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Lattice study of classical inflaton decay

Tomislav Prokopec and Thomas G. Roos
Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
(Received 28 October 1996

We study numerically the decay of the inflaton by solving the full nonlinear equations of motion on the
lattice. We confirm that parametric resonance is effective in transferring energy from the inflaton to a scalar
field as long as the self-interactions of the second field are very small. However, in the very broad resonance
case (>1) the decay rate is limited by scatterings, which significantly slows down the decay. We also find
that the inflaton cannot decay via parametric resonance into a scalar field with moderate self-interactions. This
means that the preheating stage may be completely absent in many natural inflationary models.
[S0556-282(97)04506-2

PACS numbds): 11.15.Kc, 98.80.Cq

[. INTRODUCTION calculations are directly applicable to the expanding uni-
verse, as will be explained in Sec. IV.

According to inflationary scenarios of cosmic evolution ~ With the above approximations anteglecting\, the
the universe undergoes a period of exponential expansioequations of motion for the modes of thefield are
after which it is essentially devoid of matter. At this stage the
energy density is almost entirely in the large oscillating ex- d2xy ) )
pectation valugEV) of the scalar field that drives inflation, g K +947(0]1x=0. 2
the inflaton. The theory of reheating is concerned with the

question how this energy is transferred from the inflaton toror type-1 models, where the oscillations of thefield EV

other fields and eventually thermalized. Early calculationsare sinusoidal, this can be written as the Mathieu equation
assumed that the inflaton would decay to lighter particles via

perturbative decaj/l]. It was only recently realizef] that d2yy

nonperturbative mechanisms may completely dominate the E_r‘f'[A(k)_ZqCOS(ZZ)]Xk:O, (3
reheating process. In particular the classical phenomenon of

parametric resonance may lead to explosive particle produc- _ _ 2 _ 2 .
tion and very rapid decay of the inflaton figlg]. This stage " ne'eZ= @ot, A(K)= k¥ wjy +20, 4=0gP*Aw, wy=mis

of the evolution, callegpreheatingin the literature, leads to the fr_equency of t_he oscillations, addlis the slowly varying
very different physics than would be obtained from Slowamplltude of the inflaton EV. For type-1l models the oscilla-

perturbative decay. Different aspects have been investigatélﬁ)n.S of ¢ are given by gl!iptic functions, but for the illqs- .
by many author$4]. trative purpose at hand it is sufficient to replace the periodic

In this paper we present the first fully nonlinear study of £V DY @ sinusoid of the same frequency. In that caseythe
inflaton decay into a second scalar field. By fully nonlinear™0des again satisfy Eq3), except that NoWo ,=c\\ 4@,
we mean that we take into account the back reaction of thi/herec~0.85. The important point is that E(B) has expo-
created particles on the equations of motion as well as theffentially growing solutions of the forng, exp((’2) within
scattering. This is accomplished by integrating the classica® Set of resonance bands labeled by the integer index n. This
equations of motion of the system with certain random initial9rowth of the modes corresponds to exponentially growing
conditions, a technique that was first applied to the one fiel@ccupation numbersi exp(2u{’w,t) and may be inter-
case in[5]. The system is modeled by a simple two scalarpreted as particle creation. Parenthetically we remark that for
theory with effective potential type-1l models the inflaton may also decay into its own fluc-
tuations. Writingep=( ¢) + 8¢ and linearizing one finds that
1 1 A A g the J6¢, also (approximately obey Eq. (3), with
V(g.x)= §m2¢2+ EMZXZ“L f¢4+ZXX4+ §¢2X2' A~k?/w’+2.08 andg~1.04. Forg>\, the decay intoy
(1) fluctuations dominates, however, because the relevant values
of ,u,ﬂ”) are a few times larger.
We will focus on two general classes of inflaton potentials The literature distinguishes between narrow resonance,
V(¢): type-1 for which ¢<m/\/)\_¢ (for these we will set defined byq<1, and broad resonance, for whicr=1.
A ,=0), and type-Il for which¢>m/\/x¢ (for these we will ~ While the first case can be analyzed analyticgBy, it is
setm=0). In both cases we will assume that there is a chanmore difficult to obtain quantitative results for the broad
nel for the inflaton to decay into a light scalar and thus setesonance casg3]. It is precisely this regime, however,
the tree level masga of the y field to zero. The effects of a which is most interesting: models generally hanel at the
massive decay product have been investigated using the Haend of inflation, and it is broad resonance that leads to ex-
tree approximation if6]. For type-l models we will neglect plosive particle creation. To get a feel for the values of the
the expansion of the univerd@]. For type-ll models our parameters involved, note that typicatB,~Mp at the end
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of inflation, whereM p=1//87G=2.4x 10'® GeV is the re- ~compared to the EV. The fields are evolved using an explicit
duced Planck mass. Cosmic Background Expl¢@®BE)  algorithm which is second order accurate in time and fourth
data [9] restrict m=10 ®Mp for type-l models and order accurate in space. We varied both the number of grid
\ ;=102 for type-1l models. To prevent radiative correc- points and the lattice spacing to check that we are near the
tions from generating an inflaton self-coupling in conflict continuum limit. The data presented in this paper were ob-
with COBE, one generally needsy’<N\g |, i.e., tained on 128 lattices. Regarding numerical accuracy we
g=10°. Finally, if y is to represent a “standard” field then note that the total energy of the two field system was con-
there is no reason for its self-interacti¢as well as its cou- served to better than 1% in all of our runs.

