﬁyxM—O (45)

In de Sitter or anti—de Sitter background, the above equation
whereR is the scalar curvature of the world sheet. A spherehas been studied Hy0,41] and found to be related to sinh-
satisfies this equation with constart Solutions with non-  Gordon, cosh-Gordon, or Liouville equations. It would be of
zero genus are known to exist for H¢0) [36]. Note that Eq.  interest to analyze solutions to E@4).

(40) is a nonlinear wave equation fot' in the context of Locally conserved currents arising as a consequence of
string theory. the invariance of the extrinsic curvature action under local
The special case of a hypersurface in curved space-time i&pace-time conformal transformations may be readily ob-
worth considering. In this case the indide§ take only one tained from the total divergence terms in E3). Let us
value anda, 8 take values 1,2,3. Then E(B5) reads discuss, in particular, only the string’s space-time momenta.
_ It is easily seen to be given by
VZH—2H3+HH gH®~HR,,,,0,X"3X"g**N#N7=0.

HVPOT

(41)
H fni afB : ay \/a 2~afB igiaB V| apiyNiv
Using Eq.(13) to eliminateH ,;H** from Eq. (41) we find (P“)R_a_o[(H g“" —H'H'*")d,X"n,,,—(VEH')N'"h ,,].
V2H + 2H3+ H[R 0 0o XH 35X 3, XP3,X79°7gP — R (46
~RyupodaX"9XPGENENT] = 0. (42 We notice that P%)gN'#= — (gl o) (VH') is the compo-

- _ nent of string momenta normal to its world sheet. This mea-
In [38] the termR,,,,,d,X"dzX"3,XP3:X7g*7gP? is re-  sures the bending energy of the rigid string. In comparison
placed byR, which in their notation presumably is the scalar the space-time momentum of the NG string is given by
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with respect to the metrik,,, at the space-time point X. The
g*f(9gX"h,,,, (47)  calculation nevertheless turns out to be rather long. We quote
here the result:

(Pz)Nezzﬂ_a,

which has no component normal to the world sheet.

1
_ v D
IIl. STRING ENERGY-MOMENTUM TENSOR 5SR—§f VhT#¥6h,,d7X, (48

The string’s space-time energy-momentum tengof is
obtained by taking the functional derivative of the actionwith

P (X—X(o,7))
o AT

Vh

1 o 1 o .
THY(X) = a_of dod ( Vg9 X1 X (H2gP —HIH! F) — E\/ag“BVBH'(N'V&aX"vL Ni#g,X")

o \Y P (X—X(o,7))
Iginieniv | — P 7
+2\JgHHIN'AN ) 5 jd(rdr &

- VOGUPH X (N, XP— NP3, X")
0
+ X (N9, XP = NP9, XH)]. (49)

Note thatX in Eq. (49) is just a space-time point, whereas the world sheet but also its extrinsic geometry play a key role
X(o,7) stands for the string dynamical variables. One seeé the dynamics. The partition function for the string is given
from the D-dimensional Diracé function in Eq.(49) that by

T#¥(X) vanishes unlesX is exactly on the string world

sheet. It is instructive to compare E@9) with the energy- :f DX* p( _ 1 J )
momentum tensor of the NG strings. z Vol &% 2m7a’ Vgdodr, (52

1 L X=X(o.7) where Vol is the volume of the 2D diffeomorphism group.
TEL(X)= _,J' dod GG B Xt X", To calculate one-loop effects we need the second variation of
a Jﬁ the action. We now evaluate this on shell, i.e., for minimal
(50 surfaces. As in Eq(34) we decompose the fluctuations
oX* into normal and tangential components. For the NG
Note that the flux of TA% along the normal direction action the first variation of the action can be written as

TKEN!(X)=0. This is no longer true for rigid strings as can 1
be seen from Eq49). This is consistent with the remarks in 5S=— _,f JgH ¢dodr. (53
the Introduction that bending of the strings costs energy. T

It can be verified, although the calculations are rather
long, that

To evaluate the second variation on shef' £0), we
need only evaluate the variation 6f. It is convenient to
rewrite Eqs.(30) and(31) in the form

v, T#"=0 (51

. _ _ SHY 5= (V, V8 —H, HI=R,,,N*NI79,XP5,X");
when the equation of motion are taken into account. Demon-

stration of Eq.(51) is sketched in the Appendix. H(HJV g+ HGV )€, +(VIHL )€, (54

In arriving at the result above from Eq80) and(31), we
IV. ONE-LOOP QUANTUM EFFECTS have made use of the equation of Ga{is®. From above we

