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We study numerically the decay of the inflaton by solving the full nonlinear equations of motion on the
lattice. We confirm that parametric resonance is effective in transferring energy from the inflaton to a scalar
field as long as the self-interactions of the second field are very small. However, in the very broad resonance
case (q@1) the decay rate is limited by scatterings, which significantly slows down the decay. We also find
that the inflaton cannot decay via parametric resonance into a scalar field with moderate self-interactions. This
means that the preheating stage may be completely absent in many natural inflationary models.
@S0556-2821~97!04506-2#

PACS number~s!: 11.15.Kc, 98.80.Cq

I. INTRODUCTION

According to inflationary scenarios of cosmic evolution
the universe undergoes a period of exponential expansion
after which it is essentially devoid of matter. At this stage the
energy density is almost entirely in the large oscillating ex-
pectation value~EV! of the scalar field that drives inflation,
the inflaton. The theory of reheating is concerned with the
question how this energy is transferred from the inflaton to
other fields and eventually thermalized. Early calculations
assumed that the inflaton would decay to lighter particles via
perturbative decay@1#. It was only recently realized@2# that
nonperturbative mechanisms may completely dominate the
reheating process. In particular the classical phenomenon of
parametric resonance may lead to explosive particle produc-
tion and very rapid decay of the inflaton field@3#. This stage
of the evolution, calledpreheatingin the literature, leads to
very different physics than would be obtained from slow
perturbative decay. Different aspects have been investigated
by many authors@4#.

In this paper we present the first fully nonlinear study of
inflaton decay into a second scalar field. By fully nonlinear
we mean that we take into account the back reaction of the
created particles on the equations of motion as well as their
scattering. This is accomplished by integrating the classical
equations of motion of the system with certain random initial
conditions, a technique that was first applied to the one field
case in@5#. The system is modeled by a simple two scalar
theory with effective potential
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We will focus on two general classes of inflaton potentials
V(f): type-I for which f!m/Alf ~for these we will set
lf50), and type-II for whichf@m/Alf ~for these we will
setm50). In both cases we will assume that there is a chan-
nel for the inflaton to decay into a light scalar and thus set
the tree level massm of thex field to zero. The effects of a
massive decay product have been investigated using the Har-
tree approximation in@6#. For type-I models we will neglect
the expansion of the universe@7#. For type-II models our

calculations are directly applicable to the expanding uni-
verse, as will be explained in Sec. IV.

With the above approximations andneglectinglx the
equations of motion for the modes of thex field are

d2xk

dt2
1@k21gf2~ t !#xk50 . ~2!

For type-I models, where the oscillations of thef-field EV
are sinusoidal, this can be written as the Mathieu equation

d2xk

dz2
1@A~k!22qcos~2z!#xk50 , ~3!

wherez5vft, A(k)5k2/vf
212q, q5gF2/4vf

2 , vf5m is
the frequency of the oscillations, andF is the slowly varying
amplitude of the inflaton EV. For type-II models the oscilla-
tions of f are given by elliptic functions, but for the illus-
trative purpose at hand it is sufficient to replace the periodic
EV by a sinusoid of the same frequency. In that case thex
modes again satisfy Eq.~3!, except that nowvf5cAlfF,
wherec'0.85. The important point is that Eq.~3! has expo-
nentially growing solutions of the formxk}exp(mk

(n)z) within
a set of resonance bands labeled by the integer index n. This
growth of the modes corresponds to exponentially growing
occupation numbersnk}exp(2mk

(n)vft) and may be inter-
preted as particle creation. Parenthetically we remark that for
type-II models the inflaton may also decay into its own fluc-
tuations. Writingf5^f&1df and linearizing one finds that
the dfk also ~approximately! obey Eq. ~3!, with
A'k2/vf

212.08 andq'1.04. Forg@lf the decay intox
fluctuations dominates, however, because the relevant values
of mk

