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We show how, vial duality, intersectind® brane configurations in tefsix) dimensions can be obtained
from the elementanp-brane configurations by embedding a type IBbrane into a type IIB nine-brane
(five-brane and give a classification of such configurations. We show that only a very specific subclass of
these configurations can be realized(sispersymmetricsolutions to the equations of motion of IIA or 1IB
supergravity. Whereas the elementdybrane solutions ird=10 are characterized by a single harmonic
function, those ird=6 contain two independent harmonic functions and may be viewed as the intersection of
two d= 10 elementaryD-branes. Using string-string-string triality in six dimensions we show that the heterotic
version of the elementard=6 D-brane solutions correspond in ten dimensions to intersecting Neveu-
Schwarz—Neveu-SchwafiS-NS strings or five-branes and théirduals. We comment on the implications
of our results in other than ten and six dimensidi$0556-282(197)03306-7

PACS numbeps): 11.25.Mj, 04.65+e, 11.27+d

[. INTRODUCTION wherex labels the isometry direction over which the duality
is performed. Clearly, under this duality transformation the
Recent developments have shown that an important rolmetric of a Dirichlet p-brane becomes that of a
in understanding nonperturbative string theory is played byp+1)-brane if the duality is performed over one of the
p-brane solutions of the string effective action whose chargéransverse directions of the-brane. In other words, one of
is carried by a single Ramond-RamofER) gauge field. the transverse directions of tigebrane has become a world
These solutions correspond to open string states whose erndlume direction of the §+1)-brane. We assume here that
points are constrained to live on p{ 1)-dimensional world  the harmonic functiorH, is independent of the particular
volume and are known as Dirichlgi-branes or simply transverse direction which is dualized or, alternatively, that
D-branes[1] (for a review, sed?2]). More precisely, a Di- we consider a periodic array pfbrane solutions. We there-
richlet p-brane in ten dimensions is an open string statdore may write
which satisfies Dirichlet boundary conditions for the-p
transverse directions and Neumann boundary conditions for
the p+1 world volume directions. Since undar dualityt
Dirichlet and Neumann boundary conditions are inter-
changed, it follows that all Dirichlet p-branes Conversely, ajj+ 1)-brane becomesgbrane if the duality
(p=0,...,9) areT dual versions of each othge]. It is is done over one of the world volume directions of the
natural that thisT—duality is also realized on thp-brane (p—+1)-brane. In this case, in order to establish a duality
solutions and indeed this has shown to be the case for alletween the two solutions, we assume that after duality the
values ofp with 0<p=<9 [4]. harmonic functiorH,, ; becomes dependent on this particu-
The elementary Dirichlep-brane solutions in ten dimen- lar world volume direction. It is in this sense that we may
sions are characterized by a single functidpthat depends write
on the 9-p transverse coordinates and is harmonic with
respect to these variables. The metric for all values of H .. =H )
p(0<p=9) is given by pri— e

Hp=Hp. 1. &)

ds?= H;1’2d5§+1+ Hrl)’zdsé,p. (1)  Strictly speaking ther-duality rules can only be applied as
solution  generating transformations to  construct
For even(odd) p this metric corresponds, together with cer- (p+ 1)-brane solutions out gi-brane solutions and not the
tain expressions for the dilaton and the RR gauge field, to @ther way around. Therefore the zero-brane leadsT -
solution of IIA (lIB) supergravity. The only nontrivial ality, to all otherD-brane solutionsA priori it is not guar-

T-duality rule involving the metric is given by anteed that one can apply duality also as a solution-
generating transformation to constrycbrane solutions out
Oxx= /0y , (2) of (p+1)-brane solutions. In the case of tbebrane solu-