; i
A. Nambu-Goto action find that6H' can be expressed as

We now discuss one-loop quantum effects for strings in i P wuii
background space-time. In the conventional treatment, the SH'=50;&+(V*H) &, (55
NG action is taken in the fornil) in which the dynamical
variables areg,; and X* and in this form the action is re- where
garded as a nonlinear model[5]. We show in this section
that it is more convenient to perform computations by re- Oi-=V25}+H‘aﬁHj“5—§Wp,,g“ﬂaaX”aﬁX”N‘“Nj‘T.
garding the world sheet as an immersed surface and the met- (56)
ric on it as induced from the background space-time. The
dynamical fields are just the immersion coordinaxés It  Substituting from above we can write the second variation of
will become clear that in this scheme not only the metric ofEq. (2) as follows(see alsd29)):
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The divergent Euler characteristic term thus gets absorbed in

1 o
5°S=— WJ \/af'o}fldffd% (57)  the redefinition of the background metric. Alternatively, for
one-loop finiteness of string theory the necessary condition is

Note that only the normal-normal fluctuations appear in the -
second variation when evaluated on shell. As a consequence  R,.,/(X(0,7))— 3 R(X(a,7)h,,(X(a,7)=0  (66)
J(DX*IVol)— [(D&YIVol) DE — [ DE'.

The divergent part of the effective actid®) can now be ~ Which is different from the Ricci flatness condition met in
read off from Eqs(56) and (57) using the method of42].  the o models. Equatiori66) has a very nice interpretation.
One finds First, note that the “Einstein-like” equatiof66) is evaluated

on the world sheet. It involves the Ricci tensor of space time

0_ I ~ aBa v o restricted to the world sheet and the scalar curvaRuoé the
r —EJ dod7yO{Ry 1?3, X" I pXPNN world sheet. Therefore, E466) makes sense only on the
o world sheet. Next, note that as a consequence of(&#),
—H,gH" "}, (58)  R(X(c,7))=(D/2)R(X(c,7)). This makes sense, for, when
D=2, R evaluated on the world sheet must coincide with the
where scalar curvature of the world sheet. Using this relation back
N in Eq. (66), we can rewrite it as
' (27)%K? (59 1~ 2-D

G VER/W_ERh/W:TRhMV’ (67)

7
is the logarithmic divergent term. The covariant derivative
V in Eq. (54) contains the gauge connectié) . But coun-  \yhich can be interpreted as Einstein equation with a cosmo-
terterms dependent ok, do not arise since they can appear |ogical termA =[(2— D)/4]R. The vanishing of the covari-
only through Tr€ ,zF*#) which is a dimension-four opera- ant derivative of Einstein tensor due to the contracted Bian-
tor. chi identity forces the cosmological terin to be a constant
Now from Gauss’ formuld13) we find in the Einstein equation. In contrast, here, as HY) is
evaluated on the world sheet, Bianchi identity does not force
vpod o XF9gX D XP3 XTgPTg™°. R to be a constant. To see this, taking the covariant deriva-
(600 tive V, of Eq. (67) along the surface, writing

V_=4d,XPV_, multiplying by g*%9,X? and using Eq(61),
R in above is the scalar curvature of the world sheet. Noteor‘]’e fircfds thpe contrzé/teg Bi);gchi ?dentity Ieadsgto a(6Y)

that for NG action we puH=0 in the above formula. Sub-

Hi gH*#=4H?+R-R

stituting Eq.(60) in Eq. (58 and making use of the com- o D—2
pleteness relation N"’“N"’VPGW=Tg“ﬁ'aﬁxf‘(aaR)hW.
D-2
NANIZ+ 9. X 9 5X7g70=hr7, (61  The left-hand side need not vanish.
i=1 4 We now compare these results with thosd4b]. In the

usual procedure in which the world sheet metric Xrtdboth
we get are treated as dynamical, the divergent Euler characteristic
| term appears at the two-loop level and is absorbed in the
(1)—_ = v wpraB_ renormalization of the Liouville mode. In our formalism in
r _Zf dUdT\/a{R”Pa”X 96%'0 Rh, (62 which the world sheet metric is the induced metric and only
_ X*# is dynamical, such a term appears at the one-loop level
whereR,,, is the Ricci tensor of space-time. As claimed be-and is absorbed in the redefinition of the background metric.
fore, the Euler characteristic term appears in one-loop ordeiWVhen R=0, Eq. (66) is the vacuum Einstein equation and
This is to be contrasted with the results[B30]. Both di-  this agrees with the results obtained [i#,5], where this
vergent terms in Eq62) can be absorbed in the renormal- equation was derived for a flat world sheet. The difference
ization of the background metric,, . Thus, defining renor- now is the appearence of the scalar curvature of the world
malizedh,, by sheet appearing in E§66).

