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Multigrid Monte Carlo simulation via XY embedding.
[I. Two-dimensional SU(3) principal chiral model
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We carry out a high-precision simulation of the two-dimensional3grincipal chiral model at correlation
lengths¢ up to ~4x 10°, using a multigrid Monte Carlo0MGMC) algorithm and approximately one year of
Cray C-90 CPU time. We extrapolate the finite-volume Monte Carlo data to infinite volume using finite-size-
scaling theory, and we discuss carefully the systematic and statistical errors in this extrapolation. We then
compare the extrapolated data to the renormalization-group predictions. The deviation from asymptotic scaling,
which is~12% até~25, decreases to2% até~4x 10°. We also analyze the dynamic critical behavior of the
MGMC algorithm using lattices up to 25@56, finding the dynamic critical exponent, ,2~0.45=0.02
(subjective 68% confidence interyal hus, for this asymptotically free model, critical slowing-down is greatly
reduced compared to local algorithms, but not completely elimind&@b56-282(97)06706-4

PACS numbgs): 11.10.Hi, 11.10.Jj, 11.10.Kk, 11.15.Ha

[. INTRODUCTION (2) Cycle control parametey. This is an integer number
that determines the way in which the different block sizes are
This paper has two distinct objectives: first, to study thevisited. In general, blocks of linear sizé &re updatedy'
dynamic critical behavior of the multigrid Monte Carlo times per iteration. Thus, in th&-cycle (y=2) more empha-
(MGMC) algorithm for the two-dimensional §8) principal  sis is placed on large length scales than in Yheycle (y
chiral model; and second, to apply this algorithm to obtain a=1).
high-precision test of asymptotic scaling for this model. We (3) Basic (smoothing) iteratianThis is the local Monte
discuss these two objectives in separate subsections. Carlo update that is performed on each level. Typically one
chooses to usheat-bathupdating if the distribution can be
sampled in some simple way, ahketropolis updating oth-
A. Multigrid Monte Carlo algorithm erV\(/LS;e-I | on Th _ be imol
L . . mplementation The computations can be imple-
_ By now it is widely recognized1-4] that better simula- 004 eliather in theecursive muIF:igridstyle using expligit
tion algorithms, Wlth_ strongly r_educed critical slowmg-(jown, coarse-grid field§29,30,5—11, or in theunigrid style using
are n_eeded for _hlgh-preC|5|on Monte_ _Carlo _studles Ofhlock updates acting directly on the fine-grid fie[@L,14—
statistical-mechanical systems near critical points and ofg] we use here the recursive multigrid approach, in which
quantum field theoriessuch as QCDnear the continuum  the computational labor per iteration for drdimensional
limit. One promising class of such algorithmsnisultigrid  system of linear sizé is
Monte Carlo(MGMC) [5-28]: this is a collective-mode ap-
proach that introduces block updates$ fixed shape but vari- LY for y<29,
able amplitudgon all length scales. The basic ingredients of lqd —od
the metf?od are the foIIo?/vinb: ’ Work(MG)~1 L logl. —for y=2", (.3
(1) Interpolation operator This is a rule specifying the
shape of the block update. The interpolations most com-

monly used arepiecewise-constan{square-wave updates o
and piecewise-lineafpyramidal-wave updatgs The efficiency of the MGMC method can be analyzed

rigorously in the case of the Gaussidree-field model, for
which it can be provef5,6,32 that critical slowing-down is
completely eliminated.That is, theautocorrelation timer is

L% for y>29.
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bounded as the correlation lengtland the lattice size tend
to infinity, so that thedynamic critical exponent is zero®
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the original variable$), . Here we choose to exploit only the
left-multiplication subgroup.More precisely, we define the

One is therefore motivated to apply the MGMC algorithm updated variabléJ ;*" by
to “nearly Gaussian” systems, such as asymptotically free

nonlinearo models; one might hope that critical slowing-
down would likewise be completely eliminateghossibly

modulo a logarithmor at least greatly reduced compared to
the z=~2 of local algorithms. However, previous numerical

study of MGMC algorithms in the two-dimensiondlvector
models withN=3,4,8[8,11] has shown, to our initial sur-
prise, that the dynamic critical exponentrist zero. Never-
theless, it is quite smallz~0.50-0.70, so these algorithms

work reasonably well. In view of these results for the
N-vector models, we want to investigate the performance of

MGMC algorithms in other asymptotically free models,
such as the two-dimensional SN principal chiral models.
Of course, for two-dimension&-vector models, Wolff’'s
cluster algorithn{33] apparently succeeds @liminatingthe
critical slowing-down[33—-3§, so there is no point in using

unew—gi 0XRTR*1Ug|d= R éoxTRflUgld7 1.3
whereR is a random element of SM), andT is a fixed
nonzero elementto be specified latérof the Lie algebra
su(N) (i.e., a traceless Hermitian matyixrhe embedded Y
model consisting of the spifg,} is then simulated using the
induced Hamiltonian

Hembe&{ax}):H({UQem})1 (1.9
with initial condition 6,=0 (i.e., UI®'=U2Y for all x. At
each iteration of the algorithm, a new random mafixs

chosen.
In general the induceXY Hamiltonian(1.4) can be ex-

MGMC algorithms in this case. But there are strong reasongemely complicatedand thus impractical to simulate by
to believe[36] that Wolff-type embedding algorithms will true recursive MGMC algorithmsHowever, if the original
not achievez<2 for other o models, except perhaps the Hamiltonian 7{ is sufficiently “nice” and one makes a
RPY™! models. In particular, forr models taking values in clever choice of the generatdr, then in some cases the
the group SUK) with N=3, MGMC is the only known inducedXY Hamiltonian can be reasonably simple. In par-
collective-mode algorithnfexcept perhaps Fourier accelera-ticular, if we chooseT to have all its eigenvalues in the set
tion) that has a chance of achievimgg2. {-1,0,3, it follows that

A major drawback of our group’s standard MGMC algo-
rithm [5-9] is that its implementation is cumbersome and

e'T=T2 cosp+iT sind+ (1 —T?), (1.5

model-dependent, in the sense that the progi@ma in par-
ticular the heat-bath subroutinbas to be drastically rewrit-

wherel is the identity matrix. Then the induced Hamiltonian

ten for each distinct model. With this problem in mind, we is of the simple form

have recently developefd 0,11 a new implementation of
MGMC that can be used conveniently for a large class of
models with very little modification of the progratiThe
idea is toembedangular variabled6,} into the giveno
model, and then update the resulting indue€d model by
our standardpiecewise-constant-cycle, heat-bath, recur-
sive) MGMC method.

Consider, therefore, the SNj principal chiral mod-
el: the original variabled), of this model are SW{) ma-
trices living on the lattice sitex, and the original Hamil-
tonian is

—~B>, Ret(Ulu,). (1.2)

(xx")

H:

The global symmetry group is SM{exXSU(N) ign:- The
idea behindXY embedding is to choose randomly g1y
subgroupH CSU(N) X SU(N) ign, and to apply a “rota-
tion” 6, in this subgroup to the original spin variable
U,eSU(N). Thus, the angular variable, are updatesto

3See[4] for a pedagogical discussion of the various autocorrela

tion times and their associated dynamic critical exponents.

Hembed™ — 2 [axxr COK Ox— Oxr) + Byyr SIN(Ox— Oxr) ]

(xx")

+ const, (1.6

where the induced couplinds,,’, By} depend on the cur-
rent configuratiof U2% of the original model:

ay =B Re t(UJRTZR-1U%Y), (1.79
B =B Re tUYR(—iT)R™IUS)
= Im tr(U2'RTR1U%Y). (1.79

Such a “generalizedY Hamiltonian” is easily simulated
by MGMC; indeed, the coarse-grid Hamiltonians Xi-
model MGMC algorithms are inevitably of the forfd.6),
even when the fine-grid Hamiltonian is the standa¢y
model a,,»=a=0, B,,,=0 [6,7]. So one may just as easily
start from Eq.(1.6) already on the finest grid.

Clearly T must havek eigenvaluest1, k eigenvalues-1,
andN— 2k eigenvalues 0, wheretk<<|N/2|. Here we shall
choosek=1; without loss of generality we can take

“We devised this approach after extensive discussions with Martin

Hasenbusch and Steffen Meydr7]. In particular, the idea oKY
embedding is made explicit in their work: see E@®,(6) in [17]
and Eqgs.(5)—(9) in [18].

SActually, our program uses the left multiplication at the odd-
numbered iterations and the right multiplication at the even-
numbered iterations.
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1 0 0 on a conjecture which transcends perturbation theory and
which has thus far been neither proven nor disproven. This is
0O -1 0 - X -
T= _ (1.9 Wwhy we want to test the nonperturbative validity of
0 o0 O asymptotic freedom, using numerical simulations.

Let us clarify our use of the words “scaling” and
“asymptotic scaling.” Consider a sequen{K,},—; of lat-

With the explicit choice(1.8) for T, the couplings are tice theories with correlation lengthg, tending to infinity.
1, 10ld (oldt 1, rold: oldt We say that this sequence exhibstsalingif, after rescaling
aye =B[RER™ U, U,"'R) 11+ R(R U, U, 'R) 2, lengths byé, and rescaling the spins by appropriate values
(1.9 £y, all the correlation functiong---),, converge to some
= B[ Im(R™UMU2TRY . — Im(R™ U YU Y9TR). 1. cont_inuu.m-limi'.[ valugs. Equivalgntly, the sequence exhibits
Broc = BLIM( x U R)ag Im( XX )(?Lﬂgb) scaling if all dimensionless ratios of long-distance observ-

ables tend to constants. More loosely, we say théihite
Let us remark that the Hamiltoniafd.6), (1.7) is not only ~ sequence of theorid®{,} N_, exhibits scaling to within some
nonferromagnetic, but is in fact typicallffustrated[11].°  given degree of accuracy if all dimensionless ratios of long-

However, this frustration is weak whege1. distance observables are constant within the given degree of
accuracy.(This latter notion is often used in Monte Carlo
B. Asymptotic scaling work, expressed by some phrase like “we are in the scaling

A key tenet of modern elementary-particle physics is therﬁglon or we are nearhthe colntmuum l"r.n't)the that
asymptotic freedom of four-dimensional non-Abelian gauget € parameters Ift,, (such ass) play no rolein the concept
theories[37,38. However, the nonperturbative validity of of scaling. , " ) , .
asymptotic freedom has been questiofidd—42; and nu- Now _c0n3|der a seque_né‘e(n}_n:_l _Of lattice theones with
merical studies of lattice gauge theory have thus far failed tgOrrelation lengthg, tending to infinity, for which there ex-
detect asymptotic scaling in the bare coupljdg—44. Itis  iSts atheoretical prediction for the asymptotic behavior of
therefore useful to explore asymptotic scaling in a modelong-distance observables a function of the parameters in
easier to simulate numerically than four-dimensional gaugéf, (or as a function of short-distance observables like the
theories, but still theoretically interesting. A good candidateenergy. [The example of interest is of course an asymptoti-
is the two-dimensional SW) principal chiral model(1.2), cally free theory in the limit3—c, where the renormaliza-
which possesses the property of perturbative asymptotic fredion group predictsO(8)=Ce**B°(1+a,/B+a,/ 7+ --)
dom[47-49 along with other interesting characteristics. ~ for each long-distance observabi® with a,b,a;,a,, ...

Let us recall the logic underlying the conventional wis- computable in perturbation theory bGtusually unknown|.
dom on asymptotic freedom: Renormalization-graR6)  We say that the given sequence exhibsgmptotic scalingf
calculations in weak-couplingarge8) perturbation theory the theoretical predictions for the leading-order asymptotic
show that for two-dimensional models taking values in a pehavior are valid.[In the asymptotically-free case this
curved comzpact Riemannian manifolth, the RG flow at  peang thatd(B,)/ (e*nBP) tends to a constant as—.]
large =1/~ is towardsmaller3[47—-49,55-58 Itis there-  \1qre |oosely, we say that dinite sequence of theories
f_ore natl_JraI to_conjecturethat th.'s flow continues to th,_e:O {H\_; exhibits asymptotic scaling to within some given
fixed point, without encountering any other fixed pGtIf o000 of accuracy if the theoretical predictions for the

this s indeed the case, then it follows that the theory h"’1?'eading—order asymptotic behavior are valid to within the

exponential decay of correlations for gk<e; and the RG iven degree of accuracyln the asymptotically-free case
then gives precise predictions for the scaling behavior of th" 9 by - ymp y-iree
this means that)(8,)/(e*8;) is constant to within the

correlation lengthé and the susceptibility as f—. More- ;
over, for certaino models it is possible to calculate, modulo 9iven degree of accurady. -
some plausible hypotheses, the nonperturbative coefficient in Clearly, asymptotic scaling implies scalifigthe observ-
the asymptotic formula for the correlation lengB9—64. It ables behave correctly as a function@fthen their dimen-
should be emphasized, however, that all these results depefipnless ratios necessarily convergeut not conversely.
Note also that even if asymptotic scaling does hold along the
given path in parameter space, it may be necessary to go to
much larger correlation lengths to observe asymptotic scal-
ing to some reasonable degree of accuracy than to observe
scaling to the same degree of accuracy.

In the renormalization-group language, deviations from

"The SUN) chiral model has a N expansion in terms of planar scaling are Caqsed by irrelevant operat(ss tha.t the _RG
graphs, similar to that of the SM) gauge theorie§50,51. The  1OW does not lie exactly on the unstable manifoldhile
SU(N) chiral model also has lattice Schwinger-Dyson equationsdeviations from asymptotic scaling arise also from higher-
and a high-temperature character expansion that are similar to tho§§der corrections to the flown the unstable manifold. In an
of the SUN) lattice gauge theorief51,52. Finally, the Migdal- ~ asymptotically free theory, deviations from scaling are non-
Kadanoff approximate renormalization group predicts the same rePerturbative effectgsuppressed by powers éfand hence
cursion equations for the two-dimensional $)(spin models as exponentially small in8), while deviations from asymptotic
for the four-dimensional SUY) gauge theorief53,54. scaling are perturbative effedfa power series in B~/logé,

5We call the Hamiltonian(1.6) ferromagneticif a,, =0 and
By =0 for all bonds(xx’). We call itunfrustratedif there exists a
configuration{6,} that simultaneously minimizes the bond energy
—[ayx COS(Oyx— Oyr) + Byx' SiN(By— By+)] on all bonds(xx").
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with coefficients that are computable in lattice perturbationdesign’ On the other hand, the various “improved expan-
theory). Therefore, scaling may be expected to set in at &ion parameters” are aimed at reachagymptotic scalingt
rather modest correlation lengtie.g., £~10 or even the smallest possible correlation length, by redefining
smalley, because the corrections to scaling fall off like in- slightly the meaning of “asymptotic scaling(using the en-
verse powers of. On the other hand, asymptotic scaling is €rgy as the parameter in place gy

much more elusive, because the corrections fall off like in- In the model treated here, scaling is reactftdwithin
verse powers of théogarithm of & depending on the mag- abou_t 1% alree_\dy at a correlation length of a few lattice
nitude of the perturbative coefficientincluding unknown —SPacingd67]. Since we are able to go to much larger corre-

high-order ones asymptotic scaling could set in at correla- lation lengths than this, scgling is no prpblem at all for us;
tion lengths as small as-10 or could require correlation W€ thus have no need of “improved actions.” On the other

lengths as large as10°, hand, asymptotic scaling is mU(_:h more elusive, and We are
%herefore very interested in trying out the proposed “im-

Consequently it is not a surprise that numerical studies o . 4 .
roved expansion parameters.” But we have some reticence

Iattiqe gauge theory have Fhus far failled to dgtect asymptotigbout the conceptual and theoretical basis underlying this
scaling in the bare coupling. Even in the simpler case oapproach(see Sec. Il G

two-dimensional nonlineas- models, numerical simulations
at correlation lengthg§~10-100 have often shown discrep-
ancies of order 10-50 % from asymptotic scaling. In the
SU@3) chiral model, previous Monte Carlo studies The plan of this paper is as follows. In Sec. Il we set the
[65,17,66,67 up to ¢£&~35 have found that the ratio Notation. In Sec. Ill we summarize the perturbative predic-
&B)[e**BP(1+a,/B)] is not approximately constant, nor tions for the two-dimensional SB) prmmpa[ chiral mod-
does its value agree with the predicted nonperturbative coef!S- In Sec. IV we present our raw data, which are based on
ficient [62]; on both points the discrepancy is of order 10—aPproximately one year of Cray C-90 CPU time. In Sec. V
20 %. we carry out a detailed analysis of our static data, making

These studies seem to show empirically that to observéystematic use of the finite-size-scaling extrapollation
asymptotic scaling in the bare coupling in the (SUchiral method, and we compare the extrapolated values with the
model, the numerical simulations will need to reach correlaPerturbative predictions. In Sec. VI we analyze our dynamic
tion lengths&>35 (how large is not so clearUnfortunately, data using gpnventlonal finite-size-scaling plots to extrapt the
it is at present unfeasible to simulate lattices of linear tize dynamic critical exponentsiy 2 andziy 2. In Appendi-
bigger than~1000; so, if we want to do a direct “infinite- ces A and B we present some perturbative computations.
volume” simulation, which requirek/é=6-8 to avoid sig- Parts of this work have appeared previously in brief pre-
nificant finite-size effects, we cannot hope to reach correlaliminary reports[10,12.
tion lengths beyond about 150. To circumvent this problem,
we shall resign ourselves to using lattices that are far from II. NOTATIONS AND PRELIMINARIES
being “infinite,” and we shall attempt to understand the
finite-size effects in such detail that we can correct for them.
We do this by applying an extremely powerful method We wish to study various correlation functions of the
(68,69 for the extrapolation of finite-size data to the infinite- fundamental-representation fieldJ, and the adjoint-
volume limit, due originally to Lscher, Weisz, and Wolff representation fielt, defined by
[70] (see also Kim[71-75), based on finite-size-scaling
theory. Using only latticek <256, we are able to obtain the
infinite-volume correlation lengtl, to an accuracy of order
0.5%(0.9%, 1.1%, 1.3%, 1.5%when¢, ~107 (105, 10, 10°,
4x10°). We realize that this sounds crazy at first, but wenote the relation between the traces in the fundamental and
hope to convince the reader that we do in fact have reliablghe adjoint representations
control ove8r all systematic and statistical err@gse Sec. V
for details. — /= a--B_ 2_

Finally, let us remark that other studies have used differ- AU =UV= (Vi) g = (W)= 1, 2.2
ent approaches to observe either scaling or asymptotic scal-, . . . i
ing at smaller correlation lengths. Thus the various “im which follows immediately from Eq(2.1). We thus define
proved actions” (Symanzik [82-83, Hasenfratz-
Niedermayel[ 86,87, etc) are aimed at reachingcaling at

C. Plan of this paper

A. Observables to be measured

a--6 a /11 )0 1 a@ b
(Vx)-ﬁy-E(Ux).y(Ux)B _N 5[357/ (21)

" the fundamental and adjoint 2-point correlation functions

_ +
the smallest possible correlation length. If they have any efSF(X—Y)=(tr(U,U,)), (2.3a
fect on asymptotic scaling, it is by coincidence rather than by
Galx—y)=(tra(UfU,))y=(|tr(ufu,) > - 1. (2.3b

8We have previously carried out a similar study of asymptotic °A recent comparative study of the standard and Symanzik-
scaling in the two-dimensional @) o model[76—79. See also the improved actions for four-dimensional $) and SU3) lattice
criticisms of this work by Patrascioiu and Sei[@&0] and our reply  gauge theories foundo difference in the quality of asymptotic
[81]. We discuss these criticisms further in Sec. V D below. scaling between the two actioh88,89.
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All our numerical work will be done on ah XL lattice ) 12
with periodic boundary conditions. We are interested in the 1 E |X[2Gy(x)
following quantities: g2 = o NN 2.9
(a) The fundamental and adjoint enerdfes zx: G4(X)
1 + 1 . i )
Er== (tr(UiUy))= = Gg(e), (2.4a (f) The fundamental and adjoint exponential correlation
N N
lengths
1 1 (&P = |im | 2.1
Ea=nz=1 (Itr(Ulug)®—1)= NZ—1 Ca(®). & x|z ING2(X) (210
(2.4b

and the corresponding mass gaps=1/£&P . [These quan-
tities make sense only if the lattice is essentially infitite.,
L>£89) in at least one direction. We will naheasureany
exponential correlation lengths in this work; but we will use
£ as a theoretical standard of comparigon.

wheree stands for any nearest neighbor of the origin.
(b) The fundamental, adjoint, and mixed specific h¥ats

d JEg ex
_- All these quantities excegt®™ can be expressed in terms
Cre=yN WEZ (Re t(UgUo);Re t(U;U,)=d - = B’ of expectations involving the following observables:
(2.5a
Me=2 Uy, (2113
d . 5 X
Can=pz—7 2 (MULO AU I,
(2.5b MA=§ V,, (2.11b
d 5 t
Cep=—r—— tr(UlUg)|%Re t(UTU,)), Me=tr(MeMe), (2.110
FA m(%)d ( e 0)| '( y z)>
(2.50 MEa=tr(MEM,), (2.119
wheree stands for any nearest neighbor of the origins the 1 - ~
spatial dimension(in this paperd=2), and (A;B)=(AB) Fr=7 Re t{U(0,2/L)U(0,2m/L)
—(A)(B). . .
(c) The fundamental and adjoint magnetic susceptibilities +U(2#7/L,00UT(27/L,0)], (2.11¢
1 Y ot
X#:E Gu(X), (2.6) .7:A=§ Re tfV(0,27/L)V'(0,27/L)
X
+V(27/L,0V(27/L,0)], (2.119

where # stands foF or A.
(d) The fundamental and adjoint correlation functions at

the smallest nonzero momentum: Z} Re t(U}U,), (2.119
(xy
F#:g e'pO'XG#(X), (27) gA N2 E [|tl’(UTU | _1]’ (211h
wherepy= (= 2/L,0) or (0,:2/L). whereU(p) andV(p) are the Fourier transforms &f, and
(e) The fundamental and adjoint second-moment correlaVx- Thus
tion lengths 1
E#=§ Ve, (2.129
12
(ZHQZM (2.9
# 2 sin(7/L) Cer=NV Y (E2)—(&)?], (2.12h
In the infinite-volume limit this becomes Can=(N= 1)V~ (ED) —(£a)2], (2.129
Cea= VN*— NV [(E:EQ) — (Ee)(EN], (2.129
'“We have chosen this normalization in order to haweeQ o<1, xs=V YM2), (2.129
with Eg o=1 for a totally ordered state. Several other normaliza-
tions are in use in the literature. F#=V_l<.7-"#>, (2.129

“Here we return to the standard normalizatiper site (albeit
without the “thermodynamic” factos?). whereV=L? is the number of sites in the lattice.
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B. Autocorrelation functions and autocorrelation times 1

n

Let us now define the quantities—autocorrelation func- varA)= o z Can(r—s) (2.199
tions and autocorrelation times—that characterize the Monte '
Carlo dynamics. LeAA be an observablé.e., a function of h—1
the spin configuratiojU,}). We are interested in the evolu- _1 (1_ m Can(t)
tion of A in Monte Carlo time, and more particularly in the n AA
rate at which the system “loses memory” of the past. We (2.19n
define, therefore, the unnormalized autocorrelation

function?
%E(ZTH‘]LA)CAA(O) for n>r.

Can(t) =(AAs ;1) —(A)?, (213 (2.199

where expectations are takén equilibrium The corre- Thus the variance oA is a factor Zriy 4 larger than it would
spondingnormalized autocorrelation functiois be if the {At} were statistically independent. Stated differ-
ently, the number of “effectively independent samples” in a

run of lengthn is roughlyn/27 5 . The autocorrelation time

PaA() = Caa()/Can(0). (2.14 Tint,a (fOr interesting observables) is therefore a “figure of
(demerit” of a Monte Carlo algorithm.
We then define théntegrated autocorrelation time The integrated autocorrelation timg,  can be estimated
by standard procedures of statistical time-series analysis
10° [90,91]. These procedures also give statistically vadidor
= barson (A) and 7y o . For more details, seg@®2, Appendix
TinA™ 2 tzz—oo panlt) (2.153 Cl. In téis>paper we have used a self-consistent truncation

window of width c 7, o, Wherec=8 for M2 and M3 and
- c=10 for the other observables. We mglde thesze choices be-
cause the autocorrelation functions fbt ¢ and M ; appear
+t21 PAAY). (2.150 to decay roughly like a pure exponential, while those for the
other observables exhibit somewhat heavier long-time tails.
We have checked the dependencergf, on the window

1 inne it i i
[The factor of; is purely a matte_r‘t‘(l)f convention; 1t 1S IN- \igth, and found that in all cases the estimated, changes
serted so thatj, o~ 7 if paa(t)=e """ with =1.] Finally, by less than 0.1% forSc<15. ‘
the exponential autocorrelation timtr the observable is

N -

defined as
Ill. PERTURBATIVE PREDICTIONS FOR SU (N) CHIRAL
" MODELS
t
Texpa=lim sup SOl (2.16 In this section we review the perturbatiyiarge8) pre-
t—oo PAR dictions for the two-dimensional SBI) principal chiral

models. Most of these results are dld7,93; the results

concerning the adjoint sector, as well as those concerning the
finite-size-scaling functions, are new. The calculations lead-
ing to the new results are summarized in Appendices A and

and the exponential autocorrelation tirfisslowest mode”)
for the system as a whole is defined as

Texp= SUP TexpA - (2.1
A
A. Short-distance quantities

. Modulo some conceptual problems arising from infrared
N h = whenever th rv is n r- . Lo ) .
Ote that7e,,=7epa Whenever the observabli is not o divergencies in dimensiod<2, the calculation of the per-

thogonal to the slowest mode of the system. 4 . e .
9 Y urbation expansion fdiocal quantities such as the energies

The integrated autocorrelation time controls the statisticaL ! . ,
: - ¢ and E, is straightforward but tedious. For the SUY
error in Monte Carlo measurements (@). More precisely, chiral model(1.2) in dimensiond=2, Er has been calculated

the sample mean through three-loop ordd67]:

" N2—1 N?—2
A=o 2 A (2.18 Br(B)=1= 7N |1 Tong
. 0.0756- 0.0634N?+0.0174]* Lo(UsY)
has variance N?B? '
(3.1

2n the mathematics and statistics literature, this is called thaNe have calculate , through a trivial two-loop orde(see
autocovariance functian Appendix A), obtaining
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473
N

E )=1—ﬁ+N2+4+o 1/83). (3.2 8 _Cy,
A(B o5+ 307 (1/B (3.9

(B €2

The largeg expansions for the specific hed@gr and Cgp ) o i
can be obtained by differentiating Eq8.1) and (3.2). The advg'ntage of this formulatlt_)n in the cgse)@f'ls Fhat
one additional term of perturbation theory is available.,

¢c, but nota, or b,).

For the standard nearest-neighbor actibr2), the pertur-
Renormalization-group  calculations in the low- bative coefficientsy, by, c;, andc, can be easily recovered
temperature expansion(= weak-coupling perturbation from the lattice renormalization-group functions calculated
theory) [47—-49 suggest that the mode($.2) are asymptoti- through three loopgs7,93; and we computed; ande; (see

cally free, i.e., that their only critical point is @#&=«. The  Appendix A). The results are
renormalization group further predicts that the second-

B. Asymptotic scaling of correlation lengths and susceptibilities

moment correlation lengthg®"? £2")  the exponential a _ 37 N3 (13_77_ }) 1
correlation lengthg (™, &% and the susceptibilitiegr , xa ! 8 48 8
behave as
+i+i—1—zG N (3.9
~ a, 160 16 24 2 i) '
b.— 1 3} 1 N 1 137\ 1
_ A TANDINT g 712 4x) N° U \4xm 24| N
= -2 4+ —4...
xe(8) CXFA(N) "B } N (R AR IY 31
(3.9 87 8 13 "C1/N, (3.10
—~ 47TB —4 dl [ 1 1 1
xa(B)=C A_Z(—) 1+ o+, (3.5 =(N2—1)| = — 4 —— ——
A N B C=(N"= D~ o ¥ aN~ 4’
(3.11
as B—oo, where
12 2 (N? 1)_ ! + 1 (1 1)
4w B N2—2 C=(N“—1)| — 5+ 5z | 1— 7=
— a—47BIN 52 8N 2N 4
A=e ( N ) 2 eX[{# W (36) L
1 /17 1 1
is the fundamental mass scafeand &, denotes any one of N \12 7 e
£2nd) (2nd) £(exp) exp) HereC,,, C,_, andC, areuniver- 13 3 1 G
sal (albeit nonperturbatiyequantities characteristic of the + 195 §+ 2 2+T}’ (3.12
continuum theoryand thus depending only dw), while the ™ ™
ay, by, andd, are nonuniversal constantdepending orN 3 1 137 5\ 1
and on the lattice Hamiltonianthat can be computed in dlz___g+(_77_ _) -
weak-coupling perturbation theory on the lattice lat 2 47 N 24 4] N
loops. It is worth emphasizing that tlsamecoefficientsa, 3 5
occur in all four correlation lengths: this is because the ratios 22T
: this is | e tl + - 7Gy|N, (3.13
of these correlation lengths take their continuum-limit values 87 8 12
plus corrections that are powers of the mass 1/£®P,
hence exponentially small ig. e Lt (1t (3.14
When analyzing the susceptibilities, it is convenient to ! N \2 27" ’

study instead the ratios

where G;~0.04616363. Perturbation theory predicts
trivially—or rather, assumes-that the lowest mass in the
SU(N) adjoint channel is the scattering state of two funda-
mental particles, i.e., there are no adjoint bound st4tes:

—2(N2—1)/N?

473

N

xe(B) _Cxe
&B)? C%

3.7

1 C
Tt —F — e

~ ~ 1
Cgkexp)/Cg(Fexp)Z 7 (3.1

13n Eq. (3.6), the exponential and power ¢ are universal. The
remaining factor is chosen so as make e limit of the lattice
theory agree with the standard continuermodel in the modified 14For N=4 there are bound statesatherchannels, namely those
minimal subtraction schem@S) normalization; this factor is spe- corresponding to the completely antisymmetrized product
cial to the standard nearest-neighbor actibs2), and comes froma  (f®- - ®f)anisymm Of k fundamental representations, where
one-loop lattice calculatiof49]. 2<ksN-2[94-94.
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The nonperturbative universal quantﬁ/g(Fexp)sAM—s/mF for Of course, in the strict sense these concepts are ill-

the standard continuum SNJ o model has been computed defined, because we are dealing here witmconvergent
exactly by Balog, Naik, Niedermayer, and Wei&NNW) (and indeed usually non-Borel-summablg98,99)

[62] using the thermodynamic Bethensatz it is asymptotic series. As a result, tery-high-order terms in
perturbation theory wilalwaysbe large. But in practice this

~  —@nw_ [ © V2 /N will not pose a significant problem, since we are dealing with
Ceew=Cpen =|go sin(m/N)° (316 k=2 or 3 or(in rare cases4, while the ultimate growth of

the perturbative contributions usually occurs at much larger
The other nonperturbative constants are unknown, but Montgalues ofl.

Carlo studies suggest trﬁg(and)lcg(Fexmlies betweer~0.985 Each of these two possible obstructions to asymptotic
and 1 for allN=2; for N=3 it is 0.987-0.002[67].15 scaling gives rise to a distinct intuition regarding “improved
For future reference we define the “theoretical predic-€xPansion parameters,” and a distinct logic by which their
tions ala BNNW™ use can be justified.
Perturbative justificationSince the weak-coupling pertur-
(exp) — C(BNNW) \ 1 bation expansion is a power series iB4/1/logé, it follows
£F Bw 2-0od B) =C o A (3173 that the perturbative corrections decay extremely slowly as

1 &—o, In particular, these correctiong2 cogeld be large at all
(exp) — ZCBNW) ) g 317 accessible correlation lengtfsay, £&<10°—10) if the pertur-
€A, BNNw,2-0o B) = 5 g ’ (3.179 bative coefficients are sufficiently largesay, 5-10. The
“perturbative” logic governing the choice of expansion pa-

~ a rameters has been summarized very clearly by Lepage and
8wz ioof B)=Cfen A1+, (70 vageenzieion y cleatly by -epag
“If an expansion parametet,,q produces well-behaved
. 1 ~@nw) , g a, perturbation expansions for a variety of quantities, using an
ExBuNW,3-ood B) = 5 Cyom A 1+E : alternate expansion parametef,, = agood 1~ 10000000
F (3.179 will lead to second-order corrections that are uniformly
large, each roughly equal to 1008f), times the first-order
whereA is defined in Eq(3.6). contribution. Series expressed in termsxgfy, although for-
mally correct, are misleading if truncated and compared with
C. “Improved expansion parameters” data.”

. ) Conversely, they argue “the signal for a poor choice of

_ There hav?_ recently been a variety of proE)’osaIs in the,xnansion parameter is the presence in a variety of calcula-
literature for “improved expansion parameters” to be €Mm-(iong of large second-order coefficients that are all roughly
ployed in place of the bare coupling constang:1/the goal  oqya) relative to first order.” Indeed, this latter is precisely
of all these schemes is to observe perturbative asymptotig,e <ondition under which one can define a new expansion
gcgling gt the smallest.possible correla'tion Iength, by r?deparameteranewzao,d(lJrCao,d) with respect to which the
fining slightly the meaning of “asymptotic scaling.” In this gecond-order coefficients, for a variety of observables, are all
subsection we would like to analyze critically the logic be- significantly smaller than they were relative dgy.
hind these proposal_s, and analyze in particular the applica- However, while this is aiecessargondition for the per-
tion to the SUN) chiral models: , _ . turbation series iy, to be better behaved than thatdgy,

When one fails to observk-loop asymptotic scaling in it is not asufficientcondition. The trouble, of course, is that
some given expansion parameter and some given range of e coefficients at third and higher orders may become large
there are two possible causes: _ after the change of variablesyen if they were small before

(& The perturbative contribution &tloop order islarge  {he change of variableDifferent changes of variable that
(in the range of8 in qugstioh for one or more of th(_a tgrms are equivalent at second order, for example
I=k+1k+2,... .Inthis case onexpectdarge deviations nen= o1+ Cagy) and a’,= g/ (1—Cagg), can pro-

f_ronl k-loop asymptotic scallr}g. We call this the “perturba- ;cq vastly different effects at third and higher orders. The
tive” obsruction to asymptotic sqallng. decision to use one variable,.,, rather than another is in-

(b) The perturbative contributions atloop order (=k herently a guess about approximate magnitudes and signs of
+1) are _aII |nd.|V|duaIIy small, but in spite Of. thi-loop the uncomputed high-order corrections—that is, it is an at-
asymptotic scaling has not be.en reached:‘ThlsnclouId.be dL{@mpt toresumperturbation theory. Clearly this is a hazard-
o the higher-order terms having a large "sum” in spite of ;g enterprise, especially when one has in hand only the first

tbhet!r |r,1’d|V|stJ§1*IJStmallne3\\7r,] otr I Cot'rlld belt_duetto nolnpe?ur- one or two terms of the perturbation series as guidance. In
ative - contributions. atever the ultimate explanation, ., opinion a proposed resummation method—if it is to be

we call this the “nonperturbative” obstruction to asymptotic more than mere numerology—must be based on siee-

scaling. retical input which suggests the approximate magnitudes and
signs of the dominant contributions to the high-order correc-
tions. Moreover, a valid claim of “success” cannot be based
5The SU?2) principal chiral model is equivalent to the 4-vector simply on having foundneexpansion parameter that yields
model; and the N expansion of thé\-vector model, evaluated at good agreement between “theory” and “experiment”
N=4, indicates thaC(zm /C(exn~0.9992[97]. (while other expansion parameters, equally sensikpeiori,
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yield poor agreemeptRather, one can claim tenderstand TABLE I. Comparison of 3-loop perturbative coefficients in the

the situation only when one can exhibitsgstematic corre- standard schemea(/N) and in the “energy-improved” scheme

spondencebetween the degree of agreement betweerfaia—1/N).

“theory” and “experiment” and some plausibltheoretical

measure of the reliability of the expansion. N a,/N aja_1/N
A minimal demand for ak-loop “improved expansion

parameter” is that thék +1)-loop correction term be smaller 2 —0.013188 0.038174
in the new variable than in the old. Unfortunately, this crite- 3 —0.054914 0.033343
rion can be checked on_Iy aftgr thk+1}-loop terr_ns have 4 —0.080255 0.027781
_been computed—at Wfllph point one is more likely to ?e 5 —0.093870 0.024527
interested ink+1)-loop “improved expansion parameters
and thus in the relative size of ti{k+2)-loop corrections. 6 —0.101766 0.022580
For models that are exactly solvable in the lirit-o, 7 —0.106696 0.021344
some guidance concerning the choice of “improved expan- 8 —0.109965 0.020517
sion parameters” can be obtained from the=c> solution. 9 —0.112237 0.019939
For example, for the mlx‘e‘gl isovector/isotengomodels in ) 10 0.113878 0.019520
two dimensions, several “improved expansion parameters
related to the isovector and isotensor energies lead to the 11 —0.115101 0.019207
vanishingof the perturbative corrections, all orders of per- 12 —0.116035 0.018967
turbation theory, in the limiN—o [101]. Of course, this fact 13 —0.116765 0.018780
d_oes not establls”h the relevance of these “improved expan- 14 —0.117346 0.018630
sion parameters” for smalN. Moreover, for our SUY) 15 0117816 0.018509
models we unfortunately lack an exact solution Nat»oo ' '
[51]. 16 —-0.118202 0.018410
Nonperturbative justificationln some models the specific 17 —0.118522 0.018327
heat has_a shar_p b_ump at some firtedue presumably to a 18 —0.118790 0.018258
nearby smgulanty in the complg& plane. For_ example, this 19 0119017 0.018199
behavior is observed empirically67,93 in the two-
20 —0.119212 0.018149

dimensional SUY) o models forN=6; indeed, in this case

the singularity appears to pinch the real afasd thus be-

come a true second-order phase transjtinrthe limit N—oo o —0.121019 0.017681

[102]. In such a situation it is natural to expect that other

observables, such as the correlation length and the suscepti-

bilities, may show similar bumps and singularities. Indeed have the samphysical meaningn the new variable as it did

for the SUN) o models it is observed empiricalfh67,93 in the old. The energy, by contrast, isshort-distanceob-

that the correlation length shows large deviations from asservable, and is thus a plausible substitute for the bare pa-

ymptotic scaling precisely in the weak-to-strong-couplingrameter.] This choice can alternatively be justified on the

crossover regime where the specific heat has its peak; thjgdausible heuristic grounds that the ‘“nonperturbative ef-

behavior is particularly pronounced for lare fects” and/or high-order perturbative effects responsible for
If, by a change of variable—f(8) one could move the the sharp crossover from strong to weak coupling are likely

complex singularity farther away from the real axis, oneto have the same qualitative effect on correlations at both

would expect to observe a flatter specific-heat curve and—tshort and long distances.

the extent that this same singularity appears in long-distance These arguments are admittedly somewhat vague, but

observables such as the correlation length—also a smooth#rey give some grounds for trying an “improved expansion

approach to asymptotic scaling. One possible choice is tparameter” based on the energypg), as was long ago sug-

take f(B) equal to the energf(B): assuming that the en- gested(for somewhat different reasonby Parisi[103,104

ergy divergesat the complex singularity, this would move and other§105-114,100

the singularity tanfinity in the new variable[Of course, one The implementation of this “improved expansion param-

could alternatively takd (8) equal to the correlation length eter” is as follows. We first revert the perturbation expansion

&(B), but this is cheating: “asymptotic scaling” would not (3.1) for Eg, yielding 8 as a power series iRg=1—E:

B(Xg) = a_1xg 1+ ag+ a;xg+ O(x2) (3.183

0.054096961°— 0.1910544 + 0.2398288! 1
N2—1

N°-1 (N 1
= R i 2

2
N 16~ 8N X+ O(Xg). (3.18h
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Then, to obtain the “energy-improved expansion” of any
long-distance observabl@, we just insert Eq(3.18) into the
standard perturbation predictiqi3.3—(3.8) and expand in
Xg to the relevant order. For example, #&rwe have

12

_ - N X
— ! aldma_1IN)x 1 F /
§u(B)=C e F (47Ta_1> [1+aixg+ (3]119)
where
—~ —~ 2_
Cy,=Cgetmeo/N2™52 exp( -7 W) , (3.209
,__CZO a; 40{177
a1_2a_1 @ N (3.20h

For the other observables we shall proceed similarly.
Let us now apply ouperturbativetest of the goodness of

the 2-loop expansion variables—standard versus “energy¥

improved”—by comparing the relative magnitudes of the
3-loop perturbative coefficienta;/8 and a;xr~aja_,/8,
respectively. We have

a;=—1.17809N 3+0.7258481 1—0.12101N,
(3.22)
aja_,=—0.42465N"3+0.188138 1+ 0.017681M.
(3.22

In Table | we show these coefficienidivided byN so as to
have a goodN—oo limit) for N=2,3, .. .,20.. We see that
the 2-loop “energy-improved” scheme is a factor ef7

ARLO ... .. ... 3683

better than standard perturbation theory for lakjethe ad-
vantage drops to a factor ¢¢3 for N=4, and a factor of
~1.6 for N=3. Only for N=2 (which is isomorphic to the
4-vector model is the “energy-improved” scheme actually
Worsl?5 than standard perturbation thedly a factor of
~3).

D. Finite-size scaling of correlation lengths and susceptibilities

Since Monte Carlo simulations are carried out in systems
of finite size, it is important to understand how to connect
these measurements with infinite-volume physics. Let us
work on a periodic lattice of linear siZe. Then finite-size-
scaling theonf115-117 predicts quite generally that

O(B,sL)

OBL) Fo(&(B,L)/IL;s)+0(¢ “L™?), (3.23

hereQ is any long-distance observabteis any fixed scale
factor, &(B,L) is a suitably defined finite-volume correlation
length, L is the linear lattice sizek, is a scaling function
characteristic of the universality class, ands a correction-
to-scaling exponent. Here we will usg®"? in the role of
&B,L); for the observable® we will use the four “basic
observables”¢2", £2") .y, as well as certain com-
binations of them such agg/(£2")2, yA/(£22")2, and
5,(:2”d)/§§\2nd) .