tions theT duality does generate new dual solutions but, as
we will see later, this is not true for other configurations. For
For a review, se€3]. the general case one must check by hand whether the dual
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metric indeed is a new solution. In this paper we will usecussion of[17] was also applied to ten dimensions where
T duality only as a tool to construct a natural ansatz for aseveral examples of solutions describing intersecting
class of solutions. D-branes were given. For all these solutions, the general rule
A particularly interesting case, which will play an impor- seems to be that the intersectiongpfolutions preserves at
tant role later, is the nine-brane solution which has no transmost (1/2§ supersymmetry.
verse directions and whose world volume is ten-dimensional It is the purpose of this work to give a systematic and
Minkowski spacetime. Therefore, all Dirichlptbranes are, unified treatment of solutions describing intersecting Dirich-
via T duality in the 9 p transverse directiong, dual to flat  let p-branes in ten and six dimensions. For this purpose we
spacetime. Conversely, out of flat spacetime we can corfirst consider the elementaf®-brane solutions in general
struct all otherD-brane solutions vid@ duality. This can be dimensions. We define a solution to be an elementary Di-
done in the following way. First we write the nine-brane richlet p-brane if(i) it is charged with respect to one or more
solution as RR gauge fields(ii) the metric contains a single function
H, which is harmonic with respect to the transverse vari-
ds?=H,q Vs, (5)  ables and has the property that the world volume and trans-
verse directions are multiplied withppositepowers of this
where Hg is a constanfwhich is related to the spacetime function, and(ii) the solution has vanishing scalar except for
volume). To obtain the 8-brane solution, we dualize in one ofa possible dilaton. From the requireméii it follows that
the world volume directions, say;’, and assume that after the metric of all elementar-branes are related vié du-
duality Hg becomes dependent af, i.e.,Hg=Hg. One thus  ality, a property which we expect from an open string state
obtains the eight-brane solution. Similarly, one can obtain alvith mixed Dirichlet-Neumann boundary conditions. The re-
otherD-brane solutions. We conclude that not only does thequirement(iii) ensures that the solutions are connected to flat
zero-brane, viaT duality, lead to all other Dirichlet space time with constant scalars.
p-branes with 8<p=<9, but also the nine-brane lead, via To determine the metric of an elementddybrane solu-
duality, to all remaining Dirichlep-branes with B<p<9. tion it is convenient to first consider tho$2-branes that
It is natural to consider bound states (ofthogonal in-  have vanishing dilaton. The othBr-brane solutions are then
tersections ofD-branes. Such multipl®-brane configura- obtained vial duality. It is not too difficult to see, using the
tions have been considered [®,2].2 It turns out that, results of [20], that such solutions only exist for
whereas the elementaBr-brane solutions are described by a p=(D—4)/2 and that the metric of such solutions is given
single harmonic function, the solution correspondinggto by
intersectingD -branes containg independent harmonic func-
tions. Thus, these solutions may be considered as composi- d52=Hg4’(D’2)dsf]+1+ Hg/(D’Z)dszD,p,l. (6)
tions of the elementary solutions. For simplicity, we will first
restrict ourselves to solutions with two independent har—F
monic f!J”C“O_“S- Several exa”?p'es of intersecting SOIUtiONg o 14t fory =6 the elementarp-brane solutions are given
in ten dimensiongnot necessarily -branes but also Neveu- by
Schwarz—Neveu-SchwargNS/NS solution§ with more
than one harmonic function have been given in the literature. 1
The configuration given i8] describes two NS-NS five- dSZZHp d5;2)+1+de§fp' @
branes intersecting over a string. The solution given in Eq.
(2.5 of [9] describes three NS-NS five-branes intersectingNVe conclude that the elementddybranes in six dimensions
over a string, while the solution given in E¢.2) of the  cannot be obtained from a dimensional reduction of elemen-
same reference describes the intersection of a fundamentary D-branes in ten dimensions since the two solutions have
string with two NS-NS five-branes. The chiral null model of different powers of harmonic functions in their respective
[10] describes the composition of a NS-NS string andTits metrics? In this paper we will show, following a suggestion
dual while the the solution given il1,12 describes a fun- of [14,17], how all the elementar{-brane solutions in six
damental string and it¥ dual lying within a NS-NS five- dimensions have a higher-dimensional interpretation in terms
brane and it§ dual. Finally, the solution of13] describes a  of intersectingD-branes in ten dimensions. Furthermore, we
Dirichlet one-brane inside a Dirichlet five-brane. will construct, by using string-string-string trialit}21,22,
Recently, intersecting-brane solutions have also been the heterotic analogue of the six-dimensioBabranes and
considered in 11 dimensions, in which case they are referreshow that their ten-dimensional origin is given by ten-
to as intersectingM-branes. More explicitly, it has been
shown in[14] that the solutions df15] that break more than
one half of the 11-dimensional supersymmetry can be con- 3Since the zero modes &f-branes are described by a world vol-
sidered as intersections of the elementary two-brdd€$  ume vector multiplet, we should restrict ourselves to those dimen-
and five-branegl5]. This analysis has been extendedd@]  sions in which there is a Bose-Fermi matching on the world volume
where intersections with independent harmonic functions fousing vector multiplets. This restricts ourselvesdts 3,4,6,10 di-
each elementary constituent have been considered. The digensions[19]. Note that only ind=6,10 can we distinguish be-
tween IlA and 1IB theories.
“The reduction of the elementar/=10 D-branes to six dimen-
°Generalizations oD-branes where an opembrane ends on a sions lead to solutions with extra nonvanishing scalars since the
g-brane have been discussed|i8,7]. metric in the compactified directions is nontrivial.

