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We examine the effect of one-loop quantum corrections on the formation of nontopological solitons in a
strongly coupled scalar-fermionic Yukawa theory. The exact one fermion loop contribution is incorporated by
using a nonlocal method to correct the local derivative expansion~DE! approximation of the effective action.
As the Yukawa coupling is increased we find that the nonlocal corrections play an increasingly important role.
The corrections cause the scalar field to increase in depth while maintaining its size. This increases the energy
of the bag configuration, but this is compensated for by more tightly bound fermionic states with lower energy.
In contrast with the semiclassical picture without quantum corrections, the binding energy is small, and the
total energy scales directly with the Yukawa coupling. This confirms the qualitative behavior found in earlier
work using the second order DE, although the quantitative solutions differ.@S0556-2821~97!05206-5#

PACS number~s!: 11.10.Lm, 11.15.Kc

In theories that support static nontopological soliton solu-
tions at the semiclassical level, it is of interest to ask what
effect quantum corrections may have on the form of the so-
lution. In determining these solutions, one must face the is-
sue of self-consistency—solving a set of coupled nonlinear
differential equations to find the field configuration that
minimizes the energy functional. This makes it useful to
have a local expansion of the effective action to model these
vacuum effects. One such local method is to expand the one-
loop effective action in momentum space about zero momen-
tum. For nontrivial background fields this is an expansion in
increasing orders of background field derivatives, the so-
called derivative expansion~DE!. Such an expansion has
been considered in theories of finite nuclei@1#, QED @2#, and
Friedberg–Lee-type soliton models@3–5#.

Of considerable interest is whether the DE converges rap-
idly enough to make it a useful tool. The nature of the con-
vergence has been studied by several authors@6–9#. In a
recent study@10#, we have devised a method in 311 dimen-
sions that enables the DE contribution to the field equations
to be corrected for cases where it does not converge. This
allows the one-loop fermionic vacuum scalar density to be
included exactly. The method relies on noticing that a DE of
the fermion Green functionS(x,x;v) works well for large
loop energiesv and for higher partial waves. This method
involves making a partial wave expansion of the scalar
vacuum density and correcting smaller partial wave DE con-
tributions by an exact evaluation of the fermionic Green
function. Details of the method and a discussion of its reli-
ability can be found in@10#.

In this article we consider the effect that vacuum correc-
tions can have on the self-consistent solutions of a soliton
model. For simplicity, we consider the nontopological soli-
ton model of Bagger and Naculich@3#. These authors solve
for bound states ofN fermions with a Yukawa coupling to a
dynamic scalar field, while including the effects of the one-

loop fermion vacuum using the DE to second order in de-
rivatives of the scalar field. However, it is not cleara priori
that the DE is applicable for this model. This is because the
DE is an asymptotic expansion in inverse powers ofmR,
wherem is the fermion mass andR is typically the soliton
size or surface thickness. Thus, it is only appropriate for
sufficiently large solitons withR@1/m. Hence the applica-
bility of the DE will depend on whether 1/m or some other
scale in the Lagrangian is instrumental in determining the
size of the soliton self-consistent solution.

The choice of Lagrangian density is@3#
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There areN flavors of fermions in this model, and we work
in the limit of largeN. The utility of the largeN parametri-
zation is to validate the semiclassical treatment of the scalar
field. In particular, the scalar loop contributions are sup-
pressed by a factor 1/N. The scalar field has a nonzero
vacuum expectation value~VEV!, fy5^f&5ANy, and the
fermion mass is identified asm5gy. Note that due to the
presence of a Landau pole@3#, only models withg&30 are
physically acceptable.

To examine the model, we follow Bagger and Naculich
@3# and consider the simple case of solitons withN fermions
that all appear in the lowest single-particle energy state. The
fermionic wave function then has the form

c5
1

r S iG~r !
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wherex is a Pauli spinor. By rescaling the scalar field to
w5gf/AN, the N dependence in the Lagrangian density
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will contribute simply as an overall factorN. The effective
action to one-loop order in fermionic fluctuations
is Geff@w#5*d4xL1Gvac@w#, where Gvac@w#
52 iTr ln@S21(w)S(m)#, andS(w)51/(i ]/ 2w) is the fermi-
onic green function operator in the backgroundw. This gives

Gvac@w#52 i E d4xtr^xu ln~ i ]/ 2w!2 ln~ i ]/ 2m!ux&. ~3!

The ground state configuration for static fields is then the one
that minimizes the energy functional Etot@w#
52Geff@w#/*dt.

