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We show how, viaT duality, intersectingD brane configurations in ten~six! dimensions can be obtained
from the elementaryD-brane configurations by embedding a type IIBD-brane into a type IIB nine-brane
~five-brane! and give a classification of such configurations. We show that only a very specific subclass of
these configurations can be realized as~supersymmetric! solutions to the equations of motion of IIA or IIB
supergravity. Whereas the elementaryD-brane solutions ind510 are characterized by a single harmonic
function, those ind56 contain two independent harmonic functions and may be viewed as the intersection of
two d510 elementaryD-branes. Using string-string-string triality in six dimensions we show that the heterotic
version of the elementaryd56 D-brane solutions correspond in ten dimensions to intersecting Neveu-
Schwarz–Neveu-Schwarz~NS-NS! strings or five-branes and theirT duals. We comment on the implications
of our results in other than ten and six dimensions.@S0556-2821~97!03306-7#

PACS number~s!: 11.25.Mj, 04.65.1e, 11.27.1d

I. INTRODUCTION

Recent developments have shown that an important role
in understanding nonperturbative string theory is played by
p-brane solutions of the string effective action whose charge
is carried by a single Ramond-Ramond~RR! gauge field.
These solutions correspond to open string states whose end
points are constrained to live on a (p11)-dimensional world
volume and are known as Dirichletp-branes or simply
D-branes@1# ~for a review, see@2#!. More precisely, a Di-
richlet p-brane in ten dimensions is an open string state
which satisfies Dirichlet boundary conditions for the 92p
transverse directions and Neumann boundary conditions for
the p11 world volume directions. Since underT duality1

Dirichlet and Neumann boundary conditions are inter-
changed, it follows that all Dirichlet p-branes
(p50, . . . ,9) areT dual versions of each other@2#. It is
natural that thisT–duality is also realized on thep-brane
solutions and indeed this has shown to be the case for all
values ofp with 0<p<9 @4#.

The elementary Dirichletp-brane solutions in ten dimen-
sions are characterized by a single functionHp that depends
on the 92p transverse coordinates and is harmonic with
respect to these variables. The metric for all values of
p(0<p<9) is given by

ds25Hp
21/2dsp11

2 1Hp
1/2ds92p

2 . ~1!

For even~odd! p this metric corresponds, together with cer-
tain expressions for the dilaton and the RR gauge field, to a
solution of IIA ~IIB ! supergravity. The only nontrivial
T-duality rule involving the metric is given by

g̃xx51/gxx , ~2!

wherex labels the isometry direction over which the duality
is performed. Clearly, under this duality transformation the
metric of a Dirichlet p-brane becomes that of a
(p11)-brane if the duality is performed over one of the
transverse directions of thep-brane. In other words, one of
the transverse directions of thep-brane has become a world
volume direction of the (p11)-brane. We assume here that
the harmonic functionHp is independent of the particular
transverse direction which is dualized or, alternatively, that
we consider a periodic array ofp-brane solutions. We there-
fore may write

H̃p5Hp11 . ~3!

Conversely, a (p11)-brane becomes ap-brane if the duality
is done over one of the world volume directions of the
(p11)-brane. In this case, in order to establish a duality
between the two solutions, we assume that after duality the
harmonic functionHp11 becomes dependent on this particu-
lar world volume direction. It is in this sense that we may
write

H̃p115Hp . ~4!

Strictly speaking theT-duality rules can only be applied as
solution generating transformations to construct
(p11)-brane solutions out ofp-brane solutions and not the
other way around. Therefore the zero-brane leads, viaT du-
ality, to all otherD-brane solutions.A priori it is not guar-
anteed that one can applyT duality also as a solution-
generating transformation to constructp-brane solutions out
of (p11)-brane solutions. In the case of theD-brane solu-
tions theT duality does generate new dual solutions but, as
we will see later, this is not true for other configurations. For
the general case one must check by hand whether the dual1For a review, see@3#.
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metric indeed is a new solution. In this paper we will use
T duality only as a tool to construct a natural ansatz for a
class of solutions.

