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Intrinsic and extrinsic geometric properties of string world sheets in a curved space-time background are
explored. In our formulation, the only dynamical degrees of freedom of the string are its immersion coordi-
nates. A classical equation of motion and the space-time energy-momentum tensor of the string are obtained.
One-loop divergent terms are calculated using the background field method. A divergent Euler characteristic
term appears in this order. The condition for one-loop finiteness is derived. The results obtained here differ
from those in the standard procedure.@S0556-2821~97!02406-5#
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I. INTRODUCTION

String theory in curved space-times is an exciting subject
and, in fact, has been investigated by many authors@1–6# as
a framework to study the physics of gravitation in the con-
text of string theory. In most investigations so far, the start-
ing point for open or closed bosonic strings propagating in a
D-dimensional space-time with the metrichmn(X)
(0<m,n<D21) is the action

S5
1

2pa8
E dsdtAggab~s,t!hmn~X!

3]aX
m~s,t!]bX

n~s,t!. ~1!

Heregab(s,t)(a,b51,2) is the metric on the world sheet.
a8 is the string tension. The metrichmn may be taken as
either a fixed background or as dynamically generated by the
string. The dynamical variables of the theory described by
Eq. ~1! are the immersion coordinatesXm(s,t) and the
world sheet metricgab . Let us recall that the above action is
obtained from the Nambu-Goto~NG! action

S5
1

2pa8
E Agdsdt, ~2!

which in turn can be written as

S5
1

2pa8
E @Ag1lab~]aX

m]bX
nhmn2gab!#dsdt, ~3!

and presuming condensation of the Lagrange multiplier field
lab @5#,

^lab&5const3Aggab . ~4!

The reasons for starting with the alternative~1! in string
theory are well known. The main points being that the inte-

gration overXm is easily done and the full power of the
theory of Riemann surfaces can be exploited when integrat-
ing over the space of all two-metrics. On the other hand, a
primary reason for not working with the NG action in the
original form ~2! where the world sheet is treated as an im-
mersion is that it is nonlinear inXm.

In investigating strings in a flat or curved background, it
will be shown in this paper that it is actually convenient to
work with the NG action~2!, where the only dynamical vari-
ables areXm(s,t) while the metric of the world sheet is
induced from its immersion in background geometry. In this
scheme we do not have to contend with the Weyl symmetry
of the two-dimensional~2D! metric. It will also become evi-
dent below that, since the geometric properties of the world
sheet are described in terms of both its first and second fun-
damental forms, it is natural to take into account, besides the
usual NG action, an action that involves the extrinsic geom-
etry of the world sheet. Two-dimensional surfaces that ex-
tremize the NG action haveHi50, where Hi

( i51, . . . ,D22) are the scalar mean curvatures of the sur-
face. Any solution for the NG equation of motion is also a
solution of the equation of motion for the extrinsic curvature
action. In addition there exist a whole new class of surfaces
that extremize the extrinsic curvature action. There exists a
large body of work@7–11# on strings with extrinsic curvature
action in Lorentzian space-time with the hope of describing
QCD strings. The necessity of including such a term for
QCD was emphasized in@7#. The extrinsic geometry depen-
dent term in the action provides rigidity to the strings, while
the NG term provides tension. Rigidity effects are important
also in determining the shapes of biological membranes
@12,13#. In @14#, the Nambu-Goto action with the square root
of a metric which is a sum of the induced metric and the
third fundamental form has been studied.

It is thus natural to investigate the role of extrinsic geom-
etry on the properties of strings in curved space-time. String
theory has a dimensional parameter, i.e., the string tension.
Rigid strings have a dimensionless coupling which in flat
background is asymptotically free. We shall see that this
coupling is asymptotically free in the curved background as
well.
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Although we discuss primarily the string world sheet in
the curved background, many of the results obtained here
may be used in the context of the~311! canonical formula-
tion of gravity. It may be recalled that in the~311! formu-
lation of Arnowitt, Deser, and Misner~ADM ! @15,16#, the
Cauchy problem of general relativity can be tackled by con-
structing a space-timeM̃ out of a foliation of spacelike hy-
persurfaces with time coordinatet as a parameter. In this
formalism the quantities needed for the description of the
four-dimensional line element are the lapse function, which
measures distance between nearby hypersurfaces, the shift
vector that gives the relation between the spatial coordinate
systems on different hypersurfaces and the 3D space metric
to enable one to measure distances in spacelike,t5const
slices. In 4D space-time, Einstein’s theory leads to three-
momentum constraints, the Hamiltonian constraint, and six
equations of motion. The hyperbolic form of Einstein’s
theory can be obtained@17,18# by imposition of a slicing
condition on the space-time. One such condition involves
taking t5const surfaces to be constant mean curvature hy-
persurfaces. Thus, for example, using harmonic Gauss map,
one can solve the constraints in~211! gravity @19–21#. The
considerations in this paper offer other possibilities for
choosing hypersurfaces that extremize the extrinsic curvature
action. Two-dimensional surfaces of prescribed mean curva-
ture are studied as solutions of the Einstein constraint equa-
tions on closed manifolds in@22,23#.

