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We apply a differential renormalization method to the study of three-dimensional topologically massive
Yang-Mills and Chern-Simons theories. The method is especially suitable for such theories as it avoids the
need for dimensional continuation of a three-dimensional antisymmetric tensor and the Feynman rules for
three-dimensional theories in coordinate space are relatively simple. The calculus involved is still lengthy but
not as difficult as other existing methods of calculation. We compute one-loop propagators and vertices and
derive the one-loop local effective action for topologically massive Yang-Mills theory. We then consider
Chern-Simons field theory as the large mass limit of topologically massive Yang-Mills theory and show that
this leads to the famous shift in the parameterSome useful formulas for the calculus of differential
renormalization of three-dimensional field theories are given in an Appe#i2656-282197)07006-9

PACS numbes): 11.10.Gh, 11.15.Bt

[. INTRODUCTION tion with the conventional dimensional regularization in
some theoried6,22] and compatibility with unitary have
The differential renormalizatiofDR) method was pro- been investigatefi7] and it has been shown to be simpler
posed by Freedman, Johnson, and Latdireto deal with  and more powerful than other regularizations in many cases.
the ultraviolet divergences of quantum field theories a few In this paper we shall use the DR method to study the
years ago. Its original idea came from the observation thaperturbative three dimensional topologically massive Yang-
primitively divergent amplitudes are well defined in coordi- Mills (TMYM ) theory and Chern-Simor€S) theory which,
nate space for noncoincident points, but too singular at shoas will be shown, it is especially suited for.
distance to allow a Fourier transform into momentum space. The action of TMYM theory[8], which is obtained by
They proposed to renormalize such an amplitude by firsadding to the standard non-Abelian gauge action, the Chern-
writing its singular parts as derivatives of some less singulaBimons term, can be written in Euclidean space as
functions that have well-defined Fourier transformations,
then performing Fourier transformations of such functions K
and discarding the surface terms. This idea is clearly illus- Sp=—i _j ef‘”’(
trated when one applies it to the one-loop four-point bubble 4m Jx
graph of masslesg* theory in four-dimensional space-time. IK|
As we know, the amplitude of this graph involves the func- + f Fa Frra 2)
tion 1/x* that is singular ak=0, corresponding to an ultra- 16mm )y *
violet divergence. To realize its differential renormalization

S A9 AR o (AT APAC
v p 3|

27 u v

we follow Ref.[1] and use the identity where the integratiof .= [d3x is over the wholeR3. The
1 1 In(xM?2 first term, i.e., the Chern-Simons term, exists only in three
R n(x—) dimensions. It is easy to see that under a gauge transforma-
7 d 5 for x+#0. (1) . :
X 4 tion U the action transforms as

The function Ing®M?)/x? has a well-defined Fourier trans- ,
form 4m2In(p¥M?)/p?, whereM = M/ y andy is Euler’s con- S Sn— 27K Swz,
stant. After discarding the surface term we are left with
— m?In(p?/M?) as the regulated Fourier transform ok4/ 1

The DR method has been applied to many cases including S\NZ:WJ' e Tr(U~19,UU™19,Uu"19,U).
masslesg* theory up to three-loop ordét], one-loop mas- X
sive ¢* theory[2], supersymmetric Wess-Zumino model up
to three loopg 3], Yang-Mills theory in background field As it is well known, the Wess-Zumino ter®,,; takes inte-
method up to one-loofd], QED up to two loop$4] and low  ger value, so the theory is expected to be gauge invariant at
dimensional Abelian gauge theories to one-I¢bp Its rela-  the quantum level whek takes integer value. At the same
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time, an interesting property @&, is that the gauge excita- [l. FEYNMAN RULES IN COORDINATE SPACE
tions are mas_sive, With mass. This property ex_its on!y in By defining g2=4/|k| and rescalingA—A/g, we re-
three dimensions and is not shared by other dimensions. write TMYM action (1) as

The perturbative property of TMYM theory was studied
in [8,9], where it was pointed out that the computations in-
volved are not trivial and require diligence. In our view, 1 1
dimensionality plays an important role in defining three- Sm=—1 sgr(k)J 6“””<§AZ<9VAZ+ ggfabCAZABAﬁ
dimensional TMYM theory because much of the topological X '
properties of the theory are derived from the properties of
three dimensional antisymmetric tensgf*?. A calculation am) v ©)
without using dimensional continuation is therefore called
for. We are furthermore motivated to study the theory with . .

