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We carry out a high-precision simulation of the two-dimensional SU~3! principal chiral model at correlation
lengthsj up to;43105, using a multigrid Monte Carlo~MGMC! algorithm and approximately one year of
Cray C-90 CPU time. We extrapolate the finite-volume Monte Carlo data to infinite volume using finite-size-
scaling theory, and we discuss carefully the systematic and statistical errors in this extrapolation. We then
compare the extrapolated data to the renormalization-group predictions. The deviation from asymptotic scaling,
which is'12% atj;25, decreases to'2% atj;43105. We also analyze the dynamic critical behavior of the
MGMC algorithm using lattices up to 2563256, finding the dynamic critical exponentzint,M2'0.4560.02
~subjective 68% confidence interval!. Thus, for this asymptotically free model, critical slowing-down is greatly
reduced compared to local algorithms, but not completely eliminated.@S0556-2821~97!06706-4#

PACS number~s!: 11.10.Hi, 11.10.Jj, 11.10.Kk, 11.15.Ha

I. INTRODUCTION

This paper has two distinct objectives: first, to study the
dynamic critical behavior of the multigrid Monte Carlo
~MGMC! algorithm for the two-dimensional SU~3! principal
chiral model; and second, to apply this algorithm to obtain a
high-precision test of asymptotic scaling for this model. We
discuss these two objectives in separate subsections.

A. Multigrid Monte Carlo algorithm

By now it is widely recognized@1–4# that better simula-
tion algorithms, with strongly reduced critical slowing-down,
are needed for high-precision Monte Carlo studies of
statistical-mechanical systems near critical points and of
quantum field theories~such as QCD! near the continuum
limit. One promising class of such algorithms ismultigrid
Monte Carlo~MGMC! @5–28#: this is a collective-mode ap-
proach that introduces block updates~of fixed shape but vari-
able amplitude! on all length scales. The basic ingredients of
the method are the following:1

~1! Interpolation operator. This is a rule specifying the
shape of the block update. The interpolations most com-
monly used arepiecewise-constant~square-wave updates!
andpiecewise-linear~pyramidal-wave updates!.

~2! Cycle control parameterg. This is an integer number
that determines the way in which the different block sizes are
visited. In general, blocks of linear size 2l are updatedg l

times per iteration. Thus, in theW-cycle~g52! more empha-
sis is placed on large length scales than in theV-cycle ~g
51!.

~3! Basic (smoothing) iteration. This is the local Monte
Carlo update that is performed on each level. Typically one
chooses to useheat-bathupdating if the distribution can be
sampled in some simple way, andMetropolisupdating oth-
erwise.

~4! Implementation. The computations can be imple-
mented either in therecursive multigridstyle using explicit
coarse-grid fields@29,30,5–11#, or in theunigrid style using
block updates acting directly on the fine-grid fields@31,14–
18#. We use here the recursive multigrid approach, in which
the computational labor per iteration for ad-dimensional
system of linear sizeL is

Work~MG!;H Ld for g,2d,

Ld logL for g52d,

L log2g for g.2d.

~1.1!

The efficiency of the MGMC method can be analyzed
rigorously in the case of the Gaussian~free-field! model, for
which it can be proven@5,6,32# that critical slowing-down is
completely eliminated.2 That is, theautocorrelation timet is*Electronic address:
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1See@6# for details.

2This holds for g>2 ~i.e., W-cycle or higher! in the case of
piecewise-constant interpolation, and forg>1 in the case of
piecewise-linear interpolation.
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bounded as the correlation lengthj and the lattice sizeL tend
to infinity, so that thedynamic critical exponent zis zero.3

One is therefore motivated to apply the MGMC algorithm
to ‘‘nearly Gaussian’’ systems, such as asymptotically free
nonlinears models; one might hope that critical slowing-
down would likewise be completely eliminated~possibly
modulo a logarithm! or at least greatly reduced compared to
the z'2 of local algorithms. However, previous numerical
study of MGMC algorithms in the two-dimensionalN-vector
models withN53,4,8 @8,11# has shown, to our initial sur-
prise, that the dynamic critical exponent isnot zero. Never-
theless, it is quite small~z'0.50–0.70!, so these algorithms
work reasonably well. In view of these results for the
N-vector models, we want to investigate the performance of
MGMC algorithms in other asymptotically frees models,
such as the two-dimensional SU(N) principal chiral models.

Of course, for two-dimensionalN-vector models, Wolff’s
cluster algorithm@33# apparently succeeds ineliminatingthe
critical slowing-down@33–36#, so there is no point in using
MGMC algorithms in this case. But there are strong reasons
to believe@36# that Wolff-type embedding algorithms will
not achievez!2 for other s models, except perhaps the
RPN21 models. In particular, fors models taking values in
the group SU(N) with N>3, MGMC is the only known
collective-mode algorithm~except perhaps Fourier accelera-
tion! that has a chance of achievingz!2.

A major drawback of our group’s standard MGMC algo-
rithm @5–9# is that its implementation is cumbersome and
model-dependent, in the sense that the program~and in par-
ticular the heat-bath subroutine! has to be drastically rewrit-
ten for each distinct model. With this problem in mind, we
have recently developed@10,11# a new implementation of
MGMC that can be used conveniently for a large class ofs
models with very little modification of the program.4 The
idea is to embedangular variables$ux% into the givens
model, and then update the resulting inducedXY model by
our standard~piecewise-constant,W-cycle, heat-bath, recur-
sive! MGMC method.

Consider, therefore, the SU(N) principal chiral mod-
el: the original variablesUx of this model are SU(N) ma-
trices living on the lattice sitesx, and the original Hamil-
tonian is

H52b (
^xx8&

Re tr~Ux
†Ux8!. ~1.2!

The global symmetry group is SU(N) left3SU(N)right . The
idea behindXY embedding is to choose randomly a U~1!
subgroupH,SU(N) left3SU(N)right , and to apply a ‘‘rota-
tion’’ ux in this subgroup to the original spin variable
UxPSU(N). Thus, the angular variablesux are updatesto

the original variablesUx . Here we choose to exploit only the
left-multiplication subgroup.5 More precisely, we define the
updated variableUx

new by

Ux
new5eiuxRTR

21
Ux
old5R eiuxTR21Ux

old , ~1.3!

whereR is a random element of SU(N), andT is a fixed
nonzero element~to be specified later! of the Lie algebra
su(N) ~i.e., a traceless Hermitian matrix!. The embeddedXY
model consisting of the spins$ux% is then simulated using the
induced Hamiltonian

Hembed~$ux%!5H~$Ux
new%!, ~1.4!

with initial condition ux50 ~i.e., Ux
new5Ux

old! for all x. At
each iteration of the algorithm, a new random matrixR is
chosen.

In general the inducedXY Hamiltonian~1.4! can be ex-
tremely complicated~and thus impractical to simulate by
true recursive MGMC algorithms!. However, if the original
Hamiltonian H is sufficiently ‘‘nice’’ and one makes a
clever choice of the generatorT, then in some cases the
inducedXY Hamiltonian can be reasonably simple. In par-
ticular, if we chooseT to have all its eigenvalues in the set
$21,0,1%, it follows that

eiuT5T2 cosu1 iT sinu1~ I2T2!, ~1.5!

whereI is the identity matrix. Then the induced Hamiltonian
is of the simple form

Hembed52 (
^xx8&

@axx8 cos~ux2ux8!1bxx8 sin~ux2ux8!#

1const, ~1.6!

where the induced couplings$axx8,bxx8% depend on the cur-
rent configuration$Ux

old% of the original model:

axx85b Re tr~Ux
old†RT2R21Ux8

old
!, ~1.7a!

bxx85b Re tr„Ux
old†R~2 iT !R21Ux8

old
…

5b Im tr~Ux
old†RTR21Ux8

old
!. ~1.7b!

Such a ‘‘generalizedXY Hamiltonian’’ is easily simulated
by MGMC; indeed, the coarse-grid Hamiltonians inXY-
model MGMC algorithms are inevitably of the form~1.6!,
even when the fine-grid Hamiltonian is the standardXY
modelaxx8[a>0, bxx8[0 @6,7#. So one may just as easily
start from Eq.~1.6! already on the finest grid.

ClearlyT must havek eigenvalues11, k eigenvalues21,
andN22k eigenvalues 0, where 1<k< bN/2c. Here we shall
choosek51; without loss of generality we can take3See@4# for a pedagogical discussion of the various autocorrela-

tion times and their associated dynamic critical exponents.
4We devised this approach after extensive discussions with Martin

Hasenbusch and Steffen Meyer@17#. In particular, the idea ofXY
embedding is made explicit in their work: see Eqs.~5!,~6! in @17#
and Eqs.~5!–~9! in @18#.

5Actually, our program uses the left multiplication at the odd-
numbered iterations and the right multiplication at the even-
numbered iterations.
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T5S 1 0 0

0 21 0 •••

0 0 0

A �

D . ~1.8!

With the explicit choice~1.8! for T, the couplings are

axx85b@Re~R21Ux8
oldUx

old†R!111Re~R21Ux8
oldUx

old†R!22#,
~1.9a!

bxx85b@ Im~R21Ux8
oldUx

old†R!112Im~R21Ux8
oldUx

old†R!22#.
~1.9b!

Let us remark that the Hamiltonian~1.6!, ~1.7! is not only
nonferromagnetic, but is in fact typicallyfrustrated @11#.6

However, this frustration is weak whenb@1.

B. Asymptotic scaling

A key tenet of modern elementary-particle physics is the
asymptotic freedom of four-dimensional non-Abelian gauge
theories@37,38#. However, the nonperturbative validity of
asymptotic freedom has been questioned@39–42#; and nu-
merical studies of lattice gauge theory have thus far failed to
detect asymptotic scaling in the bare coupling@43–46#. It is
therefore useful to explore asymptotic scaling in a model
easier to simulate numerically than four-dimensional gauge
theories, but still theoretically interesting. A good candidate
is the two-dimensional SU(N) principal chiral model~1.2!,
which possesses the property of perturbative asymptotic free-
dom @47–49# along with other interesting characteristics.7

Let us recall the logic underlying the conventional wis-
dom on asymptotic freedom: Renormalization-group~RG!
calculations in weak-coupling~large-b! perturbation theory
show that for two-dimensionals models taking values in a
curved compact Riemannian manifoldM , the RG flow at
largeb[1/g2 is towardsmallerb @47–49,55–58#. It is there-
fore natural toconjecturethat this flow continues to theb50
fixed point, without encountering any other fixed point~s!. If
this is indeed the case, then it follows that the theory has
exponential decay of correlations for allb,`; and the RG
then gives precise predictions for the scaling behavior of the
correlation lengthj and the susceptibilityx asb→`. More-
over, for certains models it is possible to calculate, modulo
some plausible hypotheses, the nonperturbative coefficient in
the asymptotic formula for the correlation length@59–64#. It
should be emphasized, however, that all these results depend

on a conjecture which transcends perturbation theory and
which has thus far been neither proven nor disproven. This is
why we want to test the nonperturbative validity of
asymptotic freedom, using numerical simulations.

Let us clarify our use of the words ‘‘scaling’’ and
‘‘asymptotic scaling.’’ Consider a sequence$Hn% n51

` of lat-
tice theories with correlation lengthsjn tending to infinity.
We say that this sequence exhibitsscaling if, after rescaling
lengths byjn and rescaling the spins by appropriate values
zn , all the correlation functionŝ•••&Hn converge to some

continuum-limit values. Equivalently, the sequence exhibits
scaling if all dimensionless ratios of long-distance observ-
ables tend to constants. More loosely, we say that afinite
sequence of theories$Hn% n51

N exhibits scaling to within some
given degree of accuracy if all dimensionless ratios of long-
distance observables are constant within the given degree of
accuracy.~This latter notion is often used in Monte Carlo
work, expressed by some phrase like ‘‘we are in the scaling
region’’ or ‘‘we are near the continuum limit.’’! Note that
the parameters inHn ~such asb! play no rolein the concept
of scaling.

Now consider a sequence$Hn% n51
` of lattice theories with

correlation lengthsjn tending to infinity, for which there ex-
ists a theoreticalprediction for the asymptotic behavior of
long-distance observablesas a function of the parameters in
Hn ~or as a function of short-distance observables like the
energy!. @The example of interest is of course an asymptoti-
cally free theory in the limitb→`, where the renormaliza-
tion group predictsO~b!5Ceabbb(11a1/b1a2/b

21•••)
for each long-distance observableO, with a,b,a1 ,a2, . . .
computable in perturbation theory butC usually unknown.#
We say that the given sequence exhibitsasymptotic scalingif
the theoretical predictions for the leading-order asymptotic
behavior are valid.@In the asymptotically-free case this
means thatO(bn)/(e

abnbn
b) tends to a constant asn→`.#

More loosely, we say that afinite sequence of theories
$Hn% n51

N exhibits asymptotic scaling to within some given
degree of accuracy if the theoretical predictions for the
leading-order asymptotic behavior are valid to within the
given degree of accuracy.@In the asymptotically-free case
this means thatO(bn)/(e

abnbn
b) is constant to within the

given degree of accuracy.#
Clearly, asymptotic scaling implies scaling~if the observ-

ables behave correctly as a function ofb, then their dimen-
sionless ratios necessarily converge!, but not conversely.
Note also that even if asymptotic scaling does hold along the
given path in parameter space, it may be necessary to go to
much larger correlation lengths to observe asymptotic scal-
ing to some reasonable degree of accuracy than to observe
scaling to the same degree of accuracy.

In the renormalization-group language, deviations from
scaling are caused by irrelevant operators~so that the RG
flow does not lie exactly on the unstable manifold!, while
deviations from asymptotic scaling arise also from higher-
order corrections to the flowon the unstable manifold. In an
asymptotically free theory, deviations from scaling are non-
perturbative effects~suppressed by powers ofj and hence
exponentially small inb!, while deviations from asymptotic
scaling are perturbative effects~a power series in 1/b;/logj,

6We call the Hamiltonian~1.6! ferromagnetic if axx8>0 and
bxx850 for all bondŝ xx8&. We call itunfrustratedif there exists a
configuration$ux% that simultaneously minimizes the bond energy
2@axx8cos(ux2ux8)1bxx8sin(ux2ux8)# on all bondŝ xx8&.
7The SU(N) chiral model has a 1/N expansion in terms of planar

graphs, similar to that of the SU(N) gauge theories@50,51#. The
SU(N) chiral model also has lattice Schwinger-Dyson equations
and a high-temperature character expansion that are similar to those
of the SU(N) lattice gauge theories@51,52#. Finally, the Migdal-
Kadanoff approximate renormalization group predicts the same re-
cursion equations for the two-dimensional SU(N) spin models as
for the four-dimensional SU(N) gauge theories@53,54#.
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with coefficients that are computable in lattice perturbation
theory!. Therefore, scaling may be expected to set in at a
rather modest correlation length~e.g., j;10 or even
smaller!, because the corrections to scaling fall off like in-
verse powers ofj. On the other hand, asymptotic scaling is
much more elusive, because the corrections fall off like in-
verse powers of thelogarithm of j: depending on the mag-
nitude of the perturbative coefficients~including unknown
high-order ones!, asymptotic scaling could set in at correla-
tion lengths as small as;10 or could require correlation
lengths as large as;1030.

Consequently it is not a surprise that numerical studies of
lattice gauge theory have thus far failed to detect asymptotic
scaling in the bare coupling. Even in the simpler case of
two-dimensional nonlinears models, numerical simulations
at correlation lengthsj;10–100 have often shown discrep-
ancies of order 10–50 % from asymptotic scaling. In the
SU~3! chiral model, previous Monte Carlo studies
@65,17,66,67# up to j'35 have found that the ratio
j~b!/[eabbb(11a1/b)] is not approximately constant, nor
does its value agree with the predicted nonperturbative coef-
ficient @62#; on both points the discrepancy is of order 10–
20 %.

These studies seem to show empirically that to observe
asymptotic scaling in the bare coupling in the SU~3! chiral
model, the numerical simulations will need to reach correla-
tion lengthsj@35 ~how large is not so clear!. Unfortunately,
it is at present unfeasible to simulate lattices of linear sizeL
bigger than;1000; so, if we want to do a direct ‘‘infinite-
volume’’ simulation, which requiresL/j*6–8 to avoid sig-
nificant finite-size effects, we cannot hope to reach correla-
tion lengths beyond about 150. To circumvent this problem,
we shall resign ourselves to using lattices that are far from
being ‘‘infinite,’’ and we shall attempt to understand the
finite-size effects in such detail that we can correct for them.
We do this by applying an extremely powerful method
@68,69# for the extrapolation of finite-size data to the infinite-
volume limit, due originally to Lu¨scher, Weisz, and Wolff
@70# ~see also Kim@71–75#!, based on finite-size-scaling
theory. Using only latticesL<256, we are able to obtain the
infinite-volume correlation lengthj` to an accuracy of order
0.5%~0.9%, 1.1%, 1.3%, 1.5%! whenj`'102 ~103, 104, 105,
43105!. We realize that this sounds crazy at first, but we
hope to convince the reader that we do in fact have reliable
control over all systematic and statistical errors~see Sec. V
for details!.8

Finally, let us remark that other studies have used differ-
ent approaches to observe either scaling or asymptotic scal-
ing at smaller correlation lengths. Thus the various ‘‘im-
proved actions’’ ~Symanzik @82–85#, Hasenfratz-
Niedermayer@86,87#, etc.! are aimed at reachingscalingat
the smallest possible correlation length. If they have any ef-
fect on asymptotic scaling, it is by coincidence rather than by

design.9 On the other hand, the various ‘‘improved expan-
sion parameters’’ are aimed at reachingasymptotic scalingat
the smallest possible correlation length, by redefining
slightly the meaning of ‘‘asymptotic scaling’’~using the en-
ergy as the parameter in place ofb!.

In the model treated here, scaling is reached~to within
about 1%! already at a correlation length of a few lattice
spacings@67#. Since we are able to go to much larger corre-
lation lengths than this, scaling is no problem at all for us;
we thus have no need of ‘‘improved actions.’’ On the other
hand, asymptotic scaling is much more elusive, and we are
therefore very interested in trying out the proposed ‘‘im-
proved expansion parameters.’’ But we have some reticence
about the conceptual and theoretical basis underlying this
approach~see Sec. III C!.

C. Plan of this paper

The plan of this paper is as follows. In Sec. II we set the
notation. In Sec. III we summarize the perturbative predic-
tions for the two-dimensional SU(N) principal chiral mod-
els. In Sec. IV we present our raw data, which are based on
approximately one year of Cray C-90 CPU time. In Sec. V
we carry out a detailed analysis of our static data, making
systematic use of the finite-size-scaling extrapolation
method, and we compare the extrapolated values with the
perturbative predictions. In Sec. VI we analyze our dynamic
data using conventional finite-size-scaling plots to extract the
dynamic critical exponentszint,M

F
2 and zint,M

A
2. In Appendi-

ces A and B we present some perturbative computations.
Parts of this work have appeared previously in brief pre-

liminary reports@10,12#.

II. NOTATIONS AND PRELIMINARIES

A. Observables to be measured

We wish to study various correlation functions of the
fundamental-representation fieldUx and the adjoint-
representation fieldVx defined by

~Vx!•bg•
a••d[~Ux!•g

a ~Ux!b
•d2

1

N
db

adg
d . ~2.1!

Note the relation between the traces in the fundamental and
the adjoint representations

trAU[trV[~Vx!•ba•
a••b5utr~U !u221, ~2.2!

which follows immediately from Eq.~2.1!. We thus define
the fundamental and adjoint 2-point correlation functions

GF~x2y!5^tr~Ux
†Uy!&, ~2.3a!

GA~x2y!5^trA~Ux
†Uy!&5^utr~Ux

†Uy!u2&21. ~2.3b!

8We have previously carried out a similar study of asymptotic
scaling in the two-dimensional O~3! s model@76–79#. See also the
criticisms of this work by Patrascioiu and Seiler@80# and our reply
@81#. We discuss these criticisms further in Sec. V D below.

9A recent comparative study of the standard and Symanzik-
improved actions for four-dimensional SU~2! and SU~3! lattice
gauge theories foundno difference in the quality of asymptotic
scaling between the two actions@88,89#.
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All our numerical work will be done on anL3L lattice
with periodic boundary conditions. We are interested in the
following quantities:

~a! The fundamental and adjoint energies10

EF5
1

N
^tr~Ue

†U0!&5
1

N
GF~e!, ~2.4a!

EA5
1

N221
„^utr~Ue

†U0!u2&21…5
1

N221
GA~e!,

~2.4b!

wheree stands for any nearest neighbor of the origin.
~b! The fundamental, adjoint, and mixed specific heats11

CFF5
d

N (̂
yz&

^Re tr~Ue
†U0!;Re tr~Uy

†Uz!&5d
]EF

]b
,

~2.5a!

CAA5
d

N221 (̂
yz&

^utr~Ue
†U0!u2;utr~Uy

†Uz!u2&,

~2.5b!

CFA5
d

AN22N
(̂
yz&

^utr~Ue
†U0!u2;Re tr~Uy

†Uz!&,

~2.5c!

whereestands for any nearest neighbor of the origin,d is the
spatial dimension~in this paperd52!, and ^A;B&[^AB&
2^A&^B&.

~c! The fundamental and adjoint magnetic susceptibilities

x#5(
x
G#~x!, ~2.6!

where # stands forF or A.
~d! The fundamental and adjoint correlation functions at

the smallest nonzero momentum:

F#5(
x
eip0•xG#~x!, ~2.7!

wherep05(62p/L,0) or ~0,62p/L!.
~e! The fundamental and adjoint second-moment correla-

tion lengths

j#
~2nd!5

~x# /F#21!1/2

2 sin~p/L !
. ~2.8!

In the infinite-volume limit this becomes

j#
~2nd!5S 1

2d

(
x

uxu2G#~x!

(
x
G#~x!

D 1/2

. ~2.9!

~f! The fundamental and adjoint exponential correlation
lengths

j#
~exp!5 lim

uxu→`

2uxu
lnG#~x!

~2.10!

and the corresponding mass gapsm#51/j#
~exp! . @These quan-

tities make sense only if the lattice is essentially infinite~i.e.,
L@j#

~exp!! in at least one direction. We will notmeasureany
exponential correlation lengths in this work; but we will use
j#

~exp! as a theoretical standard of comparison.#
All these quantities exceptj#

~exp! can be expressed in terms
of expectations involving the following observables:

MF5(
x
Ux , ~2.11a!

MA5(
x
Vx , ~2.11b!

MF
25tr~MF

†MF!, ~2.11c!

MA
25tr~MA

†MA!, ~2.11d!

FF5
1

2
Re tr@Û~0,2p/L !Û†~0,2p/L !

1Û~2p/L,0!Û†~2p/L,0!#, ~2.11e!

FA5
1

2
Re tr@V̂~0,2p/L !V̂†~0,2p/L !

1V̂~2p/L,0!V̂†~2p/L,0!#, ~2.11f!

EF5
1

N (̂
xy&

Re tr~Ux
†Uy!, ~2.11g!

EA5
1

N221 (̂
xy&

@ utr~Ux
†Uy!u221#, ~2.11h!

whereÛ(p) and V̂(p) are the Fourier transforms ofUx and
Vx . Thus

E#5
1

2
V21^E#&, ~2.12a!

CFF5NV21@^EF2&2^EF&2#, ~2.12b!

CAA5~N221!V21@^EA2&2^EA&2#, ~2.12c!

CFA5AN22NV21@^EFEA&2^EF&^EA&#, ~2.12d!

x#5V21^M#
2&, ~2.12e!

F#5V21^F#&, ~2.12f!

whereV5L2 is the number of sites in the lattice.

10We have chosen this normalization in order to have 0<EF,A<1,
with EF,A51 for a totally ordered state. Several other normaliza-
tions are in use in the literature.
11Here we return to the standard normalizationper site ~albeit

without the ‘‘thermodynamic’’ factorb2!.
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B. Autocorrelation functions and autocorrelation times

Let us now define the quantities—autocorrelation func-
tions and autocorrelation times—that characterize the Monte
Carlo dynamics. LetA be an observable~i.e., a function of
the spin configuration$Ux%!. We are interested in the evolu-
tion of A in Monte Carlo time, and more particularly in the
rate at which the system ‘‘loses memory’’ of the past. We
define, therefore, the unnormalized autocorrelation
function12

CAA~ t !5^AsAs1t&2^A&2, ~2.13!

where expectations are takenin equilibrium. The corre-
spondingnormalized autocorrelation functionis

rAA~ t !5CAA~ t !/CAA~0!. ~2.14!

We then define theintegrated autocorrelation time

t int,A5
1

2 (
t52`

`

rAA~ t ! ~2.15a!

5
1

2
1(

t51

`

rAA~ t !. ~2.15b!

@The factor of 12 is purely a matter of convention; it is in-
serted so thatt int,A't if rAA(t)'e2utu/t with t@1.# Finally,
theexponential autocorrelation timefor the observableA is
defined as

texp,A5 lim sup
t→`

utu
2 lnurAA~ t !u

, ~2.16!

and the exponential autocorrelation time~‘‘slowest mode’’!
for the system as a whole is defined as

texp5sup
A

texp,A . ~2.17!

Note thattexp5texp,A whenever the observableA is not or-
thogonal to the slowest mode of the system.

The integrated autocorrelation time controls the statistical
error in Monte Carlo measurements of^A&. More precisely,
the sample mean

Ā[
1

n (
t51

n

At ~2.18!

has variance

var~Ā!5
1

n2 (
r ,s51

n

CAA~r2s! ~2.19a!

5
1

n (
t52~n21!

n21 S 12
utu
n DCAA~ t !

~2.19b!