pling to other fields to be tiny. Thus one might expect  The initial conditions for the numerical simulation were
Ny~ 10 2—1. The upshot of all this is that there is a “natu- chosen according to the following reasoning: the initial am-
ral” hierarchy for the couplings in the model, plitude of the inflaton field is naturally of order the reduced

Planck mass:®,~Mp, which can be obtained from

é~3H¢ when the condition of slow roll breaks down. In
both casesm<\\,®, and m>\\,P,, this leads to

®,=Myp. Typical values of the resonant momenta are given
X

cially since the final state self-coupling has been ignored if?Y A—2q~ /g, which leads to
much of the literature so far. The exception is Rf0], 172 112

where it is was found that the self-interactions can have im- kresw(w"’\/gq)o) :( \/§d>o) 2Mp | qua?Me
portant effects in the case of narrow resonance. Below we 2 @, Dy
will see that the same holds true in the physically important ®)

broad resonance regime. For g>1 this implies thak/H>1 at the end of inflation.
Since this ratio does not decrease at later times, the resonant
'momenta are always on subhorizon scales. These momenta
: ; . : X are not squeezed by inflation, and to a good approximation
duction takes place during a tiny fraction of the period as th@ney are zero point quantum fluctuations. The initial condi-
EV passes through zero. The amplitulleof the oscillations 15 may then be approximated by a set of harmonic oscil-

decreases as energy is transferred from the zero mode o5 in the ground state. We define the phase space in terms
the fluctuations. The produced particles generate a contri- f q litud g hich () =0
bution to the mass of the inflaton of the forgdx?), which '(I)'h mode a;n[?_l udeS{Xt‘%’Xk} for whic <th>'_t<Xk>t_t it
changesw . The x-field self-interaction, which we ignored esze are defined as f minimum uncer .aun y states wi
in deriving the Mathieu equation for the fluctuations, {|Xil“)=1/(2w) and(|x*)= wi/2, wherew is the appro-
produces an effectivg mass of the fornm? eﬁ%3)\x<X2>' priate mode frequency. In the se.mlclassmal approximation
This adds toA(K) the ti d dent t = 2 | the_:;e states are populated according to the phase space prob-
IS adds 1o (k) the ime dependen ef"“x,eﬁ’%- N ability distribution. In our code we randomly generate
addition to thesdack reactioreffects there is scattering: the 5, ,ssian  distributed states with the width given by

resonance produces particles in narrow momentum bins with _1/2 Y2 g .
large occupation numbers, and one certainly expects these( “’k)d foWr Xk and (wklﬁ) hfor Xkl’ "’?”d chImlla”y Lor thed
scatter and spread out rapidly. This effect turns out to be ver§y Modes. We point out that the evolution does not depend on

important, and it has not previously been studied in two fiel etajls of .the initial conditions, as ang as the initial field
models configurations have the correct amplitudé&g].

AN>O>Ny, (4)

and thatq is generally large at the end of inflation. We be-
lieve that the role of\, is of particular importance, espe-

H.