After some standard manipulations of Eq.~3!, the vacuum
energy can be written as@5,7#

Evac@w#52
i

2pE d3xE dvvtr@g0S~x,x; iv!#, ~4!

where

S~x,x; iv!5 K xU 1

ig0v1 ig•¹2w~x!
UxL ~5!

is the fermion Green function in the coordinate space repre-
sentation. The scalar vacuum density is obtained from the
energy by taking the functional derivativedEvac/dw, giving

rvac~x!52
1

2pE dvtr@S~x,x; iv!#. ~6!

One can derive the DE expressions forEvac andrvac by re-
writing the Green function as
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^xup&
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and expanding aboutw(x). Of course, the above expressions
for Evac andrvac need to be regularized and renormalized to
make them finite. Dimensional regularization can be used
with the appropriate renormalization conditions given in@3#.

It is useful to rescale all fields and variables in terms of
the fermionic mass scalem, which we can set equal to 1. The
effective energy of the system can then be written as an
energy per fermion in units ofm5gv:

Etot@w#5Escalar@w#1e1Evac@w#, ~8!
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The DE expression for the vacuum energy has been ex-
panded to second order in derivatives of the scalar field
@3,11#. The fermion energye is found by solving the eigen-

value equation (2 ig•¹1w)c5eg0c. Minimizing the en-
ergy functional,Etot@w#, and using Eq.~2! allows us to write
the field equations as
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subject to the normalization constraint

E
0

`
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The source terms are

rval5
1

4pr 2
~G22F2!, ~15!

rvac5rvac
LDA1rvac

DE,21O~]4!, ~16!

rvac
LDA52

1

4p2 @w3ln~w2!2w31w#, ~17!

rvac
DE,25

1

8p2 F 1w~¹w!21 ln~w2!~¹2w!G . ~18!

As written, these equations facilitate trying different lev-
els of approximation to the fermionic vacuum in the self-
consistent solution. Settingrvac50 corresponds to the semi-
classical approximation~CL!, where vacuum corrections are
ignored. Keeping the first term in Eq.~16! will be referred to
as the local density approximation~LDA !, as this term gives
the exact one-loop result for a spatially uniform scalar field.
Including the second term in Eq.~16! will be referred to as
derivative expansion~DE! approximation. The densityrvac
has only been expanded to second order—the same order as
the differential equation~13! for w. In our experience, at-
tempting to include terms with higher order derivatives in
self-consistent calculations tends to make the solutions nu-
merically unstable. We discuss below a method for evaluat-
ing rvac exactly.

It was noted in@3# that for g→`, the soliton solution
satisfies a constraint that becomes independent ofg. To see
this we note that all source terms enter with the same power
of g in Eqs. ~15!–~18!, and Eqs.~11! and ~12! areg inde-
pendent; so with the above notation, this constraint takes the
simple form

rval~r !1rvac~r !5O~1/g2!. ~19!

Thus a large amount of cancellation is required between
these source terms for largeg. This restricts the form of the
solutions, but does not necessarily enforce an asymptotic
g-independent shape, as claimed in@3#. The reason is that a
family of different functions may exist that satisfy Eq.~19!,
so that the true solution is determined by theO(1/g2) parts.

55 3743QUANTUM SOLITONS AT STRONG COUPLING



The field equations~11!–~13! agree with those of Bagger
and Naculich@3#. Although these authors checked the con-
vergence of the DE by examining the relative size of the
fourth order terms in the expansion, they did so only for the
energy functional using a fixed scalar profile. The conver-
gence, however, may be quite different for terms in the dy-
namical equations of motion. To see this, consider a fixed
background field of the form

w~r !512
a~11 f !

ebr
2
1 f e2br2

. ~20!

At values ofa50.5,b50.16, andf50.8 we obtain a scalar
field that roughly corresponds to the quantum soliton solu-
tion at g525 found by Bagger and Naculich@3#. Table I
shows the DE contributions to the energy and the density up
to fourth order. Expressions for these fourth order contribu-
tions can be found in the Appendix. It can be seen that al-
though the fourth order terms do not make a substantial con-
tribution to the energy, this is not the case for the density
~which is shown forr50 in the table!. For the self-consistent
solution the convergence is worse asg increases and the size
of the scalar bag solution shrinks.

Our purpose, therefore, is to reconsider this model and
make use of the correction method described in@10# to ac-
count for the fermionic vacuum in an exact manner. This
involves extending a scheme discussed by Wasson and Koo-
nin @5,9# for calculations in one spatial dimension. In three
spatial dimensions, an exact or ‘‘brute-force’’ calculation in-
volves making a partial wave expansion of the Green func-
tion ~5!:

S~x,x8; iv!5
1

rr 8(k,m Sk~r ,r 8; iv! ^Ykm~ x̂!Ykm
† ~ x̂8!.