(n) are a few times larger.
The literature distinguishes between narrow resonance,

defined byq!1, and broad resonance, for whichq*1.
While the first case can be analyzed analytically@8#, it is
more difficult to obtain quantitative results for the broad
resonance case@3#. It is precisely this regime, however,
which is most interesting: models generally haveq@1 at the
end of inflation, and it is broad resonance that leads to ex-
plosive particle creation. To get a feel for the values of the
parameters involved, note that typicallyF0;MP at the end
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of inflation, whereMP51/A8pG52.431018 GeV is the re-
duced Planck mass. Cosmic Background Explorer~COBE!
data @9# restrict m&1026MP for type-I models and
lf&10212 for type-II models. To prevent radiative correc-
tions from generating an inflaton self-coupling in conflict
with COBE, one generally needsg2&lfumax, i.e.,
g&1026. Finally, if x is to represent a ‘‘standard’’ field then
there is no reason for its self-interaction~as well as its cou-
pling to other fields! to be tiny. Thus one might expect
lx;102221. The upshot of all this is that there is a ‘‘natu-
ral’’ hierarchy for the couplings in the model,

lx@g@lf , ~4!

and thatq is generally large at the end of inflation. We be-
lieve that the role oflx is of particular importance, espe-
cially since the final state self-coupling has been ignored in
much of the literature so far. The exception is Ref.@10#,
where it is was found that the self-interactions can have im-
portant effects in the case of narrow resonance. Below we
will see that the same holds true in the physically important
broad resonance regime.

The difficulty in analyzing the broad resonance case stems
from the fact that all parameters in the Mathieu equation for
the modes vary quite rapidly. Forq very large particle pro-
duction takes place during a tiny fraction of the period as the
EV passes through zero. The amplitudeF of the oscillations
decreases as energy is transferred from the zero mode to
the fluctuations. The producedx particles generate a contri-
bution to the mass of the inflaton of the formg^x2&, which
changesvf . Thex-field self-interaction, which we ignored
in deriving the Mathieu equation for the fluctuations,
produces an effectivex mass of the formmx,eff

2 '3lx^x2&.
This adds toA(k) the time dependent termmx,eff

2 /vf
2 . In

addition to theseback reactioneffects there is scattering: the
resonance produces particles in narrow momentum bins with
large occupation numbers, and one certainly expects these to
scatter and spread out rapidly. This effect turns out to be very
important, and it has not previously been studied in two field
models.

II. THE METHOD

In order to take all of the above into account quantita-
tively we discretized the exact classical equations of motion
and solved them on a three-dimensional lattice. The classical
equations of motion are a good approximation to the dynam-
ics provided the mode amplitudes are large in the sense that
the commutator of the canonical variables can be replaced by
the Poisson brackets, which reduces tofkḟk@1 @5,11#. Al-
though our initial state, which will be described below, does
not satisfy this condition, it is satisfied very soon after the
resonant decay begins. It is useful for the numerics to work
in terms of dimensionless variables. We usex̃m5AgF0xm ,
m̃5m/AgF0, l̃f5lf /g, l̃x5lx /g, f̃5f/F0, and
x̃5x/F0. In terms of these variables the initial inflaton EV
amplitudeF0 as well asg completely disappear from the
equations of motion. WhileF0 simply sets the scale in the
problem and becomes irrelevant for the dynamics, the cou-
pling g is still important: it appears in the equations for the
random initial fluctuations and regulates their amplitude

compared to the EV. The fields are evolved using an explicit
algorithm which is second order accurate in time and fourth
order accurate in space. We varied both the number of grid
points and the lattice spacing to check that we are near the
continuum limit. The data presented in this paper were ob-
tained on 1283 lattices. Regarding numerical accuracy we
note that the total energy of the two field system was con-
served to better than 1% in all of our runs.

The initial conditions for the numerical simulation were
chosen according to the following reasoning: the initial am-
plitude of the inflaton field is naturally of order the reduced
Planck mass:F0;MP , which can be obtained from
f̈;3Hḟ when the condition of slow roll breaks down. In
both casesm!AlfF0 and m@AlfF0, this leads to
F0&MP . Typical values of the resonant momenta are given
by A22q;Aq, which leads to

kres;S vfAgF0

2 D 1/2.SAgF0

vf
D 1/22MP

F0
H.q1/4

2MP

F0
H.