'
1

n
~2t int,A!CAA~0! for n@t.

~2.19c!

Thus the variance ofĀ is a factor 2t int,A larger than it would
be if the $At% were statistically independent. Stated differ-
ently, the number of ‘‘effectively independent samples’’ in a
run of lengthn is roughlyn/2t int,A . The autocorrelation time
t int,A ~for interesting observablesA! is therefore a ‘‘figure of
~de!merit’’ of a Monte Carlo algorithm.

The integrated autocorrelation timet int,A can be estimated
by standard procedures of statistical time-series analysis
@90,91#. These procedures also give statistically validerror
barson ^A& andt int,A . For more details, see@92, Appendix
C#. In this paper we have used a self-consistent truncation
window of width ct int,A , wherec58 forM F

2 andMA
2 and

c510 for the other observables. We made these choices be-
cause the autocorrelation functions forM F

2 andMA
2 appear

to decay roughly like a pure exponential, while those for the
other observables exhibit somewhat heavier long-time tails.
We have checked the dependence oft int,A on the window
width, and found that in all cases the estimatedt int,A changes
by less than 0.1% for 5<c<15.

III. PERTURBATIVE PREDICTIONS FOR SU „N… CHIRAL
MODELS

In this section we review the perturbative~large-b! pre-
dictions for the two-dimensional SU(N) principal chiral
models. Most of these results are old@67,93#; the results
concerning the adjoint sector, as well as those concerning the
finite-size-scaling functions, are new. The calculations lead-
ing to the new results are summarized in Appendices A and
B.

A. Short-distance quantities

Modulo some conceptual problems arising from infrared
divergencies in dimensiond<2, the calculation of the per-
turbation expansion forlocal quantities such as the energies
EF and EA is straightforward but tedious. For the SU(N)
chiral model~1.2! in dimensiond52,EF has been calculated
through three-loop order@67#:

EF~b!512
N221

4Nb F11
N222

16Nb

1
0.075620.0634N210.01743N4

N2b2 1O~1/b3!G .
~3.1!

We have calculatedEA through a trivial two-loop order~see
Appendix A!, obtaining

12In the mathematics and statistics literature, this is called the
autocovariance function.
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EA~b!512
N

2b
1
N214

32b2 1O~1/b3!. ~3.2!

The large-b expansions for the specific heatsCFF andCFA
can be obtained by differentiating Eqs.~3.1! and ~3.2!.

B. Asymptotic scaling of correlation lengths and susceptibilities

Renormalization-group calculations in the low-
temperature expansion~[ weak-coupling perturbation
theory! @47–49# suggest that the models~1.2! are asymptoti-
cally free, i.e., that their only critical point is atb5`. The
renormalization group further predicts that the second-
moment correlation lengthsjF

(2nd) ,jA
(2nd) , the exponential

correlation lengthsjF
(exp),jA

(exp) and the susceptibilitiesxF ,xA
behave as

j#~b!5C̃j#
L21F11

a1
b

1••• G , ~3.3!

xF~b!5C̃xF
L22S 4pb

N D 22~N221!/N2F11
b1
b

1••• G ,
~3.4!

xA~b!5C̃xA
L22S 4pb

N D 24F11
d1
b

1••• G , ~3.5!

asb→`, where

L[e24pb/NS 4pb

N D 1/225/2 expS p
N222

2N2 D ~3.6!

is the fundamental mass scale,13 and j# denotes any one of
jF
(2nd) ,jA

(2nd) ,jF
(exp),jA

(exp). HereC̃j#
, C̃xF

, andC̃xA
areuniver-

sal ~albeit nonperturbative! quantities characteristic of the
continuum theory~and thus depending only onN!, while the
ak , bk , anddk are nonuniversal constants~depending onN
and on the lattice Hamiltonian! that can be computed in
weak-coupling perturbation theory on the lattice atk12
loops. It is worth emphasizing that thesamecoefficientsak
occur in all four correlation lengths: this is because the ratios
of these correlation lengths take their continuum-limit values
plus corrections that are powers of the massm51/j~exp!,
hence exponentially small inb.

When analyzing the susceptibilities, it is convenient to
study instead the ratios

xF~b!

j#~b!2
5
C̃xF

C̃ j#

2 S 4pb

N
D 22~N221!/N2F11

c1

b
1
c2

b2
1•••G ,

~3.7!

xA~b!

j#~b!2
5
C̃xA

C̃ j#

2 S 4pb

N
D 24F11

e1

b
1
e2

b2
1•••G . ~3.8!

The advantage of this formulation in the case ofxF is that
one additional term of perturbation theory is available~i.e.,
c2 but nota2 or b2!.

For the standard nearest-neighbor action~1.2!, the pertur-
bative coefficientsa1, b1, c1, andc2 can be easily recovered
from the lattice renormalization-group functions calculated
through three loops@67,93#; and we computedd1 ande1 ~see
Appendix A!. The results are

a152
3p

8
N231S 13p48 2

1

8DN21

1S 1

16p
1

1

16
2

p

24
2

p

2
G1DN, ~3.9!

b15S 122
3

4p D 1

N3 1S 1

4p
211

13p

24 D 1

N

1S 2
1

8p
1
3

8
2

p

12
2pG1DN, ~3.10!

c15~N221!F2
1

2N3 1
1

4N
2

1

4pNG ,
~3.11!

c25~N221!F2
1

8N6 1
1

2N4 S 12
1

4p D
2

1

4N2 S 17122 1

p
1

1

8p2D
1

13

192
2

3

32p
1

1

32p2 1
G1

4 G , ~3.12!

d152
3

4p

1

N3 1S 13p24 2
5

4D 1

N

1S 2
3

8p
1
5

8
2

p

12
2pG1DN, ~3.13!

e152
1

N
1S 122

1

2p DN, ~3.14!

where G1'0.04616363. Perturbation theory predicts
trivially—or rather, assumes—that the lowest mass in the
SU(N) adjoint channel is the scattering state of two funda-
mental particles, i.e., there are no adjoint bound states:14

C̃j
A
~exp! /C̃j

F
~exp!5

1

2
. ~3.15!

13In Eq. ~3.6!, the exponential and power ofb are universal. The
remaining factor is chosen so as make theb→` limit of the lattice
theory agree with the standard continuums model in the modified
minimal subtraction scheme~MS! normalization; this factor is spe-
cial to the standard nearest-neighbor action~1.2!, and comes from a
one-loop lattice calculation@49#.

14ForN>4 there are bound states inotherchannels, namely those
corresponding to the completely antisymmetrized product
( f ^ ••• ^ f )antisymm of k fundamental representations, where
2<k<N22 @94–96#.
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The nonperturbative universal quantityC̃j
F
(exp)[LMS/mF for

the standard continuum SU(N) s model has been computed
exactly by Balog, Naik, Niedermayer, and Weisz~BNNW!
@62# using the thermodynamic BetheAnsatz: it is

C̃j
F
~exp!5C̃

j
F
~exp!

~BNNW!
[S e

8p D 1/2 p/N

sin~p/N!
. ~3.16!

The other nonperturbative constants are unknown, but Monte
Carlo studies suggest thatC̃j

F
(2nd) /C̃j

F
(exp) lies between'0.985

and 1 for allN>2; for N53 it is 0.98760.002@67#.15

For future reference we define the ‘‘theoretical predic-
tions àla BNNW’’:

jF,BNNW,2-loop
~exp! ~b!5C̃

j
F
~exp!

~BNNW!
L21, ~3.17a!

jA,BNNW,2-loop
~exp! ~b!5

1

2
C̃

j
F
~exp!

~BNNW!
L21, ~3.17b!

jF,BNNW,3-loop
~exp! ~b!5C̃

j
F
~exp!

~BNNW!
L21F11

a1
b G , ~3.17c!

jA,BNNW,3-loop
~exp! ~b!5

1

2
C̃

j
F
~exp!

~BNNW!
L21F11

a1
b G ,

~3.17d!

whereL is defined in Eq.~3.6!.

C. ‘‘Improved expansion parameters’’

There have recently been a variety of proposals in the
literature for ‘‘improved expansion parameters’’ to be em-
ployed in place of the bare coupling constant 1/b: the goal
of all these schemes is to observe perturbative asymptotic
scaling at the smallest possible correlation length, by rede-
fining slightly the meaning of ‘‘asymptotic scaling.’’ In this
subsection we would like to analyze critically the logic be-
hind these proposals, and analyze in particular the applica-
tion to the SU(N) chiral models:

When one fails to observek-loop asymptotic scaling in
some given expansion parameter and some given range ofb,
there are two possible causes:

~a! The perturbative contribution atl -loop order islarge
~in the range ofb in question! for one or more of the terms
l5k11,k12, . . . . In this case oneexpectslarge deviations
from k-loop asymptotic scaling. We call this the ‘‘perturba-
tive’’ obstruction to asymptotic scaling.

~b! The perturbative contributions atl -loop order (l>k
11) are all individually small, but in spite of this,k-loop
asymptotic scaling has not been reached. This could be due
to the higher-order terms having a large ‘‘sum’’ in spite of
their individual smallness, or it could be due to ‘‘nonpertur-
bative’’ contributions. Whatever the ultimate explanation,
we call this the ‘‘nonperturbative’’ obstruction to asymptotic
scaling.

Of course, in the strict sense these concepts are ill-
defined, because we are dealing here withnonconvergent
~and indeed usually non-Borel-summable@98,99#!
asymptotic series. As a result, thevery-high-order terms in
perturbation theory willalwaysbe large. But in practice this
will not pose a significant problem, since we are dealing with
k52 or 3 or ~in rare cases! 4, while the ultimate growth of
the perturbative contributions usually occurs at much larger
values ofl .

Each of these two possible obstructions to asymptotic
scaling gives rise to a distinct intuition regarding ‘‘improved
expansion parameters,’’ and a distinct logic by which their
use can be justified.

Perturbative justification.Since the weak-coupling pertur-
bation expansion is a power series in 1/b;1/logj, it follows
that the perturbative corrections decay extremely slowly as
j→`. In particular, these corrections could be large at all
accessible correlation lengths~say,j&102–106! if the pertur-
bative coefficients are sufficiently large~say, 5–10!. The
‘‘perturbative’’ logic governing the choice of expansion pa-
rameters has been summarized very clearly by Lepage and
Mackenzie@100#:

‘‘If an expansion parameteragood produces well-behaved
perturbation expansions for a variety of quantities, using an
alternate expansion parameterabad[agood~1210000agood!
will lead to second-order corrections that are uniformly
large, each roughly equal to 10000abad times the first-order
contribution. Series expressed in terms ofabad, although for-
mally correct, are misleading if truncated and compared with
data.’’

Conversely, they argue ‘‘the signal for a poor choice of
expansion parameter is the presence in a variety of calcula-
tions of large second-order coefficients that are all roughly
equal relative to first order.’’ Indeed, this latter is precisely
the condition under which one can define a new expansion
parameteranew[aold~11Caold! with respect to which the
second-order coefficients, for a variety of observables, are all
significantly smaller than they were relative toaold .

However, while this is anecessarycondition for the per-
turbation series inanew to be better behaved than that inaold ,
it is not asufficientcondition. The trouble, of course, is that
the coefficients at third and higher orders may become large
after the change of variables,even if they were small before
the change of variables. Different changes of variable that
are equivalent at second order, for example
anew[aold~11Caold! and anew8 [aold /(12Caold), can pro-
duce vastly different effects at third and higher orders. The
decision to use one variableanew rather than another is in-
herently a guess about approximate magnitudes and signs of
the uncomputed high-order corrections—that is, it is an at-
tempt toresumperturbation theory. Clearly this is a hazard-
ous enterprise, especially when one has in hand only the first
one or two terms of the perturbation series as guidance. In
our opinion a proposed resummation method—if it is to be
more than mere numerology—must be based on sometheo-
retical input which suggests the approximate magnitudes and
signs of the dominant contributions to the high-order correc-
tions. Moreover, a valid claim of ‘‘success’’ cannot be based
simply on having foundoneexpansion parameter that yields
good agreement between ‘‘theory’’ and ‘‘experiment’’
~while other expansion parameters, equally sensiblea priori,

15The SU~2! principal chiral model is equivalent to the 4-vector
model; and the 1/N expansion of theN-vector model, evaluated at
N54, indicates thatC̃j

F
(2nd) /C̃j

F
(exp)'0.9992@97#.
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yield poor agreement!. Rather, one can claim tounderstand
the situation only when one can exhibit asystematic corre-
spondencebetween the degree of agreement between
‘‘theory’’ and ‘‘experiment’’ and some plausibletheoretical
measure of the reliability of the expansion.

A minimal demand for ak-loop ‘‘improved expansion
parameter’’ is that the~k11!-loop correction term be smaller
in the new variable than in the old. Unfortunately, this crite-
rion can be checked only after the~k11!-loop terms have
been computed—at which point one is more likely to be
interested in~k11!-loop ‘‘improved expansion parameters’’
and thus in the relative size of the~k12!-loop corrections.

For models that are exactly solvable in the limitN→`,
some guidance concerning the choice of ‘‘improved expan-
sion parameters’’ can be obtained from theN5` solution.
For example, for the mixed isovector/isotensors models in
two dimensions, several ‘‘improved expansion parameters’’
related to the isovector and isotensor energies lead to the
vanishingof the perturbative corrections, atall orders of per-
turbation theory, in the limitN→` @101#. Of course, this fact
does not establish the relevance of these ‘‘improved expan-
sion parameters’’ for smallN. Moreover, for our SU(N)
models we unfortunately lack an exact solution atN→`
@51#.

Nonperturbative justification.In some models the specific
heat has a sharp bump at some finiteb, due presumably to a
nearby singularity in the complexb plane. For example, this
behavior is observed empirically@67,93# in the two-
dimensional SU(N) s models forN*6; indeed, in this case
the singularity appears to pinch the real axis~and thus be-
come a true second-order phase transition! in the limit N→`
@102#. In such a situation it is natural to expect that other
observables, such as the correlation length and the suscepti-
bilities, may show similar bumps and singularities. Indeed,
for the SU(N) s models it is observed empirically@67,93#
that the correlation length shows large deviations from as-
ymptotic scaling precisely in the weak-to-strong-coupling
crossover regime where the specific heat has its peak; this
behavior is particularly pronounced for largeN.

If, by a change of variablesb→f ~b! one could move the
complex singularity farther away from the real axis, one
would expect to observe a flatter specific-heat curve and—to
the extent that this same singularity appears in long-distance
observables such as the correlation length—also a smoother
approach to asymptotic scaling. One possible choice is to
take f ~b! equal to the energyE~b!: assuming that the en-
ergy divergesat the complex singularity, this would move
the singularity toinfinity in the new variable.@Of course, one
could alternatively takef ~b! equal to the correlation length
j~b!, but this is cheating: ‘‘asymptotic scaling’’ would not

have the samephysical meaningin the new variable as it did
in the old. The energy, by contrast, is ashort-distanceob-
servable, and is thus a plausible substitute for the bare pa-
rameterb.# This choice can alternatively be justified on the
plausible heuristic grounds that the ‘‘nonperturbative ef-
fects’’ and/or high-order perturbative effects responsible for
the sharp crossover from strong to weak coupling are likely
to have the same qualitative effect on correlations at both
short and long distances.

These arguments are admittedly somewhat vague, but
they give some grounds for trying an ‘‘improved expansion
parameter’’ based on the energyE~b!, as was long ago sug-
gested~for somewhat different reasons! by Parisi@103,104#
and others@105–114,100#.

The implementation of this ‘‘improved expansion param-
eter’’ is as follows. We first revert the perturbation expansion
~3.1! for EF , yielding b as a power series inxF[12EF :

b~xF!5a21xF
211a01a1xF1O~xF

2 ! ~3.18a!

5
N221

4N
xF

211S N162 1

8ND1
0.05409696N320.1910544N10.2398288N21

N221
xF1O~xF

2 !. ~3.18b!

TABLE I. Comparison of 3-loop perturbative coefficients in the
standard scheme (a1/N) and in the ‘‘energy-improved’’ scheme
(a18a21 /N).

N a1/N a18a21 /N

2 20.013188 0.038174

3 20.054914 0.033343

4 20.080255 0.027781

5 20.093870 0.024527

6 20.101766 0.022580

7 20.106696 0.021344

8 20.109965 0.020517

9 20.112237 0.019939

10 20.113878 0.019520

11 20.115101 0.019207

12 20.116035 0.018967

13 20.116765 0.018780

14 20.117346 0.018630

15 20.117816 0.018509

16 20.118202 0.018410

17 20.118522 0.018327

18 20.118790 0.018258

19 20.119017 0.018199

20 20.119212 0.018149

A
` 20.121019 0.017681
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Then, to obtain the ‘‘energy-improved expansion’’ of any
long-distance observableO, we just insert Eq.~3.18! into the
standard perturbation prediction~3.3!–~3.8! and expand in
xF to the relevant order. For example, forj# we have

j#~b!5C̃j#
8 e~4pa21 /N!xF

21S NxF
4pa21

D 1/2@11a18xF1•••#,

~3.19!

where

C̃j#
8 5C̃j#

e4pa0 /N225/2 expS 2p
N222

2N2 D , ~3.20a!

a185
2a0

2a21
1

a1
a21

1
4a1p

N
. ~3.20b!

For the other observables we shall proceed similarly.
Let us now apply ourperturbativetest of the goodness of

the 2-loop expansion variables—standard versus ‘‘energy-
improved’’—by comparing the relative magnitudes of the
3-loop perturbative coefficientsa1/b and a18xF'a18a21 /b,
respectively. We have

a1521.178097N2310.725848N2120.121019N,
~3.21!

a18a21520.424651N2310.188133N2110.0176814N.
~3.22!

In Table I we show these coefficients~divided byN so as to
have a goodN→` limit ! for N52,3, . . .,20,̀ . We see that
the 2-loop ‘‘energy-improved’’ scheme is a factor of'7

better than standard perturbation theory for largeN; the ad-
vantage drops to a factor of'3 for N54, and a factor of
'1.6 for N53. Only for N52 ~which is isomorphic to the
4-vector model! is the ‘‘energy-improved’’ scheme actually
worse than standard perturbation theory~by a factor of
'3!.16

D. Finite-size scaling of correlation lengths and susceptibilities

Since Monte Carlo simulations are carried out in systems
of finite size, it is important to understand how to connect
these measurements with infinite-volume physics. Let us
work on a periodic lattice of linear sizeL. Then finite-size-
scaling theory@115–117# predicts quite generally that

O~b,sL!

O~b,L !
5FO„j~b,L !/L;s…1O~j2v,L2v!, ~3.23!

whereO is any long-distance observable,s is any fixed scale
factor, j~b,L! is a suitably defined finite-volume correlation
length,L is the linear lattice size,FO is a scaling function
characteristic of the universality class, andv is a correction-
to-scaling exponent. Here we will usejF

(2nd) in the role of
j~b,L!; for the observablesO we will use the four ‘‘basic
observables’’jF

(2nd) , jA
(2nd) , xF , xA as well as certain com-

binations of them such asxF /(jF
(2nd))2, xA /(jA

(2nd))2, and
jF
(2nd)/jA

(2nd) .
In an asymptotically free model, the functionsFO(x;s) at

x@1 can be computed in perturbation theory in powers of
1/x2, wherex[jF

(2nd)(b,L)/L. We obtain the following ex-
pansions~see Appendix B for details!:

jF
~2nd!~b,sL!

jF
~2nd!~b,L !

5sF12
lns

8p

N2

N221
x222

N4

~N221!2 S lns

64p2 1
ln2s

128p2D x241O~x26!G , ~3.24a!

jA
~2nd!~b,sL!

jA
~2nd!~b,L !

5sH 12
lns

8p

N2

N221
x222

N2

~N221!2 F S ~N211!S p

4
I 3,̀ 1

1

32p3D1
N2

64p2 D lns1
N2 ln2s

128p2 Gx241O~x26!J ,
~3.24b!

xF~b,sL!

xF~b,L !
5s2F12

lns

2p
x221

N222

N221 S ln2s16p2 1S p

2
I 3,̀ 1

1

16p3D lnsD x241O~x26!G , ~3.24c!

xA~b,sL!

xA~b,L !
5s2F12

lns

p

N2

N221
x221

N2

~N221!2 S 3N2

8p2 ln
2s1~N222!S pI 3,̀ 1

1

8p3D lnsD x241O~x26!G , ~3.24d!

and also

jF
~2nd!~b,L !

jA
~2nd!~b,L !

5S 2N2

N221D
1/2F11

N211

N221 S p2I 3,̀ 1
1

8p2D x221O~x24!G , ~3.25!

where

I 3,̀ '~2p!2433.709741314407459. ~3.26!

16The opposite conclusions in@67, p. 1623# are due to an algebraic error: the final term in their equation~20! should have a minus sign.
The same error infects Eqs.~148! and ~150! of @93#. We thank Ettore Vicari for double-checking this computation.

55 3683MULTIGRID MONTE CARLO . . . . II. . . .



IV. NUMERICAL RESULTS

We have carried out extensive Monte Carlo runs on the
two-dimensional SU~3! chiral model, on periodicL3L lat-
tices of sizeL58,16,32,64,128,256, at 264 different pairs
~b,L! in the range 1.65<b<4.35. The results of these com-
putations are shown in Tables II~static data! and III ~dy-
namic data!. Five of our~b,L! pairs coincide with those stud-
ied previously by Hasenbusch and Meyer@17#, and three
with those by Horgan and Drummond@66#; in all these cases
the static data are in good agreement.

For most of ourb values we have made runs at four, five,
or even six different lattice sizes. In this way we have ob-
tained detailed information on the finite-size effects, cover-
ing densely the interval 0.1&x[jF

(2nd)(b,L)/L&1.1. Using
a finite-size-scaling extrapolation method~see Sec. V A!, we
are able to extrapolatejF

(2nd) , xF , jA
(2nd) andxA to theL5`

limit with good control over the statistical and systematic
errors~see Sec. V B!.

These runs employed theXY-embedding MGMC algo-
rithm described in Sec. I A~see @11# for details!. The in-
ducedXY model ~1.6! was updated using our standardXY-
model MGMC program@7# with g52 ~W-cycle! andm151,
m250 ~one heat-bath presweep and no heat-bath
postsweeps!. In all cases the coarsest grid is taken to be 232.
All runs used a disordered initial configuration~‘‘hot start’’ !.
Because the measurement of the observables~particularly the
adjoint observables! was very time-consuming compared to
the MGMC updating, the observables were measured once
every two MGMC iterations. All times~run lengths and au-
tocorrelation times! are therefore specified in units ofmea-
surements, i.e., in units oftwoMGMC iterations.

These runs were performed partly on a Cray C-90 and
partly on an IBM SP2~in both cases using only a single
processor!. In Table IV we show the CPU time per measure-
ment, as a function ofL, for each of these two machi-
nes: each timing thus includestwo MGMC iterations fol-
lowed by one measurement of all observables.17 Observe that
the timings on the Cray C-90 growsublinearly in the vol-
ume, in contrast to the theoretical prediction~1.1!, because
the vectorization is more effective on the larger lattices.18

But the ratio time(2L)/time(L) is increasing withL, and
appears very roughly to be approaching the theoretical value

of 4 asL→`. On the other hand, the timings on the IBM
SP2 growsuperlinearlyin the volume, presumably as a re-
sult of the increased frequency of cache misses for largerL.
Because of these opposite variations in the CPU time, the
runs with L5128, 256 were performed on the Cray while
those withL58, 16, 32 were done on the IBM; the runs with
L564 were divided between the two machines.

The running speed on the Cray C-90 for ourXY-
embedding MGMC program atL5256 was approximately
259 MFlops. The total CPU time for the runs reported here
was about 0.85 Cray C-90 years plus 0.7 IBM SP2 years.

V. FINITE-SIZE-SCALING ANALYSIS:
STATIC QUANTITIES

In this section we analyze the static data reported in Table
II. First, we review the finite-size-scaling extrapolation
method~Sec. V A!. Next, we apply this method to extrapo-
latejF

(2nd) , xF , jA
(2nd) , andxA to theL5` limit, taking great

care to analyze the systematic errors arising from corrections
to scaling~Sec. V B!. Then we compare both the raw and the
extrapolated values with the perturbative predictions~Sec.
V C!. We conclude by discussing further the conceptual
foundations of our method, and replying to some criticisms
that have been leveled against it~Sec. V D!.

A. Finite-size-scaling extrapolation method

1. Basic ideas

We will extrapolate our finite-L data toL5` using an
extremely powerful and general method@68,69# due origi-
nally to Lüscher, Weisz, and Wolff@70# ~see also Kim@71–
75#!, based on the theory offinite-size scaling~FSS! @115–
117#. We have successfully employed this method in
previous works on different models@118,77,79#.

Consider, for simplicity, a model controlled by a
renormalization-group fixed point havingonerelevant opera-
tor. Let us work on a periodic lattice of linear sizeL. Let
j~b,L! be a suitably defined finite-volume correlation length,
such as the second-moment correlation lengthjF

(2nd)(b,L)
defined by Eq.~2.8!, and letO be any long-distance observ-
able ~e.g., the correlation length or the susceptibility!. Then
finite-size-scaling theory@115–117# predicts that

O~b,L !

O~b,`!
5 fO„j~b,`!/L…1O~j2v,L2v!, ~5.1!

where fO is a universal function andv is a correction-to-
scaling exponent.19 It follows that if s is any fixed scale
factor ~usually we takes52!, then

O~b,sL!

O~b,L !
5FO„j~b,L !/L;s…1O~j2v,L2v!, ~5.2!