)

from the fact that all parameters in the Mathieu equation fo
the modes vary quite rapidly. Far very large particle pro-

Ill. MASSIVE INFLATON (TYPE-I MODELS)
A. Models with A =0

Il. THE METHOD

In order to take all of the above into account quantita-
tively we discretized the exact classical equations of motion Let us begin by discussing the simplest possible situation,
and solved them on a three-dimensional lattice. The classicalamely a type-1 model with\,=0. For the run presented
equations of motion are a good approximation to the dynamhere the parameters were chosen as follogs:10 8,
ics provided the mode amplitudes are large in the sense that’= 10*124)(2), and lattice spacingA\x=>57/4. The initial
the commutator of the canonical variables can be replaced bamplitude of thep-field EV, ®,, was set to 19 This choice
the Poisson brackets, which reducesgigp,>1 [5,11]. Al- merely sets the scale for the plots and does not effect the
though our initial state, which will be described below, doesdynamics in any way, as discussed above. Note that for these
not satisfy this condition, it is satisfied very soon after thevalues theq parameter in the Mathieu equationgs-2500,
resonant decay begins. It is useful for the numerics to workputting us in the broad resonance regime.
in terms of dimensionless variables. We 3&g=/g®oX,,, Figure 1 shows the EV of the inflaton field, which
m=m/\gd,, No=Ngl9, M=\, /g9, ¢=¢lD, and starts decaying significantly around=5000A/g®,=
%= x/®,. In terms of these variables the initial inflaton EV 0.5X10°®,*. Figure 2 shows the corresponding variances
amplitude ®, as well asg completely disappear from the ((6#)%)=(#?)—(¢)? and(x?) of the fields. The variances
equations of motion. Whileb, simply sets the scale in the increase roughly exponentially at first. This trend stops when
problem and becomes irrelevant for the dynamics, the coudm’=g{(5¢)? becomes of order the resonant momentum
pling g is still important: it appears in the equations for the squared. The reason is that tAgk) term in the Mathieu
random initial fluctuations and regulates their amplitudeequation gets a contribution of the fongl((6¢)2)/w(2ﬁ.
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FIG. 1. The EV of the inflaton as a function of time FIG. 3. The energies of the fields as a function of time
(M=10"°®4, A, =\ 4=0,9=10"%, andd,=10" sets the scale for (m=10"5®,, A, =A,=0,g=10"%, andd,= 10" sets the scale for
they axis). they axis).

When this term becomes ofordqislwi [13], the resonance «~0.95 and a decay time scale of ordﬁ{ecay~109<bgl.
band closest t&A=2q, which has the largest value @i, Based just on the Mathieu equation one would expect in this
becomes inactive. In the next bapg is down by a factor 3 range exponential decay with time scaleyecay™

[14] so the decay is slowed down dramatically. The rapidl/(2(u,)w4)~10"®y*. The reason is that ab decays, the
production of inflaton fluctuations, which kills the dominant resonances sweep through the momentum space, and as they
resonance, may be surprising since there ispn@sonance move to higher momentay, diminishes, and new ones
in this model. These fluctuations are produced by scatteringsmerge in the infraredIR). In estimating the above time
of resonany fluctuations off the inflaton EV, which are fast, scale, we have taken the typical value {a#,)~0.05.

since both thep zero mode angy resonant mode amplitudes  To understand why the actual time scale is much longer it
are large. It is interesting to note that if one analyzes thigs useful to look at the spectrum of fluctuationskirspace.
model using a Hartree-type approximation which neglectsto this end we define “occupation numbers” for the
scattering but includes backreaction effects, then the condiy-field via

tion for the end of explosive particle production is that

q(t)=g®(t)%/4(w’+g(x?) becomes<l. We emphasize 0K, SR

that this isnot the correct criterion: our simulations show nk:7<XkX*k>+2_wl>((<XkX*k>’ ©)
that scatterings terminate the exponential stage long before

g(t)<1. For example, one sees from Figs. 2 and 3 tha%/vherewkz K?+g(4?), and the brackets denote averaging

q(t)~600 even at=5x10°P,*. K A : -
The energies of the fields, as well as the total energ over directions. Then? are defined similarly, except that

Y o_ e al o Ei .
density of the system, is shown in Fig. 3. In the rarige “k — k®+m?+g(x?). Figure 4 shows the occupation num-