or d=10 this reproduces the metric of Ed). Instead, we
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TABLE I. All possible intersecting configurations of two directions of thep-brane, sayx®, which from the nine-brane
D-branes in ten dimensions. The notation is explained in Sec. llpoint of view is a world volume direction. In this way we
Note that each class starts at the top with0 intersection and that  optain the configuratioh
p is constant inside the horizontal line of a given class.

1 Hor1 Hg
A ds?=——=ds?,,— \/—ds5_,— (dx®)2,
(p+1)*(p+s) Intersecting D-branes ‘/Hp+ 1Hg p+1 Hg % p Hp+1
1 2] =l (9)
r—r+ r+s=2n ~ ~
el o [ o where we have used thét,=H,,; andHg=Hg4. We thus
n= =

end up with a configuration describing the intersection of a
(p+1)-brane with an eight-brane viambrane. In Table |
these new configurations are indicated one step to the right
with respect to the original configuration, e.g.,

3[232| o

p—p+l
Oli4 [ 113|212 2043L3 p=2

1152141313 305414 p=3

ned 06 [115)214{313] | 206]305\414 | 46[515| g
H71246/315/4L4) | 317\ 416(515) | SI7[646! pos 1||9—>2J_ 8. (10)
oi8|117|216/315(414| | 208{307|416|505| | 48|517|616] | 618 [7aT L
1i9(248/317|416|515| | siolaLle|si7j6xs| | siofexrs 717 | 7io|818| py The second possibility is that we perform theduality over
N / / / one of the world volume directions of thebrane, sayx®.

o] 1] 2] 3] a] s e ] 7] 58] 9 |p Thisleads tothe configuration

1 H,_
dSzZH—lHSdeJ— Hp—;di_p—mmxl)z,
VHp-
(13)

dimensional intersecting Neveu-Schwarz—Neveu-Schwarz

(NS-NS strings or five-branes and their duals. where we have used thﬁt,a: Hp s andHg=Hg. This con-
The organization of this paper is as follows. In Sec. Il wefigyration describes gy 1)-brane embedded into an eight-

will first classify all possible intersecting configurations con-prane. In Table | these new configurations are indicated one
sisting of two elementaryD-branes in ten dimensions and step above the original configuration, e.g.,

briefly discuss the extension to more than two intersecting

D-branes. After that we will show that only a specific sub- 1/]9—0]8. (12
class of these configurations can (sepersymmetricsolu-

tions to the equations of motion of 11A-1IB supergravity. In Clearly, from configuration$9) and(11) one can obtain fur-
Sec. Ill we will use these results to explain the ten-therintersecting configurations by performimgluality over
dimensional origin of theD-brane solutions in six dimen- different directions. This leads us to consider the following
sions. Furthermore, we will construct the heterotic analogué&lass of metrics with two independent harmonic functions
of thed=6 D-branes and explain their ten-dimensional ori- Hp+r,Hp+s describing the intersection of a{-r)-brane
gin. Finally, in the last section we comment on the implica-With a (p+s)-brane via go—Brane:

tions of our results in other than ten and six dimensions.
1 Hoir Hps
ds?=—-——d - P2 — \/—d
/—H H 3[2)+l Hp+s i H Sr2

p+rip+s p+r

. ) . ) . —+H H dss_ . <. (13
In this section we discuss the intersection of two el pors

D-branes in ten dimensions. To construct configurationsthe dilaton is given by
which describe intersections, a crucial role is playedTby

Il. D-BRANES AND THEIR INTERSECTIONS IN d=10

duality. Let us first explain, via an example, the main idea of e 20=(Hpy )P 32 (H ) PFs732, (14)
this construction. After that we will give a more systematic i ) i
treatment. Consider an elementary Dirichjebrane with Using the terminology of14,18 we call the firstp+1

1<p<7 odd and metric given in Eq1). We embed this coordinates the world volume coordinates of the intersection.