R _
h,w_ huv"' 5h,uv' (63) B. Action with extrinsic curvature

we find that We now calculate one-loop effects for the extrinsic cur-
vature action. The coupling constagy in Eq. (20) is asymp-
Jg= de[&aX“aBX”(hﬁv— oh,,)] totically free in flat space-time. So, in this case we will en-
counter renormalization of both the space-time metric and
~\g(1- %gaﬁaaX“&BX”cShW). (64)  the coupling of the extrinsic curvature action. As in the case
of the NG action, we start by calculating the second variation
Thus, we define of the extrinsic geometric action. This, however, turns out to
_ be rather involved and we sketch the essential steps below.
5hw=27m’l(RM,,—%RhM). (65  The first variation of this action given in E@33) is, after
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ignoring the total divergence terms and the longitudinal fluc- spv _1 vy v _4+v. v — 1 7R
tuations termgwhich vanish due to the equation of Gayss ap= 297 (VaVptVpVa) €™ 207 R puste

— 3 97Rpst = 97V f(HhpE) — g7V 5(HI, ;)

S :f V2H'—2H2H!+ HIH! ,Hie? oo
SR s 07 (Hl ). (69
_ 4D v aBNINNIO) &
H'R),p0doX"dgXPG*PNI*N'?) &i(a, 7)dod T, In Eq. (69), Rg,s is the curvature tensor of the world sheet.
(68)  The longitudinal fluctuations are denoted Bywith Greek

) ) ] ] indices while the normal fluctuations are denotedébwith
\/SVPe:?Ei(f(T,T) Itz thebnormal ﬂU‘t{tUat'O" def|||1edt '”.tEq34)- A ILatin indices. Next, the variation of the normal gauge con-
arting from the above equation we evaluate its on shelhocrionAl : From its definition

variation. Thus, it is sufficient to evaluate the variation of the

terms within the brackets. This is because of the equation of All = Njy(’v‘ N'#)h
motion (35). It is clear that there will be terms that involve “ “
operators that couple only normal fluctuations and a piecgnareV is defined in Eq(11)
that couples tangential fluctuations to the normal fluctua- “ ’

(70

uvo

it can be verified that

tions. It will turn out that these second types of terms vanish SAll = — FgﬁgﬁJr(HLBVBgi - HLBVBE)
as a consequence of the equation of moti®5). The calcu- _
lations needed to evaluate the second variation of the extrin- + R, on pNTNIEG  XPNFM K, (71
sic curvature action are lengthy. We give below the key B B
steps. In Eq. (71), Fj, is the field strength oA} defined in Eq.
In addition to the results used in the second variation 0f16).
the NG action, as well as Eq&8), (29), (54), and(55), we We now give the results for the variation of each of the
need the following results: The variation Bfgﬁ, terms in Eq.(68):

S(VZH) =[V (V2H) €7+ § V(O] &) +2(VIVAH)HI ,8 — 2(VHD [ (H, sV A e — HI ,VAE)
+ Ry N INI# XPNKA K = HIV R,y ,NTTNI# G XPNKN 64 (HE, VA1 — HE VA1) ]

HONp nONp

+2(VHY[V(HL,, &) -V, (HI&)]. (72

The variation of H?H') is given by

S(HZH) =[V(H2H) ]+ (3 20+ H'HI) O] € (73)
and
S(HIH gH'*P) =[V(HIH} H'#7) 1€, + 5 H jH PO &4+ HIH!*PO) 1%+ HIHI*PO  ,¢¥, (74)
where
cas= VoV pOt Hiy HY 5= Ry poNNZ G, XP0 X (75)

The above operatc(DL’aﬁ satisfies
ik,aﬁgaﬁ: Oi ’

whereOj is defined in Eq(56).
The final variation we need is given below:

S(9*PHIR e 0o X dpXPNIENI) = VA(HIR) 0, X I gXPG ENIMNIT) £, + HI(V LRy ,00) 90 X7 0 pXPGUENIANT TN K- £K
+ 1 Ryypoda XX PG ENIMNITOL 4+ HIR,, o NN (9, XPNKY+ 6, XYNKP) 7 K
+2HI(V H) VY& + 2HI(V H)V7E - HI(VeH], )V —HI(VeH] )V7E.  (76)

