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Quantum solitons at strong coupling
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We examine the effect of one-loop quantum corrections on the formation of nontopological solitons in a
strongly coupled scalar-fermionic Yukawa theory. The exact one fermion loop contribution is incorporated by
using a nonlocal method to correct the local derivative expan§) approximation of the effective action.

As the Yukawa coupling is increased we find that the nonlocal corrections play an increasingly important role.
The corrections cause the scalar field to increase in depth while maintaining its size. This increases the energy
of the bag configuration, but this is compensated for by more tightly bound fermionic states with lower energy.
In contrast with the semiclassical picture without quantum corrections, the binding energy is small, and the
total energy scales directly with the Yukawa coupling. This confirms the qualitative behavior found in earlier
work using the second order DE, although the quantitative solutions di§6656-282(197)05206-5

PACS numbds): 11.10.Lm, 11.15.Kc

In theories that support static nontopological soliton soludoop fermion vacuum using the DE to second order in de-
tions at the semiclassical level, it is of interest to ask whativatives of the scalar field. However, it is not cleapriori
effect quantum corrections may have on the form of the sothat the DE is applicable for this model. This is because the
lution. In determining these solutions, one must face the isDE is an asymptotic expansion in inverse powersng,
sue of self-consistency—solving a set of coupled nonlinearvherem is the fermion mass ang is typically the soliton
differential equations to find the field configuration thatSize or surface thickness. Thus, it is only appropriate for
minimizes the energy functional. This makes it useful tosufficiently large solitons witlR>1/m. Hence the applica-
have a local expansion of the effective action to model thes®ility of the DE will depend on whether & or some other
vacuum effects. One such local method is to expand the ongcale in the Lagrangian is instrumental in determining the
loop effective action in momentum space about zero momersize of the soliton self-consistent solution.
tum. For nontrivial background fields this is an expansion in  The choice of Lagrangian density [i8]
increasing orders of background field derivatives, the so-
called derivative expansiofDE). Such an expansion has N . g 1 ) ) .
been considered in theories of finite nudl#], QED[2], and EZZI il id _\/_N¢ $it 5(0,)" —grpz(d"—Nv9~
Friedberg—Lee-type soliton moddi3—5|. 1)

Of considerable interest is whether the DE converges rap-
idly enough to make it a useful tool. The nature of the con-There areN flavors of fermions in this model, and we work
vergence has been studied by several authé+®]. In a i the limit of largeN. The utility of the largeN parametri-
recent study10], we have devised a method inf3 dimen-  ;45i0n s to validate the semiclassical treatment of the scalar
sions that enables the DE Contnbl_mon to the field equationge|q. |n particular, the scalar loop contributions are sup-
to be corrected for cases where it does not converge. Thﬁressed by a factor W/ The scalar field has a nonzero

allows the one-loop fermionic vacuum scalar density to bg ,.,um expectation valu&/EV _ — /Nv. and the
included exactly. The method relies on noticing that a DE Offermion mapss " identifieglaslig(iﬁ N%ié tr;/;tvdue to the

the fermion Green functiois(x,X; w) works well for large
loop energiesw and for higher partial waves. This method hysically acceptable.

involves making a partial wave expansion of the scalalp To examine the model, we follow Bagger and Naculich
vacuum density and correcting smaller partial wave DE CONr31 and consider the simpI,e case of solitons vttiermions

';rlbut_lonsDby ".iln G;XT]Ct evarl]uz(ijtlondof :jhe ferr_mom(; _Greel_nthat all appear in the lowest single-particle energy state. The
unction. Details of the method and a discussion of its reli-g i o 0 T has the form

ability can be found if10].