DR by the fact that in three dimensions, propagators O%Nhos_e corrgspo_ndmg Becch|-Rouet—$tora—TyutﬂBRST—)
. . : invariant action in the Landau gauge is

TMYM in coordinate space have analytic forms that are par-

ticularly suited for the application of this method. L L

During the past several years a number of studies of per-  S[A,c,c,B,m]=S,+ f [d,c°D¥c?+B%, A*].  (4)
turbative Chern-Simons theory have been carried out using a X
variety of regularization schemes including: higher covariantrhe BRST transformation of the fields are
derivative (HCD) combined with generalized Pauli-Villars
regularization[10]; HCD combined with dimensional regu-
larization [11,12; operator regularizatiofl3]; » function 6A% =D % 8c3=B?,
regularization 14]; geometric regularizatiofiL5]; and Feyn-
man propagator regularizatidi6]. Especially recently an
understanding on the perturbative behavior of CS from su-
persymmetric Yang-Mills-Chern-Simons theory has ap-
peared[17] and a more strict mathematical treatment fromHere we choose the Landau gauge because of its good infra-
the geometric viewpoint has been discussed in RES]. red behavio9]. For a pure Chern-Simons field theory, the
From these studies there emerges the so-chishift prob-  Landau vector supersymmetf£0,23,24
lem in three-dimensional CS, which is concerned with
whether quantum correction change the value of the param-
eterk. It appears that whether the value lofshifts or not
depends on the regularization schef8,20—some of the
calculations in these studies showed khshift while others
did not. In Ref[19], an analysis shows a family of shift can
be generated, which depends on the parity property of th
regulator.

As we know, Chern-Simons action is just the first term in
Eq. (2). Obviously we can consider TMYM theory as a par-
tially (high covariant derivativeregulated version of CS or,
alternatively, CS as the large mass limit-G ) of TMYM
[11]. So a calculation of the perturbative property of three- Z[J,n,fM]:f DADBDch_exF< —S—f [J5AS+ 77%c?
dimensional TMYM yields a study of thle-shift problem of
three-dimensional CS as a by-product. Our result confirms _
the existence ok shift and coincides with the case of scalar +cipP+ BaMa])- )
regulators of Ref[19].

This paper is organized as follows. In Sec. Il we presenDifferential regularization works in coordinate space, so we
the Feynman rules of TMYM in coordinate space. Section llineed the Feynman rules in coordinate space. Defining
is devoted to explicit calculations of one-loop amplitudes
needed for the computation of one-loop local effective ac- i
tion, where we have obtained ghost self-energy, vacuum po- torrrt s — = = eyt Bt
larization tensor and gauge boson-ghost-ghost vertex. In Sec.

IV Slavnov-Taylor identity is explicitly derived and used in
combination with results from Sec. Ill to determine the one-
loop local effective action. In Sec. V, as an example demon-

strating the usefulness of formulas given in Appendix, we
give a result for the self-energy of gauge field in three-
dimensional QED. In Sec. VI, we discuss and summarize the PN
. / N

results. Some formulas utilized in the calculation are given in
the Appendix. These formulas should also be useful for DR
calculations of other low-dimensional field theories. FIG. 1. Feynman rules.

a 1 abc~b~c a
5c=—§gf c’c®, 6B?=0. (5)

v, AS=isgn(ke,,,0°c? v ,c*=0,

—a_ pa a_ _
v,C _Aw U#B— D

uC%, (6)
which only exists in the Landau gauge, plays a crucial role in
gwe cancellation of the infrared divergence. Although the in-
clusion of Yang-Mills term in TMYM theory breaks this
symmetry, it does not ruin the cancellation of the infrared
singularity.