~5!

For q@1 this implies thatkres/H@1 at the end of inflation.
Since this ratio does not decrease at later times, the resonant
momenta are always on subhorizon scales. These momenta
arenot squeezed by inflation, and to a good approximation
they are zero point quantum fluctuations. The initial condi-
tions may then be approximated by a set of harmonic oscil-
lators in the ground state. We define the phase space in terms
of mode amplitudes$xk ,ẋk% for which ^xk&5^ẋk&50.
These are defined as the minimum uncertainty states with

^uxku2&51/(2vk) and^uẋku2&5vk/2, wherevk is the appro-
priate mode frequency. In the semiclassical approximation
these states are populated according to the phase space prob-
ability distribution. In our code we randomly generate
Gaussian distributed states with the width given by
(2vk)

21/2 for xk and (vk/2)
1/2 for ẋk , and similarly for the

f modes. We point out that the evolution does not depend on
details of the initial conditions, as long as the initial field
configurations have the correct amplitudes@12#.

III. MASSIVE INFLATON „TYPE-I MODELS …

A. Models with lx50

Let us begin by discussing the simplest possible situation,
namely a type-I model withlx50. For the run presented
here the parameters were chosen as follows:g51028,
m2510212F0

2, and lattice spacingDx55p/4. The initial
amplitude of thef-field EV,F0, was set to 10

4. This choice
merely sets the scale for the plots and does not effect the
dynamics in any way, as discussed above. Note that for these
values theq parameter in the Mathieu equation isq52500,
putting us in the broad resonance regime.

Figure 1 shows the EV of the inflaton fieldf, which
starts decaying significantly aroundt55000/AgF05
0.53108F0

21. Figure 2 shows the corresponding variances
^(df)2&5^f2&2^f&2 and ^x2& of the fields. The variances
increase roughly exponentially at first. This trend stops when
dmx

2[g^(df)2& becomes of order the resonant momentum
squared. The reason is that theA(k) term in the Mathieu
equation gets a contribution of the formg^(df)2&/vf

2 .
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When this term becomes of orderkres
2 /vf

2 @13#, the resonance
band closest toA52q, which has the largest value ofmk ,
becomes inactive. In the next bandmk is down by a factor 3
@14# so the decay is slowed down dramatically. The rapid
production of inflaton fluctuations, which kills the dominant
resonance, may be surprising since there is nof resonance
in this model. These fluctuations are produced by scatterings
of resonantx fluctuations off the inflaton EV, which are fast,
since both thef zero mode andx resonant mode amplitudes
are large. It is interesting to note that if one analyzes this
model using a Hartree-type approximation which neglects
scattering but includes backreaction effects, then the condi-
tion for the end of explosive particle production is that
q(t)[gF(t)2/4(vf

21g^x2&) becomes!1. We emphasize
that this isnot the correct criterion: our simulations show
that scatterings terminate the exponential stage long before
q(t)&1. For example, one sees from Figs. 2 and 3 that
q(t);600 even att553108F0

21.
The energies of the fields, as well as the total energy

density of the system, is shown in Fig. 3. In the ranget
P@0.8,5#3108F0

21 the x field energy grows liketa, with

a'0.95 and a decay time scale of ordertdecay;109F0
21.

Based just on the Mathieu equation one would expect in this
range exponential decay with time scaletdecay;
1/(2^mk&vf);107F0

21. The reason is that asF decays, the
resonances sweep through the momentum space, and as they
move to higher momenta,mk diminishes, and new ones
emerge in the infrared~IR!. In estimating the above time
scale, we have taken the typical value for^mk&;0.05.