P

presence of a Landau pdl8], only models withg=<30 are

In this article we consider the effect that vacuum correc- i
. . . ; 1[ iGN |
tions can have on the self-consistent solutions of a soliton = )
. L. . . \ df ~ 4 172
model. For simplicity, we consider the nontopological soli- r\F(rye-r) (4m)

ton model of Bagger and Naculid8]. These authors solve
for bound states ol fermions with a Yukawa coupling to a where x is a Pauli spinor. By rescaling the scalar field to
dynamic scalar field, while including the effects of the one-¢=ga/\/N, the N dependence in the Lagrangian density
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will contribute simply as an overall factdd. The effective  value equation €iy-V+ @)= eyys. Minimizing the en-
action to one-loop order in fermionic fluctuations ergy functional E,{ ¢], and using Eq(2) allows us to write

is T @]=d*)XL+Tod @], where  TI'{¢] the field equations as
=—iTrIn[S Ye)S(M)], and S(¢)=1/(id — ¢) is the fermi-
onic green function operator in the backgroundThis gives d_G G +(e+)F (11)
dr ’
Fva({go]=—ifd4xtr<x|ln(i(7—go)—ln(id—m)|x>. (3 dF F
ar - 7 (em )G, (12
The ground state configuration for static fields is then the one
that minimizes the energy functional E{ ¢] u?
=—Ter @]/ fdt. . . VZ(P+ ?(QD_GDs):gZ(PvaI"'Pva&i (13
After some standard manipulations of E8), the vacuum

energy can be written 4$,7] subject to the normalization constraint

EVa({QD]:_ ZI_ﬂ'f d3Xf dwwtr['yOS(X,X,lw)], (4) fwdr(Gz"F FZ):l (14)
0

where
The source terms are

. 1 ]
S(X,X;Ia))=<X’ > (5)

" " X 1 2 2
iyow+iy-V—o(x)| pva=7—2(G"—F%), (19

is the fermion Green function in the coordinate space repre-

. S . — DA, JDE2, O (16)
sentation. The scalar vacuum density is obtained from the Pvac™ Pvac T Pvac '
energy by taking the functional derivatiiE, ../ S¢, giving

1
1 _ P =~ 72L0°IN(¢%) — e+ ¢, (17)
Pvad X)=— ﬂf dwtr[ S(X,X;iw) ]. (6)
. . DE,2__ E \v, 2+| 2 V2 (18)
One can derive the DE expressions By, and p,c by re- Pvac =g 2 <p( @)+ In(e) (V) |.

writing the Green function as

3 As written, these equations facilitate trying different lev-

S(x X'iw)=f d”p (x|p) - 1 _ (plx) els of approximation to the fermionic vacuum in the self-
o (2m)3 yow—y-P—¢(iVp) consistent solution. Setting,,.=0 corresponds to the semi-
3 classical approximatiofCL), where vacuum corrections are
:f d’p 1 7) ignored. Keeping the first term in E(QL6) will be referred to
(2m)° iyow—v-p—@(X+iVp)’ as the local density approximati¢hDA), as this term gives

) . the exact one-loop result for a spatially uniform scalar field.
and expanding abowi(x). Of course, the above expressions |ncjyding the second term in E¢L6) will be referred to as
for Eyac @andpy,c Need to be regularized and renormalized toyqrivative expansioiDE) approximation. The density,.
make them finite. Dimensional regularization can be useg5q only been expanded to second order—the same order as
with the appropriate renormalization conditions givei3h e gifferential equatior(13) for ¢. In our experience, at-
It is useful to rescale all fields and variables in terms ofigmpting to include terms with higher order derivatives in
the fermionic mass scafe, which we can set equal to 1. The ggf.consistent calculations tends to make the solutions nu-

effective energy of the system can then be written as aRerically unstable. We discuss below a method for evaluat-
energy per fermion in units ah=guv: ing pos, €xacty.

_ It was noted in[3] that for g—c, the soliton solution
Eiol 1= Escaik 0]+ €+ Evad 01, ® satisfies a constraint that becomes independent G see
1 1 2 this we note that all source terms enter with the same power
Eccaf 1= —zf d3x E(V(P)ZJr M—(¢2—l)2 . (9 of g in Egs. (15—(18), and Eqgs.(11) and (12) areg inde-
9 8 pendent; so with the above notation, this constraint takes the
simple form
Evad ¢]= = fdsx E(902—1)(3<P2—1)—40““’1(@2) 2
va 1677 2 pval(r) + pyad 1) =O(1/g7). (19
) ) 4 Thus a large amount of cancellation is required between
~In(e%)(Ve)®|+O(d). (10 these source terms for large This restricts the form of the