A particularly interesting case, which will play an impor-
tant role later, is the nine-brane solution which has no trans-
verse directions and whose world volume is ten-dimensional
Minkowski spacetime. Therefore, all Dirichletp-branes are,
via T duality in the 92p transverse directions,T dual to flat
spacetime. Conversely, out of flat spacetime we can con-
struct all otherD-brane solutions viaT duality. This can be
done in the following way. First we write the nine-brane
solution as

ds25H9
21/2ds10

2 , ~5!

whereH9 is a constant~which is related to the spacetime
volume!. To obtain the 8-brane solution, we dualize in one of
the world volume directions, say,x9, and assume that after
dualityH9 becomes dependent onx

9, i.e.,H̃95H8. One thus
obtains the eight-brane solution. Similarly, one can obtain all
otherD-brane solutions. We conclude that not only does the
zero-brane, viaT duality, lead to all other Dirichlet
p-branes with 0,p<9, but also the nine-brane lead, viaT
duality, to all remaining Dirichletp-branes with 0<p,9.

It is natural to consider bound states of~orthogonal! in-
tersections ofD-branes. Such multipleD-brane configura-
tions have been considered in@5,2#.2 It turns out that,
whereas the elementaryD-brane solutions are described by a
single harmonic function, the solution corresponding toq
intersectingD-branes containsq independent harmonic func-
tions. Thus, these solutions may be considered as composi-
tions of the elementary solutions. For simplicity, we will first
restrict ourselves to solutions with two independent har-
monic functions. Several examples of intersecting solutions
in ten dimensions@not necessarilyD-branes but also Neveu-
Schwarz–Neveu-Schwarz~NS/NS! solutions# with more
than one harmonic function have been given in the literature.
The configuration given in@8# describes two NS-NS five-
branes intersecting over a string. The solution given in Eq.
~2.5! of @9# describes three NS-NS five-branes intersecting
over a string, while the solution given in Eq.~5.2! of the
same reference describes the intersection of a fundamental
string with two NS-NS five-branes. The chiral null model of
@10# describes the composition of a NS-NS string and itsT
dual while the the solution given in@11,12# describes a fun-
damental string and itsT dual lying within a NS-NS five-
brane and itsT dual. Finally, the solution of@13# describes a
Dirichlet one-brane inside a Dirichlet five-brane.

Recently, intersectingp-brane solutions have also been
considered in 11 dimensions, in which case they are referred
to as intersectingM -branes. More explicitly, it has been
shown in@14# that the solutions of@15# that break more than
one half of the 11-dimensional supersymmetry can be con-
sidered as intersections of the elementary two-branes@16#
and five-branes@15#. This analysis has been extended in@17#
where intersections with independent harmonic functions for
each elementary constituent have been considered. The dis-

cussion of@17# was also applied to ten dimensions where
several examples of solutions describing intersecting
D-branes were given. For all these solutions, the general rule
seems to be that the intersection ofq solutions preserves at
most (1/2)q supersymmetry.

It is the purpose of this work to give a systematic and
unified treatment of solutions describing intersecting Dirich-
let p-branes in ten and six dimensions. For this purpose we
first consider the elementaryD-brane solutions in general
dimensions.3 We define a solution to be an elementary Di-
richlet p-brane if~i! it is charged with respect to one or more
RR gauge fields,~ii ! the metric contains a single function
Hp which is harmonic with respect to the transverse vari-
ables and has the property that the world volume and trans-
verse directions are multiplied withoppositepowers of this
function, and~iii ! the solution has vanishing scalar except for
a possible dilaton. From the requirement~ii ! it follows that
the metric of all elementaryD-branes are related viaT du-
ality, a property which we expect from an open string state
with mixed Dirichlet-Neumann boundary conditions. The re-
quirement~iii ! ensures that the solutions are connected to flat
space time with constant scalars.

To determine the metric of an elementaryD-brane solu-
tion it is convenient to first consider thoseD-branes that
have vanishing dilaton. The otherD-brane solutions are then
obtained viaT duality. It is not too difficult to see, using the
results of @20#, that such solutions only exist for
p5(D24)/2 and that the metric of such solutions is given
by

ds25Hp
24/~D22!dsp11

2 1Hp
4/~D22!dsD2p21

2 . ~6!

For d510 this reproduces the metric of Eq.~1!. Instead, we
see that ford56 the elementaryD-brane solutions are given
by

ds25Hp
21dsp11

2 1Hpds52p
2 . ~7!

We conclude that the elementaryD-branes in six dimensions
cannot be obtained from a dimensional reduction of elemen-
taryD-branes in ten dimensions since the two solutions have
different powers of harmonic functions in their respective
metrics.4 In this paper we will show, following a suggestion
of @14,17#, how all the elementaryD-brane solutions in six
dimensions have a higher-dimensional interpretation in terms
of intersectingD-branes in ten dimensions. Furthermore, we
will construct, by using string-string-string triality@21,22#,
the heterotic analogue of the six-dimensionalD-branes and
show that their ten-dimensional origin is given by ten-

2Generalizations ofD-branes where an openp-brane ends on a
q-brane have been discussed in.@6,7#.