Earlier studies in string theory in curved background, for
example, in@24–28#, concentrated on the classical equation
of motion in order to exhibit its nonlinearity. While the au-
thors in@24,27,28# considered Nambu-Goto action in curved
background, in@25,26# the authors included an extrinsic cur-
vature dependent term in the action. In these studies the first
variation of the action giving the classical equations of mo-
tion is examined for various choices of the background
spacetime. Some of the classical aspects of strings in curved
background discussed in this paper have also been consid-
ered recently by Capovilla and Guven@29#. They have con-
sidered the geometry of deformations of relativistic mem-
branes. In particular they have derived the second variation
of the NG action in a general curved space and that of the
extrinsic curvature action in a background Minkowski space-
time. In this paper we are interested in both the classical and
the quantum aspects of strings in curved space. We calculate
the second variation of both the NG and the extrinsic curva-
ture actions in arbitrary curved space-time which is then used
to calculate the renormalization of both the dimensionless
extrinsic curvature coupling and the background metric. Fur-
thermore, in the path integral formalism adopted here, where
the dynamical variables of the theory are the string’s immer-
sion coordinates only, it is shown here explicitly that the
volume of the two-dimensional diffeomorphism group is
cancelled by the volume of the space of tangential fluctua-
tions of the world sheet of the string. This demonstration for
on shell amplitudes turns out to be nontrivial.

This paper is organized as follows. In Sec. II, we consider
the classical properties of both the NG and the extrinsic cur-
vature actions in a curved space-time. We derive their equa-
tions of motion and discuss possible solutions. The space-
time energy-momentum tensorTmn of the string is derived in
Sec. III and in the Appendix we establish that it is covari-

antly conserved. In Sec. IV we discuss the one-loop diver-
gences of the theory by integrating overXm. As a conse-
quence of reparametrization invariance only the fluctuations
normal to the world sheet are dynamical. The longitudinal
fluctuations are zero modes and their volume cancels the
volume of the diffeomorphism group of the world sheet. It
will be seen that a divergent Euler characteristic term ap-
pears at the one-loop level while such a term was previously
known to appear only at the two-loop level in the conven-
tional approach@5,30#, where the dynamical degrees of free-
dom are the immersion coordinates and the metric of the
world sheet. Furthermore, only the background metric gets
renormalized in our scheme while the renormalization of
both the background metric and the Liouville mode are
needed in the conventional scheme@4,5#. The condition for
one loop finiteness is also derived.

II. NG AND EXTRINSIC CURVATURE ACTIONS
IN CURVED SPACE-TIME

In the previous section we discussed the NG action. If the
metric hmn of space-time is taken as dynamical, then, we
must include the Hilbert-Einstein action

SHE52
1

8pGE R̃AhdDX. ~5!

We denote the scalar curvature of space-timeM̃ by R̃. We
use the notation whereby geometric quantities of space-time
will be denoted with a tilde and the world sheet quantities
will be unadorned.

In order to understand rigid strings, it is necessary to re-
call the structure equations for immersed surfaces inM̃ .
First, the equation of Gauss

]a]bX
m1G̃nr

m ]aX
n]bX

r2Gab
g ]gX

m5Hab
i Nim, ~6!

defines the second fundamental form Hab
i

( i51,2, . . . ,D22). In Eq. ~6! G̃nr
m is the connection inM̃

determined by the metrichmn , while Gab
g is the connection

coefficient on string world sheetM determined by the in-
duced metricgab on M . Nim ( i51,2, . . . ,D22) are the
(D22) normals to the string world sheet atXm(s,t). We
choose the normalization

NimNjnhmn5d i j e~ i !, ~7!

and

]aX
mNinhmn50 ~ i51,2, . . . ,D22!. ~8!

e( i )561 depending on whether the world sheetM has an
induced metric which is Riemannian or pseudo-Riemannian.
For string theory, the world sheet metric has Lorentzian sig-
nature and hence e( i ) in Eq. ~7! is 11 for
i51,2, . . . ,D22. In the context of canonical~311! gravity,
the hypersurface has induced metric which is Riemannian
and soe( i )521. Note that Eq.~6! may be expressed in
compact form as

¹a¹bX
m5Hab

i Nim,
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where¹a is the symbol for covariant derivative. Note that
¹bX

m[]bX
m is a world vector as well as a two-vector and

hence needs both connectionsG̃nr
m andGab

g to define its co-
variant derivative.

Next, we have the equation of Weingarten

]aN
im1G̃nr

m ]aX
nNir2Aa

i j Njm52e~ i !Ha
ib]bX

m. ~9!

In Eq. ~9!

Aa
i j5e~ i !~Njn¹̃aN

im!hmn , ~10!

¹̃aN
im5]aN

im1G̃nr
m ]aX

nNir. ~11!

Aa
i j is the 2D gauge field or gauge connection in the normal

bundle.
We shall use the notation whereby we covariantize on all

indices. m is the world index,a,b, the two-dimensional
world sheet index, andi , j the ‘‘internal’’ indices of the nor-
mal bundle. Thus

¹aN
im[]aN

im1G̃nr
m ]aX

nNir2Aa
i j Njm. ~12!

Note that inD-dimensional space-time,Aa
i j52Aa

j i are two-
dimensional gauge fields with the gauge group SO(D22).

In addition to the equations of Gauss and Weingarten,
there are three key equations we need in the sequel. These
are the equations of Gauss, Codazzi, and Ricci. These are
well known and we merely give these below for complete-
ness@31,32#.

Equation of Gauss:

R̃mnrs]aX
m]bX

n]gX
r]dX

s

5Rabgd1(
i

e~ i !~Hbg
i Had

i 2Hbd
i Hag

i !, ~13!

whereRabgd is the curvature of the string world sheet.
Equation of Codazzi:

¹aHbg
i 2¹bHag

i 5e~ i !R̃mnrs]aX
m]bX

n]gX
sNir, ~14!

and equation of Ricci:

R̃mnrs]aX
m]bX

nNjrNis5Fab
i j 1Ha

igHgb
j 2Hb

igHga
j , ~15!

where

Fab
i j 5]aAb

i j2]bAa
i j1Aa

ikAb
k j2Aa

jkAb
ki . ~16!