= - - - bers of they field at various times. The growth is exponen-
8,5 x10%d ! the y field energy grows like®, with Sex T
<[085 o the x field energy grows liket®, wit tial at first, with the lowest three resonance bands clearly

1x107

/2
(t*=(g2}) ")
1>10° i 1108 ' r=0 —
*=886 -
100000 | AT T r=18r0 -
Ve i t*=2854

/ | 1+=3838 ---
10000 [ 1x10° b
1000 | 100000 F
10or g 1 10000 [

10F iF =
1000 |
1t <(30)%> —
il s 100
g 10F
0.01 [l
1 L
0.001 . . ‘ . . . < . . -
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
(g<D2)1/2t 0.1 L L L
o 0 0.05 0.1 0.15 0.2
k/(gd)g)ﬂz

FIG. 2. The variances of the fields as a function of time
(m=10"%®,, )\X=7\¢=0,g=10’8, and®,=10" sets the scale for FIG. 4. y-field occupation numbers vs momentum at early
they axis). times. Three resonances are visible.
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10000 (Kred27%) Wresnﬁ,es, Kies™ Jaw(;, = \/§m¢‘1’/4 ) the

1000 resonance Widthw,ee=0.8K X — (M +k?)/(AK)?], =
0.23exp— (M +k?)/(AK)?], and Ak=(gm,P/2)*? de-
notes the distance between the first two resonances. The nu-
merical coefficient is obtained by noting that resonant energy
. production peaks arounkk=kes, andm>=g((5¢)%)~ ki
0.1 »1 The last relation remains reasonably well satisfied through-
out the scattering regime. This is not surprising, since from
240 4~ T scanONe findsm? ~ Ko dn(Cscad 200 4) , i.€., M7 is
only logarithmically dependent on slowly varying quantities
FIG. 5. -field occupation numbers vs momentum at later times, (from above, uo=0.2/e). The quantities entering Ed7)
when scatterings dominate. vary slowly during the scattering dominated regime, and one
should take their typical values to get an order of magnitude
. ) estimate for the decay time. From Fig. 5 one reads off
visible atk=~0.025, kw.0.09, andk~0I.13, respectively. gn¥ ~0.04 andA/w4~70, which leads tﬂ'deca~109¢61-
The values ofu{" obtained by assuming¥=exp2u{"w,t Thic: . . -

: o . . is agrees with the decay time scale seen in Figs. 1 and 3.
agree well W't.h the pred|(:_t|on§ from the Mgth|eu equation.p . time scale in Eq.7) is naively parametrically larger by
For thg Iagt time shown in Fig. 4, scatterings are already_ TgIn(1/g)] in comparison to the scale of parametric reso-
becoming important, and the resonance peaks get smearfidy; qecay. The reason why the decay time is not huge even

out. L N __for g very small is thatgn{ ~0.04, i.e., the occupation
The subsequent evolution is shown in Fig. . SCatte”ng%umbers are very large Thisreshowever is not true when there
are very fast aftet~0.5x 108<I>51, and the resonant peak y large. ’ f

. . . is a moderate self-coupling of the field, as will be dis-
structure is quickly washed out. The occupation numberl%usSed in Sec. IIIB upiing he f w !

grow to aboutni~1/g, and then remain approximately con-  rrom the discussion above it is clear that the inflaton de-
stant. There is a simpleedbackmechanism which explains cay consists of two distinct regimes: fast exponential decay
this behavior. Resonant particle production increases,  during which scatterings are irrelevant followed by a much
which increases the scatterings off the zero mode, whiclslower decay governed by scattering processes. One can
increases infraredp occupation numbers. This increasesclearly separate these two regimes in Fig. 2: the scattering
5m25g<(6¢)2> which decreases:, (cf. [14]), slowing egime sets in at the time when the variances become slowly
" ' i i L ; arying, which occurs at=0.8x 108®; 1. Clearly there is a

down resonant particle production and giving scatterings/ary'ng, wh 0 early !