solutions, but does not necessarily enforce an asymptotic
The DE expression for the vacuum energy has been exg-independent shape, as claimed ®}. The reason is that a
panded to second order in derivatives of the scalar fieldamily of different functions may exist that satisfy E@.9),
[3,11]. The fermion energy is found by solving the eigen- so that the true solution is determined by tA€l/g?) parts.
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TABLE I. Contributions from different orders of the DE series energiesw (and similarly also for large angular momenta
for the energy and the density. Results are shown for a fixed backn three spatial dimensionsTherefore one can use the DE as
ground fieldp(r) with a=0.5,b=0.16, andf =0.8. Units are given  a sophisticated extrapolation procedure for accelerating the
in terms of the scalen, as indicated. convergence of the brute-force method. The exact Green
function contribution can be calculated up to sokg,, and
LDA  Second order Fourth order the DE can be used to calculate the contribution for the re-
_ maining partial waves. An equivalent method is to use the
Evac (10 °m) s 3 5.909 2.001 —0.636 full DE result, and correct the low energy and low partial
Puadr=0) (10°m%)  —5.109 —0.936 —3.732 wave terms using the difference between the exact and DE
expressions folS,. This improves the convergence of the
energy integral in Eq(6). Hence we put

The field equation$11)—(13) agree with those of Bagger
and Naculich[3]. Although these authors checked the con- Pvac= P+ pPE24 Ap ol @], (23
vergence of the DE by examining the relative size of the . o
fourth order terms in the expansion, they did so only for thehere the density correction is given by

energyfunctional using a fixed scalar profile. The conver- o
gence, however, may be quite different for terms in the dy- Apeorl 1= > lim Ap (A1), (24)
namical equations of motion. To see this, consider a fixed k=1 A —o

background field of the form 1
SRe tS(r.riiw)]+Ye

K AK

Ap (A, 1)=— do
a(l-‘r f) P« K _ZJ
e(N)=1-—5——7. (20 o
e’ +fe

oYAV2g) - Y3V

At values ofa=0.5,b=0.16, andf =0.8 we obtain a scalar 2" 37~
field that roughly corresponds to the quantum soliton solu- 5
tion at g=25 found. by. Bagger and Naculidi8]. Table .I _ —Yigo(ch)z—ZYigﬁ(Vgo)z}, (25)
shows the DE contributions to the energy and the density up 3
to fourth order. Expressions for these fourth order contribu-

tions can be found in the Appendix. It can be seen that alyvhere

though the fourth order terms do not make a substantial con- N 1 N N

tribution to the energy, this is not the case for the density Yo =g —2[Aa(N+ALN], (26)

(which is shown forr =0 in the tablé. For the self-consistent

solution the convergence is worse@sicreases and the size N 1 1 d\"! .

of the scalar bag solution shrinks. Al(r)=- =112z, H) (2o %1 (2o K, (Z41) ],
Our purpose, therefore, is to reconsider this model and e (27

make use of the correction method described1i@] to ac- s o1 ] -
count for the fermionic vacuum in an exact manner. ThisZo=(@“+ @)™, ¢=¢(r), andi,, k. are the modified
involves extending a scheme discussed by Wasson and KogPherical Bessel functions of order. The utility of this
nin [5,9] for calculations in one spatial dimension. In three Méthod is that one only needs to includeAp.,, as many
spatial dimensions, an exact or “brute-force” calculation in- Partial waves as are needed to achieve the desired accuracy.
volves making a partial wave expansion of the Green func2IS0: Apcor iS @ finite quantity that is independent of renor-
tion (5): malization. The_renormahzatlon counterterms on!y_appe_ar in
the DE expressiond7) and(18). The details of deriving this
1 R R correction are described [10].
S(X, X" ;iw)= —,2 SK(r,r’;iw)®ykm(x)yim(x’). Numerically, it is useful to be able to treat our equations
- m entirely as a boundary value problem. This can be done by
(21) treating e as a field, and also introducing a fieldfor the

Each partial wave Green function obeys the equation auxiliary equation(14), so that