3Since the zero modes ofD-branes are described by a world vol-
ume vector multiplet, we should restrict ourselves to those dimen-
sions in which there is a Bose-Fermi matching on the world volume
using vector multiplets. This restricts ourselves tod53,4,6,10 di-
mensions@19#. Note that only ind56,10 can we distinguish be-
tween IIA and IIB theories.
4The reduction of the elementaryd510 D-branes to six dimen-

sions lead to solutions with extra nonvanishing scalars since the
metric in the compactified directions is nontrivial.
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dimensional intersecting Neveu-Schwarz–Neveu-Schwarz
~NS-NS! strings or five-branes and theirT duals.

The organization of this paper is as follows. In Sec. II we
will first classify all possible intersecting configurations con-
sisting of two elementaryD-branes in ten dimensions and
briefly discuss the extension to more than two intersecting
D-branes. After that we will show that only a specific sub-
class of these configurations can be~supersymmetric! solu-
tions to the equations of motion of IIA-IIB supergravity. In
Sec. III we will use these results to explain the ten-
dimensional origin of theD-brane solutions in six dimen-
sions. Furthermore, we will construct the heterotic analogue
of thed56 D-branes and explain their ten-dimensional ori-
gin. Finally, in the last section we comment on the implica-
tions of our results in other than ten and six dimensions.

II. D-BRANES AND THEIR INTERSECTIONS IN d510

In this section we discuss the intersection of two
D-branes in ten dimensions. To construct configurations
which describe intersections, a crucial role is played byT
duality. Let us first explain, via an example, the main idea of
this construction. After that we will give a more systematic
treatment. Consider an elementary Dirichletp-brane with
1<p<7 odd and metric given in Eq.~1!. We embed this
D-brane in flat spacetime, i.e., a nine-brane, and write

ds25
1

AHpH9

dsp11
2 2AHp

H9
ds92p

2 , ~8!

whereH9 is the ~constant! harmonic of the nine-brane. In
Table I we have indicated this embedding by thei symbol;
e.g., we write 1i9,3i9, etc. We next may perform aT duality
transformation in two different ways. The first possibility is
that we perform theT duality over one of the transverse

directions of thep-brane, say,x9, which from the nine-brane
point of view is a world volume direction. In this way we
obtain the configuration5

ds25
1

AHp11H8

dsp11
2 2AHp11

H8
ds82p

2 2A H8

Hp11
~dx9!2,

~9!

where we have used thatH̃p5Hp11 and H̃95H8. We thus
end up with a configuration describing the intersection of a
(p11)-brane with an eight-brane via ap-brane. In Table I
these new configurations are indicated one step to the right
with respect to the original configuration, e.g.,

1i9→2'8 . ~10!

The second possibility is that we perform theT duality over
one of the world volume directions of thep-brane, say,x1.
This leads to the configuration

ds25
1

AHp21H8

dsp
22AHp21

H8
ds92p

2 2AHp21H8~dx
1!2,

~11!

where we have used thatH̃p5Hp21 andH̃95H8. This con-
figuration describes a (p21)-brane embedded into an eight-
brane. In Table I these new configurations are indicated one
step above the original configuration, e.g.,

1i9→0i8. ~12!

Clearly, from configurations~9! and~11! one can obtain fur-
ther intersecting configurations by performingT duality over
different directions. This leads us to consider the following
class of metrics with two independent harmonic functions
Hp1r ,Hp1s describing the intersection of a (p1r )-brane
with a (p1s)-brane via ap–Brane:

ds25
1

AHp1rHp1s

dsp11
2 2AHp1r

Hp1s
dss

22AHp1s

Hp1r
dsr

2

2AHp1rHp1sds92p2r2s
2 . ~13!

The dilaton is given by

e22f5~Hp1r !
~p1r23/2!~Hp1s!

~p1s23/2!. ~14!

Using the terminology of@14,18# we call the firstp11
coordinates the world volume coordinates of the intersection.
The nexts and r directions are the ‘‘relative transverse’’
directions with respect to the (p1r )-brane and
(p1s)-brane, respectively. Finally, the last 92p2r2s are
the ‘‘overall transverse’’ directions. We recover the metric of
the elementary Dirichlet (p1r )- and (p1s)-branes by put-
ting Hp1s andHp1r equal to 1, respectively. We will denote
the configuration given in Eq.~13! as (p1r )3(p1s). Note
that if r or s is equal to zero, the configuration describes the

5The expressions for the gauge fields and dilaton can easily be
obtained by applying the type IIT-duality rules of@23#. They will
be given below for the general case.

