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We apply a differential renormalization method to the study of three-dimensional topologically massive
Yang-Mills and Chern-Simons theories. The method is especially suitable for such theories as it avoids the
need for dimensional continuation of a three-dimensional antisymmetric tensor and the Feynman rules for
three-dimensional theories in coordinate space are relatively simple. The calculus involved is still lengthy but
not as difficult as other existing methods of calculation. We compute one-loop propagators and vertices and
derive the one-loop local effective action for topologically massive Yang-Mills theory. We then consider
Chern-Simons field theory as the large mass limit of topologically massive Yang-Mills theory and show that
this leads to the famous shift in the parameterk. Some useful formulas for the calculus of differential
renormalization of three-dimensional field theories are given in an Appendix.@S0556-2821~97!07006-9#

PACS number~s!: 11.10.Gh, 11.15.Bt

I. INTRODUCTION

The differential renormalization~DR! method was pro-
posed by Freedman, Johnson, and Latorre@1# to deal with
the ultraviolet divergences of quantum field theories a few
years ago. Its original idea came from the observation that
primitively divergent amplitudes are well defined in coordi-
nate space for noncoincident points, but too singular at short
distance to allow a Fourier transform into momentum space.
They proposed to renormalize such an amplitude by first
writing its singular parts as derivatives of some less singular
functions that have well-defined Fourier transformations,
then performing Fourier transformations of such functions
and discarding the surface terms. This idea is clearly illus-
trated when one applies it to the one-loop four-point bubble
graph of masslessf4 theory in four-dimensional space-time.
As we know, the amplitude of this graph involves the func-
tion 1/x4 that is singular atx50, corresponding to an ultra-
violet divergence. To realize its differential renormalization
we follow Ref. @1# and use the identity

1

x4
52

1

4
h
ln~x2M2!

x2
for xÞ0. ~1!

The function ln(x2M2)/x2 has a well-defined Fourier trans-
form 4p2ln(p2/M̄2)/p2, whereM̄5M /g andg is Euler’s con-
stant. After discarding the surface term we are left with
2p2ln(p2/M̄2) as the regulated Fourier transform of 1/x4.

The DR method has been applied to many cases including
masslessf4 theory up to three-loop order@1#, one-loop mas-
sivef4 theory @2#, supersymmetric Wess-Zumino model up
to three loops@3#, Yang-Mills theory in background field
method up to one-loop@1#, QED up to two loops@4# and low
dimensional Abelian gauge theories to one-loop@5#. Its rela-

tion with the conventional dimensional regularization in
some theories@6,22# and compatibility with unitary have
been investigated@7# and it has been shown to be simpler
and more powerful than other regularizations in many cases.

In this paper we shall use the DR method to study the
perturbative three dimensional topologically massive Yang-
Mills ~TMYM ! theory and Chern-Simons~CS! theory which,
as will be shown, it is especially suited for.

The action of TMYM theory@8#, which is obtained by
adding to the standard non-Abelian gauge action, the Chern-
Simons term, can be written in Euclidean space as

Sm52 i
k

4pExemnrS 12Am
a ]nAr

a1
1

3!
f abcAm

aAn
bAr

cD
1

uku
16mpExFmn

a Fmna, ~2!

where the integration*x[*d3x is over the wholeR3. The
first term, i.e., the Chern-Simons term, exists only in three
dimensions. It is easy to see that under a gauge transforma-
tion U the action transforms as

Sm→Sm22p ikSWZ ,

SWZ5
1

24p2E
x
emnr Tr~U21]mUU

21]nUU
21]rU !.

As it is well known, the Wess-Zumino termSWZ takes inte-
ger value, so the theory is expected to be gauge invariant at
the quantum level whenk takes integer value. At the same
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time, an interesting property ofSm is that the gauge excita-
tions are massive, with massm. This property exits only in
three dimensions and is not shared by other dimensions.

The perturbative property of TMYM theory was studied
in @8,9#, where it was pointed out that the computations in-
volved are not trivial and require diligence. In our view,
dimensionality plays an important role in defining three-
dimensional TMYM theory because much of the topological
properties of the theory are derived from the properties of
three dimensional antisymmetric tensoremnr. A calculation
without using dimensional continuation is therefore called
for. We are furthermore motivated to study the theory with
DR by the fact that in three dimensions, propagators of
TMYM in coordinate space have analytic forms that are par-
ticularly suited for the application of this method.