In an asymptotically free model, the functioRg(x;s) at
x>1 can be computed in perturbation theory in powers of
1Ix2, Wherexzf(FZ”d)(/i’,L)/L. We obtain the following ex-
pansionssee Appendix B for details

&"(B,sL) Ins N?> N* Ins  In’s | .
WZS 1_8_77' NZ_1 X “— (N2—1)2 64772+ 128772 X +O(X ), (3.243
& (B.sL) s N2 N? , T N2 N2In%s]
W—S 1_%N2—1 X _(N2—1)2 (N°+1) ZI3’°O+ 39,3 +64’772 Ins+ 12872 X *+0O(x )¢,
(3.240
xe(BisL) [ Ins  N*-2[In’s [m 1 L .
—XF(,B,L) =S 1—Ex +—N2—1 _16772+ 5'3'“’+_167-r3 Ins|x *+0(x"°)|, (3.240
xa(BsL) [ Ins N* N®  [3N? ) 1 » e
and also
§§:2nd)(,8,L) 2N2 1/2] N2+1 ) 5 Y
LTy R N B e Nl P A | (329
where
I3~ (27) ~4%3.709741314407459. (3.26

6The opposite conclusions [67, p. 1623 are due to an algebraic
The same error infects Eg&l48) and (150 of [93]. We thank Ettore

error: the final term in their equa@® should have a minus sign.
Vicari for double-checking this computation.
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IV. NUMERICAL RESULTS of 4 asL—o. On the other hand, the timings on the IBM

SP2 growsuperlinearlyin the volume, presumably as a re-

&ult of the increased frequency of cache misses for ldrger

tyvo—dimeqsional S(8) chiral model, on periodiq:_xL lat- . Because of these opposite variations in the CPU time, the
tices of sizeL=8,16,32,64,128,256, at 264 different pairs ;,ns with L=128. 256 were performed on the Cray while

(BL) in the range 1.655<4.35. The results of these com- yqge withl =8, 16, 32 were done on the IBM; the runs with

putations are shown in Tables ($tatic data and Il (dy- | —g4 were divided between the two machines.

namic data Five of our(B,L) pairs coincide with those stud- The running speed on the Cray C-90 for odtY-

ied previously by Hasenbusch and Meydr7], and three  embedding MGMC program dt =256 was approximately

with those by Horgan and Drummoii@6]; in all these cases 259 MFlops. The total CPU time for the runs reported here

the static data are in good agreement. was about 0.85 Cray C-90 years plus 0.7 IBM SP2 years.
For most of ourB values we have made runs at four, five,

or even six different lattice sizes. In this way we have ob-

tained detailed information on the finite-size effects, cover-

ing densely the interval 0dx=¢2"9(g,L)/L<1.1. Using

We have carried out extensive Monte Carlo runs on th

V. FINITE-SIZE-SCALING ANALYSIS:
STATIC QUANTITIES

a finite-size-scaling extrapolation meth@ke Sec. V A we In this section we analyze the static data reported in Table
are able to extrapolaté?™® |y, £2" andy, to theL=c II. First, we review the finite-size-scaling extrapolation
limit with good control over the statistical and systematic method(Sec. V A. Next, we apply this method to extrapo-
errors(see Sec. V B late £ | e, £2" and y, to thelL = limit, taking great

These runs employed théY-embedding MGMC algo- care to analyze the systematic errors arising from corrections
rithm described in Sec. | Asee[11] for detaily. The in-  to scaling(Sec. V B. Then we compare both the raw and the
ducedXY model(1.6) was updated using our standafe- extrapolated values with the perturbative predictigBgc.
model MGMC progranf7] with y=2 (W-cycle) andm, =1, V C). We conclude by discussing further the conceptual
m,=0 (one heat-bath presweep and no heat-batffoundations of our method, and replying to some criticisms
postsweeps In all cases the coarsest grid is taken to bee2 ~ that have been leveled against$ec. V D.

All runs used a disordered initial configurati¢thot start”).
Because the measurement of the observapladicularly the

e ) . A. Finite-size-scaling extrapolation method
adjoint observablgswas very time-consuming compared to

the MGMC updating, the observables were measured once 1. Basic ideas

every two MGMC iterations. All timegrun lengths and au- We will extrapolate our finitd- data toL = using an
tocorrelation timegare therefore specified in units ofea- extremely powerful and general methfB,69 due origi-
surementsi.e., in units oftwo MGMC iterations. nally to Lischer, Weisz, and Wolff70] (see also Kin{71—

These runs were performed partly on a Cray C-90 angs)) pased on the theory dinite-size scalingFS9 [115—
partly on an IBM SP2(in both cases using only a single 117). \we have successfully employed this method in
processor. In Table IV we show the CPU time per measure- previous works on different model418,77,79.
ment, as a function ot, for each of these wo machi- * consider, for simplicity, a model controlled by a
nes: each timing thus includé&o MGMC iterations fol-  renormalization-group fixed point havirmerelevant opera-
lowed by one measurement of all observabBle@bserve that tor. Let us work on a periodic lattice of linear size Let
the timings on the Cray C-90 grosublinearlyin the vol- 3| ) pe a suitably defined finite-volume correlation length,
ume, in contrast to the theoretical predictithl), because such as the second-moment correlation Iendﬂﬁ'd)(ﬂ L)
the vectorization is more effective on the larger lattites. defined by Eq(2.8), and let® be any long-distance oE)serv—

But the ratio time(2)/time(L) is incr.easing withL,.and able (e.g., the correlation length or the susceptibjlitfhen
appears very roughly to be approaching the theoretical Valuﬁnite-size-scaling theorj115—117 predicts that

. . . O(B,L
1"The CPU time spent in the measurement of the observables is (L)
roughly 28%, 22%, 15%, 12%, 7%, 5% of the total CPU time for O(B,»)
L=8,16,32,64,128,256, respectively, when the runs are performed

on the Cray C-90; it is roughly 22%, 20%, 18%, 17%, 5%, 3% for yhare f , is a universal function and is a correction-to-

L=8,16,32,64,128,256 when the runs are performed on the IBI\/gCaling exponen]tg. It follows that if s is any fixed scale

SP2. _
8The heat-bath subroutine uses von Neumann rejection to genefr{flctor (usually we takes=2), then

ate the desired random variab[&s Appendix A. The algorithm is

vectorized by gathering all the sites of one sublattiesl or black O(B,sL) B B

into a single Cray vector, making one trial of the rejection algo- W:Fo(f(ﬁ,l—)“—;s)“‘ o L), (52
rithm, scattering the “successful” outputs, gathering and recom- ’

pressing the “failures,” and repeating until all sites are successful

Therefore, although the original vector length in this subroutine is

L%2, the vector lengths after several rejection steps are much*°This form of finite-size scaling assumes hyperscaling, and thus
smaller. It is thus advantageous to make the original vector lengtlis expected to hold only below the upper critical dimension of the
as large as possible. model. See, e.g[117, Chap. |, Sec. 2]7

:f@(g(ﬂloo)“—)—i_o(é‘iwll—iw)v (51)
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TABLE Il. Our Monte Carlo data for the S@3) chiral model as a function oB, L. Errors are one standard
deviation.
L XF XA éF [ Ep N
1.6000 32| 106.180 (0.460)| 36.186 (0.064) 4.4534 (0.0233) 1.6407 (0.0095) [0.4912228 (0.0000772) 0.2150757 (0.0000662
1.6500 8 65.220 (0.022)| 54.064 (0.030)| 3.5983 (0.0014)] 1.8994 (0.0009) [0.5389755 (0.0000656) [0.2583347 (0.0000643)
16| 130.603 (0.185) 60.006 (0.104) 5.2606 (0.0071)( 2.5127 (0.0040) 0.5208573 (0.0000780) 0.2414590 (0.0000715)
32| 149.314 (1.082) 46.200 0.178) 5.5139 (0‘0420 2.1082 (0.0184 0.5132461 (0.0001078) 0.2346354 (0.0000937)
1.7000 32| 214.259 (1.248)] 62.884 (0.268)] 6.9353 {0.0386 2.8619 (0.0190) [0.5341336 (0.0000884) [0.2542263 (0.0000835)
1.7500 8 73.865 (0.019) 67.554 (0.032)] 3.9816 (0.0013 2.1737 (0.0009 0.5726885 (0.0000561) 0.2928524 (0.0000602)
16 176.848 (0.145)| 95.368 (0.122)| 6.4631 (0.0059)| 3.3158 (0.0036)]0.5595000 (0.0000589)|0.2792882 (0.0000602)
32| 298.994 (1.014) 89.280 (0.292)| 8.5947 (0.0271) 3.8271 (0.0142) 0.5534794 (0.0000536) 0.2733057 (0.0000531)
64| 209.882 (0.968)| 73.222 (0.090)| 8.3492 (0.0349)| 3.0469 (0.0147)[0.5518565 (0.0000217)0.2717081 (0.0000216)
128 | 298.185 (0.792)| 72.672 (0.054)| 8.1632 (0.0767)| 2.9445 (0.0478)|0.5518589 (0.0000118){0.2717117 (0.0000117)
1.7750 32| 342.269 (0.712)|105.482 (0.232)| 9.3514 (0.0187)] 4.2906 (0.0098) [0.5623785 (0.0000353)[0.2824141 (0.0000361)
64| 361.421 (1.005)| 84.134 (0.096)| 9.3550 (0.0308)| 3.4600 (0.0122) |0.5606244 (0.0000165) [0.2806474 (0.0000168)
1.8000 32| 385.818 (0.694)]123.924 (0.262)[10.0809 (0.0178)| 4.7519 (0.0097) [0.5708396 (0.0000326) [0.2912637 (0.0000341)
64| 439.150 (0.826)| 97.766 (0.088)[10.5812 (0.0216) | 3.9967 (0.0090)}0.5690047 (0.0000101) (0.2893803 (0.0000104)
128 433.613 (0.760)] 94.744 (0.048) | 10.4680 (0.0436) 3.6883 (0.0243) 0.5689154 (0‘0000063) 0.2892876 (0.0000065)
256 | 434.198 (1.702)| 94.682 (0.106)]10.8017 (0.3262)| 3.5660 (0.2547)[0.5688939 (0.0000092) |0.2892665 (0.0000095)
1.8250 32| 430.306 (0.374)[145.158 (0.162)[10.8179 (0.0096) | 5.2293 (0.0053) [0.5789228 (0.0000174) 0.2999071 (0.0000186)
64| 528.604 (1.091)[114.556 (0.132)[11.8326 (0.0249)| 4.6327 (0.0107)|0.5770031 (0.0000098) |0.2978886 (0.0000104)
128 | 519.784 (0.991)]108.454 (0.062)[11.5729 (0.0451)| 4.1017 (0.0232)|0.5768699 (0.0000062) |0.2977490 (0.0000065)
T.8500 8| 81.233 (0.018)| 80.898 (0.034)| 4.3179 (0.0013)| 2.4181 (0.0009)[0.6011965 (0.0000504) |0.3244052 (0.0000578)
16| 214.142 (0.122)]134.086 (0.136)| 7.3677 (0.0053)| 3.9618 (0.0033)}|0.5906575 (0.0000491)(0.3126732 (0.0000546)
32| 470.662 (0.354)]166.786 (0.172){11.4472 (0.0091)| 5.6484 (0.0052) }0.5864995 (0.0000164) (0.3081675 (0.0000179)
64| 637.906 (1.299)]136.050 (0.184)[13.2950 (0.0263)| 5.4018 (0.0123)|0.5846955 (0.0000096) |0.3062333 (0.0000104)
128 ] 626.666 (1.278) 124.436 (0A080) 12.9708 (0.0460) 4.5574 (0.0224) |0.5844757 (0.0000060) 0.3059981 (0.0000065)
256 | 622.604 (2.810)[124.372 (0.152)]|12.9133 (0.3147)| 4.7465 (0.2098) |0.5844637 (0.0000084)|0.3059870 (0.0000091)
1.8750 32| 510.097 (0.331)[190.144 (0.180)[12.0432 (0.0086)| 6.0532 (0.0050) [0.5937732 (0.0000153) 10.3162469 (0.0000171)
64| 763.471 (1‘760) 163.174 (0.296)|14.8524 (0.0328) | 6.2746 (0.0162) 0.5920621 (0.0000108) 0.3143766 (0.0000118)
128 | 753.186 (1.927) 143.374 (0.122)]14.4231 (0.0554) | 5.1586 (0.0250) 0.5917596 (0.0000066) 0.3140472 (0.0000073)
T.9000 16| 230.282 (0.067)]153.840 (0.082)] 7.7548 (0.0030)| 4.2425 (0.0019)0.6041531 (0.0000265) |0.3279628 (0.0000305)
32| 547.737 (0.311)]214.660 (0.188)]12.6018 (0.0082)| 6.4412 (0.0049)[0.6006624 (0.0000147)(0.3240371 (0.0000167)
64| 900.729 (2.122)]196.618 (0.422)|16.4525 (0.0370)| 7.2164 (0.0189)|0.5990848 (0.0000115) 0.3222796 (0.0000129)
128 | 909.462 (2‘779) 165.368 (0.180) 16.1781 (0.0665) 5.7819 (0.0272) 0.5987348 (0.0000068) 0.3218904 (0.0000076)
1.9250 16 237.991 (0.065)[163.958 (0.084)[ 7.9395 (0.0030)| 4.3779 (0.0019) [0.6105105 (0.0000259) ]0.3353310 (0.0000302)
32| 583.050 (0.299)[239.702 (0.198)[13.1042 (0.0080){ 6.7871 (0.0048)|0.6072621 (0.0000140) (0.3316204 (0.0000162)
641049.244 (2.136)[237.338 (0.498)[18.1022 (0.0356) | 8.2014 (0.0189) (0.6058715 (0.0000108) (0.3300417 (0.0000124)
12811102.266 (3.550) 192.392 (0.250)|18.1499 (0.0705)( 6.6014 (0.0286) | 0.6054381 (0.0000065) 0.3295529 (0.0000075)
256 |1092.592 (2.893) 189.854 (0.142)|17.9768 (0.1429) 6.3931 (0.0844) 0.6054239 (0.0000036) |0.3295375 (0.0000041)
1.0500 16| 245460 (0.064)|174.150 (0.086)] 8.1184 (0.0030)| 4.5087 (0.0019)[0.6166564 (0.0000251) [0.3425660 (0.0000298)
32| 617.24Q (0.284)|265.742 (0.202)(13.5848 (0.0077)| 7.1375 (0.0047)|0.6135875 (0.0000133)|0.3390002 (0.0000156)
64|1194.664 (2.208)|283.412 (0.590)(19.6072 (0.0360)| 9.1575 (0.0193){0.6123274 (0.0000104)}0.3375481 (0.0000122)
128 [1322.915  (4.795) | 224.424 (0.370)[20.1813 (0.0821)| 7.5869 (0.0339) [0.6118567 (0.0000064) [0.3370064 (0.0000074)
1.9750 8 89.028 (04016) 96.936 (0.034)[ 4.6891 (0.0013) | 2.6896 (0.0009) [0.6311200 (0.0000450) 0.3598809 (0.0000554)
16 252.592 (0.062)|184.276 (0.086)| 8.2897 (0.0030)| 4.6340 (0.0019)|0.6225472 (0.0000242) {0.3495944 (0.0000291)
32| 649.369 (0.271)[292.126 (0.208)[14.0154 (0.0074)| 7.4520 (0.0046)|0.6196525 (0.0000130) [0.3461823 (0.0000155)
641337.681 (2.070) |334.646 (0.634)|21.0151 (0.0335)(10.0702 (0.0183)[0.6185086 (0.0000099) (0.3448418 (0.0000117)
1281601.041 (6.174) ] 264.420 (0.538)]22.6762 (0.0920)| 8.7306 (0.0386) 0.6180464 (0.0000061) 0.3443016 (0.0000073)
1.9850 64{1390.642 (2.082) 355.578 (0.668) 21.5021 (0.0333) 10.3999 (0.0182)[0.6209157 (0.0000098) 0.3477107 (0.0000117)
128 [1737.451  (6.649) | 284.052 (0.614)[23.8641 (0.0928)| 9.3045 (0.0403)[0.6204510 (0.0000061)[0.3471650 (0.0000073
2.0000 16| 259.597 (0.061)[194.594 (0.088) | 8.4570 (0.0030) 4.7572 (0.0019) [0.6282482 (0.0000237) 0.3564868 (0.0000288)
32| 681.088 (0.267)]319.682 (0.220)(14.4468 (0.0074)] 7.7643 (0.0046) [0.6255059 (0.0000127) 10.3532037 (0.0000153)
641477.094 (1.945)[390.562 (0.682)(22.3200 (0.0313)[10.9257 (0.0176)|0.6244452 (0.0000095) [0.3519448 (0.0000114)
128 |1944.874 (6.073)|316.190 (0.628)[25.5228 (0.0794)|10.1983 (0.0365) |0.6239974 (0.0000048) [0.3514168 (0.0000057)
256 |1908.004  (6.260) |293.300 (0.298)]24.9892 (0.1477)| 8.8131 (0.0745)!0.6239548 (0.0000033) [0.3513668 (0.0000039)
2.0120 32| 696.055 (0.259)]333.252 (0.220) [ 14.6492 (0.0073) 7.9105 (0.0046) [0.6282516 (0.0000123) 0.3565320 (0.0000150)
64 [1542.206 (1.879)|418.954 (0.700)(22.9143 {0.0303)|11.3251 (0.0172) [0.6272180 (0.0000091) [0.3552976 (0.0000110)
128 [2109.703  (8.410) | 344.006 (0.922)[26.7446 (0.1038){10.9118 (0.0490) [0.6267917 (0.0000058) {0.3547902 (0.0000070)
2.0250 16| 266.221 (0.060)[204.694 (0.090)[ 8.6155 (0.0030) | 4.8742 (0.0019) [0.6337170 (0.0000233) [0.3631777 (0.0000287)
32| 711.390 (0.257)|347.596 (0.226)|14.8563 (0.0073) | 8.0614 (0.0046)(0.6311148 (0.0000123) (0.3600304 (0.0000150)
6411610.502 (1.819)]450.680 (0.726)]23.5007 (0.0293)(11.7383 (0.0170) |0.6301684 (0.0000090) |0.3588882 (0.0000110)
128 {2323.057 (8.888) [379.398 (1.056)]28.3704 (0.1053)[11.7679 (0.0502)|0.6297447 (0.0000058) |0.3583793 (0.0000070)
2.0370 32 725.143 (0.254)][360.854 (0.228) [15.0262 (0.0073) 8.1890 (0.0046) [0.6337699 (0.0000120) 0.3632885 (0.0000148)
641669.171 (1.789)|479.310 (0.748)[23.9831 (0.0288) [ 12.0785 (0.0169) |0.6328372 (0.0000089) |0.3621576 (0.0000110)
128 | 2502.593 (9.227) 411.874 (1‘192) 29.6020 (0.1043) 12.4721 (0‘0511) 0.6324092 (0.0000056) 0.3616399 (0.0000068)
2.0500 16| 272.727 (0.059)|214.894 (0.090)[ 8.7741 (0.0030)[ 4.9897 (0.0019) |0.6390405 (0.0000226) [0.3697781 (0.0000282)
32| 740.767 (0.249) 376.128 (0.232)}15.2423 (0.0072)| 8.3438 (0‘0045) 0.6365752 (0.0000119) |0.3667528 (0.0000148)
641738.344 (1.745){514.266 (0.768) | 24.6064 (0.0284)12.5067 (0.0166) |0.6356760 (0.0000088) 0.3656533 (0.0000108)
128 12759.170 (9.709) 459.300 (1.350)[31.5086 (0.1060)]13.5741 (0.0522) |0.6352783 (0.0000056) 0.3651698 (0.0000068)
2.0620 32| 754.856 (0.246)390.290 (0.234)|15.4272 (0.0071)| 8.4788 (0.0045)0.6391212 (0.0000118)|0.3699156 (0.0000147)
64 [1795.334  (1.685)|544.602 (0.784)(25.0612 (0.0272)|12.8264 (0.0162) [0.6382364 (0.0000086)|0.3688288 (0.0000107)
128 |2985.634 (10.167) [504.588 (1.556) [33.0536 (0.1077)]14.4971 (0.0544) |0.6378740 (0.0000055) {0.3683857 (0.0000068)
2.0750 16| 279.162 (0‘058) 225.344 (0‘092) 8.9292 (0A0030) 5.1046 (0.0019) 0.6442409 (0.0000222) [0.3762899 (0.0000280)
32| 768.768 (0.242)]404.696 (0.236) | 15.5977 (0.0070)| 8.6054 (0.0045) 0.6418070 (0.0000116)|0.3732738 (0.0000145)
641863.073 (1.654)|581.884 (0.814)|25.6495 (0.0272)(13.2415 (0.0163)[0.6409971 (0.0000085) [0.3722694 (0.0000107)
128 |3226.608 (10.533) |556.628 (1.750)]34.6237 (0.1093)[15.4520 (0.0565) [0.6406263 (0.0000054) [0.3718133 (0.0000067)
2.1000 8 95.710 (0.012)]112.276 (0.028){ 5.0252 (0.0011) 2.9351 (0.0007) [0.6565474 (0.0000316)[0.3919404 (0.0000410)
16| 285.320 (0.050) (235.602 (0.082) 9.0812 (0.0026)| 5.2152 (0.0017) |0.6492320 (0.0000189) |0.3826249 (0.0000241)
32| 796.666 (0.240)|434.538 (0.246)|15.9633 (0.0071) | 8.8753 (0.0045) |0.6468963 (0.0000113) {0.3796861 (0.0000144)
641980.557 (1.578)|650.780 (0.850)26.5699 (0.0257)|13.8946 (0.0157)[0.6461337 (0.0000082) |0.3787316 (0.0000104)
128 |3690.326 (10.761)[668.022 (2.076)|37.4499 (0.1068) 117.2585 (0.0562) [0.6457853 (0.0000052) [0.3782972 (0.0000066)
2.1120 32| 809.972 (0‘237) 449.240 (0.248)[16.1357 (0.0071) | 9.0028 (0‘0045) 0.6492912 (0.0000112) 0.3827288 (0.0000143)
642037.311 (1.513)685.974 (0.852)[27.0201 (0.0250)|14.2143 (0.0154) | 0.6485356 (0.0000081) (0.3817763 (0.0000103)
128 |3940.610 (10.102)]731.578 (2.110)}39.0183 (0.1000)|18.2036 (0.0537)|0.6482214 (0.0000051) |0.3813825 (0.0000065)
2.1250 32| 823.270 (0.236){464.228 (0.254)|16.3014 (0.0071)| 9.1257 (0.0045) {0.6518132 (0.0000110) | 03869503 (0.0000142)
64 12097.488 (1.160){724.772 (0.678)]27.4922 (0.0194)(14.5589 (0.0119)]0.6510858 (0.0000062)[0.3850295 (0.0000079)
128 |4187.871 (8.579) [800.986 (1.892)]40.4378 (0.0841)(19.1438 (0.0447) |0.6507901 (0.0000041) 0.3846575 (0.0000053)
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L XF. X4 ¢F [ Ep By
2.1330 32 832.083 (0.235) 474.324 (0.256) [16.4152 (0.0071)| 9.2094 (0.0045) [0.6533840 (0.0000110) | 0.3879656 (0.0000141)
64| 2132.065 (1.477)| 747.888 (0.884)[27.7403 .(0.0247) [14.7452 (0.0152)]0.6526391 (0.0000080) |0.3870197 (0.0000102)
128 | 4332.950 (10.156) 843.362 (2.404) |41.2531 (0.0978)[19.6641 (0.0542)|0.6523571 (0.0000050) {0.3866613 (0.0000064)
2.1500 16 297.096 (0.055) 256.062 (0.096) [ 9.3701 (0.0031)| 5.4275 (0.0020) [0.6587483 (0.0000208) [ 0.3948696 (0.0000271)
32 849.988 (0.230) 495.226 (0.258) |16.6545 (0.0071)| 9.3843 (0.0045) |0.6566005 (0.0000108) |0.3921138 (0.0000140)
64| 2208.862 (1.131) 800.390 (0.714)|28.3343 (0.0191) |15.1744 (0.0119) [0.6558975 (0.0000061) [0.3912145 (0.0000079)
128 | 4661.467 (7.908)| 045.020 (2.052)[43.0964 (0.0765) |20.8693 (0.0426)0.6556358 (0.0000041) [0.3908801 (0.0000052)
256 | 5800.368 (28.591)] 753.756 (2.170) |47.4442 (0.2408)|18.6231 (0.1082)[0.6555141 (0.0000028) [0.3907252 (0.0000036)
31750 16| 302.786 (0.054)| 266.330 (0.096)] 9.5102 (0.0030)| 5.5305 (0.0019) |0.6633039 (0.0000205) |0.4008229 (0.0000269)
32| 875.396 (0.228)| 525.918 (0.266)[16.9773 (0.0071)| 9.6222 (0.0045)]0.6612342 (0.0000107)|0.3981387 (0.0000139)
64| 2320.028 (1.399) 880.154 (0.944) |29.1901 (0.0239) |15.7892 (0.0149) |0.6605600 (0.0000076) | 0.3972683 (0.0000099)
128 | 5136.621 (9.109)| 1107.240 (2.692) |45.6605 (0.0888) | 22.5935 (0.0505) 0.6603113 (0.0000048) 0.3969467 (0.0000062)
73000 16| 308.300 (0.054)| 276.548 (0.098)| 9.6475 (0.0031)| 5.6317 (0.0020) |0.6677262 (0.0000202) |0.4066560 (0.0000268)
32 900.222 (0.223) 556.938 (0.270) |17.2957 (0.0071)| 9.8549 (0.0045)|0.6657247 (0.0000105) {0.4040343 (0.0000138)
64| 2424.608 (1.389) 860.220 (0.996) 29.9233 (0.0237)]16.3341 (0.0150) 0.6650824 (0.0000075) |0.4031963 (0.0000099)
128 | 5574.637 (8.495) 1274.160 (2.810) 47.8241 (0.0827) 24.0843 (0.0481) [0.6648547 (0.0000047) 0.4028996 (0.0000062)
2.2163 32| 915.878 (0.220)| 577.170 (0.272)|17.4875 (0.0070) | 9.9995 (0.0045)|0.6685961 (0.0000102) |0.4078351 (0.0000136)
64| 2493.061 (1.172)| 1014.850 (0.874)|30.4400 (0.0204) |16.7104 (0.0129)|0.6679553 (0.0000064) [0.4069924 (0.0000085)
128 | 5863.156 (6.906)| 1392.120 (2.428)(49.2549 (0.0674) | 25.0724 (0.0389) |0.6677350 (0.0000038) [0.4067032 (0.0000050)
256 | 9346.066 (43.891)| 1248.620 (4.972) |63.1544 (0.2830) 27.2723 (0.1422) 0.6676388 (0.0000026) 0.4065776 (0.0000034)
33500 16| 318.851 (0.053)]| 296.690 (0.100)| 9.9130 (0.0031)| 5.8257 (0.0020) |0.6762227 (0.0000154)|0.4180181 (0.0000262)
32 948.196 (0.216) 620.144 (0.280) |17.9095 (0.0071)10.3085 (0.0045) |0.6743138 (0.0000100) 0.4154666 (0.0000135)
64| 2629.995 (1.332)| 1130.070 (1.068) | 31.4238 (0.0236) [17.4353 (0.0150) |0.6737359 (0.0000072) 0.4146986 (0.0000096)
128 | 6433.430 (7.484) 1648.840 (3.088) 51.8923 (0.0724) 26.9376 (0.0441)|0.6735334 (0.0000045) 0.4144290 (0.0000061)
2.3000 8 104.676 (0.010) 135.234 (0.028)[ 5.5115 (0.0011)[ 3.2889 (0.0007) [0.6902831 (0.0000278) | 0.4371946 (0.0000387)
16 328.898 (0.052) 316.712 (0.102)[10.1711 (0.0031)| 6.0141 (0.0020) |0.6842134 (0.0000188) 0.4288765 (0.0000259)
32| 994.279 (0.212)| 684.642 (0.294)[18.5160 (0.0072) |10.7498 (0.0046)|0.6824760 (0.0000097) [0.4265184 (0.0000132)
64| 2826.550 (1.204)| 1308.600 (1.062)|32.8101 (0.0220)|18.4556 (0.0140)}0.6819260 (0.0000064) |0.4257741 (0.0000087)
128 | 7252.869 (5.873)| 2068.860 (2.842)55.5145 (0.0580) [29.5483 (0.0356) |0.6817342 (0.0000035) |0.4255148 (0.0000048)
256 {14784.492 (43.665) | 2339.380 (8.236) |82.8294 (0‘2470) 39.4925 (0.1339) 0.6816631 (0.0000024) | 0.4254191 (0.0000033)
2.3500 8 106.658 (0.010) 140.678 (0.028) | 5.6274 (0‘0011) 3.3725 (0.0007)[0.6976482 (0.0000270) [0.4474960 (0.0000381)
16| 338.631 (0.050)| 336.828 (0.104)|10.4261 (0.0032)| 6.1993 (0.0020) [0.6918567 (0.0000182)|0.4394306 (0.0000254)
32| 1037.765 (0.204)| 749.190 (0.298)]19.0713 (0.0071) [11.1583 (0.0046) [0.6901764 (0.0000093)|0.4371141 (0.0000129)
64 | 3016.538 (1.529)| 1496.380 (1.478)(34.1722 (0.0287) [19.4541 (0.0183) [0.6896768 (0.0000082) | 0.4364275 (0.0000113)
128 | 8033.751 (7.911)| 2528.670 (4.436) |58.7903 (0.0794) |31.9539 (0.0496) |0.6894977 (0.0000047) |0.4361809 (0.0000065)
34000 8] 108.516 (0.010)| 145.802 (0.028)| 5.7361 (0.0011)| 3.4512 (0.0007) |0.7046061 (0.0000262) |0.4573493 (0.0000375)
16 347.875 (0.060) 356.664 (0.128)[10.6711 (0.0039) | 6.3774 (0.0025) | 0.6991327 (0.0000216) [ 0.4496255 (0.0000306)
32| 10790.687 (0.156)| 814.664 (0.240)[19.6229 (0.0056) |11.5609 (0.0036)0.6975099 (0.0000070) [0.4473557 (0.0000099)
64| 3194.036 (1.245)| 1686.080 (1.298) |35.3814 (0.0239) (20.3474 (0.0152) |0.6970186 (0.0000066) [0.4466706 (0.0000093)
128 | 8771.449 (7.505)| 3016.330 (4.794) 161.7156 (0.0765) | 34.0990 (0.0487) 10.6968607 (0.0000045) [0.4464494 (0.0000063)
2.4500 8 110.324 (0.010) 151.112 (0.028) 5.8460 (0.0011)[ 3.5304 (0.0007) 0.7113191 (0.0000255) 0.4670023 (0.0000370)
16 356.622 (0.048) 376.076 (0.106) |10.9048 (0.0032)| 6.5472 (0.0021) |0.7060263 (0.0000172) 0.4594249 (0.0000247)
32| 1119.703 (0.194) 880.166 (0.314) |20.1449 (0.0072) 11.9409 (0.0046) [0.7044680 (0.0000087) 0.4572107 (0.0000125)
64| 3367.182 (1.470)| 1883.870 (1.642) |36.5663 (0.0288) |21.2168 (0.0185) | 0.7040141 (0.0000077) |0.4565672 (0.0000109)
128 | 9474.514 (9.176)| 3530.980 (6.472) |64.4080 (0.0953) {36.0784 (0.0602) |0.7038578 (0.0000055) 0.4563475 (0.0000078)
75000 16| 365.084 (0.047)| 395.420 (0.106)|11.1422 (0.0033)| 6.7183 (0.0021) |0.7125590 (0.0000168) |0.4688280 (0.0000244)
32| 1157.698 (0.150)| 945.280 (0.252) [20.6415 (0.0057) |12.3037 (0.0036)|0.7110889 (0.0000067) [0.4667133 (0.0000097)
64| 3532.748 (1.174) 2085.280 (1.396) |37.6639 (0.0239) | 22.0257 (0.0153) |0.7106662 (0.0000062) [0.4661069 (0.0000089)
128 110179.023 (8.982)| 4094.380 (6.946) [67.1516 (0.0962) | 38.0974 (0.0612) 10.7105248 (0.0000053) [0.4659036 (0.0000077)
2.5500 8 113.678 (0.009) 161.068 (0.028) | 6.0549 (0.0012) 3.6809 (0.0008) 0.7237782 (0.0000243) 0.4852234 (0‘0000361)
16| 372.150 (0.046)| 414.406 (0.108)[11.3663 (0.0033)| 6.8802 (0.0021)|0.7188319 (0.0000163){0.4779650 (0.0000240)
32| 1194.544 (0.207)| 1010.970 (0.364)(21.1419 (0.0081) {12.6655 (0.0052) [0.7174061 (0.0000090) [ 0.4758909 (0.0000132)
64| 3694.324 (1.214) 2293.600 (1.532) 38.8212 (0.0251) |22.8634 (0.0161)0.7170100 (0.0000063) [0.4753159 (0.0000093)
128 [10872.593 (3.782) 4698.330 (7.456) 169.8807 (0.0949) | 40.0886 (0.0609) | 0.7168815 (0.0000053) | 0.4751282 (0.0000077)
36000 8] 115.258 (0.009)| 165.892 (0.028)| 6.1559 (0.0012) | 3.7535 (0.0008)]0.7296174 (0.0000237) |0.4939109 (0.0000355)
161 380.853 (0.045)| 433.038 (0.108) [11.5833 (0.0033) | 7.0368 (0.0021)]0.7248022 (0.0000158) |0.4867659 (0.0000234)
32| 1229.812 (0.203)| 1076.310 (0.372) [21.6051 (0.0082)[13.0020 (0.0053)|0.7234513 (0.0000089) |0.4847783 (0.0000131)
64 | 3848.071 (1.373)| 2502.680 (1.832) | 39.8569 (0.0293)[23.6212 (0.0188) |0.7230687 (0.0000071) | 0.4842156 (0.0000105)
128 |11513.661 (8.223)| 5303.290 (7.516) | 72.2440 (0.0920) {41.8273 (0.0586) |0.7229631 (0.0000051) {0.4840607 (0.0000075)
2.6500 8 116.781 (0.009) 170.628 (0.028)[ 6.2593 (0.0012) [ 3.8274 (0.0008) [0.7351712 (0.0000231) [0.5022599 (0.0000350)
16 388.390 (0.044) 451.748 (0.108) 11.8046 (0.0034) | 7.1957 (0.0022) (0.7305643 (0.0000155) [0.4953540 (0.0000233)
32| 1264.063 (0.200)| 1142.080 (0.380)|22.0826 (0.0083)|13.3471 (0.0053)0.7292410 (0.0000086) |0.4933832 (0.0000129)
64| 3996.354 (1.107)| 2714.490 (1.552) 40.8652 (0.0242) |24.3570 (0.0156) |0.7288651 (0.0000057) [0.4928232 (0.0000085)
128 {12147.784  (8.967)| 5940.830 (8.824)|74.5530 (0.1020) [43.5100 (0.0657) |0.7287631 (0.0000055) | 0.4926733 (0.0000082)
2.7000 8] 118.222 (0.009)| 175.182 (0.028)| 6.3547 (0.0012)| 3.8958 (0.0008)]0.7405211 (0.0000226) |0.5103857 (0.0000346)
16| 395.501 (0.043)| 469.824 (0.110)12.0144 (0.0034)| 7.3461 (0.0022) [0.7360461 (0.0000151)|0.5036077 (0.0000230)
32| 1297.026 (0.196)| 1207.480 (0.384) |22.5499 (0.0084)[13.6834 (0.0054) [0.7347644 (0.0000084) |0.5016786 (0.0000127)
64| 4139.328 (1.299)| 2927.980 (1.906) |41.8674 (0.0293)|25.0800 (0.0188) [0.7344162 (0.0000066) [0.5011559 (0.0000100)
128 |12736.705 (9.071)| 6574.620 (9.440) | 76.6812 (0.1066) {45.0674 (0‘0677) 0.7343188 (0.0000055) |0.5010097 (0.0000083)
2.7750 8 120.323 (0.008) 181.962 (0.028)[ 6.5036 (0.0012) | 4.0019 (0.0008) [0.7481788 (0.0000218) [0.5221505 (0.0000338)
16| 405.798 (0.042)| 496.756 (0.110)|12.3319 (0.0035) | 7.5729 (0.0022)[0.7438488 (0.0000146)|0.5155007 (0.0000224)
32| 1344.166 (0.190)| 1304.740 (0:390)|23.2109 (0.0084) |14.1583 (0.0054) [0.7426646 (0.0000081) [0.5136930 (0.0000124)
64| 4347.763 (1.298)| 3256.200 (2.026) |43.3227 (0.0301) |26.1317 (0.0194) |0.7423202 (0.0000064) [0.5131666 (0.0000098)
128 |13612.434  (7.816)| 7582.630 (8.912)[79.8713 (0.0955) [47.3873 (0.0616)|0.7422121 (0.0000047) | 0.5130026 (0.0000071)
58500 8| 122.246 (0.008)| 188.302 (0.028) | 6.6407 (0.0012)| 4.0997 (0.0008)|0.7552800 (0.0000211)|0.5332061 (0.0000332)
16| 415.352 (0.041)| 522.530 (0.110)[12.6196 (0.0035)| 7.7791 (0.0023) [0.7512008 (0.0000140) {0.5268598 (0.0000219)
32| 1388.397 (0.184)| 1400.020 (0.394)(23.8451 (0.0085) | 14.6129 (0.0055) [0.7500500 (0.0000073) 0.5250796 (0.0000121)
64 | 4542.800 (1.225)| 3581.880 (2.030) [44.6948 (0.0293) {27.1189 (0.0190) (0.7497428 (0.0000062) |0.5246044 (0.0000096)
128 | 14452.813 (8.264)| 8630.020 (10.208) [82.9390 (0.1065) |49.6153 (0.0682) | 0.7496480 (0.0000051) |0.5244567 (0.0000079)
2.9250 8 124.097 (0.008) 194.534 (0.026)| 6.7772 (0.0013)| 4.1970 (0.0008) 0.7620488 (0.0000205) [0.5438826 (0.0000325)
16 424.495 (0.040) 547.922 (0.110) |12.9140 (0.0036) | 7.9886 (0.0023) 0.7581258 (0.0000137)}0.5376944 (0.0000216)
32| 1431.03¢  (0.178)| 1495.590 (0.398) |24.4896 (0.0086) |15.0724 (0.0055) [0.7570512 (0.0000075) |0.5360119 (0.0000118)
64| 4732111 (1.232)| 3915.350 (2.152){46.1043 (0.0310)|28.1300 (0.0200) |0.7567380 (0.0000061) |0.5355216 (0.0000096)
128 [15248.705  (8.041)| 9694.170 (10.658) [85.8159 (0.1041) [51.7004 (0.0669)|0.7566473 (0.0000048) |0.5353791 (0.0000076)
3.0000 8 125.860 (0.008) 200.580 (0.026) | 6.9135 (0.0013)| 4.2936 (0.0008) [0.7684608 (0.0000198) |0.5541019 (0.0000318)
16| 433.226 (0.039)| 572.832 (0.110)[13.2037 (0.0036) | 8.1944 (0.0023)|0.7646672 (0.0000131) |0.5480557 (0.0000209)
32| 1471.174 (0.196)| 1588.900 (0.454) |25.0849 (0.0098){15.4982 (0.0063) [0.7636364 (0.0000082) [0.5464188 (0.0000130)
64| 4907.505 (1.184)| 4239.350 (2.170)[47.3188 (0.0307)]29.0000 (0.0198)|0.7633401 (0.0000058) |0.5459503 (0.0000093)
128 |16012.500 (8.034)|10782.600 (11.342) 88.6134 (0.1081) |53.7049 (0.0699) |0.7632664 (0.0000048) [0.5458335 (0.0000076)
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3.0750 8| 127.526 (0.008)| 206.406 (0.026)| 7.0477 (0.0013)| 4.3885 (0.0008)|0.7744805 (0.0000193)]0.5638025 (0.0000314)
16| 441.480 (0.038)| 596.990 (0.110)! 13.4818 (0.0037)| 8.3918 (0.0024)0.7708835 (0.0000128) [0.5580081 (0.0000207)
32| 1508.936 (0.193)| 1679.650 (0.460)| 25.6650 (0.0100)[15.9091 (0.0064)|0.7698502 (0.0000079) |0.5563497 (0.0000127)
64| 5079.512 (1.163)| 4571.720 (2.224)| 48.6312 (0.0313)(29.9381 (0.0202)|0.7695843 (0.0000057)|0.5559244 (0.0000092)
128 [16751.266 (7.928)]11901.300 (11.900)| 91.4303 (0.1111) [55.7398 (0.0716) [0.7695122 (0.0000046) | 0.5558087 (0.0000074)
3.1500 8| 120.112 (0.007)| 212.028 (0.026)] 7.1759 (0.0013)| 4.4792 (0.0009)|0.7802485 (0.0000168)|0.5731906 (0.0000308)
16| 449.278 (0.037)| 620.342 (0.110)| 13.7492 (0.0037)| 8.5813 (0.0024) (0.7767427 (0.0000124)|0.5674870 (0.0000201)
32| 1545.692 (0.189)| 1770.770 (0.464)| 26.2414 (0.0102)|16.3184 (0.0066)|0.7757752 (0.0000078)|0.5659192 (0.0000126)
64| 5243.404 (1.119)] 4901.800 (2.234)| 49.8794 (0.0314) [30.8266 (0.0203)[0.7755122 (0.0000055)]|0.5654942 (0.0000090)
128 |17464.784 (7.801)[13038.900 (12.358) | 94.1656 (0.1104) |57.6953 (0.0717) [0.7754297 (0.0000045) |0.5653608 (0.0000072)
3.2250 8| 180.617 (0.007)| 217.460 (0.026)| 7.3028 (0.0013)| 4.5689 (0.0009)|0.7856912 (0.0000182)|0.5821372 (0.0000301)
16| 456.695 (0.036)| 643.03¢ (0.110)] 14.0111 (0.0038) | 8.7665 (0.0025)|0.7822887 (0.0000121) (0.5765456 (0.0000198)
32| 1580.734 (0.150)| 1860.240 (0.380)| 26.8115 (0.0084) [16.7222 (0.0054)]0.7813866 (0.0000061)|0.5750723 (0.0000101)
64| 5397.960 (1.117)| 5225.310 (2.314)| 51.0566 (0.0322)[31.6666 (0.0208)]0.7811263 (0.0000054) |0.5746463 (0.0000089)
128 |18127.984 (7.514)[14150.800 (12.464)| 96.5991 (0.1124) |59.4401 (0.0724) |0.7810578 (0.0000043) |0.5745342 (0.0000071)
3.3000 8| 132.047 (0.007)] 222.696 (0.026)| 7.4273 (0.0014)| 4.6567 (0.0009)|0.7908599 (0.0000178)|0.5907088 (0.0000297)
16| 463.891 (0.035)| 665502 (0.110)| 14.2822 (0.0039)| 8.9571 (0.0025) (0.7875840 (0.0000118)[0.5852786 (0.0000196)
32| 1614.179 (0.179)| 1048.000 (0.466)| 27.3826 (0.0104)[17.1238 (0.0067)|0.7867041 (0.0000073)|0.5838263 (0.0000121)
64| 5544.951 (1.095)] 5543.600 (2.350)| 52.1957 (0.0324)|32.4698 (0.0210)|0.7864617 (0.0000052) |0.5834262 (0.0000087)
128 | 18768.903 (7.349) [15275.400 (12.762) ] 99.0107 (0.1121) 61.1518 (0.0725)}0.7864011 (0.0000041) |0.5833254 (0.0000069)
3.3750 8| 133.433 (0.007)| 227.840 (0.026)| 7.5529 (0.0014)| 4.7449 (0.0009)]0.7958360 (0.0000172)|0.5090262 (0.0000289)
16| 470.642 (0.034)| 687.006 (0.110)| 14.5351 (0.0039)| 9.1354 (0.0025)[0.7925947 (0.0000115)[0.5936124 (0.0000192)
32| 1645.385 (0.177)| 2031.990 (0.472)| 27.8936 (0.0104)(17.4849 (0.0068)|0.7917624 (0.0000071)}0.5922255 (0.0000118)
64| 5688.593 (1.057)| 5865.390 (2.346)| 53.3511 (0.0328) |33.2879 (0.0212)[0.7915459 (0.0000051) |0.5918644 (0.0000085)
128 |19387.428 (7.047) [16405.100 (12.776)101.3455 (0.1130) {62.8175 (0.0730) |0.7914698 (0.0000040))0.5917380 (0.0000067)
3.4500 8] 134.720 (0.007)| 232.664 (0.026)| 7.6715 (0.0014)| 4.8282 (0.0009)|0.8004836 (0.0000169)|0.6068624 (0.0000286)
16| 477.220 (0.034)| 708.326 (0.110)| 14.7918 (0.0039)| 9.3157 (0.0026)|0.7974278 (0.0000112)(0.6017145 (0.0000188)
32| 1675.883 (0.173)| 2116.080 (0.474)| 28.4156 (0.0107)(17.8532 (0.0069) |0.7966041 (0.0000069) |0.6003324 (0.0000116)
64| 5824.061 (1.024)| 6178.210 (2.346)| 54.4221 (0.0326) [34.0458 (0.0211)]0.7963841 (0.0000049) |0.5999626 (0.0000083)
128 [19986.030 (6.855) [17544.900 (12.922)|103.7616 (0.1128) |64.5286 (0.0730) [0.7963155 (0.0000039) [0.5998478 (0.0000065)
3.5250 8| 135.081 (0.007)| 237.488 (0.026)] 17.7909 (0.0014) 4.9120 (0.0009)|0.5050157 (0.0000166)|0.6145615 (0.0000283)
16| 483.382 (0.033)| 728.644 (0.110)| 15.0330 (0.0040)| 9.4846 (0.0026)(0.8019973 (0.0000110)!0.6094380 (0.0000186)
32| 1704.968 (0.139)] 2198.080 (0.388)| 28.9257 (0.0088) |18.2127 (0.0057)|0.8012108 (0.0000055) |0.6081065 (0.0000093)
64| 5954.719 (1.014)| 6488.900 (2.392)| 55.4890 (0.0332)(34.7985 (0.0216)|0.8009956 (0.0000048)|0.6077418 (0.0000081)
128 | 20546.909 (7.109) [18651.900 (13.852){105.8729 (0.1190) |66.0306 (0.0769) [0.8009269 (0.0000039) |0.6076260 (0.0000066)
3.6000 8| 137.167 (0.006)| 242.058 (0.024)| 7.9048 (0.0014)| 4.9920 (0.0009)|0.8092834 (0.0000161)[0.6218624 (0.0000276)
18| 489.420 (0.032)| 748.882 (0.108)| 15.2812 (0.0040)| 9.6585 (0.0026){0.8063909 (0.0000107)(0.6169154 (0.0000183)
32| 1733.083 (0.165) | 2279.010 (0.472)| 29.4442 (0.0109)|18.5754 (0.0070)|0.8056173 (0.0000065)]0.6155963 (0.0000112)
64| 6082.096 (1.005)| 6799.560 (2.436)| 56.5707 (0.0342)|35.5541 (0.0222)|0.8053973 (0.0000048)|0.6152220 (0.0000082)
128 [21105.728 (6.794)119791.000 (13.762)|108.2497 (0.1188) |67.6945 (0.0771) |0.8053424 (0.0000038) {0.6151288 (0.0000064)
3.6750 8| 138.315 (0.006)| 246.530 (0.024)| 8.0208 (0.0014)| 5.0731 (0.0009)|0.8133941 (0.0000157)|0.6289373 (0.0000272)
16| 495.124 (0.032)] 768.300 (0.108)] 15.5208 (0.0041)| 9.8262 (0.0027)|0.8105699 (0.0000104) [0.6240798 (0.0000179)
32] 1759.858 (0.134)| 2357.660 (0.390)( 29.9407 (0.0091) |18.9232 (0.0059) |0.8098122 (0.0000052) |0.6227781 (0.0000090)
64| 6203.522 (0.979)| 7104.020 (2.432)| 57.6513 (0.0345)|36.3129 (0.0224) |0.8096173 (0.0000045) [ 0.6224443 (0.0000078)
128 [21634.998 (6.641) [20905.300 (13.854)|110.4495 (0.1184) |69.2402 (0.0765) [0.8095549 (0.0000037) [0.6223376 (0.0000064)
3.7500 8| 130.410 (0.006)| 250.880 (0.024)| 8.1353 (0.0015)| 5.1531 (0.0010)|0.8173324 (0.0000153)|0.6357653 (0.0000266)
16| 500.564 (0.031)| 787.072 (0.108)| 15.7489 (0.0041)| 9.9858 (0.0027)(0.8145814 (0.0000102)]0.6310006 (0.0000176)
32| 1785.608 (0.161)| 2434.770 (0.478)| 30.4259 (0.0112)|19.2631 (0.0073)|0.8138521 (0.0000063) |0.6297409 (0.0000110)
64| 6318.153 (0.962)| 7398.200 (2.448)| 58.6223 (0.0345) [36.9932 (0.0224) |0.8136436 (0.0000046) |0.6293811 (0.0000079)
128 | 22144.704 (6.649) [22013.100 (14.336) |112.5532 (0.1223) [70.7189 (0.0794) [0.8135932 (0.0000036) [0.6292941 (0.0000063)
3.8250 8| 140.465 (0.006)| 255.042 (0.024)| 8.2440 (0.0015)| 5.2297 (0.0010) |0.8210908 (0.0000150) |0.6423226 (0.0000263)
16| 505.786 (0.031)| 805.354 (0.106)| 15.9740 (0.0042)}10.1432 (0.0027){0.8184126 (0.0000099) [0.6376536 (0.0000173)
32| 1810.521 (0.128)| 2510.670 (0.388)| 30.9094 (0.0093)[19.6001 (0.0060)|0.8176975 (0.0000050)}0.6364104 (0.0000088)
64| 6431.746 (0.940)| 7696.570 (2.446)| 59.6574 (0.0347)]37.7196 (0.0225)(0.8175026 (0.0000043)|0.6360721 (0.0000075)
128 |22636.136 (6.543)[23111.100 (14.472)114.6291 (0.1226) {72.1756 (0.0796) |0.8174550 (0.0000035) |0.6359895 (0.0000061)
3.9000 8| 141.472 (0.006)] 259.088 (0.024)| 8.3532 (0.0015)| 5.3054 (0.0010)|0.8246889 (0.0000147)|0.6486348 (0.0000259)
16| 510.839 (0.030)| 823.268 (0.106)] 16.2062 (0.0043)|10.3047 (0.0028)[0.8220770 (0.0000097) 0.6440550 (0.0000170)
32| 1834.277 (0.154)| 2584.300 (0.476)| 31.3848 (0.0115)(19.9308 (0.0075)]0.8214097 (0.0000060) |0.6428880 (0.0000106)
64| 6538.744 (0.931)| 7983.460 (2.476)| 60.5608 {0.0357)[38.3547 (0.0232)]0.8212079 (0.0000042) |0.6425356 (0.0000074)
128 |23111.072 (6.218) [24201.400 (14.160))116.6178 (0.1198)}73.5761 (0.0779) |0.8211644 (0.0000034) |0.6424592 (0.0000060)
3.9750 8| 142,447 (0.006)| 263.040 (0.024)| 8.4630 (0.0015)| 5.3819 (0.0010)|0.5281582 (0.0000144)]0.6547558 (0.0000255)
16| 515.732 (0.029)| 840.83¢ (0.104)| 16.4320 (0.0043)[10.4618 (0.0028)[0.8256308 (0.0000095) |0.6502990 (0.0000168)
32| 1856.951 (0.151)] 2655.750 (0.472)| 31.8260 (0.0114) [20.2397 (0.0074)|0.8249516 (0.0000059) |0.6491033 (0.0000103)
64| 6643.349 (0.905)| 8269.980 (2.456)| 61.5834 (0.0355) [39.0685 (0.0231)]0.8247704 (0.0000042)0.6487856 (0.0000074)
128 {23571.870 (6.199)]25286.400 (14.432)|118.6558 (0.1267) [75.0049 (0.0823) [0.8247192 (0.0000033) | 0.6486954 (0.0000059)
1.0500 8| 143.378 (0.006)| 266.848 (0.024)| 8.5686 (0.0015)| 5.4554 (0.0010)|0.8314841 (0.0000141)|0.6606531 (0.0000251)
16| 520.454 (0.029)| 857.990 (0.104)| 16.6579 (0.0043)}10.6189 (0.0028)(0.8290238 (0.0000093) [0.6562928 (0.0000166)
32| 1879.347 (0.150)| 2727.400 (0.476)| 32.2969 (0.0117){20.5684 (0.0076)|0.8283733 (0.0000058) | 0.6551424 (0.0000103)
64| 6743.618 (0.885)| 8549.860 (2.450)| 62.5236 (0.0356)[39.7214 (0.0232)|0.8281906 (0.0000041) |0.6548195 (0.0000072)
128 [24021.313 (6.086) {26370.000 (14.558) [120.8127 (0.1265) |76.5033 (0.0823) [0.8281346 (0.0000033) |0.6547204 (0.0000059)
1.1250 8| 144.285 (0.006)| 270.588 (0.024)| 8.6761 (0.0015)| 5.5301 (0.0010)[0.8347004 (0.0000138)|0.6663871 (0.0000247)
16| 524.967 (0.029)| 874.576 (0.104)| 16.8763 (0.0044)|10.7708 (0.0029) |0.8322784 (0.0000091) (0.6620720 (0.0000162)
32| 1900.451 (0.145)| 2795.870 (0.468) | 32.7399 (0.0117)[20.8754 (0.0076)]0.8316345 (0.0000056) |0.6609275 (0.0000101)
64| 6841.328 (0.878)| 8827.540 (2.474)| 63.4853 (0.0363) |40.3874 (0.0236)|0.8314778 (0.0000040) |0.6606495 (0.0000072)
128 |24446.725 (5.868) |27420.100 (14.362) |122.5206 (0.1262) [77.7064 (0.0821) [0.8314264 (0.0000032) |0.6605584 (0.0000058)
7.2000 8| 145.155 (0.005)| 274.206 (0.022)| 8.7820 (0.0016)| 5.6036 (0.0010) |0.8377766 (0.0000135) |0.6718995 (0.0000243)
16| 529.345 (0.028)] 890.830 (0.104)| 17.0906 (0.0044)10.9195 (0.0029)|0.8354397 (0.0000089) |0.6677146 (0.0000160)
32| 1921.307 (0.144)] 2864.530 (0.470)| 33.1993 (0.0119) (21.1947 (0.0077) [0.8347976 (0.0000055) |0.6665674 (0.0000099)
64| 6934.739 (0.864)| 9098.010 (2.480)| 64.4375 (0.0371) [41.0506 (0.0242)]0.8346302 (0.0000039) |0.6662690 (0.0000070)
128 |24863.001 (5.990) |28469.100 (14.976) |124.5811 (0.1295) [79.1329 (0.0843) [0.8345835 (0.0000032) | 0.6661849 (0.0000057)
4.2750 8| 145.977 (0.005)| 277.652 (0.022)| 8.8806 (0.0016)| 5.6722 (0.0010) |0.8407447 (0.0000133)[0.6772412 (0.0000240)
16| 533.488 (0.028)| 906.382 (0.102)| 17.2944 (0.0044)]11.0613 (0.0029) |0.8384427 (0.0000087) [0.6730987 (0.0000157)
32| 1941.074 (0.142)| 2930.470 (0.468)| 33.6517 (0.0121)|21.5069 (0.0079)|0.8378251 (0.0000054) |0.6719916 (0.0000097)
64| 7024.695 (0.851)| 9362.730 (2.484)| 65.2749 (0.0376) [41.6358 (0.0245) [0.8376732 (0.0000039) |0.6717194 (0.0000070)
128 | 25255.723 (5.878) |29480.400 (14.970) |126.3164 (0.1276) [80.3430 (0.0831) [0.8376366 (0.0000031) | 0.6716535 (0.0000055)
1.3500 8| 146.790 (0.005)| 281.080 (0.022)| 8.9832 (0.0016)| 5.7433 (0.0010) |0.8436128 (0.0000131)|0.6824278 (0.0000237)
16| 537.544 (0.027)] 921.750 (0.102)| 17.5079 (0.0045)|11.2088 (0.0029) |0.8413512 (0.0000086) |0.6783406 (0.0000155)
32 1960.189 (0.139)| 2995.030 (0.466) | 34.0655 (0.0122)[21.7946 (0.0079)|0.8407636 (0.0000053)|0.6772804 (0.0000095)
64| 7111.600 (0.846)| 9622.720 (2.508) | 66.1570 (0.0379) [42.2494 (0.0247) [0.8406023 (0.0000038) |0.6769897 (0.0000068)
128 | 25661.107 (5.622)|30544.400 (14.640) |128.4454 (0.1281) [81.8288 (0.0833) |0.8405637 (0.0000031) | 0.6769203 (0.0000055)
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TABLE Ill. Dynamic data from our runs for the two-dimensional @Jchiral model. A measurement