time to move particles toward higher momenta. This reduceSMef transition stage between the two regimes, and since the
((84)2), which increasesu, increasing resonant produc- exponential decay is a stimulated process, this is where most

tion and completing the feedback mechanism. Consequent the energy loss assomateq with the exponential regime
n¥ reaches an equilibrium value for which on average scat- ceurs. The re_sonant .o.ccupat|on pumbers stay rqughly con-
Kres stant during this transition stage since the scatterings are al-

terings remove particles from the resonance as quickly ageady fast, but the infrared and near ultraviolet states are
they are created, implyingXdpX= 2uw —T s~ 0. The  quickly filled. One can estimate quite generally what fraction
result is a slowly varying distribution with a characteristic of the inflaton energy has decayed at the time when the
shape, as seen at late times in Fig. 5. The slopslowly varying state sets in, as follows. We have run our
—kdInn¥/dk is small (<2) in the infrared, grows ak in- ~ code for severalzvalues ‘g In thesrangeg=120 210 10°°
creases, and eventually becomes greater than 4 at the sc&Rd find thatg(x*)=g[[d°k/(2m) wg]n{~ wy/4 when the

A at which most of they energy is concentrated. Particles SCaltering regime begirid5]. This value is somewhat depen-
created by the resonance diffuse to this schleia scatter- d(_ant on the_ exact initial position of the_dommant resonance.
ings and slowly move it to higher momenturtNote that Since at this time the vanlance is dommateq by modes with
soon after scatterings become fadt>k,s.) Since the IR k2~ \/6‘%(1)01 we can estimate the occupation numbers of
occupation numbers of the fields remain roughly constanth® x field around the resonant momentum to be
during this process, the energy required is supplied by th8Nf_~5w4/\g®,. At this time thex energy is dominated
zero mode. The number @f zero mode “particles” eaten by approximately the same scam@%%)lf% implying

up in moving oney particle from ks to A is about pX/(P¢)o~w¢/\/§¢’o:(1/2)q_1/2- This means that for
N§’~A/w¢>1, implying that scatterings are responsible forg>1 only a small fraction of the inflaton energy decays
most of the EV decay. The upshot is that energy is draineduring the exponential reginid.6].

from the zero mode at a slowly varying rate given by After the scatterings become important, the distribution
ngﬁ(egﬂkw¢, wherepX is the energy density in thereso-  broadens significantly, but the occupation number at the
nance. This implies a decay time scale resonant scale remains to a good approximation constant.

100

10

1

0.01 0 0.2 0.4 0.6 0.8 1 1.2 1.4

k/(g(pg)VZ
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With our above estimate fqyn’k‘res we can thus give a para- {t=(gd) "

metric expression for the decay time in the scattering regime ~ 1x10°L t*=gt5§§ .
; PR i t*=3762 -

based on Eq(7). Our numerical results indicate that occupa- W3

tion numbers drop approximately exponentially between 100000 e 298885 — 1

kesand A (cf. Fig. 5. We taken’k(:n’k(resexp[—(k—k,es)/x],

where 1k is the slope of In{. As can be seen in Fig. 5, this
value decreases slowly as the field decays. The relevant ==1000 - -
value of k can be computed by noting that when the EV
decays significantly, about half of the original energy 100 ¢
(pg)o=w5®3/2 is in the y fluctuations. This gives

10000

k?*=q"*g®yw,/2. The scaleA can be evaluated as o
A =(k)=4x. Combining these results with E(Y) we arrive P I 4
at the following parametric estimate for the decay tifre> L .
call that this is sensible only fay>1, since otherwise most e K(gad) "2 01
of the field decays during the exponential regime °
FIG. 6. x-field occupation numbers at various times for a model
Tgecaj~ 3% 102q1/8i, q>1. (g  With moderate self-coupling\ , =102 (m=10 °®,, \,=0,

wy g=10"%).

The main point of this equation is that the decay time is veryyemoved from the zero mode at a slowly varying rate, start-
weakly dependent og. (This conclusion is independent of ing at aboutt=2.5x 108@51- In contrast to cased) the ¢

our assumption that{ falls off exponentially in the_relevant field plays no part in keeping the occupation numbers con-
momentum range, even though the exact powey &fnot)  gtant: it is the much fasteg— y scatterings which remove
Note that surprisingly, for fixed, and®,, the decay time particles from the resonant momenta as they are créai@d
actually slowly increases apincreases. Thatgecayis N€arly  consequently the EV does not get depleted by scatterings,
independent of) in the scattering regime agrees well with ang the rate of energy loss of the field is simply

our numerical simulations for 2:610°>q>25. We have - X - ;
o . =— , Which leads to an estimate of the deca
not verified this dependence for much larger valuesgof p_¢ Pre? e Y

because such simulations require enormous computing timeldMe  Taecay™ ~Py/Py= 10w¢q)%/(2/1’kk?eé/vre§])k(res)' The