D-brane in flat spacetime, i.e., a nine-brane, and write The nexts andr directions are the “relative transverse”
directions with respect to the p¢-r)-brane and
(p+s)-brane, respectively. Finally, the last$—r—s are

1 H the “overall transverse” directions. We recover the metric of

———d2, /—pdsg,p, (8)  the elementary Dirichlet{+r)- and (p+s)-branes by put-

VHHg P Ho ting Hy. s andH ., equal to 1, respectively. We will denote

the configuration given in Eq13) as (p+r) X (p+s). Note

that if r or s is equal to zero, the configuration describes the

where Hg is the (constant harmonic of the nine-brane. In

Table | we have indicated this embedding by theymbol;

e.g., we write 19,3|9, etc. We next may performBduality The expressions for the gauge fields and dilaton can easily be

transformation in two different ways. The first possibility is obtained by applying the type W-duality rules of[23]. They will

that we perform thel duality over one of the transverse be given below for the general case.

ds?=
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embedding of oné®-brane into another one. We will indi- - (—)prtt

cate this case gg|(p+s). On the other hand, if both and L= \/—_g[ e ?[R—4(d¢)?]+ WF(p+r+2)

s are different from zero, configuratiof13) describes two '

D-branes which are orthogonally intersecting over a (—)ptsti )

p-brane. We will indicate this situation ap{r)L(p+s). + WF(9+S+Z)
The labelsp, r, ands in the general configuratiofl3)

have to satisfy certain conditions: First of pl+r+s<9 for  where it is understood that in the field equations one imposes

the obvious reason that we only have nine spatial dimensionge constraint thaf g_ ) is the dual ofF ., ). In particular,

to fill. Further we only want to combine objects which come F(s) is self-dual. Pseudo-Lagrangians of this form have been

from the same theor{llA or 1IB ), and sor +s has to be an  discussed if24]. It is also understood that the two kinetic

even number @, wheren labels different classes of configu- terms for the gauge fields become identicad 4 s.

, (17)

rations, as indicated in Table I. We next distinguish three different cases.
In general the configurationp(t+r) X (p+s) transforms Case(1). Both harmonic functions depend on the overall
underT duality as follows. One possibility is that transverse directions. The RR gauge fields are given by
(1) _ -1 (2) _ -1
(p+r)X(p+s)—[p+(r=1)]X[p+(s¥1)], (15 Fo.lpr.i=diHpir, Folpr..si=diHpis.  (18)

, i i o Case (2). The functionH,,, depends on the overall
if under the duality a relative transverse direction of oneyansverse directions wherehis,, ; depends on the relative

object becomes a relative transverse direction of the othgfansverse directions. The RR gauge fields are given by
object. In this case we move horizontally in Table I. The
second possibility is that we have FE)l-)-~p1~-~ri :Hg+s(9iH';+1r, FE)2-)~p1~-~sr:&rH|;-&S'

+r)X(p+s)—[(px1)+r]X[(p=x1)+s], (16 , . .
(prn)x(pts)=[(p=+rx[(p=1)+s], (16 Case(3). Both harmonic functions depend on the relative

: . L transverse directions. The RR gauge fields are given by
if under duality an overall transverse direction becomes an

intersecting one or vice versa. (=Y =H*, g H- ! E2 =HB gH:L
. . 0---pl--- +r 0.---pl--- + .
In either casd15) or (16) the numberr +s=2n remains plors T iprsTs iR e p+(§0)

constant, so thah can be used to label the four different

different classes given in Table I. Within each class we may As we will see below, one can also consider more general
move viaT duality in the way descriped above. To go from cases which are compositions of these three different cases.
one class to another we first rewrite the|9) element of the  For simplicity we will often, if not necessary, omit the ex-
class as an elementaBrbranep. Next we transfornp into  pressions for the RR fieldsNote that thea in case(2) and

q underT duality and writeq asq|9 which is the element of thea, 8 in case(3) are arbitrary(rea) parameters that cannot

a different class. There is one subtlety here. It only make®e fixed by the Bianchi identities. They can be determined by
sense to embed ap-brane into a nine-brane for the T duality. Alternatively, we will determine them below
(p=odd)-branes. The reason is that one should view th®y the equations of motion.

nine-brane as a IIB solution since undeduality it is trans- So far, we have only applied duality to generate the
formed into a IIA solution(the eight-brane This implies  general ansat213), (14), and (18-2Q for intersecting
that it can only intersect with another IIB solution. D-brane configurations. Our next task is to determine which