17The CPU time spent in the measurement of the observables is
roughly 28%, 22%, 15%, 12%, 7%, 5% of the total CPU time for
L58,16,32,64,128,256, respectively, when the runs are performed
on the Cray C-90; it is roughly 22%, 20%, 18%, 17%, 5%, 3% for
L58,16,32,64,128,256 when the runs are performed on the IBM
SP2.
18The heat-bath subroutine uses von Neumann rejection to gener-

ate the desired random variables@7, Appendix A#. The algorithm is
vectorized by gathering all the sites of one sublattice~red or black!
into a single Cray vector, making one trial of the rejection algo-
rithm, scattering the ‘‘successful’’ outputs, gathering and recom-
pressing the ‘‘failures,’’ and repeating until all sites are successful.
Therefore, although the original vector length in this subroutine is
L2/2, the vector lengths after several rejection steps are much
smaller. It is thus advantageous to make the original vector length
as large as possible.

19This form of finite-size scaling assumes hyperscaling, and thus
is expected to hold only below the upper critical dimension of the
model. See, e.g.,@117, Chap. I, Sec. 2.7#.
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TABLE II. Our Monte Carlo data for the SU~3! chiral model as a function ofb, L. Errors are one standard
deviation.
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TABLE II. ~Continued!.
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TABLE II. ~Continued!.
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TABLE III. Dynamic data from our runs for the two-dimensional SU~3! chiral model. A measurement
is performed once everytwoMGMC iterations; all times~both run lengths and autocorrelation times! are
reported in units of measurements. The number of measurements discarded prior to beginning the analysis
is always 20 000; ‘‘run length’’ is the total number of measurements performedafter the discard interval.
Error bar~one standard deviation! is shown in parentheses.
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TABLE III. ~Continued!.

55 3689MULTIGRID MONTE CARLO . . . . II. . . .



TABLE III. ~Continued!.
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TABLE III. ~Continued!.
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TABLE III. ~Continued!.
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whereFO can easily be expressed in terms offO and f j .
~Henceforth we shall suppress the arguments if it is clear
from the context.! In other words, if we make a plot of
O~b,sL!/O~b,L! versusj~b,L!/L, then all the points should
lie on a single curve, modulo corrections of orderj2v and
L2v.

Our extrapolation method works as follows.20 We make
Monte Carlo runs at numerous pairs~b,L! and ~b,sL!. We
then plot O~b,sL!/O~b,L! versus j~b,L!/L, using

20See@77, note 8# for further history of this method.

TABLE III. ~Continued!.
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those points satisfying bothj~b,L!>some value jmin
and L>some valueLmin . If all these points fall with
good accuracy on a single curve—thus verifying theAnsatz
~5.2! for j>jmin , L>Lmin—we choose a smooth fitting func-
tion FO . Then, using the functionsFj andFO , we extrapo-
late the pair ~j,O! successively from L→sL→s2L
→•••→`.

We have chosen to use functionsFO of the form21

FO~x!511a1e
21/x1a2e

22/x1•••1ane
2n/x. ~5.3!

~Other forms of fitting functions can be used instead.! This
form is partially motivated by theory, which tells us that in
some casesFO(x)→1 exponentially fast asx→0 @101#.22

Typically a fit of order 5<n<15 is sufficient; the required
order depends on the range ofx values covered by the data
and on the shape of the curve. Empirically, we increasen
until the x2 of the fit becomes essentially constant. The re-
sulting x2 value provides a check on the systematic errors
arising from corrections to scaling and/or from the inadequa-
cies of the form~5.3!.

The statistical error on the extrapolated value of
O`~b![O~b,`! comes from three sources:~i! error on
O~b,L!, which gets multiplicatively propagated toO` ; ~ii !
error onj~b,L!, which affects the argumentx[j(b,L)/L of
the scaling functionsFj andFO ; ~iii ! statistical error in our
estimate of the coefficientsa1 ,...,an in Fj and FO . The
errors of type~i! and~ii ! depend on the statistics available at
the single point~b,L!, while the error of type~iii ! depends on
the statistics in the whole set of runs. Errors~i!1~ii ! @resp.
~i!1~ii !1~iii !# can be quantified by performing a Monte
Carlo experiment in which the input data at~b,L! @resp. the
whole set of input data# are varied randomly within their
error bars and then extrapolated.23

The discrepancies between the extrapolated values from
different lattice sizes at the sameb—to the extent that these
exceed the estimated statistical errors—can serve as a rough
estimate of the remaining systematic errors. More precisely,
let Oi ( i51,...,m) be the extrapolated values at some given
b, and letC5(Ci j ) i , j51

m be the estimated covariance matrix
for their statistical errors.24 @Errors of type~iii ! induce off-
diagonal terms inC.# Then we form the weighted average

Ō5S (
i , j51

m

~C21! i jOj D Y S (
i , j51

m

~C21! i j D , ~5.4!

the error bar on the weighted average

s̄5S (
i , j51

m

~C21! i j D 21/2

, ~5.5!

and the residual sum of squares

R5 (
i , j51

m

~Oi2Ō!~C21! i j ~Oj2Ō!. ~5.6!

Under the assumptions that~a! the fluctuations among the
O1, . . . ,Om are purely statistical~i.e., there areno system-
atic errors in the extrapolation!, and ~b! the statistical error
bars are correct,R should be distributed as ax2 random
variable withm21 degrees of freedom. Moreover, the sum
of R over all the values ofb should be distributed as ax2

21In performing this fit, one may use any basis one pleases in the
space spanned by the functions$e2k/x%1<k<n; the final result~in
exact arithmetic! is of course the same. However, in finite-precision
arithmetic the calculation may become numerically unstable if the
condition number of the least-squares matrix gets too large. In par-
ticular, this disaster occurs if we use as a basis the monomialstk

~wheret5e21/x!. The trouble is that these monomials are ‘‘almost
collinear’’ in the relevant Hilbert spaceL2~m! defined by
m(t)5( iwid(t2t i), wheret i are the values oft[e2L/j(b,L) aris-
ing in the data pairs andwi51/@error onO(2L)/O(L)#2are the cor-
responding weights. To avoid this disaster, we should seek to use a
basis that is closer to orthogonal inL2~m!. Of course, exactly or-
thogonalizing inL2~m! is equivalent to diagonalizing the least-
squares matrix, which is unfeasible; but we can do well enough by
using polynomials with zero constant term that are orthogonal with
respect to the simple measurew(t)5ta~tmax2t!b on @0,tmax#, where
a and b are some chosen numbers.21. These polynomials are
Jacobi polynomialsf k(t)5tP k21

(b,a12)~2t/tmax21! for 1<k<n @119,
pp. 321–328#. The idea here is that the measurew(t)5ta~tmax2t!b

should roughly approximate the measurem(t). Empirically ~for our
data! the measurem(t) seems to have a little peak neart50 fol-
lowed by a dip, and a big peak neart5tmax; for this reason we have
chosena50, b523/4. But the performance is very insensitive to
the choices ofa andb. This cleverness in the choice of basisvastly
improves the numerical stability of the result, by reducing the con-
dition number of the matrix arising in the fit. Typical condition
numbers using Jacobi polynomials are'75 forn511 and'123 for
n515. Typical condition numbers using monomials~and 100-digit
arithmetic! are 7.531011 for n511 and 6.531012 for n515.
22The finite-size corrections toEuclideancorrelation functions in

anLd box are expected to behave ase2mL, wherem[1/jF
(exp) is the

lightest mass in the theory.~This can be proven to all orders in
perturbation theory@120# and presumably also holds nonperturba-
tively.! This is slightly different from oure21/x because we have
definedx as jF

(2nd)/L rather thanjF
(exp)/L, but the difference is ex-

pected to be very small, sincejF
(2nd)/jF

(exp)'0.987 @67#. It follows
from this that the finite-size-scaling functions for the susceptibilities
xF andxA tend to 1 exponentially fast asx→0. However, this isnot
the case for finite-size-scaling functions for the correlation lengths
jF
(2nd) andjA

(2nd) , because the definition of these correlation lengths
contains an explicitL-dependence, so that one expects corrections
of order (j/L)2;x2. Nevertheless, forjF

(2nd) one expects the cor-
rection;x2 to beextremelysmall, becauseGF is almost exactly a
free field. ForjA

(2nd) this reasoning is no longer valid, but in any
case we find empirically that the form~5.3! gives an adequate fit
over the range of interest~0.1&x&1.1!.

23In principle,j andO should be generated from ajoint Gaussian
with the correct covariance. We ignored this subtlety and simply
generatedindependentfluctuations onj andO.
24This covariance matrix is computed from the auxiliary Monte

Carlo experiment mentioned in the preceding paragraph. Since this
C is only a statistical estimate, the values ofŌ, s̄, andR will vary
slightly from one analysis run to the next.
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random variable withS~m21! degrees of freedom.25 In this
way, we can search for values ofb for which the extrapola-
tions from different lattice sizes are mutually inconsistent;
and we can test the overall self-consistency of the extrapola-
tions.

A figure of ~de!merit of the method is the relative vari-
ance on the extrapolated valueO`~b!, multiplied by the com-
puter time needed to obtain it.26 We expect thisrelative
variance-time product@for errors~i!1~ii ! only# to scale as

RVTP~b,L !'j`~b!d1zint ,OGO„j`~b!/L…, ~5.7!

whered is the spatial dimension andzint,O is the dynamic
critical exponent of the Monte Carlo algorithm being used;
here GO is a combination of several static and dynamic
finite-size-scaling functions, and depends both on the observ-
ableO and on the algorithm but not on the scale factors. As
j`/L tends to zero, we expectGO to diverge as (j`/L)

2d

~since it is wasteful to use a latticeL@j`!. As j`/L tends to
infinity, we expectGO;(j`/L)

p for some powerp ~see@69#
for details!. Note thatthe power p can be either positive or
negative. If p.0, there is an optimum value ofj`/L; this
determines the best lattice size at which to perform runs for a
givenb. If p,0, it is most efficient to use the smallest lattice
size for which the corrections to scaling are negligible com-
pared to the statistical errors.@Of course, this analysis ne-
glects errors of type~iii !. The optimization becomes much
more complicated if errors of type~iii ! are included, as it is
then necessary to optimize the set of runs as a whole.#

Finally, let us note that this method can also be applied to
extrapolate the exponential correlation length~inverse mass
gap! j~exp!(L)5m(L)21 defined in a cylinderLd213`. For
this purpose one must work in a system of sizeLd213T with
T*6j~exp!~b,L! ~compare@70#!.

2. Theory of error propagation

When the statistical error of type~iii ! is neglected, it is
possible to work out analytically the theory of error propa-
gation, and in particular to compute the statistical error on
the extrapolated values.

Let us consider first the correlation length. The standard
error-propagation formula gives

Var„j~b,sL!…

j~b,sL!2
5F11

x

Fj~x;s!

]Fj~x;s!

]x G2 Var„j~b,L !…

j~b,L !2
,

~5.8!

wherex[j(b,L)/L. @Here, by abuse of notation, we write
Var„j~b,L!… for the variance ofour Monte Carlo estimateof

j~b,L!. We shall use the same convention also for other ob-
servables.# If we now introducez[j`(b)/L and

Fj~z![z fj~z! ~5.9!

@so thatx5Fj(z) andFj(x;s)5sFj(z/s)/Fj(z)#, we can re-
write Eq. ~5.8! as

Var„j~b,sL!…

j~b,sL!2
5F1s F j8~z/s!

Fj~z/s!

Fj~z!

F j8~z!G
2 Var„j~b,L !…

j~b,L !2
.

~5.10!

Iterating this formula and using the relation

lim
n→`

1

sn
F j8~z/s

n!

Fj~z/s
n!

5
1

z
~5.11!

@which follows from the fact thatFj(z)'z for z→0#, we get

Var„j`~b!…

j`~b!2
5Kj~z!2

Var„j~b,L !…

j~b,L !2
, ~5.12!

where we have defined

Kj~z![
Fj~z!

zF j8~z!
. ~5.13!

It is worth noticing that the error on the extrapolatedj`~b! is
independent of the chosen scale factors.

Let us now compute the large-z expansion ofKj(z) for
the case of an asymptotically free theory. Perturbation theory
~Appendix B 1! predicts that, forx→`, we have

j`~b!

L
5DS xAD 22w1 /w0

2

expF 1w0
S xAD 2G@11O~x22!#,

~5.14!

where w0 and w1 are the first two coefficients of the
renormalization-groupb function, A is a constant that de-
pends on the explicit definition ofj~b,L!, andD is a nonper-
turbative coefficient related toC̃j . For jF

(2nd)(b,L) in the
SU(N) s model, we have

A5S N

N221D
1/2

. ~5.15!

From Eq. ~5.14! we can derive the large-z expansion of
Fj(z): we get

Fj~z!5AFw0 ln
z

DG1/2F11
w1

2w0
2

ln ln~z/D !

ln~z/D !
1OS 1

ln~z/D ! D G
~5.16!

and thus

Kj~z!52 ln
z

D F11OS ln ln~z/D !

ln~z/D ! D G . ~5.17!

We conclude that the statistical errors@of types~i!1~ii !# in-
crease under extrapolation only logarithmically withz.

25This latter statement is not quite correct, as it ignores the corre-
lations between the variousOi at differentb, which are induced by
errors of type~iii !. @Correlations between differentOi at thesame
b, which are also induced by errors of type~iii !, are included in
Eqs.~5.4!–~5.6!.#
26At fixed ~b,L!, this variance-time product tends to a constant as

the CPU time tends to infinity. However, if the CPU time used is
too small, then the variance-time product can be significantly larger
than its asymptotic value, due to nonlinear cross terms between
error sources~i! and ~ii !.
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We still have to take account of the finite-size-scaling
behavior of the variance of the raw data pointj~b,L!. If for
j~b,L! we take the second-moment correlation length defined
in Eq. ~2.8!, we have

Var„j~b,L !…5
1

64 sin4~p/L !

1

j~b,L !2
VarS x~b,L !

F~b,L ! D
~5.18!

and thus, in the limitL@1,

Var„j~b,L !…

j~b,L !2
5

1

64p4 S L

j~b,L ! D
4

VarS x~b,L !

F~b,L ! D .
~5.19!

Let us now define the observable

D5
x

^x&
2

F

^F&
, ~5.20!

which controls the statistical error in measurements ofx/F.
We then have, for a Monte Carlo run ofNiter iterations,

VarS x~b,L !

F~b,L ! D5
2t int,D~b,L !

Niter
varS x~b,L !

F~b,L ! D , ~5.21!

where var(X) is the static variance ofX. In the finite-size-
scaling limit we have

t int,D~b,L !5j`~b!zint,DḡD~z!, ~5.22!

var„D~b,L !…5 v̄~z!, ~5.23!

varS x~b,L !

F~b,L ! D5v~z!5S x~b,L !

F~b,L ! D
2

v̄~z!

5@114p2Fj~z!2#2v̄~z!, ~5.24!

wherezint,D is a dynamic critical exponent, andḡD(z), v̄(z),
andv(z) are scaling functions. It follows that

Var„j~b,L !…

j~b,L !2
5

j`~b!zint,D

32p4Niter

ḡD~z!v~z!

Fj~z!4
. ~5.25!

Now the total CPU time is proportional toNiterL
d, so the

relative variance-time product forj is

RVTPj~b,L !5j`~b!d1zint,DGj~z!, ~5.26!

with

Gj~z!5z2dKj~z!23
ḡD~z!v~z!

32p4Fj~z!4
. ~5.27!

Here the second factor on the right-hand side comes from the
variance of the raw data pointj~b,L!, while the first factor
comes from the extrapolation process.

Let us now discuss the large-z behavior ofGj(z) in an
asymptotically free theory. We have already seen thatKj(z)
andFj(z) increase as powers of lnz, and thatKj(z)

2/Fj(z)
4

tends to a nonzero constant. The functionsv̄(z) andv(z) are
static variances, hence in principle computable at largez in
perturbation theory; we have not bothered to carry out this
computation, but we find empirically~see Sec. V B 3! that

v̄(z) tends to a nonzero constant asz→`, and hence that
v(z);ln2z @cf. Eqs. ~5.24!, ~5.16!#. Finally, for ḡD(z) our
numerical data indicate thatḡD(z);z2zint,D for the MGMC
algorithm ~see again Sec. V B 3!; indeed, for fixedL and
large z, each t int,A(b,L) approaches a constantt̄ int,A(L)
which ~as expected! scales approximately ast̄ int,A(L)
;Lzint,A. Putting this all together, we predict that

Gj~z!;z2~d1zint,D!~ lnz!2. ~5.28!

This means that large values ofz are vastly more efficient
than small values ofz; at any givenb, it is most efficient to
use thesmallestlattice size for which the corrections to scal-
ing are negligible compared to the statistical errors, and the
gain from doing so isenormous.

Let us now extend the foregoing results to generic observ-
ables. Consider a set of observablesOi ( i51,...,n) and the
relative covariance matrixCAB (A,B50,...,n) defined by

C00~b,L !5
Var„j~b,L !…

j~b,L !2
, ~5.29a!

C0i~b,L !5Ci0~b,L !5
Cov„j~b,L !,Oi~b,L !…

j~b,L !Oi~b,L !
,

~5.29b!

Ci j ~b,L !5
Cov„Oi~b,L !,Oj~b,L !…

Oi~b,L !Oj~b,L !
,

~5.29c!

where Var and Cov denote, as before, the variances and co-
variances of our Monte Carlo estimates. A little algebra then
yields the following generalization of Eq.~5.12!:

C~b,`!5K~z!C~b,L !K~z!T, ~5.30!

whereK(z) is an (n11)3(n11) matrix given by

S Kj~z!

K̄O~z!

0
I D ; ~5.31!

hereI is ann3n identity matrix, and

K̄Oi~z!52
fOi8 ~z!

fOi~z!

Fj~z!

F j8~z!
. ~5.32!

TABLE IV. CPU times in milliseconds per measurement for the
XY-embedding MGMC algorithm for the two-dimensional SU~3!
chiral model. Each timing includestwo MGMC iterations ~with
g52, m151, m250! followed by one measurement of all observ-
ables.

CPU timings~ms/measurement!

L Cray C-90 IBM SP2

8 6 7
16 15 26
32 34 105
64 94 490
128 270 2629
256 911 15950
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For an asymptotically-free theory, ifOi is an observable of
canonical dimensiondi ~for instanced52 for the suscepti-
bilities! and leading anomalous dimensiongi ,0, we have the
following asymptotic behavior asz→`:

fOi~z!5Ez2d iS ln z

D D 2g i ,0 /w0F11OS ln ln~z/D !

ln~z/D ! D G ,
~5.33!

whereE is a nonperturbative coefficient andD is defined by
Eq. ~5.14!. It follows that

K̄Oi~z!'d iKj~z!'2d i ln
z

D
~5.34!

wheneverdiÞ0. In casedi50 ~this happens, for instance, for
O5x/j2!, we have instead

K̄Oi~z!'
g i ,0

w0

1

ln~z/D !
Kj~z!'

2g i ,0

w0
. ~5.35!

Let us now write explicitly our result~5.30!, ~5.31! for
Var~Oi ,`!. We have

Var„Oi ,`~b!…

Oi ,`~b!2
5K̄Oi~z!2

Var„j~b,L !…

j~b,L !2

12K̄Oi~z!
Cov„Oi~b,L !,j~b,L !…

Oi~b,L !j~b,L !

1
Var„Oi~b,L !…

Oi
2~b,L !

. ~5.36!

The last term on the right-hand side represents the error of
type ~i!, while the first two terms constitute the error of type
~ii !. Asymptotically for largez, the first term dominates~un-
less di50!: the final statistical error onOi ,`~b! is con-
trolled by the error onj~b,L! and not by the error on
Oi(b,L). In other words, the error of type~ii ! dominates that
of type ~i!. Notice, moreover, that Eq.~5.36! reduces to Eq.
~5.12! whenOi5j, sinceK̄j(z)5Kj(z)21.

It is also immediate to verify that different observables
become perfectly correlated forz→` ~if their canonical di-
mension is not zero!. Indeed, using Eqs.~5.30!, ~5.31! and
~5.34! we get

Cov„Oi ,`~b!,Oj ,`~b!…

@Var„Oi ,`~b!…Var„Oj ,`~b!…#1/2
512OS 1

ln~z/D ! D .
~5.37!

TABLE V. Degrees of freedom~DF!, x2, x2/NDF and confidence level for thenth-order fit ~5.3! of
jF(b,2L)/jF(b,L) versusjF(b,L)/L. The indicatedxmin values apply toL58,16,32, respectively; we al-
ways takexmin50.14,0 forL564,128. Our preferred fit is shown initalics; other good fits are shown insans
serif; bad fits are shown in roman.

x2 for the FSS fit ofjF
xmin n511 n512 n513 n514 n515

~0.50,0.40,0! 180 718.80 179 626.60 178 560.20 177 558.60 176 558.30
3.99 0.0% 3.50 0.0% 3.15 0.0% 3.16 0.0% 3.17 0.0%

~`,0.40,0! 154 673.80 153 566.30 152 533.00 151 532.10 150 531.80
4.38 0.0% 3.70 0.0% 3.51 0.0% 3.52 0.0% 3.55 0.0%

~`,`,0! 108 236.00 107 172.40 106 154.80 105 154.70 104 153.40
2.19 0.0% 1.61 0.0% 1.46 0.1% 1.47 0.1% 1.48 0.1%

~0.70,0.55,0.45! 162 288.30 161 219.20 160 183.00 159 182.50 158 182.30
1.78 0.0% 1.36 0.2% 1.14 10.3% 1.15 9.8% 1.15 9.0%

~0.75,0.60,0.50! 150 222.40 149 172.20 148 129.90 147 129.80 146 129.80
1.48 0.0% 1.16 9.4% 0.88 85.6% 0.88 84.3% 0.89 82.9%

~0.80,0.70,0.60! 129 173.90 128 135.00 127 96.30 126 96.28 125 94.31
1.35 0.5% 1.05 32.0% 0.76 98.1% 0.76 97.7% 0.75 98.1%

~0.95,0.85,0.60! 111 150.30 110 107.20 109 77.62 108 77.62 107 75.67
1.35 0.8% 0.97 55.8% 0.71 99.0% 0.72 98.8% 0.71 99.1%

~1.00,0.90,0.60! 105 139.20 104 100.90 103 70.74 102 70.73 101 67.50
1.33 1.4% 0.97 56.7% 0.69 99.4% 0.69 99.2% 0.67 99.6%

~`,0.90,0.65! 92 130.00 91 77.01 90 60.85 89 58.66 88 58.31
1.41 0.6% 0.85 85.2% 0.68 99.2% 0.66 99.5% 0.66 99.4%

~`,`,0.65! 78 96.09 77 56.51 76 49.55 75 46.63 74 45.94
1.23 8.1% 0.73 96.2% 0.65 99.2% 0.62 99.6% 0.62 99.6%

~`,`,0.80! 70 85.79 69 51.89 68 46.33 67 43.42 66 42.76
1.22 9.7% 0.75 93.8% 0.68 98.0% 0.64 98.9% 0.64 98.8%

~`,`,`! 52 55.85 51 25.23 50 25.17 49 24.11 48 24.10
1.07 33.2% 0.49 99.9% 0.50 99.9% 0.49 99.9% 0.50 99.8%
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This again expresses the dominance of errors of type~ii !, all
of which arise from the statistical fluctuations on thesame
random variablej~b,L!.

B. Data analysis: Extrapolation to infinite volume

In this subsection we apply the finite-size-scaling extrapo-
lation procedure to our data for the SU~3! chiral model. We
begin by showing in some detail how the method works for
jF
(2nd) ; this allows us to illustrate the treatment of statistical
and systematic errors and to show the quality of results that
can be obtained. Then we show more briefly the results for
xF , jA

(2nd) , and xA . Finally, we discuss the ratio
jF
(2nd)/jA

(2nd) and the relative variance-time product.

1. Basic observables

We shall always use a scale factors52. Out of our 264
data points~b,L!, we are able to form 203 pairs (b,L)/
(b,2L); these pairs cover the range 0.08&x[jF

(2nd)(L)/L
&1.12. In what follows, we shall sometimes omit for sim-
plicity the superscript~2nd! on the correlation lengths; and
when we write j(L) tout court we shall always mean
jF
(2nd)(L).
We found tentatively that forO5jF

(2nd) a thirteenth-order
fit ~5.3! is indicated: see the last few rows of Table V. We
next sought to investigate the strength of the corrections to
scaling: we performed the fit with the conservative choices
Lmin564, jmin510, andn513, and plotted on an expanded
vertical scale thedeviations from this fit. The results are
shown in Fig. 1. Clearly, there are significant corrections to
scaling in the regionsx&0.84 ~0.64,0.52,0.14! when L58
~16,32,64!; but the corrections to scaling become negligible
~within statistical error! at x larger than this. To take account
of this x-dependence of the corrections to scaling, we

adopted a modified scheme for imposing lower cutoffs on
j(L) andL, as follows: For each lattice sizeL, we choose
a valuexmin(L), and we allow into the fit only those data
pairs (b,L)/(b,2L) satisfying x[j(L)/L>xmin(L). Our
method is thus specified by the five cut pointsxmin~8!,
xmin~16!, xmin~32!, xmin~64!, xmin~128! along with the interpo-
lation ordern. We shall always choosexmin~64!50.14 and
xmin~128!50, and shall thus omit them from the tables.

We next sought to investigate systematically thex2 of the
fits, as a function of the cut pointsxmin(L) and the interpo-
lation ordern; some typical results are collected in Table V.
A reasonable x2 is obtained when n>13 and
xmin>~0.80,0.70,0.60,0.14,0! for L5~8,16,32,64,128!. Our
preferred fit isn513 andxmin5~`,0.90,0.65,0.14,0!: see Fig.
2, where we compare also with the order-1/x2 and order-1/x4

perturbative predictions~3.24a!. This fit hasx2560.85 @90
degrees of freedom~DF!, level599.2%#.