We showed above that the fraction of energy that decays iparameters can be deduced from our simulation. The rele-
the exponential regime is 1/\/q=1/\/g, implying that para-  vant resonance in this case is the second @eeall that
doxically the field decays faster for smaller valuesgefg.  the first one has been shifted to the infrarevhich can
Our numerical calculations indeed indicate that the fastedoe seen ak=~0.07\/g®, at late times in Fig. 6. We esti-
inflaton decay occurs fogq~1, rather than fog>1. One mate krzeS:O.5\/§w¢<I>0, ,u,kreSzO.03, the resonance width
should note, however, that in an expanding Universe paray,~0.0%,s, and n{ =15/\,, sO that 7gecay~
metric resonance is ineffective fa~1 in type-l models 10%(gny )~1015<1>‘1reli|ote that this time scale is para-
since the effectivay; becomes much less that unity before Moo 0 - P

the resonant occupation numbers grow lage metrically larger than the resonance decay time by
N, /gIn(1/g), which is about 1®in our case. We point out

that (x?) reaches a maximum value of aboux @0 °®3 at
. _ . t~2x10°®, !, and byt=8x10fd,* less than 0.0005% of
We now investigate what happens whep>g. As dis-  the energy is in the field [18]. The rate of energy density
cussed in the Introduction, this occurs naturally in manyincrease is abousp,, / St~4x 10°2b3. A linear extrapola-
m;)dels.il Fgr the 78run to be presented we useqjg, gives for the decay timergecay~ps/(Sp, /o)~
m"=10 2q) , 9=10"", A4=0,\,=0.01, andAx=5m/2. 1416¢p 1 in rough agreement with our simple model. We
The evolution in this case is very different from the=0  gmphasize that we do not claim that at very late times the
case[case (a)] considered above. As can be seen from Fig.gimple feedback mechanism gives a correct picture. The
6, the resonance starts growing just as in céae However,  5in point of this simulation was to establish that a moderate
when the occupation numbers reach abouf/ 10, scalter-  gelf-coupling of they field slows down the EV decay by
ings become fast and populate the infrared states. This givefiany orders of magnitude. This conclusion remains valid

: H 2 __ 2 H H . .

rise to the back reactio@m)=3\,(x*), which shifts the \yhen  couples moderately to other fields. The only differ-
resonances toward the infrared. As the first resonance sweeggce is thaty now decays into these fields, which in turn
through the infrared, it further populates the states. Once thg,quces back reaction op. While the details are model de-

resonance reaché&s-0, it is no longer very effective so that pendent, the basic mechanism remains valid, and parametric
scatterings remove particles from the infrared faster thapeggnance is rendered ineffective.

they are supplied by the resonance. This leads to depletion of
the infrared states, which decreases the back reaction a little,
increasing the resonance’s effectiveness. This feedback
mechanism leads to a state with slowly varying occupation Let us now turn to type-ll models. These were investi-

numbers, just as in caséal. As a consequence, energy is gated using the same techniques as above, so rather than