In Eq. ~14! we have used the notation

¹aHbg
i 5]aHbg

i 2Gab
d Hdg

i 2Gag
d Hbd

i 2Aa
i j Hbg

j . ~17!

In general, these are the only relations between the curva-
ture tensor of the space-time and the extrinsic curvature of
the world sheet. In the case whenM is a hypersurface in
space-time there is only one normal and soAa

i j[0. Further
relations may be obtained when the space-time metric is
written in terms of, say, the isothermal coordinates@16,33#.
The choice of the extrinsic curvature action for strings is
motivated from the relation that follows from Eq.~13! when
R̃mnrs50 (M̃ is Minkowski!. In this case,

R5(
i

e~ i !@Hab
i Hiab2~Ha

ia!2#, ~18!

whereR is the scalar curvature of the world sheet. In two-
dimensions,

1

4pE dsdtAgR5x, ~19!

wherex is the Euler characteristic of the two-dimensional
manifold. On the other hand, each term on the right in Eq.
~18! is separately reparametrization invariant and hence can
be used as the extrinsic curvature action. For convenience,
we take this as~subscriptR for rigid strings!

SR5
1

a0
E AgH2dsdt, ~20!

where

H25(
i

S 12Ha
iaD 2. ~21!

We continue to take Eq.~20! as the extrinsic curvature
action for rigid strings in curved background.@From now on
we shall drop the factore( i ) for convenience. In fact, for
strings all normals will be spacelike ande( i )511.# a0 in
Eq. ~20! is a dimensionless coupling. In a flat background, it
is known that this coupling is asymptotically free@7,10#.
Note that if we considered an action

S5E R̃mnrs]aX
m]bX

n]gX
r]dX

sgbggadAgdsdt, ~22!

it will not take into account extrinsic curvature or bending
rigidity effects although such terms will probably arise in the
effective action starting from the NG term.

In Minkowski space-time, Eq.~20!, in addition to being
reparametrization invariant on the world sheet, is scale in-
variant underXm→lXm. Although not usually emphasized
in the literature, the action~20! is actually invariant under
space-time conformal transformations@34–36#. It is not too
difficult to show that Eq.~20! is invariant under four-
translations, scale transformation, Lorentz transformations
and special conformal transformations@37#

X8m5
Xm2bmX2

122b•X1b2X2 , ~23!

wherebm is a constantD vector. Invariance under the first
three is manifest. It is readily verified that under infinitesimal
special conformal transformation, Eq.~20! is transformed
into a total divergence and hence either vanishes for closed
surfaces~without boundary! or turns into a boundary contri-
bution.

Let us concentrate on the properties of Eq.~20! in curved
background. In order to appreciate the nature of the string
world sheet that satisfies the equation of motion of Eq.~20!,
it is instructive to start with the NG action~2!. A straightfor-
ward computation shows that the equation of motion of Eq.
~2! can be written as
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(
i
NimHi50. ~24!

This is equivalent toHi50, i51,2, . . . ,D22. In other
words, surfaces with zero mean curvature, i.e., minimal sur-
faces, extremize the NG action. This conclusion is indepen-
dent of whether the background space-time is flat or curved.
Note that the equation of motion for the NG action is alge-
braic in the scalar mean curvature. In flat space-time it re-
duces to

~]t
22]s

2 !Xm50, ~25!

upon using isothermal coordinates on the string world sheet.
In curved background it reads

gab¹a]bX
m50, ~26!

where¹a]bX
m is defined in Eq.~6!.

In the path integral formulation, classical solutions pro-
vide a starting point for non-perturbative calculations. Thus
one can integrate over minimal surfaces for the NG action. In
fact the present authors have carried out such a calculation
for minimal and harmonic (Hi5const) surfaces for rigid
strings in a flat background space-time and obtained a modi-
fied Coulomb gas picture of QCD effective string action
@11#. This demonstration@11# utilized the notion of the
Gauss map from the world sheet into the Grassmannian
manifold.

Next, consider the equation of motion of rigid string ac-
tion in curved space-time. Surprisingly, the derivation is
rather involved in this case. The special case of an hypersur-
face inD-dimensions has been discussed in@38#. We sketch
below the main steps.

Starting from Eq.~20! we have, underXm→Xm1dXm,

dSR5
1

a0
S 12E AggabdgabH

2dsdt12E HidHiAgdsdt D .
~27!

A simple calculation yields

dgab5¹a~dXm]bX
nhmn!1¹b~dXm]aX

nhmn!

22dXmhmnN
inHab

i , ~28!

dNim1dXsNinGsn
m

52]aX
m@¹a~NindXshns!

1Hiab]bX
ndXrhnr#, ~29!

dHi52¹a~HiabdXm]bX
nhmn!1~¹aH

iab!]bX
ndXmhmn

1HiabHab
j NjndXmhmn1 1

2 g
abdHab

i , ~30!

gabHidHab
i 5¹a@~¹adXm!NinhmnH

i2dXmhmn¹a~NinHi !#

1gabHiR̃mnrs]aX
n]bX

rdXsNim

1dXmhmn$H
i@2~¹aHa

ig!]gX
n

2HiHab
j HiabNjn#22Hiag~]gX

n!¹aH
i

1Nin¹2Hi%. ~31!

In Eq. ~31!, R̃mnrs is the curvature tensor of the back-
ground space-time defined by

R̃nrs
m 5]rG̃ns

m 2]sG̃nr
m 1G̃ns

l G̃rl
m 2G̃nr

l G̃sl
m . ~32!