TABLE I. All possible intersecting configurations of two
D-branes in ten dimensions. The notation is explained in Sec. II.
Note that each class starts at the top withp50 intersection and that
p is constant inside the horizontal line of a given class.
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embedding of oneD-brane into another one. We will indi-
cate this case aspi(p1s). On the other hand, if bothr and
s are different from zero, configuration~13! describes two
D-branes which are orthogonally intersecting over a
p-brane. We will indicate this situation as (p1r )'(p1s).

The labelsp, r , ands in the general configuration~13!
have to satisfy certain conditions: First of allp1r1s<9 for
the obvious reason that we only have nine spatial dimensions
to fill. Further we only want to combine objects which come
from the same theory~IIA or IIB !, and sor1s has to be an
even number 2n, wheren labels different classes of configu-
rations, as indicated in Table I.

In general the configuration (p1r )3(p1s) transforms
underT duality as follows. One possibility is that

~p1r !3~p1s!→@p1~r61!#3@p1~s71!#, ~15!

if under the duality a relative transverse direction of one
object becomes a relative transverse direction of the other
object. In this case we move horizontally in Table I. The
second possibility is that we have

~p1r !3~p1s!→@~p61!1r #3@~p61!1s#, ~16!

if under duality an overall transverse direction becomes an
intersecting one or vice versa.

In either case~15! or ~16! the numberr1s52n remains
constant, so thatn can be used to label the four different
different classes given in Table I. Within each class we may
move viaT duality in the way descriped above. To go from
one class to another we first rewrite the (pi9) element of the
class as an elementaryD-branep. Next we transformp into
q underT duality and writeq asqi9 which is the element of
a different class. There is one subtlety here. It only makes
sense to embed ap-brane into a nine-brane for
(p5odd)-branes. The reason is that one should view the
nine-brane as a IIB solution since underT duality it is trans-
formed into a IIA solution~the eight-brane!. This implies
that it can only intersect with another IIB solution.

In conclusion, we can summarize all possible intersec-
tions of twoD-branes in ten dimensions as given in Table I:
The blocks at the bottom are the elementaryD-branes, and
on each (p5odd) solutions we can build a tower of inter-
sectingD-brane configurations, labeled by the integern.
Within each tower we can move from one configuration to
the horizontally and vertically neighboring ones via the dif-
ferent possibleT dualities: Horizontal moves, in whichp
remains constant, correspond to dualizing relative transverse
coordinates, while vertical moves keepr ands constant and
correspond to dualizing world volume directions into overall
transverse ones or vice versa.

The explicit expressions for the RR fields follow from the
T duality ~for more details see@4#!. Alternatively, their ex-
pression can easily be obtained by the requirement that, if
one of the harmonic functions is set equal to 1, the intersect-
ing configuration should reduce to one of theD-brane solu-
tions discussed in the Introduction. The explicit form of the
RR gauge fields is most easily given by using a formulation
where the magnetic configurations are descibed by magnetic
~dual! potentials. This leads us to consider the Lagrangian

L5A2gH e22f@R24~]f!2#1
~2 !p1r11

2~p1r12!!
F ~p1r12!
2

1
~2 !p1s11

2~p1s12!!
F ~p1s12!
2 J , ~17!

where it is understood that in the field equations one imposes
the constraint thatF (82p) is the dual ofF (p12) . In particular,
F (5) is self-dual. Pseudo-Lagrangians of this form have been
discussed in@24#. It is also understood that the two kinetic
terms for the gauge fields become identical ifr5s.

We next distinguish three different cases.
Case„1…. Both harmonic functions depend on the overall

transverse directions. The RR gauge fields are given by

F0•••p1•••ri
~1! 5] iHp1r

21 , F0•••p1•••si
~2! 5] iHp1s

21 . ~18!

Case „2…. The function Hp1r depends on the overall
transverse directions whereasHp1s depends on the relative
transverse directions. The RR gauge fields are given by

F0•••p1•••ri
~1! 5Hp1s

a ] iHp1r
21 , F0•••p1•••sr

~2! 5] rHp1s
21 .

~19!