B. Models with A,>g

IV. MASSLESS INFLATON (TYPE-Il MODELS )
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1x107 universe. This value is interesting because it quantifies the
effective temperature of nonthermal phase transiti@.
Since for type-ll models the universe is radiation dominated
we can writea(7)/a(0)=1+Hya(0)r, wherer is the con-
formal time andH o=\ ,®3/y/12Mp is the Hubble constant
at the end of inflation. As discussed at the beginning of Sec.
IV, in a Friedmann-Robertson-Walker universe our lattice
fields are rescaled by a facta7)/a(0) and our lattice time
is 7. Hence (xZrw =(a(0)/a(7))*(x?). Consider, for ex-
ample, the variances shown in Fig. 7. Siig® rises rapidly
i and then becomes slowly varyingyZgymax OCCUrs at the
0.01 prti 1 moment when the fast growth terminates. This occurs at
0 50|00 10600 15(I)OO 20600 25600 BO(I)OO 35600 40000 7"*58000/\/6(1)0:8)(107(1)0 ' When(X2>~6><10_5CI)§. Hence
(40D we  obtain  (xErumax=6X10"3DF/(1+2X107\\ 4o/
Mp)2~10 '"M2, where we have used(0)=1 in our units.
FIG. 7. The variances of the fields as a function of time for aWe can obtain general formulas for the maximum variances
quartic inflaton potential ro=0, \,=10"'% g=10"% and of the fields wherg>1 by recalling that the slowly varying
®,=10" sets the scale for the axis). scattering regime sets in whe{(5¢) 2~k gw 4P o/2
and g(x*)~w?/4, where w,~0.85/\,P,. This occurs
present the results in detail we will simply state our conclu-when ng_~(g Ja)~%, ie., at the time r~In(1/g\q)/
sions. Before doing so it is worth pointing out that for thesezﬂkw¢_ Combining this with our equation fax(7) we ob-
models the expanding universe equations of motion are conRajn
formally equivalent to those in Minkowski space. By this we
mean that in terms of the variables=fdt/a(t), 1
&= pa(7)/a(0), and x= i ((8hrrW) ) max~0.2 - MZ (93
, x=xa(7)/a(0), where a(7) is the ax q/2n2(x ;g 37?) P
scale factor, the Friedmann-Robertson-Walker equations of ¢
motion are of exactly the same form as those in ordinary
static space timgl9]. Hence, with the simple replacements Ny 1z 1 2 b
above, our numerical calculations for type-Il models apply - E 2O Ja3) (\glg )MP (9b)
directly to the expanding universe. The main results of our
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study are as follows. and
. _ 1
A. Model th A,=0
- oadels wi .X . . <XI2:RW>maX~0'06WMIZD (106)
If X,=0, the inflaton decays via parametric resonance in q ¢
much the same way as it did in cage)l That is, after a brief
period of exponential decay a slowly varying state sets in Ny 1 )
during which the decay is dominated by scatterings. For ex- ~\ 5 iz e Me (10b
g /In“(\4/g°)

ample, Fig. 7 shows the variances of the fields rigr=0,
Ay=10" and g=108 Since in this case

w0, =085/ 5y, q~3500. The figure indicates that, as in whereM p~2.4x10'® GeV. These results can be considered
¢=0-85VA 4 @0, q~3500. '

. ) _1 upper limits for the variances since they were obtained for a
ﬁzen(qa}a))’(imjrf);pa?l?:;tgl tLeegg?ia?]rc]:iss aatg.ggaligs?())oa.goo asslesy field and a mass term in the equations of motion
o : 5 5 5 nly suppresses the resonancg6]. Note that
approximation given byg(x“)~w andg{¢ >~w¢f/§q)°' (XZrwmaq~* (up to logarithmy while Hartree-type ap-
The decay time can still be estimated from Eg), with the proximations which neglect scattering predia a2 depen-
replacement m<{>_""¢_20'85\/xq)0' The slowly varying  gjencef3]. That the Hartree approximation may not give the
value of gny is again about B,/ \g®o, so type-l and correctq dependence ofx?) was previously mentioned in
type-Il models behave very much alike for equal values of/6].
the parameters. One difference is that for type-Il models the
inflaton energy decays somewhat faster, sipgeis larger
and in addition there are scatterings via lhp;z&“ term. For
the A, =0 runs described in this work, the energy decays If A ,>g, the situation is drastically changed. Just as for
about 50% faster for the quartic potential. The valugwpis  type-l models the decay into the field is extremely slow.
about 25% larger for that case. But for type-Il models the inflaton can decay into its own
As discussed at the beginning of this section, the latticdluctuations via parametric resonance, as discussed below
results for type-1l models can be mapped onto the expandingd. (3). This process, which is much slower than decay into
universe by the appropriate rescaling. To see how this workg fluctuations for\, =0, becomes dominant fox,>g. In
in practice consider the problem of obtaining the maximumfact the inflaton decays into its own fluctuations as if it were
value of (x?) reached during preheating in the expandingnot coupled to they field at all. We have verified this by