GUSTAVO MANA, ANDREA PELISSETTO, AND ALAN D. SOKAL

is performed once evetyvo MGMC iterations; all timegboth run lengths and autocorrelation timase

reported in units of measurements. The number of measurements discarded prior to beginning the analysis
is always 20 000; “run length” is the total number of measurements perfoaftedthe discard interval.

Error bar(one standard deviatigris shown in parentheses.

B8 L

Run Length

Tint, M2,

Tint, M3

Tint,EF

Tint,£4

1.6000 32

260000

17.305 (0.831)

7794 (0.251)

9.581 (0.383)

8.815 (0.338)

1.6500 8
16
32

3000000
1000000
200000

7.138 (0.062)
16.665 (0.389)
38.968 (4.323)

6.672 (0.056)
13.358 (0.279)
21.603 (1.784)

6.591 (0.062)
10.412 (0.215)
15.735 (1.109)

6.254 (0.057)
9.587 (0.190)
14.800 (1.012)

1.7000 32

220000

29.332 (2.010)

20.184 (1.147)

11.862 (0.578)

10.850 (0.505)

1.7500 8
16
32
64
128

3000000
1000000
500000
600000
500000

6.343 (0.052)
11.427 (0.221)
31.825 (1.466)
24.391 (0.895)
14.986 (0.474)

6.084 (0.049)
9.996 (0.181)
23.335 (0.920)
9.852 (0.230)
4.043 (0.066)

5.849 (0.052)
7.663 (0.136)
11.439 (0.353)
9.403 (0.239)
9.245 (0.257)

5.650 (0.049)
7.214 (0.124)
10.481 (0.310)
8.694 (0.213)
8.569 (0.229)

1.7750 32
64

960000
1000000

28.730 (0.898)
30.475 (0.961)

20.915 (0.558)
13.050 (0.269)

10.265 (0.215)
9.613 (0.190)

9.562 (0.193)
8.942 (0.171)

1.8000 32
64
128
256

1000000
2500000
1500000

200000

27.259 (0.813)
35.528 (0.761)
19.646 (0.405)
12.227 (0.570)

20.773 (0.541)
17.646 (0.266)
5.482 (0.060)
3.421 (0.084)

9.672 (0.192)
9.443 (0.117)
8.877 (0.137)
9.265 (0.420)

9.061 (0.174)
8.774 (0.104)
8.262 (0.123)
8.619 (0.377)

1.8250 32
64
128

2980000
2500000
1500000

23.598 (0.377)
43.423 (1.028)
22.985 (0.512)

18.498 (0.262)
23.780 (0.417)
6.604 (0.079)

8.790 (0.096)
9.356 (0.115)
8.879 (0.138)

8.277 (0.088)
8.756 (0.104)
8.310 (0.125)

1.8500 8
16

32

64

128

256

3000000
1000000
2980000
2500000
1500000

200000

6.021 (0.048)
8.984 (0.154)
21.260 (0.322)
45.814 (1.114)
25.953 (0.615)
15.932 (0.848)

5.844 (0.046)
8.294 (0.136)
17.100 (0.233)
28.145 (0.536)
8.087 (0.107)
4.159 (0.113)

5.539 (0.048)
6.423 (0.104)
8.211 (0.086)
9.274 (0.113)
8.756 (0.135)
8.514 (0.370)

5.384 (0.046)
6.173 (0.098)
7.788 (0.080)
8.722 (0.103)
8.273 (0.124)
7.960 (0.335)

1.8750 32
64
128

3000000
1860000
1140000

18.984 (0.271)
48.280 (1.399)
30.982 (0.922)

15.672 (0.203)
32.170 (0.761)
10.083 (0.171)

7563 (0.076)
9.092 (0.128)
8.429 (0.146)

7.219 (0.071)
8.552 (0.117)
7.935 (0.134)

1.9000 16
32
64
128

2980000
2980000
1500000
1000000

8.485 (0.081)
16.959 (0.230)
47.030 (1.500)
36.960 (1.284)

8.009 (0.075)
14.487 (0.181)
33.181 (0.889)
13.366 (0.279)

6.168 (0.056)
7.298 (0.072)
8.659 (0.132)
8.042 (0.146)

5.966 (0.054)
6.998 (0.068)
8.192 (0.122)
7.655 (0.135)

1.9250 16
32
64
128
256

2980000
2980000
1500000
1000000

800000

8.239 (0.073)
15.774 (0.206)
42.913 (1.307)
41.753 (1.542)
93.873 (0.747)

7.807 (0.072)
13.773 (0.168)
31.477 (0.821)
17.448 (0.416)

6.320 (0.102)

6.086 (0.055)
6.908 (0.067)
8.126 (0.120)
7.820 (0.140)
7.659 (0.152)

5.904 (0.053)
6.640 (0.063)
7.745 (0.112)
7.469 (0.130)
7.298 (0.141)

1.9500 16
32
64
128

2980000
2980000
1500000
1000000

8.075 (0.075)
14.523 (0.182)
42.373 (1.283)
51.348 (2.103)

7.679 (0.070)
12.792 (0.150)
31.159 (0.809)
24.058 (0.674)

5.960 (0.053)
6.549 (0.062)
7.792 (0.113)
7.694 (0.136)

5.804 (0.051)
6.323 (0.058)
7.475 (0.106)
7.373 (0.128)
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TABLE lll. (Continued.

Run Length

Tint, M2,

Tint, M3

Tint,Ep

Tint,€4

1.9750

16
32
64
128

3000000
3000000
3000000
1500000
1000000

5.696 (0.045)
7.833 (0.072)
13.534 (0.163)
36.539 (1.027)
60.137 (2.665)

5.589 (0.043)
7.480 (0.067)
12.171 (0.139)
27.368 (0.666)
31.819 (1.026)

5.275 (0.044)
5.753 (0.051)
6.489 (0.061)
7.397 (0.105)
7.463 (0.130)

5.174 (0.043)
5.608 (0.049)
6.284 (0.058)
7.112 (0.099)
7.178 (0.123)

1.9850

64
128

1500000
1000000

36.103 (1.009)
60.704 (2.703)

27.220 (0.660)
33.529 (1.109)

7.313 (0.103)
7539 (0.132)

7.037 (0.097)
7.226 (0.124)

2.0000

16
32
64
128
256

3000000
2980000
1500000
1500000

800000

7.806 (0.071)
13.103 (0.156)
31.828 (0.835)
63.121 (2.332)
35.422 (1.350)

7.479 (0.067)
11.936 (0.136)
24.781 (0.574)
38.431 (1.108)
10.690 (0.224)

5.725 (0.050)
6.354 (0.059)
7.019 (0.097)
7.070 (0.098)
7.029 (0.133)

5.578 (0.048)
6.167 (0.056)
6.757 (0.091)
6.826 (0.093)
6.797 (0.127)

2.0120

32
64
128

3000000
1500000
1000000

12.595 (0.146)
29.835 (0.758)
69.260 (3.294)

11.549 (0.129)
23.472 (0.529)
42587 (1.588)

6.189 (0.056)
6.643 (0.089)
7.050 (0.120)

6.018 (0.054)
6.423 (0.085)
6.810 (0.114)

2.0250

16
32
64
128

3000000
3000000
1500000
1000000

7.535 (0.068)
12.433 (0.144)
27.770 (0.680)
68.691 (3.253)

7.277 (0.064)
11.456 (0.127)
22.591 (0.499)
43.488 (1.639)

5.727 (0.050)
6.193 (0.056)
6.630 (0.089)
7.067 (0.120)

5.589 (0.048)
6.022 (0.054)
6.426 (0.085)
6.832 (0.114)

2.0370

32
64
128

3000000
1500000
1000000

12.148 (0.139)
26.690 (0.641)
67.734 (3.186)

11.229 (0.123)
21.772 (0.472)
45.274 (1.741)

6.055 (0.055)
6.618 (0.089)
6.779 (0.113)

5.898 (0.052)
6.413 (0.084)
6.557 (0.107)

2.0500

16
32
64
128

3000000
2980000
1500000
1000000

7.443 (0.067)
11.763 (0.133)
25.517 (0.599)
66.570 (3.104)

7.178 (0.063)
10.963 (0.119)
20.893 (0.444)
44.137 (1.676)

5.585 (0.048)
6.048 (0.055)
6.442 (0.085)
6.825 (0.114)

5.458 (0.047)
5.906 (0.053)
6.268 (0.082)
6.585 (0.108)

2.0620

32
64
128

3000000
1500000
1000000

11.736 (0.132)
23.788 (0.539)
67.830 (3.192)

10.950 (0.119)
20.051 (0.418)
47.049 (1.844)

6.032 (0.054)
6.397 (0.084)
6.766 (0.112)

5.890 (0.052)
6.225 (0.081)
6.578 (0.108)

2.0750,

16
32
64
128

3000000
3000000
1500000
1000000

7.363 (0.065)
11.345 (0.125)
22.999 (0.513)
67.514 (3.170)

7.124 (0.062)
10.661 (0.114)
19.732 (0.408)
47.671 (1.881)

5.552 (0.048)
5.936 (0.053)
6.351 (0.083)
6.633 (0.109)

5.453 (0.047)
5.794 (0.051)
6.202 (0.080)
6.463 (0.105)

2.1000

16
32
64
128

5000000
3960000
2980000
1500000
1000000

5.468 (0.032)
7.329 (0.057)
11.112 (0.122)
21.193 (0.454)
63.113 (2.865)

5.301 (0.032)
7.083 (0.054)
10.459 (0.111)
18.485 (0.370)
45.764 (1.769)

5.059 (0.032)
5.484 (0.041)
5.820 (0.052)
6.098 (0.078)
6.462 (0.105)

4.983 (0.032)
5.377 (0.040)
5.694 (0.050)
5.959 (0.076)
6.292 (0.101)

2.1120

32
64
128

3000000
1500000
1000000

10.974 (0.119)
19.644 (0.405)
54.972 (2.329)

10.387 (0.110)
17.412 (0.338)
40.697 (1.484)

5.820 (0.051)
6.035 (0.077)
6.318 (0.101)

5.702 (0.050)
5.896 (0.074)
6.148 (0.097)

2.1250

32
64
128

3000000
2500000
1500000

10.978 (0.119)
19.257 (0.304)
57.533 (2.029)

10.425 (0.110)
17.142 (0.255)
41.581 (1.247)

5.752 (0.051)
5.957 (0.058)
6.276 (0.082)

5.643 (0.049)
5.829 (0.057)
6.133 (0.079)

2.1330

32
64
128

3000000
1500000
1000000

10.877 (0.118)
18.670 (0.375)

53.166 (2.215)

10.312 (0.109)
16.699 (0.317)
40.565 (1.476)

5.705 (0.050)
5.964 (0.076)
6.270 (0.100)

5.588 (0.048)
5.834 (0.073)
6.097 (0.096)
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GUSTAVO MANA, ANDREA PELISSETTO, AND ALAN D. SOKAL

TABLE lll. (Continued.

,3 L |Run Length Tint, M2 Tint, M2, Tint,£p Tint,£a

2.1500 16| _ 2980000] 7.051 (0.062)| 6.869 (0.059)[5.338 (0.045)|5.243 (0.044)
32 2980000{10.500 (0.112)| 9.993 (0.104)(5.613 (0.049)|5.505 (0.047)

64|  2500000(18.291 (0.281)[16.569 (0.242)|5.963 (0.058)|5.842 (0.057)

128 1500000(47.581 (1.526)|37.061 (1.049)|6.279 (0.082)[6.129 (0.079)

256 800000|80.627 (4.637)|47.039 (2.066)|6.139 (0.109)]5.999 (0.105)

2.1750 16|  3000000| 6.979 (0.060)| 6.805 (0.058)[5.363 (0.046)[5.272 (0.044)
32| 3000000[10.461 (0.111)| 9.958 (0.103){5.692 (0.050)|5.575 (0.048)

64|  1500000[16.972 (0.325)|15.561 (0.285)|5.741 (0.072)|5.634 (0.070)

128  1000000|41.740 (1.541)|33.150 (1.091){5.942 (0.093)|5.813 (0.090)

2.2000 16 3000000] 7.047 (0.061)] 6.886 (0.059){5.361 (0.045)|5.277 (0.044)
32| 2980000[10.087 (0.105)| 9.676 (0.099)|5.622 (0.049){5.521 (0.048)

64|  1500000[16.729 (0.318)[15.402 (0.281)|5.747 (0.072)|5.636 (0.070)

128/  1000000|36.030 (1.236)]29.102 (0.897)|5.893 (0.091)|5.778 (0.089)
2.2163 32| 3000000 9.908 (0.102)[ 9.521 (0.096)|5.501 (0.047)|5.412 (0.046)
64|  2000000[15.947 (0.256)|14.811 (0.229)|5.668 (0.061)|5.564 (0.059)

128  1500000{35.927 (1.001)|28.971 (0.725)|5.856 (0.074)|5.746 (0.072)

256 800000 [94.479 (5.882)|63.344 (3.229)]5.929 (0.103)|5.813 (0.100)
22500 16|  3000000] 6.865 (0.059)| 6.710 (0.057)[5.219 (0.044)|5.145 (0.043)
32 2980000( 9.702 (0.099)| 9.342 (0.094)(5.472 (0.047)|5.392 (0.046)

64|  1500000{15.459 (0.283)|14.444 (0.255)|5.577 (0.068)|5.477 (0.067)

128 1000000|27.820 (0.839){24.198 (0.680)]5.880 (0.091)[5.769 (0.089)

2.3000 8|  5000000| 5.267 (0.031)] 5.215 (0.030)[4.887 (0.031)[4.835 (0.030)
16|  3000000| 6.807 (0.058)| 6.671 (0.056)|5.168 (0.043)|5.098 (0.042)

32| 2980000| 9.620 (0.098)| 9.289 (0.093)|5.348 (0.045)[5.272 (0.044)

64|  1740000[14.811 (0.246)|13.949 (0.225)|5.447 (0.061)|5.354 (0.060)

128 1500000{25.911 (0.613)(22.884 (0.509)|5.535 (0.068)|5.449 (0.066)

256 800000]68.852 (3.660)[49.890 (2.257)|5.626 (0.096)|5.548 (0.094)
2.3500 8|  5000000] 5.187 (0.030)[ 5.138 (0.030)[4.826 (0.030)|4.781 (0.030)
16| 3000000 6.678 (0.057)| 6.559 (0.055)|5.102 (0.042)|5.046 (0.042)

32| 3000000| 9.141 (0.091)| 8.881 (0.087)]5.222 (0.044){5.157 (0.043)

64|  1000000[13.831 (0.294)|13.217 (0.275)|5.377 (0.080)|5.287 (0.078)

128 800000 |24.294 (0.767)|22.072 (0.664)|5.570 (0.094)|5.483 (0.092)

2.4000 8| 5000000 5.169 (0.030)| 5.121 (0.029)4.796 (0.030)]4.752 (0.029)
16|  2000000| 6.607 (0.068) 6.497 (0.067)|5.017 (0.051)|4.973 (0.050)

32 4940000| 9.052 (0.069)| 8.833 (0.067)(5.227 (0.034)(5.165 (0.033)

64|  1440000[13.358 (0.232)[12.832 (0.218)|5.276 (0.064)}5.218 (0.063)

128 800000(21.991 (0.661){20.651 (0.601)|5.411 (0.090)]5.320 (0.088)

2.4500 8| 4980000 5.144 (0.030)| 5.106 (0.029)[4.755 (0.029)[4.714 (0.029)
16| 3000000 6.525 (0.055)| 6.432 (0.053)|5.041 (0.041)|4.992 (0.041)

32 3000000{ 8.722 (0.084)| 8.530 (0.082)[5.147 (0.043)|5.095 (0.042)

64|  1000000|12.945 (0.266)|12.485 (0.252)|5.171 (0.075)|5.114 (0.074)

128 500000(20.285 (0.746)19.104 (0.682)|5.271 (0.110)|5.198 (0.108)
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TABLE lll. (Continued.

B8 L

Run Length

Tint, M3,

Tint, M2

Tint,sp

Tint,£a

2.5000 16
32
64
128

3000000
4940000
1440000

500000

6.508 (0.054)
8.739 (0.066)
12.243 (0.203)
19.447 (0.700)

6.426 (0.053)
8.544 (0.064)
11.831 (0.193)
18.306 (0.640)

5.022 (0.041)
5.183 (0.034)
5.117 (0.061)
5.220 (0.109)

4.978 (0.041)]

5.131 (0.033)
5.065 (0.061)
5.160 (0.107)

2.5500 8
16
32
64
128

5000000
2980000
2500000
1320000

500000

5.080 (0.029)
6.363 (0.053)
8.607 (0.091)
12.138 (0.210)
18.535 (0.652)

5.049 (0.029)
6.290 (0.052)
8.442 (0.088)
11.791 (0.201)
17.743 (0.610)

4749 (0.029)
4.941 (0.040)
4.987 (0.045)
5.130 (0.064)
5.302 (0.111)

4715 (0.029)
4.902 (0.040)
4.948 (0.044)
5.086 (0.064)
5.259 (0.110)

2.6000 8
16
32
64
128

5000000
3000000
2480000
980000
500000

5.078 (0.029)
6.272 (0.051)
8.469 (0.089)
11.652 (0.230)
16.468 (0.546)

5.051 (0.029)
6.207 (0.051)
8.311 (0.086)
11.347 (0.221)
15.805 (0.513)

4.703 (0.029)
4.857 (0.039)
5.032 (0.046)
5.036 (0.073)
5.088 (0.105)

4.676 (0.029)
4.815 (0.039)
4.984 (0.045)
4.987 (0.072)
5.040 (0.103)

2.6500 8
16
32
64
128

5000000
3000000
2500000
1440000

400000

5.064 (0.029)
6.206 (0.051)
8.491 (0.089)
11.372 (0.182)
15.907 (0.582)

5.034 (0.029)
6.133 (0.050)
8.341 (0.087)
11.125 (0.176)
15.357 (0.552)

4676 (0.029)
4.902 (0.040)
5.009 (0.045)
4.928 (0.058)
4.941 (0.113)

4.647 (0.028)
4.862 (0.039)
4.973 (0.045)
4.890 (0.057)
4.904 (0.111)

2.7000 8
16
32
64
128

5000000
2980000
2480000
1000000

400000

4.979 (0.028)
6.258 (0.051)
8.209 (0.085)
11.050 (0.210)
16.014 (0.588)

4.952 (0.028)
6.194 (0.051)
8.084 (0.083)
10.807 (0.203)
15.381 (0.554)

4673 (0.029)
4.858 (0.039)
4.923 (0.044)
4.903 (0.069)
5.168 (0.121)

4.648 (0.028)
4.822 (0.039)
4.891 (0.044)
4.872 (0.069)
5.134 (0.119)

27750 8
16
32
64
128

5000000
2980000
2500000
1000000

500000

4.996 (0.028)
6.112 (0.050)
8.104 (0.083)
11.299 (0.217)
15.344 (0.491)

4.976 (0.028)
6.052 (0.049)
7.983 (0.081)
11.080 (0.211)
14.874 (0.468)

4.618 (0.028)
4.785 (0.038)
4.916 (0.044)
4.841 (0.068)
4.986 (0.102)

4597 (0.028)
4.758 (0.038)
4.892 (0.043)
4.816 (0.068)
4.953 (0.101)

2.8500 8
16
32
64
128

5000000
3000000
2480000
1000000

400000

4.976 (0.028)
6.144 (0.050)
7.885 (0.080)
10.413 (0.192)
14.020 (0.482)

4.951 (0.028)
6.097 (0.049)
7.783 (0.078)
10.236 (0.187)
13.683 (0.464)

4.608 (0.028)
4.747 (0.038)
4.806 (0.042)
4.806 (0.067)
4.995 (0.115)

4584 (0.028)
4.722 (0.038)
4.780 (0.042)
4.781 (0.067)
4.978 (0.114)

29250 8
16
32
64
128

5000000
3000000
2500000
1000000

400000

4.982 (0.028)
6.098 (0.049)
7.699 (0.077)
10.741 (0.201)
13.371 (0.449)

2,962 (0.028)
6.049 (0.049)
7.614 (0.075)
10.578 (0.197)
13.116 (0.436)

4569 (0.028)
4.764 (0.038)
4.729 (0.041)
4.930 (0.070)
4763 (0.107)

4549 (0.027)
4.737 (0.038)
4.699 (0.041)
4.901 (0.069)
4.734 (0.106)

3.0000 8
16
32
64
128

5000000
2980000
1980000
1000000

400000

4.867 (0.027)
6.009 (0.048)
7.650 (0.085)

10.284 (0.188)

13.774 (0.469)

4.850 (0.027)
5.965 (0.048)
7.563 (0.084)
10.139 (0.184)
13.521 (0.456)

4527 (0.027)
4.609 (0.036)
4.727 (0.046)
4.770 (0.067)
4.927 (0.112)

4507 (0.027)
4.592 (0.036)
4.701 (0.046)
4.743 (0.066)
4.915 (0.112)
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TABLE lll. (Continued.

Run Length

Tint, M2

Tint, M3

Tint,fp

Tint,EA

3.0750

16
32
64
128

5000000
3000000
2000000
1000000

400000

2,925 (0.028)
5.955 (0.048)
7.710 (0.086)
10.245 (0.187)
13.333 (0.447)

4.909 (0.028)
5.915 (0.047)
7.639 (0.085)
10.067 (0.183)
13.173 (0.439)

4552 (0.028)
4.677 (0.037)
4.695 (0.046)
4.822 (0.068)
4.819 (0.109)

4535 (0.027)
4.659 (0.037)
4.675 (0.045)
4.797 (0.067)
4.807 (0.108)

3.1500

16
32
64

128

5000000
3000000
1980000
1000000

400000

4871 (0.027)
5.915 (0.047)
7.623 (0.085)
9.773 (0.175)

13.429 (0.452)

4.857 (0.027)
5.877 (0.047)
7.546 (0.084)
9.648 (0.171)
13.236 (0.442)

4523 (0.027)
4.598 (0.036)
4.754 (0.047)
4.782 (0.067)
4.803 (0.108)

4511 (0.027)
4.583 (0.036)
4.734 (0.047)
4.768 (0.067)
4787 (0.107)

3.2250

16
32
64
128

5000000
3000000
2960000
980000
400000

4.857 (0.027)
5.947 (0.048)
7.464 (0.067)
9.799 (0.177)
12.705 (0.416)

4843 (0.027)
5.910 (0.047)
7.399 (0.066)
9.674 (0.174)
12.531 (0.407)

4.482 (0.027)
4.603 (0.036)
4.674 (0.037)
4.777 (0.067)
4.735 (0.106)

4.468 (0.027)
4579 (0.036)
4.656 (0.037)
4.759 (0.067)
4.716 (0.105)

3.3000

16
32
64
128

5000000
3000000
1980000
980000
400000

4.857 (0.027)
5.905 (0.047)
7.348 (0.080)
9.744 (0.176)
12.496 (0.405)

4842 (0.027)
5.864 (0.047)
7.300 (0.080)
9.637 (0.173)
12.346 (0.398)

4.509 (0.027)
4.652 (0.037)
4.638 (0.045)
4.670 (0.065)
4.634 (0.102)

4492 (0.027)
4.638 (0.037)
4.627 (0.045)
4.660 (0.065)
4.622 (0.102)

3.3750

16
32
64
128

5000000
3000000
2000000
1000000

400000

4778 (0.026)
5.774 (0.045)
7.509 (0.083)
9.489 (0.167)

11.733 (0.369)

4766 (0.026)
5.748 (0.045)
7.451 (0.082)
9.389 (0.164)
11.612 (0.363)

4412 (0.026)
4.595 (0.036)
4.650 (0.045)
4.662 (0.064)
4563 (0.100)

4.400 (0.026)
4.576 (0.036)
4.638 (0.045)
4.645 (0.064)
4.549 (0.100)

3.4500

16
32
64
128

5000000
3000000
1980000
1000000

400000

4787 (0.027)
5.820 (0.046)
7.382 (0.081)
9.208 (0.160)
11.377 (0.352)

4776 (0.026)
5.789 (0.046)
7.328 (0.080)
9.129 (0.158)
11.264 (0.347)

4.454 (0.027)
4.573 (0.036)
4.569 (0.044)
4.654 (0.064)
4.470 (0.097)

4444 (0.027)
4.558 (0.036)
4.557 (0.044)
4.647 (0.064)
4.463 (0.097)

3.5250

16
32
64
128

5000000
3000000
2960000
1000000

400000

4.840 (0.027)
5.864 (0.047)
7.324 (0.065)
9.296 (0.162)
12.524 (0.407)

4830 (0.027)
5.837 (0.046)
7.271 (0.065)
9.247 (0.161)
12.365 (0.399)

4.484 (0.027)
4.609 (0.036)
4.550 (0.036)
4.574 (0.062)
4.682 (0.104)

4.473 (0.027)
4.599 (0.036)
4.533 (0.036)
4.564 (0.062)
4.661 (0.103)

3.6000

16
32
64
128

5000000
2980000
1980000
980000
400000

4773 (0.026)
5.749 (0.045)
7.186 (0.078)
9.316 (0.164)
11.793 (0.372)

4761 (0.026)
5.721 (0.045)
7.135 (0.077)
9.264 (0.163)
11.712 (0.368)

4414 (0.026)
4.566 (0.036)
4.493 (0.043)
4.658 (0.065)
4598 (0.101)

4.404 (0.026)
4.552 (0.036)
4.482 (0.043)
4.652 (0.065)
4580 (0.101)

3.6750

16
32
64
128

5000000
3000000
2960000
1000000

400000

4786 (0.027)
5.800 (0.046)
7.286 (0.065)
9.145 (0.158)
11.573 (0.361)

4.775 (0.026)
5.775 (0.045)
7.245 (0.064)
9.079 (0.156)
11.463 (0.356)

4.436 (0.026)
4.514 (0.035)
4.524 (0.035)
4.549 (0.062)
4.645 (0.103)

4.424 (0.026)
4.503 (0.035)
4.514 (0.035)
4.537 (0.062)
4.633 (0.102)
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TABLE Ill. (Continued.