To understand why the actual time scale is much longer it
is useful to look at the spectrum of fluctuations ink space.
To this end we define ‘‘occupation numbers’’ for the
x-field via

nk
x5

vk
x

2
^xkWx2kW&1

1

2vk
x ^ẋkWẋ2kW&, ~6!

wherevk
x5Ak21g^f2&, and the brackets denote averaging

over directions. Thenk
f are defined similarly, except that

vk
f5Ak21m21g^x2&. Figure 4 shows the occupation num-

bers of thex field at various times. The growth is exponen-
tial at first, with the lowest three resonance bands clearly

FIG. 1. The EV of the inflaton as a function of time
(m51026F0, lx5lf50, g51028, andF05104 sets the scale for
the y axis!.

FIG. 2. The variances of the fields as a function of time
(m51026F0, lx5lf50, g51028, andF05104 sets the scale for
the y axis!.

FIG. 3. The energies of the fields as a function of time
(m51026F0, lx5lf50, g51028, andF05104 sets the scale for
the y axis!.

FIG. 4. x-field occupation numbers vs momentum at early
times. Three resonances are visible.
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visible at k'0.025, k'0.09, andk'0.13, respectively.
The values ofmk

(n) obtained by assumingnk
x}exp2mk

(n)vft
agree well with the predictions from the Mathieu equation.
For the last time shown in Fig. 4, scatterings are already
becoming important, and the resonance peaks get smeared
out.

The subsequent evolution is shown in Fig. 5. Scatterings
are very fast aftert'0.53108F0

21, and the resonant peak
structure is quickly washed out. The occupation numbers
grow to aboutnk

x;1/g, and then remain approximately con-
stant. There is a simplefeedbackmechanism which explains
this behavior. Resonant particle production increasesnkres

x ,

which increases the scatterings off the zero mode, which
increases infraredf occupation numbers. This increases
dmx

2[g^(df)2&, which decreasesmk ~cf. @14#!, slowing
down resonant particle production and giving scatterings
time to move particles toward higher momenta. This reduces
^(df)2&, which increasesmk , increasing resonant produc-
tion and completing the feedback mechanism. Consequently
nkres

x reaches an equilibrium value for which on average scat-

terings remove particles from the resonance as quickly as

they are created, implyingṙ res
x /r res

x 52mkvf2Gscatt;0. The
result is a slowly varying distribution with a characteristic
shape, as seen at late times in Fig. 5. The slope
2kdlnnk

x/dk is small (&2) in the infrared, grows ask in-
creases, and eventually becomes greater than 4 at the scale
L at which most of thex energy is concentrated. Particles
created by the resonance diffuse to this scaleL via scatter-
ings and slowly move it to higher momentum.~Note that
soon after scatterings become fast,L@kres.) Since the IR
occupation numbers of the fields remain roughly constant
during this process, the energy required is supplied by the
zero mode. The number off zero mode ‘‘particles’’ eaten
up in moving onex particle from kres to L is about
N0

f;L/vf@1, implying that scatterings are responsible for
most of the EV decay. The upshot is that energy is drained
from the zero mode at a slowly varying rate given by
N0

fr res
x 2mkvf , wherer res

x is the energy density in thex reso-
nance. This implies a decay time scale

tdecay;
rf

ṙf

;
rf

r res
x 2mkvf

vf

L
;
33103

gnkres
x

vf

L

1

vf
, ~7!

where we used r res
x .* res@d

3k/(2p)3]nk
xvk

x;
(kres

3 /2p2)wresnkres
x , kres

2 .Aqvf
25AgmfF/4, the

resonance widthwres.0.8kresexp@2(mx
21k2)/(Dk)2], mk.

0.23exp@2(mx
21k2)/(Dk)2], and Dk.(AgmfF/2)1/2 de-

notes the distance between the first two resonances. The nu-
merical coefficient is obtained by noting that resonant energy
production peaks aroundk.kres, andmx

2[g^(df)2&;kres
2 .

The last relation remains reasonably well satisfied through-
out the scattering regime. This is not surprising, since from
2mkvf;Gscattone findsmx

2;kres
2 ln(Gscatt/2m0vf), i.e.,mx

2 is
only logarithmically dependent on slowly varying quantities
~from above,m0.0.2/e). The quantities entering Eq.~7!
vary slowly during the scattering dominated regime, and one
should take their typical values to get an order of magnitude
estimate for the decay time. From Fig. 5 one reads off
gnkres

x .0.04 andL/vf;70, which leads totdecay;109F0
21.