During the past several years a number of studies of per-
turbative Chern-Simons theory have been carried out using a
variety of regularization schemes including: higher covariant
derivative ~HCD! combined with generalized Pauli-Villars
regularization@10#; HCD combined with dimensional regu-
larization @11,12#; operator regularization@13#; h function
regularization@14#; geometric regularization@15#; and Feyn-
man propagator regularization@16#. Especially recently an
understanding on the perturbative behavior of CS from su-
persymmetric Yang-Mills-Chern-Simons theory has ap-
peared@17# and a more strict mathematical treatment from
the geometric viewpoint has been discussed in Ref.@18#.
From these studies there emerges the so-calledk-shift prob-
lem in three-dimensional CS, which is concerned with
whether quantum correction change the value of the param-
eter k. It appears that whether the value ofk shifts or not
depends on the regularization scheme@19,20#—some of the
calculations in these studies showed thek shift while others
did not. In Ref.@19#, an analysis shows a family of shift can
be generated, which depends on the parity property of the
regulator.

As we know, Chern-Simons action is just the first term in
Eq. ~2!. Obviously we can consider TMYM theory as a par-
tially ~high covariant derivative! regulated version of CS or,
alternatively, CS as the large mass limit (m→`) of TMYM
@11#. So a calculation of the perturbative property of three-
dimensional TMYM yields a study of thek-shift problem of
three-dimensional CS as a by-product. Our result confirms
the existence ofk shift and coincides with the case of scalar
regulators of Ref.@19#.

This paper is organized as follows. In Sec. II we present
the Feynman rules of TMYM in coordinate space. Section III
is devoted to explicit calculations of one-loop amplitudes
needed for the computation of one-loop local effective ac-
tion, where we have obtained ghost self-energy, vacuum po-
larization tensor and gauge boson-ghost-ghost vertex. In Sec.
IV Slavnov-Taylor identity is explicitly derived and used in
combination with results from Sec. III to determine the one-
loop local effective action. In Sec. V, as an example demon-
strating the usefulness of formulas given in Appendix, we
give a result for the self-energy of gauge field in three-
dimensional QED. In Sec. VI, we discuss and summarize the
results. Some formulas utilized in the calculation are given in
the Appendix. These formulas should also be useful for DR
calculations of other low-dimensional field theories.

II. FEYNMAN RULES IN COORDINATE SPACE

By defining g254p/uku and rescalingA→A/g, we re-
write TMYM action ~1! as

Sm52 i sgn~k!E
x
emnrS 12Am

a ]nAr
a1

1

3!
g fabcAm

aAn
bAr

cD
1

1

4mExFmn
a Fmna, ~3!

whose corresponding Becchi-Rouet-Stora-Tyutin-~BRST-!
invariant action in the Landau gauge is

S@A,c,c̄,B,m#5Sm1E
x
@]mc̄

aDmca1Ba]mA
ma#. ~4!

The BRST transformation of the fields are

dAm
a5Dmc

a, d c̄a5Ba,

dca52
1

2
g fabccbcc, dBa50 . ~5!

Here we choose the Landau gauge because of its good infra-
red behavior@9#. For a pure Chern-Simons field theory, the
Landau vector supersymmetry@20,23,24#

vmAn
a5 i sgn~k!enmr]rca, vmc

a50,

vmc̄
a5Am

a , vmB
a52Dmc

a, ~6!

which only exists in the Landau gauge, plays a crucial role in
the cancellation of the infrared divergence. Although the in-
clusion of Yang-Mills term in TMYM theory breaks this
symmetry, it does not ruin the cancellation of the infrared
singularity.

The generating functional can be formally written as

Z@J,h,h̄,M #5E DADBDcDc̄expS 2S2E @Jm
aAm

a1h̄aca

1 c̄aha1BaMa# D . ~7!

Differential regularization works in coordinate space, so we
need the Feynman rules in coordinate space. Defining

FIG. 1. Feynman rules.
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Gmn
ab~x2y!5^0uT@Am

a ~x!An
b~y!#u0&,

Lm
ab~x2y!5^0uT@Am

a ~x!Bb~y!#0&,

Lab~x2y!5^0uT@Ba~x!Bb~y!#0&,

Sab~x2y!5^0uT@ca~x!c̄b~y!#u0&,

^0uT@Am
a ~x!An

b~y!Ar
c~y!#u0&5E

x8
E
y8
E
z8
Gmm8
aa8 ~x2x8!Gnn8

bb8~y2y8!Grr8
cc8 ~z2z8!G~3!m8n8r8

a8b8c8 ~x8,y8,z8!,

^0uT@Am
a ~x!An

b~y!Ar
c~z!As

d~w!u0&5E
x8
E
y8
E
z8
Gmm8
aa8 ~x2x8!Gnn8

bb8~y2y8!