In conclusion, we can summarize all possible intersecof these configurations corresponds tdsaipersymmetric
tions of twoD-branes in ten dimensions as given in Table |:solution of the Lagrangiafl7). Substituting our ansatz into
The blocks at the bottom are the elementBrpranes, and the vector field and dilaton equatidrwe see thatase (1)
on each p=odd) solutions we can build a tower of inter- can only be a solution for #2 and case (2) for 2 and
secting D-brane configurations, labeled by the integer @ = 0 while case (3) requires that=#4 and a= 8 =1. Fur-
Within each tower we can move from one configuration tothermore, it turns out that casé€d and(2) can naturally be
the horizontally and vertically neighboring ones via the dif-combined into a more general configuration whetg,,
ferent possibleT dualities: Horizontal moves, in whicp only depends on the overall transverse directions, as before,
remains constant, correspond to dualizing relative transverdeut whereHg_ ¢ is given by the sum of two harmonics
coordinates, while vertical moves kee@nds constant and Hfjlls,Hffls which depend on the overall and relative trans-
correspond to dualizing world volume directions into overallverse directions, respectively, i.e.,
transverse ones or vice versa.

The explicit expressions for the RR fields follow from the
T duality (for more details sef4]). Alternatively, their ex- %Note that the RR gauge fields are contributing to the Wess-
pression can easily be obtained by the requirement that, #umino part of the world volume actions. As for the fundamental
one of the harmonic functions is set equal to 1, the intersectstring the world volume actions provide the source terms of the
ing configuration should reduce to one of thebrane solu- classical solution.
tions discussed in the Introduction. The explicit form of the "The case that only intersecting three-branes are involved is spe-
RR gauge fields is most easily given by using a formulatiorcial since for this case the dilaton equation is trivially satisfied. By
where the magnetic configurations are descibed by magnetipplying T duality one can relate this case to the other cases and
(dua) potentials. This leads us to consider the Lagrangian show that the same restrictions as given below apply.
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Hp+s(x‘,xr)=Hﬁ,lls(xi)Jerfﬁs(x’). (21)  spinor equation leads, for casg) to n=2, for ca_se(2_) to
n=2, =0, and for cas€3) ton=4, a=B=1. This nicely
We will now investigate the supersymmetry of these so-agrees with our earlier finding that only these configurations
lutions. It has been shown [i2] that only those intersections can be solutions to the equations of motion. It is not clear to
can be supersymmetrid/4 of the supersymmetry is unbro- us what the role is of the intersectind-branes with
ken that satisfy the condition that+s=0mod,4, i.e., n=1,3, and whether they can be represented as some kind of
n=2 or 4. In our language this goes as follows. For a singlesolution.

D-brane the supersymmetry condition follows frafn =0, Finally, to construct solutions with more than two
where\ is the spinor in the IIA or IIB supergravity multip- D-branes, one can follow the same procedure. We take con-
let, andS\ (in the string framgis given by figuration(13) for two intersectingdd-branes witm=2,4 and

for the case that both branes belong to the IIB theory and

1 3- : o :
Oh=yH(d, ) e+ = p o? e YPTH2e] embed th|_s s_olutlon_lnto a n|ne—prane: Ngxt, one shogld ap-
4 (p+2)! 17 fp+2 P ply T duality in the different possible directions to obtain the
~0 (22) class of configurations describing three intersecting

D-branes. This process can be repeated. It would be interest-
ing to determine which of these configurations can(se-

wheree/ ,= e for p=0,4,8; €/, = y1,€ for p=2,6; ¢/, \=i€ : X , ,
() b (p) g Y11 P (P) persymmetrig solutions to the equations of motion.

for p=—1,7, and e, =ie* for® p=1,5. Substituting the

D-brane solution into the above equation leads to the condi-
tion Ill. ELEMENTARY D-BRANES IN SIX DIMENSIONS

In this section we describe the compactification of two
intersectingD-branes. In six dimension®D) we are inter-

i.e., half of the supersymmetry is broken. ested in a basic set of nonintersectiddranes, which means
Now consider the intersection of @4 r)-brane with a that we have to compactify over the relative transversal
(p+s)-brane. Then the two supersymmetry conditions corspace. Since the internal space has four dimensions, we have

responding to theg+r)-brane and §+s)-brane are given 1o consider the class=2. From Table | we conclude that
by there are three families given by the three columns in the
n=2 class, e.g., for a common zero-brampe=0), we have
€+ Y01 . .p+1€p+n=0, €T Vo1 .prs€(pss=0, 0/4, 1.3, and 2 2. Since we are compactifing overks,