This agrees with the decay time scale seen in Figs. 1 and 3.
The time scale in Eq.~7! is naively parametrically larger by
;1/@gln(1/g)# in comparison to the scale of parametric reso-
nant decay. The reason why the decay time is not huge even
for g very small is thatgnkres

x ;0.04, i.e., the occupation

numbers are very large. This, however, is not true when there
is a moderate self-coupling of thex field, as will be dis-
cussed in Sec. III B.

From the discussion above it is clear that the inflaton de-
cay consists of two distinct regimes: fast exponential decay
during which scatterings are irrelevant followed by a much
slower decay governed by scattering processes. One can
clearly separate these two regimes in Fig. 2: the scattering
regime sets in at the time when the variances become slowly
varying, which occurs att.0.83108F0

21. Clearly there is a
brief transition stage between the two regimes, and since the
exponential decay is a stimulated process, this is where most
of the energy loss associated with the exponential regime
occurs. The resonant occupation numbers stay roughly con-
stant during this transition stage since the scatterings are al-
ready fast, but the infrared and near ultraviolet states are
quickly filled. One can estimate quite generally what fraction
of the inflaton energy has decayed at the time when the
slowly varying state sets in, as follows. We have run our
code for several values ofg in the rangeg510212 to 1028

and find thatg^x2&.g*@d3k/(2p)3vk
x#nk

x;vf
2 /4 when the

scattering regime begins@15#. This value is somewhat depen-
dent on the exact initial position of the dominant resonance.
Since at this time the variance is dominated by modes with
k2;AgvfF0, we can estimate the occupation numbers of
the x field around the resonant momentum to be
gnkres

x ;5vf /AgF0. At this time thex energy is dominated

by approximately the same scale (AgvfF0)
1/2, implying

rx /(rf)0;vf /AgF05(1/2)q21/2. This means that for
q@1 only a small fraction of the inflaton energy decays
during the exponential regime@16#.

After the scatterings become important, the distribution
broadens significantly, but the occupation number at the
resonant scale remains to a good approximation constant.

FIG. 5. x-field occupation numbers vs momentum at later times,
when scatterings dominate.
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With our above estimate forgnkres
x we can thus give a para-

metric expression for the decay time in the scattering regime
based on Eq.~7!. Our numerical results indicate that occupa-
tion numbers drop approximately exponentially between
kres andL ~cf. Fig. 5!. We takenk

x5nkres
x exp@2(k2kres)/k#,

where 1/k is the slope of lnnk
x . As can be seen in Fig. 5, this

value decreases slowly as the field decays. The relevant
value of k can be computed by noting that when the EV
decays significantly, about half of the original energy
(rf)05vf

2F0
2/2 is in the x fluctuations. This gives

k2.q1/4AgF0vf/2. The scaleL can be evaluated as
L5^k&.4k. Combining these results with Eq.~7! we arrive
at the following parametric estimate for the decay time~re-
call that this is sensible only forq@1, since otherwise most
of the field decays during the exponential regime!:

tdecay;33102q1/8
1

vf
, q@1. ~8!

The main point of this equation is that the decay time is very
weakly dependent onq. ~This conclusion is independent of
our assumption thatnk

x falls off exponentially in the relevant
momentum range, even though the exact power ofq is not.!
Note that surprisingly, for fixedvf andF0, the decay time
actually slowly increases asg increases. Thattdecayis nearly
independent ofq in the scattering regime agrees well with
our numerical simulations for 2.53103.q.25. We have
not verified this dependence for much larger values ofq
because such simulations require enormous computing times.
We showed above that the fraction of energy that decays in
the exponential regime is;1/Aq}1/Ag, implying that para-
doxically the field decays faster for smaller values ofq}g.
Our numerical calculations indeed indicate that the fastest
inflaton decay occurs forq;1, rather than forq@1. One
should note, however, that in an expanding Universe para-
metric resonance is ineffective forq;1 in type-I models
since the effectiveqt becomes much less that unity before
the resonant occupation numbers grow large@6#.