Making use of the above results we can write down the second variation of the extrinsic curvature action in background
space-time. In arriving at the form given below, we have used the equation of m@&prsatisfied by the background
configuration. Thus the on shell variation does not contain terms coupling normal fluctuations to the tangential ones. We thus
find, for 6°S,



3808 K. S. VISWANATHAN AND R. PARTHASARATHY 55

5= — J (80} Jgdodr, (77)
ap

where

OLZEO}OL—(H25}+2H'H')O{(+HJH'aﬁO{wBJrHJHJ“BOL’aﬁwL2(V“V5H')H';ﬁ—ZV“HJ(H'QBV%‘{(—HJaﬂVﬁzSL)

— 2(VH)R gy NONIEG XN = HI (VAL H 2V 8, — H VP8 + R 0 NI ONIEG, XPNIN) + 2V HI VHI +HI Ve
—VIHI = HIVY] 8, = HI(V Ry o) 92 X" 3 gXPPNINNKE— 2HI(V H) V78— 2HI(V HI) V78, + HI(VH, ) V78
+HI(VHL )V 78 . (78)

It is straightforward to add the second variation of the NGterms of the immersion coordinat<* as the only dynami-
action to the above. Again, because of the equation of moeal degrees of the theory. The other one-loop divergent term
tion for the combined action given in E€37), the second in Eqg.(80) can be absorbed, as in the case of the NG action,
variation is simply the sum of the two variations. by renormalizing the background metric exactly as before.
One-loop divergent terms can be readily read off from EqQWe have not calculated the finite contributions to the parti-

(78). The bare propagator for the normal fluctuations is givertion function in this paper. The simplest case would be to
by integrate over minimal surfaces. We can take minimal sur-
faces with punctures which can be interpreted as locations of
instanton quark§11].

L ' 1

ighy=g
<§§> 5] p4+(2ﬂ_a/)71p2' (79)
As observed in the case of the NG action, divergent terms V. SUMMARY
involving A} do not arise since they can only appear through In this paper we have studied both the intrinsic and ex-
Tr(F“ﬁFaﬁ) which is a dimension-four operator. There aretrinsic geometric properties of strings immersed in a
two types of divergent terms which are readily computed taD-dimensional curved space-time. In our approach, only the

give the following result: string coordinateX* are dynamical, while the metric on the
world sheet is induced from the string’s immersion in space-
1_ 2 time. The geometrical structure of the embedding is com-
r le H \/adUdT pletely determined by the structure equatigfy (9), (13),

(14), and (15). Minimal surfaces KH'=0) embedded in
1 — : ; ) . .
. f (_th -R, )tgaxva XPg*B\lgdodr, curved space-time satisfy the classical equation of motion of
2 e b the NG action. Any solution of E¢26) for the NG string is
(80) also a solution of Eq(35). The classical equation of motion
(35) for the rigid string admits besiddéd'=0, a wider class
wherel is as given in Eq(59). Divergent extrinsic curvature of surfaces. In some special cases, notably in flat back-
terms arise from terms 1-4 and 8 in E8), whose sum grounds, the solutions to E(B5) are known. For instance, in
yields the factorD in Eq. (80). In writing I'? in the form  flat background three-dimensional space, surfaces of con-
(80), we have made use of the equation of Gauss given istant mean curvature are solutions to B§). In the case of
Eq. (60). embedding in de Sitter or anti—de Sitter space, @¢) can
It is seen that the first term in E¢B0) can be absorbed in be reduced to an algebraic equation for surfaces of constant
the redefinition of the extrinsic curvature couplimg ac- mean curvature.
cording ag 7,43 The space-time energy momentum ten3ér is evalu-
ated for rigid strings. It is found thak**N'# 0, whereN'~
Qg are the normals to the surface. Physically this interpreted as a
O‘R_l—aom ) (82) measure of the bending energy of rigid strings. In contrast,
for the NG stringT{¢N.,=0. That tension and rigidity are
Notice that the factoD appears in the denominator in Eq. two important ingredients for QCD strings is well known.
(81), which is the dimensionality of the background space-We have shown elsewhefd4] that these two effects can
time, rather tha — 2 that would be expected of a nonlinear have an important role also in determining deviation from
o model in which thes model fields are th® —2 normals the area/4 law of black-hole entropy5].
to the surface. We believe that this is the first clear demon- We have evaluated the divergent parts of one-loop correc-
stration of the factoD appearing in Eq(81). We thus find  tion to effective action for both the nonrigid and rigid strings
that the coupling for the extrinsic curvature action in an ar-in curved background. In the case of nonrigid strings, the
bitrary curved background is asymptotically free. We havedivergent part of the quantum one-loop correction is evalu-
avoided using ther model formalism and worked directly in ated by finding the second variation of the Nambu-Goto ac-
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tion on shell H'=0). It is important to note here that al- equation whenX* is restricted to the world sheet should
though the first variation givell'=0, Eq. (24), the second reflect the intrinsically curved nature of the world sheet. The
variation involves the components of the second fundamentalght-hand side is thus a cosmological term, and contrary to
form [see Eqgs(56) and(57)]. Furthermore, the second varia- the Einstein equation in space-time, is not forced to be a
tion (57) involves only the normal-normal fluctuations and constant.