The generating functional can be formally written as
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G2o(x—y)=(0|T[A%(X)A2(Y)]/0),
AZP(x=y)=(0| T[A%(x)B(y)]0),
AP(x—y)=(0|T[B(x)B"(y)]0),
S(x—y)=(0|T[c*(x)c”(y)]|0),

a'b’c’

<0|T[AZ(X)A5(Y)A2(V)]|0>=L,L, L,G‘;i,(x—x’)GSS,(y—y')GiZ,(z—z’)F(3)M,V,p,(x’,y’,z’),

(OITLAL QAN Y)AS(2)Ad(W)|0) = f fy, L,Gii’«x—xweﬁi’i(y—y')

X G, (2=2')GoY, (W=w)IE 0o (x .y, 2' W),
(0T[c*(X)c(2)AL()]|0) = f , f , f S (x=x)GLo (Y=Y )S (2 —2) X A T (XY, 2), 8)
x Jy Jz

we obtain Feynman rules #Big. 1)

G2 (x—y)=87"D,, (x—Y)

1 (1—e M)
= — 5ab| i Py 2X_ X Xy [T~
& |sgr(k)ewpax+m(5wV 3,,) Aalx—y]
(0)ab/,, — b _ — b 4X
AP (X—y)=6"PA L (x—y) 6aﬁﬂ—4w|x_y|,

AC(x—y)=0,

(0)ab(y )= s8bq(y _\yy— sab___ —
SPB(x—y)=6""S(x—y) 6""4W|X_y|,

(3)uvp

1
(0)ab — bc) ;
I35 C(X.y,z)—gfa C[I Sgr(k)elu,vp_a[(&,i_‘92)5Vp+((9i_(9>;)6p,u+((92_(9%)5;“/]

X f 53 (x—u) 63 (y—u)5®(z—u),

2
Fzggzgzi(X,y,Z,W) :%[feabfe(:d(5vp5(r,u_ 51/05,up) + feacfedb( 5p(r5v,u_ 5vp5,u(r) + feadebc(‘s(rv(Sp;L_ 5(rp5,uv)]

X J S(x—u) 83 (y—u)6®(z—u) 8 (w—u),

ALP2(xy,2)= gfabcaif SV (x—u)s(y—u)s(z—u), ®

where the superscript (0) ” denotes free propagators or some of the one-loop diagrams should be ultraviolet diver-
bare vertices. We can see that the propagators given abogent. But as we will show, in some sense, TMYM is essen-
are much simpler in comparison with their counterparts intially a finite theory[9]. Purely for the purpose of making
four-dimensional massive theories, which are Bessel functhis finiteness manifesfDR does not require )it we intro-

tions[21]. duce a short distance cutoff by excluding a small Ballof
radius € about the origin as irf1,7]. Denote the region
R®-B. by R3.

I1l. ONE-LOOP AMPLITUDES .
Let us analyze the one-loop ghost self-energy first. Its

Now we use DR to to carry out the one-loop renormaliza-Feynman diagram is shown in Fig. 2. The Fourier transfor-
tion of TMYM theory. Naive power counting suggests that mation of its amplitude is
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FIG. 2. Ghost self-energy. (a) (5)
FIG. 3. Vacuum polarization tensor.

—gzcvaabf 787D, (X) T5S(X). (10

R6 Hil:/(p):5ab[H0;,w(p)+HeMV(p)]
Here we would like to emphasize that we need to be careful = 5 sgn(p) 1 (p?)
about the positions of the partial differential operators in the 9MP) €urpPplL o P

Feynman rules of Eq9). By using Eq.(9) and the formulas 1
in the Appendix we have _ E(5Mp2_ p,.p)TT (P, (16)

1-e ™ me ™
N where the subscripts “ 0" and “ e ” denote parity-odd and
(12) parity-even, respectively. The single ghost-loop contribution
to the vacuum polarization tensffig. 3(b)] is