B. Models with lx@g

We now investigate what happens whenlx@g. As dis-
cussed in the Introduction, this occurs naturally in many
models. For the run to be presented we used
m2510212F0

2, g51028, lf50, lx50.01, andDx55p/2.
The evolution in this case is very different from thelx50
case@case I~a!# considered above. As can be seen from Fig.
6, the resonance starts growing just as in case I~a!. However,
when the occupation numbers reach about 102/lx , scatter-
ings become fast and populate the infrared states. This gives
rise to the back reactiondmx

253lx^x2&, which shifts the
resonances toward the infrared. As the first resonance sweeps
through the infrared, it further populates the states. Once the
resonance reachesk;0, it is no longer very effective so that
scatterings remove particles from the infrared faster than
they are supplied by the resonance. This leads to depletion of
the infrared states, which decreases the back reaction a little,
increasing the resonance’s effectiveness. This feedback
mechanism leads to a state with slowly varying occupation
numbers, just as in case I~a!. As a consequence, energy is

removed from the zero mode at a slowly varying rate, start-
ing at aboutt52.53108F0

21. In contrast to case I~a! thef
field plays no part in keeping the occupation numbers con-
stant: it is the much fasterx2x scatterings which remove
particles from the resonant momenta as they are created@17#.
Consequently the EV does not get depleted by scatterings,
and the rate of energy loss of thef field is simply
ṙf.2r res

x 2mkvf , which leads to an estimate of the decay

time tdecay52rf / ṙf.10vfF0
2/(2mkkres

3 wresnkres
x ). The

parameters can be deduced from our simulation. The rele-
vant resonance in this case is the second one~recall that
the first one has been shifted to the infrared! which can
be seen atk'0.07AgF0 at late times in Fig. 6. We esti-
mate kres

2 .0.5AgvfF0, mkres
.0.03, the resonance width

wres.0.05kres, and nkres
x .15/lx , so that tdecay;

104/(gnkres
x vf);1015F0

21. Note that this time scale is para-

metrically larger than the resonance decay time by
lx /gln(1/g), which is about 105 in our case. We point out
that ^x2& reaches a maximum value of about 631029F0

2 at
t;23108F0

21, and byt583108F0
21 less than 0.0005% of

the energy is in thex field @18#. The rate of energy density
increase is aboutdrx /dt;4310228F0

5. A linear extrapola-
tion gives for the decay timetdecay;rf /(drx /dt);
1016F0

21, in rough agreement with our simple model. We
emphasize that we do not claim that at very late times the
simple feedback mechanism gives a correct picture. The
main point of this simulation was to establish that a moderate
self-coupling of thex field slows down the EV decay by
many orders of magnitude. This conclusion remains valid
whenx couples moderately to other fields. The only differ-
ence is thatx now decays into these fields, which in turn
induces back reaction onx. While the details are model de-
pendent, the basic mechanism remains valid, and parametric
resonance is rendered ineffective.

IV. MASSLESS INFLATON „TYPE-II MODELS …

Let us now turn to type-II models. These were investi-
gated using the same techniques as above, so rather than

FIG. 6. x-field occupation numbers at various times for a model
with moderate self-couplinglx51022 (m51026F0, lf50,
g51028).
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present the results in detail we will simply state our conclu-
sions. Before doing so it is worth pointing out that for these
models the expanding universe equations of motion are con-
formally equivalent to those in Minkowski space. By this we
mean that in terms of the variablest5*dt/a(t),
f̄5fa(t)/a(0), and x̄5xa(t)/a(0), where a(t) is the
scale factor, the Friedmann-Robertson-Walker equations of
motion are of exactly the same form as those in ordinary
static space time@19#. Hence, with the simple replacements
above, our numerical calculations for type-II models apply
directly to the expanding universe. The main results of our
study are as follows.