Let us note from Eq.~29! thatdNim is not a covariant vector,
but thatdNim1dXsGsn

m Nin is. Using Eqs.~28!–~31! in Eq.
~27! one finds

dSR5
1

a0
E „¹a@~H2gab22HiHab

i !dXm]bXnhmn1~¹adXm!NinhmnH
i2dXmhmn¹a~NinHi !#1$@22~¹aHi !Hi

1Hi¹bH
iab] ]aX

ndXmhmn1~¹2Hi22H2Hi1HjHab
j Hiab!dXmNinhmn2gabHi]aX

n]bX
rNimdXsR̃mnrs%…Agdsdt.

~33!

Equations of motion can be obtained by decomposingdXm

into normal and tangential variations of the world sheet. Ac-
cordingly, we write

dXm5j jN
jm1]aX

mja. ~34!

Then it follows from Eq.~33! that the equation of motion for
normal variations is

¹2Hi22H2Hi1HjH jabHab
i

2gabHjR̃mnrs]aX
n]bX

rNjmNis50, ~35!

wherei51,2, . . . ,D22. The tangential variations yield

(
i
Hi@¹bH

iab22¹aHi

2R̃mnrs]gX
n]dX

rggd]aXsNim#50. ~36!

The equations of motion for the action that is a sum of the
NG and extrinsic curvature actions is easily seen to be

¹2Hi22Hi~H21k!1HjH jabHab
i

2gabHjR̃mnrs]aX
n]bX

rNjmNis50, ~37!

where k52a0/2pa8. Equation ~36! is, however, un-
changed. In Eq.~35!,
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¹2[gab¹a¹b ,

¹aH
i5]aH

i2Aa
i j H j . ~38!

Equation~36! is actually not an equation of motion. It is just
the structure equation of Codazzi~14! once contracted. This
is a consequence of reparametrization invariance of the ac-
tion. Thus the surfaces with mean curvatureHi satisfying Eq.
~35! extremize the rigid string action in curved background.

It is worth remarking here that the extrinsic curvature action
contains a fourth derivative operator acting onXm. Neverth-
less, its equation of motion is expressible as a second-order
nonlinear partial differential equation in the mean scalar cur-
vatureHi of the world sheet. Once one has a solution of Eq.
~35! for Hi then one can solve for immersion coordinates
Xm from Eq. ~6!. Alternately, expressingHi and Hab

i in
terms ofXm, we find Eq.~35! can be written as

¹4Xm22hrs~]a¹2Xr!~]gXs!~¹g]aXm!2hrs~¹2Xr!~]gX
s!~]g¹2Xm!2 1

2 hrs~¹2Xr!~¹2Xs!~¹2Xm!

2 1
2 R̃srn

m ]aXs
•]aX

r~¹2Xn!50, ~39!

which is a fourth-order nonlinear partial differential equation
for Xm.

Minimal surfaces, i.e.,Hi50, trivially satisfy the equa-
tion of motion~39! for rigid strings. Solutions to Eq.~39! in
flat Minkowski background have been studied both analyti-
cally and numerically in@8,9#. In particular, for closed
strings, finite energy static configurations are found which
have nonlinear Regge trajectories at the low energy end of
the spectrum. Solutions to NG~nonrigid! strings in cosmo-
logical space times have been investigated in@6# ~and refer-
ences cited therein!. They develop a method for solving Eq.
~26! written in the form of the geodesic equation of motion
and find both stable and unstable configurations. It would
thus be interesting to investigate similar stability consider-
ations for rigid strings. In flat space-time, solutions to Eq.
~35! in three-dimensional Euclidean space are referred to as
Willmore surfaces@36# and have been investigated in the
context of biological membranes in@39#. This equation takes
the form @after using Eq.~13!#

¹2H12HSH22
R

2 D50, ~40!

whereR is the scalar curvature of the world sheet. A sphere
satisfies this equation with constantH. Solutions with non-
zero genus are known to exist for Eq.~40! @36#. Note that Eq.
~40! is a nonlinear wave equation forHi in the context of
string theory.

The special case of a hypersurface in curved space-time is
worth considering. In this case the indicesi , j take only one
value anda,b take values 1,2,3. Then Eq.~35! reads

¹2H22H31HHabH
ab2HR̃mnrs]aX

n]bX
rgabNmNs50.

~41!

Using Eq.~13! to eliminateHabH
ab from Eq. ~41! we find

¹2H12H31H@R̃mnrs]aX
m]bX

n]gX
r]dX

sgaggbd2R

2R̃mnrs]aX
n]bX

rgabNmNs#50. ~42!

In @38# the termR̃mnrs]aX
m]bX

n]gX
r]dX

sgaggbd is re-
placed byR̃, which in their notation presumably is the scalar

curvature ofM̃ , which is given byR̃mnrsh
mrhns. This would

imply that ]aX
m]gX

rgag5hmr which is, of course, wrong
@see Eq.~61! below#.

In string theory, it would be most interesting to investi-
gate solutions to Eq.~35! in cosmological backgrounds. Let
us however restrict here to de Sitter or anti–de Sitter space-
times, i.e., space-times of constant curvature. We can write
for these space-times

R̃mnrs5K~hmrhns2hmshnr!. ~43!

The equation of motion~35! reads@we choosee( i )51#

¹2Hi22Hi~H21K !1HjHab
j Hiab50. ~44!

The corresponding equation of motion~26! for the Nambu-
Goto action can be written, using Eq.~6!, as

]a]bX
m1G̃nr

m ]aX
n]bX

r2Gab
g ]gX

m50. ~45!

In de Sitter or anti–de Sitter background, the above equation
has been studied by@40,41# and found to be related to sinh-
Gordon, cosh-Gordon, or Liouville equations. It would be of
interest to analyze solutions to Eq.~44!.