We then used this preferred fit to extrapolate the data to
infinite volume. The extrapolated valuesjF,`

(2nd) from different
lattice sizes at the sameb are consistent within statistical
errors: only one of the 58b values has anR that is too
large at the 5% level; and summing allb values we have
R564.28~103 DF, level599.9%!.

Both thex2 andR values are unusually small; we do not
know why. Perhaps we have somewhere overestimated our
statistical errors by about 25%.

In Table VI we show the extrapolated valuesjF,`
(2nd) from

our preferred fit and from some alternative fits, together with
the propagated statistical error bars@including errors of type
~i!1~ii !1~iii !#. The deviations between the different accept-
able fits ~those in italics or sans serif!, if larger than the
statistical errors, can serve as a rough estimate of the remain-
ing systematic errors due to corrections to scaling. The sta-
tistical errors onjF,`

(2nd) in our preferred fit are of order 0.6%
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TABLE VI. Estimated correlation lengthsjF,`
(2nd) as a function ofb, from various extrapolations. Error bar is one standard deviation

~statistical errors only!. All extrapolations uses52 andn513. The indicatedxmin values apply toL58,16,32, respectively; we always take
xmin50.14,0 forL564,128. Our preferred fit is shown initalics; other good fits are shown insans serif; bad fits are shown in roman.
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TABLE VI. ~Continued!.
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~0.8%, 1.2%, 1.4%, 1.5%! at jF,`'102 ~103, 104, 105,
43105!. The systematic errors are smaller than the statistical
errors~anywhere from 0.1 to 0.9 times as large! for b&3.60,
and slightly larger than the statistical errors~by a factor 1–2
times as large! for b&3.60. The statistical errors at different
b are strongly positively correlated.

Now we report the results for the observablesxF , jA
(2nd)

andxA .

For O5xF we observed tentatively that a fifteenth-order
fit ~5.3! is indicated: see Table VII. There are significant
corrections to scaling for allx whenL58, and in the regions
x&0.85 ~0.50! whenL516 ~32!: see the deviations plotted
in Fig. 3. Our preferred fit is n515 and
xmin5~`,`,0.80,0.14,0! for L5~8,16,32,64,128!: see Fig. 4,
where we compare also with the order-1/x2 and order-1/x4

perturbative predictions~3.24c!. This fit hasx2562.74 ~66

TABLE VI. ~Continued!.
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DF, level559.1%!. In order to extrapolatexF(L) to infinite
volume, we have to know bothFjF

(x;s) andFxF
(x;s); but

our preferred fit forxF requires a more stringent cut inxmin
than does our preferred fit forjF . Therefore, to ensure the
trustworthiness of the extrapolated valuesxF,` , we
enforce the more stringent cut on both observables:

xmin5~`,`,0.80,0.14,0!. For jF we use the interpolation or-
dern513, while forxF we usen515. The extrapolated val-
ues from different lattice sizes at the sameb are consistent
within statistical errors: only one of the 58b values has an
R that is too large at the 5% level; and summing allb values
we haveR558.32 ~81 DF, level597%!. In Table VIII we

TABLE VII. Degrees of freedom~DF!, x2, x2/NDF and confidence level for thenth order fit ~5.3! of
xF(b,2L)/xF(b,L) versusjF(b,L)/L. The indicatedxmin values apply toL58,16,32, respectively; we
always takexmin50.14,0 forL564,128. Our preferred fit is shown initalics; other good fits are shown in
sans serif; bad fits are shown in roman.

x2 for the FSS fit ofxF
xmin n513 n514 n515 n516 n517

~`,`,0.4! 100 175.80 99 175.60 98 173.50 97 173.40 96 171.80
1.76 0.0% 1.77 0.0% 1.77 0.0% 1.79 0.0% 1.79 0.0%

~1.0,0.95,0.65! 97 503.80 96 495.40 95 474.20 94 474.00 93 473.70
5.19 0.0% 5.16 0.0% 4.99 0.0% 5.04 0.0% 5.09 0.0%

~`,0.85,0.65! 93 137.40 92 137.00 91 132.40 90 128.10 89 119.10
1.47 0.2% 1.49 0.2% 1.46 0.3% 1.42 0.5% 1.34 1.8%

~`,0.95,0.65! 87 124.00 86 123.60 85 119.00 84 114.70 83 104.50
1.42 0.6% 1.44 0.5% 1.40 0.9% 1.37 1.5% 1.26 5.5%

~`,1.0,0.65! 83 100.10 82 99.06 81 92.33 80 91.32 79 86.82
1.20 9.7% 1.21 9.7% 1.14 18.3% 1.14 18.2% 1.10 25.6%

~`,`,0.65! 76 82.99 75 80.29 74 70.65 73 68.96 72 68.75
1.01 27.3% 1.07 31.7% 0.95 58.9% 0.94 61.2% 0.95 58.7%

~`,`,0.80! 68 75.31 67 72.15 66 62.74 65 59.63 64 59.45
1.10 25.4% 1.08 31.1% 0.95 59.1% 0.92 66.5% 0.93 63.8%

~`,`,0.90! 62 60.12 61 57.43 60 50.74 59 48.91 58 48.66
0.96 54.4% 0.94 60.6% 0.85 79.7% 0.83 82.3% 0.84 80.4%

~`,`,`! 50 39.77 49 35.96 48 34.53 47 32.95 46 32.63
0.79 85.0% 0.73 91.7% 0.72 92.8% 0.70 94.0% 0.71 93.1%
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show the extrapolated valuesxF,` from our preferred fit and
from some alternative fits. The statistical errors onxF,` in
our preferred fit are of order 0.6%~2.2%, 2.9%, 3.6%, 4.1%!
at jF,`'102 ~103, 104, 105, 43105!. The systematic errors are
smaller than the statistical errors~anywhere from 0.07 to 0.8
times as large! for b&3.45, and slightly larger than the sta-
tistical errors~by a factor 1–2.4 times as large! for b*3.60.

For O5jA
(2nd) we observed tentatively that a thirteenth-

order fit~5.3! is indicated: see Table IX. There are significant
corrections to scaling for allx whenL58, 16 and probably
also whenL532 ~the correction is strongly negative for
x&0.55 and weakly positive whenx*0.55!: see the devia-
tions plotted in Fig. 5. Our preferred fit is thereforen513
andxmin5~`,`,`,0.14,0! for L5~8,16,32,64,128!: see Fig. 6,
where we compare also with the order-1/x2 and order-1/x4

perturbative predictions~3.24b!. This fit hasx2532.82 ~50
DF, level597.1%!. To extrapolatejA

(2nd)(L) to infinite vol-
ume we use the more stringent cutxmin5~`,`,`,0.14,0! for
both jF

(2nd) andjA
(2nd) . The proper order of interpolation for

this cut for bothjF
(2nd) andjA

(2nd) is n513 ~see Tables V and
IX !. The extrapolated values from different lattice sizes at
the sameb are consistent within statistical errors: only one
of the 58b values has aR that is too large at the 5% level;
and summing allb values we haveR538.12~63 DF, level
599.4%!. In Table X we show the extrapolated values
jA,`
(2nd) from our preferred fit and from some alternative fits.
The statistical errors onjA,`

(2nd) in our preferred fit are of order
0.5% ~1.3%, 2.3%, 2.9%, 3.5%! at jF,`'102 ~103, 104, 105,
43105!. Since our preferred fit is the most conservative one
possible~and all less conservative fits are bad!, we are un-
able to say anything about the systematic errors.

ForO5xA we observed tentatively that a fourteenth-order
fit ~5.3! is indicated: see Table XI. There are significant
corrections to scaling for allx whenL58, and in the regions
x&0.84~0.64! whenL516 ~32!: see the deviations plotted in
Fig. 7. Our preferred fit isn514 andxmin5~`,`,0.90,0.14,
0!: see Fig. 8, where we compare also with the order-1/x2

and order-1/x4 perturbative predictions~3.24d!. This fit has
x2540.31 ~62 DF, level598.5%!. To extrapolatexA(L) to
infinite volume we use the more stringent fitxmin5~`,`,0.90,
0.14,0! for both jF

(2nd) and xA , using n513 for jF
(2nd) and

n514 for xA . The extrapolated values from different lattice
sizes at the sameb are consistent within statistical
errors: none of the 58b values has anR that is too large at
the 5% level; and summing allb values we haveR546.86
~75 DF, level599.6%!. In Table XII we show the extrapo-
lated valuesxA,` from our preferred fit and from some alter-
native fits. The statistical errors onxA,` in our preferred fit
are of order 0.3%~1.6%, 3.1%, 3.9%, 4.3%! at jF,`'102

~103, 104, 105, 43105!. The systematic errors are smaller
than the statistical errors~anywhere from 0.05 to 0.5 times as
large! for b&3.825, and comparable to the statistical errors
~anywhere from 0.75 to 1.9 times as large! for b*3.90.

We also extrapolated the quantitiesxF /(jF
(2nd))2 and

xA /(jA
(2nd))2. The reason for doing these extrapolations is

that the errors in the infinite-volume estimates of the ratios
are much smaller~at least 15 times for the fundamental sec-
tor and 7 times for the adjoint sector! than those obtained by
direct extrapolation of numerator and denominator assuming
independent errors. Besides, knowing the covariance of the

statistical fluctuations on our estimates ofx~b,L! and
j~2nd!~b,L!, we can compute correctly the error bars of the
extrapolated ratios; by contrast, if we extrapolatex andj~2nd!

separately, we are obliged either to make the false assump-
tion of independent errors or else involve the triangle
inequality—both of which lead to error bars that are gross
overestimates. In any case, we observe that the central values
are consistent within error bars with those obtained by sepa-
rate extrapolation of the numerator and denominator.

For O5xF /(jF
(2nd))2 we observed tentatively that a

thirteenth-order fit~5.3! is indicated. There are significant
corrections to scaling for allx when L58,16, and in the
regionsx&0.6 andx*0.8 whenL532. Then, our preferred
fit is n513 andxmin5~`,`,`,0.14,0!. This fit hasx2522.37
~50 DF, level599.7%!. To extrapolatexF /(jF

(2nd))2 to infi-
nite volume we use the more stringent fit
xmin5~`,`,`,0.14,0! for both jF

(2nd) andxF /(jF
(2nd))2, using

n513 for both. The extrapolated values from different lattice
sizes at the sameb are consistent within statistical
errors: none of the 58b values has aR that is too large at
the 5% level; and summing allb values we haveR536.38
~63 DF, level.99.9%!. The statistical errors on
xF /(jF

(2nd))2 in our preferred fit are of order 0.4%~0.5%,
0.6%, 0.7%, 0.7%! at jF,`'102 ~103, 104, 105, 43105!. Since
our preferred fit is the most conservative one possible~and
all less conservative fits are bad!, we are unable to say any-
thing about the systematic errors.

For O5xA /(jA
(2nd))2 we observed tentatively that a

sixteenth-order fit~5.3! is indicated. There are strong correc-
tions to scaling for allx whenL58,16,32, so our preferred fit
is n516 andxmin5~`,`,`,0.14,0!. This fit hasx2518.92~50
DF, level .99.9%!. To extrapolatexA /(jA

(2nd))2 to infinite
volume we use the more stringent fitxmin5~`,`,`,0.14,0!
for both jF

(2nd) andxA /(jA
(2nd))2, usingn513 for jF

(2nd) and
n516 for xA /(jA

(2nd))2. The extrapolated values from differ-
ent lattice sizes at the sameb are consistent within statistical
errors: none of the 58b values has aR that is too large at
the 5% level; and summing allb values we haveR529.38
~63 DF, level .99.9%!. The statistical errors on
xA /(jA

(2nd))2 in our preferred fit are of order 0.7%~0.9%,
1.2%, 1.4%, 1.4%! at jF,`'102 ~103, 104, 105, 43105!. Since
our preferred fit is the most conservative one possible~and
all less conservative fits are bad!, we are unable to say any-
thing about the systematic errors.

2. RatiojF
„2nd…

„L …/jA
„2nd…

„L …

In this subsection we discuss the finite-size-scaling curve
for the ratiojF

(2nd)(L)/jA
(2nd)(L). We fit to theAnsatz

jF
~2nd!~L !

jA
~2nd!~L !

5a01a1e
21/x1a2e

22/x1•••1ane
2n/x,

~5.38!

usingn515, Lmin5128, andjmin510. There are strong cor-
rections to scaling for allx whenL58,16,32~Fig. 9!: these
corrections are of positive sign and behave roughly asL2D

with 1&D&2. ForL564 these corrections to scaling are on
the borderline of statistical significance, but the fact that they
are nearly all positive~and are of the magnitude expected
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TABLE VIII. Estimated susceptibilitiesxF,` as a function ofb, from various extrapolations. Error bar is one standard deviation
~statistical errors only!. All extrapolations uses52 andn515. The indicatedxmin values apply toL58,16,32, respectively; we always take
xmin50.14, forL564,128. Our preferred fit is shown initalics; other good fits are shown insans serif; bad fits are shown in roman.
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TABLE VIII. ~Continued!.
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TABLE IX. Degrees of freedom~DF!, x2, x2/NDF and confidence level for thenth-order fit ~5.3! of
jA(b,2L)/jA(b,L) versusjF(b,L)/L. The indicatedxmin values apply toL58,16,32, respectively; we al-
ways takexmin50.14, 0 forL564,128. Our preferred fit is shown initalics; other good fits are shown insans
serif; bad fits are shown in roman.

x2 for the FSS fit ofjA
xmin n511 n512 n513 n514 n515

~1.0,0.95,0.65! 99 538.50 98 393.30 97 288.20 96 287.00 95 286.10
5.44 0.0% 4.01 0.0% 2.97 0.0% 2.99 0.0% 3.01 0.0%

~`,0.55,0.50! 126 501.30 125 315.10 124 229.50 123 223.60 122 219.60
3.98 0.0% 2.52 0.0% 1.85 0.0% 1.82 0.0% 1.80 0.0%

~`,0.95,0.65! 89 310.50 88 159.10 87 91.73 86 91.69 85 88.49
3.49 0.0% 1.81 0.0% 1.05 34.4% 1.07 31.7% 1.04 37.6%

~`,`,0.50! 91 276.20 90 138.70 89 89.89 88 86.40 87 85.56
3.04 0.0% 1.54 0.1% 1.01 45.4% 0.98 52.8% 0.98 52.4%

~`,`,0.65! 78 231.60 77 101.80 76 68.66 75 68.32 74 67.24
2.97 0.0% 1.32 3.1% 0.90 71.3% 0.91 69.4% 0.91 69.8%

~`,`,`! 52 139.70 51 39.97 50 32.82 49 31.97 48 29.94
2.69 0.0% 0.78 86.8% 0.66 97.1% 0.65 97.1% 0.62 98.1%

TABLE VIII. ~Continued!.
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from extrapolation of theL532 corrections! suggests that
they are real.27 For all these reasons, we have chosen
Lmin5128. The resulting fit is shown in Fig. 10~lower solid
curve!; it hasx2521.45 ~47 DF, level.99.9%!.28 We thus
estimate the limiting value as the value ofa0

jF,`
~2nd!

jA,`
~2nd! 5a052.81760.001 ~5.39!

~68% confidence interval, statistical errors only!. This esti-
mate needs to be accompanied by one caveat: the paucity
of our data withL<128 in the regionx&0.08 makes the fit
extremely sensitive to theassumedbehavior at smallx. Now,
for jA

(2nd) ~and hence also for the ratiojA
(2nd)/jF

(2nd)! theremay
be significant finite-size corrections of orderx2 at small x
~see footnote 22 in Sec. V A above!, which could be much
larger than thee21/x corrections assumed here. So we tried
the alternativeAnsatz

jF
~2nd!~L !

jA
~2nd!~L !

5a081a18x
21a28x

41•••1an8x
2n. ~5.40!

Using n516, Lmin5128, andjmin510 we obtain an equally
good fit ~x2513.86, 46 DF, level.99.9%!, which is shown
as the upper solid curve in Fig. 10. Note the different value
of the limiting constant:

jF,`
~2nd!

jA,`
~2nd! 5a0852.85960.002. ~5.41!

An alternative way of estimating the universal ratio
jF,`
(2nd)/jA,`

(2nd) is to use the separately extrapolated values for
jA,`
(2nd) andjF,`

(2nd) ~Tables VI and X! and simply form the ratio.
Note that the deviations from constancy injF,`

(2nd)/jA,`
(2nd) are

corrections toscaling ~not to asymptotic scaling!, and thus
fall off as an inverse power ofjF,` ~most likely j F,`

22 !. Ex-
perience with other similar quantities suggests that good
scaling will be observed forjF,`*10 ~i.e., b*1.80! or even
smaller. Surprisingly, this doesnot occur here: if we use all
data withjF,`>10 ~i.e., b>1.80!, we obtain the estimate

jF,`
~2nd!

jA,`
~2nd! 52.811160.0023, ~5.42!

but with a very poor goodness of fit~x25127.68, 55 DF,
level51027!. In order to obtain a reasonablex2, we have to
restrict the fit tojF,`>70 ~i.e., b>2.25!: we then get

jF,`
~2nd!

jA,`
~2nd! 52.79860.006, ~5.43!

with x2516.28, 31 DF, level598.7%. The discrepancy be-
tween Eqs.~5.42! and ~5.43! appears to be a real correction
to scaling: its magnitude is very small~'0.013! and is con-

27Moreover, we have here treated the Monte Carlo data for
jF
(2nd)(L) and jA

(2nd)(L) as if they wereindependentrandom vari-
ables. In fact they are presumablypositively correlated, which
means that we have overestimated the error bar on the ratio. So the
corrections to scaling are in fact more statistically significant than
they appear to be.
28If in fact we have overestimated the error bar on the ratio, then

we have underestimated thex2 of the fit. This explains the unusu-
ally low value ofx2.
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TABLE X. Estimated correlation lengthsjA,`
(2nd) as a function ofb, from different extrapolations. Error bar is one standard deviation

~statistical errors only!. All extrapolations uses52 andn513. The indicatedxmin values apply toL58,16,32, respectively; we always take
xmin50.14, 0 forL564,128. Our preferred fit is shown initalics; bad fits are shown in roman.
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sistent with a correction termAj F,`
22 with A;1. We have two

possible explanations for the horriblex2 in Eq. ~5.42!:
~a! We have a large number of data points, each of which

has a very small error bar; so very small corrections to scal-
ing canbecame statistically significant.

~b! The extrapolated valuesjF,`
(2nd)/jA,`

(2nd) at differentb are

presumably positively correlated as a result of errors of type
~iii ! in the extrapolation, but we havenot taken account of
this correlation here~see footnote 25!; this could be causing
the x2 to appear larger than it really is.@On the other hand,
we have overestimated the error bar on the ratio
jF,`
(2nd)/jA,`

(2nd) by assumingindependenterrors onjF,`
(2nd) and

TABLE X. ~Continued!.
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jA,`
(2nd) , when in fact they are probably positively correlated;
this would cause thex2 to appear smaller than it really is.#

In any case, the magnitude of this correction-to-scaling
effect is very small, and we can simply fold the uncertainties
into an enlarged error bar. One possible advantage of this
method over the preceding one is that in the fit~5.3! to

jA
(2nd)(2L)/jA

(2nd)(L) we know the correct value atx50—
namely, 1—in contrast to the fit~5.38! wherea0 is unknown.
As a result, the former fit is somewhat less sensitive to the
assumed form of the small-x corrections: if in Figs. 2 and 6
we had fit to powers ofx2 instead of powers ofe21/x, the
resulting curve would have changed only slightly.

TABLE XI. Degrees of freedom~DF!, x2, x2/NDF and confidence level for thenth order fit ~5.3! of
xA(b,2L)/xA(b,L) versusjF(b,L)/L. The indicatedxmin values apply toL58,16,32, respectively; we
always takexmin50.14, 0 forL564,128. Our preferred fit is shown initalics; other good fits are shown in
sans serif; bad fits are shown in roman.

x2 for the FSS fit ofxA
xmin n512 n513 n514 n515 n516

~`,`,0.40! 101 187.10 100 183.40 99 180.60 98 180.00 97 176.30
1.85 0.0% 1.83 0.0% 1.82 0.0% 1.84 0.0% 1.82 0.0%

~1.0,0.95,0.65! 98 723.90 97 723.30 96 720.30 95 706.00 94 692.30
7.39 0.0% 7.46 0.0% 7.50 0.0% 7.43 0.0% 7.36 0.0%

~`,0.95,0.65! 88 150.30 87 149.50 86 137.70 85 137.70 84 135.70
1.71 0.0% 1.72 0.0% 1.60 0.0% 1.62 0.0% 1.62 0.0%

~`,1,0.65! 84 122.00 83 121.80 82 103.30 81 103.30 80 97.79
1.45 0.4% 1.47 0.4% 1.26 5.6% 1.28 4.8% 1.22 8.6%

~`,1.0,0.9! 70 93.73 69 93.40 68 79.16 67 78.48 66 74.02
1.34 3.1% 1.35 2.7% 1.16 16.7% 1.17 15.9% 1.12 23.3%

~`,`,0.65! 77 90.56 76 87.86 75 78.06 74 77.98 73 63.79
1.18 13.8% 1.16 16.6% 1.04 38.2% 1.05 35.3% 0.87 77.1%

~`,`,0.80! 70 93.02 69 79.17 68 76.42 67 68.85 66 68.67
1.33 3.4% 1.15 18.9% 1.12 22.6% 1.03 41.5% 1.04 38.7%

~`,`,0.90! 63 64.35 62 58.52 61 53.88 60 53.34 59 41.77
1.02 42.9% 0.94 60.2% 0.88 72.9% 0.89 71.6% 0.71 95.6%

~`,`,`! 51 51.63 50 35.76 49 35.57 48 32.40 47 26.34
1.01 44.9% 0.72 93.6% 0.73 92.5% 0.68 95.9% 0.56 99.4%
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TABLE XII. Estimated susceptibilitiesxA,` as a function ofb, from various extrapolations. Error bar is one standard deviation
~statistical errors only!. All extrapolations uses52 andn513. The indicatedxmin values apply toL58,16,32, respectively; we always take
xmin50.14,0 forL564,128. Our preferred fit is shown initalics; other good fits are shown insans serif; bad fits are shown in roman.
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TABLE XII. ~Continued!.
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Yet a third way of estimatingjF,`
(2nd)/jA,`

(2nd) is to treat the
ratio jF

(2nd)/jA
(2nd) as an observableO in its own right, and

perform the fit~5.3! to O(2L)/O(L) directly on it. This pro-
cedure is very similar to the preceding one, but has the ad-

vantage that the errors of type~iii ! in the extrapolation—
which are particularly important for the points at larger
b—are likely to partially cancel betweenjF

(2nd) and jA
(2nd) .

There are significant corrections to scaling for allx when
L58,16; and forL532 the corrections to scaling are positive
and at least 0.5 standard deviations. Having presumably
overestimated the error bars~see footnote 25!, we assume
that the corrections to scaling are significant also forL532.
We therefore choosexmin5~`,`,`!, and usen512: the re-
sulting fit hasx2525.06~51 DF, level599.9%! and is shown
in Fig. 11. The extrapolated values from different lattice
sizes at the sameb are consistent within statistical errors:
two of the 58b values have ax2 too large at the 5% level;
and summing allb values we haveR535.66~63 DF, level
599.8%!. Comparing the estimates ofjF,`

(2nd)/jA,`
(2nd) from dif-

ferentb for consistency with a constant, we find a very large
x2 ~confidence level,2%! no matter what cutoffbmin we
impose. Presumably these discrepancies arise from the cor-
rection to scaling in theL564 points, which we discarded in
the fits ~5.38! and ~5.40! but cannot afford to discard here.
For this reason we believe the result obtained by this ap-
proach,

jF,`
~2nd!

jA,`
~2nd! '2.7960.01, ~5.44!

to be less reliable than the estimate~5.43!.
It is not clear to us whether Eq.~5.39!, ~5.41!, or ~5.43! is

the more reliable estimate. A reasonable compromise would
be to take
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jF,`
~2nd!

jA,`
~2nd! '2.8260.05 ~5.45!

as our ‘‘best estimate;’’ here we have increased the error bar
to take account of the systematic uncertainties in the extrapo-
lation.

3. Relative variance-time product

Finally, let us discuss the efficiency of our extrapolation
method for this model, as reflected in the scaling behavior
~5.7! of the relative variance-time product~RVTP!. We
would like to test the theoretical predictions presented in
Sec. V A 2, and in particular to determine the scaling func-
tionsFj(z), Kj(z), v̄(z), v(z), ḡD(z), andGj(z) arising in
that theory.

The functionsFj(z) and Kj(z) @defined in Eqs.~5.9!,
~5.13!# can be easily obtained from the fitted finite-size-
scaling functionFj(x;2). Indeed, using the obvious recur-
sion relation

Fj~x;s
2!5Fj„Fj~x;s!/s;s…Fj~x;s!, ~5.46!

one can compute numericallyFj(x;`). Then, from
z5xFj(x;`), one determinesx5Fj(z) and thenceKj(z).
Of course, the functionsFj(z) andKj(z) have the predicted
logarithmic growths ~5.16!, ~5.17! at large z, because
Fj(x;2) has the predicted perturbative behavior at largex.