consequently the integration over tangential fluctuations can- In the case of rigid strings in flat background, the cou-
cel the volume of the diffeomorphism group. This featurepling constanty, (20) has been shown to be asymptotically
persists for the rigid strings also and is a result of our apfree[5,10]. The one-loop correction is found to involve two
proach of treating the string world sheet as an immersedivergent termg80), in contrast to the situation in nonrigid
surface with the immersion coordinaté$(o,7) only as dy-  strings(62). The first term in Eq(80) renormalizes the cou-
namical variables. Another feature is the appearance of pling constantry and the renormalized coupling, is given
divergent Euler characteristic term of the world sheet at thén (81). We find that this coupling constant is asymptotically
one-loop level. The orgin of this term can be traced back tdree in a curved background. This generalizes Polyakov’s
Eqg. (60) which follows from the Gauss equatidid3) for  result. It is gratifying to note that the finiteness condition for
immersion. Such a term in the conventional approactthe rigid string produces the same equati{6i) as the NG
[4,5,30 occurs at the two-loop level. Moreover, this diver- string.

gent term is absorbed in the redefinition of the background

metric in our approach, while in the Polyakov approach it

renormalizes the Liouville mode of the two-dimensional ACKNOWLEDGMENTS
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which is to be compared witliR,,=0 result in the usual
approach. The above equation can be rewritten as Einstein
equation with[(2—D)/4]Rh,, on the right-hand side. In
other words, as the right-hand side involV@s the scalar From T#” defined in Eq(47) we demonstrate below that
curvature of the world sheet, it has support only on the worldvV , T#”=0, when the equations of motid85) are satisfied.
sheet. This equation is eminently reasonable as the Einstel direct calculation shows that

APPENDIX

P (X—X(o,7))

Vh

v, TH= f dodr fg([—vzH‘+2H2H‘— HIH, gHI*PINT+ H 95X [2g°PV H! =V H'*F]

1 NN i i m| 1 (X~ X(0,7))
+§[(V2H)N —(V,HYHH 5<95X])—§V#J dO’dTT

P(X—X(o,7))

vh

Vog*A(V gH )N #3, X"
PX—X(a, o
+2vﬂf dadT%\@H'N'“HJN”—[VM,Vp]f

1 P (X—X(o,7))
g, [ 20X

2 G

The last term in Eq(A1) cancels the second and third terms. Usfrﬂg\I‘“:VZX“, the fourth term becomes a boundary term.
Considering the two-dimensional integral in the commutator term as a térist¢X) and applying the rule

VggPH 95X 9, XPNI#

Vgg¥PH! 9 5XH (N7, XP— NP, X"). (A1)

[V, .V, JAPE=RY,, ATPE+RE  ATOHLRE AVPH (A2)

oup

and taking advantage of the Diracfunction under the integral, we can writ, T#” as

P (X—X(o, i i_nigi BN
%@{[_VZH'+2H2H'—H’H'QBH‘”‘B]N'"

+HI[2VAH! =V H®F]9, X"+ H'RY | 3,X73,XPg*ANI#}. (A3)

app

vV, TH= f dodr
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RequiringV , T#”=0, we find that

(V2H! = 2H?HI+ HIH! jHI“®)N'"— HIRY | 9,X73,XPg*PN# — HI[2VAH! -V ,HI*#]9,X"=0. (Ad)

app

Multiplying Eq. (A4) by N""hw we find this condition is the equation of moti¢85) while the tangential projection yields the
Codazzi equatior36).
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