Locally conserved currents arising as a consequence of
the invariance of the extrinsic curvature action under local
space-time conformal transformations may be readily ob-
tained from the total divergence terms in Eq.~33!. Let us
discuss, in particular, only the string’s space-time momenta.
It is easily seen to be given by

~Pm
a !R5

Ag
a0

@~H2gab2HiHiab!]bX
nhmn2~¹aHi !Ninhmn#.

~46!

We notice that (Pm
a)RN

im52(Ag/a0)(¹
aHi) is the compo-

nent of string momenta normal to its world sheet. This mea-
sures the bending energy of the rigid string. In comparison
the space-time momentum of the NG string is given by
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~Pm
a !NG5

Ag
2pa8

gab~]bX
n!hmn , ~47!

which has no component normal to the world sheet.

III. STRING ENERGY-MOMENTUM TENSOR

The string’s space-time energy-momentum tensorTmn is
obtained by taking the functional derivative of the action

with respect to the metrichmn at the space-time point X. The
calculation nevertheless turns out to be rather long. We quote
here the result:

dSR5
1

2E AhTmndhmnd
DX, ~48!

with

Tmn~X!5
1

a0
E dsdt

dD„X2X~s,t!…

Ah
SAg]aX

m]bX
n~H2gab2HiHiab!2

1

2
Aggab¹bH

i~Nin]aX
m1Nim]aX

n!

12AgHiH jNimNjnD2
¹r

2a0
E dsdt

dD„X2X~s,t!…

Ah
AggabHi@]bX

m~Nin]aX
r2Nir]aX

n!

1]bX
n~Nim]aX

r2Nir]aX
m!#. ~49!

Note thatX in Eq. ~49! is just a space-time point, whereas
X(s,t) stands for the string dynamical variables. One sees
from the D-dimensional Diracd function in Eq. ~49! that
Tmn(X) vanishes unlessX is exactly on the string world
sheet. It is instructive to compare Eq.~49! with the energy-
momentum tensor of the NG strings.

TNG
mn ~X!5

1

a8
E dsdt

dD„X2X~s,t!…

Ah
Aggab]aX

m]bX
n.

~50!

Note that the flux ofTNG
mn along the normal direction

TNG
mnNn

i (X)50. This is no longer true for rigid strings as can
be seen from Eq.~49!. This is consistent with the remarks in
the Introduction that bending of the strings costs energy.

It can be verified, although the calculations are rather
long, that

¹mT
mn50 ~51!

when the equation of motion are taken into account. Demon-
stration of Eq.~51! is sketched in the Appendix.

IV. ONE-LOOP QUANTUM EFFECTS

A. Nambu-Goto action

We now discuss one-loop quantum effects for strings in
background space-time. In the conventional treatment, the
NG action is taken in the form~1! in which the dynamical
variables aregab andXm and in this form the action is re-
garded as a nonlinears model @5#. We show in this section
that it is more convenient to perform computations by re-
garding the world sheet as an immersed surface and the met-
ric on it as induced from the background space-time. The
dynamical fields are just the immersion coordinatesXm. It
will become clear that in this scheme not only the metric of

the world sheet but also its extrinsic geometry play a key role
in the dynamics. The partition function for the string is given
by

Z5E DXm

Vol
expS 2

1

2pa8
E Agdsdt D , ~52!

where Vol is the volume of the 2D diffeomorphism group.
To calculate one-loop effects we need the second variation of
the action. We now evaluate this on shell, i.e., for minimal
surfaces. As in Eq.~34! we decompose the fluctuations
dXm into normal and tangential components. For the NG
action the first variation of the action can be written as

dS52
1

pa8
E AgHij idsdt. ~53!

To evaluate the second variation on shell (Hi50), we
need only evaluate the variation ofHi . It is convenient to
rewrite Eqs.~30! and ~31! in the form

dHab
i 5~¹a¹bd j

i2Hag
i Hb

ig2R̃mnrsN
imNjs]aX

r]bX
n!j j

1~Ha
ig¹b1Hb

ig¹a!jg1~¹gHab
i !jg . ~54!

In arriving at the result above from Eqs.~30! and~31!, we
have made use of the equation of Gauss~13!. From above we
find thatdHi can be expressed as

dHi5
1

2
Oj
i j j1~¹aHi !ja , ~55!

where

Oj
i5¹2d j

i1Hab
i H jab2R̃mnrsg

ab]aX
n]bX

rNimNjs.
~56!

Substituting from above we can write the second variation of
Eq. ~2! as follows~see also@29#!:
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d2S52
1

2pa8
E Agj iOj

i j jdsdt. ~57!

Note that only the normal-normal fluctuations appear in the
second variation when evaluated on shell. As a consequence
*(DXm/Vol)→*(Dja/Vol)Dj i→*Dj i .

The divergent part of the effective actionG (1) can now be
read off from Eqs.~56! and ~57! using the method of@42#.
One finds

G~1!5
I

2E dsdtAg$R̃lnrsg
ab]aX

n]bX
rNilNis

2Hab
i Hiab%, ~58!

where

I5EL d2k

~2p!2k2
~59!

is the logarithmic divergent term. The covariant derivative
¹ in Eq. ~54! contains the gauge connectionAa

i j . But coun-
terterms dependent onAa

i j do not arise since they can appear
only through Tr(FabF

ab) which is a dimension-four opera-
tor.

Now from Gauss’ formula~13! we find

Hab
i Hiab54H21R2R̃mnrs]aX

m]bX
n]gX

r]dX
sgbggad.

~60!