B

L

Run Length

Tint, M2,

Tint, M2,

Tint,EF

Tint,£a

3.7500

8
16
32
64

128

5000000
3000000
1980000
980000
400000

4781 (0.027)
5.717 (0.045)
7.229 (0.079)
8.941 (0.154)
11.785 (0.371)

2772 (0.026)
5.703 (0.045)
7.202 (0.078)
8.867 (0.152)
11.734 (0.369)

4.373 (0.026)
4.534 (0.035)
4.586 (0.044)
4.660 (0.065)
4.682 (0.104)

4.364 (0.026)
4.526 (0.035)
4.575 (0.044)
4.649 (0.065)
4.672 (0.104)

3.8250

8
16
32
64

128

5000000
3000000
2960000
1000000

400000

4777 (0.026)
5.677 (0.044)
7.125 (0.063)
9.024 (0.155)
11.759 (0.370)

4768 (0.026)
5.656 (0.044)
7.086 (0.062)
8.958 (0.153)
11.660 (0.365)

4.398 (0.026)
4.504 (0.035)
4.541 (0.036)
4.448 (0.060)
4.479 (0.097)

4.391 (0.026)
4.492 (0.035)
4.532 (0.036)
4.440 (0.060)
4.473 (0.097)

3.9000

8
16
32
64

128

5000000
3000000
1980000
1000000

400000

4.770 (0.026)
5.739 (0.045)
7.128 (0.077)
9.099 (0.157)
10.997 (0.335)

4.764 (0.026)
5.713 (0.045)
7.095 (0.076)
9.050 (0.156)
10.951 (0.333)

4.376 (0.026)
4.478 (0.035)
4.512 (0.043)
4.471 (0.060)
4551 (0.100)

4.369 (0.026)
4.469 (0.035)
4.499 (0.043)
4.465 (0.060)
4.537 (0.099)

3.9750

8
16
32
64

128

5000000
3000000
2000000
1000000

400000

4.775 (0.026)
5.631 (0.044)
7.066 (0.076)
8.818 (0.150)
11.215 (0.345)

4766 (0.026)
5.614 (0.044)
7.030 (0.075)
8.762 (0.148)
11.096 (0.339)

4.364 (0.026)
4.500 (0.035)
4.483 (0.043)
4.500 (0.061)
4.462 (0.097)

4.356 (0.026)
4.491 (0.035)
4.474 (0.043)
4.496 (0.061)
4.456 (0.097)

4.0500

8
16
32
64

128

4980000
3000000
1960000
1000000

400000

4766 (0.026)
5.687 (0.044)
7.092 (0.077)
8.713 (0.147)
11.045 (0.337)

4758 (0.026)
5.669 (0.044)
7.059 (0.076)
8.661 (0.146)
10.984 (0.334)

4.339 (0.026)
4.497 (0.035)
4.548 (0.044)
4.499 (0.061)
4589 (0.101)

4.334 (0.026)
4.488 (0.035)
4539 (0.044)
4.486 (0.061)
4.571 (0.100)

4.1250

8
16
32
64

128

5000000
3000000
2000000
980000
400000

4759 (0.026)
5.716 (0.045)
7.018 (0.075)
8.687 (0.148)
10.550 (0.314)

4753 (0.026)
5.697 (0.045)
6.987 (0.074)
8.637 (0.147)
10.499 (0.312)

4.339 (0.026)
4.437 (0.034)
4.519 (0.043)
4.450 (0.061)
4.529 (0.099)

4.333 (0.026)
4.430 (0.034)
4511 (0.043)
4.442 (0.060)
4523 (0.099)

4.2000

8
16
32
64

128

5000000
3000000
2000000
1000000

400000

4.698 (0.026)
5.701 (0.045)
7.054 (0.075)
8.797 (0.149)
11.386 (0.353)

4,692 (0.026)
5.683 (0.044)
7.023 (0.075)
8.748 (0.148)
11.324 (0.350)

4.339 (0.026)
4.466 (0.035)
4.491 (0.043)
4.421 (0.059)
4.539 (0.099)

4.333 (0.026)
4.460 (0.035)
4.482 (0.043)
4.415 (0.059)
4529 (0.099)

4.2750

8
16
32
64

128

5000000
3000000
2000000
1000000

400000

4.738 (0.026)
5.632 (0.044)
7.063 (0.075)
8.764 (0.148)
11.059 (0.338)

4731 (0.026)
5.614 (0.044)
7.037 (0.075)
8.718 (0.147)
10.981 (0.334)

4.361 (0.026)
4.418 (0.034)
4.454 (0.042)
4.532 (0.062)
4.447 (0.096)

4.354 (0.026)
4.408 (0.034)
4.447 (0.042)
4527 (0.062)
4.437 (0.096)

4.3500

8
16
32
64

128

5000000
3000000
2000000
1000000

400000

4.720 (0.026)
5.641 (0.044)
7.024 (0.075)
8.834 (0.150)
10.396 (0.308)

4.714 (0.026)
5.627 (0.044)
6.995 (0.074)
8.804 (0.149)
10.353 (0.306)

4.366 (0.026)
4.431 (0.034)
4.425 (0.042)
4.441 (0.060)
4.531 (0.099)

4.360 (0.026)
4.424 (0.034)
4.420 (0.042)
4.435 (0.060)
4529 (0.099)

where F, can easily be expressed in terms fof and f .
(Henceforth we shall suppress the argumerit it is clear
from the contex). In other words, if we make a plot of then plot
O(B,sL)/O(B,L) versusé&(B,L)/L, then all the points should

lie on a single curve, modulo corrections of ordger” and

L.
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Our extrapolation method works as follo’#sWe make
Monte Carlo runs at numerous paifg,L) and (8,sL). We

205ee[77, note § for further history of this method.

O(BsLIOBL)

versus &(B,L)IL,

using
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those points satisfying bothi(B,L)=some value &, Typically a fit of order 5sn=<15 is sufficient; the required
and L=some valuelL,,,. If all these points fall with order depends on the range>ofalues covered by the data
good accuracy on a single curve—thus verifying fesatz  and on the shape of the curve. Empirically, we increase
(5.2 for &£, L=L,;—we choose a smooth fitting func- until the x* of the fit becomes essentially constant. The re-
tion F,. Then, using the functions, andF,, we extrapo-  sulting x° value provides a check on the systematic errors
late the pair (£0) successively from L—sL—s°L arising from corrections to scaling and/or from the inadequa-
—eer 00, cies of the form(5.3).
We have chosen to use functioRg, of the forn?* The statistical error on the extrapolated value of
O.(B)=0(B,) comes from three sources(i) error on
_ 1k —2k ... —nix O(B,L), which gets multiplicatively propagated t0..; (ii)
Fo)=1tae "Hae Tt +ae ™. (53 errgr oné&(B.L), %vhich affee:ts the ayrgpumZbrgl]E &(B,L)/L of
N . ] ] the scaling function& ; andF,; (iii) statistical error in our
(Other forms of fitting functions can be used insteathis  estimate of the coefficienta, ,...,a, in F, and F,. The
form is partially motivated by theory, which tells uszghat IN errors of type(i) and (i) depend on the statistics available at
some casef o(x) —~1 exponentially fast as—0 [101]. the single pointB,L), while the error of typéiii ) depends on
the statistics in the whole set of runs. Errdrst(ii) [resp.
(i)+(ii)+(iii)] can be quantified by performing a Monte
24 performing this fit, one may use any basis one pleases in th&arlo experiment in which the input data@L) [resp. the
space spanned by the functiofs ¥/X},_,_; the final resultin ~ Whole set of input dafaare varied randomly within their
exact arithmetitis of course the same. However, in finite-precision €rror bars and then extrapolat@d.
arithmetic the calculation may become numerically unstable if the The discrepancies between the extrapolated values from
condition number of the least-squares matrix gets too large. In padifferent lattice sizes at the sanfe—to the extent that these
ticular, this disaster occurs if we use as a basis the monortfials exceed the estimated statistical errors—can serve as a rough
(wheret=e"'¥). The trouble is that these monomials are “almost estimate of the remaining systematic errors. More precisely,
collinear” in the relevant Hilbert space *(u) defined by let O, (i=1,...m) be the extrapolated values at some given
m(t)=2w;5(t—t;), wheret; are the values of=e™"“(*1 aris- g and letC=(C;;)",_1 be the estimated covariance matrix
H H f 2 . L : [N
ing in the data pairs and;=1/error onO(2L)/O(L)J"are the cor-  for their statistical erroré* [Errors of typeiii) induce off-

responding weights. To avoid this disaster, we should seek to used@agonal terms irC.] Then we form the weighted average
basis that is closer to orthogonal irf(x). Of course, exactly or-

thogonalizing inL%(w) is equivalent to diagonalizing the least- " "

squares matrix, which is unfeasible; but we can do well enough by - _1 1

using polynomials with zero constant term that are orthogonal with 0= ( '21 (C )ijoj) / (2_1 (C )ij ) (5.4

respect to the simple measwit) = t3(t;,2—t)° 0N [Otyad, Where W= W

a andb are some chosen numbers—1. These polynomials are

Jacobi polynomialg(t) =tP 237 2(2t/t,—1) for Isk=n [119, the error bar on the weighted average

pp. 321-328 The idea here is that the measw(;t)=ta(tma);t)b

should roughly approximate the measusfg). Empirically (for our

datg the measureu(t) seems to have a little peak near0 fol- U—:(

lowed by a dip, and a big peak nda#t,,,, for this reason we have

chosena=0, b=—3/4. But the performance is very insensitive to

the choices of andb. This cleverness in the choice of bagastly

improves the numerical stability of the result, by reducing the con

dition number of the matrix arising in the fit. Typical condition

numbers using Jacobi polynomials a@5 forn=11 and~123 for

n=15. Typical condition numbers using monomi&sd 100-digit R=

arithmetio are 7.5<10™ for n=11 and 6.5 10 for n=15. i
22The finite-size corrections tBuclideancorrelation functions in

anLY box are expected to behaveas™", wherem=1/£? is the

lightest mass in the theoryThis can be proven to all orders in

perturbation theory120] and presumably also holds nonperturba-

tively.) This is slightly different from oure™** because we have

definedx as £€2"9/L rather thané®P/L, but the difference is ex-

pected to be very small, singd?"?/¢&P~0.987[67]. It follows

from this that the finite-size-scaling functions for the susceptibilities

Xe andy, tend to 1 exponentially fast as—0. However, this isiot

the case for finite-size-scaling functions for the correlation lengths

¢2M and £2" | because the definition of these correlation lengths 23n principle, £ and© should be generated fromj@int Gaussian

contains an explicit -dependence, so that one expects correctionswith the correct covariance. We ignored this subtlety and simply

of order (¢/L)?~x2. Nevertheless, foe®"™ one expects the cor- generatedndependenfluctuations ong and O.

rection ~x? to be extremelysmall, becaus&g is almost exactly a %This covariance matrix is computed from the auxiliary Monte

free field. Forgff”CD this reasoning is no longer valid, but in any Carlo experiment mentioned in the preceding paragraph. Since this

case we find empirically that the for(%.3) gives an adequate fit C is only a statistical estimate, the values®fo, andR will vary

over the range of intere$0.1<x<1.1). slightly from one analysis run to the next.

m —-1/2
2 (C™ Yy ; (5.5
1

ij=

and the residual sum of squares

M s

) (0= 0)(C™1;(0,-0). (5.6)

Under the assumptions thé&t) the fluctuations among the
O4, ... 0O, are purely statisticali.e., there areo system-
atic errors in the extrapolatipnand (b) the statistical error
bars are correctR should be distributed as g random
variable withm—1 degrees of freedom. Moreover, the sum
of R over all the values o3 should be distributed as &
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random variable witt®(m—1) degrees of freedorf?.In this  &(3,L). We shall use the same convention also for other ob-
way, we can search for values gffor which the extrapola- servabled.If we now introducez=£..(8)/L and

tions from different lattice sizes are mutually inconsistent;

and we can test the overall self-consistency of the extrapola- F(z2)=zf(2) (5.9
tions.

A figure of (demerit of the method is the relative vari- [SO thatx=Fy(z) andF (x;s) =sF{z/s)/F{z)], we can re-
ance on the extrapolated vald@® (8), multiplied by the com-  Write Eq.(5.8) as
puter time needed to obtain . We expect thisrelative , )
variance-time producffor errors(i)+(ii) only] to scale as var(§(B,sL)) |1 Fi(2ls) Fi(z) | Var(¢(B,L))

&(B,sL)? s Felzls) Fi(z) &(B,L)?
RVTP(B,L)~£.(B) " 5m0Go(é.(B)IL),  (B.7) (5.10

whered is the spatial dimension anz}, o is the dynamic Iterating this formula and using the relation
critical exponent of the Monte Carlo algorithm being used;

here G, is a combination of several static and dynamic

finite-size-scaling functions, and depends both on the observ-
able © and on the algorithm but not on the scale factoAs
£JL tends to zero, we expe@,, to diverge as £,./L) ¢
(since it is wasteful to use a lattide>¢£,). As &£/L tends to

1 Fy(zlsh 1
s" Fy(zls")  z

(5.11

lim

n—o

[which follows from the fact tha#z) ~z for z—0], we get

infinity, we expectG,~(£./L)" for some powep (see[69)] Var(é.(B)) , Var(¢(B,L))
for detaily. Note thatthe power p can be either positive or TB)Z: K(2) W (5.12
negative If p>0, there is an optimum value a&f./L; this * '
determines the best lattice size at which to perform runs for Shere we have defined
given 8. If p<<0, it is most efficient to use the smallest lattice
size for which the corrections to scaling are negligible com-
e - . Fe(2)
pared to the statistical errorfOf course, this analysis ne- Ke(2)=——. (5.13
glects errors of typdiii). The optimization becomes much 2F¢(2)
more complicated if errors of typ@ii) are included, as it is ] o ]
then necessary to optimize the set of runs as a whole. !t is worth noticing that the error on the extrapolatedp) is
Finally, let us note that this method can also be applied té"dependent of the chosen scale factor
extrapolate the exponential correlation lengthverse mass Let us now compute the largeexpansion of(z) for

gap £¥9(L)=m(L) ! defined in a cylindet.91x. For the case of an asymptotically free theory. Perturbation theory

this purpose one must work in a system of die*x T with ~ (Appendix B 1 predicts that, fox—a, we have
T=6£2P(BL) (compare[70]).

é:oc(ﬁ) X —2w, /W(ZJ 1 X 2
2. Theory of error propagation L D A ex VTo A
When the statistical error of typéii) is neglected, it is (5.14

ossible to work out analytically the theory of error propa- . ..
P y y y brop where w, and w; are the first two coefficients of the

gation, and in particular to compute the statistical error on 0 = . X
the extrapolated values. renormalization-grougB function, A is a constant that de-

Let us consider first the correlation length. The standard®©Nds on the explicit definition G{.L), a(rggd[)) is a nonper-
error-propagation formula gives turbative coefficient related t€,. For &™(B,L) in the
SU(N) o model, we have

[1+0(x~ 3],

varg(gisL) [ X dFdxs) 2 Var(é(B,L))
&B;sL* Fex;s)  ax &B,L)* Az(
(5.8

Var(&(B,L)) for the variance obur Monte Carlo estimatef FLz): we get

N 1/2

NZ—1

(5.1

Fomy = we z 1/2[ w; InIn(z/D) o 1

& Z)= WO n— i +

25This latter statement is not quite correct, as it ignores the corre- b 2wy In(z/D) ln(z“?:_’)l
lations between the varioud, at different, which are induced by (5.1
errors of type(iii). [Correlations between differeid®; at thesame and thus

B, which are also induced by errors of tyfié), are included in
Egs.(5.9—(5.6).]

26At fixed (B,L), this variance-time product tends to a constant as K.(2)=2In Zz
the CPU time tends to infinity. However, if the CPU time used is ¢ D
too small, then the variance-time product can be significantly larger
than its asymptotic value, due to nonlinear cross terms betweeWVe conclude that the statistical errdcf types(i)+(ii)] in-
error sourcesi) and (ii). crease under extrapolation only logarithmically with

140 . (517

In In(z/D)
In(z/D) )
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We still have to take account of the finite-size-scaling TABLE IV. CPU times in milliseconds per measurement for the
behavior of the variance of the raw data paf8,L). If for ~ XY-embedding MGMC algorithm for the two-dimensional SV
&B,L) we take the second-moment correlation length defineghiral model. Each timing includesvo MGMC iterations (with

in Eq. (2.8), we have

y=2, my=1, m,=0) followed by one measurement of all observ-

ables.
_ 1 1 x(B.L) —
Var(§(B,L))= 64 sif(mIL) E(B.L)2 Var FB.L) CPU timings(ms/measurement

(5.18 L Cray C-90 IBM SP2

and thus, in the limiL>1, 8 6 7

16 15 26

var(é(B,L)) 1 L \4 v x(B,L) 32 34 105
§BL? e lEpD) U\FBL) 64 %4 490

(5.19 128 270 2629

256 911 15950

Let us now define the observable
A= X i (5.20 v(2) tends to a nonzero constant as>», and _hence that
(x) (F)’ ' v(2)~In%z [cf. Egs. (5.24, (5.16)]. Finally, for g,(z) our

numerical data indicate tha,(z)~z “nta for the MGMC

which controls the statistical error in measurements/®f.  g|gorithm (see again Sec. V B)3indeed, for fixedL and

We then have, for a Monte Carlo run b, iterations,

X(BIL) _ZTint,A(B!L) r(X(B!L)
FBL) ™ Ner  MFBL

Var

where vark) is the static variance ofX. In the finite-size-

scaling limit we have

large z, each 1y A(B,L) approaches a ConstaquLA(L)
which (as expected scales approximately asipa(L)

, (5.2) ~LZ%ntA, Putting this all together, we predict that

Gy(z)~z (9" Zma)(Inz)2. (5.28

This means that large values pfare vastly more efficient
than small values of; at any giveng, it is most efficient to

Tint,A(B,L) = &x(B) M40 (2), (5.22 use thesmallestlattice size for which the corrections to scal-

varnA(B,L))=v(2), (5.23

Va’( X(B,L)> :U(Z):(xw,L))zv_(z)
F(B.L) F(B.L)

=[1+47m%F«(2)*1%v(2), (5.24

wherez,, , is a dynamic critical exponent, amgl(2), v(2),

anduv(z) are scaling functions. It follows that

var(é(B,L))  £.(B)omas gx(2)u(2)

ing are negligible compared to the statistical errors, and the
gain from doing so iEnormous

Let us now extend the foregoing results to generic observ-
ables. Consider a set of observabts(i=1,...,n) and the
relative covariance matri€,g (A,B=0,...,n) defined by

Var L
CooB,L)= —2—5((2(6) )), (5.293

C L),0:(8,L
Coi(B,L)=Cio(B,L)= ov(&(B,L),0i(B,L))

= g(B!L)OI(ﬂ!L) ,
HBL? 32N Rt O (5.29
Now the total CPU time is proportional thiyL?, so the Cov(Oi(B,L),0;(B,L))
relative variance-time product faris Cij(B,L)= OB LOBL)
iLP WP
RVTPLB,L)=£.(B)  msGy(z),  (5.26 (5.299

with

Gg(z)=z’dK§(z)2xM

where Var and Cov denote, as before, the variances and co-
variances of our Monte Carlo estimates. A little algebra then
yields the following generalization of E¢5.12):

. 52
32mFy(2)* 20 C(B.2)=K(2)C(B.LIK(2)T, (5.30

Here the second factor on the right-hand side comes from th\?&hereK(z) is an 1+ 1)X (n+ 1) matrix given by
variance of the raw data poigtg,L), while the first factor

comes from the extrapolation process. Kg(2) 0
Let us now discuss the largebehavior ofG(z) in an Ko(z) | ; (5.3
asymptotically free theory. We have already seen i)
and F(z) increase as powers ofdnand that (2)%F{2)*  herel is annxn identity matrix, and
tends to a nonzero constant. The functiog) andv(z) are
static variances, hence in principle computable at large _ f(’gi(z) Fi(2)
perturbation theory; we have not bothered to carry out this Koi(z)= (5.32

computation, but we find empiricall{see Sec. V B Bthat fo(2) F(2)
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TABLE V. Degrees of freedomDF), x?, ¥*/Npr and confidence level for thath-order fit (5.3 of
Ee(B,2L)/ €x(B,L) versusée(B,L)/L. The indicated,,, values apply td.=8,16,32, respectively; we al-
ways takex,,;;=0.14,0 forL=64,128. Our preferred fit is shown italics; other good fits are shown sans

serif; bad fits are shown in roman.

X for the FSS fit ofg:

Xmin n=11 n=12 n=13 n=14 n=15
(0.50,0.40,0 180 718.80 179 626.60 178 560.20 177 558.60 176 558.30
3.99 0.0% 3.50 0.0% 3.15 0.0% 3.16 0.0% 3.17 0.0%
(,0.40,0 154 673.80 153 566.30 152 533.00 151 532.10 150 531.80
4.38 0.0% 3.70 0.0% 3.51 0.0% 3.52 0.0% 3.55 0.0%
(00,00,0) 108 236.00 107 172.40 106 154.80 105 154.70 104 153.40
2.19 0.0% 1.61 0.0% 1.46 0.1% 1.47 0.1% 1.48 0.1%
(0.70,0.55,0.4p 162 288.30 161 219.20 160 183.00 159 182.50 158 182.30
1.78 0.0% 1.36 0.2% 1.14 10.3% 1.159.8% 1.15 9.0%
(0.75,0.60,0.5D 150 222.40 149 172.20 148 129.90 147 129.80 146 129.80
1.48 0.0% 1.16 9.4% 0.88 85.6% 0.88 84.3% 0.89 82.9%
(0.80,0.70,0.6D 129 173.90 128 135.00 127 96.30 126 96.28 125 94.31
1.35 0.5% 1.0532.0% 0.76 98.1% 0.76 97.7% 0.75 98.1%
(0.95,0.85,0.6D 111 150.30 110 107.20 109 77.62 108 77.62 107 75.67
1.35 0.8% 0.97 55.8%  0.71 99.0% 0.72 98.8% 0.71 99.1%
(1.00,0.90,0.6D 105 139.20 104 100.90 103 70.74 102 70.73 101 67.50
1.33 1.4% 0.97 56.7%  0.69 99.4% 0.69 99.2% 0.67 99.6%
(«,0.90,0.6% 92 130.00 91 77.01 90 60.85 89 58.66 88 58.31
1.41 0.6% 0.85 85.2% 0.68 99.2% 0.66 99.5% 0.66 99.4%
(00,0,0.65 78 96.09 77 56.51 76 49.55 75 46.63 74 45.94
1.23 8.1% 0.7396.2%  0.65 99.2% 0.62 99.6% 0.62 99.6%
(0,0,0.80 70 85.79 69 51.89 68 46.33 67 43.42 66 42.76
1.22 9.7% 0.7593.8% 0.68 98.0% 0.64 98.9% 0.64 98.8%
(00,00,00 52 55.85 51 25.23 50 25.17 49 24.11 48 24.10
1.07 33.2%  0.49 99.9% 0.50 99.9% 0.49 99.9% 0.50 99.8%
For an asymptotically-free theory, @, is an observable of Var(O; .(B)) — Var(¢(B,L))
canonical dimensiors, (for instances=2 for the suscepti- gz =Ko (2P —
ol . S0 < Oi.(B) E(B.L)
ilities) and leading anomalous dimensigy,, we have the
following asymptotic behavior az—:; — Cov(O;(B,L),&(B,L))
+2K0i(z)

5_( z ‘Vi,O’WO[ In In(z/D)
fo(2)=Ez %{In 5) l+O(—) ,

In(z/D)
(5.33

whereE is a nonperturbative coefficient afdlis defined by
Eq. (5.14. It follows that

Ko,(2)= 8K {(2)~25 In % (5.34

whenevers #0. In cases =0 (this happens, for instance, for
O=x1£), we have instead

Yio 27‘,0

Ko(2)~ < n(ziD)

(5.39

Let us now write explicitly our resul{5.30, (5.31) for
Var(0, ..). We have

Oi(B,L)&(B.L)
Var(O;(8,L))

O%(B.0) (539

The last term on the right-hand side represents the error of
type (i), while the first two terms constitute the error of type
(ii). Asymptotically for largez, the first term dominate&in-
less §=0): the final statistical error orQ,; ..(8) is con-
trolled by the error on&B,L) and not by the error on
O;(B,L). In other words, the error of typd) dominates that
of type (i). Notice, moreaver, that Eq5.36) reduces to Eq.
(5.12 when0;=¢, sinceK (z) =K,(2) - 1.

It is also immediate to verify that different observables
become perfectly correlated far—« (if their canonical di-
mension is not zeno Indeed, using Eqg5.30, (5.31) and
(5.34 we get

COMO, (8). 0, -(B)) _1_0( )
[Var(O, .(B)Var(©, (BN~ ~\in(z/D))"

(5.37
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Deviations from FSS fit for &5 50 FSS for &;
T T T T ) L |T< ‘ T T T } T T T 1 . T T T | T T T T
0.00 — i |
o = T
ot J s -
I t & 15— , .
o L | = L J
X Jl% i 8
N —0.01— - — L 1
~ |
& . | k , I |
L * 4
- |- -
- 4 1.0 %?M
_002 [ I Lt 1 ] I 1 | [ N B l L ] | L § IS 1 | 1
0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0
¢r(L)/L &(L)/L
FIG. 1. Deviation of points from fit to F;_with s=2, n=13, FIG. 2. £p(B2L)Y Ep(B,L) vs €p(B.L)/L. Symbols indicate

L=8 ( ), 16 ( ¥ ),32(+), 64 (X), 128 (O). Error bars are one
standard deviation. Solid curve is a thirteenth-order fit in Eq. (5.3),
with x,,,,=(0,0.90,0.65,0.14,0) for L=(8,16,32,64,128). Dotted
curves are the perturbative prediction (3.24a) through orders 1/x?
(upper curve) and Ux* (lower curve).

Xpmin= (00,00,00,0.14,0). Symbols indicate L=8 ( v ) 16, { X ), 32
(+), 64 (X), 128 (OJ), 256 (< ). Error bars are one standard devia-
tion. Curves near zero indicate statistical error bars (Z one standard
deviation) on the function F §F(x).

This again expresses the dominance of errors of {ipeall o . .
of which arise from the statistical fluctuations on theme adopted a modified scheme for IMposing lower cutoffs on
random variable(8,L) &L) andL, as follows: For each lattice side we choose

a valuexn,(L), and we allow into the fit only those data
pairs (B,L)/(B,2L) satisfying x=§&(L)/L=X;,,(L). Our
B. Data analysis: Extrapolation to infinite volume method is thus specified by the five cut points;,(8),

In this subsection we apply the finite-size-scaling extrapoXmin(16); Xmin(32), Xmin(64), Xmin(128) along with the interpo-
lation procedure to our data for the &) chiral model. we lation ordern. We shall always choosey;(64)=0.14 and
begin by showing in some detail how the method works for‘min(128=0, and shall thus omit them from the tables.

(2nd). this allows us to illustrate the treatment of statistical W& NeXt sought to investigate systematically fhef the
and systematic errors and to show the quality of results tha{’{atsf‘ as a fun.ctlon of th? cut pointgyp(L) and the_ Interpo-
can be obtained. Then we show more briefly the results fo tion ordern; some ty_plcal res_ults are collected in Table V.
X §(2nd) and Finall, we discuss the ratio A reasonable X2 is obtained when n=13 and

{2nd), A2nd) A ' . Xmin=(0.80,0.70,0.60,0.14)0for L=(8,16,32,64,128 Our
& /€L and the relative variance-time product. preferred fit isn=13 andx,,;,=(2,0.90,0.65,0.14)0 see Fig.

2, where we compare also with the ordex?1and order-14*
perturbative prediction$3.244. This fit has y?*=60.85[90

We shall always use a scale fac®+2. Out of our 264 degrees of freedortDF), level=99.2%j.
data points(8,L), we are able to form 203 pairsB(L)/ We then used this preferred fit to extrapolate the data to
(B.2L); these pairs cover the range 0:08=¢C")(L)/L  infinite volume. The extrapolated valug€™ from different
=<1.12. In what follows, we shall sometimes omit for sim- lattice sizes at the sam@ are consistent within statistical
plicity the superscript2nd on the correlation lengths; and errors: only one of the 58 values has arR that is too
when we write §(L) tout court we shall always mean large at the 5% level; and summing #lvalues we have
£2nA(L). R=64.28(103 DF, leve=99.9%.

We found tentatively that fo©= £2" a thirteenth-order Both they” and R values are unusually small; we do not
fit (5.3 is indicated: see the last few rows of Table V. We know why. Perhaps we have somewhere overestimated our
next sought to investigate the strength of the corrections tgtatistical errors by about 25%.
scaling: we performed the fit with the conservative choices In Table VI we show the extrapolated valug® from
Lmin=64, £&1in=10, andn=13, and plotted on an expanded our preferred fit and from some alternative fits, together with
vertical scale thedeviationsfrom this fit. The results are the propagated statistical error bairscluding errors of type
shown in Fig. 1. Clearly, there are significant corrections to(i)+ (ii)+(iii)]. The deviations between the different accept-
scaling in the regionx=<0.84 (0.64,0.52,0.14 when L =8 able fits (those in italics or sans se¥ifif larger than the
(16,32,64; but the corrections to scaling become negligiblestatistical errors, can serve as a rough estimate of the remain-
(within statistical erroratx larger than this. To take account ing systematic errors due to corrections to scaling. The sta-
of this x-dependence of the corrections to scaling, wetistical errors orf(F%?od) in our preferred fit are of order 0.6%

1. Basic observables
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TABLE VI. Estimated correlation Iengths(F%?C‘” as a function ofg, from various extrapolations. Error bar is one standard deviation
(statistical errors only All extrapolations use=2 andn=13. The indicated,;, values apply td.=8,16,32, respectively; we always take
Xmin=0.14,0 forL=64,128. Our preferred fit is shown italics; other good fits are shown isans serif; bad fits are shown in roman.

Tmin

A=175

B =1.775

8 =180

B=18%5

B =185

(0.75,0.60,0.50)

8.163 (0.076) x 107

9.296 (0.031) x 107

1.045 (0.002) x107

1.159 (0.003) x 107

1.295 (0.003) x 107

(0.80,0.70,0.60)

8.163 (0.077) x10°

9.294 (0.030) x10°

1.045 (0.002) x 107

1.159 (0.003) x 107

1.295 (0.003) x 107

(0.95,0.85,0.60)

8.163 (0.077) x10°

9.294 (0.030) x10°

1.045 (0.002) x 107

1.159 (0.003) x 107

1.295 (0.003) x 107

(1.00,0.90,0.60)

8.163 (0.076) x 10°

9.294 (0.030) x 107

1.045 (0.002) x 107

1.159 (0.003) x 107

1.295 (0.003) x 107

(c0,0.90,0.65)

8.163 (0.078)x 107

9.291 (0.030)x 107

1.045(0.002)x 10"

1.158 (0.003)x 107

1.297 (0.003)x 107

(00,00,0.65)

8.163 (0.077) x10°

9.292 (0.030) x10°

1.045 (0.002) x 10!

1.158 (0.003) x 107

1.294 (0.003) x 101

(00,00,0.80)

8.163 (0.078) x 10°

9.292 (0.030) x 10°

1.045 (0.002) x 10*

1.158 (0.003) x 107

1.294 (0.003) x 10*

(00,00,00)

8.163 (0.074) x10°

9.296 (0.031) x 10°

1.045 (0.002) x10!

1.159 (0.003) x10%

1.295 (0.003) x 10!

Tmin

5 =1875

B =190

B =1925

B=1.9

8 =1975

(10.75,0.60,0.50)

1.444 (0.004) x 107

1.613 (0.004) x 107

1.804 (0.005) x 107

2.003 (0.005) x 107

3.930 (0.006) x 107

(0.80,0.70,0.60)

1.444 (0.004) x 10"

1.614 (0.005) x10"

1.804 (0.005) x10*

2.003 (0.005) x 10T

2.229 (0.006) x 107

(0.95,0.85,0.60)

1.444 (0.004) x107

1.614 (0.005) x 107

1.804 (0.005) x 107

2.003 (0.005) x 107

7.99 (0.006) x 107

(1.00,0.90,0.60)

1.444 (0.004) x 10"

1.614 (0.005) x 10T

1.804 (0.004) x 107

7.003 (0.005) x107

2.229 (0.006) x 107

(c0,0.90,0.65)

1.444 (0.004)x 10"

1.614 (0.004)x 107

1.804 (0.005)x 10!

2.002 (0.005)x 107

2.227 (0.007)x 107

(00,00,0.65)

1.444 (0.004) x 10!

1.614 (0.004) x 10!

1.804 (0.005) x 10!

2.002 (0.005) x 10!

2.227 (0.007) x 10!

(00,00,0.80) || 1.444 (0.004) x 107 | 1.614 (0.005) x 10" | 1.804 (0.005) x 107 2.002 (0.005) x 10| 2.227 (0.007) x10*
(co.00.00) || 1.444 (0.004) x 107 | 1.613 (0.004) x 107 [ 1.804 (0.005) x 107 2.004 (0.005) x 107 |2.230°(0.007) x 107
Zomin B =1.985 B =2.00 B =2.012 B =2.025 B =2.037

(10.75,0.60,0.50)

2.326 (0.007) x 101

2.489 (0.007) x 10!

2.613 (0.009) X107

2.762 (0.009) x10!

2.889 (0.009) x 107

(0.80,0.70,0.60)

2.325 (0.007) x 10"

2.487 (0.007) x 107

2.612 (0.009) x 107

2.761 (0.009) x10*

2.888 (0.010) x 107

(0.95,0.85,0.60)

2.324 (0.007) x10*

2.487 (0.007) x 107

2.612 (0.009) x 107

2.761 (0.009) x 107

2.888 (0.009) x 107

(1.00,0.90,0.60)

2.324 (0.007) x10!

2.487 (0.007) x 107

2.612 (0.009) x 107

2.761 (0.009) x10

2.888 (0.010) x 101

(c0,0.90,0.65)

2.322 (0.007)x 107

2.486 (0.007)x 107

2.610 (0.009)x 107

2.760 (0.010)x 10

2.889 (0.010)x 10"

(00,00,0.65)

2.323 (0.007) x10*

2.486 (0.007) x 107

2.610 (0.009) x10*

2.760 (0.009) x 10

2.889 (0.010) x 10!

(00,00,0.80)

2.323 (0.007) x 10!

2.486 (0.007) x10*

2.611 (0.009) x 10!

2.760 (0.009) x 10*

2.889 (0.010) x 10!

(c0,00,00)

2.326 (0.007) x10*

2.488 (0.007) x 107

2.612 (0.009) x 10!

2.760 (0.009) x 107

2.887 (0.009) x 10!

Tmin

=205

8 =2.062

B=2.075

=210

F=2112

(0.75,0.60,0.50)

3.077 (0.010) x 107

3.229 (0.010) x 107

3.493 (0.012) x 107

3.775 (0.012) x 10"

3.986 (0.011) x 107

(0.80,0.70,0.60)

3.077 (0.010) x 107

3.231 (0.011) x10*

3.425 (0.011) x 107

3.777 (0.012) x 107

3.979 (0.012) x 107

(0.95,0.85,0.60)

3.078 (0.010) x 10!

3.231 (0.010) x 107

3.425 (0.012) x 10!

3.778 (0.012) x 107

3.979 (0.012) x 107

(1.00,0.90,0.60)

3.078 (0.010) x 107

3.232 (0.010) x10*

3.425 (0.011) x 107

3.778 (0.012) x 107

3.979 (0.012) x 107

(c0,0.90,0.65)

3.079 (0.010)x 107

3.233 (0.011)x 10*

3.428 (0.012)x 101

3.779 (0.012)x 10

3.979 (0.012)x 10!

(00,00,0.65)

3.079 (0.010) x 107

3.234 (0.011) x 10!

3.428 (0.012) x107

3.779 (0.012) x 107

3.979 (0.012) x107

(c0,00,0.80)

3.079 (0.010) x10*

3.233 (0.011) x 10*

3.427 (0.012) x 10!

3.778 (0.012) x10!

3.979 (0.012) x10!

(00,00,00)

3.075 (0.010) x 10!

3.229 (0.011) x 107

3.423 (0.012) x 107

3.778 (0.012) x 107

3.981 (0.012) x107
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TABLE VI. (Continued.

Lmin

B =212

B=2133

Z=215

B=2175

B=12.90

(0.75,0.60,0.50)

4.196 (0.010) x 107

4.332 (0.011) x 107

4.658 (0.012) x 107

5.180 (0.017) x 107

5.750 (0.018) x 107

(0.80,0.70,0.60)

4,198 (0.011) x 107

4.325 (0.013) x10*

4,650 (0.013) x 107

5.192 (0.019) x107

5.741 (0.022) x10*

(0.95,0.85,0.60)

4.198 (0.011) x 107

4.325 (0.013) x 10!

4.650 (0.013) x 107

5.192 (0.019) x 10

5.740 (0.021) x 107

(1.00,0.90,0.60)

4,197 (0.011) x 107

4.325 (0.013) x10*

4650 (0.013) x 107

5.192 (0.019) x 107

5.740 (0.021) x 107

(c0,0.90,0.65)

4.197 (0.011)x 107

4.323(0.014)x 10!

4.647(0.014)x 107

5.189 (0.020)x 107

5.740 (0.021)x 101

(00,00,0.65)

4.196 (0.012) x 107

4.323 (0.013) x10*

4647 (0.014) x 107

5.189 (0.020) x 107

5.740 (0.022) x 10!

(00,00,0.80)

4.196 (0.012) x 107

4.323 (0.014) x 107

4647 (0.014) x 107

5.189 (0.020) x 107

5.740 (0.022) x107

4.201 (0.011) x10*

4329 (0.014) x 107

4.654 (0.014) x10!

5.195 (0.020) x 107

5.739 (0.022) x 107

Lmin

B =2.2163

3=99

£ =12.30

=235

3=240

(0.75,0.60,0.50)

6.146 (0.018) x 107

7.062 (0.022) x 107

8.656 (0.022) x 107

1.064 (0.004) x10?

1.308 (0.004) x10°

(0.80,0.70,0.60)

6.168 (0.020) x 10!

7.079 (0.027) X 107

8.671 (0.028) x10*

1.069 (0.005) x 107

1.309 (0.006) x 107

(0.95,0.85,0.60)

6.168 (0.020) x 107

7.080 (0.027) x 10T

8.672 (0.028) x 101

1.069 (0.005) x 102

1.309 (0.006) x 102

(1.00,0.90,0.60)

6.168 (0.021) X107

7.080 (0.027) x 107

8.670 (0.028) x 107

1.069 (0.005) x 107

1.309 (0.006) x 107

(c0,0.90,0.65)

6.169 (0.020)x 10*

7.082 (0.027)x 10!

8.665 (0.028)x 10!

1.068 (0.006)x 107

1.310 (0.007) x 107

(00,00,0.65)

6.169 (0.020) x 107

7.082 (0.027) x 107

8.666 (0.029) x 107

1.069 (0.005) x10%

1.310 (0.007) x10°

(00,00,0.80)

6.160 (0.021) x 107

7.082 (0.027) x 107

8.667 (0.029) x 10"

1.069 (0.006) x 107

1.310 (0.007) x10°

(00,00,00)

6.164 (0.020) x10*

7.077 (0.027) x10!

8.677 (0.030) x 10"

1.069 (0.005) x 102

1.308 (0.007) x107].

LTmin

B =245

8 =2.50

B=1255

8 =12.60

B =265

(0.75,0.60,0.50)

1.594 (0.005) x 10°

1.950 (0.007) x10°

2.406 (0.009) x10°

2.930 (0.011) x 10

3.588 (0.013) x 107

(0.80,0.70,0.60)

1.506 (0.008) x 102

1.947 (0.011) x 102

2.409 (0.013) x10°

2.936 (0.016) x10“

3.580 (0.020) x 102

(0.95,0.85,0.60)

1.596 (0.008) x 102

1.946 (0.011) x10°

2411 (0.014) x 102

2.937 (0.016) x10°

3.587 (0.022) x 107

(1.00,0.90,0.60)

1.596 (0.008) x 102

1.946 (0.011) x102

2412 (0.014) x 102

2.936 (0.016) x10?

3.587 (0.021) x 10

(c0,0.90,0.65)

1.594 (0.009)x 10~

1.941 (0.013)x 107

2.422 (0.018)x 107

2.952 (0.021)x 10*

3.601 (0.026)x 10

(00,00,0.65)

1.593 (0.009) x 102

1.942 (0.013) x10?

2.422 (0.018) x 102

2.950 (0.021) x 102

3.599 (0.027) x 102

(00,00,0.80)

1.593 (0.009) x 102

1.941 (0.013) x10?