Next we determined the functionsv̄(z) andv(z) control-
ling the static variance of the observableD @defined in Eq.
~5.20!#: see Fig. 12. Again we observe an excellent scaling,
modified only by small corrections to scaling for the smallest
lattices. We see thatv̄(z) tends to a nonzero constant as
z→`, while v(z);ln2z. @A plot of v(z)1/2 versus lnz shows
an excellent straight line at largez.#

Next we studiedḡD(z) @defined in Eq.~5.22!#, which is
the dynamic finite-size-scaling function for the autocorrela-
tion time tint,D in the MGMC algorithm. We varied the dy-
namic critical exponentzint,D until we got a good fit: see Fig.
13, where we have takenzint,D50.45. We observe an excel-
lent scaling, albeit with moderately strong corrections to
scaling for the smallest lattices at largez. The large-z behav-
ior is approximatelyḡD(z);z20.45, as predicted.

Finally, we determined the RVTP scaling functionGj(z)
using the relation

Gj~z!5
NiterKj~z!2

z2j`~b!zint,D
Var„j~b,L !…

j~b,L !2
, ~5.47!

where Var„j~b,L!… is the variance of our Monte Carlo esti-
mate ofj~b,L! as obtained from a run ofNiter iterations. The
resulting functionGj(z) for zint,D50.45 is shown in Fig. 14.
The scaling is reasonably good, though far from perfect. The
large-z behavior is in fairly good agreement with the predic-
tion ~5.28! thatGj(z);z22.45~lnz!2, but there are some dis-
crepancies: indeed, a somewhat better fit at largez is ob-
tained with z22.45~lnz!4. It is therefore possible that our
analysis in Sec. V A 2 has somewhere overlooked an addi-
tional source of logarithms.

As a practical matter, the rapid decrease ofGj(z) means
that runs atj`/L;104 using the extrapolation method are

roughly a factor 109 more efficient@as regards statistical er-
rors of types~i!1~ii !# than the traditional approach using
runs atj`/L'1/6.

C. Data analysis: Comparison with perturbation theory

Let us now compare our data with the predictions of
weak-coupling perturbation theory, and in particular with the
asymptotic-freedom scenario. In Sec. V C 1 we look at the
local quantities~viz. the energies!. In Sec. V C 2 we compare
the raw~finite-L! data for the long-distance quantities~cor-
relation lengths and susceptibilities! with the predictions of
finite-volume perturbation theory@cf. Eq. ~B24!#. Finally, in
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Secs. V C 3–V C 6 we compare the extrapolated~L5`! data
for the long-distance quantities with the asymptotic-freedom
predictions~3.3!–~3.6!.

1. Local quantities

We can compare the fundamental energyEF with the one-
loop, two-loop and three-loop perturbative predictions~3.1!,
and the adjoint energyEA with the one-loop and two-loop
predictions~3.2!. In each case we use the value measured on
the largest lattice available~which is usuallyL5128!; we

define the error bar to be the statistical error~one standard
deviation! on the largest latticeplus the discrepancy between
the values on the largest and second-largest lattices~this is a
conservative estimate of the systematic error due to finite-
size effects!. For EF the finite-size corrections are between
0.000035 and 0.000132~10–20 times larger than the statis-
tical errors! for b*2.60, and between 0.0001 and 0.0005
~20–50 times larger than the statistical errors! for
1.95&b&2.60. ForEA the finite-size corrections are between
0.000065 and 0.000153~10–20 times larger than the statis-
tical errors! for b*2.60, and between 0.0002 and 0.0006
~20–50 times larger than the statistical errors! for
1.95&b&2.60.

Both the fundamental and adjoint energies are in reason-
ably good agreement with the perturbative predictions: see
Figs. 15~a! and 16~a!. Furthermore, we can use the observed
deviations from these perturbative predictions to obtain
crude estimates of the next perturbative coefficients~which
we hope someone will calculate in the near future!. In Fig.
15~b! we plotEF2EF

(3 loop) versus 1/b4.29 The limiting slope
suggests a 4-loop coefficient of order20.05 to20.1. If we
fit EF2EF

(3 loop)5k4b
241k5b

25, a reasonable fit is obtained
if we restrict attention to the points withb>2.35, and we get
k4520.0243060.00942, k5520.22260.026. Unfortu-
nately, this fit would imply thatuk5/b

5u is more than twice as
large asuk4/b

4u even at our largest value ofb ~54.35!, so that
the extrapolation tob5` cannot be taken seriously. All we
can conclude is that~a! k4 is somewhere in the range from
20.02 to20.10, and~b! if k4 turns to be closer to the former
value, then k5 must be negative and of rather large magni-
tude~of order20.10 or20.20!. These estimates can be com-
pared to the known values ofk1522/3, k2520.0972222,
k3520.0679225.

We proceed similarly for the adjoint energy. In Fig. 16~b!
we plotEA2EA

(3 loop) versus 1/b3.30 The limiting slope sug-
gests a 3-loop coefficient of order20.02. If we fit EA

2EA
(3 loop)5 l 3b

231 l 4b
24, a reasonable fit is obtained if we

restrict attention to the points withb>2.35, and we get
l 3520.036160.0046,l 450.05460.013. However, these er-
ror bars should not be taken seriously, as we are neglecting
terms of orderb25, b26, etc. In any case, it is worth com-
paring these estimates to the known valuesl 1523/2,
l 250.40625.

2. Comparison of long-distance quantities with finite-volume
perturbation theory

Let us next compare the finite-volume Monte Carlo data
O~b,L! for the long-distance observablesO5j#

~2nd! and x#
with the predictions~B24! of finite-volume perturbation
theory ~b→` at fixedL,`!. The expansions~B24! give x#
through order 1/b2, and j# through order 1/b; they are de-

29The symbols in Fig. 15~b! indicateL5128~h! andL5256~L!.
The finite-size corrections inEF appear to be negligible compared
to the deviation from the three-loop perturbative prediction.
30The symbols in Fig. 16~b! indicateL5128~h! andL5256~L!.

In this case the finite-size corrections are clearly significant: the
L5256 points lie noticeably above theL5128 points.
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rived from the expansions~B22!, which give G# through
order 1/b2. We restrict attention to 8<L<128, as our very
few L5256 data points are all far from the perturbative re-
gime ~they all haveb<2.30 andx[jF

(2nd)(L)/L,0.33!.
We begin with the correlation lengthsjF

(2nd) and jA
(2nd) .

For these observables, the expansion is of the form

j#
~2nd!~b,L !5Ab1/2LF12

A1~L !

b
2O~b22!G , ~5.48!

with A1(L);lnL at largeL @cf. Eq. ~B4a!#. Luckily, A1(L)
is not too large for these two expansions: forjF

(2nd) it
ranges from'0.48 atL58 to '0.80 atL5128, while for
jA
(2nd) it ranges from'0.61 atL58 to'0.92 atL5128. As

FIG. 15. ~a! Fundamental energyEF vs b. Each point comes
from the largest lattice available at a givenb: L564 ~3!, L5128
~h!, or L5256 ~L!. Error bars~usually invisible! are statistical
error ~one standard deviation! plus a conservative estimate of the
systematic error due to finite-size corrections. Dashed curves are the
perturbative prediction~3.1! through orders 1/b ~top curve!, 1/b2

~middle curve!, and 1/b3 ~bottom curve!. ~b! Deviations of funda-
mental energyEF from three-loop perturbative prediction~3.1!,
plotted vs 1/b4. Solid curve corresponds to the fitEF2EF

(3 loop)

5k4 /b
41k5 /b

5 for b>2.35.

FIG. 16. ~a! Adjoint energyEA vs b. Each point comes from
the largest lattice available at a givenb: L564 ~3!, L5128 ~h!, or
L5256 ~L!. Error bars~usually invisible! are statistical error~one
standard deviation! plus a conservative estimate of the systematic
error due to finite-size corrections. Dashed curves are the perturba-
tive prediction~3.2! through orders 1/b ~lower curve! and 1/b2 ~up-
per curve!. ~b! Deviations of adjoint energyEA from two-loop per-
turbative prediction ~3.2!, plotted versus 1/b3. Solid curve
corresponds to the fitEA2EA

(2 loop)5k3 /b
31k4 /b

4 for b>2.35.
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a result, the first-order perturbation correction in the range of
interest~2&b&4! is of modest size, namely 10–40 %. Fur-
thermore, the discrepancy between the Monte Carlo data and
the perturbative predictions,

R2~b,L ![
j#

~2nd!~b,L !

Ab1/2L
2F12

A1~L !

b G , ~5.49!

is smaller than this by a factor of 2–10: see Tables XIII and
Tables XIV.

Let us now examine more closely the behavior of the
remainder termR2(b,L). Heuristically we would expect the
remainder in first-order perturbation theory to be of the same
order of magnitude as the second-order perturbative correc-
tion, i.e., of order2A2(L)/b

2;~lnL!2/b2. Let us therefore
define

R̃2~b,L ![
b2

~ lnL !2
R2~b,L !. ~5.50!

We would like to know whether or notuR̃2(b,L)u is uni-
formly boundedin b>someb0 andL>someL0, as it should
be if the perturbation series is to be ‘‘well behaved.’’31

We can say somethingrigorously in three different re-
gimes:

~i! As b→` at fixed L,`, we have
limb→`b2R2(b,L)52A2(L) ~with corrections of order 1/b!,
and hence limL→`limb→`R̃2(b,L)52A2252A 11

2 /2 @cf. Eq.
~B7a!#.

~ii ! As L→` at fixed b,`, we have
limL→`~ln L!21R2(b,L)5A11/b, and hence
limL→`R̃2(b,L)50 ~with corrections of order 1/lnL!.

~iii ! Since j~b,L!>0, we haveR2(b,L)>[A1(L)/b]21
for all b,L. In particular, along any curveb5cA1(L) with
c.0 ~which makes sense at least for largeb sinceA11.0!,
we can conclude thatR̃2(b,L)>c(12c)A1(L)

2/ln2L, which

31This question has been raised forcefully by Patrascioiu and
Seiler @39,40,42#.

TABLE XIII. Comparison of Monte Carlo data with finite-volume perturbation theory forjF
(2nd)(b,L).

Here2A1(L)/b is the first-order perturbative correction;R2(b,L) is the remainder to first-order perturbation
theory; and ‘‘est.2A 20

(F)’’ denotesb2R2(b,L)1A22 ln
2 L1A21 ln L, which asb→` at fixedL should tend

to 2A 20
(F)1O~ln2 L/L2!.

L b jF,`~b! x 2A1(L)/b R2(b,L) est.2A 20
(F) R̃2(b,L)

8 2.10 38 0.63 20.227 20.0653 20.1719 20.06659

8 2.30 87 0.69 20.207 20.0510 20.1540 20.06244

8 3.00 1489 0.86 20.159 20.0264 20.1219 20.05503

8 3.75 31910 1.02 20.127 20.0154 20.1009 20.05016

8 4.35 371700 1.12 20.110 20.0113 20.0977 20.04943

16 2.10 38 0.57 20.265 20.0951 20.2512 20.05458

16 2.30 87 0.64 20.242 20.0733 20.2193 20.05044

16 3.00 1489 0.83 20.186 20.0363 20.1580 20.04246

16 3.75 31910 0.98 20.149 20.0214 20.1326 20.03915

16 4.35 371700 1.09 20.128 20.0152 20.1189 20.03738

32 2.10 38 0.50 20.304 20.1337 20.3618 20.04907

32 2.30 87 0.58 20.278 20.0992 20.2972 20.04369

32 3.00 1489 0.78 20.213 20.0480 20.2043 20.03595

32 3.75 31910 0.95 20.170 20.0279 20.1641 20.03261

32 4.35 371700 1.06 20.147 20.0196 20.1442 20.03095

64 2.10 38 0.42 20.343 20.1887 20.5387 20.04812

64 2.30 87 0.51 20.314 20.1344 20.4174 20.04111

64 3.00 1489 0.74 20.240 20.0625 20.2691 20.03254

64 3.75 31910 0.92 20.192 20.0353 20.2022 20.02867

64 4.35 371700 1.03 20.166 20.0249 20.1767 20.02720

128 2.10 38 0.29 20.383 20.2875 20.9015 20.05386

128 2.30 87 0.43 20.349 20.1835 20.6042 20.04124

128 3.00 1489 0.69 20.268 20.0794 20.3477 20.03034

128 3.75 31910 0.88 20.214 20.0441 20.2542 20.02637

128 4.35 371700 1.00 20.185 20.0295 20.1922 20.02374

256 2.30 87 0.32 20.385 20.2662 20.9617 20.04579
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for large L tends toc(12c)A 11
2 . For 0,c,1 this proves

that R̃2(b,L).0 and provides alower bound on its magni-
tude; forc.1 it constrains only how negativeR̃2(b,L) can
get.

Furthermore, under theassumptionsof the conventional
wisdom, we can say something analytically in one subcase of
regime~iii !:

~iii 8! As b, L→` at fixed x[jF
(2nd)(b,L)/LÞ0,̀ , we

have

lim
b,L→`

x fixedÞ0,̀

b

ln L
5w052A11 ~5.51!

@corresponding toc52 in regime~iii !# and

lim
b,L→`

x fixedÞ0,̀

R̃2~b,L !522A11
2 . ~5.52!

@This shows that the lower bound for regime~iii ! is sharp
when c52#. Proof of Eqs.~5.51!, ~5.52!: From asymptotic
scaling ~3.3! we have lnj`(b)5b/w01O(lnb) where w0
52A11 is the first coefficient of the RGb function @cf. Eqs.
~B10a!, ~B11a!#. According to finite-size scaling~5.1!, taking

b, L→` at fixedx[j(b,L)/LÞ0, ` implies thatj`(b)/L
also converges to a limitÞ0,̀ , so that in particular
lnj`(b)/lnL→1. This implies Eq.~5.51!. On the other hand,
j(b,L)/@Ab1/2L#5x/@Ab1/2#, which tends to zero as
b→` at fixed x. It follows thatR2(b,L)→2 1

2 , which to-
gether with Eq.~5.51! implies Eq. ~5.52!. QED @This is
somewhat strange: the limiting value ofR̃2(b,L) must be-
have in a highly nonmonotonic way as we pass from regime
~ii ! through regime~iii !/~iii 8! to regime~i!.#

We can use our Monte Carlo data to study the behavior of
R̃2~b,L !. First of all, let us look at limit~i!. We know that

A2~L !5A22ln
2L1A21lnL1A201OS ln2LL2 D , ~5.53!

with

A225
N2

128p2, ~5.54a!

A215
N2

64p21
N

8p
A10, ~5.54b!

@cf. Eqs.~B11a!, ~B11b!, and~A22!, ~A23!#, where we have

TABLE XIV. Comparison of Monte Carlo data with finite-volume perturbation theory forjA
(2nd)(b,L).

Here2A1(L)/b is the first-order perturbative correction;R2(b,L) is the remainder to first-order perturbation
theory; and ‘‘est.2A 20

(A)’’ denotesb2R2(b,L)1A22 ln
2 L1A21 ln L, which asb→` at fixedL should tend

to 2A 20
(A)1O~ln2 L/L2!.

L b jF,`~b! x 2A1(L)/b R2(b,L) est.2A 20
(A) R̃2(b,L)

8 2.10 38 0.63 20.293 20.0872 20.2389 20.08890
8 2.30 87 0.69 20.267 20.0688 20.2183 20.08413
8 3.00 1489 0.86 20.205 20.0361 20.1795 20.07517
8 3.75 31910 1.02 20.164 20.0213 20.1543 20.06934
8 4.35 371700 1.12 20.141 20.0156 20.1489 20.06809

16 2.10 38 0.57 20.326 20.1234 20.3364 20.07078
16 2.30 87 0.64 20.297 20.0956 20.2978 20.06576
16 3.00 1489 0.83 20.228 20.0477 20.2220 20.05589
16 3.75 31910 0.98 20.182 20.0282 20.1886 20.05156
16 4.35 371700 1.09 20.157 20.0200 20.1713 20.04931

32 2.10 38 0.50 20.363 20.1686 20.4669 20.06191
32 2.30 87 0.58 20.331 20.1264 20.3919 20.05566
32 3.00 1489 0.78 20.254 20.0613 20.2748 20.04592
32 3.75 31910 0.95 20.203 20.0355 20.2229 20.04159
32 4.35 371700 1.06 20.175 20.0251 20.1979 20.03951

64 2.10 38 0.42 20.401 20.2319 20.6701 20.05913
64 2.30 87 0.51 20.366 20.1680 20.5362 20.05138
64 3.00 1489 0.74 20.281 20.0784 20.3530 20.04080
64 3.75 31910 0.92 20.225 20.0442 20.2694 20.03596
64 4.35 371700 1.03 20.194 20.0311 20.2351 20.03398

128 2.10 38 0.29 20.440 20.3318 21.0281 20.06216
128 2.30 87 0.43 20.402 20.2252 20.7559 20.05060
128 3.00 1489 0.69 20.308 20.0985 20.4509 20.03764
128 3.75 31910 0.88 20.247 20.0546 20.3326 20.03262
128 4.35 371700 1.00 20.213 20.0367 20.2584 20.02947

256 2.30 87 0.32 20.438 20.3130 21.1307 20.05384
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A10
~F !5

1

4FNI1,fin1N222

4N
1
N222

2N S 4p2I 3,`1
1

2p2D G ,
~5.55a!

A10
~A!5

1

4FNI1,fin1N222

4N
1
3N

2 S 4p2I 3,`1
1

2p2D G ,
~5.55b!

for the fundamental and adjoint sectors@see Eqs.~B27!–
~B31! for definitions#. UnfortunatelyA 20

(F) andA 20
(A) are un-

known. We can use our Monte Carlo data to estimateA2
~#!(L)

for L58,16,32,64,128; in this way we can test Eqs.~5.53!–
~5.55! and obtain a rough estimate ofA20

~#! . The data are
approximately converged forL58, and suggest very roughly
A 20

(F)'0.09 andA 20
(A)'0.14 ~see the next-to-last column of

Tables XIII and XIV!. The data for largerL are at least
consistent with convergence to these values.

In limit ~ii !, we seeuR̃2(b,L)u slowly decreasing as a
function of L when L!jF,`~b!, then beginning to grow
slightly when L;jF,`~b!. We know thatuR̃2(b,L)u must
ultimately decrease again to zero asL→`, but our data do
not allow us to observe this decrease~this is not surprising
since the rate of convergence is only 1/lnL!.

Along the curvesx5constant@limit ~iii 8!#, R̃2(b,L) stays
bounded and is roughly consistent with convergence to the
predicted value22A 11

2 5N2/~32p2!'20.028497.
In summary, our data in Tables XIII and XIV give no

evidence ofR̃2(b,L) becoming unbounded in any region of
the ~b,L! plane. It is of course still possible thatR̃2(b,L)
does become unbounded in some region far from the one we
have studied; this question needs ultimately to be resolved by
a rigorous mathematical proof.

Let us now look at the susceptibilitiesxF and xA , for
which the expansion is of the form

x#~b,L !5BL2F12
B1~L !

b
2
B2~L !

b2 2O~b23!G ,
~5.56!

with B1(L);lnL andB2(L);~lnL!2 at largeL. For xF the
coefficientB1(L) is rather large, ranging from'1.01 atL58
to '2.19 atL5128, while B2(L) is fairly small, ranging
from '0.04 atL58 to '20.43 atL5128. As a result, the
first-order perturbation corrections are quite large in the
range of interest, but the second-order corrections are small;
and the discrepancy between the Monte Carlo data and the
second-order perturbative prediction is a factor 1–10 smaller
than the second-order correction~see Table XV!. ForxA , by
contrast, both coefficients are very large:B1(L) ranges
from'2.28 atL58 to'4.93 atL5128, whileB2(L) ranges
from '21.39 atL58 to '27.75 atL5128. As a result,
both the first-order and second-order perturbation corrections
are huge; nevertheless, the discrepancy between the Monte
Carlo data and the second-order perturbative prediction is
surprisingly small~see Table XVI!.

Let us define the discrepancy between the exact values
and the second-order perturbative predictions,

S3~b,L ![
x#~b,L !

BL2
2F12

B1~L !

b
2
B2~L !

b2 G , ~5.57!

and the corresponding rescaled quantity

S̃3~b,L ![
b3

~ lnL !3
S3~b,L !. ~5.58!

Just as for the correlation lengths, we can prove rigorously
the behavior in regimes~i!–~iii !:

~i! As b→` at fixed L,`, we have
limb→`b3S3(b,L)52B3(L), and hence
limL→`limb→`S̃3(b,L)52B33.

~ii ! As L→` at fixed b,`, we have
limL→`~lnL!22S3(b,L)5B22/b, and hence
limL→`S̃3(b,L)50.

~iii ! Since x~b,L!>0, we have
S3(b,L)>[B1(L)/b]1[B2(L)/b

2#21 for all b,L. In par-
ticular, along any curveb5cA1(L) with c.0, we can con-
clude that~writing for simplicity only theL→` limit ! we
have S̃3(b,L)*c2A 11

2 B111cA11B222c3A 11
3 5(c2

1c)A 11
2 B112

1
2cA11B 11

2 2c3A 11
3 @cf. Eq. ~B7b!#. Unfortu-

nately, the sign of this lower bound is far from obvious.
Furthermore, the assumptions of the conventional wisdom

imply the following:
~iii 8! As b,L→` at fixed x[jF

(2nd)(b,L)/LÞ0, `, we
have

lim
b,L→`

x fixedÞ0,̀

S̃3~b,L !56A11
2 B112A11B11

2 28A11
3 . ~5.59!

@This shows that the lower bound for regime~iii ! is sharp
when c52.# Proof of Eq. ~5.59!: We have Eq.~5.51! as
before. On the other hand, let us write

x~b,L !

L2
5

x~b,L !

x~b,`!

x~b,`!

j~b,`!2 S j~b,`!

L D 2. ~5.60!

By finite-size-scaling theory, the first and third factors on the
right-hand side tend to finite constants asb,L→` at fixedx;
while asymptotic scaling implies that the second factor
scales asb2g0 /w0, hence vanishes asb→` because
g0/w0.0. Using Eq. ~5.51!, we easily deduce Eq.~5.59!.
QED

We can use our Monte Carlo data to study the behavior of
S̃3(b,L). First of all, let us look at limit~i!. We know that

B3~L !5B33 ln
3L1B32 ln

2L1B31 lnL1B301OS ln3LL2 D ,
~5.61!

with

B335
1

6
~g0

323w0g0
212w0

2g0!, ~5.62a!

B325
1

2
~w1g012w0g1

lat22g0g1
lat!1

B10

2
~2w0

21g0
2

23w0g0!, ~5.62b!

B315g2
lat1B10~w12g1

lat!1B20~2w02g0!, ~5.62c!

where the RG coefficientsw0 ,w1 ,g0,g1
lat,g2

lat can be found in
Appendix A, and the constantsB10 andB20 can be extracted
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from Appendix B~the latter formulas are somewhat lengthy!.
We consider firstxF , because it is only for the fundamental
sector that we know the value ofg2

lat. Numerically, forN53
we haveB 33

(F)'20.0006967924,B 32
(F)'20.0175782344, and

B 31
(F)'0.0679511385. UnfortunatelyB 30

(F) is unknown. We
can use our Monte Carlo data to test Eqs.~5.61!–~5.62! and
obtain a rough estimate ofB 30

(F). The first thing to note is that
S3(b,L) undergoes a curious change of sign asL varies~see
Table XV!; but this increase is almost entirely accounted for
by the known termsB33 ln

3 L1B32 ln
2L1B31 lnL, which ex-

hibit a similar sign change. The difference is much smaller in
magnitude, and as a result the estimatedB 30

(F) is much
smaller in magnitude thanb3S3(b,L) @see the next-to-last
column of Table XV#. Unfortunately the estimates ofB 30

(F)

are not well converged~the fluctuations at largerL are sta-
tistical error!; all we can say is thatB 30

(F) is very small, prob-
ably somewhere between20.1 and 0.1.

Likewise, in limits ~ii ! and~iii 8!, we are unable to see the
predicted convergence ofS̃3(b,L) to a limiting value, or to
say whetheruS̃3(b,L)u appears to remain bounded. In any
case,uS̃3(b,L)u stays extremely small.

Finally, let us consider the adjoint susceptibilityxA , for
which the known numerical values~for N53! are

B 33
(A)'0.0544244644 andB 32

(A)'20.1358424235. ForxA ,
the first-order perturbative corrections are enormous~50–
110 % even at our largestb!, and the second-order correc-
tions are quite large~7–40 % even at the largestb!: see
Table XVI. In view of this, the deviations from second-order
perturbation theory are amazingly small: e.g., a fraction of
a percent when the second-order term is as large as 20%, or
10–40 % when the second-order term is 100% or more. Fur-
thermore, these deviations are almost perfectly explained by
theB3(L)/b

3 term, as can be seen from the almost-constancy
of S̃3(b,L) as a function ofb at each fixedL. The values of
S̃3(b,L) vary significantly withL, but it is plausible that
they are approaching their predicted limiting value
2B 33

(A)'20.054 asL→` ~the corrections are, after all, of
order 1/lnL with a relatively large coefficientB 32

(A)!. We do
not have any explanation for these incredibly accurate pre-
dictions from ana priori badly behaved perturbation series.

3. Fundamental sector: correlation length

In the next four subsections we shall compare the extrapo-
lated infinite-volumevaluesO`~b! for the long-distance ob-
servablesO5j#

~2nd! andx# , as generated in Sec. V B 1, with
the asymptotic-freedom predictions.

TABLE XV. Comparison of Monte Carlo data with finite-volume perturbation theory forxF(b,L). Here
2B1(L)/b and 2B2(L)/b

2 are the first-order and second-order perturbative corrections;S3(b,L) is the
remainder to second-order perturbation theory; and ‘‘est.2B 30

(F)’’ denotes
b3S3(b,L)1B33 ln

3 L1B32 ln
2 L1B31 ln L, which asb→` at fixedL should tend to2B 30

(F)1O~ln3 L/L2!.