. d K df _ dX _ 2 2
iw—(r) _EJFF dr—O, dr_G +F-. (28
d « , Sd(rriiw)=a(r=r’), The boundary conditions for the entire system of equations
g7 le—e) are then
(22 de(n)| o den) (1o

which can be solved numericall{2]. A similar partial wave dr HO_ Toodr HR_ #TR ek
expansion can be made of the DE approximation to the
Green function, Eq(7), giving S2F [7]. The sum of all par- F(r) 1 F(R)  [e(R)—e|"
tial wave DE contributions to the density will reproduce the  yG(r) _5[90(0)_ €l, G(R) |¢(R)+e
expressiong17) and (18). =0 (29

Wasson and Koonir5,9] pointed out that the DE ap-
proximation to the Green function works well for large loop x(0)=0, x(R=1,
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FIG. 2. Self-consistent scalar field solutions with increasing
number of terms in the partial wave correction serigs=10,
u=1/10.

FIG. 1. Self-consistent scalar field solutions of the Bagger-
Naculich model ¢=10, x=1/10) for semiclassicalCL), local
density (LDA), and derivative expansiofDE) approximations to

the vacuum densities. sign. At this point the equations no longer support a solution

as it is impossible to satisfy the constrairi9). However,

whereR is large compared to the length scale of the prob-when the DE terms are included the vacuum density is not
lem. To solve our equations we make use of the progranfiorced to change sign agis increased, and a soliton solution
COLNEW by Ascher and Baddr 3]. Unfortunately, when the exists. In Fig. 1 we see that the shape of the scalar field for
correction (25) is included we cannot simply use the g=10 is even shallower for the DE than for the LDA. An
COLNEW routine as written, since our equations are actuallyinteresting feature to note is that under the DE the total en-
integro-differential equations. To facilitate thOLNEwW was  ergy E,,,=0.967n (DE) is relatively unchanged from the
modified so that the scalar field solution and its derivativeLDA result. This occurs even though the Fermi level has
can be extracted at intermediate stages of the calculation tthanged frome=0.863n (LDA) to e=0.908n (DE), and is
evaluate the density correction. The calculation is then intermade possible due to a corresponding decrease in the energy
nally iterative, withAp.,, treated as a source term that is contribution from the scalar field .47 Evac-
reevaluated as needed with each internal iteration of the Now examine what happens when the density correction
COLNEW code. terms are included. In Fig. 2 the self-consistent scalar field

We now examine the results when using different levelssolutions are shown for calculations including an increasing
of approximation to the vacuum. We use the schemes disaumber of partial wave corrections. The exact vacuum den-
cussed above in the following order: CL, LDA, DE, and EX. sity favors a deeper scalar field than the DE. The fifth partial
Here EX will refer to the exact solution, which includes wave has not been included in the figure since the field in
Apeorr from Eq. (24). Our goal is to quantify the effect of this case is found to be indistinguishable from that with four
this correction on the self-consistent solution for variouspartial waves. Looking at the sequence of scalar fields in
couplings. The choicg=10, x=1/10 will serve as an ex- Figs. 1 and 2 we see a manifestation of the fact that terms in
ample.[As the energy scalen already includes an implicit the derivative expansion display oscillatory convergence
dependence og, settingu = 1/g simply fixes the scalar field [12]. Note that after including th&=1 term in the correc-
mass at the VEV valug. tion (25) the correct vacuum density is specified at the origin