2.423 (0.018) x 10°

2.957 (0.024) x 102

3.597 (0.031) x 107

1.593 (0.009) x 107

1.942 (0.013) x 107

2.420 (0.018) x 10*

2.956 (0.023) x 10°

3.605 (0.031) x 102

Lmin

g =270

F=2.175

G =285

B =2925

£ =3.00

(0.75,0.60,0.50)

4.390 (0.018) x10°

5.980 (0.023) x 102

8.017 (0.034) x10°

1.093 (0.005) x10°

1.473 (0.006) x10°

(0.80,0.70,0.60)

4.411 (0.026) x 107

6.012 (0.034) x 107

8.059 (0.050) x10°

1,100 (0.007) x 103

1.482 (0.009) x 103

(0.95,0.85,0.60)

4.418 (0.029) x10°

5.992 (0.038) x 102

8.066 (0.061) x 10°

1.109 (0.008) x10°

1.483 (0.012) x10°

(1.00,0.90,0.60)

4,418 (0.029) x 107

5.992 (0.038) x 102

8.068 (0.059) x 10

1.109 (0.008) x 103

1.484 (0.012) x10°

(c0,0.90,0.65)

4.496 (0.035)x 102

6.021 (0.045)x 107

8.096 (0.067)x 107

1.115(0.009)x 10°

1.489 (0.013)x 10°

(00,00,0.65)

4.435 (0.036) x 107

6.019 (0.046) x 102

8.007 (0.069) x 102

1.115 (0.010) x10°

1.487 (0.014) x10°

(00,00,0.80)

4.416 (0.044) x10°

6.015 (0.062) x 102

8.116 (0.101) x10°

1.117 (0.015) x10°

1.486 (0.022) x10°

(00,00,00)

4.423 (0.042) x10°

6.021 (0.062) x 107

8.127 (0.098) x 102

1.116 (0.015) x 10°

1.482 (0.022) x10°
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Lmin

B =3.075

8 =315

B =3.225

B =330

B =3.375

(0.75,0.60,0.50)

2.010 (0.009) x10°

2.709 (0.012) x10°

3.677 (0.018) x10°

4.995 (0.024) x10°

6.774 (0.036) x 10°

(0.80,0.70,0.60)

2.025 (0.012) x10°

2.727 (0.017) x10°

3.702 (0.024) x 10°

5.032 (0.032) x10°

6.821 (0.048) x10°

(0.95,0.85,0.60)

2.027 (0.018) x10°

2.749 (0.025) x10°

3.738 (0.037) X 10°

5.109 (0.049) x10°

6.899 (0.072) x10°

(1.00,0.90,0.60)

2.029 (0.018) x 10°

2.749 (0.025) x10°

3.750 (0.037) x10°

5.110 (0.051) x10°

6.869 (0.073) x 10°

(00,0.90,0.65) [12.039 (0.020)x 10°]2.761 (0.027)x 10°13.769 (0.040)x 10°[5.132 (0.055) x 107 6.895 (0.080) x 10
(c0,00,0.65) ||2.038 (0.020) x103|2.759 (0.028) x10%[3.765 (0.041) x103]5.125 (0.055) x103|6.912 (0.082) x103
(00,00,0.80) |[2.049 (0.034) x103[2.769 (0.046) x103[3.785 (0.068) x 103[5.155 (0.088) x10°|6.954 (0.126) x10°
(00,00,00)  [|2.041 (0.034) x1032.777 (0.049) x103]3.757 (0.074) x10°[5.063 (0.102) x10°|6.873 (0.156) x10°

Tmin B =345 B = 3.525 B = 3.60 B = 3.675 B =3.75

(0.75,0.60,0.50)

9.199 (0.047) x10°

1.240 (0.007) x10*

1.694 (0.009) x10°

3.295 (0.013) x107

3.126 (0.018) x10°

(0.80,0.70,0.60)

9.268 (0.062) x10°

1.248 (0.009) x10°

1.707 (0.012) x10*

2.311 (0.017) x107

3.149 (0.024) x10°

(0.95,0.85,0.60)

9.411 (0.092) x10°

1.268 (0.013) x10°

1.736 (0.018) x10°

2.352 (0.025) x107

3.206 (0.035) x 107

(1.00,0.90,0.60)

9.365 (0.099) x10°

1.257 (0.014) x10*

1.730 (0.020) x 107

2.337 (0.026) x 107

3.182 (0.037) x 107

(00,0.90,0.65) [19.407 (0.105)x 10%|1.261 (0.015)x 10%|1.738 (0.021) x 104]2.848 (0.028)x 10%]3.191 (0.040) x 10+
(00,00,0.65) [/9.391 (0.110) x103|1.261 (0.016) x 10%{1.739 (0.023) x10*]2.349 (0.032) x10%}3.201 (0.046) x10*
(00,00,0.80) [|9.438 (0.163) x103|1.268 (0.024) x10%]1.748 (0.032) x10%]2.363 (0.045) x 10%|3.218 (0.065) x10°
(c0,00,00)  ||9.295 (0.217) x10°[1.240 (0.031) x10%]1.699 (0.045) x 10%{2.306 (0.064) x10*]3.091 (0.090) x10*

Tomin B = 3.825 B =23.90 B = 3.975 G = 4.05 B =4.125

( 0.75,0.60,0.50)

4.220 (0.024) x 107

5.726 (0.037) x10*

7.799 (0.049) x107

1.061 (0.007) x10°

1.450 (0.010) x10°

(0.80,0.70,0.60)

4.247 (0.031) x10°

5.769 (0.046) x 10°

7.854 (0.060) x 107

1.068 (0.009) x10°

1.461 (0.012) x10°

(0.95,0.85,0.60)

4.317 (0.045) x10*

5.875 (0.065) x 10°

7.985 (0.084) x 107

1.088 (0.012) x10°

1.486 (0.016) x10°

(1.00,0.90,0.60)

4.287 (0.049) x10°

5.831 (0.070) x 10°

7.935 (0.092) x 107

1.078 (0.013) X10°

1.476 (0.017) x10°

(c0,0.90,0.65)

7.907 (0.052)x 107

5.859 (0.077)x 104

7.970 (0.099)x 10%

1.090 (0.015)x 10°

1.482(0.019)x 10°

(00,00,0.65)

4.342 (0.062) x107

5.880 (0.094) x 107

7.976 (0.123) x10*

1.094 (0.019) x10°

1.490 (0.025) x 10°

(00,00,0.80)

4.365 (0.087) x 10

5.908 (0.126) x10°

8.020 (0.161) x10%

1.100 (0.024) x10°

1.500 (0.032) x 10°

(00,00,00)

4.208 (0.126) x 107

5.598 (0.183) x10%

7.714 (0.253) x10%

1.047 (0.037) x10°

1.417 (0.051) x10°

Lmin

=420

G =4.975

8=4.35

(0.75,0.60,0.50)

1.979 (0.014) x10°

2.683 (0.020) x10°

3.639 (0.029) x10°

(0.80,0.70,0.60)

1.991 (0.017) x10°

2.704 (0.023) x10°

3.662 (0.033) x10°

(0.95,0.85,0.60)

2.029 (0.024) x10°

2.753 (0.031) x10°

3.726 (0.044) x10°

(1.00,0.90,0.60)

2.010 (0.025) x10°

2.734 (0.033) x10°

3.696 (0.047) x10°

(c0,0.90,0.65)

2.018 (0.028)x10°

2.740 (0.039)x 10°

3.717 (0.055)x 10°

(00,00,0.65)

2.046 (0.038) x10°

2.792 (0.052) x10°

3.767 (0.077) x10°

(c0,00,0.80)

2.057 (0.047) x10°

2.800 (0.064) x 10°

3.785 (0.091) x10°

1.927 (0.074) x10°

2.562 (0.102) x10°

3593 (0.148) x10°

(0.8%, 1.2%, 1.4%, 1.5%at & .~10° (10°, 10, 10,

For O=x we observed tentatively that a fifteenth-order

4x10). The systematic errors are smaller than the statisticdit (5.3) is indicated: see Table VII. There are significant

errors(anywhere from 0.1 to 0.9 times as lajyder 8<3.60,
and slightly larger than the statistical errdby a factor 1-2
times as largefor 8<3.60. The statistical errors at different in

B are strongly positively correlated.

Now we report the results for the observabjgs £Z"Y

and y, -

Fig.

Xmin:(ocyOc

preferred
0.80,0.14,p for L=(8,16,32,64,128 see Fig. 4,
where we compare also with the ordex?And order-124*

corrections to scaling for ak whenL =8, and in the regions
x=0.85(0.50 whenL =16 (32):
3. Our

see the deviations plotted
fit

is n=15 and

perturbative prediction$3.249. This fit has y*=62.74 (66
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TABLE VII. Degrees of freedom(DF), x%, x*/Npr and confidence level for theth order fit (5.3) of
xe(B,2L) xg(B,L) versusée(B,L)/L. The indicatedx,,, values apply toL=8,16,32, respectively; we
always takex,,;;=0.14,0 forL=64,128. Our preferred fit is shown italics; other good fits are shown in
sans serif; bad fits are shown in roman.

X for the FSS fit ofye

Xmin n=13 n=14 n=15 n=16 n=17
(0,2,0.9 100 175.80 99 175.60 98 173.50 97 173.40 96 171.80
1.76 0.0% 1.77 0.0% 1.77 0.0% 1.79 0.0% 1.79 0.0%
(1.0,0.95,0.65 97 503.80 96 495.40 95 474.20 94 474.00 93 473.70
5.19 0.0% 5.16 0.0% 4.99 0.0% 5.04 0.0% 5.09 0.0%
(0,0.85,0.6% 93 137.40 92 137.00 91 132.40 90 128.10 89 119.10
1.47 0.2% 1.49 0.2% 1.46 0.3% 1.42 0.5% 1.34 1.8%
(,0.95,0.6% 87 124.00 86 123.60 85 119.00 84 114.70 83 104.50
1.42 0.6% 1.44 0.5% 1.40 0.9% 1.37 1.5% 1.26 5.5%
(«,1.0,0.65 83 100.10 82 99.06 81 92.33 80 91.32 79 86.82
1.20 9.7% 1.219.7% 1.14 18.3% 1.14 18.2% 1.10 25.6%
(00,%0,0.65 76 82.99 75 80.29 74 70.65 73 68.96 72 68.75
1.01 27.3% 1.07 31.7%  0.95 58.9% 0.94 61.2% 0.95 58.7%
(00,0,0.80 68 75.31 67 72.15 66 62.74 65 59.63 64 59.45
1.10 25.4% 1.08 31.1%  0.95 59.1% 0.92 66.5% 0.93 63.8%
(0,¢,0.90 62 60.12 61 57.43 60 50.74 59 48.91 58 48.66
0.96 54.4% 0.9460.6% 0.8579.7% 0.83 82.3% 0.84 80.4%
(90,00,00 50 39.77 49 35.96 48 34.53 47 32.95 46 32.63
0.7985.0%  0.73 91.7% 0.72 92.8% 0.70 94.0% 0.71 93.1%

DF, level=59.19%). In order to extrapolatgg(L) to infinite

Xmin=(2,0,0.80,0.14,0 For & we use the interpolation or-

dern=13, while for y we usen=15. The extrapolated val-

volume, we have to know botFlgF(x;s) and FXF(x;s); but
our preferred fit foryg requires a more stringent cut X,

ues from different lattice sizes at the saeare consistent

than does our preferred fit faj- . Therefore, to ensure the Within statistical errors: only one of the gBvalues has an

trustworthiness of the extrapolated valueg .., we

R that is too large at the 5% level; and summing@llalues

enforce the more stringent cut on both observableswe haveR=>58.32(81 DF, leveF97%). In Table VIII we

Deviations from FSS fit for xp

I
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FIG. 3. Deviation of points from fit to F xp With =2, n=15,
X pmin ,00,0.14,0). Symbols indicate L=8 ( 1 ), 16 ( ¥ ), 32
(+). Error bars are one standard deviation. Curves near zero indi-
cate statistical error bars (* one standard deviation) on the function
F XF(x).

= (00,00
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¢x(L)/L

FIG. 4. xp(B,2L)/ xp(B.L) vs &ép(B,L)/L. Symbols indicate
L=8 (), 16 (% ),32(+),64(X), 128 (O). Error bars are one
standard deviation. Solid curve is a fifteenth-order fit in Eq. (5.3),
with  xp;,=(0,20,0.80,0.14,0) for L=(8,16,32,64,128). Dotted
curves are the perturbative prediction (3.24c) through orders 1/x?
(lower curve) and 1/x* (upper curve).
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show the extrapolated valugs .. from our preferred fit and statistical fluctuations on our estimates @fgL) and
from some alternative fits. The statistical errors . in §<2”°>(,6’,L), we can compute correctly the error bars of the
our preferred fit are of order 0.692.2%, 2.9%, 3.6%, 4.1% extrapolated ratios; by contrast, if we extrapolgtand ¢2"

até& .~107 (10°, 10%, 10°, 4X10°). The systematic errors are Separately, we are obliged either to make the false assump-
smaller than the statistical errof@nywhere from 0.07 to 0.8 tion of independent errors or else involve the triangle

times as largefor 8<3.45, and slightly larger than the sta- inequality—both of which lead to error bars that are gross
tistical errors(by a factor 1-2.4 times as largfor 5=3.60.  Overestimates. In any case, we observe that the central values

For O= gff”d) we observed tentatively that a thirteenth- are consistent within error bars with those obtained by sepa-

order fit(5.3) is indicated: see Table IX. There are significant ratle: extggolatllorlz?]g);ge numet;ator agd deno_rmr;ato;].
corrections to scaling for at whenL =8, 16 and probably .9 &= XF (¢ we observed tentatively that a
also whenL =32 (the correction is strongly negative for thlrteenth-order f|t(5.3) is indicated. There are S|gp|f|cant
x=0.55 and weakly positive whex=0.55): see the devia- corrections to scaling for alk when L =8,16, and in the
tions plotted in Fig. 5. Our preferred fit is therefane=13 r_eg|onsxso.6 andx=0.8 whenL =32. _Th?‘”' our preferred
aNdX piy=(%,,0.14,0 for L=(8,16,32,64,12B see Fig, 6, it IS =13 andxy,=(s=,2,0.14,0. This fit hasy"=22.37
where we compare also with the ordex@And order-m* (50 DF, leve99.7%. To extrapolateyg /(&L * to infi-
perturbative prediction§3.240. This fit hasy?=32.82(50  nite  volume we use (ztrt:j()a more (Zﬁg'ggem fit
DF, leve=97.1%. To extrapolatet2"Y(L) to infinite vol-  Xmin=(%2,,0.14,0 for both £ and x /(&¢ )) , using
ume we use the more stringent o, = (e°,%0,%0,0.14,0 for n=13 for both. The extrapolated values from different lattice
both §(2nd) and §(2nd). The proper order of interpolation for sizes at the sameB are consistent within statistical
this cht or bothg(FZ”d) and£2" is n=13 (see Tables V and &S none of the 5@ values has & that is too large at

. . , the 5% level; and summing aB values we havék =36.38
IX). The extrapolat_ed valu_es_ from _d|1_°ferent Iatt.lce sizes at o DF, level99.9%. The statisical errors on
the sameB are consistent within statistical errors: only one

: - xel(£2"N2 in our preferred fit are of order 0.4%9.5%
of the 583 values has & that is too large at the 5% level; XF'\SF o
and summing alj3 values we havék=38.12(63 DF, level 0.6%, 0.7%, 0.7%at §F,°°%102 (10°, 10/, 1%, 4x10°). Since

=99.499. In Table X we show the extrapolated values our preferred fit i$ thg most conservative one possiatel
£219 from our preferred fit and from some alternative fits. all less conservative fits are baave are unable to say any-
: (2nd) ; . thing about the systematic errors.
»  in our preferred fit are of order

The statistical errors o# (2nd) 2 .
: For O=xal(éx we observed tentatively that a
0, 0, 0, 0, 9/ ~
0.5%(1.3%, 2.3%, 2.9%, 3.5l & 10 (10°, 10/, 10, sixteenth-order fi{5.3) is indicated. There are strong correc-

4x10°). Since our preferred fit is the most conservative ON&. < to scaling for alk whenl =8,16,32, so our preferred fit
possible(and all less conservative fits are bade are un- s N=16 andx,.. — (e.20.%,0.14,0 ’Thi's fit' hasy?=18.92(50
- min— [N R 1. - .

able to say anything about the systematic errors. 0 (2nAN2 p g
For O=y, we observed tentatively that a fourteenth-order>F» 1€vel >99.9%. To extrapolatey,/ (¢4 to infinite

fit (5.3 is indicated: see Table XI. There are significant/0lume we use the more stringent fify,=(,%,%,0.14,0
corrections to scaling f _ ; i for both £2" and y/(£2"%)2, usingn=13 for £2"¥ and

g for ak whenL =8, and in the regions F ATLSA F
x=<0.84(0.64 whenL =16 (32): see the deviations plotted in N=16 for xa/(£2"¥)2. The extrapolated values from differ-
Fig. 7. Our preferred fit is1==14 andx,,,;=(,%,0.90,0.14, ent lattice sizes at the sanfeare consistent within statistical
0): see Fig. 8, where we compare also with the ordef-1/ errors: none of the 58 values has & that is too large at
and order-1* perturbative prediction$3.24d. This fit has  the 5% level; and summing a8 values we havek =29.38
x*=40.31 (62 DF, levek-98.5%. To extrapolatey(L) to (63 DF, level >99.999. The statistical errors on
infinite volume we use the more stringentit,=(,22,0.90,  xa/(£2"")?2 in our preferred fit are of order 0.7%9.9%,
0.14,0 for both é€2" and y,, usingn=13 for é2" and ~ 1.2%, 1.4%, 1.4%at & ..~10° (10%, 10, 1(°, 4x10°). Since
n=14 for y,. The extrapolated values from different lattice our preferred fit is the most conservative one possiated
sizes at the sameB are consistent within statistical all less conservative fits are badve are unable to say any-
errors: none of the 58 values has afR that is too large at  thing about the systematic errors.
the 5% level; and summing aB values we havék =46.86
(75 DF, level=99.6%. In Table XIl we show the extrapo- 2. Ratio £2"(L)/£2™ (L)
lated valuesy, .. from our preferred fit and from some alter- | this subsection we discuss the finite-size-scaling curve

native fits. The statistical errors gp, .. in our preferred fit for the ratio£2"(L)/£2nd)( ). We fit to theAnsatz
are of order 0.3%(1.6%, 3.1%, 3.9%, 4.3%at & ..~10? e (L&D

(10%, 10%, 10, 4x10°). The systematic errors are smaller

than the statistical errofgnywhere from 0.05 to 0.5 times as () —antae Wyg,e 2Xq... g g X

large) for B=3.825, and comparable to the statistical errors ~ £2"9() 0" 1 2 =

(anywhere from 0.75 to 1.9 times as larder $=3.90. (5.39
We also extrapolated the quantitieg/(¢2"¥)?2 and

xal (€22, The reason for doing these extrapolations isusingn=15, L ;,=128, andéy;,=10. There are strong cor-
that the errors in the infinite-volume estimates of the ratiogections to scaling for akk whenL=8,16,32(Fig. 9: these
are much smallefat least 15 times for the fundamental sec-corrections are of positive sign and behave roughly a8

tor and 7 times for the adjoint secjdhan those obtained by with 1<A=<2. ForL=64 these corrections to scaling are on
direct extrapolation of numerator and denominator assuminghe borderline of statistical significance, but the fact that they
independent errors. Besides, knowing the covariance of thare nearly all positiveand are of the magnitude expected
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TABLE VIII. Estimated susceptibilitiesys . as a function ofg, from various extrapolations. Error bar is one standard deviation
(statistical errors only All extrapolations use=2 andn=15. The indicate,;, values apply td_=8,16,32, respectively; we always take

Xmin=0.14, forL=64,128. Our preferred fit is shown italics; other good fits are shown sans serif; bad fits are shown in roman.

Tmin

B=175

B =1.775

B =1.80

£ =1.825

B =185

(55,0.90,0.65)

2.982 (0.008) x 107

3.593 (0.010) x 102

4.339 (0.006) x 107

5.196 (0.008) x 107

6.254 (0.010) x 102

(0,1.0,0.65)

2.982 (0.008) x10°

3.594 (0.010) x 107

4,340 (0.006) x 107

5.197 (0.008) x 107

6.255 (0.010) x 107

(00,00,0.65)

2.982 (0.008) x10°

3.595 (0.011) x 102

4.340 (0.006) x 107

5.108 (0.008) x 102

6.254 (0.010) x10°

(00,00,0.80)

2.982 (0.008) x 102

3.595 (0.010)x 107

4.841 (0.006)x 10~

5.199 (0.008) % 107

6.254 (0.010)x 107

(00,00,0.90)

2.982 (0.008) x 102

3.595 (0.010) x 107

4.340 (0.006) x 107

5.198 (0.008) x 107

6.254 (0.010) x 107

(00,00,00)

2.982 (0.008) x 107

3.595 (0.010) x10°

4.340 (0.006) x 107

5.198 (0.008) x 107

6.254 (0.010) x 107

Lmin

B =1.875

8 =190

B =1.925

F=1.95

B =1.975

(,0.90,0.65)

7531 (0.015) x 107

9.076 (0.021) x 107

1.095 (0.002) x10°

1.314 (0.004) x10°

1.579 (0.005) x10°

(0,1.0,0.65)

7530 (0.016) x 102

9.075 (0.022) x10°

1.095 (0.002) x10°

1.315 (0.004) x10°

1.579 (0.005) x 103

(00,00,0.65)

7527 (0.016) X107

9.073 (0.022) x102

1.095 (0.002) x10°

1.316 (0.004) x10°

1.581 (0.005) X 10°

(00,00,0.80)

7.526 (0.015)x 107

9.073 (0.022)x 107

1.096 (0.002)x10°

1.817(0.004)x 10°

1.581 (0.005)x 10°

(00,00,0.90)

7.527 (0.016) x 10°

9.073 (0.022) x10°

1.095 (0.002) x 103

1.316 (0.004) x10°

1.581 (0.005) x 10°

(00,00,00)

7528 (0.016) x 10°

9.074 (0.022) x 102

1.095 (0.002) x10°

1.316 (0.004) x10°

1.580 (0.005) x10°

LTmin

B =1.085

3 =2.00

8 =2012

B =2.025

F=72.037

(c0,0.90,0.65)

1.696 (0.005) x10°

1.906 (0.004) x10°

2.077 (0.006) X 10°

2.286 (0.007) x10°

2.478 (0.008) x10°

(c0,1.0,0.65)

1.696 (0.005) x10°

1.905 (0.004) x10°

2.077 (0.006) x10°

2.285 (0.007) x 103

2.476 (0.008) x 10°

(00,00,0.65)

1.698 (0.005) x10°

1.905 (0.004) x10°

2.075 (0.006) x 10°

2.283 (0.007) x10°

2.473 (0.008) x10°

(00,00,0.80)

1.698 (0.005)x 10°

1.906 (0.004)x 10°

2.076 (0.006)x 10°

2.283 (0.007)x 107

2.472(0.008)x10°

(00,00,0.90)

1.698 (0.005) x10°

1.906 (0.004) x 103

2.076 (0.006) x 103

2.283 (0.007) x10°

2.474 (0.008) x 103

(00,00,00)

1.697 (0.005) x 103

1.906 (0.004) x 103

2.076 (0.006) x10°

2.284 (0.008) x 10°

2.474 (0.008) x 103

Lmin

B=2.05

7= 2.062

B=2.075

# =210

B =2112

(c0,0.90,0.65)

2754 (0.010) x10°

3.0 (0.010) x10°

3.313 (0.011) x10°

3.941 (0.013) x10°

4.317 (0.015) x10°

(0,1.0,0.65)

2.752 (0.010) x10°

2.999 (0.010) x10°

3.313 (0.011) x10°

3.944 (0.013) x10°

4.321 (0.014) x103

(00,00,0.65)

2.749 (0.010) x10°

2.997 (0.011) x10°

3.314 (0.011) x10°

3.948 (0.013) x10°

4.328 (0.015) x10°

(00,00,0.80)

2.749 (0.010)x 10°

2.997(0.011)x 10°

3.814 (0.012)x 10°

3.949 (0.014)x10°

4.329 (0.015)x 10°

(00,00,0.90)

2.749 (0.010) x 10°

2.997 (0.010) x10°

3.314 (0.011) x10°

3.948 (0.014) x10°

4.327 (0.015) x 10°

(00,00,00)

2.750 (0.010) x 103

2.998 (0.010) x10°

3.313 (0.011) x10°

3.946 (0.014) x10°

4.324 (0.016) x10°
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Lmin

B=212%

F=2133

F=2.15

B =2175

B =220

(c0,0.90,0.65)

4.742 (0.016) x10°

5.004 (0.018) x10°

5.686 (0.017) x10°

6.886 (0.026) x10°

8.225 (0.033) x 10°

{00,1.0,0.65)

4.746 (0.016) x10°

5.008 (0.019) x10°

5.689 (0.017) x10°

6.884 (0.026) x 10°

8.220 (0.034) X 10°

(00,00,0.65)

4754 (0.016) x10°

5.015 (0.019) x10°

5.694 (0.017) x10°

6.881 (0.026) x10°

8.209 (0.035) x10°

(00,00,0.80)

4.755 (0.017)x 10°

5.017(0.019)x10°

5.694 (0.018)x 10°

6.880 (0.026) x 10°

8.207 (0.034)x 10°

(00,00,0.90)

4753 (0.016) x10°

5.014 (0.019) x10°

5.693 (0.017) x10°

6.882 (0.026) x 103

8.210 (0.034) x10°

(00,00,00)

4,750 (0.017) x10°

5.012 (0.019) x10°

5.692 (0.018) x10°

6.884 (0.026) x 10°

8.216 (0.036) x103

Tmin

B = 22163

B =225

3 =230

B =235

B =2.40

(20,0.90,0.65)

9.316 (0.033) x10°

1.188 (0.005) x 107

1.708 (0.006) x 10

2.479 (0.016) x10°

3.555 (0.024) x10°

(00,1.0,0.65)

9.310 (0.035) x10°

1.188 (0.005) x107

1.709 (0.007) x 10*

2.478 (0.015) x10°

3.554 (0.024) x10*

(00,00,0.65)

9.300 (0.034) x10°

1.189 (0.005) X107

1.712 (0.007) x10°

2.476 (0.015) x10°

3.551 (0.024) x 107

(00,00,0.80)

9.298 (0.085)x 10°

1.189 (0.005) x 10%

1.713 (0.007)x 10%

2.476 (0.015) x 107

3.551 (0.024)x 10+

(00,00,0.90)

9.302 (0.034) x10°

1.189 (0.005) x10%

1.712 (0.007) x 10%

2.476 (0.015) x10*

3.551 (0.024) x 107

(00,00,00)

9.306 (0.035) x10°

1.189 (0.005) x 107

1.711 (0.007) x 107

2.476 (0.015) x 107

3.550 (0.024) x 107

Lmin

=245

B =250

=255

8 =2.60

B =265

(0,0.90,0.65)

5.065 (0.043) x10°

7.261 (0.067) x10°

1.075 (0.011) x10°

1537 (0.016) x10°

2.213 (0.024) x10°

(0,1.0,0.65)

5.068 (0.042) x10°

7.264 (0.066) x 107

1.075 (0.011) x10°

1537 (0.016) x10°

2.215 (0.024) x10°

(00,00,0.65)

5.075 (0.043) x 107

7.265 (0.067) x10°

1.073 (0.011) x10°

1.538 (0.016) x 10°

2.216 (0.024) x10°

(00,00,0.80)

5.074 (0.042)x 104

7.262 (0.067)x 104

1.073 (0.012)x 10°

1.545 (0.018)x10°

2.215(0.028)x 10°

(00,00,0.90)

5.074 (0.041) x 10*

7.259 (0.067) x 107

1.073 (0.012) x10°

1.544 (0.017) x10°

2.214 (0.028) x10°

(00,00,00)

5.067 (0.041) x10*

7.251 (0.065) x10*

1.074 (0.012) x10°

1.544 (0.018) x10°

2.217 (0.028) x10°

Lmin

B =270

B=2775

B=1285

B =292

B8 =3.00

(50,0.90,0.65)

3.228 (0.037) x10°

5.617 (0.063) x10°

9.701 (0.118) x10°

1.731 (0.022) x10°

2.967 (0.041) x10°

(c0,1.0,0.65)

3.228 (0.037) x10°

5.619 (0.063) x10°

9.706 (0.122) x10°

1.732 (0.022) x10°

2.969 (0.042) x10°

(00,00,0.65)

3.222 (0.038) x10°

5.626 (0.066) x10°

9.702 (0.122) x10°

1.732 (0.023) x10°

2.966 (0.042) x 10°

(00,00,0.80)

3.199 (0.047)x10°

5.622 (0.091)x 10°

9.742 (0.185)x 10°

1.739 (0.038)x 10°

2.960 (0.070)x 10°

(00,00,0.90)

3.202 (0.046) x 10°

5.625 (0.089) x 10°

9.759 (0.186) x 10°

1.742 (0.038) x10°

2.956 (0.071) x10°

(00,00,00)

3.209 (0.046) x 10°

5.629 (0.091) x10°

9.749 (0.180) x 10°

1.737 (0.037) x10°

2.940 (0.069) x10°

Lmin

B8 =3.075

F=315

8 =3.225

8 =330

B =3.375

(,0.90,0.65)

5.265 (0.079) x10°

9.252 (0.146) x 10°

1.642 (0.028) x107

2.907 (0.052) x 107

5.050 (0.095) x107

(0,1.0,0.65)

5.263 (0.079) x10°

9.274 (0.148) x10°

1.640 (0.029) x10”

2.911 (0.053) x 107

5.066 (0.098) x107

(00,00,0.65)

5.250 (0.082) x10°

9.266 (0.150) x10°

1.635 (0.029) X107

2.908 (0.052) x10°

5.066 (0.097) x107

(00,00,0.80)

5.802 (0.144)x 10°

9.930 (0.256)x 10°

1.651 (0.048)x 107

2.940 (0.084)x107

5.117(0.148)x 107

(00,00,0.90)

5.305 (0.144) x 10°

9.376 (0.272) x10°

1.629 (0.054) x 107

2.833 (0.095) x 10°

4.981 (0.186) x10°

(00,00,00)

5.283 (0.142) x 10°

9.347 (0.275) x10°

1.633 (0.053) x 10’

5.016 (0.191) x 107

2.844 (0.096) x 10"
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Tmin

=345

B =352

B =3.60

8 =3.675

B=3.75

(0,0.90,0.65)

8.966 (0.165) x 107

1.559 (0.031) x10°

2.817 (0.056) x10°

4.977 (0.100) x10°

8.799 (0.181) x 10°

(c0,1.0,0.65)

8.939 (0.177) x107

1.557 (0.032) x 10°

2.819 (0.061) x10°

4.997 (0.114) x10°

8.865 (0.215) x 10°

(00,00,0.65)

8.953 (0.177) x107

1.558 (0.032) x10°

2.820 (0.063) X 10°

4.989 (0.113) x10°

8.837 (0.218) x10°

(00,00,0.80)

9.041 (0.262)x 107

1.575 (0.047)x10°

2.847(0.089)x 10°

5.044 (0.160)x 10°

8.923 (0.301)x 10°

(00,00,0.90)

8.764 (0.342) x 107

1.511 (0.064) x10°

2.737 (0.118) x10°

4.846 (0.209) x 108

8.579 (0.382) x10°

(00,00,00)

8.803 (0.351) x107

1.511 (0.064) x 108

2.713 (0.123) x 10°

4.819 (0.230) x10°

8.328 (0.420) x10°

Tmin

3 =32825

£ =390

B =13.975

B =4.05

A=4.125

(c0,0.90,0.65)

1.550 (0.032) x10°

2.762 (0.060) X 10°

4.919 (0.105) x10°

8.900 (0.200) x 10°

1.581 (0.035) x10'°

(c0,1.0,0.65)

1.582 (0.039) x10°

2.790 (0.076) x10°

4.973 (0.135) x10°

8.994 (0.253) X 10°

1.598 (0.044) x101°

(00,00,0.65)

1.578 (0.039) x10°

2.774 (0.075) x10°

4.942 (0.135) x10°

8.965 (0.263) x10°

1.601 (0.048) x 101

(00,00,0.80)

1.594 (0.054)x10°

2.795 (0.098)x 10°

4.993(0.178)x 10°

9.050 (0.330)x 10°

1.619 (0.060)x 107

(c0,00,0.90)

1.534 (0.067) x10°

2.685 (0.124) x10°

4.789 (0.220) x 10°

8.696 (0.417) x10°

1.544 (0.074) x10*°

(00,00,00)

1.488 (0.078) x10°

2.547 (0.145) x 10°

4.649 (0.269) x10°

8.275 (0.511) x10°

1.462 (0.093) x 1010

Tmin

B =430

B =4.275

=435

(0,0.90,0.65)

2.851 (0.068) x10'°

5.045 (0.122) x101°

9.045 (0.234) x101°

(5,1.0,0.65)

2.883 (0.083) x10*°

5.114 (0.149) x1070

9.139 (0.275) x 107

(00,00,0.65)

3.995 (0.093) x 107

5.220 (0.175) x 1077

9.298 (0.338) x 1010

(00,00,0.80)

2.958 (0.114)x 107

5.241 (0.209)x 107"

9.876 (0.987)x 1077

(00,00,0.90)

2.843 (0.140) x 1010

5.050 (0.254) x10'°

8.986 (0.472) x101°

(00,00,00)

2.620 (0.178) x10*°

4.485 (0.319) x10'°

8.523 (0.630) x 100

TABLE IX. Degrees of freedom(DF), 2, XZ/NDF and confidence level for thath-order fit (5.3) of
Ea(B,2L)/EA(B,L) versusée(B,L)/L. The indicatedx,,, values apply td-=8,16,32, respectively; we al-
ways takex,,;,=0.14, 0 forL =64,128. Our preferred fit is shown italics; other good fits are shown sans
serif; bad fits are shown in roman.

X for the FSS fit ofz,

Xmin n=11 n=12 n=13 n=14 n=15
(1.0,0.95,0.65 99 538.50 98 393.30 97 288.20 96 287.00 95 286.10
5.44 0.0% 4.01 0.0% 2.97 0.0% 2.99 0.0% 3.01 0.0%
(,0.55,0.50 126 501.30 125 315.10 124 229.50 123 223.60 122 219.60
3.98 0.0% 2.52 0.0% 1.85 0.0% 1.82 0.0% 1.80 0.0%
(,0.95,0.6% 89 310.50 88 159.10 87 91.73 86 91.69 85 88.49
3.49 0.0% 1.81 0.0% 1.05 34.4% 1.07 31.7% 1.04 37.6%
(0,2,0.50 91 276.20 90 138.70 89 89.89 88 86.40 87 85.56
3.04 0.0% 1.54 0.1% 1.01 45.4% 0.98 52.8% 0.98 52.4%
(00,0,0.65 78 231.60 77 101.80 76 68.66 75 68.32 74 67.24
2.97 0.0% 1.32 3.1% 0.90 71.3% 0.91 69.4% 0.91 69.8%
(00,00,00) 52 139.70 51 39.97 50 32.82 49 31.97 48 29.94
2.69 0.0% 0.78 86.8%  0.66 97.1% 0.65 97.1% 0.62 98.1%
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FIG. 5. Deviation of points from fit to F¢, with s=2, n=13,
X pin= (00,00,00,0.14,0). Symbols indicate L=8 ( H ), 16 ( % ), 32
(+). Error bars are one standard deviation. Curves near zero indi-
cate statistical error bars (* one standard deviation) on the function
F gA(JC) .

FIG. 6. £,(B2LY €4(B.L) vs £p(B.L)/L. Symbols indicate
L=8 ( v ),16 ( % ),32(+), 64 (X), 128 (). Exror bars are one
standard deviation. Solid curve is a thirteenth-order fit in Eq. (5.3),
with xp;,=(20,0,00,0.14,0) for L=(8,16,32,64,128). Dotted curves
are the perturbative prediction (3.24b) through orders 1/x? (upper
curve) and 1/x* (lower curve).

from extrapolation of thd. =32 corrections suggests that Usi _ _ _ -
singn=16, L,;;,=128, and&,,;,;=10 we obtain an equall
they are reaf’ For all these reasons, we have chosen "9 e éimin w I duarty

ot s . . good fit (x*’=13.86, 46 DF, level>99.999, which is shown
Lin=2128. The resulting fit is shown in Fig. Awer solid : P :
cUNVe: it has y?=21.45(47 DF. level>99.9% %8 We thus as the upper solid curve in Fig. 10. Note the different value

estimate the limiting value as the value af of the limiting constant:
&
(zng —ng = ap=2.859+0.002. (5.41)
~ong = 80=2.817+0.001 (5.39 Ace
A,
An alternative way of estimating the universal ratio

(68% confidence interval, statistical errors anlyhis esti- 20720 is to use the separately extrapolated values for
mate needs to be accompanied by one caveat: the paucig¢?) and¢@]? (Tables VI and X and simply form the ratio.
of our data withL <128 in the regiork=<0.08 makes the fit Note that the deviations from constancyjﬁgd)/ggzgd) are
extremely sensitive to thessumedbehavior at smalk. Now,  corrections toscaling (not to asymptotic scalingand thus
for £Z"Y (and hence also for the rati®"¥ ¢7"¥) theremay  fall off as an inverse power of .. (most likely ¢ 2). Ex-
be significant finite-size corrections of ordef at smallx  perience with other similar quantities suggests that good
(see footnote 22 in Sec. V A abovevhich could be much scaling will be observed fog: ..=10 (i.e., 5=1.80 or even
larger than thee ¥ corrections assumed here. So we triedsmaller. Surprisingly, this doa®ot occur here: if we use all
the alternativeAnsatz data withé: .=10 (i.e., 8=1.80, we obtain the estimate

(2nd g2
§F (L) ~ong =2.8111£0.0023,
A,

ML)

!

—aj+ax+axi+o-+alx?.  (5.40 (542

but with a very poor goodness of fi§*=127.68, 55 DF,
level=10"7). In order to obtain a reasonabié, we have to
*’Moreover, we have here treated the Monte Carlo data forestrict the fit toé- .=70 (i.e., B=2.25: we then get
£CM(L) and £@2"(L) as if they wereindependentandom vari- '
ables. In fact they are presumabpositively correlated, which (2nd)
means that we have overestimated the error bar on the ratio. So the % =2.798+0.006,
corrections to scaling are in fact more statistically significant than A,
they appear to be.
28f in fact we have overestimated the error bar on the ratio, therwith x¥?=16.28, 31 DF, levet98.7%. The discrepancy be-
we have underestimated thé of the fit. This explains the unusu- tween Eqs(5.42 and(5.43 appears to be a real correction
ally low value of y°. to scaling: its magnitude is very sma#0.013 and is con-

(5.43
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TABLE X. Estimated correlation Iengthg(%ild’ as a function ofB, from different extrapolations. Error bar is one standard deviation
(statistical errors only All extrapolations use=2 andn=13. The indicate,;, values apply td-=8,16,32, respectively; we always take

Xmin=0.14, 0 forL=64,128. Our preferred fit is shown italics; bad fits are shown in roman.

Tmin

£ =175

B =1.775

8 =1.80

7 =1.8%

=185

(c0,0.55,0.50)

2.944 (0.048) x10°

3.354 (0.012) x 107

3.739 (0.010) x 10°

4.139 (0.013) X107

4.567 (0.015) x10°

(00,00,0.50)

2.944 (0.049) x10°

3.351 (0.012) x 107

3.734 (0.010) x 10°

4.133 (0.013) x 10"

4.562 (0.016) x10°

(00,00,0.65)

2.944 (0.049) x10°

3.350 (0.013) x10°

3.733 (0.010) x10°

4131 (0.013) x107

4560 (0.016) x 107

(00,00,00)

2.944 (0.048)x 10"

3.350 (0.013)x 107

3.731 (0.010)x 107

4.130 (0.018)x 107

4.559 (0.016)x10°

Lmin

B =1.875

£ =190

B =1.925

B8=195

B =1.975

(c0,0.55,0.50)

5.088 (0.017) x 107

5.707 (0.018) x 10°

6.443 (0.019) x10°

7.223 (0.020) x10°

7.998 (0.024) x10°

(00,00,0.50)

5.087 (0.017) x10°

5.712 (0.019) X100

6.445 (0.019) x 10°

7.217 (0.020) x10°

7.982 (0.025) x 10°

(00,00,0.65)

5.085 (0.018) x10°

5.714 (0.019) x10°

6.448 (0.019) x 10°

7.217 (0.020) x10°

7.975 (0.025) x10°

(00,00,00)

5.086 (0.017)x 107

5.715 (0.019)x 107

6.450 (0.019)x 107

7.215 (0.021)x 10"

7.971 (0.026)x 10°

Lmin

B =1.985

£ =2.00

B =2012

B =2.0%

B =2.037

(c0,0.55,0.50)

8.296 (0.027) x10°

8.795 (0.031) x10°

9.205 (0.036) x10°

9.682 (0.037) x10°

1.013 (0.004) x107

(00,00,0.50)

8.277 (0.028) x 107

8.778 (0.032) x 107

9.189 (0.036) x10°

9.673 (0.037) x10°

1.013 (0.004) x 107

(00,00,0.65)

8.269 (0.028) x 107

8.768 (0.032) x 107

9.179 (0.037) x10°

9.666 (0.038) x 107

1.012 (0.004) x 107

(00,00,00)

8.264 (0.030)x 10"

8.767 (0.032)x 107

9.176 (0.087)x 10"

9.665 (0.037)x 107

1.018 (0.004)x 101

Emin

B=205

8 = 2.062

B =2.075

B =210

B =2112

(59,0.55,0.50)

1.080 (0.004) x 107

1.139 (0.004) x 107

1.221 (0.004) x 107

1.365 (0.004) x 10!

1.436 (0.004) x 107

(00,00,0.50)

1.081 (0.004) x 107

1.140 (0.004) x 107

1.219 (0.004) x 107

1.359 (0.004) x 10!

1.436 (0.004) x107

(00,00,0.65)

1.082 (0.004) x 107

1.141 (0.004) x 107

1.220 (0.004) x 107

1.360 (0.004) x10*

1.434 (0.004) x 10!

(00,00,00)

1.082 (0.004)x 10!

1.141(0.004)x 101

1.221 (0.004)x 10"

1.361(0.004)x 10!

1.434 (0.004)x 101

Lmin

F=21%

B =2133

G=215

B=2175

3 =220

(c0,0.55,0.50)

1.513 (0.004) x 107

1.560 (0.004) x 10

1.667 (0.005) x10*

1.829 (0.007) x 10!

2.015 (0.007) x 107

(00,00,0.50)

1.511 (0.004) x 10!

1.558 (0.004) x 10'

1.663 (0.005) x 10"

1.826 (0.007) x10*

2.013 (0.007) x 107

(00,00,0.65)

1.512 (0.004) x10*

1.556 (0.004) x 10!

1.660 (0.005) x 107

1.828 (0.007) x 107

2.012 (0.008) x 10T

(00,00,00)

1.512(0.004)x 101

1.555(0.005)x 107

1.659 (0.006)x 107

1.828 (0.007)x 101

2.013 (0.008)x 101

Tmin

B =2.2163

B=225

£ =12.30

B8 =2.35

F=240

(c0,0.55,0.50)

2.162 (0.007) x 107

2.524 (0.008) x 107

3.123 (0.008) x 10T

3.756 (0.015) x10!

4.643 (0.016) x 10

(00,00,0.50)

2.165 (0.007) x 107

2,529 (0.008) x 107

3.123 (0.008) x 10"

3.757 (0.015) x 107

4.665 (0.018) x10*

(00,00,0.65)

2.171 (0.008) x 107

2.534 (0.010) x 107

3.119 (0.009) x 107

3.762 (0.017) x 10!