B. Models with A,>g
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running the one field case and comparing the results to thihat parametric resonance cannot transfer energy. tohe

two field simulation with the same parameters in thesec- reason is that scatterings due to the self-interactions limit the
tor. For example, witm=0, A\4=10""% \,=10"% and maximum occupation numbers af, allowing only a tiny
g=10"8 we find that 73% of the energy has decayed byfraction of the inflaton energy to be transferred during the
t=8X 100, ! and ((6¢)?)max=8X 10 2d3, which agrees resonant stage. In the subsequent scattering dominated re-
very well with the corresponding one field run. We also notegime the transfer of energy is extremely slow, leading to
that in the two field rur x?) grows exponentially at first but huge decay times for type-I models. For type-Il models the
then reaches a maximum value of aboux 11)—9(1)3 at inflaton decays into its own fluctuations, essentially as if it
t~0.4x 10°®, 1. The details of the one field case are dis-Were not coupled to the second field at all. Although these
cussed if5]. One may wonder why the perturbative energy'esults were obtained in a simple model with two scalar
flow via scatterings fromp to y fluctuations is ineffective 1€lds, the basic mechanism, and hence our conclusion, re-
even after the infrared occupation numbers reach a huge Mains \(alld for a realistic model with many mutually inter-
value of orden ,'>g 1. The reason is that due to the back- 3in9 fields. e . .
reaction g(54?), x fluctuations become massive and In this work we have studied inflaton decay by integrating

bdb— yy scatterings are kinematically forbiddefindeed, the Mjnkowski space equgtions qf motion. It i_s an interestir_lg
taking the above value for((6¢)% . oONe finds question how our conclusions might changg in an expanding
m. /@ ,~30] Unl_verse_. For type-ll models t_he_ answer is sm_1p|e: as ex-
XWed)point out that it is very difficult to simulate type-lI| plained in S_ec. v, our analysis is d_|rectly applicable gft_e_r
models with largeq on the lattice. The reason is that the the appropriate rescaling. The mapping was made explicit in

typical resonant momenta for the two fields differ by a factorsec' IV.A‘ where we obtamed upper limits for the variances
kS Ik ~q~ 14 making it difficult to run simulations that O' U'e fields in the expanding universe. .

res ‘res ' : o : For type-l1 models the situation is more complex. The time
capture both resonances with sufficient infrared and ultravio-

. . . scale H ! defined by the the expansion rate
let resolution. Our numerical results on £2@ttices were H= 0 ,J3/M o= w,,/2 is much shorter than the scattering de-
hence obtained in a two step process: we first did preliminar Pe P=@¢ 9

runs, choosing\x optimally for each resonance in turn. This %ay time scal¢see Eq/(8)]. Consequently we cannot expect

allowed us to determine which one was dominant, namel;?urwork for type-I models to be a good approximation to the

expanding universe case. However, we do expect our con-
the x resonance foh ,=0 and the¢ resonance foh ,>g. b 9 P

We then did extended runs choosifa iust large enough to clusion that the inflaton cannot decay into a field with mod-
capture the phvsics of the dominantgrjesonangce ivir? us therate self-interactions to remain valid. First of all, parametric

P € physics : €, giving fesonance in an expanding Universe is suppressed. Second,
best possible ultraviolet range for the given situation.

in the scattering regime the maximum occupation number
will remain of order)\;l, S0 one expects that the total en-
ergy deposited in thg field fluctuations remains a tiny frac-

We have numerically investigated the decay of the inflation of the inflaton energy even in an expanding universe.
ton coupled to a massless scalar field. Our main results for
both quadratidtype-l) and quartic(type-Il) inflaton poten-
tials are as follows.

(1) If the self-coupling of the decay product is small  This research was conducted using the resources of the
(Ay<<g) we find two distinct stages of inflaton decay for Cornell Theory Center, which receives major funding from
g=25: an exponential regime in which the field decays viathe National Science FoundatigdSF) and New York State,
parametric resonance, followed by a scattering dominatediith additional support from the Advanced Research
regime. The fraction of energy which decays by the time theProjects AgencyARPA), the National Center for Research
scattering regime begins is of ordgr 2. This means that Resources at the National Institutes of HealiH), IBM
for g>1 scatterings are responsible for most of the inflatonCorporation, and other members of the center’s Corporate
decay, and we find that the decay time scale in the scatteringartnership Program. We would like to thank Robert Bran-
regime is significantly longer than the resonance decay timeenberger, Claudia Filippi, Brian Greene, Andrei Linde, and
scale. Guy Moore for suggestions and helpful discussions. T.P. ac-

(2) If X, >g (which is natural for many modelsve find  knowledges funding from the U.S. NSF.

V. CONCLUSION
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