(1)ab, bgch —ip-x;
SHa(p)= 62 mfRse PXip,x,

Writing singular functions at =0 in the above integrand as

. A . . 2
C : 1 1
derivatives of less singular functions, we get _ b g 2v J’ e %9, =g, 17)
) . 167“m J g3 r’r
g°Cy iy - ¢
S(l)ab(p): _ 5ab P e |p~XIp J V2 5 o . . . . .
8m'mJg? moR 8r Combining it with the contribution from the singular gluon-

loop, we have

. m?e" ™" m3e ™ m4Ei(—mr)} 12
a? " T er 8 ’ . 9°Cv( .. 9 _
I, (p)=i Sgr(k)mﬂsze P Xe,p0” —ae(l-e mr)2
where Eik) is the exponential integral function: Re
-mr gt _ﬁ(l_efmr)efmr_,_i _l_E’efmr
Ei(—mr)= J dtT. (13 mer® mr? 2
: . : . . : 33, s 9 o, M
Particular attention should be paid to differential operators in +e mry— >rae M+ e M+ 228 mr
Eqg. (12) when we perform the Fourier transformation. For
example, m2 . mé
— —Ee —TE|(—mr)
efip~xV2
J'Ri 8r2 ZCV

: g “ip-
=i sgn(k) Wnge P X€Mvpﬁp

—mr

= 2 —ip-x — —ip-x B
fRf v (e 8r® ) 208 x|y v t=C mr)2+V2 I 2
8m?® r? 2 4
Xd e mr+p297ip'xl_e - 3e 2™ m| 1
o gr2 8r2 _- 4| = Zgmr_geg-2mr
4 mr? ) 2\ 4
mmw Cipy e ™
SRR U T (149 M e M
Re —Ee —TEI(—mI’) . (18)

where the first term on the right-hand side is a surface term . _ . _
from the cutoff ballB, . Finally, using the formulas in the Again after performing a Fourier transformation we obtain
Appendix, we obtain the one-loop ghost self-energy

I ,. 9°Cy 3p3 gP_m m®
b a9y G[mp M m o P)= 1672 | | 33 Tom ~ p ~ p7 /AR,
SYB(p)=—&° 2P ot 21—
16w 2m p p 3p®  p m b 3 pd
m) 2 +| —5—=3—3-+12—]arcta ——T—3
x(B—— arctanB, (15 2m m P nz_m 4°m
m p m 2
WherepE|p|. _’7754-?"1‘2 . (19)

The one-loop gluon vacuum polarization part can be com-
puted in a similar way. The proper gluon self-energy is de-The calculation of one gluon-loop contribution kb,(p?) is
termined by gauge symmetry to have the form: similar but tedious. The result is
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1 (p2)=f eox 9ol 3 ez 3 migigmyy L (L M 3B
¢ R3 1672 V| 2mPr m3r® mril8 T 2 3
. Ze_mr-l-l—7 ‘2”"+i ze‘"”+ Ee‘Zmr 1 L —7me—mr
mri| 4 2\g 2 > 8

.- m?_ }
-m E|(—2mr)—TE|(—mr)

g2

:f efip-x C V4 i 1 (1_efmr) +V2 1 mr+ —e —2mr 4 _efmr_3672mr
R3 167 V[ " |16 m*r? 16 8° 16 r’\ 8
m . 7m 25 7m2E.
2re ar e m-Ei(—2mr) 8 i(—mr)
2 3 3 3 3
9°Cy m m 9p 1p p m m p p p
=~ 3o <_8F+246+§E_§Hg arctanz—m+ _73§_135_55+E§ arctanrﬁ
b TR TR 20
p’? 4 4 md

The next step is to construct the local part of the one- IoopV )ab¢(p.q,r)

effective action and to demonstrate renormalization explic- “

itly. From general principle$25] we know that this con- C

struction requires at least one one-loop, three-point Green :_Vfabcf fei<q<y+r»x>

function. Here we choose the one-loop ver#egc, whose

Feynman diagrams is shown in Fig. 4. 1

’ The amplitudes, which we know are divergenceless from D (Y)D po(X) = = P,ar X S(X—Y)D 1n (Y)D ,a (X)
imensional analysis, can be written from Fig. 4 as

—i sgn(k)e,,,0\d5S(X—y)

1
+—iq,d:S(x—y)& D D, (x
abec :E 3 abe Cipxtaey) @ m a\ o ( y) n p)\(y) p ( )
Vi p.an =507 | e [V®(x,y)