Case„3…. Both harmonic functions depend on the relative
transverse directions. The RR gauge fields are given by

F0•••p1•••rs
~1! 5Hp1s

a ]sHp1r
21 , F0•••p1•••sr

~2! 5Hp1r
b ] rHp1s

21 .
~20!

As we will see below, one can also consider more general
cases which are compositions of these three different cases.
For simplicity we will often, if not necessary, omit the ex-
pressions for the RR fields.6 Note that thea in case~2! and
thea,b in case~3! are arbitrary~real! parameters that cannot
be fixed by the Bianchi identities. They can be determined by
the T duality. Alternatively, we will determine them below
by the equations of motion.

So far, we have only appliedT duality to generate the
general ansatz~13!, ~14!, and ~18–20! for intersecting
D-brane configurations. Our next task is to determine which
of these configurations corresponds to a~supersymmetric!
solution of the Lagrangian~17!. Substituting our ansatz into
the vector field and dilaton equation,7 we see thatcase (1)
can only be a solution for n52 and case (2) for n52 and
a 5 0 while case (3) requires that n54 anda5b51. Fur-
thermore, it turns out that cases~1! and ~2! can naturally be
combined into a more general configuration whereHp1r
only depends on the overall transverse directions, as before,
but whereHp1s is given by the sum of two harmonics
Hp1s
(1) ,Hp1s

(2) which depend on the overall and relative trans-
verse directions, respectively, i.e.,

6Note that the RR gauge fields are contributing to the Wess-
Zumino part of the world volume actions. As for the fundamental
string the world volume actions provide the source terms of the
classical solution.
7The case that only intersecting three-branes are involved is spe-

cial since for this case the dilaton equation is trivially satisfied. By
applyingT duality one can relate this case to the other cases and
show that the same restrictions as given below apply.
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Hp1s~x
i ,xr !5Hp1s

~1! ~xi !1Hp1s
~2! ~xr !. ~21!

We will now investigate the supersymmetry of these so-
lutions. It has been shown in@2# that only those intersections
can be supersymmetric~1/4 of the supersymmetry is unbro-
ken! that satisfy the condition thatr1s50mod,4, i.e.,
n52 or 4. In our language this goes as follows. For a single
D-brane the supersymmetry condition follows fromdl50,
wherel is the spinor in the IIA or IIB supergravity multip-
let, anddl ~in the string frame! is given by

dl5gm~]mf!e1
1

4

32p

~p12!!
efFm1•••mp12

gm1•••mp12e~p!8

50 , ~22!

wheree (p)8 5e for p50,4,8;e (p)8 5g11e for p52,6; e (p)8 5 i e
for p521,7, and e (p)8 5 i e! for8 p51,5. Substituting the
D-brane solution into the above equation leads to the condi-
tion

e1g01•••pe~p!8 50 ; ~23!

i.e., half of the supersymmetry is broken.
Now consider the intersection of a (p1r )-brane with a

(p1s)-brane. Then the two supersymmetry conditions cor-
responding to the (p1r )-brane and (p1s)-brane are given
by

e1g01•••p1re~p1r !8 50 , e1g01•••p1se~p1s!8 50 ,
~24!

respectively. Combining the two supersymmetry conditions
we get

e~p1r !8 5~2 !r ~r11!/2g r1se~p1s!8 . ~25!

We now distinguish four cases in which the two spinors in
the above equation are given by (e,e),(e,g11e),(i e,i e), or
( i e,i e!), respectively. All four cases lead to the consistency
condition thatg r1s

2 51 or

n52 or 4 , ~26!

thereby reproducing the condition of@2#.
We next extend this analysis and consider the Killing

spinor equation that follows fromdl50 for the case that we
substitute the complete intersecting configuration and not
only the separateD-brane configurations. In the string frame
we obtain the following equation fromdl50:

gm~]mf!e1 1
4 ~32p2r !efF0•••p1r ,m

~1! g0•••p1r ,me~p1r !8

1 1
4 ~32p2s!efF0•••p1s,m

~2! g0•••p1s,me~p1s!8 50 .

~27!

Substituting the explicit form of the general intersecting con-
figuration ~13!, ~14!, and ~18!–~20! into the above Killing

spinor equation leads, for case~1! to n52, for case~2! to
n52, a50, and for case~3! to n54, a5b51. This nicely
agrees with our earlier finding that only these configurations
can be solutions to the equations of motion. It is not clear to
us what the role is of the intersectingD-branes with
n51,3, and whether they can be represented as some kind of
solution.