L b jF,`~b! x 2B1(L)/b 2B2(L)/b
2 S3(b,L) est.2B 30

(F) S̃3(b,L)

8 2.10 38 0.63 20.482 20.009 20.01053 20.03845 20.01084
8 2.30 87 0.69 20.440 20.008 20.00726 20.02934 20.00983
8 3.00 1489 0.86 20.337 20.005 20.00275 20.01522 20.00826
8 3.75 31908 1.02 20.270 20.003 20.00121 20.00462 20.00708
8 4.35 371706 1.12 20.233 20.002 20.00077 20.00475 20.00709

16 2.10 38 0.57 20.622 0.004 20.01012 20.05531 20.00440
16 2.30 87 0.64 20.568 0.003 20.00685 20.04494 20.00391
16 3.00 1489 0.83 20.435 0.002 20.00226 20.02250 20.00286
16 3.75 31908 0.98 20.348 0.001 20.00101 20.01493 20.00250
16 4.35 371706 1.09 20.300 0.001 20.00061 20.01190 20.00236

32 2.10 38 0.50 20.762 0.026 20.00466 20.04779 20.00104
32 2.30 87 0.58 20.696 0.022 20.00224 20.03194 20.00066
32 3.00 1489 0.78 20.534 0.013 20.00037 20.01464 20.00024
32 3.75 31908 0.95 20.427 0.008 20.00010 20.00987 20.00013
32 4.35 371706 1.06 20.368 0.006 20.00003 20.00736 20.00007

64 2.10 38 0.42 20.902 0.058 0.00587 20.01717 0.00076
64 2.30 87 0.51 20.824 0.048 0.00585 20.00035 0.00099
64 3.00 1489 0.74 20.632 0.028 0.00278 0.00363 0.00105
64 3.75 31908 0.92 20.505 0.018 0.00143 0.00375 0.00105
64 4.35 371706 1.03 20.436 0.013 0.00094 0.00617 0.00108

128 2.10 38 0.29 21.043 0.098 0.01976 0.01929 0.00160
128 2.30 87 0.43 20.952 0.082 0.01786 0.05363 0.00190
128 3.00 1489 0.69 20.730 0.048 0.00760 0.04146 0.00180
128 3.75 31908 0.88 20.584 0.031 0.00367 0.02968 0.00169
128 4.35 371706 1.00 20.503 0.023 0.00256 0.04713 0.00185

256 2.30 87 0.32 21.080 0.122 0.03279 0.11648 0.00234
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We begin by comparing the fundamental correlation
length jF

(2nd) with the two-loop and three-loop perturbative
predictions~3.3!,~3.9!. In all cases, we use the extrapolated
data from our preferred fit: see Table VI, estimate
~`,0.90,0.65!.

Let us recall that perturbation theory~3.3!,~3.9! combined
with the nonperturbative~BNNW! prefactor ~3.16! give a
quantitative prediction for theexponentialcorrelation length
jF
(exp) @cf. Eqs.~3.17a!,~3.17c!#. The factorjF

(2nd)/jF
(exp) is un-

known, but a high-precision Monte Carlo study of the SU~3!
chiral model yields the value 0.98760.002 @67#. We shall
therefore plot jF

(2nd)(b) divided by jF,BNNW,k-loop
(exp) (b) for

k52,3, and look for convergence asb→` to a value
'0.987. The results are shown in Fig. 17~a! ~points1 and
3!. The discrepancy from two-loop asymptotic scaling,
which is'20% atb52.0 ~jF,`'25!, decreases to 5–6 % at
b54.35 ~jF,`'3.73105!. The discrepancy from three-loop
asymptotic scaling, which is'12% atb52.0, decreases to
2–3 % at b54.35. Furthermore, if we fit
jF
(2nd)/jF,BNNW,3-loop

(exp) 5k01k2b
22, a good fit is obtained if we

restrict attention to the points withb>2.60 ~jF,`*300!, and
we obtain the estimates

C̃j
F
~2nd! /C̃j

F
~exp![k050.98960.007, ~5.63a!

a2[k2 /k0520.3860.06 ~5.63b!

@see Fig. 17~b!, points 3#. Of course, this estimate ofa2
should not be taken too seriously, as we have neglected cor-
rections of orderb23 and higher; it is in any case of the same
order of magnitude as the known valuea1520.164. More-
over, the error bar onk0 is probably significantly underesti-
mated, because in this fit we have ignored thecorrelations
between the estimated valuesjF,`

(2nd) at different b @which
arise from errors of type~iii !#. Still, the agreement with the
predicted value 0.987 is remarkable.

We can also try ‘‘improved expansion parameters’’~see
Sec. III C!. For example, we can usexF[12EF as a substi-
tute for b, and compare to the prediction~3.19!,~3.20! for
jF
(exp) as a function of 12EF . ForEF we use the value mea-
sured on the largest lattice~which is usuallyL5128!; the
statistical errors and finite-size corrections onEF are less
than 531024, and they induce an error less than 0.85% on
the predictedjF,` ~less than 0.55% forb>2.2!. In Fig. 17~a!
~pointsh andL! we showjF

(2nd) divided by the two-loop
and three-loop perturbative predictions~3.19!,~3.20! for
jF
(exp). The data agree with the two-loop prediction to within
better than 5% forb>2.10 ~jF,`*40!. The agreement with
the three-loop prediction is excellent: the discrepancy is

TABLE XVI. Comparison of Monte Carlo data with finite-volume perturbation theory forxA(b,L). Here
2B1(L)/b and 2B2(L)/b

2 are the first-order and second-order perturbation corrections;S3(b,L) is the
remainder to second-order perturbation theory.

L b jF,`~b! x 2B1(L)/b 2B2(L)/b
2 S3(b,L) S̃3(b,L)

8 2.10 38 0.63 21.084 0.316 20.013 20.013
8 2.30 87 0.69 20.989 0.263 20.009 20.013
8 3.00 1489 0.86 20.759 0.155 20.004 20.013
8 3.75 31908 1.02 20.607 0.099 20.002 20.012
8 4.35 371706 1.12 20.523 0.074 20.001 20.013

16 2.10 38 0.57 21.400 0.562 20.047 20.021
16 2.30 87 0.64 21.278 0.469 20.036 20.020
16 3.00 1489 0.83 20.980 0.275 20.016 20.020
16 3.75 31908 0.98 20.784 0.176 20.008 20.020
16 4.35 371706 1.09 20.676 0.131 20.005 20.020

32 2.10 38 0.50 21.715 0.885 20.117 20.026
32 2.30 87 0.58 21.566 0.738 20.088 20.026
32 3.00 1489 0.78 21.201 0.434 20.039 20.025
32 3.75 31908 0.95 20.961 0.278 20.020 20.025
32 4.35 371706 1.06 20.828 0.206 20.013 20.025

64 2.10 38 0.42 22.030 1.284 20.234 20.030
64 2.30 87 0.51 21.854 1.070 20.177 20.030
64 3.00 1489 0.74 21.421 0.629 20.078 20.029
64 3.75 31908 0.92 21.137 0.403 20.040 20.029
64 4.35 371706 1.03 20.980 0.299 20.025 20.029

128 2.10 38 0.29 22.346 1.757 20.407 20.033
128 2.30 87 0.43 22.142 1.465 20.307 20.033
128 3.00 1489 0.69 21.642 0.861 20.137 20.032
128 3.75 31908 0.88 21.314 0.551 20.070 20.032
128 4.35 371706 1.00 21.132 0.410 20.044 20.032

256 2.30 87 0.32 22.429 1.922 20.488 20.035
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&1–2 % for b>1.75 ~jF,`*8!. Furthermore, the ‘‘im-
proved’’ 3-loop prediction is extremely flat, and can be fit
well to a constantk08 if we restrict attention to the points with
b>2.60 ~jF,`*300!, yielding the estimate

C̃j
F
~2nd! /C̃j

F
~exp![k0850.98360.002 ~5.64!

@see Fig. 17~b!, pointsL#.32

In conclusion, the three-loop perturbative prediction in the
bare parameter agrees with the Monte Carlo data to within
about 2–3 % forb>4.05 ~jF,`*105!, and the three-loop
‘‘improved’’ perturbative prediction is even better~,1%!.
Furthermore, both the bare-parameter and the ‘‘improved’’
perturbative predictions are extremely flat forb>3.15 and
b>2.35, respectively. A good compromise for the limiting
value would be

C̃j
F
~2nd! /C̃j

F
~exp!50.98560.007, ~5.65!

which is in excellent agreement with the Rossi-Vicari pre-
diction 0.98760.002@67#.

4. Fundamental sector: Susceptibility

For the susceptibilityxF we proceed in two different
ways: using eitherxF directly or else using the ratio

xF /jF
(2nd)2. The advantage of the latter approach is that one

additional term of perturbation theory is available.
In Fig. 18~a! we plot xF,`,estimate(̀ ,`,0.80) divided by the

theoretical prediction~3.4!,~3.10! with the prefactor C̃xF
omitted; theb→` limit of this curve thus gives an estimate
of C̃xF

. Here we have two-loop and three-loop predictions
~points1, 3! as well as ‘‘improved’’ two-loop and three-
loop predictions~h, L!. The estimates from two-loop and
three-loop standard perturbation theory~which are virtually
identical sinceb1'20.023 is so small! are strongly rising for
b&2.4 and weakly rising thereafter. If we fitxF/~xF,3-loop

without the prefactorC̃xF
!5k01k2b

22, a good fit is obtained
if we restrict attention to the points withb>2.65
~jF,`*360!, and we obtain the estimates

C̃xF
[k0516.7560.31, ~5.66a!

b2[k2 /k0520.7260.12 ~5.66b!

@see Fig. 18~b!, points3#. The estimates from ‘‘improved’’
perturbation theory are rather flatter, particularly the 3-loop
one which is virtually constant forb*2.45 ~jF,`*160!. The
‘‘improved’’ 3-loop values can be fit well to a constantk08 if
we restrict attention tob >2.55 ~jF,`*240!, and we obtain
the estimate

C̃xF
[k08516.3060.07 ~5.67!

@see Fig. 18~b!, pointsL#. This estimate is slightly lower
than Eq.~5.66a!, but consistent with it.

Similarly, we could plot (xF /jF
(2nd)2)`,estimate(̀ ,`,`) di-

vided by the theoretical prediction~3.7!, ~3.11!, ~3.12! with

32If, instead, we fit jF
(2nd)/jF,BNNW,improved 3-loop

(exp) 5k081k28b
22, a

good fit is obtained if we restrict attention to the points with
b>2.45 ~jF,`*160!, and we obtain the estimatesC̃j

F
(2nd) /C̃j

F
(exp)

[k0850.97960.006 anda2
(imp)[k28/k08520.0460.05. But since

thea2
~imp! is consistent with zero, we may as well use a constant fit.

FIG. 17. ~a! jF,`,estimate(`,0.90,0.65)
(2nd) /jF,`,theor

(exp) vs b. Error bars are
one standard deviation~statistical error only!. There are four ver-
sions ofjF,`,theor

(exp) : standard perturbation theory in 1/b gives points
1 ~2-loop! and 3 ~3-loop!; ‘‘improved’’ perturbation theory in
12E gives pointsh ~2-loop! andL ~3-loop!. Dotted line is the
Monte Carlo prediction C̃j

F
(2nd) /C̃j

F
(exp)50.98760.002 @67#. ~b!

Same ratio plotted versus 1/b2. The lower solid line is the fit
k01k2/b

2 to the standard 3-loop estimates~3! for b>2.60. The
upper solid line is the constant fitk08 to the ‘‘improved’’ 3-loop
estimates~L! for b>2.60. Dashed line is the Monte Carlo predic-
tion C̃j

F
(2nd) /C̃j

F
(exp)50.98760.002 @67#.
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the prefactors C̃xF and C̃j
F
(2nd) omitted; theb→` limit of this

curve would thus give an estimate ofC̃xF
/(C̃j

F
(2nd))2. How-

ever, in order to make the vertical scale of this graph more
directly comparable to that of Fig. 18, we have multiplied the
quantity being plotted by (C̃

j
F
(exp)
(BNNW)

)2. Note that this does not

in any way alter thelogic of the analysis, asC̃
j
F
(exp)
(BNNW)

is an

explicit number defined in Eq.~3.16!. The resulting curve is
plotted in Fig. 19~a!; its b→` limit gives an estimate of
C̃xF

3(C̃j
F
(2nd) /C̃

j
F
(exp)
(BNNW)

)22. In this case we have 2-loop,

3-loop, and 4-loop predictions~1, 3, ! as well as
‘‘improved’’ 2-loop, 3-loop, and 4-loop predictions~h, L,
s!. To convert this number to an estimate forC̃xF

itself, we
need to multiply by

S C̃j
F
~2nd!

C̃
j
F
~exp!

~BNNW!D 2

5S C̃j
F
~2nd!

C̃j
F
~exp!

D 2S C̃j
F
~exp!

C̃
j
F
~exp!

~BNNW!D 2

. ~5.68!

The first factor on the right side has been estimated by Monte
Carlo simulations@67#, yielding 0.987250.974; moreover,
our data forjF

(2nd) itself ~Fig. 17! are consistent with this
prediction. The second factor on the right side is presumably
equal to 1~exactly!. So we can take the factor~5.68! to be
'0.974. The estimates from the 3-loop standard perturbation
theory are rapidly decreasing forb&3.2 and slowly decreas-
ing thereafter; if we fit them tok01k2b

22, a good fit is
obtained if we restrict attention tob>2.30 ~jF,`>85!, and
we obtain the estimates

C̃xFS C̃j
F
~2nd!

C̃
j
F
~exp!

~BNNW!D 22

[k0516.6160.04, ~5.69a!

c2[k2 /k050.3460.02,
~5.69b!

and hence

C̃xF
516.1760.04. ~5.70!

The estimate~5.69b! is in excellent agreement with the
known valuec250.306. If we now fit the standard 4-loop
values to k01k3b

23, we have a good fit forb>2.60
~jF,`*300!, and we obtain the estimates

C̃xFS C̃j
F
~2nd!

C̃
j
F
~exp!

~BNNW!D 22

[k0516.7460.04, ~5.71a!

c3[k3 /k050.1960.07
~5.71b!

@see Fig. 19~b!, points #, and hence

C̃xF
516.3060.04. ~5.72!

The estimates from ‘‘improved’’ perturbation theory are
much flatter, particularly the 4-loop one which is virtually
constant forb*2.3. If we fit the ‘‘improved’’ 3-loop values
to k081k28b

22 for b>2.25 ~jF,`*70!, we get

FIG. 18. ~a! @xF,`,estimate(`,`,0.80)#/@xF,`,theor without the prefac-
tor C̃xF

# vsb. Error bars are one standard deviation~statistical error
only!. There are four versions ofxF,`,theor: standard perturbation
theory in 1/b gives points1 ~2-loop! and3 ~3-loop!; ‘‘improved’’
perturbation theory in 12E gives pointsh ~2-loop! and L ~3-
loop!. For clarity, error bars are shown only for the ‘‘improved’’
three-loop estimates.~b! Same ratio plotted versus 1/b2. The lower
solid line is the fitk01k2/b

2 to the standard 3-loop estimates~3!
for b>2.65. The upper solid line is the constant fitk08 to the ‘‘im-
proved’’ 3-loop estimates~L! for b>2.55.
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C̃xFS C̃j
F
~2nd!

C̃
j
F
~exp!

~BNNW!D 22

[k08516.7560.04, ~5.73a!

c2
~ imp![k28/k08520.360.2, ~5.73b!

and hence

C̃xF
516.3160.04. ~5.74!

The estimate~5.73b! suggests thatc2
~imp! is very close to zero,

consistent with the known valuec2
~imp!50.0010. If we now fit

the ‘‘improved’’ 4-loop values tok081k38b
23, we have a

good fit forb>2.075~jF,`*34!, and we obtain the estimates

C̃xFS C̃j
F
~2nd!

C̃
j
F
~exp!

~BNNW!D 22

[k08516.8560.03, ~5.75a!

c3
~ imp![k38/k0850.1060.02 ~5.75b!

@see Fig. 19~b!, pointss#, and hence

C̃xF
516.4160.03. ~5.76!

In summary, all methods yield consistent results, but the

ones based onxF /jF
(2nd)2 show an earlier convergence to the

limiting constant. Therefore, a reasonable compromise
would be

C̃xF
'16.3560.20. ~5.77!

5. Adjoint sector: correlation length

Now let us look at the adjoint sector. We start with the
correlation lengthjA

(2nd) , which we can compare with the
two-loop and three-loop perturbative predictions~3.3!,~3.9!.
Combined with the nonperturbative~BNNW! prefactor
~3.15!,~3.16!, these formulas give a quantitative prediction
for theexponentialcorrelation lengthjA

(exp) @cf. Eqs.~3.17b!,
~3.17d!#. By plotting jA

(2nd)/jA,BNNW,k-loop
(exp) for k52,3, we can

test asymptotic scaling and estimate the universal nonpertur-
bative ratioC̃j

A
(2nd) /C̃j

A
(exp).

In Fig. 20~a! we plotjA,`,estimate(̀ ,`,`)
(2nd) /jA,BNNW,k-loop

(exp) ver-
susb ~points1 and3!. We see that the behavior is similar
to that observed in the fundamental channel~Fig. 17!; this is
inevitable since the ratiojF,`

(2nd)/jA,`
(2nd) is empirically close to

constant~'2.80! in this region. However, in the adjoint
channel the estimates show strange~and presumably spuri-
ous! pseudoperiodic oscillations; we do not understand their
cause, but they presumably arise from some quirks in the
extrapolation to infinite volume.33 Furthermore, these values
present an apparent change of slope atb'3.15, suggesting a
positive coefficienta2, which is in total disagreement with
the result~5.63b! predicted by fitting the fundamental-sector
quantities. Perhaps we have grossly underestimated the sys-
tematic errors in the extrapolation to infinite volume, espe-
cially for for b*3.15. The estimate ofjA

(2nd)/jA,BNNW,3-loop
(exp)

will depend on whether or not we trust our extrapolation for
b*3.15. If we do not trust it, we may discard all those points
with b*3.15 and fit jA

(2nd)/jA,BNNW,3-loop
(exp) 5k01k2b

22. A
good fit is obtained for 3.15>b>2.40 ~1.13103*jF*130!,
and we obtain the estimates

33Note that the corrections to scaling in the adjoint channel are
somewhat stronger than those in the fundamental channel@compare
Fig. 1 to Fig. 5#. Since the extrapolation ofjA

(2nd) uses the most
stringent fit ~`,`,`!, we are unable to say anything about the re-
maining systematic errors due to corrections to scaling.

3724 55GUSTAVO MANA, ANDREA PELISSETTO, AND ALAN D. SOKAL



C̃j
A
~2nd! /C̃j

A
~exp![k050.7160.02, ~5.78a!

a2[k2 /k0520.4360.10 ~5.78b!

@see Fig. 18~b!, points3#. It is interesting to note the rough
agreement between this prediction ofa2 and Eq.~5.63b!. On

the other hand, if we trust our extrapolation ofjA,` , we try a
similar fit including all values ofb. We obtain a good fit if
we restrict attention to the points withb>3.15
~jF*2.73103!, yielding the estimates

C̃j
A
~2nd! /C̃j

A
~exp![k050.6360.02, ~5.79a!

a2[k2 /k050.860.4. ~5.79b!

The total disagreement between this prediction ofa2 and Eq.
~5.63b! seems to indicate that Eq.~5.78! is more trustworthy.

The ‘‘improved’’ three-loop estimates of course show
the same pseudoperiodic oscillations. If we fit
jA
(2nd)/jA,BNNW,3-loop

(exp) 5k081k28b
22, a good fit is obtained for

b>2.925~jF*1.13103!, and we obtain the estimates

C̃j
A
~2nd! /C̃j

A
~exp![k0850.6560.02, ~5.80a!

a2
~ imp![k28/k0850.860.3 ~5.80b!

@see Fig. 18~b!, pointsL#. However, this is not consistent
with the estimatea2

~imp!520.0460.05 obtained from the fun-
damental sector~see footnote 32!.

These estimates can be compared with the combination

C̃j
A
~2nd!

C̃j
A
~exp!

5S C̃j
A
~2nd!

C̃j
F
~2nd!

D S C̃j
F
~2nd!

C̃j
F
~exp!

D S C̃j
F
~exp!

C̃j
A
~exp!

D ~5.81!

of our previous estimates. Our estimate of the first term on
the right side is 1/~2.8060.05!50.35760.006 @see Eq.
~5.45!#; Monte Carlo simulations@67# predict that the second
term on the right side is 0.98760.002; and the theoretical
prediction for the third term on the right side is exactly 2@see
Eq. ~3.15!#. This approach yields

C̃j
A
~2nd!

C̃j
A,3-loop
~exp!

50.7060.01. ~5.82!

Let us recall that this approach suffers from various difficul-
ties in the estimation ofjA

(2nd)/jF
(2nd) ~see Sec. V B 2!; but, in

spite of that, the result~5.82! is consistent with Eq.~5.78a!,
and marginally consistent with Eq.~5.80a!. A reasonable
compromise would be to take

C̃j
A
~2nd!

C̃j
A
~exp!

'0.6960.04. ~5.83!

6. Adjoint sector: susceptibility

The story forxA is similar to that ofxF : we can either

usexA directly or else use the ratioxA /jA
(2nd)2.

In Fig. 21~a! we plot xA,`,estimate(̀ ,`,0.90) divided by the
theoretical prediction~3.5!, ~3.13! with the prefactor C̃xA
omitted; the b→` limit of this curve is thus an estimate of
C̃xA

. Here we have 2-loop and 3-loop predictions from stan-
dard perturbation theory~points 1, 3! as well as ‘‘im-
proved’’ 2-loop and 3-loop predictions~h, L!. At each or-
der ~2-loop or 3-loop!, the standard and the ‘‘improved’’

FIG. 20. ~a! jA,`,estimate(`,`,`)
(2nd) /jA,`,theor

(exp) vs b. Error bars are one
standard deviation~statistical error only!. There are four versions of
jA,`,theor
(exp) : standard perturbation theory in 1/b gives points1 ~2-
loop! and 3 ~3-loop!; ‘‘improved’’ perturbation theory in 12E
gives pointsh ~2-loop! andL ~3-loop!. For clarity, error bars are
shown only for the ‘‘improved’’ three-loop estimates.~b! Same
ratio plotted vs 1/b2. The downward-tilting solid line is the fit
k01k2/b

2 to the standard 3-loop estimates~3! for 3.15>b>2.40.
The upward-tilting solid line is the fitk081k28/b

2 to the ‘‘im-
proved’’ 3-loop estimates~L! for b>2.925.
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estimates are virtually identical forb*3; but for b&3 the
standardestimates are much flatter~in marked contrast to
what is observed forjF , xF , andjA : see Figs. 17–20!. This
casts some doubts on whether the ‘‘improved’’ perturbation
theory is always an improvement. If we fit the ‘‘standard’’
3-loop perturbation valuesxA/~xA,3-loop without the prefactor

C̃xA
!5k01k2b

22, a good fit is obtained if we restrict atten-
tion to the points withb>2.25~jF,`*70!, and we obtain the
estimates

C̃xA
[k0519662, ~5.84a!

d2[k2 /k050.1460.50 ~5.84b!

@see Fig. 21~b!, points 3#. Similarly, if we fit the ‘‘im-
proved’’ 3-loop perturbation valuesxA/~xA,3-loop without the
prefactor C̃xA

!5k081k28b
22, a good fit is obtained for

b>2.55 ~jF,`*110!, and we get

C̃xA
[k08519163, ~5.85a!

d2
~ imp![k28/k0850.5360.12 ~5.85b!

@see Fig. 21~b!, pointsL#.

Similarly, we could plot (xA /jA
(2nd)2)`,estimate(̀ ,`,`) di-

vided by the theoretical prediction~3.8!, ~3.14! with the pre-
factors C̃xA

and C̃j
A
(2nd) omitted; theb→` limit of this curve

would thus given an estimate ofC̃xA
/(C̃j

A
(2nd))2. However, in

order to make the vertical scale of this graph more directly
comparable to that of Fig. 21~a!, we have multiplied the
quantity being plotted by (C̃

j
A
(exp)
(BNNW)

)2. Note that this does not

in any way alter thelogic of the analysis, asC̃
j
A
(exp)
(BNNW)

is an

explicit number obtained from Eqs.~3.15!,~3.16!. The result-
ing curve is plotted in Fig. 22~a!; its b→` limit gives an
estimate ofC̃xA

(C̃
j
A
(exp)
(BNNW)

/C̃j
A
(2nd))2. In this case we just have

2-loop and 3-loop predictions~1, 3! as well as ‘‘improved’’
2-loop and 3-loop predictions~h, L!. To convert this num-
ber to an estimate forC̃xA

itself, we need to multiply by

S C̃j
A
~2nd!

C̃
j
A
~exp!

~BNNW!D 2

'~0.6960.04!250.47660.055 ~5.86!

@see Eq.~5.83!#. The estimates from 2-loop and 3-loop stan-
dard perturbation theory~which are virtually identical since
e1'0.0075 is so small! are strongly decreasing forb&3.0
and weakly decreasing thereafter. If we fit the 3-loop values
to k01k2b

22, a good fit is obtained if we restrict attention to
the points withb>3.075 ~jF,`*23103!, and we obtain the
estimates

C̃xAS C̃j
A
~2nd!

C̃
j
A
~exp!

~BNNW!D 22

[k0545668, ~5.87a!

e2[k2 /k051.860.3, ~5.87b!

and hence

C̃xA
5217616 ~5.88!