1
- E|Q>\(7);S(X_Y)ﬁxDM)\(Y)Dpa(X)

b)
+VP (], (21)
L XS D *D
wherep+q+r=0. The contribution from Fig. @) is + I TeS(X—Y)D o (Y) 7,0 yo(X)
(a) _i X X L xS D *D
V,u, (X1Y)_'qya#S(X_Y)apS(X)DVp(Y) _alq)\&o— (X_y) V)\(y)ay Mo’(x)
~iq 1 P 1 (1 e mX)} 1 y
Y (4m)3 Ck]x—y[ % + P ITeSX=Y)D A (Y)D o(X) |, (24
oy, oy oyt
—isgrik)e,,,d —_5 VIt 0, y which, after a similar analysis and a lengthy calculation,
yields the zero-momentum limit
X(1—e~™). (22)

(b)abc _ abcl7 1 H
. (p,q.r)= f iq,+---. (29
For our purpose, that is, to construct the local part of the 36 47

effective action, only the zero-momentum limit of this am-
plitude is needed,

X

V(a)abc(p q r): C fabcl7 l |q .. (23) _ M — — R R
wo (PO 3647 dnt

(a) (4

The amplitude from Fig. @) can be reduced to FIG. 4. One-loop ghost-gluon vertex.
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From Egs.(21), (23), and(25), we conclude that one-loop ST
Acc vertex takes the form IuA*t <5a=0, (32
vabe=g+ ..., 26
" (29 oI or
Thi . =\ ~ t?uﬁ—:azo, (33
is means precisely tha(0)=1 to one-loop orderZ(0) u OC

denotes theAcc vertex renormalization constant defined at
p?=q?=r2=0. In fact, this is the correct result to any order

in perturbation expansion for a gauge theory in the Landau s o oI' 6T
gauge. || 52 SKE 503 oLa 34
IV. ONE-LOOP LOCAL EFFECTIVE ACTION By a redefinition ofT",

Having computed the vacuum polarization tensor, the
ghost self-energy, and th&cc vertex, we are now in a po- r=r+ f BaaﬂAz, (35
sition to derive the local effective action. Our method is the X
same as that used ji1] for Chern-Simons theory.

We define the generating functiond[J, »,7,M,K,L]
with the external fieldé(i andL?, respectively, coupled to

these equations become

EOJ;R%EJCC/EEET transformation  product® ,c® and 517_0 ; ST 5F__0 .
sBa T THSKE scB
z[J.n,?M,K,L]=fDXeXP[— S+ fx LA+ el f ST o T or . .
_ « OA#3 K2 scd SLA| S
+c¥n*+B*M2+KE D c? o
1 The first relation in Eq(36) means that the redefined action
+Lal - ngabchCC>) ] , (270 I'is independent oB?, and the second relation implies that

Ki andc? always appear i’ through the combination

whereX=(A, ,B,c,c). The Slavnov-Taylor identity arising

from the BRST transformation in Eq5) is GZ(X):KZ_%F- (39)

f 5 ) LA 1) _— 28 Now we introduce the loop-wise expansion for
JeeE T sE T awE A0 (@
In addition, the invariance oZ[J,7,7,M,K,L] under the — i AT (39)
translations B?(x)— B?(x) +A?3(x),c*(x) —c¥(x) + w?(x) I '
leads, respectively, to thB field and anti-ghost field equa- o
tions: wherel'(® is the classical effective action without the gauge-
5 fixing term f,B2*A%
——M?|Z= 2
alu 6‘],3 } O' ( 9) _(0) ; HVp 1 a ag 1 abc a bac
'Y= —i sgnk) Xe 2AM&A gf ALAA,
d,—=—n*Z=0. 30
IL(SKZ n ( ) +_f Fa F,ul)a

Defining the generating functional for the connected Green

function W and that for the one-particle-irreducible Green amueay | al _ } abebc
functionT’ (i.e., the quantum effective actipas, * fx G,Dre L ng €T (40)
WLJ,7,7,M,K,L]=— InZ[J,7,7,M,K,L], Substituting this expansion into E(B7) and comparing the
o o coefficients of thei® and#? terms lead to
I'[A%,B%,c?,c? KE LA ]=W[A? ,B%c?c? K5 L2
o oT©@ 1@ 7@ 51O
—(A”aJZJrBaMaJr n2c?+c?9?), Jx SAIA 6GZ 5@ SLf =0 (41
(31)

and
we obtain the actions of the Slavnov-Taylor identity, the

field and the anti-ghost field equations Bn ATV =0, (42)