Finally, to construct solutions with more than two
D-branes, one can follow the same procedure. We take con-
figuration~13! for two intersectingD-branes withn52,4 and
for the case that both branes belong to the IIB theory and
embed this solution into a nine-brane. Next, one should ap-
ply T duality in the different possible directions to obtain the
class of configurations describing three intersecting
D-branes. This process can be repeated. It would be interest-
ing to determine which of these configurations can be~su-
persymmetric! solutions to the equations of motion.

III. ELEMENTARY D-BRANES IN SIX DIMENSIONS

In this section we describe the compactification of two
intersectingD-branes. In six dimensions~6D! we are inter-
ested in a basic set of nonintersectingD branes, which means
that we have to compactify over the relative transversal
space. Since the internal space has four dimensions, we have
to consider the classn52. From Table I we conclude that
there are three families given by the three columns in the
n52 class, e.g., for a common zero-brane (p50), we have
0i4, 1'3, and 2'2. Since we are compactifing over aK3,
we have to discard the second family. There is no place for a
string inside theK3 ~no one-cycles!. Thus we are left with
the other two intersections. Next, we have to discuss how to
put these objects into theK3. The 0i4 object is clear, the
zero-brane is unchanged and the four-brane wraps around the
whole K3. As a result we get one object defined by two
charges. The two membranes intersecting over a point
(2'2) have two two-cycles that have no common point.
Obviously the two membranes have to wrap around two of
the 22 two-cycles. Naively one would think that this gives us
22 possibilities where every possibility is defined by two
charges. But instead we have to take into account that the
two-cycles in theK3 pick up only the self- or anti-self-dual
part of the two membranes. Hence every possibility is related
only to one charge. In total, the 6D solution is defined by 24
charges, which have to form a O~4,20! vector.

Therefore, a natural ansatz for the type IIA
D-zero-brane is given by

dsIIA
2 5e2Udt22e22Uds5

2 , e24U5e4f5~ uxW Ru22uxW Lu2!,
~28!

wherexW R/L is a harmonic vector in the O~4,20! space. To
clarify this formula we consider the case 0i4, where we have
only two harmonic functions

S xR

xL D 5
1

A2
SH01H4

H02H4
D , ~29!

where H0 and H4 are related to the two intersecting
D-branes in ten dimensions with the metric given by

8For p53 the supersymmetry condition does not follow from
dl50 ~there is no dilaton and the four-form gauge field is absent in
dl). For that case one has to consider the supersymmetry rule of
the gravitino.
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ds25
1

AH0H4

dt22AH0H4ds5
22AH0

H4
ds4

2 . ~30!

Wrapping the four relative transversal space around theK3
yields the six-dimensional metric

ds25
1

AH0H4

dt22AH0H4ds5
2 , ~31!

which is a special case of Eq.~28! and forH05H4 it coin-
cides with Eq.~7!.

As in ten dimensions the electric gauge fields are propor-
tional to the inverse power of a harmonic function and an
O~4,20!-covariant ansatz is~including the 16 left-moving
modes!

AW 05e4US xW R

xW L
D . ~32!

Also, there are scalar fields which are given by the matrix
M that parametrizes the O~4,20! space. To find this matrix
and to prove that this is really a solution of the low energy
effective action we have to compare theD-brane solution
with known solutions on the heterotic side~see below!.

To find the dyonicD-one-brane we have to compactify
the intersections 1i5, 3'3 of the classn52. Again the in-
ternal structure of theK3 yields a result in six dimensions
which has an O~4,20! structure

dsIIB
2 5e2Uds2

22e22Uds4
2 , e2f51,BW 015AW 0 , ~33!

where the other components are defined via the~anti-!self-
duality condition,HW 5(M•L*H), with the matrixL defin-
ing the metric in the O~4,20! space (M has the same form
for the heterotic, IIA, and IIB case!.

The magnetic two-branes can be obtained by reducing the
2i6 and 4'4 solutions. TheD-two-brane in six dimensions
has the form

dsIIA
2 5e2Uds3

22e22Uds3
2 , e2f5e2U, FW i j5A2e i jm]mxW .

~34!

The higher branes are not asymptotically flat. For instance
the Dirichlet three-branes in six dimensions are obtained
from the reduction of the 3i7 and 5'5 solutions. The four-
brane is related to a cosmological constant and, finally, the
6D space-time can be interpreted as the IIB five-brane. As in
ten dimensions we can relate all these solution directly by
T duality.