4.648 (0.023) x 101

(00,00,00)

2.172 (0.008) x 107

2.535 (0.010)x 107

3.117(0.010)x 107

3.760 (0.018) x 10!

4.648(0.023)x 107
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Lmin

3 =245

3 =250

8 =255

B =2.60

3 =265

(0,0.55,0.50)

5.774 (0.018) x 107

6.973 (0.025) x 107

8500 (0.034) x 10T

1.059 (0.004) x 107

1.299 (0.004) X107

(00,00,0.50)

5.793 (0.020) x 107

6.969 (0.028) x 107

8.546 (0.040) x 10*

1.064 (0.005) x 107

1.299 (0.005) x 102

(0,00,0.65)

5.757 (0.028) x 101

6.919 (0.037) x 107

8.534 (0.057) x 10T

1.064 (0.007) x 102

1.296 (0.007) x 10

(00,00,00)

5.754 (0.028)x 10!

6.911 (0.096)x 107

8.538 (0.060)x 107

7.067 (0.007) x 10*

1.295 (0.008)x 10~

Tmin

8=270

B =2775

B =285

B =12.925

8= 3.00

(c0,0.55,0.50)

1.560 (0.007) x 10

2.174 (0.009) x102

2.883 (0.013) x 107

3.969 (0.019) x 107

5.383 (0.023) x 107

(00,20,0.50)

1.565 (0.008) x 10

2.176 (0.012) x 107

2.885 (0.016) x 107

4.005 (0.028) x 107

5.369 (0.033) x 107

(00,00,0.65)

1.562 (0.011) x 10°

2.176 (0.015) x10°

2.879 (0.020) x 107

4,004 (0.033) x 102

5.352 (0.039) x 107

{00,00,00)

1.557(0.018)x 107

2.176 (0.020)x 107

2.879 (0.027)x 10°

4.007 (0.052)x 107

5.814(0.059)x 107

Tmin

8 =3.075

=315

B = 3.225

B =330

8 =3.375

(c0,0.55,0.50)

7.236 (0.040) x 107

1.002 (0.005) x10%

1.326 (0.008) x 103

1.863 (0.011) x10°

2.457 (0.015) x 10°

(00,00,0.50)

7.258 (0.060) x 107

1.004 (0.007) x10°

1.334 (0.012) x10°

1.868 (0.016) x 10°

2.454 (0.022) x 10°

(00,00,0.65)

7.245 (0.070) x 107

1.001 (0.008) x10°

1.331 (0.014) x10°

1.865 (0.018) x 10°

2.449 (0.025) x 103

(00,00,00)

7.255 (0.117)x 10*

1.003(0.014)x 10°

1.326 (0.024)x 10°

1.836 (0.033)x 107

2.426 (0.046)x 107

Tmin

B =345

B =3.525

8 =3.60

A =3.675

B=23.75

(c0,0.55,0.50)

3.412 (0.024) x10°

4.559 (0.028) x10°

6.257 (0.049) x10°

8.576 (0.055) x10°

1.141 (0.010) x 107

(00,00,0.50)

3.404 (0.036) x103

4525 (0.042) x10°

6.252 (0.079) x 10°

8.526 (0.090) x10°

1.142 (0.016) x10°

(00,00,0.65)

3.404 (0.039) x10°

4517 (0.046) x10°

6.251 (0.084) x10°

8.498 (0.093) x 10°

1.140 (0.017) x10°

(00,00,00)

3.358 (0.076)x 10°

7429 (0.086)x 10°

6.077 (0.164)x 10°

8.510 (0.184)x 10°

1.094 (0.031)x 10%

Lmin

8 = 3.825

B =3.90

B =3.975

8 =4.05

B =4.125

(0,0.55,0.50)

1.584 (0.012) x10*

2.096 (0.018) x 107

2.926 (0.026) x 107

3.910 (0.033) x10°

5.413 (0.055) x 107

(00,00,0.50)

1.586 (0.019) x 107

2.090 (0.029) x 107

2.914 (0.041) x10*

3.901 (0.054) x10°

5.412 (0.089) x10°

(00,00,0.65)

1.582 (0.020) x10*

2.083 (0.031) x107

2.910 (0.043) x 107

3.893 (0.058) x10°

5.414 (0.092) x10°

(00,00,00)

1.527 (0.040) x 10+

1.978 (0.057)x 10%

2.799 (0.088) x 104

3.715 (0.108) x 10*

5.099 (0.188)x 10+

LTmin

B =4.20

B =4.275

B =4.35

(0,0.55,0.50)

7.338 (0.064) x10°

0.991 (0.011) x10°

1.368 (0.013) x10°

(00,00,0.50)

7.362 (0.108) x10°

1.009 (0.020) x10°

1.367 (0.022) x10°

(00,00,0.65)

7.333 (0.110) x10°

1.007 (0.020) x10°

1.366 (0.023) x10°

(00,00,00)

6.913 (0.213) x10%

0.911 (0.037) x10°

1.299 (0.045) x10°

sistent with a correction terié ;EO with A~1. We have two presumably positively correlated as a result of errors of type

possible explanations for the horribié in Eq. (5.42: (iii ) in the extrapolation, but we haweot taken account of
(a) We have a large number of data points, each of whichhis correlation herésee footnote 25 this could be causing

has a very small error bar; so very small corrections to scalthe ¥ to appear larger than it really ifOn the other hand,

ing can became statistically significant. we have overestimated the error bar on the ratio
(b) The extrapolated values?l¥ £209 at differentg are @020 by assumingindependenterrors on¢@)? and
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TABLE XI. Degrees of freedom(DF), x2, x*/Npr and confidence level for theth order fit (5.3 of
xa(B,2L) xa(B,L) versusée(B,L)/L. The indicatedx,,, values apply toL=8,16,32, respectively; we
always takex,,,=0.14, 0 forL=64,128. Our preferred fit is shown italics; other good fits are shown in
sans serif; bad fits are shown in roman.

X for the FSS fit ofya

Xmin n=12 n=13 n=14 n=15 n=16
(0,2,0.40 101 187.10 100 183.40 99 180.60 98 180.00 97 176.30
1.85 0.0% 1.83 0.0% 1.82 0.0% 1.84 0.0% 1.82 0.0%
(1.0,0.95,0.65 98 723.90 97 723.30 96 720.30 95 706.00 94 692.30
7.39 0.0% 7.46 0.0% 7.50 0.0% 7.43 0.0% 7.36 0.0%
(,0.95,0.6% 88 150.30 87 149.50 86 137.70 85 137.70 84 135.70
1.71 0.0% 1.72 0.0% 1.60 0.0% 1.62 0.0% 1.62 0.0%
(,1,0.65 84 122.00 83 121.80 82 103.30 81 103.30 80 97.79
1.45 0.4% 1.47 0.4% 1.26 5.6% 1.28 4.8% 1.22 8.6%
(,1.0,0.9 70 93.73 69 93.40 68 79.16 67 78.48 66 74.02
1.34 3.1% 1.352.7% 1.16 16.7% 1.17 15.9% 1.12 23.3%
(00,%0,0.65 77 90.56 76 87.86 75 78.06 74 77.98 73 63.79
1.18 13.8% 1.16 16.6% 1.04 38.2% 1.05 35.3% 0.87 77.1%
(00,0,0.80 70 93.02 69 79.17 68 76.42 67 68.85 66 68.67
1.33 3.4% 1.15 18.9% 1.12 22.6% 1.03 41.5% 1.04 38.7%
(90,0,0.90 63 64.35 62 58.52 61 53.88 60 53.34 59 41.77
1.02 42.9% 0.94 60.2%  0.88 72.9% 0.89 71.6% 0.71 95.6%
(00,00,00 51 51.63 50 35.76 49 35.57 48 32.40 47 26.34

1.01 44.9% 0.72 93.6% 0.73 92.5% 0.68 95.9% 0.56 99.4%

20 when in fact they are probably positively correlated; £2"(2L)/£2"(L) we know the correct value ak=0—

this would cause thg” to appear smaller than it really Js.  namely, 1—in contrast to the fi6.38 wherea, is unknown.

In any case, the magnitude of this correction-to-scalingAs a result, the former fit is somewhat less sensitive to the
effect is very small, and we can simply fold the uncertaintiesassumed form of the small-corrections: if in Figs. 2 and 6
into an enlarged error bar. One possible advantage of thiwe had fit to powers ok? instead of powers o0&~ %, the
method over the preceding one is that in the(§t3) to  resulting curve would have changed only slightly.

FSS for x,
Deviations from FSS fit for x, e I .

||r||\|||||\1!|1||||

0.00

-0.01

| %@1 R _
—0.02_— }ﬁ% - 1— - |
N | A 1 Lo

1 \BI 1 I illol O'O 05 1.0
0.2 . . LY/L
(L)/L &x(L)/

Xa(RL)/xs(L) — fit
xa(RL)/x4(L)
T T | T
1 1 | 1

FIG. 8. xa(B8.2L)/ xa(B.L) vs &(p(B,L)Y/ L. Symbols indicate

FIG. 7. Deviation of points from fit to Fy, with s=2, n=14, L=8 (" ), 16 ( X ),32(+), 64 (X), 128 (O). Error bars are one

Xpnin= (20,0,20,0.14,0). Symbols indicate L =8 ( "}' )16 (% ), 32 standard deviation. Solid curve is a fourteenth-order fit in Eq. (5.3),

(+). Error bars are one standard deviation. Curves near zero indi- with  x;,=(0,0,0.90,0.14,0) for L1=(8,16,32,64,128). Dotted

cate statistical error bars (*+ one standard deviation) on the function curves are the perturbative prediction (3.24d) through orders 1/x2
F, (). (lower curve) and 1/x* (upper curve).
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TABLE XII. Estimated susceptibilitiesys .. as a function ofg, from various extrapolations. Error bar is one standard deviation
(statistical errors only All extrapolations use=2 andn=13. The indicated,;, values apply td.=8,16,32, respectively; we always take
Xmin=0.14,0 forL=64,128. Our preferred fit is shown italics; other good fits are shown isans serif; bad fits are shown in roman.

Tmin

8 =1.7500

B8 =1.7750

2 =1.8000

4 = 1.8250

2 = 1.8500

(c0,1.0,0.65)

7.267 (0.005) x 101

8.295 (0.010) x 10"

9.475 (0.004) x 107

1.084 (0.001) x 10

1.243 (0.001) x10°

(c0,1.0,0.90)

7.267 (0.006) x 107

8.296 (0.011) x 10T

9.475 (0.004) x107

1.084 (0.001) x10°

1.243 (0.001) x10°

(00,00,0.65)

7.267 (0.006) x107

8.296 (0.010) x 10"

9.475 (0.004) x 10T

1.084 (0.001) x 107

1.243 (0.001) x 10

(00,00,0.90)

7.267 (0.006)x 10!

8.296 (0.010)x 101

9.475 (0.004)x 10*

1.084 (0.001)x10*

1.248(0.001)x 107

(00,00,00)

7.267 (0.006) x 10

8.295 (0.010) x 107

9.475 (0.004) x10*

1.084 (0.001) x 102

1.243 (0.001) x 10°

Tmin

8 = 1.8750

8 =1.9000

8 =1.9250

8 =1.9500

B =1.9750

(c0,1.0,0.65)

1.431 (0.001) x 102

1.646 (0.002) x 102

1.900 (0.001) x10°

2.196 (0.003) x 107

2532 (0.005) x 107

(0,1.0,0.90)

1.431 (0.001) x10?

1.646 (0.002) x10°

1.900 (0.001) x10°

2.196 (0.003) x 107

2532 (0.005) x10°

(00,00,0.65)

1.430 (0.001) x10?

1.646 (0.002) x 10°

1.900 (0.001) x10°

2.196 (0.003) x 107

2532 (0.005) x10°

(00,00,0.90)

1.431 (0.001)x 10%

1.646 (0.002)x 10

1.900 (0.001)x 10°%

2.196 (0.003)x 107

2.532 (0.005)x 10*

(00,00,00)

1.431 (0.001) x 102

1.646 (0.002) x 107

1.900 (0.001) x 102

2.195 (0.003) x10°

2.532 (0.004) x 10°

Tmin

8 = 1.9850

4 = 2.0000

B =2.0120

B = 2.0250

B =2.0370

(c0,1.0,0.65)

2.679 (0.005) x 10°

2.930 (0.003) x 107

3.135 (0.006) x107

3.383 (0.007) x10°

3.616 (0.008) x10°

(c0,1.0,0.90)

2.679 (0.005) x 107

2.930 (0.003) x 107

3.135 (0.006) x 10*

3.382 (0.007) x10*

3.616 (0.008) x 107

(00,00,0.65)

2.679 (0.005) x 102

2.930 (0.003) x10?

3.135 (0.006) x 107

3.382 (0.007) x10°

3.616 (0.008) x 107

(00,00,0.90)

2.679 (0.005)x 10~

2.930 (0:008)x 10°

3.135 (0.006) % 10%

3.383 (0.007)x 10~

3.616 (0.008)x 10~

(00,00,00)

2.679 (0.005) x10°

2.930 (0.003) x10°

3.135 (0.006) x 10°

3.384 (0.007) x10°

3.618 (0.007) x 102

Tmin

8 = 2.0500

B = 2.0620

B =2.0750

4 = 2.1000

B =2.1120

(c0,1.0,0.65)

3.925 (0.009) x 107

4.208 (0.010) x 107

4.571 (0.011) x10*

5.289 (0.011) x 107

5.686 (0.012) x107

(c0,1.0,0.90)

3.924 (0.009) x10?

4.206 (0.010) x 102

4.570 (0.011) x 107

5.290 (0.011) x 107

5.687 (0.012) x 107

(00,00,0.65)

3.925 (0.009) x 107

4.207 (0.010) x10°

4570 (0.011) x 107

5.290 (0.012) x 107

5.687 (0.012) x 107

(00,00,0.90)

3.925 (0.009)x 10°

4.207 (0.010)x 10°

4.570 (0.011)x 10%

5.290 (0.012)x 10°

5.686 (0.012)x 107

(00,00,00)

3.927 (0.009) x 107

4.209 (0.010) x 107

4.570 (0.011) x 107

5.287 (0.011) x10°

5.683 (0.012) x 102

Tmin

B =2.1250

8 =12.1330

8 = 2.1500

A =2.1750

2 =2.2000

(c0,1.0,0.65)

6.142 (0.012) x10*

6.420 (0.014) x 107

7.112 (0.013) x 107

8.282 (0.018) x 107

9.600 (0.023) x 102

(55,1.0,0.90)

6.144 (0.012) x 107

6.422 (0.014) x 107

7.114 (0.013) x 107

8.282 (0.017) x 107

9.508 (0.023) x 107

(00,00,0.65)

6.143 (0.012) x 107

6.421 (0.014) x 107

7.113 (0.013) x 107

8.281 (0.018) x 107

9.598 (0.023) x107

(00,00,0.90)

6.143 (0.012)x 10%

6.421 (0.015)x 10%

7.113 (0.013)x 10

8.282 (0.018)x 10~

9.599 (0.023) x 107

(00,00,00)

6.139 (0.012) x 102

6.417 (0.014) x 10°

7.110 (0.013) x10°

8.284 (0.018) x 10°

9.605 (0.022) x10°

Lmin

B =2.2163

B =2.2500

B8 =2.3000

B8 = 2.3500

B8 = 2.4000

(0,1.0,0.65)

1.063 (0.002) x10°

1.309 (0.003) x10°

1.777 (0.004) x10°

2.420 (0.008) x10°

3.297 (0.013) x10°

(c0,1.0,0.90)

1.063 (0.002) x10°

1.309 (0.003) x10°

1.777 (0.004) x10°

2.420 (0.008) x10°

3.206 (0.013) x10°

(00,00,0.65)

1.063 (0.002) x10°

1.309 (0.003) x 10°

1.777 (0.004) x 103

2.420 (0.008) x10°

3.297 (0.013) x10°

(00,00,0.90)

1.063 (0.002)x 10°

1.309 (0.003)x 10°

1.777 (0.004)x 10°

2.420 (0.008)x 10°

3.296 (0.014)x 10

(00,00,00)

1.064 (0.002) x10°

1.309 (0.003) x 103

1.776 (0.004) x10°

2.421 (0.008) x 103

3.297 (0.013) x 10°
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TABLE XIl. (Continued.

Tmin

3= 2.4500

8 = 2.5000

B8 = 2.5500

8 =2.6000

8 = 2.6500

(0,1.0,0.65)

4.490 (0.022) x10°

6.106 (0.033) x10°

8.515 (0.055) x10°

1.168 (0.008) x 10°

1.605 (0.011) x10°

(c0,1.0,0.90)

4.488 (0.022) x10°

6.103 (0.034) x10°

8512 (0.059) x10°

1.172 (0.009) x 107

1.605 (0.013) x 107

(c0,00,0.65)

4.490 (0.022) x10°

6.105 (0.033) x 10°

8.512 (0.057) x10°

1.168 (0.008) x 10*

1.604 (0.011) x10°

(00,00,0.90)

4.489 (0.022)x 10°

6.102 (0.034)x 10°

8.508 (0.059)x 10°

1.172 (0.009)x 10+

1.604 (0.013)x 10+

(00,00,00)

4.485 (0.022) x10°

6.097 (0.033) x10°

8.517 (0.059) x 10°

1.172 (0.009) x 107

1.605 (0.013) x10%

Tmin

8 =2.7000

B =27750

B8 = 2.8500

B8 = 2.9250

8 = 3.0000

(0,1.0,0.65)

2.216 (0.017) x 107

3.625 (0.028) x 107

5.850 (0.049) x10°

9.772 (0.090) X107

1.580 (0.016) x10°

(c0,1.0,0.90)

2.205 (0.022) x10°

3.628 (0.040) x10*

5.878 (0.077) x 107

9.816 (0.153) x10*

1.575 (0.027) x10°

(00,00,0.65)

2.215 (0.017) x10*

3.625 (0.029) x 107

5.849 (0.049) x 107

9.766 (0.092) x 107

1.579 (0.016) x10°

{00,00,0.90)

2.205 (0.022)x 10+

3.627 (0.040) x 10%

5.882 (0.079)x 10%

9.820 (0.159) x 104

1.576 (0.028)x 10°

(00,00,00)

2.209 (0.021) x10%

3.629 (0.041) x10%

5.877 (0.076) x10*

9.801 (0.155) x10*

1.570 (0.027) x 10°

Tmin

B8 =3.0750

A = 3.1500

8 =3.2250

B8 = 3.3000

B8 = 3.3750

(c0,1.0,0.65)

2.624 (0.029) x10°

4.383(0.051) x10°

7.267 (0.096) x10°

1.227 (0.017) x10°

2.015 (0.030) x10°

(c0,1.0,0.90)

2.646 (0.053) x 10°

4428 (0.095) x10°

7.255 (0.179) X 10°

1.201 (0.031) x10°

1.994 (0.058) x 10°

(00,00,0.65)

2.621 (0.030) x10°

4.376 (0.052) x10°

7.259 (0.097) X 10°

1.225 (0.017) x10°

2.016 (0.030) x10°

(00,00,0.90)

2.647(0.055)x10°

4.425 (0.097)x 10°

7.245 (0.184)x 10°

1.199(0.031)x 10°

1.991 (0.058)x 10°

(00,00,00)

2.639 (0.054) x10°

7.261 (0.182) x10°

1.203 (0.032) x 10°

2.003 (0.060) x10°

4.413 (0.098) x10°

Tmin

3 = 3.4500

B = 3.5250

B = 3.6000

B = 3.6750

B8 = 3.7500

(c0,1.0,0.65)

3.386 (0.054) x 10°

5.601 (0.090) x10°

9.611 (0.170) x10°

1.625 (0.029) x 107

2.735 (0.055) x107

(c0,1.0,0.90)

3.337 (0.104) x10°

5.463 (0.178) x 10°

9.370 (0.325) x10°

1.584 (0.054) x107

2.666 (0.096) x10”

(00,00,0.65)

3.389 (0.053) x 10°

5.604 (0.090) x10°

9.617 (0.175) x10°

1.622 (0.029) x 107

2.731 (0.055) x 107

(00,00,0.90)

3.984(0.105)x 10°

5.471(0.182)x10°

9.392 (0.381)x 10°

1.587 (0.054)x 107

2.668 (0.096)x 107

(00,00,00)

3.348 (0.107) x10°

5.473 (0.184) x10°

9.323 (0.346) x 10°

1.579 (0.060) x 10’

2.600 (0.108) x107

Tmin

8 = 3.8250

2 =3.9000

8 =3.9750

B = 4.0500

3 =4.1250

(5,1.0,0.65)

4.682 (0.094) x10°

7.846 (0.176) x107

1.345 (0.030) x10°

2.310 (0.053) x10°

3.949 (0.092) x10°

(c0,1.0,0.90)

4.570 (0.159) x 10"

7.641 (0.281) x107

1.315 (0.048) X10°

2.254 (0.082) X 10°

3.847 (0.144) x10°

(00,00,0.65)

4.668 (0.094) x10°

7812 (0.175) x107

1.336 (0.031) x10°

2.305 (0.057) x 10°

3.952 (0.101) x10°

(00,50,0.90)

1.568 (0.160)x 107

7.623 (0.284)x 107

1.304 (0.049)x 10°

2.252 (0.088)x 10°

3.843 (0.154)x 10°

4.449 (0.191) x 107

7.271 (0.341) x 107

1.270 (0.062) x 10°

2.158 (0.111) x10®

3.657 (0.200) x 10°

Lmin

5 = 4.2000

G = 4.2750

B = 4.3500

(0,1.0,0.65)

6.805 (0.160) x 10°

1.158 (0.029) x10°

1.992 (0.050) X107

(0,1.0,0.90)

6.615 (0.244) x10°

1.128 (0.043) x10°

1.941 (0.073) x10°

(00,00,0.65)

6.895 (0.184) x10°

1.181 (0.034) x 107

2.022 (0.063) X10°

(00,00,0.90)

6.749 (0.270) x 10°

1.151 (0.048) x 10°

1.971 (0.085)x 10°

(00,00,00)

6.280 (0.357) x 10°

1.033 (0.063) x10°

1.880 (0.118) x10°
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Deviations from the fit for &n(L)/&,(L)

LAY

|1|\|!||>||

- 1
N

0.01

£p(L)/£5(L) — fit

0.00

IS ]
_O'Ol 1 | 1 Il 1 1 l 1 1 1 Il | 1 1 1 Il | Il 1 Il 1 |
0.2 0.4 0.6 0.8 1.0
£x(L)/L

FIG. 9. Deviation of points from fit (5.38) to £z(L)/&,4(L) with
n=15, £,;,=10, and L ; =128. Note the difference between this fit
and previous ones: here we plot the finite-size-scaling curve for
the ratio of & and £, at the same L. Symbols indicate L=8 ( HH ),
16 ( 3 ), 32 (+), 64(X). Error bars are one standard deviation.
Curves near zero indicate statistical error bars (* one standard de-
viation) on the fitting function.

Yet a third way of estimating@l¥ £20% is to treat the
ratio £§2"Y/£2" a5 an observabl® in its own right, and
perform the fit(5.3) to O(2L)/O(L) directly on it. This pro-
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vantage that the errors of typ@i) in the extrapolation—
which are particularly important for the points at larger
B—are likely to partially cancel betweegf>"® and £2"9.
There are significant corrections to scaling for xlwhen

L =8,16; and fol. =32 the corrections to scaling are positive
and at least 0.5 standard deviations. Having presumably
overestimated the error bafsee footnote 25 we assume
that the corrections to scaling are significant alsolfer32.

We therefore choosg,,;,=(%,,»), and usen=12: the re-
sulting fit hasy?=25.06(51 DF, level-99.9% and is shown

in Fig. 11. The extrapolated values from different lattice
sizes at the sam@ are consistent within statistical errors:
two of the 584 values have a? too large at the 5% level;
and summing al|3 values we havék =35.66 (63 DF, level
=99.899. Comparing the estimates 6§21/ 209 from dif-
ferentB for consistency with a constant, we find a very large
»* (confidence levek:2%) no matter what cutoff3,,, we
impose. Presumably these discrepancies arise from the cor-
rection to scaling in th& =64 points, which we discarded in
the fits (5.38 and (5.40 but cannot afford to discard here.
For this reason we believe the result obtained by this ap-
proach,

(2nd)

F,oo
~mg ~2.79£0.01, (5.44)
A,

to be less reliable than the estim&fe43.
It is not clear to us whether E¢.39), (5.41), or (5.43 is
the more reliable estimate. A reasonable compromise would

cedure is very similar to the preceding one, but has the adde to take

FSS for &/,

3.0 T T T | T T

&p(L)/€4(L)

0.0 0.5 1.0
&p(L)/L

FIG. 10. £p(B.L)Y §4(B,L) vs &p(B,L)/L. Symbols indicate
L=8 ( H ), 16 ( % ), 32 (+), 64 (X), 128 (O), 256 (O ). Error
bars are one standard deviation. Solid curve reaching 2.817 at x=0
is a fourteenth-order fit in Eq. (5.38), with L ;,=128, £,,,=10.
Solid curve reaching 2.859 at x=0 is a sixteenth-order fit in Eq.
(5.40), also with L, =128, £ . =10. Dotted curve is the perturba-
tive prediction (3.25) through order 1/x%.

FSS for £5/£,

1.3 T T T

\

[€x(RL)/£4(RL)] / [£6(L)/£4(L)]

0.0 0.5 1.0
¢p(L)/L

FIG. 11. Rg(B2L)R,(B.L) vs £F*(B.L)IL, where R;
=209/ 6009 Symbols indicate L=8 ( v ), 16 ( 3 ), 32 (+),
64 (X), 128 (O). Error bars are one standard deviation. Solid curve
is a twelfth-order fit in Eq. (5.3), with x;,=(90,90,%,0.14,0) for
L=(8,16,32,64,128). Dotted curve is the perturbative prediction
(3.24a) and (3.24b) through order Ux* (at order 1/x? it is identically
1).
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fg,?cd) FSS function v(z
(Azgd) ~2.82t 0.05 (5.43 0.15 T IlIIl|I| T IlIIIIII T IIIIIII! T IIIIIII| T r”(ﬂTl' )7 TllIlIII T TTTIT

as our “best estimate;” here we have increased the error bar r
to take account of the systematic uncertainties in the extrapo- -
lation. i i

3. Relative variance-time product -

Finally, let us discuss the efficiency of our extrapolation =
method for this model, as reflected in the scaling behavior > i
(5.7 of the relative variance-time produdRVTP). We
would like to test the theoretical predictions presented in 0.05
Sec. VA2, and in particular to determine the scaling func- F 1
tions F(2), K(2), v(2), v(2), 9a(2), andG,(2) arising in I
that theory. - 7

The functions7(z) and K,(z) [defined in Egs.(5.9), - 1
(5.13] can be easily obtained from the fitted finite-size- 0.00 boesswd vl vl v ol il
scaling functionF (x;2). Indeed, using the obvious recur- 107 107" 10° 10 10® 10° 10* 10°
sion relation {pm/L

Fe(X;:5%) =F (F «(X;9)/5;9)F ¢(x;9), (5.46 FSS function v(z)
200

l|||||1| II||I1II' !|||||||| IIIHIII! lIIlIIIII IIIIIIIII T T TTIm

one can compute numericallyF.(x;>). Then, from
z=XF(x;0), one determines=7F,z) and thenceK,(z).
Of course, the functiong(z) andK,(z) have the predicted
logarithmic growths (5.16), (5.17 at large z, because 150
F«(x;2) has the predicted perturbative behavior at large

Next we determined the functiongz) andv(z) control-
ling the static variance of the observaldle[defined in Eq. —_
(5.20]: see Fig. 12. Again we observe an excellent scaling, % 100
modified only by small corrections to scaling for the smallest
lattices. We see that(z) tends to a nonzero constant as
z—», while v(z)~In?z. [A plot of v(z)*? versus Iz shows

*

||Il[|l|l|l|l||l||l
Il|ll|ll|||||l!l

an excellent straight line at large] 50
Next we studiedg,(z) [defined in Eq.(5.22], which is

the dynamic finite-size-scaling function for the autocorrela-

tion time 7, 5 in the MGMC algorithm. We varied the dy- 0

namic critical exponert;,, » until we got a good fit: see Fig. 102 107! 10° 10' 10° 10° 10* 10°
13, where we have taken; ,=0.45. We observe an excel- £n./L
lent scaling, albeit with moderately strong corrections to =

scaling for the smallest lattices at largeThe largez behav-
—-0.45

ior is approximatelyg,(z)~z , as predicted. . . _
. : : : FIG. 12. The scaling functions v(z) and v(z) plotted vs
Finally, we determined the RVTP scaling functi@y(z) t=&r /L, for the SU(3) chiral model. Symbols indicate L=8

using the relation (FR), 16 ( 35), 32 (+), 64 (X), 128 (O0), 256 (¢). Note that

NieK (2)2 Var(&(B,L)) P~ and v(D)~In 2 as 20
2. (B EBLYE

Gy(2)= (5.47
roughly a factor 1®more efficienfas regards statistical er-
rors of types(i)+(ii)] than the traditional approach using

where Vat&(B,L)) is the variance of our Monte Carlo esti-
runs até, /L~1/6.

mate of&(B,L) as obtained from a run i, iterations. The
resulting functionG,(z) for zj,,,=0.45 is shown in Fig. 14.
The scaling is reasonably good, though far from perfect. The
largez behavior is in fairly good agreement with the predic-
tion (5.28 thatGg(z)~z’2'45(Inz)2, but there are some dis- Let us now compare our data with the predictions of
crepancies: indeed, a somewhat better fit at large ob-  weak-coupling perturbation theory, and in particular with the
tained with z 2*%Inz)*. It is therefore possible that our asymptotic-freedom scenario. In Sec. V C 1 we look at the
analysis in Sec. V A 2 has somewhere overlooked an addiocal quantitiegviz. the energies In Sec. V C 2 we compare
tional source of logarithms. the raw(finite-L) data for the long-distance quantitiésor-

As a practical matter, the rapid decreaseéz{z) means relation lengths and susceptibilitiewith the predictions of
that runs até./L~10* using the extrapolation method are finite-volume perturbation theorfycf. Eq. (B24)]. Finally, in

C. Data analysis: Comparison with perturbation theory
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Dynamic FSS for 7, ,
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épe/L

FIG. 13. The dynamic scaling function g,(z) plotted vs
z={p /L, for the SU(3) chiral model using the MGMC algorithm.
Here z;,; =0.45. Symbols indicate L=8 ( 1 ), 16 ( 3 ), 32 (+),
64 (X), 128 (O), 256 (). Note that g5(z)~z "% as 7—w.

Secs. V C 3-V C 6 we compare the extrapoldied «) data

for the long-distance quantities with the asymptotic-freedo

predictions(3.3—(3.6).

1. Local quantities

We can compare the fundamental enegywith the one-
loop, two-loop and three-loop perturbative predicti¢8sl),

3715

define the error bar to be the statistical erfone standard
deviation on the largest latticplusthe discrepancy between
the values on the largest and second-largest lattibésis a
conservative estimate of the systematic error due to finite-
size effects For E; the finite-size corrections are between
0.000035 and 0.0001320-20 times larger than the statis-
tical errorg for 8=2.60, and between 0.0001 and 0.0005
(20-50 times larger than the statistical erjorfor
1.95<8=<2.60. ForE, the finite-size corrections are between
0.000065 and 0.0001530-20 times larger than the statis-
tical errorg for 8=2.60, and between 0.0002 and 0.0006
(20-50 times larger than the statistical erjorfor
1.95<83=<2.60.

Both the fundamental and adjoint energies are in reason-
ably good agreement with the perturbative predictions: see
Figs. 18a) and 16a). Furthermore, we can use the observed
deviations from these perturbative predictions to obtain
crude estimates of the next perturbative coefficidmtsich
we hope someone will calculate in the near fuiuta Fig.
15(b) we plot E— EE'°°P) versus 18*2° The limiting slope
suggests a 4-loop coefficient of orde0.05 to—0.1. If we
fit Er—EG'°°P=k,37*+ kg8, a reasonable fit is obtained
if we restrict attention to the points witg=2.35, and we get
k,=—0.02430:0.00942, ks=-—0.222+0.026. Unfortu-
nately, this fit would imply thatks/°| is more than twice as
large agk,/8"| even at our largest value @f(=4.35), so that

Mhe extrapolation tg3=c cannot be taken seriously. All we

can conclude is thai) k, is somewhere in the range from

—0.02 t0—0.10, andb) if k, turns to be closer to the former

value,then k must be negative and of rather large magni-
tude(of order—0.10 or—0.20. These estimates can be com-
pared to the known values &f;=—2/3, k,=—0.0972222,

and the adjoint energi, with the one-loop and two-loop ky=—0.0679225.
predictions(3.2). In each case we use the value measured on e proceed similarly for the adjoint energy. In Fig.(t)6

the largest lattice availablévhich is usuallyL=128); we

RVTP for &g

T {IIIIHl T !IIIIIII T |m|||| T |||||||| TTTTIm

T T TTT

102 T

10° - —

107% — _

RVTP / £52°
24

1078 f— _

10710 — A

1! IIIIII| 11 IHIII| 11 Illllli L1 lllllll L.l IIIIII| Ll nunl le LU

107 107! 10° 10! 10® 10® 10* 10°
£rw/L

FIG. 14. Scaling plot (5.7) for the relative variance-time product
(RVTP), obtained using the fit Fg  with s=2, n=13,
X =(00,0.90,0.65,0.14,0). Symbols indicate L=16 ( 3 ),32 (+),
64 (X), 128 (OJ), 256 ().

we plotE,—EE P versus 18°.3° The limiting slope sug-
gests a 3-loop coefficient of order0.02. If we fit Ep
—ER °P)=|,373+],87*, areasonable fit is obtained if we
restrict attention to the points witl8=2.35, and we get
|;=—0.0361:0.0046,l ,=0.054+0.013. However, these er-
ror bars should not be taken seriously, as we are neglecting
terms of order3 >, 876, etc. In any case, it is worth com-
paring these estimates to the known valulgs-—3/2,
1,=0.40625.

2. Comparison of long-distance quantities with finite-volume
perturbation theory

Let us next compare the finite-volume Monte Carlo data
O(BL) for the long-distance observabled=¢£2" and y,
with the predictions(B24) of finite-volume perturbation
theory (B— at fixedL <w). The expansion§B24) give yx
through order 18°, and &, through order 18; they are de-

2%The symbols in Fig. 16b) indicateL =128 (0J) andL =256 ().
The finite-size corrections ik appear to be negligible compared
to the deviation from the three-loop perturbative prediction.

30The symbols in Fig. 1®) indicateL =128 (1) andL=256(<).
In this case the finite-size corrections are clearly significant: the
L =256 points lie noticeably above the=128 points.



3716

GUSTAVO MANA, ANDREA PELISSETTO, AND ALAN D. SOKAL

Ep versus perturbative predictions

E, versus perturbative predictions
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FIG. 16. (a) Adjoint energyE, vs 8. Each point comes from
- c v the largest lattice available at a givenL =64 (X), L=128(), or
from the largest lattice available at a givgnL=64 (X), L=128 | =256 (¢). Error bars(usually invisiblg are statistical errofone
(0), or L=256 (). Error bars(usually invisiblg are statistical  standard deviationplus a conservative estimate of the systematic
error (one standard deviatigrplus a conservative estimate of the grror que to finite-size corrections. Dashed curves are the perturba-
systematic error due to finite-size corrections. Dashed curves are thge prediction(3.2) through orders B (lower curve and 182 (up-
perturbative predictionf3.1) through orders B (top curve, 18> per curve. (b) Deviations of adjoint energg, from two-loop per-
(middle curve, and 15° (bottom curve. (b) Deviations of funda- turbative prediction (3.2, plotted versus 1. Solid curve
mental energyEg from three-loop perturbative predictio8.1), corresponds to the fEA_E(AZ Ioop):k3/,33+ k,/B* for p=2.35.
plotted vs 1% Solid curve corresponds to the fitz—EE '°°P
=k, /B%+ks/B° for B=2.35.

FIG. 15. (a) Fundamental energig vs 8. Each point comes

2,1 -Apv| 1- Uo7 (5.4
rived from the expansiongB22), which give G, through B
order 1/3°. We restrict attention to 8L <128, as our very
few L =256 data points are all far from the perturbative re-with A;(L)~InL at largeL [cf. Eq. (B4a)]. Luckily, A;(L)
gime (they all haveB<2.30 andx=¢"Y(L)/L<0.33. is not too large for these two expansions: fel#"? it
We begin with the correlation lengthd?™ and ¢2".  ranges from~0.48 atL=8 to ~0.80 atL =128, while for

For these observables, the expansion is of the form (2nd) it ranges from~0.61 atL =8 to ~0.92 atL =128. As



55 MULTIGRID MONTE CARLO ... .1l ... 3717

TABLE XIIl. Comparison of Monte Carlo data with finite-volume perturbation theoryzjﬁl"“’(ﬁ,L).
Here—A,(L)/B s the first-order perturbative correctidr;(3,L) is the remainder to first-order perturbation
theory; and “est—AYy)" denotes 32R,(B,L) +A,,In? L+ A,; In L, which asp— at fixedL should tend
to —AS)+0(n?L/L?).

L B & (B) X A (L)IB Ry(BL)  est—Af) Ry(B.L)
8 2.10 38 0.63 —-0.227 —0.0653 —0.1719 —0.06659
8 2.30 87 0.69 —0.207 —0.0510 —0.1540 —0.06244
8 3.00 1489 0.86 —0.159 —0.0264 —0.1219 —0.05503
8 3.75 31910 1.02 —-0.127 —0.0154 —0.1009 —0.05016
8 4.35 371700 1.12 —-0.110 —0.0113 —0.0977 —0.04943
16 2.10 38 0.57 —0.265 —0.0951 —0.2512 —0.05458
16 2.30 87 0.64 —0.242 —0.0733 —0.2193 —0.05044
16 3.00 1489 0.83 —0.186 —0.0363 —0.1580 —0.04246
16 3.75 31910 0.98 —0.149 —-0.0214 —0.1326 —0.03915
16 4.35 371700 1.09 —-0.128 —0.0152 —0.1189 —0.03738
32 2.10 38 0.50 —0.304 —-0.1337 —0.3618 —0.04907
32 2.30 87 0.58 —-0.278 —0.0992 —0.2972 —0.04369
32 3.00 1489 0.78 —-0.213 —0.0480 —0.2043 —0.03595
32 3.75 31910 0.95 -0.170 —0.0279 —0.1641 —0.03261
32 4.35 371700 1.06 —0.147 —0.0196 —0.1442 —0.03095
64 2.10 38 0.42 —0.343 —0.1887 —0.5387 —0.04812
64 2.30 87 0.51 —-0.314 —0.1344 —0.4174 —0.04111
64 3.00 1489 0.74 —0.240 —0.0625 —0.2691 —0.03254
64 3.75 31910 0.92 —-0.192 —0.0353 —0.2022 —0.02867
64 4.35 371700 1.03 —0.166 —0.0249 —0.1767 —0.02720
128 210 38 029  —0.383 —0.2875 —0.9015 —0.05386
128 2.30 87 0.43 —0.349 —0.1835 —0.6042 —0.04124
128 3.00 1489 0.69 —0.268 —0.0794 —0.3477 —0.03034
128 3.75 31910 0.88 —-0.214 —0.0441 —0.2542 —0.02637
128 4.35 371700 1.00 —0.185 —0.0295 —0.1922 —0.02374
256 2.30 87 0.32 —0.385 —0.2662 —0.9617 —0.04579

a result, the first-order perturbation correction in the range ofVe would like to know whether or ndtﬁz(ﬁ,L)| is uni-
interest(2<B=4) is of modest size, namely 10—40 %. Fur- formly boundedn B=somef, andL=someL, as it should
thermore, the discrepancy between the Monte Carlo data arfze if the perturbation series is to be “well behaved.”

the perturbative predictions, We can say somethinggorously in three different re-
gimes:

i As pB—oo at fixed L<eo, we have

£7(B.L) [ Al(L)} n . <
Ry(B,L)=—"——pm——|1— ——|, (5.49 |ImBHM,BZR2(,3,L) = —A,(L) (with corrections of order 1),

2lp ABYL B ?nda)r}ence lim_ . limg_.Ry(B,L) = — Ag= — AZ,/2 [cf. Eq.
B79)].

is smaller than this by a factor of 2—-10: see Tables Xllland (i) As L—x at fixed pg<w, we have

Tables XIV. lim_ _..(n L) *Ry(B,L)=A4/B, and hence

Let us now examine more closely the behavior of thelim, .R,(8,L)=0 (with corrections of order 1/In).
remainder ternR,(8,L). Heuristically we would expect the (iii) Since &(B,L)=0, we haveR,(B8,L)=[A(L)/B] -1
remainder in first-order perturbation theory to be of the saméor all g,L. In particular, along any curvg=cA,(L) with
order of magnitude as the second-order perturbative corree>0 (which makes sense at least for largesinceA;,>0),
tion, i.e., of order—A,(L)/B*~(InL)%p% Let us therefore we can conclude tha,(B,L)=c(1—c)A,(L)%/In’L, which
define

= B2 3Th; ion h ised forcefull ioi
R,(B,L)= R,(B,L). 55 is question has been raised forcefully by Patrascioiu and
2BL) (InL)? 2BL) (5.59 Seiler[39,40,43.
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TABLE XIV. Comparison of Monte Carlo data with finite-volume perturbation theoryaﬁP@(ﬁ,L).
Here—A,(L)/B s the first-order perturbative correctidr;(3,L) is the remainder to first-order perturbation
theory; and “est—AYY)" denotes 32R,(B,L) +A,,In? L+ A,; In L, which asp—» at fixedL should tend
to —AYY+0(n?L/L?).