@see Fig. 22~b!, points 3#. This estimate is in reasonable
agreement with the previous predictions~5.84a! and~5.85a!,
but exhibits muchlarger uncertainties~in contrast to the situ-

FIG. 21. ~a! @xA,`,estimate(`,`,0.90)#/@xA,`,theor without the prefac-
tor C̃xA

# vsb. Error bars are one standard deviation~statistical error
only!. There are four versions ofxA,`,theor: standard perturbation
theory in 1/b gives points1 ~2-loop! and3 ~3-loop!; ‘‘improved’’
perturbation theory in 12E gives pointsh ~2-loop! and L ~3-
loop!. For clarity, error bars are shown only for the ‘‘improved’’
3-loop estimates.~b! Same ratio plotted vs 1/b2. The flatter solid
line is the fit k01k2/b

2 to the standard 3-loop estimates~3! for
b>2.25. The steeper solid line is the fitk081k28/b

2 to the ‘‘im-
proved’’ 3-loop estimates~L! for b>2.55.
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ation observed for the fundamental susceptibility, where

xF /jF
(2nd)2 is better behaved thanxF!. The estimates from

‘‘improved’’ 3-loop perturbation theory are virtually identi-
cal to those from 3-loop standard perturbation theory. If we
fit the ‘‘improved’’ 3-loop estimates tok081k28b

22, a good
fit is obtained forb>3.075~jF,`*23103!, and we obtain the
estimates

C̃xAS C̃j
A
~2nd!

C̃
j
A
~exp!

~BNNW!D 22

[k08545967, ~5.89a!

e2
~ imp![k28/k0851.560.3, ~5.89b!

and hence

C̃xA
5218615 ~5.90!

@see Fig. 22~b!, pointsL#.
All methods yield consistent results, but the ones based on

xA alone show an earlier convergence to the limiting con-
stant; furthermore, they do not require information about the
constant~5.86!. Thus, a reasonable compromise would be

C̃xA
'195620. ~5.91!

D. Discussion

Let us summarize our findings. First, we hope to have
convinced the reader that the extrapolation method has al-
lowed us to obtain the infinite-volume behavior of long-
distance observables with reliable control over all systematic
and statistical errors, using only latticesL<256. For ex-
ample, we obtain the infinite-volume correlation length
jF,`
(2nd) to a statistical accuracy of order 0.5%~0.9%, 1.1%,
1.3%, 1.5%! when jF,`

(2nd)'102 ~103, 104, 105, 43105!; and
the systematic errors arising from corrections to scaling are
of the same order or smaller. The situation is similar forxF
andxA . Only for jA

(2nd) and the two ratiosx# /(j#
(2nd))2 do we

have severe worries about the possible remaining corrections
to scaling; for these observables it would be useful to carry
out simulations at largerL, so that our fits can be checked
against alternative fits with largerLmin .

It is important to remark that the validity of these extrapo-
lated data rests on theassumptionthat if finite-size-scaling
~5.2! is found empirically to be satisfied~with a given func-
tion FO! for some range ofL, say Lmin<L<Lmax, then it
will also hold ~with the sameFO! for L.Lmax. Now, we
have found that the data for 16–32<L<128 are in good
agreement with rapid convergence asL grows at fixedx
[jF

(2nd)(L)/L to a finite-size-scaling functionFO(x;s). It is
then reasonable toassumethat the limiting function empiri-
cally obtained forL<128 is close to the true limiting func-
tion asL→`, i.e., that the systematic errors are in fact as
small as they seem empirically to be. Of course, it is possible
that apparent convergence ofFO(x;s) for 16–32<L<128 is
misleading—i.e., a ‘‘false plateau’’—and that for very large
values ofL the convergence is to a very different function
~or there is convergence at all!. This caveat is not special to
our work, but is inherent inanynumerical work that attempts
to evaluate a limit~hereL→`! by taking the relevant param-
eteralmostto the limit ~hereL large but finite!. In particular,
this caveat is inherent inall numerical~as well as experimen-
tal! work in the fields of critical phenomena and quantum
field theory.

In any case, there is no evidence that this unfortunate
situation occurs in our model. Indeed, what is remarkable in
our model is the extremeweaknessof the corrections to scal-

FIG. 22. ~a! @(xA /jA
(2nd)2)`,estimate(`,`,`)#3@C̃j

A
(exp)
BNNW

#2/

@(xA /jA
(2nd)2)`,theor without prefactorsC̃xA

and C̃j
A
(2nd)# vs b. Error

bars are one standard deviation~statistical error only!. There are
four versions of (xA/j A

2)`,theor: standard perturbation theory in
1/b gives points1 ~2-loop! and3 ~3-loop!; ‘‘improved’’ perturba-
tion theory in 12E gives pointsh ~2-loop! andL ~3-loop!. ~b!
Same quantity plotted vs 1/b2. The steeper solid line is the fit
k01k2/b

2 to the standard 3-loop estimates~3! for b>3.075. The
flatter solid line is the fitk081k28/b

2 to the ‘‘improved’’ 3-loop
estimates~L! for b>3.075.
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ing: for example, forO5jF
(2nd) , even atL58 the corrections

to scaling are almost unobservable forx*0.8. Even at
smaller values ofx, where the corrections to scaling are
clearly visible, they are perfectly consistent with a behavior
roughly of the form34

O~b,2L !

O~b,L !
5FO~x!1

1

L2
GO~x!1••• , ~5.92!

at least in the range 8<L<128 where we have data. If all
hell breaks loose for largerL, we certainly see no hint of it at
L<128.

Our second principal observation is that the finite-size-
scaling functionsFO , as determined from our Monte Carlo
data by the above analysis, agree well with the perturbative
predictions for largex @cf. Eq. ~3.24!#. More precisely, we
found good agreement forx*0.6–0.9~depending on the ob-
servable! up to the largestx observed in our data~xmax'1.2!.

We would like to clarify the logic concerning this point,
which has caused some controversy@80,81#. There are two
very differentlimits that can be taken in a two-dimensionals
model:~a! the finite-volume perturbative limitb→` at fixed
L,`; ~b! the finite-size-scaling limitb→` andL→` such
that the ratiox[j(b,L)/L is held fixed.

There is no doubt that conventional perturbation theory
@cf. Eq. ~B4!# is valid in limit ~a!: it concerns, after all, a
finite-dimensional integral. The deep question is how there-
mainder termsin this asymptotic expansion behave as a
function of L; one wants in particular to know whether the
perturbation theory derived from the study of limit~a! is also
correct in the double limit obtained by first taking limit~b!
and then takingx→` @cf. Eq. ~B6!#. The conventional wis-
dom saysyes: indeed, this or a similar interchange of limits
underlies the conventional derivations of asymptotic freedom
~a point that unfortunately has not always been clearly ac-
knowledged by advocates of the conventional wisdom!. By
contrast, Patrascioiu and Seiler@39,40,42# sayno: they sus-
pect that asymptotic freedom is false@41#. At present, no
rigorous proof is available to settle this question one way or
the other.

Patrascioiu and Seiler@80# have objected that our data in
the large-x region are essentially perturbative, in the sense
that they are well reproduced by the finite-volume perturba-
tion theory@limit ~a!#, whose validity is not in question.35 For
this reason, they contend, we are implicitlyassuming
asymptotic scaling. Our reply is twofold:

On the one hand, it is not quite true that our data in the

large-x region are ‘‘essentially perturbative’’: as noted in
Sec. V C 2, our raw dataO~b,L! deviate significantly from
the finite-volume perturbation expansions~B24!. In the fun-
damental sector, the deviationuS3u betweenxF and second-
order perturbation theory is less than 1.0%~0.3%! for x>0.6
~x>0.9!; while the deviationuR2u betweenjF

(2nd) and first-
order perturbation theory is less than 9.8%~4.1%! for these
same intervals ofx.36 All these deviations are observed at
L5128, which is the largest value ofL for which we have
data in the specified intervals ofx; rather smaller deviations
are obtained at the samex and smallerL. For example, for
L58 we have discrepancies of 1.1%~0.2%! for xF , and
6.5% ~2.2%! for jF

(2nd) .37 For the adjoint sector, the agree-
ment with perturbation theory is much worse: atL5128, for
xA we have discrepancies as large as 17.3%~6.2%! for
x>0.6 ~x>0.9!, while for jA

(2nd) the discrepancies reach
12.2%~5.0%!. At L58 things are much better forxA , with
discrepancies reaching only 1.3%~0.3%!; but for jA

(2nd) they
still reach 8.7%~3.0%!.

Thus, it is only forxF ~andxA on small lattices! that our
data are in any sense ‘‘essentially perturbative;’’ all the other
observables show significant deviations from finite-volume
perturbation theory, even on the smallest lattices.@To be
sure, the agreement forjF

(2nd) and jA
(2nd) would probably be

improved dramatically if the two-loop~order-1/b2! correc-
tion were available to us.#

Secondly, and more importantly, we havealways ana-
lyzed our data in the sense of limit~b!: that is, at eachfixed
x[jF

(2nd)(b,L)/L, we have asked whether the ratios
O~b,2L!/O~b,L! have a good limit asL→`, and if so we
have attempted to evaluate this limit numerically as ex-
plained above. Thus, modulo the caveats discussed in the
preceding paragraphs, we believe we have determined

34We do not claim that the leading correction-to-scaling term is
exactly of order 1/L2. Indeed, innth-order perturbation theory we
know that terms of the form lnpL/L2 with 0<p<n are present, but
we do not know how to resum these logarithms except in one ex-
actly soluble case: In theN-component mixed isovector/isotensor
model atN5`, these terms resum to give a correction of the form
L22~c1 lnL1c01c21/lnL1c22/ln

2L1•••! @121,122#, as discussed
further around Eq.~B13! below. In the present case, the correction
to scaling might be of the formL223logarithms, or it might be of
the formL2v with vÞ2—we do not know.
35Their objection concerned our earlier work on the O~3! s model

@77#, but it can be considered also in the present context.

36The deviations would have been considerably larger if
we had defined them as~Oexact2Opert!/Oexact instead of
~Oexact2Opert!/Ozeroth-order; this is because the first-order perturba-
tion corrections are large andnegative.
37This nonuniformity withL at fixed x can be at least roughly

explained: One expectsk-loop finite-volume perturbation theory to
have an error term of order~lnL!k11/bk11. On the other hand, from
Eq. ~B24b! we see that

x2;b2lnL2
ln2L

b
2•••

~omitting all constants and subleading terms!, so thatb;lnL if we
keepx fixed. It follows that if we try to use finite-volume pertur-
bation theory in the limitL→` at x fixed—where it is not intended
to be used—the error term will be of order 1 asL→`. It is not clear
to us why the error term appears to begrowingasL→` at fixedx.
This couldbe a sign that the coefficient of theO~1/bk11! remainder
term growsmorerapidly than~lnL!k11, as contended by Patrascioiu
and Seiler@39,40,42#. However, our data donot support this inter-
pretation~see Sec. V C 2!. More likely, this is a preasymptotic ef-
fect arising from the fact that~reinserting the constants! we have
from first-order perturbation theory

b'
8

3
x21

3

4p
lnL

@see also Eq.~5.51!#; and even atL5128, the term~3/4p!lnL is by
no means dominant compared to~8/3!x2.
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~within statistical errors! the true finite-size-scaling functions
FO . There is no contradiction between Patrascioiu-Seiler’s
observation and ours: the same point~b,L! may well lie
within the range of validity~to some given accuracy! of two
distinct expansions. The fact that some of our data points at
largex are consistent with finite-volume perturbation theory
@limit ~a!# does not constitute evidence against theiralsobe-
ing consistent with nonperturbative finite-size scaling@limit
~b!#. For this reason, we disagree with Patrascioiu-Seiler’s
claim @80# that our method has implicitlyassumed
asymptotic scaling. Quite the contrary: our data atx *0.6–
0.9, interpreted in the sense of limit~b!, constitute atestof
the key assumptions underlying the derivation of asymptotic
scaling.

Finally, we have made in Sec. V C 3–V C 6 a direct test
of asymptotic scaling for the various infinite-volume long-
distance observablesO`~b!. As noted in the Introduction,
this test involves two distinct questions:

~i! Does the ratio between the extrapolated values and the
l -loop asymptotic-freedom prediction,

CO~b![
O`~b!

eabbb~11k1 /b1•••1kl /b
l !
, ~5.93!

converge to a constant in the limitb→`, modulo corrections
of order 1/bl11?

~ii ! In the case ofO5jF
(2nd) , does this constant equal the

nonperturbative value predicted by the thermodynamic Bethe
Ansatz@62# combined with the best Monte Carlo estimate
@67# of jF

(2nd)/jF
(exp)?

Patrascioiu and Seiler@80# are right to point out that our
affirmative answer to question~i! is in some sense a foregone
conclusion: since our Monte Carlo data forFO(x) at x*0.6–
0.9 do in fact agree reasonably well with the 2-loop pertur-
bative formula~3.24!, and our data forO~b,L! also agree at
least roughly with the fixed-L perturbation expansion~B24!,
it is then inevitable that our extrapolated valuesO`~b! at the
largest values ofb will be consistent with 2-loop asymptotic
scaling in the sense thatO`~b!/[eabbb] will be roughly
constant.38 Therefore, our observation in Secs. V C 3–V C 6
of asymptotic scaling in sense~i! contains no significant in-
formation beyondour observation in Sec. V B 1 that the
finite-size-scaling functionsFO(x) agree with the perturba-
tive predictions atx*0.6–0.9; this latter observation already
contains the essence of asymptotic scaling in sense~i!. On
the other hand, asymptotic scaling in sense~ii ! is truly an
additional observation: it is by no means inevitable that the
observed constant value ofCj

F
(2nd)(b) at largeb will agree

with the thermodynamic BetheAnsatzprediction to within a
fraction of a percent, as we have found here~Sec.V C 3!. It
seems to us that this apparent coincidence is significant evi-
dence in favor of the asymptotic-freedom picture.

We have found empirically that the ‘‘energy-improved’’
perturbative expansion usually exhibits asymptotic scaling
~to a given accuracy! at lower values ofb than its bare-
parameter counterpart. The exceptions to this behavior are
the observablesxA , for which standard perturbation theory
has an incredibly flat behavior and the ‘‘energy-improved’’
perturbation theory isless well behaved, andxA/j A

2, for
which the two expansions exhibit nearly identical behavior.
This generally good behavior of the ‘‘energy-improved’’ ex-
pansion confirms similar observations in other models, such
as theN-vector models forN53,4,8 @112,76–79,11#, the
CPN21 s models forN52,4,10 @123#, the SU(N) chiral
models forN54,6,9,15,21,30@66,67,93#, and the SU~2! and
SU~3! lattice gauge theories@100,124–127#. What we lack is
a goodtheoreticalexplanation of this empirically observed
behavior~see Sec. III C!. It is not clear to us whether ‘‘im-
proved’’ perturbation theory cansystematicallybe expected
to reach asymptotic scaling faster than standard perturbation
theory~except for some unusual cases in which standard per-
turbation theory has small high-order terms!, or whether its
apparent success is illusory.

VI. FINITE-SIZE-SCALING ANALYSIS: DYNAMIC
QUANTITIES

Of all the observables we studied, the slowest mode~by
far! is the squared fundamental magnetizationM F

2: this
quantity measures the relative rotations of the spins in dif-
ferent parts of the lattice, and is the prototypical SU(N)-
invariant ‘‘long-wavelength observable.’’ The autocorrela-
tion time t int,M

F
2 has the following qualitative behavior: as a

function ofb it first rises to a peak and then falls; the loca-
tion of this peak shifts towardsb5` asL increases; and the
height of this peak grows asL increases. A similar but less
pronounced peak is observed int int,M

A
2. By contrast, the in-

tegrated autocorrelation times of the energies,t int,EF and

t int,EA, are much smaller and vary only weakly withb andL.
This is because the energies are primarily ‘‘short-wavelength
observables,’’ and have only weak overlap with the modes
responsible for critical slowing-down.

Let us now make these considerations quantitative, by
applying finite-size scaling to the dynamic quantities
t int,M

F
2 andt int,M

A
2. We use theAnsatz

t int,A~b,L !;j~b,L !zint,AgA„j~b,L !/L… ~6.1!

for A5M F
2 andMA

2. HeregA is an unknown scaling func-
tion, andgA~0!5limx↓0gA(x) is supposed to be finite and
nonzero.39 We determinezint,A by plotting t int,A /jF(L)

zint,A

versusjF(L)/L and adjustingzint,A until the points fall as
closely as possible onto a single curve~with priority to the

38This statement is not strictly correct, as the fixed-L perturbation
expansion~B24! is only a ‘‘1-loop’’ expansion, in the sense that it
is sufficient to obtain the 1-loop renormalization-group coefficient
w0 ~as well asg0! but not subsequent coefficients@see Eq.~B10! for
definitions#. To obtain the 2-loop coefficientw1 from an expansion
of this type, it would be necessary to go to one higher order.

39It is of course equivalent to use theAnsatz

tint,A~b,L !;Lzint,AhA„j~b,L !/L…,

and indeed the twoAnsätze are related byhA(x)5xzint,AgA(x).
However, to determine whether limx↓0gA(x)5 limx↓0x

2zint,AhA(x) is
nonzero, it is more convenient to inspect a graph ofgA than one of
hA .
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larger L values!. We emphasize that the dynamic critical
exponentzint,A is in generaldifferent from the exponentzexp
associated with the exponential autocorrelation timetexp
@1,128,4#.

Using the procedure just described, we find

zint,M
F
250.4560.02 ~6.2!

~subjective 68% confidence limits!. In Fig. 23 we show the
‘‘best’’ finite-size-scaling plot. Note that the corrections to
scaling are very weak: only theL516 points clearly deviate
from the asymptotic scaling curve; theL532 and L564
points show barely significant deviations.

It is worth noting that the finite-size effects on dynamic
quantities arevery strongat j/L as small as 0.1 or even 0.05,
whereas the finite-size effects on static quantities are negli-
gible already whenj(L)/L&0.15: compare Fig. 23 with Fig.
1. Indeed, in Fig. 23 it is far from clear what is the limiting
value of the scaling function,gM

F
2(0)5 limx↓0gM

F
2(x), and

whether it is nonzero. This extremely strong dynamic finite-
size effect@here a factor of order 5–10 forj(L)/L between 0
and 0.2# seems to occur rather frequently in collective-mode
Monte Carlo algorithms: see, e.g.,@8# for multigrid in the
two-dimensional 4-vector model, and@129# for the
Swendsen-Wang-Wolff algorithm in the two-dimensional
RPN21 models. We conclude that finite-size corrections to
dynamic critical behavior can be surprisingly strong; there-
fore, serious studies of dynamic critical phenomena must in-
clude a finite-size-scaling analysis. It can be very misleading
to assume that the finite-size corrections to dynamic quanti-
ties are small simply becausej/L is small, or because the
finite-size corrections tostaticquantities are small.

We can also analyze the dynamic critical behavior for the
adjoint sector. Proceeding as before, we obtain

zint,M
A
250.4560.03 ~6.3!

~subjective 68% confidence limits!. In Fig. 24 we show the
‘‘best’’ finite-size-scaling plot. Note that both the magnitude
and shape of the finite-size-scaling plot are similar forM F

2

andMA
2, although the details are slightly different. Note also

that zint,M
F
2 andzint,M

A
2 are equal within error bars; this con-

trasts with the behavior observed in MGMC for the 3-vector
model@11#, in which the isotensor dynamic critical exponent
zint,M

T
2 appears to bestrictly smaller than the isovector ex-

ponentzint,M
V
2. More work will clearly be required to sort out

what is going on here.
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APPENDIX A: PERTURBATION THEORY FOR THE
NONDERIVATIVE IRREDUCIBLE OPERATORS

In this section we will compute the perturbative~large-b!
predictions for a general two-point correlation function40

40Here we have inserted a factor 1/dr , as in Eq.~2.4! but contrary
to Eq. ~2.3!. We hope this will not cause any confusion.
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Gr~x;b!5
1

dr
^x r~U0Ux

†!&, ~A1!

where the indexr labels an irreducible representation of
SU(N), xr is the associated character anddr its dimension.
The perturbative expansion ofGr(x;b) is obtained by
setting41

Ux5exp~ iAx! with Ax5Ax
aTa ~A2!

and then expanding in powers ofA; hereTa are the genera-
tors of the Lie algebra su(N), normalized so that Tr(TaTb)
5 1

2dab, andA x
a areN221 real fields. We must also take into

account the contributions from the integration measure. A
straightforward calculation@130,38# shows that the Haar
measure on SU(N) is

dUx5dAx expH 12 Tr lnF2~12cosAx
aTA

a !

~Ax
aTA

a !2 G J ~A3a!

5dAx expF2
N

24
Ax
aAx

a1O~A4!G ,
~A3b!

where (TA
a)bc52 i f abc are the SU(N) generators in the ad-

joint representation, for which Tr(TA
aT A

b)5Ndab.
To compute the Green function~A1! we need the pertur-

bative expansion ofx r(U0Ux
†). Let us first introduce

Vx5V x
aTa defined by

eiVx[U0Ux
†5eiA0e2 iAx. ~A4!

ThisVx can be easily computed in terms ofA0 andAx , using
the Baker-Campbell-Hausdorff formula. In terms ofVx we
will now parametrize

1

dr
x r~U0Ux

†!511a0TrVx
21a11TrVx

41a12~TrVx
2!2

1a21TrVx
61a22~TrVx

4!~TrVx
2!

1a23~TrVx
2!31a24~TrVx

3!21O~Vx
8!,

~A5!

where the various constants depend on the representationr .
Herea0 will be necessary in a calculation at order 1/b, a11
and a12 will appear at order 1/b

2, while a21, . . . ,a24 will
appear at order 1/b3. Let us notice that for low values ofN
not all these invariants are independent. Indeed it is easy to
check that forN52, TrV x

3 vanishes; forN52,3 we have

~TrVx
2!222 TrVx

450; ~A6!

while for N<5 we have

2~TrVx
2!31

8

3
~TrVx

3!216~TrVx
4!~TrVx

2!28 TrVx
650.

~A7!

Before proceeding further let us give the explicit values of
the various constants for the simplest representations:

~1! Fundamental representation. In this casexF(U0Ux
†)

5Tr(U0Ux
†), dF5N, and thus

a052
1

2N
, a115

1

24N
, a2152

1

720N
; ~A8!

all other coefficients are zero.
~2! Adjoint representation. We can consider the product

f ^ f̄5( f ^ f̄ ) traceless%1, where f denotes the fundamental

representation,f̄ denotes its complex conjugate, and1 de-
notes the trivial representation. The representation
( f ^ f̄ ) traceless, whose dimension isdA5N221, is the adjoint
representation. In this casexA(U0Ux

†)5uTr(U0Ux
†)u221, so

that

a052
N

dA
, a115

N

12dA
, a125

1

4dA
,

a2152
N

360dA
, a2252

1

24dA
, a2350, a245

1

36dA
.

~A9!

~3! We can also consider the product
f ^ f5( f ^ f )symm%( f ^ f )antisymm. The latter two representa-
tions have dimensionsd65N(N61)/2, and

x6~U0Ux
†!5

1

2
„Tr~U0Ux

†!…26
1

2
Tr~U0Ux

†U0Ux
†!.

~A10!

We then have in the two cases

a052
1

2d6
~N62!, a115

1

24d6
~N68!, a125

1

8d6
,

a2152
1

720d6
~N632!, a2252

1

48d6
, a2350,

a2452
1

72d6
. ~A11!

Notice that forN52 the antisymmetric product is the identity
representation, while the symmetric product is the adjoint
representation; using Eqs.~A6! and ~A7! it is easy to show
that Eqs.~A11! are equivalent to the corresponding values
@a[0 and Eq.~A8!, respectively#. Similarly, for N53 we
have (f ^ f )antisymm5 f̄ , and it can again be checked that Eq.
~A11! is equivalent to the complex conjugate of Eq.~A8!.

We want now to compute Eq.~A1! up to and including
terms of order 1/b2. In order to obtain this expression we

41In this appendix we use the summation convention for repeated
indices.

55 3731MULTIGRID MONTE CARLO . . . . II. . . .



need to compute three different mean values, i.e.,^TrV x
2&,

^TrV x
4&, and^~TrV x

2!2&. A simple Feynman-diagram calcula-
tion gives

^TrVx
2&5~N221!F 2b J~x!1

N222

4Nb2 J~x!1
N

6b2 J~x!2G
1O~b23!, ~A12a!

^TrVx
4&5

4~N221!~2N223!

Nb2 J~x!21O~b23!,

~A12b!

^~TrVx
2!2&5

4~N421!

b2 J~x!21O~b23!, ~A12c!

where

J~x!5E
@2p,p#2

d2p

~2p!2
12cos~p•x!

p̂2
. ~A13!

A useful check is provided by the identity~A6! for N52,3.
We can now computeGr(x;b):

Gr~x;b!511
2~N221!a0

b
J~x!

1
N221

Nb2 H ~N222!a0

4
J~x!1F16 N2a0

14a11~2N
223!14a12N~N211!GJ~x!2J

1O~b23!. ~A14!

In particular, for the fundamental and adjoint representations,
we get

GF~x;b!512
N221

Nb
J~x!1

~N221!~N222!

8N2b2 @2J~x!2

2J~x!#1O~b23!, ~A15!

GA~x;b!512
2N

b
J~x!1

3N2

2b2 J~x!22
N222

4b2 J~x!

1O~b23!. ~A16!

The expression forGF(x) coincides with that given in@93#
apart from a different normalization ofb.

From these expressions it is immediate to derive expres-
sions for the energies. SinceJ~e1!5

1
4, we have

EF~b!512
N221

4Nb
2

~N221!~N222!

64N2b2 1O~b23!,

~A17!

EA~b!512
N

2b
1
N214

32b2 1O~b23!. ~A18!