So far, we have discussed the six-dimensionalD-branes
as compactifications of two intersectingD-branes in ten di-
mensions. The O~4,20! structure was determined by the
structure of theK3. To determine the scalar field matrix
M we have to look for the heterotic analogue. Starting from
the type IIA solutions we will find two heterotic solutions, a
pure magnetic~by mapping theD-two-brane! and one pure
electric~by mapping theD-zero-brane!. By using the string-
string duality transformation we find for the pure magnetic
solution the compactified~magnetic! chiral null model@25#

dsH
2 5ds3

22e24Udxidxi ,

e24U5e4fM5112e4US xa
Lxb

L xa
Lxb

R

xa
Rxb

L jxa
Rxb

RD ,
S FW i j

L

FW i j
RD 5A2e i jm]mS xW L

xW R
D , ~35!

where j5uxW Lu2/uxW Ru2 and i51,2,3. Uplifted to ten dimen-
sions~via T4) one finds

dsH
2 5ds3

22e24Udxidxi~dxa1Ai
~1!adxi !

3Gab~dxb1Ai
~1!bdxi !,

Gab5dab2
x~a
L xb

R

uxW Ru21~xW RxW L!
,

e22f5e2U
1

AdetG
, ~36!

wherexa are the four isometry directions. The 10D antisym-
metric tensor components are given by

Bab5
22x [a

L xb]
R

uxW Ru21~xW RxW L!
, Bam5Ama

~2!1BabAm
~1!b , ~37!

whereA(1/2) are the potentials related to the original field
strength by~without the additional left-moving part!

S FW ~1!

2FW ~2!D 5
1

A2 S 1 1

21 1D S FW R

FW L D . ~38!

The corresponding result for the pure electric case coincides
with the solution in@26# which is an uplifted version of the
solution found in@27#. This relation to known magnetic and
electric solutions proofs that ourD-brane solutions are solu-
tions of the type IIA/B effective actions.

On the heterotic side we can interpret the solution as in-
tersections of known basicp-branes. To make this more
transparent we take only two charges and go into the ‘‘~1!/
~2!’’ basis. Then the 10D metric and dilaton~36! can be
written as a magnetic chiral null model

dsH
2 5ds6

22HsH̃sdx
idxi2

Hs

H̃s

~dz1Ai
~1!dxi !2, e2f5Hs .

~39!

For H̃s51 and an appropriate torsion we get the~solitonic!
five-brane and in the other case (Hs51) its T dual, a Taub-
NUT ~Newman-Unti-Tamburino! soliton. The 24 different
charges in six dimensions are related to the different possi-
bilities to choose the isometry directionz and to the possi-
bility to give the ten-dimensional solution additional charges
with respect to the left moving sector.

Similarly, if we transform the electric zero-brane to the
heterotic side, we find a solution which is in ten dimensions
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an intersection of a fundamental string~with the harmonic
Hf) and itsT dual, the gravitational wave background~with
the harmonicH̃ f)

ds25
1

Hf
~dvdu2H̃ fdu

2!2ds8
2 , e22f5Hf , ~40!

which is the electric chiral null model of@10#.

III. COMMENTS

We have shown that the elementaryD-brane solutions in
six dimensions can be interpreted as the intersection of two
D-branes in ten dimensions. Furthermore we have shown
that the corresponding heterotic solutions can be viewed as
the intersection of a string~or five-brane! with its T dual. It is
natural to extend this analysis and to consider the intersec-
tion of more than two solutions in ten dimensions which
could involve bothD-branes and NS-NS solutions. Of spe-
cial interest are those solutions which have vanishing scalars
upon identification of the different harmonic functions in-
volved.

As an example we consider the five-dimensional
Reissner-Nordstrom black hole solution which was consid-
ered in@28# to give a microscopic derivation of the entropy
in terms of countingD-brane states. This solution has the
metric

ds25H22dt22Hds4
2 , ~41!

whereH is a harmonic function. A ten-dimensional origin of
this solution has been discussed in@13#. Instead, here we will
discuss its interpretation in terms of six-dimensional solu-
tions. Given the powers of the harmonic function, it is clear
that we should consider the intersection of a six-dimensional
D-brane with a NS-NS string or itsT dual. Requiring that we
want to end up with a constant dilaton in five dimensions
restricts ourselves to consider either the intersection of a
zero-Brane with a fundamental string~canceling dilatons! or
a one-brane with theT dual of a fundamental string~with
each vanishing dilaton!. Thus, in the first case the six-
dimensional intersecting solution is 1f30D and is given by

ds25
1

HfH0
dt22

H0

Hf
ds1

22H0ds5
2 , e22f5

Hf

H0
, ~42!

whereas in the second case we have the intersecting solution

1̃f31D:

ds25
1

H1
~dudv2H̃ fdu

2!2H̃1ds5
2 ,e22f;1. ~43!