A. Models with lx50

If lx50, the inflaton decays via parametric resonance in
much the same way as it did in case I~a!. That is, after a brief
period of exponential decay a slowly varying state sets in
during which the decay is dominated by scatterings. For ex-
ample, Fig. 7 shows the variances of the fields form250,
lf510212, and g51028. Since in this case
vf50.85AlfF0, q'3500. The figure indicates that, as in
case I~a!, the exponential regime ends att;0.83108F0

21.
The maximum values of the variances are again to a good
approximation given byg^x2&;vf

2 and g^f2&;vfAgF0.
The decay time can still be estimated from Eq.~7!, with the
replacementmf→vf.0.85AlF0. The slowly varying
value of gnkres

x is again about 5vf /AgF0, so type-I and

type-II models behave very much alike for equal values of
the parameters. One difference is that for type-II models the
inflaton energy decays somewhat faster, sincemk is larger
and in addition there are scatterings via thelff4 term. For
the lx50 runs described in this work, the energy decays
about 50% faster for the quartic potential. The value ofmk is
about 25% larger for that case.

As discussed at the beginning of this section, the lattice
results for type-II models can be mapped onto the expanding
universe by the appropriate rescaling. To see how this works
in practice consider the problem of obtaining the maximum
value of ^x2& reached during preheating in the expanding

universe. This value is interesting because it quantifies the
effective temperature of nonthermal phase transitions@20#.
Since for type-II models the universe is radiation dominated
we can writea(t)/a(0)511H0a(0)t, wheret is the con-
formal time andH05AlfF0

2/A12MP is the Hubble constant
at the end of inflation. As discussed at the beginning of Sec.
IV, in a Friedmann-Robertson-Walker universe our lattice
fields are rescaled by a factora(t)/a(0) and our lattice time
is t. Hence ^xFRW

2 &5„a(0)/a(t)…2^x2&. Consider, for ex-
ample, the variances shown in Fig. 7. Since^x2& rises rapidly
and then becomes slowly varying,^xFRW

2 &max occurs at the
moment when the fast growth terminates. This occurs at
t'8000/AgF0583107F0

21 when^x2&'631025F0
2. Hence

we obtain ^xFRW
2 &max'631025F0

2/~1123107AlfF0/
MP)

2'1027MP
2 , where we have useda~0!51 in our units.

We can obtain general formulas for the maximum variances
of the fields whenq@1 by recalling that the slowly varying
scattering regime sets in wheng^(df)2&;kres

2 ;AgvfF0/2

and g^x2&;vf
2 /4, where vf'0.85AlfF0. This occurs

when nkres
x ;(gAq)21, i.e., at the time t; ln(1/gAq)/

2mkvf. Combining this with our equation fora(t) we ob-
tain

^~dfFRW!2&max;0.2
1

q1/2ln2~lf
21q23/2!

MP
2 ~9a!

;S lf

g D 1/2 1

ln2~lf/g
3!
MP

2 ~9b!

and

^xFRW
2 &max;0.06

1

qln2~lf
21q23/2!

MP
2 ~10a!

;S lf

g D 1

ln2~lf/g
3!
MP

2 , ~10b!

whereMP'2.431018 GeV. These results can be considered
upper limits for the variances since they were obtained for a
masslessx field and a mass term in the equations of motion
only suppresses the resonance@6#. Note that
^xFRW

2 &max}q
21 ~up to logarithms!, while Hartree-type ap-

proximations which neglect scattering predict aq21/2 depen-
dence@3#. That the Hartree approximation may not give the
correctq dependence of̂x2& was previously mentioned in
@6#.