~21!

Each partial wave Green function obeys the equation
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which can be solved numerically@12#. A similar partial wave
expansion can be made of the DE approximation to the
Green function, Eq.~7!, giving Sk

DE @7#. The sum of all par-
tial wave DE contributions to the density will reproduce the
expressions~17! and ~18!.

Wasson and Koonin@5,9# pointed out that the DE ap-
proximation to the Green function works well for large loop

energiesv ~and similarly also for large angular momentak
in three spatial dimensions!. Therefore one can use the DE as
a sophisticated extrapolation procedure for accelerating the
convergence of the brute-force method. The exact Green
function contribution can be calculated up to somekmax, and
the DE can be used to calculate the contribution for the re-
maining partial waves. An equivalent method is to use the
full DE result, and correct the low energy and low partial
wave terms using the difference between the exact and DE
expressions forSk . This improves the convergence of the
energy integral in Eq.~6!. Hence we put
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where the density correction is given by
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zv5(v21w2)1/2, w5w(r ), and i k , kk are the modified
spherical Bessel functions of orderk. The utility of this
method is that one only needs to include inDrcorr as many
partial waves as are needed to achieve the desired accuracy.
Also, Drcorr is a finite quantity that is independent of renor-
malization. The renormalization counterterms only appear in
the DE expressions~17! and~18!. The details of deriving this
correction are described in@10#.

Numerically, it is useful to be able to treat our equations
entirely as a boundary value problem. This can be done by
treatinge as a field, and also introducing a fieldx for the
auxiliary equation~14!, so that

de

dr
50,

dx

dr
5G21F2. ~28!

The boundary conditions for the entire system of equations
are then

dw~r !

dr U
r→0

50,
dw~r!

dr U
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5Sm1
1

RD@12w~R!#,
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@w~0!2e#,
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52Fw~R!2e

w~R!1eG1/2,
~29!

x~0!50, x~R!51,

TABLE I. Contributions from different orders of the DE series
for the energy and the density. Results are shown for a fixed back-
ground fieldw(r ) with a50.5,b50.16, andf50.8. Units are given
in terms of the scalem, as indicated.

LDA Second order Fourth order

Evac (10
22m) 5.909 2.001 20.636

rvac(r50) (1023m3) 25.109 20.936 23.732
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whereR is large compared to the length scale of the prob-
lem. To solve our equations we make use of the program
COLNEW by Ascher and Bader@13#. Unfortunately, when the
correction ~25! is included we cannot simply use the
COLNEW routine as written, since our equations are actually
integro-differential equations. To facilitate this,COLNEWwas
modified so that the scalar field solution and its derivative
can be extracted at intermediate stages of the calculation to
evaluate the density correction. The calculation is then inter-
nally iterative, withDrcorr treated as a source term that is
reevaluated as needed with each internal iteration of the
COLNEW code.

We now examine the results when using different levels
of approximation to the vacuum. We use the schemes dis-
cussed above in the following order: CL, LDA, DE, and EX.
Here EX will refer to the exact solution, which includes
Drcorr from Eq. ~24!. Our goal is to quantify the effect of
this correction on the self-consistent solution for various
couplings. The choiceg510, m51/10 will serve as an ex-
ample.@As the energy scalem already includes an implicit
dependence ong, settingm51/g simply fixes the scalar field
mass at the VEV value.#

For the CL, LDA, and DE approximations the self-
consistent solutions forw are shown in Fig. 1. We see that
adding the LDA term reduces the depth and width of the
scalar field, so that a zero no longer appears. The total energy
of the solution, Etot50.960m ~LDA !, has dramatically
changed from that of the semiclassical approximation,
Etot50.620m ~CL!. This behavior, which was identified by
@3# at the DE level, occurs even before the derivative terms
are included. However, forg.10.4 the LDA approximation
gives no solution. Looking at the expression for the LDA
contribution in Eq.~17!, we see that this function is odd with
respect to the scalar field. Increasing the coupling drives the
scalar field deeper, so that nearg510.4 the solution becomes
negative atr50, and the LDA contributes with the opposite

sign. At this point the equations no longer support a solution
as it is impossible to satisfy the constraint~19!. However,
when the DE terms are included the vacuum density is not
forced to change sign asg is increased, and a soliton solution
exists. In Fig. 1 we see that the shape of the scalar field for
g510 is even shallower for the DE than for the LDA. An
interesting feature to note is that under the DE the total en-
ergy Etot50.967m ~DE! is relatively unchanged from the
LDA result. This occurs even though the Fermi level has
changed frome50.863m ~LDA ! to e50.908m ~DE!, and is
made possible due to a corresponding decrease in the energy
contribution from the scalar field,Escalar1Evac.