R in above is the scalar curvature of the world sheet. Note
that for NG action we putH50 in the above formula. Sub-
stituting Eq. ~60! in Eq. ~58! and making use of the com-
pleteness relation

(
i51

D22

NilNis1]gX
l]dX

sggd5hls, ~61!

we get

G~1!5
I

2E dsdtAg$R̃nr]aX
n]bX

rgab2R%, ~62!

whereR̃nr is the Ricci tensor of space-time. As claimed be-
fore, the Euler characteristic term appears in one-loop order.
This is to be contrasted with the results in@5,30#. Both di-
vergent terms in Eq.~62! can be absorbed in the renormal-
ization of the background metrichmn . Thus, defining renor-
malizedhmn by

hmn
R 5hmn1dhmn , ~63!

we find that

Ag5det@]aX
m]bX

n~hmn
R 2dhmn!#

.Ag~12 1
2 g

ab]aX
m]bX

ndhmn!. ~64!

Thus, we define

dhmn52pa8I ~R̃mn2 1
2 Rhmn!. ~65!

The divergent Euler characteristic term thus gets absorbed in
the redefinition of the background metric. Alternatively, for
one-loop finiteness of string theory the necessary condition is

R̃mn„X~s,t!…2 1
2 R„X~s,t!…hmn„X~s,t!…50 ~66!

which is different from the Ricci flatness condition met in
the s models. Equation~66! has a very nice interpretation.
First, note that the ‘‘Einstein-like’’ equation~66! is evaluated
on the world sheet. It involves the Ricci tensor of space time
restricted to the world sheet and the scalar curvatureR of the
world sheet. Therefore, Eq.~66! makes sense only on the
world sheet. Next, note that as a consequence of Eq.~66!,
R̃„X(s,t)…5(D/2)R„X(s,t)…. This makes sense, for, when
D52, R̃ evaluated on the world sheet must coincide with the
scalar curvature of the world sheet. Using this relation back
in Eq. ~66!, we can rewrite it as

Gmn[R̃mn2
1

2
R̃hmn5

22D

4
Rhmn , ~67!

which can be interpreted as Einstein equation with a cosmo-
logical termL5@(22D)/4#R. The vanishing of the covari-
ant derivative of Einstein tensor due to the contracted Bian-
chi identity forces the cosmological termL to be a constant
in the Einstein equation. In contrast, here, as Eq.~67! is
evaluated on the world sheet, Bianchi identity does not force
R to be a constant. To see this, taking the covariant deriva-
tive ¹a of Eq. ~67! along the surface, writing
¹a5]aX

r¹r , multiplying by gab]bX
s and using Eq.~61!,

one finds the contracted Bianchi identity leads to,

NimNir¹rGmn5
D22

4
gab]bX

m~]aR!hmn .

The left-hand side need not vanish.
We now compare these results with those of@4,5#. In the

usual procedure in which the world sheet metric andXm both
are treated as dynamical, the divergent Euler characteristic
term appears at the two-loop level and is absorbed in the
renormalization of the Liouville mode. In our formalism in
which the world sheet metric is the induced metric and only
Xm is dynamical, such a term appears at the one-loop level
and is absorbed in the redefinition of the background metric.
WhenR50, Eq. ~66! is the vacuum Einstein equation and
this agrees with the results obtained in@4,5#, where this
equation was derived for a flat world sheet. The difference
now is the appearence of the scalar curvature of the world
sheet appearing in Eq.~66!.

B. Action with extrinsic curvature

We now calculate one-loop effects for the extrinsic cur-
vature action. The coupling constanta0 in Eq. ~20! is asymp-
totically free in flat space-time. So, in this case we will en-
counter renormalization of both the space-time metric and
the coupling of the extrinsic curvature action. As in the case
of the NG action, we start by calculating the second variation
of the extrinsic geometric action. This, however, turns out to
be rather involved and we sketch the essential steps below.
The first variation of this action given in Eq.~33! is, after
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ignoring the total divergence terms and the longitudinal fluc-
tuations terms~which vanish due to the equation of Gauss!,

dSR5E Ag~¹2Hi22H2Hi1HjHab
j Hiab

2HjR̃lnrs]aX
n]bX

rgabNjlNis!j i~s,t!dsdt,

~68!

wherej i(s,t) is the normal fluctuation defined in Eq.~34!.
Starting from the above equation we evaluate its on shell
variation. Thus, it is sufficient to evaluate the variation of the
terms within the brackets. This is because of the equation of
motion ~35!. It is clear that there will be terms that involve
operators that couple only normal fluctuations and a piece
that couples tangential fluctuations to the normal fluctua-
tions. It will turn out that these second types of terms vanish
as a consequence of the equation of motion~35!. The calcu-
lations needed to evaluate the second variation of the extrin-
sic curvature action are lengthy. We give below the key
steps.

In addition to the results used in the second variation of
the NG action, as well as Eqs.~28!, ~29!, ~54!, and~55!, we
need the following results: The variation ofGab

g ,

dGab
g 5 1

2 g
gd~¹a¹b1¹b¹a!jd2 1

2 g
gdRe

badje

2 1
2 g

gdRe
abdje2ggd¹a~Hdb

j j j !2ggd¹b~Had
j j j !

1ggd¹d~Hab
j j j !. ~69!

In Eq. ~69!, Rbad
e is the curvature tensor of the world sheet.

The longitudinal fluctuations are denoted byj with Greek
indices while the normal fluctuations are denoted byj with
Latin indices. Next, the variation of the normal gauge con-
nectionAa

i j : From its definition

Aa
i j5Njn~¹̃aN

im!hmn , ~70!

where¹̃a is defined in Eq.~11!, it can be verified that

dAa
i j52Fab

i j jb1~Hab
i ¹bj j2Hab

j ¹bj i !

1R̃mslrN
isNjm]aX

rNkljk. ~71!

In Eq. ~71!, Fab
i j is the field strength ofAa

i j defined in Eq.
~16!.