3670 W. F. CHEN, H. C. LEE, AND Z. Y. ZHU 55

where we have used the relation is the quantum analogue of the classical BRST operator and
5 5 is nilpotent
—= ==z (43
5G] oK, .
A“=0. (45)

A, the linear Slavnov-Taylor operator
ST® 5 5 O 1O 5
A:L SAHE 5G2 + SAKS G2 T 7508 SLB Now we follow the method of11,2Q to find the solution to
# " Eg. (42). From the requirement of zero ghost-number and

5 or® mass dimension 3 we determine the general form of one-loop
~ 5 oA | (44)  effective action to be that
|
1
IV=qy —i sgr(k)f up Aa OAF 37 gfabCAj;AEA;”

1
+ aszFwa“”a+ A fx[ﬁleﬂaAj+ﬁ2Laca]

w0

1 1 1
:_| Sgr‘(k)(a1+ Zﬂl)JEG#VPAZ&VA;?_i Sgr-(k)(al+3B1)J3_6,1LfoabCAa bAc+(af2+2B1)
X X
X | (9*A" = 9"AF) (4, A2—0 Aa)+(a +38 )— fabc(& —3,AM)ARPAC Yt (0, + 48 )i
. 2 1 g am 2 Vam
1
X f g2feasfecia? APALCAT 1 g, f G"c*+ B, f GiD*c*~ B, f gt (46)
X X X X

where «; and 8; are constant coefficients. In comparison with {13,270, we find that the formal larges limit of above
effective action has the same form as that in Rieff$,20, i.e., the difference lies only in the mass dependent terms. By using
the results given in the last section and choosing the renormalization pdipf=a®, we can determine the values of the
parameters as follows:

2 2
9°Cy _ 9°Cy _ 9°Cy _
Zr 0 T 3 AT er PO “0

A=
Thus, up to one-loop the explicit local effective action is

[ oca™ rO+r

local

1 1 1
1, B wvp a ay — papbpc - 2
1+ g CV)[ [ sgr(k)]f ( S ALALT 3|AuAvAp> 4m(1 32w CV)

1
upvag-a 2 apa a~a aqupd
foF Fa, A(—l g CVLGMAM+ LL c +LB A,

1
= 1+—g2CV)[—i sgr(k)]fa’“’"( SAL9, A+ AaAbAC
4 X !

27 wTv T g Pu

1
praga 2 pnapa a~a
XLF F2, A(l g CVLG A2+ LL c

9 -1
1+ 55— ZCV)

4 327

+ f B2GA2 . (48)
X

!Rigorously speaking, the one-loop local effective action given here is not perfect, it should contain ath&r( (i 1) dependent higher
covariant derivative terms such as (&' *) [,F ,,(D?)"F~", (1/m) Af,e*"*G?,, and (1) A[,(L%?)(c"c?), etc. They also have correct
mass dimension and ghost number. However, since in this section our aim is at thenlange we have put these @ dependent terms
out of consideration.



55 DIFFERENTIAL REGULARIZATION OF ... 3671

Finally the one-loop effective action of CS can be easilyresearch Grant No. 85-2112-M-008-017. Z.Y.Z. was par-
obtained by taking the large-mass linmt—o. Obviously tially supported by NFC of China and LWTZ-1298 of the
the wave-function renormalization constants are Chinese Academy of Sciences. We are greatly indebted to
Professor Manuel Asorey for explaining to us his results and
pointing out some inappropriate remarks in the original
manuscript. We would also like to thank Dr. Alberto Accardi
(49 for reminding us of the paper by E.R. Bezerra De Mello.