Identifying the harmonic functions we obtain after compac-
tification overds1 or u, respectively, the metric~41! with a
vanishing dilaton and constant compactification radii. Look-
ing on the ten-dimensional origin we find that this solution is
given by three intersecting branes, type IIA for the first case
and type IIB for the second case. The type IIB intersection
has been discussed in@13#.

As a second example for a solution that is interesting in
the context of entropy calculations we discuss the four-
dimensional Reissner-Nordstrom solution~or their generali-

zations to more than one harmonic function!. Again, for this
solution there exists a limit obtained by identification of har-
monic functions for which all scalars dissappear. It is natural
therefore to consider it as an elementary four-dimensional
D-brane. The metric is given by

ds25H22dt22H2ds3
2 . ~44!

It has a natural interpretation in terms of intersecting
D-branes in six or ten dimensions. Since the powers of the
harmonic function in front of the world volume~time! and
the transversal space are the same, we can express this solu-
tion directly byD-branes, and we do not need the NS-NS
branes. As in the case before we have two possibilities. The
first one with canceling dilaton contributions is given by the
intersection of a zero- and two-brane in six dimensions,

ds25
1

H0H2
dt22

H0

H2
ds2

22H0H2ds3
2 , e22f5

H2

H0
,

~45!

while the second possibility with each vanishing dilaton is
the intersection of two Dirichlet one-branes:

ds25
1

H1H̃1

dt22
H1

H̃1

ds1
22

H̃1

H1
ds1

22H1H̃1ds3
2, e22f;1.

~46!

In analogy with the case of the five-dimensional Reissner-
Nordstrom black hole we find that upon identification of the
harmonic functions (H0 with H2 or H1 with H̃1, respec-
tively! the compactification over the relative transversal
space does not yield additional scalars and is given by Eq.
~44!. Since every six-dimensionalD-brane has an interpreta-
tion as an intersection of two ten-dimensionalD-branes, we
obtain for this case in ten dimensions an intersection of four
D-branes. Some examples of such an interpretation have
been given in@17#.

In order to find a nonvanishing area of the horizon~non-
vanishing Bekenstein-Hawking entropy! it is not necessary
to identify the harmonics. The crucial property is that all
scalar fields stay finite on the horizon (r50). Allowing for
any brane an independent harmonic function which means an
independent charge yields the general case.

Our classification in terms of intersectingD-branes has a
natural interpretation in terms of the black hole solutions
with dilaton coupling parameter9 a5A4/n21 @14#:

~1! a5A3, 10D elementaryD-brane; ~2! a51, 6D el-
ementaryD-brane~or two intersecting 10DD-branes!; ~3!
a51/A3, intersection of a 6DD-brane with a NS-NS brane
~or three intersecting 10D branes!; ~4! a50, 4D elementary
D-brane~or two intersecting 6DD-branes or four intersect-
ing 10DD-branes!.

So far we have only consideredD-branes. It is natural to
also include anti-D-branes which carry the opposite charge.
In the case that both charges differ only in sign one obtains
massless black holes@29#. This is consistent with the picture

9An interpretation of these solutions in terms of intersecting
M -branes has been discussed in@14,17#.
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that the massless case in four dimensions corresponds to a
composition of two or foura5A3 black holes@30#.

Finally, we comment on the number of independent har-
monic function in our intersecting solutions. Our basic set of
D-branes in six dimensions is given by two intersecting
D-branes in ten dimensions and thus contains two harmonic
functions. The 24 different charges are related to different
radii in theK3. On the heterotic side, Eq.~35!, the solution
can be naturally extended to more independent harmonic
functions. At least for the left-moving sector we can assume
that the harmonic functions are completely independent
yielding 114 functions in six dimensions~neglecting the 16
additional left-moving modes!. On the electric side this case
corresponds in ten dimensions to the chiral null model that
contains more than two independent harmonic functions~the
vn functions in @29#!. These additional harmonic functions
are related to momentum modes in the internal directions. In
analogy, the magnetic chiral null model can be described by
the same number of independent harmonic functions. It

would be interesting to see what the role of the additional
harmonic functions is in theD-brane picture.

Note added.Soon after the appearance of this paper there
appeared a paper@31# which has some overlap with the
present work.
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