L B & (B) x —A(L)IB Ry(B.L) est. —AYy Ry(B.L)
8 2.10 38 0.63 —0.293 —0.0872 —0.2389 —0.08890
8 2.30 87 0.69 —0.267 —0.0688 —0.2183 —0.08413
8 3.00 1489 0.86 —0.205 —0.0361 —0.1795 —0.07517
8 3.75 31910 1.02 —0.164 —0.0213 —0.1543 —0.06934
8 4.35 371700 1.12 —-0.141 —0.0156 —0.1489 —0.06809
16 2.10 38 0.57 —0.326 —-0.1234 —0.3364 —0.07078
16 2.30 87 0.64 —0.297 —0.0956 —0.2978 —0.06576
16 3.00 1489 0.83 —-0.228 —-0.0477 —0.2220 —0.05589
16 3.75 31910 0.98 —-0.182 —0.0282 —0.1886 —0.05156
16 4.35 371700 1.09 —0.157 —0.0200 —0.1713 —0.04931
32 2.10 38 0.50 —0.363 —0.1686 —0.4669 —0.06191
32 2.30 87 0.58 —-0.331 —0.1264 —0.3919 —0.05566
32 3.00 1489 0.78 —0.254 —0.0613 —0.2748 —0.04592
32 3.75 31910 0.95 —0.203 —0.0355 —0.2229 —0.04159
32 4.35 371700 1.06 —-0.175 —0.0251 —0.1979 —0.03951
64 2.10 38 0.42 —-0.401 —-0.2319 —0.6701 —0.05913
64 2.30 87 0.51 —0.366 —0.1680 —0.5362 —0.05138
64 3.00 1489 0.74 —0.281 —0.0784 —0.3530 —0.04080
64 3.75 31910 0.92 —0.225 —0.0442 —0.2694 —0.03596
64 4.35 371700 1.03 —-0.194 —0.0311 —0.2351 —0.03398
128 2.10 38 0.29 —0.440 —0.3318 —1.0281 —0.06216
128 2.30 87 0.43 —0.402 —0.2252 —0.7559 —0.05060
128 3.00 1489 0.69 —0.308 —0.0985 —0.4509 —0.03764
128 3.75 31910 0.88 —0.247 —0.0546 —0.3326 —0.03262
128 4.35 371700 1.00 —0.213 —0.0367 —0.2584 —0.02947
256 2.30 87 0.32 —0.438 —0.3130 —1.1307 —0.05384

for large L tends toc(1—c)A?2,. For 0<c<1 this proves B, L—x at fixedx=£&(B,L)/L#0, « implies thaté..(8)/L
that R,(B,L)>0 and provides dower bound on its magni- also converges to a limit#0, so that in particular
tude; forc>1 it constrains only how negativie,(8,L) can  In&.(B)/InL—1. This implies Eq(5.51). On the other hand,
get. E(B,LYI[ABY2L]=x/[ABY?], which tends to zero as
Furthermore, under thassumption®f the conventional g—o at fixed x. It follows that R,(8,L)— — %, which to-
wisdom, we can say something analytically in one subcase dafether with Eq.(5.51) implies Eq. (5.52. QED [This is

regimeiii): . o somewhat strange: the limiting value Bb(3,L) must be-
(ii") As B, L—= at fixed x=¢2"Y(B,L)/L#0%, we  have in a highly nonmonotonic way as we pass from regime
have (i) through regimiii )/(iii ) to regime(i).]
_ We can use our Monte Carlo data to study the behavior of
lim %:WOZZAM (5.51)  Ra(B.L). First of all, let us look at limit(i). We know that
B,L—oe n In2
x fixed# 0,0 n<L
Ay(L)=A,In%L+AyInL + Ayp+ O ?) (5.53
[corresponding t&@=2 in regime(iii)] and
lim  Ry(B,L)=—2A2,. 553 Wit
oo N
X Tixe o —
_ o Ass 128.2 (5.543
[This shows that the lower bound for reginGé) is sharp
when c=2]. Proof of Egs.(5.51), (5.52: From asymptotic N?2 N
scaling (3.3 we have I&.(8)=Bw,+0O(InB) where w, An=gr 2t g A0 (5.54h

=2A, is the first coefficient of the R@ function[cf. Egs.
(B103), (B113g]. According to finite-size scaling.1), taking  [cf. Egs.(B11a), (B11b), and(A22), (A23)], where we have



" 1 N*-2 N?-2( 1

AlO:Z_NIlvﬁn_I_W_FW 41 I3'w+ﬁ ,
(5.553

w1 N*-2 3N[ 1

AlO:Z N|1'ﬁn+w+7 4 |3’w+ﬁ ,
(5.55b

for the fundamental and adjoint sectdisee Eqs.(B27)-
(B31) for definitiong. UnfortunatelyA ) andA%Y are un-
known. We can use our Monte Carlo data to estirdef{L)
for L=8,16,32,64,128; in this way we can test Egs53 -
(5.55 and obtain a rough estimate @j. The data are
approximately converged fdr=8, and suggest very roughly
A§)~0.09 andA{y~0.14 (see the next-to-last column of
Tables Xlll and XIV). The data for larget are at least
consistent with convergence to these values.

In limit (ii), we see|R,(B,L)| slowly decreasing as a
function of L when L<{g ..(B), then beginning to grow
slightly when L~ &¢ ..(8). We know that|Ry(B,L)| must
ultimately decrease again to zero las»>, but our data do
not allow us to observe this decrea$ieis is not surprising
since the rate of convergence is only L/Jn _

Along the curvesx=constan{limit (iii ")], R,(8,L) stays

bounded and is roughly consistent with convergence to the

predicted value- 2A 2, =N?/(327%)~—0.028497.

In summary, our data in Tables XlII and XIV give no
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and the corresponding rescaled quantity

33

Sg(B,L)E(m—L)g S;(B,L). (5.58

Just as for the correlation lengths, we can prove rigorously
the behavior in regimeg)—(iii ):

(i) As pB—o at fixed L<w, we have
Iimﬂ%,8.353(,8LL) =—Bjy(L), and hence
lim__.limg .S5(B8,L)= —Bgs.

(i) As Lo at fixed pB<», we have
lim| _oo(INL) "2S,5(B,L) =B,J/B, and hence
lim__,S;(8,L)=0.

(iii) Since x(B,L)=0, we have

Ss(B,L)=[B;(L)/B] +[By(L)/B*]—1 for all BL. In par-
ticular, along any curvgg=cA,(L) with c>0, we can con-
clude that(writing for simplicity only the L—o limit) we
have S3(B,L)=c°A%,B1;+ CA By~ C3A3 = (c?
+Cc)A%,B;;— 2cA; B3, —c3A3; [cf. Eq. (B7b)]. Unfortu-
nately, the sign of this lower bound is far from obvious.

Furthermore, the assumptions of the conventional wisdom
imply the following:

(i") As BL—x at fixed x=£2")B,L)/L#0, =, we
have

lim  Sy(B,L)=6A%B.;—A;B4—8A%. (5.59
 fxeds 0z

evidence ofR,(3,L) becoming unbounded in any region of [This shows that the lower bound for reginfié) is sharp

the (B,L) plane. It is of course still possible th&,(3,L)

when c=2.] Proof of Eq.(5.59: We have Eq.5.5)) as

does become unbounded in some region far from the one Wgefore. On the other hand, let us write
have studied; this question needs ultimately to be resolved by

a rigorous mathematical proof.
Let us now look at the susceptibilitieg- and y,, for
which the expansion is of the form

Bi(L) Ba(L)

x#(B,L)=BL?1- B 5z

O(Ba)},
(5.56

with B;(L)~InL and B,(L)~(InL)? at largeL. For y¢ the
coefficientB, (L) is rather large, ranging frons1.01 atlL =8
to =~2.19 atL=128, while B,(L) is fairly small, ranging
from ~0.04 atL=8 to ~—0.43 atL=128. As a result, the

: ; . ; : In3L
first-order perturbation corrections are quite large in the g | y—B_. In3L+B,, In?L+ By, InL+B30+O( )
range of interest, but the second-order corrections are small;

x(BL) _x(B.L) x(B,*) (§(/3,°°)
L x(B=) E&B2)* | L

By finite-size-scaling theory, the first and third factors on the
right-hand side tend to finite constants@k —« at fixedx;
while asymptotic scaling implies that the second factor
scales asB /"o, hence vanishes ag—x because
v/Wo>0. Using Eq.(5.51), we easily deduce Eq5.59.
QED

_ We can use our Monte Carlo data to study the behavior of
S;(B,L). First of all, let us look at limit(i). We know that

2
) . (5.60

L2

and the discrepancy between the Monte Carlo data and the (5.6
second-order perturbative prediction is a factor 1-10 smaller ith
than the second-order correctisee Table XV. For y,, by wi
contrast, both coefficients are very largeB,(L) ranges 1
from ~2.28 atL =8 to ~4.93 atL =128, whileB,(L) ranges Bu=g (y3—3woy5+2W3 o), (5.623
from ~—1.39 atL=8 to ~—7.75 atL=128. As a result,
both the first-order and second-order perturbation corrections B
are huge; nevertheless, the discrepancy between the Monteg_ —— (. va+ 2wevt— 24 2ty 4 210 5,2, 2
Carlo data and the second-order perturbative prediction is % 2( LYo on Yo¥1) 2 (2wWot 7
surprisingly small(see Table XV). _

Let us define the discrepancy between the exact values 3Wovo), (5.620
and the second-order perturbative predictions,

P P Ba1= ¥5'+ B1o(Wy— ¥5) + Bog( 2Wo— 7o), (5.620

where the RG coefficients,,w; 7,7, 72 can be found in

Appendix A, and the constanB,;, andB,, can be extracted

x#(B.,L)

By(L) By(L
SS(ﬂ’L)ET_ 1— 1 )_ o(L)

B Bl

(5.57
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TABLE XV. Comparison of Monte Carlo data with finite-volume perturbation theoryyiet3,L). Here
—B;(L)/B and —B,(L)/@? are the first-order and second-order perturbative correcti8g($,L) is the
remainder to second-order perturbation theory; and “est.—B{y” denotes
B3S5(B,L) +Bs3In® L+Bg, In? L+ Bg; In L, which asg—x at fixedL should tend to-B {5 +O(In®L/L?).

L B &.B x  —ByL)B -ByL)B  SyBL) est—-Bf)  SyBL)

8 210 38 0.63 —0.482 —0.009 —0.01053 —0.03845 —0.01084
8 230 87 0.69 —-0.440 —0.008 —0.00726 —0.02934 —0.00983
8 3.00 1489 0.86 —0.337 —0.005 —0.00275 —0.01522 —0.00826
8 3.75 31908 1.02 -0.270 —0.003 —0.00121 —-0.00462 —0.00708
8 435 371706 112 -0.233 —0.002 —0.00077 —0.00475 —0.00709
16 2.10 38 057 —0.622 0.004 —0.01012 —0.05531 —0.00440
16  2.30 87 064 —0.568 0.003 —0.00685 —0.04494 —0.00391
16  3.00 1489 0.83 —0.435 0.002 —0.00226 —0.02250 —0.00286
16 3.75 31908 0.98 —0.348 0.001 —0.00101 —0.01493 —0.00250
16 435 371706 1.09 —-0.300 0.001 —0.00061 —0.01190 —0.00236
32 210 38 050 -0.762 0.026 —0.00466 —0.04779 —0.00104
32 230 87 058 —-0.696 0.022 —0.00224 —-0.03194 —0.00066
32 3.00 1489 0.78 —-0.534 0.013 —0.00037 —0.01464 —0.00024
32 375 31908 0.95 —0.427 0.008 —0.00010 —0.00987 —0.00013
32 435 371706 1.06 —0.368 0.006 —0.00003 —0.00736 —0.00007
64 210 38 042 —-0.902 0.058 0.00587 -—-0.01717 0.00076
64 230 87 051 -0.824 0.048 0.00585 —0.00035 0.00099
64 3.00 1489 0.74 —-0.632 0.028 0.00278 0.00363 0.00105
64 3.75 31908 0.92 —-0.505 0.018 0.00143 0.00375 0.00105
64 435 371706 1.03 -—-0.436 0.013 0.00094 0.00617 0.00108
128 2.10 38 029 —1.043 0.098 0.01976 0.01929 0.00160
128 2.30 87 043 —0.952 0.082 0.01786 0.05363 0.00190
128  3.00 1489 0.69 —0.730 0.048 0.00760 0.04146 0.00180
128 3.75 31908 0.88 —0.584 0.031 0.00367 0.02968 0.00169
128 435 371706 1.00 -0.503 0.023 0.00256 0.04713 0.00185
256 2.30 87 032 -—1.080 0.122 0.03279 0.11648 0.00234

from Appendix B(the latter formulas are somewhat lengthy B {y~0.0544244644 and {)~—0.1358424235. Fory,,
We consider firsty:, because it is only for the fundamental the first-order perturbative corrections are enorm@—
sector that we know the value qﬁt_ Numerically, forN=3 110 % even at our largeg®), and the second-order correc-
we haveB {7~ —0.0006967924B {)~—0.0175782344, and tions are quite largg7—-40 % even at the largegd): see
B{)~0.0679511385. Unfortunatel §y is unknown. We Table XVI. In view of this, the deviations from second-order
can use our Monte Carlo data to test E@s61)—(5.62 and  perturbation theory are amazingly small: e.g., a fraction of
obtain a rough estimate &$7. The first thing to note is that a percent when the second-order term is as large as 20%, or
S5(B,L) undergoes a curious change of sigri_agaries(see  10—40 % when the second-order term is 100% or more. Fur-
Table XV); but this increase is almost entirely accounted forthermore, these deviations are almost perfectly explained by
by the known terms; In® L + B, In’L + B, InL, which ex- theB,(L)/8% term, as can be seen from the almost-constancy
hibit a similar sign change. The difference is much smaller inof S3(,L) as a function of3 at each fixed.. The values of
magnitude, and as a result the estima®§y is much  Ss(B,L) vary significantly withL, but it is plausible that
smaller in magnitude thap®S;(B,L) [see the next-to-last they are approaching their predicted limiting value
column of Table XVI. Unfortunately the estimates &§)  —BYY~-0.054 asL—o (the corrections are, after all, of
are not well convergeéthe fluctuations at largelr are sta- order 1/iL with a relatively large coefficienB$3). We do
tistical erro; all we can say is thaB {7 is very small, prob- not have any explanation for these incredibly accurate pre-
ably somewhere between0.1 and 0.1. dictions from ana priori badly behaved perturbation series.
Likewise, in limits (i) and(iii '), we are unable to see the
predicted convergence &(3,L) to a limiting value, or to
say whethelS;(3,L)| appears to remain bounded. In any In the next four subsections we shall compare the extrapo-
case,|S;(B,L)| stays extremely small. lated infinite-volumevaluesO..(B) for the long-distance ob-
Finally, let us consider the adjoint susceptibilipy , for servables(9=§§f”d) and x4, as generated in Sec. V B 1, with
which the known numerical valuegfor N=3) are the asymptotic-freedom predictions.

3. Fundamental sector: correlation length
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TABLE XVI. Comparison of Monte Carlo data with finite-volume perturbation theoryyfgt3,L). Here
—B;(L)/B and —B,(L)/p3? are the first-order and second-order perturbation correctig$,L) is the
remainder to second-order perturbation theory.
L B & (B) X —By(L)/B —By(L)/B? S;(B.L) Sy(B.L)
8 2.10 38 0.63 -1.084 0.316 —-0.013 —-0.013
8 2.30 87 0.69 —0.989 0.263 —0.009 —0.013
8 3.00 1489 0.86 —0.759 0.155 —0.004 —-0.013
8 3.75 31908 1.02 —0.607 0.099 —0.002 —0.012
8 4.35 371706 1.12 —0.523 0.074 —0.001 —0.013
16 2.10 38 0.57 —1.400 0.562 —0.047 —0.021
16 2.30 87 0.64 —1.278 0.469 —0.036 —0.020
16 3.00 1489 0.83 —0.980 0.275 —-0.016 —-0.020
16 3.75 31908 0.98 -0.784 0.176 —0.008 —0.020
16 4.35 371706 1.09 —0.676 0.131 —0.005 -0.020
32 2.10 38 0.50 —-1.715 0.885 -0.117 —0.026
32 2.30 87 0.58 —1.566 0.738 —0.088 —0.026
32 3.00 1489 0.78 —1.201 0.434 —0.039 —0.025
32 3.75 31908 0.95 —0.961 0.278 —0.020 —0.025
32 4.35 371706 1.06 —0.828 0.206 —0.013 —0.025
64 2.10 38 0.42 —2.030 1.284 —-0.234 —0.030
64 2.30 87 0.51 —1.854 1.070 -0.177 —0.030
64 3.00 1489 0.74 —-1.421 0.629 —-0.078 —0.029
64 3.75 31908 0.92 -1.137 0.403 —0.040 —0.029
64 4.35 371706 1.03 —0.980 0.299 —0.025 —0.029
128 2.10 38 0.29 —2.346 1.757 —0.407 —0.033
128 2.30 87 0.43 —2.142 1.465 —0.307 —0.033
128 3.00 1489 0.69 —1.642 0.861 —-0.137 —0.032
128 3.75 31908 0.88 -1.314 0.551 —-0.070 —0.032
128 4.35 371706 1.00 —1.132 0.410 —-0.044 -0.032
256 2.30 87 0.32 —2.429 1.922 —0.488 -0.035
We begin by comparing the fundamental correlation a,=rk,/Kko=—0.38:0.06 (5.63hH

length g(FZ“‘” with the two-loop and three-loop perturbative

predictions(3.3),(3.9). In all cases, we use the extrapolated[see Fig. 1), points X]. Of course, this estimate af,

data from our preferred fit:
(,0.90,0.65.

Let us recall that perturbation theof$.3),(3.9) combined
with the nonperturbativé BNNW) prefactor (3.16 give a
guantitative prediction for thexponentialcorrelation length
£ [cf. Egs.(3.173,(3.179]. The factoré" ¢ is un-
known, but a high-precision Monte Carlo study of the(SU
chiral model yields the value 0.980.002[67]. We shall
therefore plot £2"(B) divided by &Hinwk-00p(B) TO
k=2,3, and look for convergence a8—x to a value
~0.987. The results are shown in Fig.(&)7(points + and
X). The discrepancy from two-loop asymptotic scaling,
which is ~20% at=2.0 (§- ..~25), decreases to 5-6 % at
B=4.35 (& ,~3.7X 10%. The discrepancy from three-loop

see Table VI,

asymptotic scaling, which is=12% atB=2.0, decreases to
2-3% at pB=4.35. Furthermore, if we fit
2™ £ nw a-1005= Ko+ k2872, @ good fit is obtained if we

restrict attention to the points witi=2.60 (& ..=300), and
we obtain the estimates
E§=:2nd) /EgéeXp)E Ko

=0.989+0.007, (5.633

estimate should not be taken too seriously, as we have neglected cor-

rections of orded 3 and higher; it is in any case of the same
order of magnitude as the known valag=—0.164. More-
over, the error bar om, is probably significantly underesti-
mated, because in this fit we have ignored tloerelations
between the estimated valug§)? at different 8 [which
arise from errors of typdiii )]. Still, the agreement with the
predicted value 0.987 is remarkable.

We can also try “improved expansion parametefsée
Sec. Il O. For example, we can usg=1-E as a substi-
tute for 8, and compare to the predictidi3.19,(3.20 for
£ as a function of +E. For Ex we use the value mea-
sured on the largest lattic@vhich is usuallyL=128); the
statistical errors and finite-size corrections Bp are less
than 5<10 4, and they induce an error less than 0.85% on
the predlctecfF » (less than 0.55% fgB=2.2). In Fig. 17a)
(points I and ¢) we show¢E" divided by the two-loop
and three-loop perturbative prediction8.19,(3.20 for
£8P The data agree with the two-loop prediction to within
better than 5% foB=2.10 (& ..=40). The agreement with
the three-loop prediction is excellent: the discrepancy is
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Asymptotic Scaling for &g Cg(Fan)/C§<Fexp>EK6=0.9831‘0.002 (5.649
11 T ¥ T T T T T T T T
w | | | . [see Fig. 1), points ¢ ].32
3 T In conclusion, the three-loop perturbative prediction in the
» L m%%%ﬁﬁ 5 - bare parameter agrees with the Monte Carlo data to within
=4 - -39 =4. L=10%), -
o5 L . ¥ about 2 d?:'/o f?r,(i) :}05 (gpd_ t'lOS)' and tht;:- ttthrzciol/oop
<= _}"’W ety %HW It improved” perturbative prediction is even be fé_ 0).
- 3 ¢ Furthermore, both the bare-parameter and the “improved”
s i perturbative predictions are extremely flat {823.15 and
3 " 5 % I}Hﬂ:{ B=2.35, respectively. A good compromise for the limiting
s [ Fr Ti IHHI ] value would be
Sos g i —
- }}HfﬂI ) Cygzna /Cyon=0.985+ 0.007, (5.69
EE I x: g;g ] which is in excellent agreement with the Rossi-Vicari pre-
* o8 _: # _ diction 0.987-0.002[67].
E: 5| | | ] 4. Fundamental sector: Susceptibility
2 3 4 For the susceptibilityy. we proceed in two different

8 ways: using eitheryz directly or else using the ratio
xe /2" The advantage of the latter approach is that one
additional term of perturbation theory is available.

In Fig. 18@ we plot X¢ .. estimatet,»,0.80) divided by the
theoretical prediction(3.4),(3.10 with the prefactor (}F
omitted the g—oe limit of this curve thus gives an estimate
of C,.. Here we have two-loop and three-loop predictions
(points +, X) as well as “improved” two-loop and three-
loop predictions(C], ¢). The estimates from two-loop and
three-loop standard perturbation thedwhich are virtually
identical sinceh;~—0.023 is so smallare strongly rising for
B=2.4 and weakly rising thereafter. If we fit=/(xr 3-100p
without the prefactoCXF)=Ko+ ko8 2, a good fit is obtained
if we restrict attention to the points with=2.65
(ér =360, and we obtain the estimates

(exp)

SF,w,estimate (,0.9,0.65) / gF.m,theor

’g —~
< C,.=Ko=16.75+0.31, (5.663
I | | ‘ i by=rp/ ko= —0.72+0.12 (5.660
0.0 0.1 0.2 0.3 [see Fig. 1&), points X]. The estimates from “improved”
1/82 perturbation theory are rather flatter, particularly the 3-loop

one which is virtually constant fgf=2.45 (¢ ..=160. The
“improved” 3-loop values can be fit well to a constasy if
we restrict attention tg8 =2.55 (& ..=240), and we obtain
the estimate

FIG. 17. (@ £20cimaes.0.90.0.65' €5 Pineor VS B. Error bars are
one standard deviatiostatistical error only. There are four ver-
sions of &P, - standard perturbation theory indlgives points
+ (2-loop and X (3-loop); “improved” perturbation theory in fo
1-E gives pointsC] (2-loop and ¢ (3-loop). Dotted line is the XF
Monte Carlo prediction Cg(anenlcg(Fexm=O.987L: 0.002 [67]. (b)
Same ratio plotted versus @ The lower solid line is the fit
Ko+ Kol B2 to the standard 3-loop estimatés) for 3=2.60. The
upper solid line is the constant fig; to the “improved” 3-loop
estimateq ¢ ) for =2.60. Dashed line is the Monte Carlo predic-
tion Czna /Cgen=0.987+0.002[67].

= ky=16.30+0.07 (5.67)

[see Fig. 18), points ¢ ]. This estimate is slightly lower
than Eq.(5.663, but consistent with it.

Similarly, we could plot fer/E2"2).. cqimatep. ) di-
vided by the theoretical predictio3.7), (3.1, (3.12 with

32”! instead, we fit gl(zznwlgl(fprlleW,improved 3-Ioop:K(,)+Ké:8_2' a
<1-2% for p=1.75 (& ..=8). Furthermore, the “im- good fit is obtained if we restrict attention to the points with
proved” 3-loop prediction is extremely flat, and can be fit 5=2.45 (¢ =160, and we obtain the estimataS(zng/Cgexn
well to a constani if we restrict attention to the points with =x;=0.979+0.006 andai™ = x}/x,=—0.04+0.05. But since
B=2.60 (& .=300), yielding the estimate theai™ is consistent with zero, we may as well use a constant fit.



55 MULTIGRID MONTE CARLO ... .1l ... 3723

Asymptotic Scaling for xg in any way alter thdogic of the analysis, aE:(;Fe’i’S)W’ is an
R0 —= R explicit number defined in Eq3.16). The resulting curve is
L %"E% | plotted in Fig. 19a); its f—c limit gives an estimate of
i @”SGDD 1 C ><(C§<2nd)/C§EfeNx'§)W)) 2. In this case we have 2-loop,
18 Bt - 3-loop, and 4-loop predictionst, X, J4) as well as

) “improved” 2-loop, 3-loop, and 4-loop prediction&], ¢,
| 0O). To convert this number to an estimate to;F itself, we
1 need to multiply by

Estimate of Cxp
o
| '
3
5
e
=
=i o
==
% —e—] o
e s
Pe—o—o] EID
fpe—o— DD
Ces=
R
|

L 2 i Cylom 2 Cetzna 2 Cylew
14 — ﬁkg -] C(BNNW) = Coom CEWw | - (5.68
: ;? : §(exp gF f;:eXp)
L5 N
-3 ] The first factor on the right side has been estimated by Monte
oo Lo b Carlo simulations[67], yielding 0.987=0.974; moreover,
3 4 our data for£2" itself (Fig. 17 are consistent with this
B prediction. The second factor on the right side is presumably

equal to 1(exactly. So we can take the fact@5.68 to be
~0.974. The estimates from the 3-loop standard perturbation
theory are rapidly decreasing f@=3.2 and slowly decreas-

18 T
| ing thereafter; if we fit them toc,+x,8 2, a good fit is
| obtained if we restrict attention t3=2.30 (¢ .=85), and
we obtain the estimates
. Egznu) -
16— Cy.| =mwww| =x0=16.61+0.04, (5.693
ol Ciiem
(o}
2 L
g B C2—K2/KO 034+O 02
= - (5.69h
= 14 —
| and hence
i C,.=16.17:0.04, (5.70
i The estimate(5.69b is in excellent agreement with the
ie — known valuec,=0.306. If we now fit the standard 4-loop
0.0 values to ko+k38°°, we have a good fit forg=2.60
(ér =300, and we obtain the estimates
EIG‘ 18. (a) [XF,w,estimatéx130,0A8Q]/[XF,w,theorWithOUt the prefac- ~ Cg(an) .
tor C, ] vs . Error bars are one standard deviatistatistical error Cye ZENNw) =kp=16.74:0.04, (5.713
only). There are four versions of¢ .. meor:  Standard perturbation gep
theory in 1B gives points+ (2-loop) and X (3-loop); “improved”
perturbation theory in 2E gives pointsC] (2-loop) and ¢ (3- C3=k3/Kky=0.19£0.07
loop). For clarity, error bars are shown only for the “improved” (5.71b

three-loop estimategb) Same ratio plotted versus@/ The lower

solid line is the fitky+ x,/ 8 to the standard 3-loop estimatés) [see Fig. 1), points|_I_| 1, and hence
for $=2.65. The upper solid line is the constant4f to the “im-

proved” 3-loop estimate§< ) for f=2.55.

the prefactorsNleF and hég(Fan omitted the f—x limit of this Cy=16.300.04. (5.72

; ; P - 2
curve'would thus give an estlmate 6§(F/(C§§:2m.j)) - HOW- " The estimates from “improved” perturbation theory are
ever, in order to make the vertical scale of this graph morenuch flatter, particularly the 4-loop one which is virtually
directly comparable to that of Fig. 18, we have multiplied theconstant for8=2.3. If we fit the “improved” 3-loop values

quantity being plotted by(cé?e“i';')w))z. Note that this does not to g+ «58~ 2 for $=2.25(¢: ,,=70), we get
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FIG. 19. (& [(tr/€8™ Yo csimen.om ] ¥ [ oo Tk |

§§,~2“d)2)m’meo, without prefactors CXF and Cg(and>] vs 3. Error bars
are one standard deviation (statistical error only). There
are six versions of (xp/ §§)m,ﬂmr: standard perturbation theory
in 1/8 gives points + (2-loop), X (3-loop), and HH (4-loop);
“‘improved’’ perturbation theory in 1—E gives points O (2-loop),
O (3-loop), and O (4-loop). The standard two-loop perturbation
theory (+) is off-scale above the graph. For clarity, error bars are
shown only for the ‘‘improved’’ four-loop estimates. (b) Same
quantity plotted vs 1/8°. The steeper solid line is the fit i+ i/, B to
the standard 4-loop estimates ( Hn ) for 8=2.30. The flatter solid
line is the fit k{+x5B87 to the “‘improved” 4-loop estimates (O)

for B=2.60.
Eg;zznd)
CXF W —KO:16.7&0.04, (573a
Cf(exp)
F
cYMP= b/ kh=—0.3+0.2, (5.73b
and hence
C,.=16.31£0.04. (5.74
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The estimaté5.73b suggests thati™ is very close to zero,
consistent with the known valuﬁgmp)—o 0010. If we now fit
the “improved” 4-loop values toxy+ k38~ 3, we have a
good fit for 3=2.075(¢ ..=34), and we obtain the estimates

Egszznd)
Cg(exm
F
ci™P = x4/ ko =0.10+0.02 (5.75h
[see Fig. 1), pointsO], and hence
C,.=16.41+0.03. (5.76

In summary, all methods yield consistent results, but the

2 .
ones based ogr/£2"Y" show an earlier convergence to the
limiting constant. Therefore, a reasonable compromise
would be

C,,~16.35:0.20. (5.77

5. Adjoint sector: correlation length

Now let us look at the adjoint sector. We start with the
correlation length¢?"®, which we can compare with the
two-loop and three-loop perturbative predictiai3s3),(3.9).
Combined with the nonperturbativéBNNW) prefactor
(3.15,(3.16, these formulas give a quantitative prediction
for the exponentiakcorrelation lengthe(™® [cf. Egs.(3.178,
(3.179]. By plotting & € 8w -1o0p fOr k=2,3, we can
test asymptotic scaling and estimate the universal nonpertur-
bative ratioC é:(2nd)/ C glewo)

In Flg an) we pIOt g,(AZ?odestlmate(c el oo)/gA BNNW k-loop ver-
susf (points + and X). We see that the behavior is similar
to that observed in the fundamental chanfad). 17); this is
inevitable since the ratig@1® ¢21% is empirically close to
constant(~2.80 in this region. However, in the adjoint
channel the estimates show strarigad presumably spuri-
ous pseudoperiodic oscillations; we do not understand their
cause, but they presumably arise from some quirks in the
extrapolation to infinite volum&® Furthermore, these values
present an apparent change of slopg=a8.15, suggesting a
positive coefficienta,, which is in total disagreement with
the result(5.63b predicted by fitting the fundamental-sector
quantities. Perhaps we have grossly underestimated the sys-
tematic errors in the extrapolation to infinite volume, espe-
cially for for =3.15. The estimate ofZ &R \w 3-100p
will depend on whether or not we trust our extrapolation for
B=3.15. If we do not trust it, we may discard all those points
with $=3.15 and fit &7V &Rw 31005~ Ko K282
good fit is obtained for 3.158=2.40 (1.1X10°=¢-= 130),
and we obtain the estimates

33Note that the corrections to scaling in the adjoint channel are
somewhat stronger than those in the fundamental chdoagipare
Fig. 1 to Fig. 3. Since the extrapolation QjA 2 yses the most
stringent fit(e,0,0), we are unable to say anything about the re-
maining systematic errors due to corrections to scaling.
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FIG. 20. () £20% imatger oo ) 53 Pneor VS B. Error bars are one
standard deviatiofstatistical error only There are four versions of
gﬁfi”?theor: standard perturbation theory inglgives points+ (2-
loop) and X (3-loop); “improved” perturbation theory in +E
gives points] (2-loop) and ¢ (3-loop). For clarity, error bars are
shown only for the “improved” three-loop estimate) Same
ratio plotted vs 182 The downward-tilting solid line is the fit
Ko+ Kol B2 to the standard 3-loop estimatés) for 3.15=5=2.40.
The upward-tilting solid line is the fitc)+ x5/ 82 to the “im-
proved” 3-loop estimate§<) for =2.925.

Eggzm» /Eg(Aex;»E Kko=0.71+0.02, (5.783

ay=rk,/ ko= —0.43+0.10 (5.78b

[see Fig. 1&), points X]. It is interesting to note the rough
agreement between this predictionaafand Eq.(5.63h. On
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the other hand, if we trust our extrapolation&f.. , we try a
similar fit including all values of3. We obtain a good fit if
we restrict attention to the points with3=3.15
(-=2.7x10%, yielding the estimates

Cezra /Ciom =10 =0.63+0.02, (5.79a

a25K2/KO:O.8iO.4. (579b

The total disagreement between this predictioa.pénd Eq.
(5.63h seems to indicate that E(p.78 is more trustworthy.
The “improved” three-loop estimates of course show
the same pseudoperiodic oscillations. If we fit
£V £ 3-00p= Ko T K582, @ good fit is obtained for
B=2.925(£=1.1x10°%), and we obtain the estimates

Cezna IC o= p=0.65+0.02, (5.803

almP= )/ kp=0.8+0.3 (5.800
[see Fig. 18&), points ¢ ]. However, this is not consistent
with the estimate i™P'=—0.04+0.05 obtained from the fun-
damental sectofsee footnote 32

These estimates can be compared with the combination

Eéf"d) 6§(A2nd) Egi:znd) Eg(exm

= =| = = = (5.8)
C gew C gznd C ge C goxp

of our previous estimates. Our estimate of the first term on
the right side is 12.80+0.05=0.357+0.006 [see Eq.
(5.497; Monte Carlo simulationf67] predict that the second
term on the right side is 0.9870.002; and the theoretical
prediction for the third term on the right side is exactljs2e

Eq. (3.195]. This approach yields

Eg(an)
A
= =0.70+=0.01.
Cg(exl))

A,3-loop

(5.82

Let us recall that this approach suffers from various difficul-
ties in the estimation of{2"Y/£2" (see Sec. V B2 but, in
spite of that, the resul{5.82) is consistent with Eq(5.783,
and marginally consistent with Eq5.803. A reasonable
compromise would be to take

Cg(Aznd)

= ~0.69+0.04.
Celexp
A

(5.83

6. Adjoint sector: susceptibility

The story fory, is similar to that ofyz: we can either
usex, directly or else use the ratips /&2,

In Fig. 21(a) we plot xa = estimatet,,0.90) divided by the
theoretical prediction(3.5), (3.13 with the prefactor C;A
omitted the B—oe limit of this curve is thus an estimate of
EXA. Here we have 2-loop and 3-loop predictions from stan-
dard perturbation theorypoints +, X) as well as “im-

proved” 2-loop and 3-loop prediction&], ¢ ). At each or-
der (2-loop or 3-loop, the standard and the “improved”
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EIG- 21. (3 [XA,w,estimatex,oc,OAQQ]/[XA,x,theorWithOUt the prefac-
tor CXA] vs B. Error bars are one standard deviatistatistical error
only). There are four versions ofa .. meor:  Standard perturbation
theory in 1B gives points+ (2-loop) and X (3-loop); “improved”
perturbation theory in £E gives points(] (2-loop and ¢ (3-
loop). For clarity, error bars are shown only for the “improved”
3-loop estimates(b) Same ratio plotted vs Bf. The flatter solid
line is the fit kot /3% to the standard 3-loop estimatés) for
B=2.25. The steeper solid line is the fif)+ x4/ 8% to the “im-
proved” 3-loop estimate§< ) for f=2.55.

estimates are virtually identical fg8=3; but for 8<3 the
standardestimates are much flattéin marked contrast to
what is observed fo&:, xg, and&, : see Figs. 17-20This

EXA)=KO+ k82, a good fit is obtained if we restrict atten-

tion to the points with3=2.25 (¢ ..=70), and we obtain the
estimates

C,,=ro=196+2, (5.843

d25K2/K020.14i0.50 (584b

[see Fig. 2tb), points X]. Similarly, if we fit the “im-

proved” 3-loop perturbation valuega/(x a 3-100p Without the
prefactor C, )=xq+ k5872, a good fit is obtained for
B=2.55 (¢ .=110, and we get

Cr= ko=191%3, (5.853

dimP =}/ kp=0.53+0.12 (5.85h

[see Fig. 2{b), points < ].

Similarly, we could plot fa/¢2"), estimatefo,oo,0) di-
vided by the theoretical predictidB.8), (3.14 with the pre-
factors C,, and Cy(2n9) omitted the f— limit of this curve

would thus given an estimate EfXA/(ngnd))z. However, in

order to make the vertical scale of this graph more directly
comparable to that of Fig. 24), we have multiplied the

quantity being plotted by(t(;gp)w))z Note that this does not

in any way alter thdogic of the analysis, a€' g(exp) ") is an

explicit number obtained from Eqé3.15,(3.16). The result-
ing curve is plotted in Fig. 22); its f— limit gives an
estimate ofC (C(;e'\ip) /C§£\2nd))2. In this case we just have
2-loop and 3-loop predmtior(sir, X) as well as “improved”
2-loop and 3-loop prediction&], ¢). To convert this num-

ber to an estimate fo€, itself, we need to multiply by
A

Eg(an}

W ~(0.69+0.042?=0.476+0.055 (5.8
f(exp

[see Eq(5.83]. The estimates from 2-loop and 3-loop stan-
dard perturbation theorgwhich are virtually identical since
e,~0.0075 is so smallare strongly decreasing f@#=<3.0
and weakly decreasing thereafter. If we fit the 3-loop values
to ky+ ko8 2, a good fit is obtained if we restrict attention to
the points withp=3.075 (§F,w22><103), and we obtain the
estimates

— Eg(an)
Xa| =ENRW) | =Ko=456=8, (5.873

Cu gew
e,=ky/kg=1.8+0.3, (5.87bH

and hence

C,,=217+16 (5.89

casts some doubts on whether the “improved” perturbatior{see Fig. 2&), points X]. This estimate is in reasonable
theory is always an improvement. If we fit the “standard” agreement with the previous predictiofts849 and(5.853,

3-loop perturbation valuega/(xa 3-100p Without the prefactor

but exhibits mucHarger uncertaintiegin contrast to the situ-
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four versions of kAlgi)w,theor: standard perturbation theory in
1/B gives points+ (2-loop) and X (3-loop); “improved” perturba-
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c g2 -
| =W | =ko=459+7, (5.893
Ceexm
A
e = i)/ kp=1.5+0.3, (5.898
and hence
C,,=218+15 (5.90

[see Fig. 2m), points < 1.

All methods yield consistent results, but the ones based on
xa alone show an earlier convergence to the limiting con-
stant; furthermore, they do not require information about the
constant(5.86. Thus, a reasonable compromise would be

C,,~195+ 20. (5.9

D. Discussion

Let us summarize our findings. First, we hope to have
convinced the reader that the extrapolation method has al-
lowed us to obtain the infinite-volume behavior of long-
distance observables with reliable control over all systematic
and statistical errors, using only latticés<256. For ex-
ample, we obtain the infinite-volume correlation length
g(F'fgd) to a statistical accuracy of order 0.500.9%, 1.1%,
1.3%, 1.5% when é209~10% (1%, 10, 1P, 4x10%); and
the systematic errors arising from corrections to scaling are
of the same order or smaller. The situation is similar fpr
andy, . Only for £2") and the two ratiog/(£2"")? do we
have severe worries about the possible remaining corrections
to scaling; for these observables it would be useful to carry
out simulations at largel, so that our fits can be checked
against alternative fits with largér;,.