Now examine what happens when the density correction
terms are included. In Fig. 2 the self-consistent scalar field
solutions are shown for calculations including an increasing
number of partial wave corrections. The exact vacuum den-
sity favors a deeper scalar field than the DE. The fifth partial
wave has not been included in the figure since the field in
this case is found to be indistinguishable from that with four
partial waves. Looking at the sequence of scalar fields in
Figs. 1 and 2 we see a manifestation of the fact that terms in
the derivative expansion display oscillatory convergence
@12#. Note that after including thek51 term in the correc-
tion ~25! the correct vacuum density is specified at the origin
as higher terms are zero there. However, thek.1 terms may
still affect the self-consistent solution. In fact, we see in Fig.
2 that the scalar field becomes deeper as subsequent terms in
the correction are included. The corrected solution gives
e50.857m ~EX! andEtot50.976m ~EX!. The energy of the
scalar field is twice the DE result, and the Fermi level has
dropped away fromm. However, the total energy remains
fairly stable, rising only slightly above the DE result.

To get the EX correction it is sufficient to use partial
waves up tok54, except at largeg wherek55 is needed.
In Fig. 3 we see that for other values ofg there is also a
decrease in the depth of the scalar field using the exact cal-
culation. The exact results agree with the DE calculation for
small coupling as expected. Asg is increased the depth of

FIG. 1. Self-consistent scalar field solutions of the Bagger-
Naculich model (g510, m51/10) for semiclassical~CL!, local
density ~LDA !, and derivative expansion~DE! approximations to
the vacuum densities.

FIG. 2. Self-consistent scalar field solutions with increasing
number of terms in the partial wave correction series.g510,
m51/10.
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the bag decreases. Forg.20 values of the wave function
w(r ) near r50 are numerically uncertain by about 0.02.
This uncertainty is a symptom of the constraint~19!, but in
no way affects the value of the energies. In Fig. 4 we show
how including the correction affects the energies at different
g. From the fermion energy,e, we see that the corrections
affect the solution for allg.5. As the coupling increases we
have found that not only does the width of the bag shrink,
but the depth increases. Since this leads to larger derivatives,
the energy of the scalar field increases. Correspondingly, fer-
mions may be more tightly bound in the bag so that the
Fermi energy level decreases. When the fermionic and scalar
field energies are added to obtain the total energy, the sum
gives an answer that is closer to the DE result than either of
the components separately. This occurs at allg. In fact, it is
surprising to find that the corrected total energy remains
fairly constant as the coupling is increased, exhibiting nearly
the same scaling as the DE total energy. Recall that our
energy is scaled in terms of the fermionic massm5gy, so
that relative toy the energy scales directly proportional to
the coupling. Thus the claim that such scaling behavior is
universal@14# is supported by our calculations.

In summary, we have found a way of correcting the DE
approximation for fermionic vacuum fluctuations while still
demanding a self-consistent solution. There remain several
ways in which the results of the calculation done here may
be made more general. To include different fermionic energy
levels it would likely be more economical to use theCOLNEW

routine to solve only the scalar equation, while solving the
eigenvalue problem for the relevant fermionic wave function
components using standard Runge-Kutta techniques. If one
takes for granted some validity in the one-loop approxima-
tion for finiteN and large coupling, it should also be possible
to include the scalar fluctuations at the one-loop level. It is
expected that these fluctuations would contribute a source
density term with the opposite sign to the fermionic fluctua-
tions @7#. However, it is likely that a similar density correc-

tion calculation would be necessary for the scalar loops to
ascertain that this contribution to the true scalar vacuum was
also included correctly.
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APPENDIX: FOURTH ORDER DERIVATIVE EXPANSION
OF THE ENERGY AND DENSITY

The expressions for the energy and density at fourth or-
der, which were used in Table I, are
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w2 2
11~]aw!2~]2w!

9w3
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2
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Covariant notation is used for convenience.

FIG. 3. Depth of the self-consistent scalar field solutions
w(r50) for different values of the couplingg, andm51/g. Results
are shown for the semiclassical~CL!, derivative expansion~DE!,
and exact~EX! solutions.

FIG. 4. Self-consistent fermion (e) and total soliton (Etot) en-
ergies for different values of the couplingg, with m51/g.
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