Zp=27'=27:1 1—i 2c Z,=2:1=1
AT LB T LG g°Cy, L=%c =4

This result can be cast into— shift form: i.e.,

APPENDIX
k—k+ sgrik)Cy . (50 1. Differential formulas
V. GAUGE FIELD SELF-ENERGY Defining
IN THREE-DIMENSIONAL QED 1d 1_g M
. . . f==—| f f(ry=———, Al
In the Appendix are given some formulas which are use- ( ) (r), 10 r (A1)

ful for computation in the study of any three-dimensional

theory in coordinate space. Here, by the way, we would like
to point out that, as an example, using these formulas we can
get the one-loop self-energy part for the gauge field in three-
dimensional massive QED an analytic expression whose in- 9,49, - - 9,,f =(81,634- - - Son_1.m+ permutationyf ("
tegral form was given in Ref5];

and denoting); = J; L, X1=X, etc., we have

+ (X1X, 834056+ permutationsf (")

e 5 2m (1 _4m* + Ssedrg -+ O
i (p)=— 8_77(5ijp —pip;)) F P pd arctanz— (X1X2X3X4. S;Z:”) 2n—1,M
+ permutation +.-
1 p
- mezeijk ﬁamtanz_m’ (51) +(X1X2' . .in)f(Zn)' (A2)

where the notation is the same as that in R8J. 910y~ Do 1 = (X1 Bpad s
192" Oon+11=(X1023045 - - O2n2n+1

VI. SUMMARY + permutationgf ("*)
We carried out the one-loop calculation of the topologi- + (X1X2X3045" - - O2n on+1
cally massive Yang-Mills theory and Chern-Simons theory . (n+2)
in coordinate space using the method of differential renor- +permutationsf ™" =+ - - -

malization. Our calculation shows that the method is very

powerful and is especially suited for quantum field theories

in three dimensions. The results we obtained on TMYM

theory coincide with those of Ref9], which used the Some examples are
method of dimensional regularization. However, as was

pointed out in Ref[9], the calculus of dimensional regular- o f=xfO

. . . . . . i i ’

ization for a theory in three dimensions is subtle and perhaps

even problematic, not least because of the need for a dimen-

sional continuation of the antisymmetric tensqgy,,; it is d;0;f = 8, f M+ xx;f@,

not known to what extent the calculated renormalization of a

field theory such as TMYM, whose property is closely tied to @ 3)

the dimension of space-time, could be an artifact of this con- 9190\t = (X B+ X} Gi + x5 1+ xixpxi 10 (A4)
tinuation. In differential renormalization there is not such an
ambiguity because one does not change the dimension of
space-time, so there is no need for a continuation of the
antisymmetric tensor. It is therefore reassuring that the two

sets of results agree. For Chern-Simons field theory our re- J—e'p X=
sult shows the shifk to k+sgn(k)C,,, which coincides with

the case of scalar regulator of REL9].

+(XgXg" + +Xons 1) FEFD, (A3)

2. Fourier transforms of some functions

(A5)

e nmx . 4
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fE.( elp X 877[77 1 . mn
i(—nmx)e'P*=— — — Zarctan—
X 63_ 4 2 p
1 mnp
" prenen?

3. Integrals over R2
Recall thatR‘:’ is R® excluding a small balB, of radius
e about the origin.
sin(pe)
p

Cipx . p, d
Lse P &Mf(x)——lf(e)471-?“d—p

+ipMLe*ip'Xf(x). (AB)
J
O o

sin(pe)
p

sin(pe)
p

B 1d
PX9,0,1 () =4m— 1
R

€

+47Tf(6)3_p,u &p,,

—pﬂpvfxe"”'xf(x)- (A7)

sin(pe)
p

—ip-X 42 _ 2
fRS PX529,F(x)=—i(4m)d*F(X)|x= eap#

sin(pe)
p

sin(pe)

T p

+i4wpﬂpaef(e)ap

. d
_|47Tep,u&f(x)|xze

~ip,p fxef‘“nx). (A8)

1d.
;d_x (X) X=€

3 sin(pe) 1 d
p,Ip,Ip, Ppe X dx

d sin(pe)
"op,  pe

fse—iP'XaMayapf(x):i4w5
RE

+idm

1d

X de(x)

—ipr £ P%3,0,f(x). (A9)

4. Short-distance expansion

sin(pe) | e p%® pie

. P | P43 80 30 T
(A10)

& [sin(pe) - _6_3 p2e® p4 7 o

app,l p | M 373 30 €
65 p2 7 p469
~PuPy =157 310 * 78601 91|

(A11)
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