(24 we have to discard the second family. There is no place for a
string inside theK3 (no one-cycles Thus we are left with
She other two intersections. Next, we have to discuss how to
put these objects into thik3. The 0|4 object is clear, the
zero-brane is unchanged and the four-brane wraps around the
whole K3. As a result we get one object defined by two
We now distinguish four cases in which the two spinors incharges. The two membranes intersecting over a point
the above equation are given by, €),(€,v1:€),(i€,i€), or  (212) have two two-cycles that have no common point.
(ie,i€”), respectively. All four cases lead to the consistencyObviously the two membranes have to wrap around two of

e+ 701...p6('p)=0 ; (23)

respectively. Combining the two supersymmetry condition
we get

(_)r(r+1)/2

6(,p+r): 7’r+s€(,p+s)' (25

condition thaty?, ;=1 or the 22 two-cycles. Naively one would think that this gives us
22 possibilities where every possibility is defined by two
n=2 or 4, (26)  charges. But instead we have to take into account that the

two-cycles in theK3 pick up only the self- or anti-self-dual
part of the two membranes. Hence every possibility is related
only to one charge. In total, the 6D solution is defined by 24
harges, which have to form a(@20 vector.

Therefore, a natural ansatz for the type IIA
D-zero-brane is given by

thereby reproducing the condition [].

We next extend this analysis and consider the Killing
spinor equation that follows fror\ =0 for the case that we
substitute the complete intersecting configuration and not
only the separat®-brane configurations. In the string frame
we obtain the following equation frodi\=0:

Y3 b) et H(B—p-n)eFRL L, 0P el ds}, =e?di2—e 2ds, o Wt (Pl
28
+3(3=p=9)eF is, ¥ P ey, =0
(27) where y?'t is a harmonic vector in the @,20 space. To

o o _ _ clarify this formula we consider the casg¢4) where we have
Substituting the explicit form of the general intersecting con-gnly two harmonic functions

figuration (13), (14), and (18)—(20) into the above Killing
Ho+Hy
Ho—Hg,

R
1
e S
8For p=3 the supersymmetry condition does not follow from X \/E
S\ =0 (there is no dilaton and the four-form gauge field is absent in
S)\). For that case one has to consider the supersymmetry rule athere Hy and H, are related to the two intersecting
the gravitino. D-branes in ten dimensions with the metric given by
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1 H dﬁzd%_e—wdxidxi,
dSZZ dt2_JH0H4dS§— OdS‘z1 (30)
VHoH, H, o B
e V=gt A =1+ 2%V XaXp XaXpB
Wrapping the four relative transversal space aroundkiBe XEX'/} f)(sxg '
yields the six-dimensional metric
(ﬁh) (;L)
1 N = 26-- J N , (35)
45’ =———dt*~ JHoH.ds, (31) " imon| g
vitolia

where £=|x"|2/|x®|? andi=1,2,3. Uplifted to ten dimen-

which is a special case of E(R8) and forHy=H, it coin- sions(via T,) one finds

cides with Eq.(7).

As in ten dimensions the electric gauge fields are propor- ds12_|:d%_ef4UdXidXi(an+A_(l)adXi)
tional to the inverse power of a harmonic function and an !
0(4,20-covariant ansatz igincluding the 16 left-moving xGaﬁ(deJrAi(l)dei),
modes
L _R
A_;R G =5 — X(aXB
Ao=e4u( *L) ' (32 R GRG)
X
Also, there are scalar fields which are given by the matrix e72¢:e2UL, (36)
M that parametrizes the (@20 space. To find this matrix VdeG

and to prove that this is really a solution of the low energy _ o _
effective action we have to compare tBebrane solution wherex® are the four isometry directions. The 10D antisym-

with known solutions on the heterotic sidgeee below metric tensor components are given by
To find the dyonicD-one-brane we have to compactify
the intersections |5, 3L 3 of the class=2. Again the in- —2X[aX
. I . B ,=— ~197P B =A@, aALB (37)
ternal structure of th&3 yields a result in six dimensions ap |);R|2+()—(»R);L)v ap™ PuaTBaphy

which has an ©@4,20 structure

.. where A2 are the potentials related to the original field
dsip=e’Vds;—e ?Vds;, e*’=1,Bp1=Ay, (33  strength by(without the additional left-moving part

where the other components are defined via (Hri-)self- F(L 1({1 1\/ER
duality condition,H = (M- £*H), with the matrix£ defin- ( 72)) =—( _1 1) ( R ) : (38
ing the metric in the @4,20 space (M has the same form -F V2 F

for the heterotic, 1A, and IIB case

The magnetic two-branes can be obtained by reducing th
2||6 and 4L 4 solutions. TheD-two-brane in six dimensions
has the form