For the CL, LDA, and DE approximations the self- as higher terms are zero there. However,#hel terms may
consistent solutions fop are shown in Fig. 1. We see that still affect the self-consistent solution. In fact, we see in Fig.
adding the LDA term reduces the depth and width of the2 that the scalar field becomes deeper as subsequent terms in
scalar field, so that a zero no longer appears. The total enerdlge correction are included. The corrected solution gives
of the solution, E;;=0.960n (LDA), has dramatically e=0.857n (EX) andE,;=0.976n (EX). The energy of the
changed from that of the semiclassical approximationscalar field is twice the DE result, and the Fermi level has
E.,t=0.620n (CL). This behavior, which was identified by dropped away fromm. However, the total energy remains
[3] at the DE level, occurs even before the derivative termgairly stable, rising only slightly above the DE result.
are included. However, fag>10.4 the LDA approximation To get the EX correction it is sufficient to use partial
gives no solution. Looking at the expression for the LDA waves up tok=4, except at largg wherex=5 is needed.
contribution in Eq(17), we see that this function is odd with In Fig. 3 we see that for other values gfthere is also a
respect to the scalar field. Increasing the coupling drives thdecrease in the depth of the scalar field using the exact cal-
scalar field deeper, so that nepr 10.4 the solution becomes culation. The exact results agree with the DE calculation for
negative ar =0, and the LDA contributes with the opposite small coupling as expected. Agsis increased the depth of
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FIG. 3. Depth of the self-consistent scalar field solutions FIG. 4. Self-consistent fermione} and total soliton E,) en-
o(r=0) for different values of the coupling, andu=1/g. Results  ergies for different values of the coupligg with x=1/g.
are shown for the semiclassic@CL), derivative expansiotiDE),

and exac{EX) solutions. tion calculation would be necessary for the scalar loops to

ascertain that this contribution to the true scalar vacuum was

the bag decreases. Fgr-20 values of the wave function /SO included correctly.
¢(r) nearr=0 are numerically uncertain by about 0.02.
This uncertainty is a symptom of the constraib®), but in
no way affects the value of the energies. In Fig. 4 we show One of us(P.G.B) would like to thank the Institute for
how including the correction affects the energies at differentNuclear Theory and the Nuclear Theory group at the Univer-
g. From the fermion energy, we see that the corrections sijty of Washington for their hospitality and support during
affect the solution for aly>5. As the coupling increases we his sabbatical leave. I.W.S. would like to thank Martin
have found that not only does the width of the bag shrinkGremm, Anton Kapustin, and Mark Wise for their com-
but the depth increases. Since this leads to larger derivativefents. This work was also supported in part by the Natural
the energy of the scalar field increases. Correspondingly, feiSciences and Engineering Research Council of Canada, and

mions may be more tightly bound in the bag so that thepy the U.S. Department of Energy under Grant No. DE-
Fermi energy level decreases. When the fermionic and scalg@G03-92-ER40701.

field energies are added to obtain the total energy, the sum

gives an answer that is closer to the DE result than either oARPPENDIX: FOURTH ORDER DERIVATIVE EXPANSION

the components separately. This occurs agalh fact, it is OF THE ENERGY AND DENSITY

surprising to find that the corrected total energy remains ) )

fairly constant as the coupling is increased, exhibiting nearly, 1€ €xpressions for the energy and density at fourth or-
the same scaling as the DE total energy. Recall that odfl€r» Which were used in Table I, are

energy is_ scaled in terms of the fermionic mass gv, SO 1 . (2¢)%  11(d,0)2(¢)
that relative tov the energy scales directly proportional to Evad ©]=— Wf d°x -

ACKNOWLEDGMENTS

the coupling. Thus the claim that such scaling behavior is ¢* 9¢°
universal[14] is supported by our calculations. 11(d,¢)*

In summary, we have found a way of correcting the DE +T¢4}, (A1)
approximation for fermionic vacuum fluctuations while still
demanding a self-consistent solution. There remain several 1 25(8,520)(8%9)
ways in which the results of the calculation done here may pDE4=— 802 2[&“90— B e—
be made more general. To include different fermionic energy e ¢
levels it would likely be more economical to use theLNEW 11(20,0)(3%)  16(6%¢)% 11d,05¢)2
routine to solve only the scalar equation, while solving the - 90 - 90 90

eigenvalue problem for the relevant fermionic wave function
components using standard Runge-Kutta techniques. If one 43(3,,0)%(¢) 44(ﬁaﬁﬁ¢)((ya¢)((yﬁ¢)
+

takes for granted some validity in the one-loop approxima- 942 9¢2

tion for finite N and large coupling, it should also be possible

to include the scalar fluctuations at the one-loop level. It is 11(9,9)*

expected that these fluctuations would contribute a source - 3—‘103} (A2)

density term with the opposite sign to the fermionic fluctua-
tions[7]. However, it is likely that a similar density correc- Covariant notation is used for convenience.
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