We want now to derive the renormalization-group equa-
tions for the correlation function~A1!. As we are considering
an irreducible representation, the Green function renormal-

izes multiplicatively and thus satisfies~for a→0 or equiva-
lently for uxu→`! a renormalization-group equation of the
form

F2a
]

]a
1Wlat~b!

]

]~b21!
1g r

lat~b!GGr~x
cont/a;b!50,

~A19!

whereWlat~b! stands for the RGb function of the lattice
theory, andg r

lat(b) is the anomalous dimension for the rep-
resentationr ; herexcont is a distance in centimeters,a is the
lattice spacing in centimeters, andx[xcont/a is a lattice dis-
tance. The functionWlat is well known through order 1/b4

@67#:

Wlat~b!52
w0

b22
w1

b32
w2
lat

b4 1O~b25!, ~A20!

where

w05
N

4p
, ~A21!

w15
N2

32p2 , ~A22!

w2
lat5

N3

128p3 F11
N222

2N2 p2p2S 2N4213N2118

6N4

14G1D G , ~A23!

and

G1'0.04616363. ~A24!

We have not bothered to add the superscript lat tow0 and
w1, because these coefficients are universal in the sense that
they do not depend on the details of the lattice action.

We want now to obtain the functiong r
lat(b) through the

term of order 1/b2. Expanding

g r
lat~b!5

g r0

b
1

g r1
lat

b2 1O~1/b3!, ~A25!

we shall computegr0 andg r1
lat . As gr0 does not depend on

the specific lattice action we have not added the superscript
lat. To perform the computation we need the large-uxu expan-
sion of J(x), which is given by~@131#, Sec. 4.2!

J~x!5
1

2p
lnuxu1

1

2p S gE1
3

2
ln2D1o~1!, ~A26!

wheregE is the Euler constant.
42 Inserting Eq.~A14! into Eq.

~A19! and comparing coefficients, we obtain

42Actually, the additive constant plays no role in the computation
of the RGb andg functions, at least up to the order we are con-
sidering here; all we need to know is that the coefficient of lnuxu is
1/~2p!.
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g r052
N221

p
a0 , ~A27!

g r1
lat52

~N221!~N222!

8pN
a0 . ~A28!

Moreover, Eq.~A19! is satisfied only if the following non-
linear relation among thea holds:

2
N

3
a022~N221!a0

21
4

N
~2N223!a1114~N211!a12

50. ~A29!

This identity should be satisfied by allirreducible represen-
tations of SU(N). We have explicitly verified it for the four
representations we have introduced at the beginning of this
section.

For the fundamental representation we get

gF05
N221

2pN
, ~A30!

gF1
lat5

~N221!~N222!

16pN2 ,

~A31!

while for the adjoint we have

gA05
N

p
, ~A32!

gA1
lat5

N222

8p
. ~A33!

Of course, forgF we reproduce the results of@93# after tak-
ing into account the different normalization ofb. Finally, we
note that Rossi and Vicari@93# have also calculatedgF2

lat ; in
our normalization ofb it is

gF2
lat5

N221

384p3 @~315p2124p2G1!N225p2N21

130p2N23#. ~A34!

A check on these results is provided by the fact that the
SU~2! chiral model is equivalent to the 4-vector model. Tak-
ing into account the different normalizations, we have
checked thatgF andgA , evaluated atN52, agree with the
anomalous dimensions of the spin-1 and spin-2 operators,
respectively, in the 4-vector model@132#.

We can now useg r
lat(b) andWlat~b! to determine the

b-dependence of the representation-r susceptibility
x r5SxGr(x).

43 From Eq.~A19! we have

x r5Cxr
e2b/w0Sw0

b D 2w1 /w021gr0 /w0

3expF E
0

1/b

dtS 2

Wlat~1/t !
1

2

w0t
22

2w1

w0
2t

2
g r
lat~1/t !

Wlat~1/t !
2

g r0

w0t
D G ~A35a!

5Cxr
e2b/w0Sw0

b D 2w1 /w021gr0 /w0F11
b1

~r !

b
1
b2

~r !

b2

1•••G , ~A35b!

whereCxr is a nonperturbative constant,

b1
~r !52Sw2

lat

w0
22

w1
2

w0
3D 1

g r0

w0
S g r1

lat

g r0
2
w1

w0
D , ~A36!

andb 2
(r ), b 3

(r ), . . . can bedetermined analogously. Likewise,
for the correlation lengths we have

j#5Cj#
eb/w0Sw0

b D w1 /w02

3expF E
0

1/b

dtS 1

Wlat~1/t !
1

1

w0t
22

w1

w0
2t D G

~A37a!

5Cj#
eb/w0Sw0

b D w1 /w02F11
a1
b

1
a2
b2 1••• G ,

~A37b!

whereCj#
is a nonperturbative constant,

a15
w2
lat

w0
22

w1
2

w0
3 , ~A38!

anda2 ,a3 , . . . can bedetermined analogously. Finally, for
the ratioxr /j#

2 we have

x r

j#
2 5

Cxr

Cj#

2 Sw0

b D gr0 /w0F11
c1

~r !

b
1
c2

~r !

b2 1•••G , ~A39!

with

c1
~r !5

g r0

w0
S g r1

lat

g r0
2
w1

w0
D ~A40!

and so forth.
From Eqs.~A22!, ~A23!, and~A38! we get

a152
3p

8
N231S 13p48 2

1

8DN21

1S 1

16p
1
1

6
2

p

24
2

p

2
G1DN. ~A41!

43We apologize for using the same notationxr for both the char-
acter and the susceptibility; we trust that it will not cause any con-
fusion.
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Similarly, for the fundamental representation we get

b1[b1
~F !5S 122

3

4p D 1

N3 1S 1

4p
211

13p

24 D 1

N

1S 2
1

8p
1
3

8
2

p

12
2pG1DN, ~A42!

c1[c1
~F !5~N221!F2

1

2N3 1
1

4N
2

1

4pNG , ~A43!

c2[c2
~F !5~N221!F2

1

8N6 1
1

2N4 S 12
1

4p D
2

1

4N2 S 17122 1

p
1

1

8p2D1
13

192
2

3

32p

1
1

32p2 1
G1

4 G , ~A44!

while for the adjoint representation we get

d1[b1
~A!52

3

4p

1

N3 1S 13p24 2
5

4D 1

N

1S 2
3

8p
1
5

8
2

p

12
2pG1DN, ~A45!

e1[c1
~A!52

1

N
1S 122

1

2p DN. ~A46!

APPENDIX B: PERTURBATION THEORY
FOR FINITE-SIZE-SCALING FUNCTIONS

1. Theoretical basis

We work on a periodic latticeLL of linear sizeL. The
second-moment correlation length is defined by

j#
~2nd!~b,L !5

S x#~b,L !

F#~b,L !
21D 1/2

2 sin~p/L !
, ~B1!

where

x#~b,L !5 (
xPLL

G#~x;b,L !, ~B2a!

F#~b,L !5 (
xPLL

G#~x;b,L !eip0•x, ~B2b!

with #5F or A; herep0[(2p/L,0) is the smallest nonzero
momentum. LetO be any long-distance observable~e.g., the
correlation length or the susceptibility!. Finite-size-scaling
theory @115–117# then predicts quite generally that

O~b,sL!

O~b,L !
5FO„j~b,L !/L;s…1O~j2v,L2v!, ~B3!

wheres is any fixed scale factor,FO is a function character-
istic of the universality class, andv is a correction-to-scaling
exponent.

In an asymptotically free model, the functionsFO can be
computed in perturbation theory. The starting point is a per-
turbation expansion in powers of 1/b at fixedL,`:

j~b,L !5Ab1/2LF12
A1~L !

b
2
A2~L !

b2 2O~b23!G ,
~B4a!

x~b,L !5BL2F12
B1~L !

b
2
B2~L !

b2 2O~b23!G ,
~B4b!

where the functionsAn(L) and Bn(L) have the following
asymptotic behavior at largeL:

A1~L !5A11lnL1A101OS lnLL2 D , ~B5a!

A2~L !5A22ln
2L1A21lnL1A201OS ln2LL2 D , ~B5b!

B1~L !5B11lnL1B101OS lnLL2 D , ~B5c!

B2~L !5B22ln
2L1B21lnL1B201OS ln2LL2 D . ~B5d!

If we now assumethat the expansions~B4! are valid also in
the finite-size-scaling limitb,L→` with x[j(b,L)/L fixed
followed by expansion in powers of 1/x2, we can obtain

Fj~x;s!5sH 12~A11lns!SAx D 22@ 1
2A11

2 ln2s

1~A212A10A11!lns#SAx D 41O~x26!J , ~B6a!

Fx~x;s!5s2H 12~B11lns!SAx D 21@~ 1
2B11

2 2B11A11!ln
2s

1~2A10B112B10B112B21!lns#SAx D 41O~x26!J ,
~B6b!

provided that

A225
1
2A11

2 , ~B7a!

B225A11B112
1
2B11

2 . ~B7b!

Of course, the relations~B7!, which guarantee the cancella-
tion of all divergentL-dependence in Eq.~B6!, will be veri-
fied in the explicit calculation.

The foregoing expressions can be related to the
renormalization-group functionsWlat andglat, defined by Eq.
~A19! or equivalently by

FWlat~ t !
d

dt
21Gj`~ t21!50, ~B8a!
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FWlat~ t !
d

dt
1g lat~ t !22Gx`~ t21!50, ~B8b!

where t[1/b, j`~b![j~b,`!, andx`~b![x~b,`!. Then, we
can apply the RG equations~B8! to the finite-size-scaling
Ansätze ~B3!, yielding

FWlat~ t !
]

]t
1L

]

]LG j~ t21,L !

L
501O~L2v!,

~B9a!

FWlat~ t !
]

]t
1g lat~ t !1L

]

]LG x~ t21,L !

L2
501O~L2v!.

~B9b!

Imposing these equations on Eq.~B4!, and defining as usual

Wlat~ t !52w0t
22w1t

32w2
latt42w3

latt52••• , ~B10a!

g lat~ t !5g0t1g1
latt21g2

latt31g3
latt41••• ,

~B10b!

we obtain

w052A11, ~B11a!

w152~A212A10A11!, ~B11b!

g05B11, ~B11c!

and also recover the relations~B7!. Conversely, if we make
use of the well-known fact that the coefficientsw0, w1, and
g0 are scheme-independent—hence equal to their values in
the RGb and g functions of the corresponding continuum
perturbation theory—we can recover the 1/x2 and 1/x4 terms
in Fj , and the 1/x2 term in Fx , without the need for any
lattice calculation other than the trivial one leading to the
prefactorA in Eq. ~B4a!. We get

Fj~x;s!5sF12~ 1
2w0lns!SAx D 22~ 1

8w0
2ln2s1 1

2w1lns!SAx D 4
1O~x26!G , ~B12a!

Fx~x;s!5s2F12~g0lns!SAx D 21O~x24!G . ~B12b!

The subsequent terms can be determined from the coeffi-
cientsw2

lat, w3
lat, . . . andg1

lat, g2
lat, . . . together withthe co-

efficientsAn0 andBn0.
Remark.Our assumption that the expansions~B4! are

valid also in the double limitb,L→` at fixedx followed by
expansion in powers of 1/x2 implies, in particular, the
asymptotic scaling~3.3!–~3.6! of the infinite-volume corre-
lation length and susceptibilities: this can be deduced by ap-
plying our finite-size-scaling extrapolation procedure~Sec.
V A ! analytically, using the starting point~B4! and the ex-
trapolation functions~B6!. The validity of this assumption is
thus as unproven as the validity of asymptotic freedom itself;
and it has been explicitly questioned by Patrascioiu and

Seiler @80#. All we can say is that our numerical data show
good agreement with the predictions~B6!: see Figs. 2, 4, 6,
and 8 in Sec. V B 1.

Whatever the validity of this assumption atleadingorder
in the double limit, it is worth noting that this assumption is
presumablynot valid atnext-to-leadingorder, that is, as con-
cerns the dominantcorrections to finite-size scaling. This
can be seen clearly in the exact solution of theN-component
mixed isovector/isotensor model@with r[bT/(bV1bT)Þ0#
at N5` @121,122#:

jV
~2nd!~L !

jV
~2nd!~`!

5Fj
V
~2nd!~x!F11g1~x!

lnL

L2
1
g2~x!

L2

1
g3~x!

L2@x22 lnL1h~x!#
1••• G , ~B13!

whereFj
V
(2nd),g1 ,g2 ,g3, andh are all explicitly computable

functions; moreover,g1 ,g2 ,g3 , andh all have good large-x
asymptotic expansions of the formC01C1x

221C2x
241•••

with leading behaviors g1(x),g3(x);x22 and
g2(x),h(x);1. The ‘‘bad’’ term in Eq. ~B13! is the one
involving g3: for x,L@1 one getsdifferent expansions de-
pending on whetherx2@lnL or x2!lnL, so the two limits
x→` andL→` do not commute. Indeed, in the finite-size-
scaling limit L→` at fixed x,`, this term behaves like
1/~L2 lnL!, with a coefficient that tends to a constant at large
x and has a good asymptotic expansion in powers of 1/x2;
while in the finite-volume perturbative limitx→` at fixed
L,`, this term has an asymptotic expansion in powers of
1/x2 with coefficients that are increasinglypositivepowers of
ln L:

1

L2 FP0~ lnL !1o~1!

x2
1
P1~ lnL !1o~1!

x4

1
P2~ lnL !1o~1!

x6
1••• G , ~B14!

where Pk is a polynomial of degreek. What happens, of
course, is that the latter expansionsumsto the former; but
this resummation cannot be seen in any finite order of per-
turbation theory.

2. Perturbative computations

In an asymptotically free model, as noted in the preceding
subsection, the functionsFO(x;s) at largex can be com-
puted in perturbation theory. The starting point is the pertur-
bative expansion for the correlation function in a~fixed! pe-
riodic Ld box. In this computation we must take proper care
of the zero mode. We will follow here the method used for
theN-vector model in@133#.

Let us first considerU5exp(iA)PSU(N) andVPSU(N).
We defineAV as

exp~ iAV![V exp~ iA !. ~B15!
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Then let us use the standard Faddeev-Popov trick, rewriting
the partition function44 as

Z[E )
x
dUx e

2bH ~B16a!

5E )
x
dUx e

2bH

E dV)
a

dS L2d(
x

~Ax
V!aD

E dW)
a

dS L2d(
x

~Ax
W!aD

~B16b!

Then redefiningU85VU, W85WV21 and using the two-
sided invariance of the Haar measure and of the Hamiltonian,
we get~after dropping primes!

Z5E )
x
dUx e

2bH

)
a

dS L2d(
x
Ax
aD

E dW)
a

dS L2d(
x

~Ax
W!aD .

~B17!

Let us now perform theW integration. WhenSxA x
a50 ~as is

imposed by thed function in the numerator!, the solution of
Sx(A x

W)a50 is clearlyW51. ForW511(dwa)Ta with dwa

infinitesimal, we have@130,38#

~Ax
W!a5Ax

a1„E~A!21
…abdw

b, ~B18!

with

E~A!5
exp~ iAx

aTA
a !21

iAx
aTA

a ~B19!

and (TA
a)bc52 i f abc. We therefore get

E dW)
a

dS L2d(
x

~Ax
W!aD 5UdetFL2d(

x
E~Ax!

21GU21

.

~B20!

This new term gives rise to a new set of vertices, formally
vanishing asL→`. At one-loop order we will be only inter-
ested in the leading contribution, and we will thus write

Z5E )
x
dUx e

2bH)
a

dS L2d(
x
Ax
aD

3expF N

12Ld (
x
Ax
aAx

a1O~A4!G . ~B21!

The perturbative expansion is obtained as before. We get

GF~x;b,L !512
N221

Nb
DL

~1!~x!2
N221

2b2 FN222

2dN2 ~1

2L2d!DL
~1!~x!2

N222

2N2 DL
~1!~x!22DL

~2!~x!G
1O~1/b3!, ~B22a!

GA~x;b,L !512
2N

b
DL

~1!~x!2
N222

2db2 ~12L2d!DL
~1!~x!

1
3N2

2b2 DL
~1!~x!21

N2

b2 DL
~2!~x!1O~1/b3!,

~B22b!

where

DL
~n!~x![

1

Ldn (
pÞ0

12cos~p•x!

~ p̂2!n
; ~B23!

here the sum ranges over the momentapm5(2p/L)nm with
integers 0<nm<L21 ~not all zero!, and
p̂2[4Sm sin

2~pm/2!. An easy check of these expressions is
provided by the fact that the SU(N) model with N52 is
equivalent to a 4-vector model. We have verified that the
expressions forGF(x;b,L) andGA(x;b,L) at N52 agree
with the corresponding expressions for the isovector@133#
and isotensor@101# correlation functions of the 4-vector
model. It follows that~reverting now to the normalizations of
xF andxA used in the main text! we have

44It will be immediate to see that the same procedure applies to
any SU(N)-invariant correlation.

TABLE XVII. Exact I 1,L compared with the asymptotic expansions through order 1 and through order
L22. Last column is the deviation from the order-L22 expansion, multiplied byL4.

L Exact I 1,L

Asymptotic
through O~1!

Asymptotic
through O~L22!

Deviation
3L4

4 0.268229166667 0.269401233323 0.267573658648 0.167810
8 0.379294686625 0.379719033399 0.379262139730 0.133312
16 0.489924494596 0.490036833475 0.489922610058 0.123505
32 0.600326193679 0.600354633552 0.600326077697 0.121615
64 0.710665301887 0.710672433628 0.710665294665 0.121165
128 0.820988449414 0.820990233704 0.820988448964 0.121053
256 0.931307587624 0.931308033781 0.931307587596 0.121026
512 1.041625722310 1.041625833862 1.041625722313 0.121017
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xF~b,L !5NLdH 12
N221

Nb
I 1,L2

N221

2b2 FN222

2dN2 ~12L2d!I 1,L2
N222

2N2 ~ I 1,L
2 1I 2,L!2I 2,LG1O~1/b3!J , ~B24a!

jF
~2nd!~b,L !25

NbLd

N221 H 12
1

2b FN222

2dN
~12L2d!1NI1,L1

N222

2N
p̂0
2LdI 3,L1

N222

N

1

Ldp̂0
2G1O~1/b2!J , ~B24b!

xA~b,L !5~N221!LdH 12
2N

b
I 1,L2

1

2b2 FN222

d
~12L2d!I 1,L23N2I 1,L

2 25N2I 2,LG1O~1/b3!J , ~B24c!

jA
~2nd!~b,L !25

bLd

2N H 12
N

2b
I 1,L2

N222

4dNb
~12L2d!2

3N

4b F p̂02LdI 3,L1
2

Ldp̂0
2G1O~1/b2!J , ~B24d!

where

I 1,L5
1

Ld (
pÞ0

1

p̂2
, ~B25a!

I 2,L5
1

L2d (
pÞ0

1

~ p̂2!2
, ~B25b!

I 3,L5
1

L2d (
pÞ0,p0

1

p̂2~p2p0̂!
2 ,

~B25c!

and p05(2p/L,0,...,0). Indimensiond52 the asymptotic
behavior for largeL is @122#

I 1,L5
1

2p
lnL1I 1,fin1

1

L2
I 1

~1!1OS 1L4D , ~B26a!

I 2,L5I 2,̀ 1
1

16p

lnL

L2
1

1

L2
I 2

~1!1OS 1L4D , ~B26b!

I 3,L5I 3,̀ 1
1

16p

lnL

L2
1

1

L2
I 3

~1!1OS lnLL4 D ~B26c!

where

I 1,fin5
1

2p
@gE2 lnp1 1

2 ln222 lnh~ i !#, ~B27a!

I 1
~1!5

p

72
2

1

12
2

p

3
N21,11

2p2

3
~N22,11N22,2!, ~B27b!

I 2,̀ 5
z~3!

16p3 1
1

720
1

1

8p3 N3,11
1

4p2 ~N2,11N2,2!

5
1

~2p!4 S 11p4

180
1p2 (

m51

`
1

m2sinh2pmD , ~B27c!

I 2
~1!5

1

8
I 1,fin1

1

4p
I 1

~1! , ~B27d!

I 3,̀ 5
1

~2p!4 F2p2

3
14p~122 ln2!1218pN1,1G ,

~B27e!

I 3
~1!5

gE2 lnp

16p
2
21 ln2

96p
1

1

72
1

1

24p2

1
1

12p
~N1,11N1,122N21,1!1

1

3
~N22,11N22,2!.

~B27f!

Here

h~t!5~e2p i t!1/24)
n51

`

„12~e2p i t!n… ~B28!

TABLE XVIII. Exact I 2,L compared with the asymptotic expansions through order 1 and through order
L22. Last column is the deviation from the order-L22 expansion, multiplied byL4.

L Exact I 2,L

Asymptotic
through O~1!

Asymptotic
through O~L22!

Deviation
3L4

4 0.00586615668403 0.00386694659074 0.00582620995440 0.01022642
8 0.00457375479608 0.00386694659074 0.00457222688493 0.00625832
16 0.00409721602477 0.00386694659074 0.00409713277760 0.00545569
32 0.00393796470343 0.00386694659074 0.00393795966578 0.00528235
64 0.00388806680392 0.00386694659074 0.00388806649158 0.00524022
128 0.00387306824345 0.00386694659074 0.00387306822397 0.00522975
256 0.00386868741477 0.00386694659074 0.00386868741355 0.00522714
512 0.00386743440014 0.00386694659074 0.00386743440007 0.00522655
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is Dedekind’sh function @134, Chap. 18#, and

Np,q5 (
n51

`
1

np~e2pn21!q
, ~B29!

Np,q5 (
n51

`
1

~124n2!np~e2pn21!q
. ~B30!

Numerically,

I 1,fin'0.04876563317014130174, ~B31a!

I 1
~1!'20.02924119479519021443,

~B31b!

I 2,̀ '0.00386694659073721003,
~B31c!

I 2
~1!'0.00376876379948390038,

~B31d!

I 3,̀ '0.00238025865644851979,
~B31e!

I 3
~1!'20.00226837289908675469.

~B31f!

In Tables XVII–XIX we report the exactI 1,L, I 2,L, and I 3,L
for selected values ofL and compare with the asymptotic
expansions. The agreement is excellent, and we can even
estimate numerically the next terms in the expansions:
they are '0.121015/L4, '0.0052263/L4, and
'0.0245 lnL/L420.0132/L4, respectively.

In these expressions we can now take the finite-size-
scaling limitb, L→` with x[jF

(2nd)(b,L)/L held fixed and
then expand in powers of 1/x2; under theassumptionthat
Eqs.~B22a! and~B22b! remain valid in this limit, we obtain
for d52

xF~b,sL!

xF~b,L !
5s2H 12

lns

2p
x221

N222

N221 F ln2s16p2

1S p

2
I 3,̀ 1

1

16p3D lnsGx241O~x26!J , ~B32a!

xA~b,sL!

xA~b,L !
5s2H 12

lns

p

N2

N221
x221

N2

~N221!2 F 3

8p2 ln
2s

1~N222!S pI 3,̀ 1
1

8p3D lnsGx241O~x26!J
~B32b!

and also

jF
~2nd!~b,L !

jA
~2nd!~b,L !

5S 2N2

N221D
1/2 F11

N211

N221 S p2I 3,̀ 1
1

8p2D x22

1O~x24!G . ~B33!

Exploiting the renormalization group as discussed in the
previous section, we can obtain the finite-size-scaling func-
tion for jF

(2nd) in terms ofx to order 1/x4, and forjA
(2nd) in

terms ofx8[jA
(2nd)(b,L)/L to order 1/x84:

jF
~2nd!~b,sL!

jF
~2nd!~b,L !

5sF12
w0lns

2 SAx D
2

2Sw1lns

2
1
w0
2ln2s

8 D SAx D
4

1O~x26!G ,
~B34a!

TABLE XIX. Exact I 3,L compared with the asymptotic expansions through order 1 and through order
L22. Last column is the deviation from the order-L22 expansion, multiplied byL4/ln L. The deviation from
the order-L22 expansion can be fitted approximately by 0.02454 lnL/L420.01317/L4.

L Exact I 3,L

Asymptotic
through O~1!

Asymptotic
through O~L22!

Deviation
3L4/ln L

4 0.00406901041667 0.00238025865645 0.00396323566772 0.0195329

8 0.00300128408196 0.00238025865645 0.00299146736254 0.0193366

16 0.00258777659718 0.00238025865645 0.00258692694629 0.0200833

32 0.00244546104223 0.00238025865645 0.00244539225724 0.0208112

64 0.00239991399033 0.00238025865645 0.00239990868873 0.0213870

128 0.00238601321704 0.00238025865645 0.00238601282254 0.0218254

256 0.00238190764109 0.00238025865645 0.00238190761248 0.0221619

512 0.00238072350112 0.00238025865645 0.00238072349908 0.0224257
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jA
~2nd!~b,sL!

jA
~2nd!~b,L !

5sF12
w0lns

2 SA8

x8
D 22Sw1lns

2
1
w0
2ln2s

8 D SA8

x8
D 41O„~x8!26

…G , ~B34b!

whereA5[N/(N221)]1/2, A85(2N)21/2, w05N/(4p), w15N2/~32p2!. Of course, starting at order 1/x6 we expect the
finite-size-scaling functions forjF

(2nd) andjA
(2nd) to differ. Finally, we can use Eq.~B33! to express Eq.~B34b! in terms ofx:

jA
~2nd!~b,sL!

jA
~2nd!~b,L !

5sH 12
lns

8p

N2

N221
x222

N2

~N221!2 F S ~N211!S p

4
I 3,̀ 1

1

32p3D1
N2

64p2 D lns1
N2ln2s

128p2 Gx241O~x26!J .
~B35!
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