B. Models with lx@g

If lx@g, the situation is drastically changed. Just as for
type-I models the decay into thex field is extremely slow.
But for type-II models the inflaton can decay into its own
fluctuations via parametric resonance, as discussed below
Eq. ~3!. This process, which is much slower than decay into
x fluctuations forlx50, becomes dominant forlx@g. In
fact the inflaton decays into its own fluctuations as if it were
not coupled to thex field at all. We have verified this by

FIG. 7. The variances of the fields as a function of time for a
quartic inflaton potential (m50, lf510212, g51028, and
F05104 sets the scale for they axis!.
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running the one field case and comparing the results to the
two field simulation with the same parameters in thef sec-
tor. For example, withm50, lf510212, lx51022 and
g51028 we find that 73% of the energy has decayed by
t583108F0

21 and ^(df)2&max'831022F0
2, which agrees

very well with the corresponding one field run. We also note
that in the two field run̂x2& grows exponentially at first but
then reaches a maximum value of about 331029F0

2 at
t;0.43108F0

21. The details of the one field case are dis-
cussed in@5#. One may wonder why the perturbative energy
flow via scatterings fromf to x fluctuations is ineffective
even after the infraredf occupation numbers reach a huge
value of orderlf

21@g21. The reason is that due to the back-
reaction g^df2&, x fluctuations become massive and
ff→xx scatterings are kinematically forbidden.@Indeed,
taking the above value for^(df)2&max, one finds
mx /vf;30.#

We point out that it is very difficult to simulate type-II
models with largeq on the lattice. The reason is that the
typical resonant momenta for the two fields differ by a factor
kres

f /kres
x ;q21/4, making it difficult to run simulations that

capture both resonances with sufficient infrared and ultravio-
let resolution. Our numerical results on 1283 lattices were
hence obtained in a two step process: we first did preliminary
runs, choosingDx optimally for each resonance in turn. This
allowed us to determine which one was dominant, namely
the x resonance forlx50 and thef resonance forlx@g.
We then did extended runs choosingDx just large enough to
capture the physics of the dominant resonance, giving us the
best possible ultraviolet range for the given situation.

V. CONCLUSION

We have numerically investigated the decay of the infla-
ton coupled to a massless scalar field. Our main results for
both quadratic~type-I! and quartic~type-II! inflaton poten-
tials are as follows.

~1! If the self-coupling of the decay product is small
(lx!g) we find two distinct stages of inflaton decay for
q*25: an exponential regime in which the field decays via
parametric resonance, followed by a scattering dominated
regime. The fraction of energy which decays by the time the
scattering regime begins is of orderq21/2. This means that
for q@1 scatterings are responsible for most of the inflaton
decay, and we find that the decay time scale in the scattering
regime is significantly longer than the resonance decay time
scale.

~2! If lx@g ~which is natural for many models! we find

that parametric resonance cannot transfer energy tox. The
reason is that scatterings due to the self-interactions limit the
maximum occupation numbers ofx, allowing only a tiny
fraction of the inflaton energy to be transferred during the
resonant stage. In the subsequent scattering dominated re-
gime the transfer of energy is extremely slow, leading to
huge decay times for type-I models. For type-II models the
inflaton decays into its own fluctuations, essentially as if it
were not coupled to the second field at all. Although these
results were obtained in a simple model with two scalar
fields, the basic mechanism, and hence our conclusion, re-
mains valid for a realistic model with many mutually inter-
acting fields.

In this work we have studied inflaton decay by integrating
the Minkowski space equations of motion. It is an interesting
question how our conclusions might change in an expanding
Universe. For type-II models the answer is simple: as ex-
plained in Sec. IV, our analysis is directly applicable after
the appropriate rescaling. The mapping was made explicit in
Sec. IVA, where we obtained upper limits for the variances
of the fields in the expanding universe.

For type-I models the situation is more complex. The time
scale H21 defined by the the expansion rate
H5Arf/3/MP&vf/2 is much shorter than the scattering de-
cay time scale@see Eq.~8!#. Consequently we cannot expect
our work for type-I models to be a good approximation to the
expanding universe case. However, we do expect our con-
clusion that the inflaton cannot decay into a field with mod-
erate self-interactions to remain valid. First of all, parametric
resonance in an expanding Universe is suppressed. Second,
in the scattering regime the maximum occupation number
will remain of orderlx

21 , so one expects that the total en-
ergy deposited in thex field fluctuations remains a tiny frac-
tion of the inflaton energy even in an expanding universe.
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