It is important to remark that the validity of these extrapo-
lated data rests on thessumptiorthat if finite-size-scaling
(5.2 is found empirically to be satisfie@vith a given func-
tion F,) for some range ot, sayL i <L<L .. then it
will also hold (with the sameF ) for L>L .. Now, we
have found that the data for 16-82<128 are in good
agreement with rapid convergence lasgrows at fixedx
=£2"(L)/L to a finite-size-scaling functioR ,(x;s). It is
then reasonable tassumehat the limiting function empiri-
cally obtained forL=<128 is close to the true limiting func-
tion asL—x, i.e., that the systematic errors are in fact as
small as they seem empirically to be. Of course, it is possible
that apparent convergenceof(x;s) for 16—32<L <128 is
misleading—i.e., a “false plateau”—and that for very large
values ofL the convergence is to a very different function
(or there is convergence at jallThis caveat is not special to
our work, but is inherent imny numerical work that attempts
to evaluate a limithereL —«) by taking the relevant param-

ation og)zserved for the fundamental susceptibility, whereyeraimostto the limit (hereL large but finite. In particular,
xe ! €€" is better behaved thagg). The estimates from this caveat is inherent iall numerical(as well as experimen-

“improved” 3-loop perturbation theory are virtually identi-

tal) work in the fields of critical phenomena and quantum

cal to those from 3-loop standard perturbation theory. If wefield theory.

fit the “improved” 3-loop estimates ta+ k582, a good
fit is obtained for8=3.075(&: ..=2x10%, and we obtain the
estimates

In any case, there is no evidence that this unfortunate
situation occurs in our model. Indeed, what is remarkable in
our model is the extreme&eaknes®sf the corrections to scal-
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ing: for example, fonggnd)’ even al_=8 the corrections largex region are “essentially perturbative”: as noted in
to scaling are almost unobservable fee0.8. Even at Sec. V C 2, our raw daté(g,L) deviate significantly from
smaller values ofx, where the corrections to scaling are the finite-volume perturbation expansiofi24). In the fun-
clearly visible, they are perfectly consistent with a behaviordamental sector, the deviatid8,| betweeny: and second-

roughly of the forni* order perturbation theory is less than 1.0043%) for x=0.6
(x=0.9); while the deviation|R,| between£" and first-
%:FO(XH iz Go(X)+-++ (5.92 order perturbation tsrgeory is less thgn.9.84/ol%) for these

o(B,L) L same intervals ok.>® All these deviations are observed at

L=128, which is the largest value &f for which we have
at least in the ranges8L <128 where we have data. If all data in the specified intervals &f rather smaller deviations
hell breaks loose for largér, we certainly see no hint of it at are obtained at the samxeand smaller.. For example, for
L=<128. L=8 we have discrepancies of 1.1%6.2% for y, and

Our second principal observation is that the finite-size-6 594 (2.29% for g(F2nd),37 For the adjoint sector, the agree-
scaling functionsF,, as determined from our Monte Carlo ment with perturbation theory is much worseiat 128, for
data by the above analysis, agree well with the perturbativg, \ve have discrepancies as large as 17.@®&% for
predictions for largex [cf. Eq. (3.24]. More precisely, we >0 g (x=0.9), while for £2" the discrepancies reach
found good agreement for=0.6—0.9(depending on the ob- 12.2%(5.0%. At L=8 things are much better for, , with

servablg up to the largest observed in our dat&,,,~1.2). . : ; oA (2nd)
We would like to clarify the logic concerning this point, giﬁlc:gzgrr:cge;/r;;gf;;g only 1.3%3%; but for 57 they

which has caused some controve[8%,81. There are two
very differentimits that can be taken in a two-dimensional
model: (a) the finite-volume perturbative limig—~ at fixed

!c_hzsct;h(eb)ratggxlng(e/;sll_z)sf(i:sl;1ne% dll?):g;m and L —ee such perturbation theory, even on the smallest lattidéo be

2nd) (2nd)
There is no doubt that conventional perturbation theorysure’ the agreement f@f(F and £ would probably be
[cf. Eqg. (B4)] is valid in limit (a): it concerns, after all, a improved dramatically if the two-loogorder-1f5?) correc-

finite-dimensional integral. The deep question is howrthe tion were available to lﬂﬁ:

mainder termsin this asymptotic expansion behave as a Secondly, af‘d more |mport§ntly., we _haabNays ana-
function of L; one wants in particular to know whether the 'yze‘?zﬁjjr data in the sense of linih): that is, at eactﬁlxed_
perturbation theory derived from the study of lité isalso ~ X=¢¢ ~ (B,L)/L, we have asked whether the ratios
correct in the double limit obtained by first taking limis) ~ O(8,2L)/O(BL) have a good limit ad —, and if so we

and then taking«— [cf. Eq. (B6)]. The conventional wis- ha\_/e attempted to evaluate this limit nume_rlcally as ex-
dom saysyes indeed, this or a similar interchange of limits plained above. Thus, modulo the caveats discussed in the

underlies the conventional derivations of asymptotic freedonP"€ceding paragraphs, we believe we have determined

(a point that unfortunately has not always been clearly ac-
knowledged by advocates of the conventional wisgloRy
contrast, Patrascioiu and Seil&9,40,43 say no: they sus- %The deviations would have been considerably larger if
pect that asymptotic freedom is falgél]. At present, N0 we had defined them as(Oexact Operd/Oexact instead  of
rigorous proof is available to settle this question one way 0(Ogyaci Operd/ Ozeroth-ordes this is because the first-order perturba-
the other. tion corrections are large ambgative

Patrascioiu and SeildB0] have objected that our data in  *'This nonuniformity withL at fixed x can be at least roughly
the largex region are essentially perturbative, in the senseexplained: One expectsloop finite-volume perturbation theory to
that they are well reproduced by the finite-volume perturbahave an error term of ordéinL)***/“**. On the other hand, from
tion theory[limit (a)], whose validity is not in questioft.For ~ Ed. (B24b) we see that
this reason, they contend, we are implicitgssuming ) In°L

; ; ; . X~B—InL— ———---

asymptotic scaling. Our reply is twofold: B

On the one hand, it is not quite true that our data in theomitting all constants and subleading tejneo thats~InL if we
keepx fixed. It follows that if we try to use finite-volume pertur-
bation theory in the limiL. — at x fixed—where it is not intended
to be used—the error term will be of order 1las». It is not clear
to us why the error term appears to gp@wing asL —« at fixedx.

Thus, it is only foryxz (and x, on small latticesthat our
data are in any sense “essentially perturbative;” all the other
observables show significant deviations from finite-volume

34We do not claim that the leading correction-to-scaling term is

exactly of order /2. Indeed, innth-order perturbation theory we ) . - Kl -
know that terms of the form M./L2 with O<p=<n are present, but This couldbe a S|gn_that the coelefllent of t@(1/5™ ) remalndgr_
term growsmorerapidly than(InL)“"*, as contended by Patrascioiu

we do not know how to resum these logarithms except in one ex-

actly soluble case: In thdl-component mixed isovector/isotensor and S'e|ler{39,40,42. However, our data.dqot support this |pter-
model atN=wx, these terms resum to give a correction of the form pretation(see Sec. V CR More likely, this is a preasymptotic ef-

L=2(c,InL+Co+C_gfinL+c_ofin?L +--) [121,123, as discussed fect arising from the fact thafreinserting the constantsve have

further around Eq(B13) below. In the present case, the correction from first-order perturbation theory
to scaling might be of the forrh ~?Xlogarithms, or it might be of B*§X2+3 InL
the formL~“ with w#2—we do not know. 3 4
35Their objection concerned our earlier work on thé80r model [see also Eq(5.51)]; and even at. =128, the term(3/4a)InL is by
[77], but it can be considered also in the present context. no means dominant compared (&3)x°.
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(within statistical errorsthe true finite-size-scaling functions ~ We have found empirically that the “energy-improved”
Fo. There is no contradiction between Patrascioiu-Seiler'erturbative expansion usually exhibits asymptotic scaling
observation and ours: the same poiL) may well lie (to a given accuragyat lower values ofg than its bare-
within the range of validityto some given accuragpf two  parameter counterpart. The exceptions to this behavior are
distinct expansions. The fact that some of our data points &he observableg,, for which standard perturbation theory
largex are consistent with finite-volume perturbation theoryhas an incredibly flat behavior and the “energy-improved”
[limit (a)] does not constitute evidence against tlaésobe-  perturbation theory idess well behaved, andya/£3, for
ing consistent with nonperturbative finite-size scaljfimit which the two expansions exhibit nearly identical behavior.
(b)]. For this reason, we disagree with Patrascioiu-Seiler'sThis generally good behavior of the “energy-improved” ex-
claim [80] that our method has implicityassumed pansion confirms similar observations in other models, such
asymptotic scaling. Quite the contrary: our dataxat0.6— as theN-vector models forN=3,4,8 [112,76—79,1], the
0.9, interpreted in the sense of linl), constitute aestof  CPY"! & models forN=2,4,10[123], the SUN) chiral
the key assumptions underlying the derivation of asymptotienodels forN=4,6,9,15,21,3066,67,93, and the S) and
scaling. SU(3) lattice gauge theorig400,124—-127. What we lack is
Finally, we have made in Sec. V C 3-V C 6 a direct testa goodtheoretical explanation of this empirically observed
of asymptotic scaling for the various infinite-volume long- behavior(see Sec. Il ¢ It is not clear to us whether “im-
distance observable®..(8). As noted in the Introduction, proved” perturbation theory cagsystematicallybe expected

this test involves two distinct questions: to reach asymptotic scaling faster than standard perturbation

(i) Does the ratio between the extrapolated values and thiéheory(except for some unusual cases in which standard per-
[-loop asymptotic-freedom prediction, turbation theory has small high-order tepmar whether its

apparent success is illusory.
Col(B)= O-p) (5.93
olB)= eBBP(1+k B+ +K 18" ' VI. FINITE-SIZE-SCALING ANALYSIS: DYNAMIC
QUANTITIES
converge toI a constant in the limgt—o, modulo corrections Of all the observables we studied, the slowest m@mje
+1 ) ! o ;

of order 1577 far) is the squared fundamental magnetization2: this

(i) In the case o= %", does this constant equal the quantity measures the relative rotations of the spins in dif-
nonperturbative value predicted by the thermodynamic Bethgerent parts of the lattice, and is the prototypical SQK
Ansatz[62] combined with the best Monte Carlo estimate jnvariant “long-wavelength observable.” The autocorrela-
[67] of £2" &P tion time 7iy 2 has the following qualitative behavior: as a

Patrascioiu and SeilgB0] are right to point out that our  f,nction of g it first rises to a peak and then falls; the loca-
afflrmat!ve answer to questidi) is in some sense a foregone o5 of this peak shifts toward8=2 asL increases; and the
conclusion: since our Monte Carlo data fop(x) atx=0.6—  peight of this peak grows ds increases. A similar but less

0.9_ do in fact agree reasonably well with the 2-loop pert“r'pronounced peak is observed p, 2. By contrast, the in-
bative formula(3.24), and our data fo©(B,L) also agree at VA

least roughly with the fixed- perturbation expansiofB24), ~ tegrated autocorrelation times of the energies, . and

it is then inevitable that our extrapolated val@@s(B) at the  Tint.¢,, are much smaller and vary only weakly wighandL .
largest values oB will be consistent with 2-loop asymptotic This is because the energies are primarily “short-wavelength
scaling in the sense thab..(8)/[e**B°] will be roughly  observables,” and have only weak overlap with the modes
constant® Therefore, our observation in Secs. V C 3-V C 6 responsible for critical slowing-down.

of asymptotic scaling in sen4@ contains no significant in- Let us now make these considerations quantitative, by
formation beyondour observation in Sec. VB 1 that the applying finite-size scaling to the dynamic quantities
finite-size-scaling function& »(x) agree with the perturba- 7, ,2 and 7 12. We use theAnsatz

tive predictions ax=0.6—0.9; this latter observation already ~ © oA

contains the essence of asymptotic scaling in sénsén _ " ZinuA
the other hand, asymptotic scaling in serigg is truly an Tint,a(B, L)~ £(B,L)mAgA(E(B,L)/L) (6.1

additional observation: it is by no means inevitable that thPTor A=M2 and M2. Hereg, is an unknown scaling func
i —/VF A A -
observed constant value (ﬂ}(and)(,B) at large B will agree tion, and ga(0)=lim, gga(x) is supposed to be finite and

with the thermodynamic Beth&nsatzprediction to within a  nonzero®® We determinez,, o by plotting i a/&r(L)%ntA

fraction of a percent, as we have found heBec.V C 3. It yersusé-(L)/L and adjustingz, » until the points fall as

dence in favor of the asymptotic-freedom picture.

. _ . . . it is of course equivalent to use thesatz
38This statement is not strictly correct, as the fixegherturbation

expansionB24) is only a “1-loop” expansion, in the sense that it Tint Al B,L) ~ LAmah (€(B,L)/L),

is sufficient to obtain the 1-loop renormalization-group coefficientand indeed the twoAnsdze are related byh,(x) = x%ntaga(X).
wy (as well asyp) but not subsequent coefficieriteee Eq(B10) for However, to determine whether mga(x) =limy ox ™ %ntah(x) is
definitiond. To obtain the 2-loop coefficient; from an expansion nonzero, it is more convenient to inspect a graplg othan one of
of this type, it would be necessary to go to one higher order. hy.
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Dynamic FSS for Ty, 2 Dynamic FSS for 7, yz
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FIG. 23. Dynamic finite-size-scaling plot of 7, M / FIG. 24. Dynamic finite-size-scaling plot of T2/
A

EFMO(Lyamrds vs £F(L)/L. Symbols indicate L=16 (3% ),32 £ (L)mma; vs £Z™(L)/L. Symbols indicate L=16 ( 3 ), 32
(+), 64 (X), 128 (O), and 256 (< ). Here zim’M’zr=0.45. We have (+), 64 (X), 128 (O), and 256 (). Here zint,Mi=0.45. We have
included in the plot only those points satisfying £x(L)=8. included in the plot only those points satisfying £7(L)=8.

larger L values. We emphasize that the dynamic critical zim,Mi=O.45i 0.03 (6.3
exponentz, 5 is in generaldifferentfrom the exponent,,;

associated with the exponential autocorrelation timg,  (supjective 68% confidence limjtsin Fig. 24 we show the

[1112814' . ) . “best” finite-size-scaling plot. Note that both the magnitude
Using the procedure just described, we find and shape of the finite-size-scaling plot are similar fdr
andM 3, although the details are slightly different. Note also
Zint,M§:0-45i 0.02 (6.2  that Zint, M2 and Zint, M2 Ar€ equal within error bars; this con-

trasts with the behavior observed in MGMC for the 3-vector
model[11], in which the isotensor dynamic critical exponent

L : . . Zinw (2 appears to betrictly smallerthan the isovector ex-
“best” finite-size-scaling plot. Note that the corrections to " 'T

scaling are very weak: only tHe=16 points clearly deviate PON€NZint,r2. More work will clearly be required to sort out
from the asymptotic scaling curve; tHe=32 andL=64  what is going on here.
points show barely significant deviations.

It i§ .WOI"[h noting that the finite-size effects on dynamic ACKNOWLEDGMENTS
guantities arevery strongat ¢/L as small as 0.1 or even 0.05,
whereas the finite-size effects on static quantities are negli- We wish to thank Sergio Caracciolo, Martin Hasenbusch,
gible already wherg(L)/L=<0.15: compare Fig. 23 with Fig. Tereza Mendes, Steffen Meyer, and Ettore Vicari for helpful
1. Indeed, in Fig. 23 it is far from clear what is the limiting discussions. The computations reported here were carried out
value of the scaling functiorgMé(O):IimxngE(x), and on the Cray C-90 at the Pittsburgh Supercomputing Center
whether it is nonzero. This extremely strong dynamic finite-(PSQ and on the IBM SP2 cluster at the Cornell Theory
size effec{here a factor of order 5-10 f@(L)/L between 0 Cef!tef(CTCf)- This work was supported in part by the U.S.
and 0.3 seems to occur rather frequently in collective-modelNational Science Foundation Grants No. DMS-9200719 and
Monte Carlo algorithms: see, e.48] for multigrid in the ~ NO: PHY-9520978(G.M. and A.D.S), and by NSF Meta-

two-dimensional 4-vector model, and129] for the Center Grant No. MCA94PO32P.
Swendsen-Wang-Wolff algorithm in the two-dimensional
RP'"! models. We conclude that finite-size corrections to APPENDIX A: PERTURBATION THEORY FOR THE
dynamic critical behavior can be surprisingly strong; there- NONDERIVATIVE IRREDUCIBLE OPERATORS
fore, serious studies of dynamic critical phenomena must in-
clude a finite-size-scaling analysis. It can be very misleadin
to assume that the finite-size corrections to dynamic quanti
ties are small simply becaus#lL is small, or because the
finite-size corrections tetatic quantities are small.

We can also analyze the dynamic critical behavior for the “°Here we have inserted a factod/ as in Eq.(2.4) but contrary
adjoint sector. Proceeding as before, we obtain to Eq. (2.3). We hope this will not cause any confusion.

(subjective 68% confidence limjtsin Fig. 23 we show the

In this section we will compute the perturbatitlarge3)
redictions for a general two-point correlation funcfidn
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1 Before proceeding further let us give the explicit values of
Gi(xB)=g (x:(UgU), (Al)  the various constants for the simplest representations:
' (1) Fundamental representationn this caseXF(UOUI)
where the indexr labels an irreducible representation of =Tr(UoU§), d:-=N, and thus
SU(N), x; is the associated character amdits dimension.
The perturbative expansion of,(x;8) is obtained by

setting* 1 1

1
N’ Moyt 92T T oy (A8)

apg= —

Uy=expiA,) with A,=A%T? (A2)

and then expanding in powers Af hereT? are the genera- all other coefficients are zero.

tors of the Lie algebra si), normalized so that TA2T®) (2) Adjaint representationWe can consider the product
=15, andA2 areN?—1 real fields. We must also take into f®f=(f®f )yaceesl, Where f denotes the fundamental
account the contributions from the integration measure. Aepresentationf denotes its complex conjugate, afhdde-
straightforward calculatior{130,39 shows that the Haar notes the trivial representation. The representation
measure on SUW) is (f®F )yaceless Whose dimension id,=N?—1, is the adjoint
representation. In this cagg(UoUl)=|Tr(UoU})|>—1, so

2(1—CcosA2T3)
A XA (A3a) that

1
dU,=dA, exp{ =Trin

2 (ARTA)?
N N N 1
=dA, exp{— ﬂAfAiJrO(A“)}, YT TG, T o, Y1244,
(A3b)
where (T3),.= —if2P° are the SUK) generators in the ad- _ N _ 1 —0 1
joint representation, for which TFGT2) =N&%". T T30, YT 2a4d,r YBT Y473,
To compute the Green functigihl) we need the pertur- (A9)

bative expansion oer(UOUl). Let us first introduce

—(aTa ;
{1,=0T" defined by (33 We can also consider the product
el %=y .UT=elhog iAx, (A4) fef=(fef)symm®(f®f)anisymm The latter two representa-
0= x tions have dimensiond. =N(N+1)/2, and
This (), can be easily computed in terms/Ay andA, , using
the Baker-Campbell-Hausdorff formula. In terms @f we 1 1
will now parametrize X=(UoU) =5 (Tr(UgU}))*£5 Tr(UgUUoU)).

1 T 2 4 2\2 (AlO)
d_ XT(UOU)() = 1+ aoTrQX+ allTer-i- alz(Ter)
r

We then h in th
T apTrO8+ ayy(TrOY(Tr02) e then have in the two cases

+ a3 TrZ) 3+ apy(Tr5) >+ 0(Q), 1 1 1
(A5) a0=—E(Ni2), allzm (N=8), alzzﬁ,

where the various constants depend on the representation

Here o will be necessary in a calculation at ordeBlhy; 1 1

and ay, will appear at order %, while a,q, . . . ay, Will an=" 75577 (N£32),  an=— 757, @3=0,
appear at order BP. Let us notice that for low values ™ - -
not all these invariants are independent. Indeed it is easy to

check that foiN=2, TrQ)3 vanishes; folN=2,3 we have 1

, E— (A11)
(TrQ2)2—2 TrQ=0; (AB) =
while for N<5 we have Notice that forN=2 the antisymmetric product is the identity
8 representation, while the symmetric product is the adjoint
—(TrQ§)3+ — (TrQ§)2+ 6(TrQ§)(TrQ)2()—8 TrQS:o, representation; using Eg6A6) and (A7) it is easy to show
3 that Egs.(All) are equivalent to the corresponding values
(A7) [a=0 and Eq.(A8), respectively. Similarly, for N=3 we
have ¢ ®f)anisymni=f, @nd it can again be checked that Eq.
(A11) is equivalent to the complex conjugate of E48).
“UIn this appendix we use the summation convention for repeated We want now to compute EqA1) up to and including
indices. terms of order 182 In order to obtain this expression we
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need to compute three different mean values, {E)2), izes multiplicatively and thus satisfiébor a—0 or equiva-
(TrQy, and{(TrQ2)%. A simple Feynman-diagram calcula- lently for |[x|—«) a renormalization-group equation of the
tion gives form
(02 =N2= 1] 2 300+ X2 500+ by 3002 S TWE(B) + 7B |G (x*"a; 8)=0
B ANB 68 (B hHoor ' ’ ’
Al9
(873, (A123) (A9
) ) where W?(B) stands for the RG3 function of the lattice
(Trd) = 4(N°—1)(2N°-3) 32+ 0(8~3) theory, andy®(8) is the anomalous dimension for the rep-
X Ng? ' resentatiorr; herex®"is a distance in centimetera,is the
(A12b) lattice spacing in centimeters, ameEx*"Ya is a lattice dis-
4 tance. The functiotW'® is well known through order B*
2 HN"—1 2 -3 [67]:
((TrQ)%) = ——z— I+ 0(B™7), (A120)
g wo wp wi'
where \Nlat(ﬁ) = ?_ F_ ?"’O(ﬁ_s)a (A20)
d’p 1—cogp-x) where
J(x :f = . Al3
( ) [777’77]2 (277_)2 p2 ( ) N
A useful check is provided by the identitp6) for N=2,3. Wo=,—, (A21)
We can now comput&, (x;8):
N2
2(N2-1)a -
Gi(xB)=1+ == J(x) W1= 302" (A22)
N2—1 [ (N2=2)ay 1 w NG NZ-2 2N*—13N?+18
~ N2 at__ el = -
+ N,82 [ 4 ‘](X)+ 6 N Qg WZ 128773 1+ 2N2 T 6N4
+4a,1(2N?—=3)+4a; N(N2+1) J(x)z] +461”, (A23)
+0(B873). (A14)  and
In particular, for the fundamental and adjoint representations, G;~0.04616363. (A24)
we get
5 5 5 We have not bothered to add the superscript latvgoand
Ge(x:B)=1— N°—1 I+ (N“=1)(N°-2) 23(x)? w,, because these coefficients are universal in the sense that
FOGB)= NS ( 8N28° (23 they do not depend on the details of the lattice action.
3 We want now to obtain the funcnom"”“(ﬁ) through the
—J)]+0(87), (A15)  term of order 18°. Expanding
o, 2N 3N, NP2 Yoo | ML
CACGB) =17 75 I+ 552 07 g I ¥(B)= G+ gz TOBY), (A25)
+0(B873). (A16)

we shall computey,, and y . As v, does not depend on

The expression fo6(x) coincides with that given if93]  the specific lattice action we have not added the superscript
apart from a different normalization ¢. lat. To perform the computation we need the lajgleexpan-

From these expressions it is immediate to derive expression of J(x), which is given by([131], Sec. 4.2
sions for the energies. Sindée,)=3, we have

1 3
N2_1 (N2_1)(N2_2) B (X)—2_|n|X|+ ’}/E+ In2)+0(1) (AZG)
— 3
(A17) whereyg is the Euler constart Inserting Eq(A14) into Eq.
(A19) and comparing coefficients, we obtain
N2 +4
EA(B)=1- 55+ 535z TOB™). (A18)

“2pctually, the additive constant plays no role in the computation
We want now to derive the renormalization-group equa-of the RG g and y functions, at least up to the order we are con-
tions for the correlation functiofA1). As we are considering sidering here; all we need to know is that the coefficient {f|lis
an irreducible representation, the Green function renormali/(2x).
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N?—1 2W1/W2+y o/wo
= _ W ot
Yro - %o (A27) X = CXreZB/WO(?)
lat_ (N2=1)(N?-2) A28 fllﬁd 2 2 2w,
Y= 8N 0. (A28) “exm o W) T wet? Wit
Moreover, Eq.(A19) is satisfied only if the following non- Y1) 0
linear relation among the holds: COWR(LE) wt (A353)
N 2N 1)adt & (2N B)ant A(NZ+ 1 Wo) 215 ol i i)
3 @02 Japt g ( Jagt4( )aiz _c, ezﬁ/wo<_o) 142 D2
' B B B
=0. (A29)
This identity should be satisfied by atteducible represen- e (A35D)
tations of SUN). We have explicitly verified it for the four . .
representations we have introduced at the beginning of thighereC , is a nonperturbative constant,
section. ot .2 \at
For the fundamental representation we get b — (W_Z_ Vﬁ) Yro (ﬂ_ ﬂ) (A36)
! W(Z) Wg Wo | ¥r0 Wo/'
N2-1
YRS 5N (A30)  andb{?,b{’, ... can bedetermined analogously. Likewise,
for the correlation lengths we have
|at_(N2_1)(N2_2) wllwg
YR1T T qaN2 _ piwo| WO
167N £y=Cy M0 —
(A31) B
. . g 1 1 w
while for the adjoint we have % f 71
exr{ o U WR T T w2 Wit
N
YAo= (A32) (A373)
2
Wa | W1 Iwg a a
N2—2 =C§eﬁ/W0(_o) 1+_l_|__§_|_... ,
ylat — (A33) # B B B
AT g (A37b)
Of course, fory. we reproduce the results 93] after tak-  WhereC,, is a nonperturbative constant,
ing into account the different normalization gf Finally, we at 2
note that Rossi and Vicafd3] have also calculategt®s ; in a W2 Wy (A38)
our normalization ofg it is wiowd

at N2—1 ) ) _ anda,,as, ... can bedetermined analogously. Finally, for
722:_338477 [(3+57°+247°G1)N— 257N~ the ratioy,/£ we have
+3072N"3]. (A34) x:  Cx [wo|70™[ ¢ e

?:CT F 1+7+?—+"' y (A39)
A check on these results is provided by the fact that the # e
SU(2) chiral model is equivalent to the 4-vector model. Tak-,,ith
ing into account the different normalizations, we have
checked thaty: and vy,, evaluated aN=2, agree with the Yio ylralt W,
anomalous dimensions of the spin-1 and spin-2 operators, C(l”=w— (—— VT) (A40)
respectively, in the 4-vector modgl32]. o \%o Wo

We can now usey(8) and W(g) to determine the 4.4 so forth.
,6’—dependenc4e3 of the representation-susceptibility From Eqs.(A22), (A23), and(A38) we get
Xr=2,G,(x).** From Eq.(A19) we have
37 N-2 18m 1)
q= g 48 8
“3We apologize for using the same notatignfor both the char- 1 1

acter and the susceptibility; we trust that it will not cause any con- LT T
fusion. lert6 24 2N (Ad1)
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Similarly, for the fundamental representation we get

e 1 311 (1 1+1377 1
V1 T2 an) N8\ 4n 24| N
B S S, P A42
87 8 12 i (A42)
c;=cf=(N?-1)| - Lyt (A43)
2N3 " AN 4aN|
1 1 1
=~F)_N2_ [ T -
c=cy =(N 1){ 8N6+2N4(1 477)
1 (17 1 1) 13 3
4AN?\12 7 87?192 32m
+—21 L& Ad4
3272 4 ) (Ad4)
while for the adjoint representation we get
A 31 (137 5)1
P17 47N 24 4)N
2 TGN A45
|\ mert 1z "N (Ad5)
ST N 1V A46
er=ciV=-g+|37 5= (A46)

APPENDIX B: PERTURBATION THEORY
FOR FINITE-SIZE-SCALING FUNCTIONS

1. Theoretical basis

We work on a periodic latticé\, of linear sizeL. The
second-moment correlation length is defined by

(X#(BVL)_ 12
F L
B =y ®1)
where
x#w,L):XEEA Gu(X;B,L), (B2a)
F#w,L):XEA Gu(x; B,L)ePo, (B2b)

with #=F or A; herep,=(2#/L,0) is the smallest nonzero
momentum. LetD be any long-distance observaljéeg., the
correlation length or the susceptibilityFinite-size-scaling

theory[115-117 then predicts quite generally that

O(B,slL)

WZFO(f(ﬁ,L)/L;S)—l— O(& L),

(B3)

wheres is any fixed scale factoF, is a function character-
istic of the universality class, andis a correction-to-scaling

exponent.
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In an asymptotically free model, the functioRg, can be
computed in perturbation theory. The starting point is a per-
turbation expansion in powers of At fixed L <oe:

A, (L A-5(L
g(ﬁ,u:A/s”ZL[l—%)— 2;2)—0(/33)}.
(B4a)
B.(L B-o(L
x(ﬁ,L>=BL2[1— %)— 22)_0(,33)}.
(B4b)

where the function®,(L) and B,(L) have the following
asymptotic behavior at large:

InL
Al(L)=A11|nL+A10+O ?), (B5a)
) In?L
Az(L):Azzln L+A21InL+A20+O ? y (BSb)
InL
Bl(L):BlllnL+ Blo+o P‘ y (BSC)
) In?L
Bz(L)szzln L+ BlenL+Bzo+O ? . (BSd)

If we now assumehat the expansiond4) are valid also in
the finite-size-scaling limiB,L —o with x=§&(B,L)/L fixed
followed by expansion in powers ofxf, we can obtain

A 2
Fg(x;s)=s{1—(Alllns)(;> —[3A%In%s

4

(B6a)

A
+ (A1~ A10A11)|”3](; + O(X_G)] ,

2
+[(3B%,—B1sA1p)In?s

A
F (x;s)= 32[ 1—(Blllns)<;

4
+(2A10B11— B1gB11—B2y)Ins] ( vl O(XG)} ,
(B6b)
provided that
A= 3AT, (B79
B2o=A1B1;— 3B, (B7b)

Of course, the relationB7), which guarantee the cancella-
tion of all divergent.-dependence in EqB6), will be veri-
fied in the explicit calculation.

The foregoing expressions can be related to the
renormalization-group function&’® and 2, defined by Eq.
(A19) or equivalently by

(B8a)

lat, E_ -1y —
WR(t) o= 1] (171 =0,
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d Seiler[80]. All we can say is that our numerical data show
[W'at(t) FTi Y'at(t)—z})(oo(t_l)=0. (B8b)  good agreement with the predictioB6): see Figs. 2, 4, 6,
and 8 in Sec. VB 1.
wheret=1/8, £.(8)=&B,), and x..(8)=x(B~). Then, we _ Whatever the validity of this assumption latdingorder
can apply the RG equatior®8) to the finite-size-scaling N the double limit, it is worth noting that this assumption is

Ansdze (B3), yielding presumablynot valid atnext-to-leadingprder, that is, as con-
cerns the dominantorrectionsto finite-size scaling. This
o O a1 &t L) - can be seen clearly in the exact solution of Bkeomponent
[W () —+L I} — ~0+o( “), mixed isovector/isotensor modgtith r= B/(By+ Br) #0]
at ? lat, J X(t_l'L) _ ) (2nd
[W S ARAUAL ﬂ Tz Corow. & ) _F 0| 1+ 0300 e+ 2R
(B9b) gV () \Y L L
Imposing these equations on E&4), and defining as usual 9s(X)
Posing q 169 J T Zmiehoo] ) B
W) = —wot?—w, 3 —witt—witS—-.. | (B103
Y1) = ot + yllatt2+ ,yI2§1L[3+ yl3att4+ - wherngslznd),gl,gz,g& andh are all explicitly computable
(B10b)  functions; moreovery,,d,,05, andh all have good large-
asymptotic expansions of the for@,+C,x ™ %+ ngx‘4+---
we obtain with  leading  behaviors g;(x),g3(x)~x" and
0,(x),h(x)~1. The “bad” term in Eq.(B13) is the one
Wo=2A11, (B11@  involving gs: for x,L>1 one getsdifferent expansions de-
pending on whether?>InL or x?<InL, so the two limits
W1=2(A1—Ar1A1), (B11b  x—o andL— do not commute. Indeed, in the finite-size-
scaling limit L—oo at fixed x<<e, this term behaves like
Y0=Bu1, (B119  1/(L?InL), with a coefficient that tends to a constant at large

) ) x and has a good asymptotic expansion in powers %f; 1/
and also recover the relatioB7). Conversely, if we make \yhjle in the finite-volume perturbative lim—c at fixed

Yo are scheme-independenhence equal to their values in 12 with coefficients that are increasingbpsitivepowers of
the RG g and vy functions of the corresponding continuum |, -

perturbation theory—we can recover tha?and 1k* terms
in F,, and the o term in F,» without the need for any

lattice calculation other than the trivial one leading to the 1 [Po(InL)+0(1) Py(InL)+o0(1)
prefactorA in Eq. (B4a). We get 2 2 + v

2 N P,(InL)+0(1)
FeXx;5)=s 1—(%wolns)(; — (3wiln’s+ %wllns)(;) + 2T+ , (B14)

+0(x79) |, (B123 _ _
where P, is a polynomial of degre&. What happens, of
5 course, is that the latter expansisumsto the former; but
A this resummation cannot be seen in any finite order of per-
o) —2 1 _ —4

F(x;s)=s1 (yolns)( " +0O(x™ ). (B12b turbation theory.

The subsequent terms can be determined from the coeffi- . .
cientswi, wi, ... andy?, 42, ... together withthe co- 2. Perturbative computations

efficientsA,o andByo. . In an asymptotically free model, as noted in the preceding
Remark.Our assumption that the expansio(B4) are  sybsection, the functionB,(x;s) at largex can be com-

valid also in the double limiB,L — at fixedx followed by  pyted in perturbation theory. The starting point is the pertur-

expansion in powers of 17 implies, in particular, the pative expansion for the correlation function irffexed) pe-

asymptotic scaling3.3)—(3.6) of the infinite-volume corre- riodic L? box. In this computation we must take proper care

lation length and susceptibilities: this can be deduced by apof the zero mode. We will follow here the method used for

plying our finite-size-scaling extrapolation proceduec.  the N-vector model in133).

VA) analytica”y, USing the Starting pOII’(tB4) and the ex- Let us first considet) :exp(iA) ESU(N) andVESU(N)

trapolation functiongB6). The validity of this assumption is \we defineA as

thus as unproven as the validity of asymptotic freedom itself;

and it has been explicitly questioned by Patrascioiu and exp(iAY)=V expliA). (B15)
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TABLE XVII. Exact 1, compared with the asymptotic expansions through order 1 and through order
L2 Last column is the deviation from the ordef? expansion, multiplied by.*.

Asymptotic Asymptotic Deviation

L Exactl,, through Q1) through QL 2 xL4
4 0.268229166667 0.269401233323 0.267573658648 0.167810
8 0.379294686625 0.379719033399 0.379262139730 0.133312
16 0.489924494596 0.490036833475 0.489922610058 0.123505
32 0.600326193679 0.600354633552 0.600326077697 0.121615
64 0.710665301887 0.710672433628 0.710665294665 0.121165
128 0.820988449414 0.820990233704 0.820988448964 0.121053
256 0.931307587624 0.931308033781 0.931307587596 0.121026
512 1.041625722310 1.041625833862 1.041625722313 0.121017

Then let us use the standard Faddeev-Popov trick, rewritinghis new term gives rise to a new set of vertices, formally
vanishing as. —cc. At one-loop order we will be only inter-
ested in the leading contribution, and we will thus write

the partition functioff* as

ZEJ II du, e A"
X

[ avII 5(L-d2 (A2

zf IT du, e A4
X

de];[ 5(L—d§ (AXV)a)

(B16b

(B163

Then redefiningy’=VU, W' =WV ! and using the two-

N2—1
sided invariance of the Haar measure and of the HamiltonianGg(x; 8,L)=1— ——— D(Ll) X)—

we get(after dropping primes

z=f II du, e~ A"
X

];[ 5(L‘d§ A;‘)

fdw 5<L—d2 (Ay’)a)

Let us now perform th&V integration. Wher® ,A%=0 (as is
imposed by thes function in the numeratgy the solution of
3, (AM2=0 s clearlyW=1. ForW= 1+ (sw?)T? with sw?

infinitesimal, we havg130,39

(AY)2= A2+ (E(A) ™Y apoW?®,

with

E(A)=

expiASTa) —1

IASTA

and (T3),.= —if2P°. We therefore get

f dW];[ 5<L‘d§ (Ay’)a>:

any SUN)-invariant correlation.

de{ L9 E(AX)‘1H

(B20)

z:f IT du, e ] s
X a

L9 Ai)
X

N
X exp{m 2 AZA3+ O(A4)}. (B21)

The perturbative expansion is obtained as before. We get

N2—1[N2-2 L
Np 28% | 2dN? (
—dy[ (1) N"— (D)2 (2)
L™ %Dy (X)_WDL (x)°=D 7 (x)
+0(1/8%), (B22a
2N N%-2
BLD GaxipL)=1-— DX~ 5z (1-L79DP ()
2 NZ
+ 557 DL (00*+ 52 DIV00 +O(LIg?),
(B22b
(B18)
where
1 1-—cogp-x
D)= [am R e
(B19) p£0 (P9
here the sum ranges over the momemja (27/L)n,, with
integers Gsn,sL-1 (not all zero, and
-1 p?=43,, sir’(p,/2). An easy check of these expressions is

provided by the fact that the SN model with N=2 is
equivalent to a 4-vector model. We have verified that the
expressions foiGg(x;B,L) and G,(x;8,L) at N=2 agree

with the corresponding expressions for the isovegid3]
and isotensol{101] correlation functions of the 4-vector
“4t will be immediate to see that the same procedure applies tanodel. It follows thatreverting now to the normalizations of
Xxg and y, used in the main textwe have
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TABLE XVIIl. Exact I, compared with the asymptotlc expansions through order 1 and through order
L2 Last column is the deviation from the ordef? expansion, multiplied by.*.

Asymptotic Asymptotic Deviation
L Exactl,, through Q1) through QL ™2 xL*4
4 0.00586615668403 0.00386694659074 0.00582620995440 0.01022642
8 0.00457375479608 0.00386694659074 0.00457222688493 0.00625832
16 0.00409721602477 0.00386694659074 0.00409713277760 0.00545569
32 0.00393796470343 0.00386694659074 0.00393795966578 0.00528235
64 0.00388806680392 0.00386694659074 0.00388806649158 0.00524022
128 0.00387306824345 0.00386694659074 0.00387306822397 0.00522975
256 0.00386868741477 0.00386694659074 0.00386868741355 0.00522714
512 0.00386743440014 0.00386694659074 0.00386743440007 0.00522655
§ NZ2—1 N2—1[N2-2 - N2— .
Xe(B,L)=NL% 1- NG Iy — 257 | 2dN2 (1-L" NIy — _T(|1|_+|2L) o | +O(1B%) (, (B243
(2nd , NpL¢ 1 [N2-2 _ N2 2., N?-2 )
2 d 1 [N?-2 —d 2|2 2 3
xa(B,L)=(N“=1)L 1_F|1'L_2_,82 T(l_L )1 —3N“I3 —5N<l, |+O(1/87%) ¢, (B240
oragryzBEfg N N2 N I P — 2 7| +0 1/82 B24
|
where W T 1 22
. ) |1 —7—2 1 §N_11+T(N_2'1+N_2'2)' (B27b
|1L:Fi =7, (B25a
p70 P (3 1 1 1
1 1 |2,00 167 3 720 8 3N31+4 2(N21+N22)
T S 5 (525 S .
- (2m)*? 180 = m smhza-rm (B279
1 1
I = o} _ 1
3L, 5, DX P0)’ 0 1 1,
(B250) 127 =g lumt 7117, (B27d)
and p0_=(277/L,0,..._,0). Indimensiond=2 the asymptotic 1 (242
behavior for largel is [122] l3.= (277)4 [ +4m(1-21n2)+ 2+ 87N, 1},
1o 1 (B27¢
IlL_2 InL+|lfm L2|1 +O F y (BZG@
I(l):yE—ImT 2+|n2+i+ 1
1L 1 0 (1 16w 96w 72 24n°
IZ‘L:IZ’OC_FEF_‘_FIZ +0 F , (BZGb)
(N11+N11 2N 11)"‘ o1t N o).
1 InL 1 o InL
I3 =130+ 160 L2 ' L2'3 +0 K3 (B260 (B27f)
where Here
1 . - .
I =5 [ye=Inm+3In2-2Iny()],  (B27a n(7)=(e"" T)”“ﬂ[[l (1-(e*™1)" (B28)
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TABLE XIX. Exact I3, compared with the asymptotic expansions through order 1 and through order
L2, Last column is the deviation from the ordef? expansion, multiplied by %In L. The deviation from
the ordert. ~2 expansion can be fitted approximately by 0.02454/h*—0.01317L%.

Asymptotic Asymptotic Deviation
L Exactls| through Q1) through QL™ xL¥InL
0.00406901041667 0.00238025865645 0.00396323566772 0.0195329
0.00300128408196 0.00238025865645 0.00299146736254 0.0193366
16 0.00258777659718 0.00238025865645 0.00258692694629 0.0200833
32 0.00244546104223 0.00238025865645 0.00244539225724 0.0208112
64 0.00239991399033 0.00238025865645 0.00239990868873 0.0213870
128 0.00238601321704 0.00238025865645 0.00238601282254 0.0218254
256 0.00238190764109 0.00238025865645 0.00238190761248 0.0221619
512 0.00238072350112 0.00238025865645 0.00238072349908 0.0224257
is Dedekind’s# function[134, Chap. 1§ and Xe(B.sL) Ins _2 N2—=2 [ In%s
Xe(B,L) ST TN Ten
- 1
N, = 2 —_— (B29 1
p.q P 27N __ q? T
n=1 NnP(e 1) =t —— 4L 0(x"8
5 30 1673 Ins|x O(x™®)(, (B323
N i ! (B30)
, = _ 2 27N __ .
" Amy (1= 4ndni(eT 1) Xa(B:SL) 2[1 ns N° oy N { 22
=1 — X = In’s
Numerically, xa(B,L) 7 N°-1 (N*~1)% |87°
1
l1n~=0.04876563317014130174, (B313 + (NZ— 2)( mlg+ F) Ins|x 4+ O(XG)}
! v
|1V~ —0.02924119479519021443, (B32b
(B31b
and also
l,..~0.00386694659073721003,
(B310
§=:2nd)(18,|_) 2N2 1/2 N2+1 1 s
14Y~0.00376876379948390038, g \Ne—1)  |PTNemr | T et ggz)X
(B31d)
-4
|5,.~0.00238025865644851979, O] (B33
(B319
D Exploiting the renormalization group as discussed in the
137~ —0.00226837289908675469. previous section, we can obtain the finite-size-scaling func-
(B31)  tion for £2" in terms ofx to order 1%% and for £2"® in

r— d 14.
In Tables XVII-XIX we report the exadt;, |, andly, ~ t€rms ofx =£2"(B,L)/L to order 1x'*
for selected values of and compare with the asymptotic

expansions. The agreement is excellent, and we can even

estimate numerically the next terms in the expansionsg(znd)(lg sL) walns [ Al 2
they are ~0.121018%  ~0.0052263%  and F(m—’:s[l— 2 (—)
~0.0245 InL/L*—0.0132L*, respectively. & (B.L) 2 \x

In these expressions we can now take the finite-size-
scaling limit 8, L—o with x=£2"9(g,L)/L held fixed and
then expand in powers of %% under theassumptionthat
Egs.(B229 and(B22h) remain valid in this limit, we obtain
for d=2

4
+0(x~9)

~ wllns+w(2)|nzs A
2 8

(B34a
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. wlns (A’ 2
-2 -

&(B,sL) [
0B

3739

4

w;lns Wélnzs) ( A’ (B345

X/

+O((X’)_6)}

where A=[N/(N2—1)]*2 A’=(2N) "2 wy=N/(4m), w,;=N?/(327%). Of course, starting at orderxf/ we expect the
finite-size-scaling functions fog®"? and £2"? to differ. Finally, we can use EqB33) to express Eq(B34b) in terms ofx:

£2"(B,sL) Ins N2 N? , N2 N2In?

g =S| 15— 2 +1)| = lgnt + + “+Oo(x 4.

gD St eane—r X vz || (N7 et 553t a2 | NS g X O
(B35)
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