'Iéhe corresponding result for the pure electric case coincides
with the solution in[26] which is an uplifted version of the
solution found in[27]. This relation to known magnetic and
electric solutions proofs that olr-brane solutions are solu-
_ ou Yy 26 U 2 _ - tions of the type IIA/B effective actions.
dsja=eVdsi—e ?Vds, e*'=e®, Fjj=\2¢€jmimx. On the heterotic side we can interpret the solution as in-
(349 tersections of known basip-branes. To make this more

The higher branes are not asymptotically flat. For instanc&@nsparent we take only two charges and go into th/
g ymp y fZ)” basis. Then the 10D metric and dilatai36) can be

the Dirichlet three-branes in six dimensions are obtained“’. X :
from the reduction of the |¥ and 5.5 solutions. The four- Written as a magnetic chiral null model
brane is related to a cosmological constant and, finally, the
6D space-time can be interpreted as the 11B fiye-brqne. As indﬁ,zdsé— HS'H‘SdXidXi _
ten dimensions we can relate all these solution directly by
T duality. (39

So far, we have discussed the six-dimensidDabranes _
as compactifications of two intersectimirbranes in ten di- For Hg=1 and an appropriate torsion we get flselitonic
mensions. The @,20 structure was determined by the five-brane and in the other casdd=1) its T dual, a Taub-
structure of theK3. To determine the scalar field matrix NUT (Newman-Unti-Tamburinp soliton. The 24 different
M we have to look for the heterotic analogue. Starting fromcharges in six dimensions are related to the different possi-
the type IlA solutions we will find two heterotic solutions, a bilities to choose the isometry directianand to the possi-
pure magnetidby mapping theD-two-brang and one pure bhility to give the ten-dimensional solution additional charges
electric(by mapping theD-zero-brang By using the string-  with respect to the left moving sector.
string duality transformation we find for the pure magnetic  Similarly, if we transform the electric zero-brane to the
solution the compactifiemagnetig chiral null model[25] heterotic side, we find a solution which is in ten dimensions

I

S

(dz+AVdx)?,  e??=H,.

Ill
[
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an intersection of a fundamental striffigith the harmonic  zations to more than one harmonic funcliocAgain, for this
H;) and itsT dual, the gravitational wave backgroufwiith solution there exists a limit obtained by identification of har-
the harmonid:if) monic functions for which all scalars dissappear. It is natural
therefore to consider it as an elementary four-dimensional
dsz=i(dvdu—ﬁfdu2)—ds§, e 20=H.  (40) D-brane. The metric is given by
Hy
ds?=H 2dt?—H?ds3. (44)
which is the electric chiral null model ¢fLO].
It has a natural interpretation in terms of intersecting
. COMMENTS D-branes in six or ten dimensions. Since the powers of the
harmonic function in front of the world volumé&ime) and
We have shown that the elementddybrane solutions in  the transversal space are the same, we can express this solu-
six dimensions can be interpreted as the intersection of twelion directly by D-branes, and we do not need the NS-NS
D-branes in ten dimensions. Furthermore we have showpranes. As in the case before we have two possibilities. The
that the corresponding heterotic solutions can be viewed afirst one with canceling dilaton contributions is given by the
the intersection of a stringr five-brane with its T dual. It is intersection of a zero- and two-brane in six dimensions,
natural to extend this analysis and to consider the intersec-

tion of more than two solutions in ten dimensions which 2o 1 , Ho —2¢_H2

could involve bothD-branes and NS-NS solutions. Of spe- d _HOszt N H—zdﬁ—Hondﬁ, e " Hy'

cial interest are those solutions which have vanishing scalars (45)
upon identification of the different harmonic functions in-

volved. while the second possibility with each vanishing dilaton is

As an example we consider the five-dimensionalthe intersection of two Dirichlet one-branes:
Reissner-Nordstrom black hole solution which was consid-

ered in[28] to give a microscopic derivation of the entropy 1 , Hi ﬁl ~ )
. - . . = - = - = — —2¢_
in terms of countingD-brane states. This solution has the dSZ_H H dt H dsf Hldsi HiH.ds}, e 1.
metric 1 ! (46)
— 2412 _
ds’=H"*dt Hdsﬁ, (4D In analogy with the case of the five-dimensional Reissner-