We now give the results for the variation of each of the
terms in Eq.~68!:

d~¹2Hi !5@¹g~¹2Hi !#jg1 1
2 ¹2~Oj

i j j !12~¹a¹bHi !Hab
j j j22~¹aHj !@~Hab

i ¹bj j2Hab
j ¹bj i !

1R̃mslrN
isNjm]aX

rNkljk#2Hj¹a@R̃mslrN
isNjm]aX

rNkljk1~Hab
i ¹bj j2Hab

j ¹bj i !#

12~¹gHi !@¹a~Hag
j j j !2¹g~Hjj j !#. ~72!

The variation of (H2Hi) is given by

d~H2Hi !5@¹a~H2Hi !#ja1~ 1
2 H

2d j
i1HiH j !Oj

i jk, ~73!

and

d~HjHab
j Hiab!5@¹a~HjHbg

j Hibg!#ja1 1
2 Hab

j HiabOk
j jk1HjHiabOk,ab

j jk1HjH jabOk,ab
i jk, ~74!

where

Ok,ab
i 5¹a¹bdk

i 1Hag
i Hkb

g 2R̃mnrsN
imNk

s]aX
r]bX

n. ~75!

The above operatorOk,ab
i satisfies

Ok,ab
i gab5Ok

i ,

whereOk
i is defined in Eq.~56!.

The final variation we need is given below:

d~gabHjR̃mnrs]aX
n]bX

rNjmNis!5¹a~HjR̃lnrs]aX
n]bX

rgabNjlNis!ja1Hj~¹mR̃lnrs!]aX
n]bX

rgabNjlNisNkmjk

1 1
2 R̃lnrs]aX

n]bX
rgabNjlNisOk

i jk1HjR̃lnrsN
jlNis~]aX

rNkn1]aX
nNkr!¹ajk

12Hj~¹gH
i !¹gj j12Hj~¹gH

j !¹gj i2Hj~¹aHag
i !¹gj j2Hj~¹aHag

j !¹gj i . ~76!

Making use of the above results we can write down the second variation of the extrinsic curvature action in background
space-time. In arriving at the form given below, we have used the equation of motion~35! satisfied by the background
configuration. Thus the on shell variation does not contain terms coupling normal fluctuations to the tangential ones. We thus
find, for d2S,
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d2S5
1

a0
E ~j iÕk

i jk!Agdsdt, ~77!

where

Õk
i 5

1

2
Oj
iOk

j 2~H2d j
i12HiH j !Ok

j 1HjHiabOk,ab
j 1HjH jabOk,ab

i 12~¹a¹bHi !Hab
k 22¹aHj~Hab

i ¹bdk
j 2Hab

j ¹bdk
i !

22~¹aHj !R̃mslrN
isNjm]aX

rNkl2Hj~¹a@Hab
i ¹bdk

j 2Hab
j ¹bdk

i 1R̃mslrN
isNjm]aX

rNkl#!12¹gHi@¹aHag
j 1Hag

j ¹a

2¹gHj2Hj¹g#dk
j 2Hj~¹mR̃lnrs!]aX

n]bX
rgabNjlNkm22Hj~¹gH

i !¹gdk
j 22Hj~¹gH

j !¹gdk
i 1Hj~¹aHag

i !¹gdk
j

1Hj~¹aHag
j !¹gdk

i . ~78!

It is straightforward to add the second variation of the NG
action to the above. Again, because of the equation of mo-
tion for the combined action given in Eq.~37!, the second
variation is simply the sum of the two variations.

One-loop divergent terms can be readily read off from Eq.
~78!. The bare propagator for the normal fluctuations is given
by

^j ij j&5d j
i 1

p41~2pa8!21p2
. ~79!

As observed in the case of the NG action, divergent terms
involving Aa

i j do not arise since they can only appear through
Tr(FabFab) which is a dimension-four operator. There are
two types of divergent terms which are readily computed to
give the following result:

G152DI E H2Agdsdt

2I E S 12Rhnr2R̃nrD ]aX
n]bX

rgabAgdsdt,

~80!

whereI is as given in Eq.~59!. Divergent extrinsic curvature
terms arise from terms 1–4 and 8 in Eq.~78!, whose sum
yields the factorD in Eq. ~80!. In writing G1 in the form
~80!, we have made use of the equation of Gauss given in
Eq. ~60!.

It is seen that the first term in Eq.~80! can be absorbed in
the redefinition of the extrinsic curvature couplinga0 ac-
cording as@7,43#

aR5
a0

12a0DI
. ~81!

Notice that the factorD appears in the denominator in Eq.
~81!, which is the dimensionality of the background space-
time, rather thanD22 that would be expected of a nonlinear
s model in which thes model fields are theD22 normals
to the surface. We believe that this is the first clear demon-
stration of the factorD appearing in Eq.~81!. We thus find
that the coupling for the extrinsic curvature action in an ar-
bitrary curved background is asymptotically free. We have
avoided using thes model formalism and worked directly in

terms of the immersion coordinatesXm as the only dynami-
cal degrees of the theory. The other one-loop divergent term
in Eq. ~80! can be absorbed, as in the case of the NG action,
by renormalizing the background metric exactly as before.
We have not calculated the finite contributions to the parti-
tion function in this paper. The simplest case would be to
integrate over minimal surfaces. We can take minimal sur-
faces with punctures which can be interpreted as locations of
instanton quarks@11#.