: . : . . - Nordstrom black hole we find that upon identification of the
whereH is a harmonic function. A ten-dimensional origin of ) X : o~
harmonic functions Kl with H, or H,; with H,, respec-

this solution has been discussed13]. Instead, here we will ' ot .
discuss its interpretation in terms of six-dimensional solu{ively) the compactification over the relative transversal
tions. Given the powers of the harmonic function, it is clearSPace does not yield additional scalars and is given by Eq.

that we should consider the intersection of a six-dimensiona(#4)- Since every six-dimensional-brane has an interpreta-
D-brane with a NS-NS string or if§ dual. Requiring that we 10N as an intersection of two ten-dimensiolabranes, we

want to end up with a constant dilaton in five dimensionsObtai” for this case in ten dimensions an intersection of four

restricts ourselves to consider either the intersection of &-Pranes. Some examples of such an interpretation have

zero-Brane with a fundamental striiganceling dilatonsor ~ P€€n given ir{17].

a one-brane with th& dual of a fundamental stringwith In order to find a nonvanishing area of the horizoon-
each vanishing dilaton Thus, in the first case the six- vanishing Bekenstein-Hawking entropi is not necessary

dimensional intersecting solution is3 0p, and is given by to ident_ify the har_m_onics. The cr_ucial property _is that all
scalar fields stay finite on the horizon=0). Allowing for

1 ., Ho . ¢ any brane an independent harmonic function which means an
dSz:H godt— H—dS%—Hodéy e d):H_’ (42)  independent charge yields the general case.
ro f 0 Our classification in terms of intersectiibranes has a
whereas in the second case we have the intersecting soluti}@tural interpretation in terms of the black hole solutions
Ifx 1 with dilaton coupling parametéa=\4/n—1 [14]:
(1) a=+/3, 10D elementanD-brane;(2) a=1, 6D el-
1 ~ L = 20 ementaryD-brane (or two intersecting 10CD-brane$; (3)
ds’=5—(dudv—Hdw’)—HydsS,e 2*~1. (43 4-1/3, intersection of a 6ID-brane with a NS-NS brane
! (or three intersecting 10D brane$4) a=0, 4D elementary
Identifying the harmonic functions we obtain after compac-D-brane(or two intersecting 6[D-branes or four intersect-
tification overds, or u, respectively, the metri41) with a  ing 10D D-branes.
vanishing dilaton and constant compactification radii. Look- So far we have only considerda-branes. It is natural to
ing on the ten-dimensional origin we find that this solution isalso include antD-branes which carry the opposite charge.
given by three intersecting branes, type IIA for the first casdn the case that both charges differ only in sign one obtains
and type 1IB for the second case. The type IIB intersectiormassless black hol¢29]. This is consistent with the picture
has been discussed [ih3].
As a second example for a solution that is interesting in
the context of entropy calculations we discuss the four- °An interpretation of these solutions in terms of intersecting
dimensional Reissner-Nordstrom soluti@r their generali- M-branes has been discussed 14,17
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that the massless case in four dimensions corresponds towsuld be interesting to see what the role of the additional
composition of two or foum= /3 black holeg30]. harmonic functions is in th®-brane picture.

Finally, we comment on the number of independent har- Note addedSoon after the appearance of this paper there
monic function in our intersecting solutions. Our basic set ofappeared a papdiB1] which has some overlap with the
D-branes in six dimensions is given by two intersectingPresent work.
D-branes in ten dimensions and thus contains two harmonic
functions. The 24 different charges are related to different
radii in theK3. On the heterotic side, E(B5), the solution We thank Arkady Tseytlin for pointing out to us that the
can be naturally extended to more independent harmonif||2 and 1|3 configurations of th@=1 class are not solu-
functions. At least for the left-moving sector we can assumeions. E.B. thanks Mees de Roo for useful discussions. The
that the harmonic functions are completely independentvork of K.B. was supported by the DFG. He would like to
yielding 1+4 functions in six dimension@eglecting the 16 thank the Institute for Theoretical Physics of Groningen Uni-
additional left-moving modgsOn the electric side this case versity for its hospitality. The work of E.B. has been made
corresponds in ten dimensions to the chiral null model thapossible by the Royal Netherlands Academy of Arts and Sci-
contains more than two independent harmonic functitims ~ enceg KNAW). He thanks the Institute for Theoretical Phys-
w, functions in[29]). These additional harmonic functions ics of Humboldt University Berlin for its hospitality. The
are related to momentum modes in the internal directions. Iwork of B.J. was performed as part of the research program
analogy, the magnetic chiral null model can be described byf the “Stichting voor Fundamenteel Onderzoek der mate-
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the same number of independent harmonic functions. Itie” (FOM).
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