V. SUMMARY

In this paper we have studied both the intrinsic and ex-
trinsic geometric properties of strings immersed in a
D-dimensional curved space-time. In our approach, only the
string coordinatesXm are dynamical, while the metric on the
world sheet is induced from the string’s immersion in space-
time. The geometrical structure of the embedding is com-
pletely determined by the structure equations~6!, ~9!, ~13!,
~14!, and ~15!. Minimal surfaces (Hi50) embedded in
curved space-time satisfy the classical equation of motion of
the NG action. Any solution of Eq.~26! for the NG string is
also a solution of Eq.~35!. The classical equation of motion
~35! for the rigid string admits besidesHi50, a wider class
of surfaces. In some special cases, notably in flat back-
grounds, the solutions to Eq.~35! are known. For instance, in
flat background three-dimensional space, surfaces of con-
stant mean curvature are solutions to Eq.~35!. In the case of
embedding in de Sitter or anti–de Sitter space, Eq.~44! can
be reduced to an algebraic equation for surfaces of constant
mean curvature.

The space-time energy momentum tensorTmn is evalu-
ated for rigid strings. It is found thatTmnNn

i Þ0, whereNim

are the normals to the surface. Physically this interpreted as a
measure of the bending energy of rigid strings. In contrast,
for the NG stringTNG

mnNn
i 50. That tension and rigidity are

two important ingredients for QCD strings is well known.
We have shown elsewhere@44# that these two effects can
have an important role also in determining deviation from
the area/4 law of black-hole entropy@45#.

We have evaluated the divergent parts of one-loop correc-
tion to effective action for both the nonrigid and rigid strings
in curved background. In the case of nonrigid strings, the
divergent part of the quantum one-loop correction is evalu-
ated by finding the second variation of the Nambu-Goto ac-
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tion on shell (Hi50). It is important to note here that al-
though the first variation givesHi50, Eq. ~24!, the second
variation involves the components of the second fundamental
form @see Eqs.~56! and~57!#. Furthermore, the second varia-
tion ~57! involves only the normal-normal fluctuations and
consequently the integration over tangential fluctuations can-
cel the volume of the diffeomorphism group. This feature
persists for the rigid strings also and is a result of our ap-
proach of treating the string world sheet as an immersed
surface with the immersion coordinatesXm(s,t) only as dy-
namical variables. Another feature is the appearance of a
divergent Euler characteristic term of the world sheet at the
one-loop level. The orgin of this term can be traced back to
Eq. ~60! which follows from the Gauss equation~13! for
immersion. Such a term in the conventional approach
@4,5,30# occurs at the two-loop level. Moreover, this diver-
gent term is absorbed in the redefinition of the background
metric in our approach, while in the Polyakov approach it
renormalizes the Liouville mode of the two-dimensional
metric.

The one-loop finiteness of the string theory leads to

R̃mn„X~s,t!…2 1
2 R„X~s,t!…hmn„X~s,t!…50,

which is to be compared withR̃mn50 result in the usual
approach. The above equation can be rewritten as Einstein
equation with@(22D)/4#Rhmn on the right-hand side. In
other words, as the right-hand side involvesR, the scalar
curvature of the world sheet, it has support only on the world
sheet. This equation is eminently reasonable as the Einstein

equation whenXm is restricted to the world sheet should
reflect the intrinsically curved nature of the world sheet. The
right-hand side is thus a cosmological term, and contrary to
the Einstein equation in space-time, is not forced to be a
constant.

In the case of rigid strings in flat background, the cou-
pling constanta0 ~20! has been shown to be asymptotically
free @5,10#. The one-loop correction is found to involve two
divergent terms~80!, in contrast to the situation in nonrigid
strings~62!. The first term in Eq.~80! renormalizes the cou-
pling constanta0 and the renormalized couplingaR is given
in ~81!. We find that this coupling constant is asymptotically
free in a curved background. This generalizes Polyakov’s
result. It is gratifying to note that the finiteness condition for
the rigid string produces the same equation~67! as the NG
string.
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APPENDIX

FromTmn defined in Eq.~47! we demonstrate below that
¹mT

mn50, when the equations of motion~35! are satisfied.
A direct calculation shows that

¹mT
mn5E dsdt

dD„X2X~s,t!…

Ah
AgS @2¹2Hi12H2Hi2HjHab

i H jab#Nin1Hi]bX
n@2gab¹aH

i2¹aH
iab#

1
1

2
@~¹2Hi !Nin2~¹aH

i !Hiab]bX
n# D2

1

2
¹mE dsdt

dD„X2X~s,t!…

Ah
Aggab~¹bH

i !Nim]aX
n

12¹mE dsdt
dD„X2X~s,t!…

Ah
AgHiNimHjNjn2@¹m ,¹r#E dD„X2X~s,t!…

Ah
AggabHi]bX

n]aX
rNim

2
1

2
¹r¹mE dD„X2X~s,t!…

Ah
AggabHi]bX

m~Nin]aX
r2Nir]aX

n!. ~A1!

The last term in Eq.~A1! cancels the second and third terms. UsingHiNim5¹2Xm, the fourth term becomes a boundary term.
Considering the two-dimensional integral in the commutator term as a tensorAnrm(X) and applying the rule

@¹m ,¹r#Anrm5Rsmr
n Asrm1Rsmr

r Ansm1Rsmr
m Anrm ~A2!

and taking advantage of the Diracd function under the integral, we can write¹mT
mn as

¹mT
mn5E dsdt

dD„X2X~s,t!…

Ah
Ag$@2¹2Hi12H2Hi2HjHab

i H jab#Nin

1Hi@2¹bHi2¹aH
iab#]bX

n1HiR̃srm
n ]aX

s]bX
rgabNim%. ~A3!
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Requiring¹mT
mn50, we find that

~¹2Hi22H2Hi1HjHab
i H jab!Nin2HiR̃srm

n ]aX
s]bX

rgabNim2Hi@2¹bHi2¹aH
iab#]bX

n50. ~A4!

Multiplying Eq. ~A4! byNkmhmn we find this condition is the equation of motion~35! while the tangential projection yields the
Codazzi equation~36!.
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