3Grr8
cc8 ~z2z8!Gss8

dd8 ~w2w8!G~4!m8n8r8s8
a8b8c8d8 ~x8,y8,z8,w8!,

^0uT@ca~x!c̄c~z!Am
b ~y!#u0&5E

x8
E
y8
E
z8
Saa8~x2x8!Gmm8

bb8 ~y2y8!Sc8c~z82z!3Lm8
a8b8c8~x8,y8,z8!, ~8!

we obtain Feynman rules as~Fig. 1!

Gmn
~0!ab~x2y![dabDmn~x2y!

52dabF i sgn~k!emnr]x
r1

1

m
~dmn¹2x2]m

x ]n
x!G~12e2mux2yu!

4pux2yu
,

Lm
~0!ab~x2y![dabLm~x2y!52dab]m

x 1

4pux2yu
,

L~0!ab~x2y!50 ,

S~0!ab~x2y![dabS~x2y!5dab
1

4pux2yu
,

G~3!mnr
~0!abc~x,y,z!5g fabcH i sgn~k!emnr2

1

m
@~]m

y 2]m
z !dnr1~]n

z2]n
x!drm1~]r

x2]r
y!dmn#J

3E
u
d~3!~x2u!d~3!~y2u!d~3!~z2u!,

G~4!mnrs
~0!abcd ~x,y,z,w!5

g2

m
@ f eabf ecd~dnrdsm2dnsdmr!1 f eacf edb~drsdnm2dnrdms!1 f eadf ebc~dsndrm2dsrdmn!#

3E
u
d~3!~x2u!d~3!~y2u!d~3!~z2u!d~3!~w2u!,

Lm
~0!abc~x,y,z!5g fabc]m

x E
u
d~3!~x2u!d~y2u!d~z2u!, ~9!

where the superscript ‘‘~0! ’’ denotes free propagators or
bare vertices. We can see that the propagators given above
are much simpler in comparison with their counterparts in
four-dimensional massive theories, which are Bessel func-
tions @21#.

III. ONE-LOOP AMPLITUDES

Now we use DR to to carry out the one-loop renormaliza-
tion of TMYM theory. Naive power counting suggests that

some of the one-loop diagrams should be ultraviolet diver-
gent. But as we will show, in some sense, TMYM is essen-
tially a finite theory@9#. Purely for the purpose of making
this finiteness manifest~DR does not require it!, we intro-
duce a short distance cutoff by excluding a small ballBe of
radius e about the origin as in@1,7#. Denote the region
R32Be by Re

3 .
Let us analyze the one-loop ghost self-energy first. Its

Feynman diagram is shown in Fig. 2. The Fourier transfor-
mation of its amplitude is
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2g2CVdabE
Re
3
]m
x ~e2 ip•x!Dmn~x!]n

xS~x!. ~10!

Here we would like to emphasize that we need to be careful
about the positions of the partial differential operators in the
Feynman rules of Eq.~9!. By using Eq.~9! and the formulas
in the Appendix we have

S~1!ab~p!5dab
g2CV

8p2mERe
3
e2 ip•xipmxmF12e2mr

r 6
2
me2mr

r 5 G .
~11!

Writing singular functions atr50 in the above integrand as
derivatives of less singular functions, we get

S~1!ab~p!52dab
g2CV

8p2mERe
3
e2 ip•xipm]mF¹2

12e2mr

8r 2

1
m2e2mr

4r 2
2
m3e2mr

6r
2
m4Ei~2mr!

8 G , ~12!

where Ei(x) is the exponential integral function:

Ei~2mr!5E
2`

2mr

dt
et

t
. ~13!

Particular attention should be paid to differential operators in
Eq. ~12! when we perform the Fourier transformation. For
example,

E
Re
3
e2 ip•x¹2

12e2mr

8r 2

5E
Re
3F¹2S e2 ip•x

12e2mr

8r 2 D22]me
2 ip•x

3]m

12e2mr

8r 2
1p2e2 ip•x

12e2mr

8r 2 G
5
mp

2
1p2E

Re
3
e2 ip•x

12e2mr

8r 2
, ~14!

where the first term on the right-hand side is a surface term
from the cutoff ballBe . Finally, using the formulas in the
Appendix, we obtain the one-loop ghost self-energy

S~1!ab~p!52dab
g2CV

16p2 p
2Fpp

2m
1
m2

p2
212

m

p

3S pm2
m

p D 2arctanpmG , ~15!

wherep[upu.
The one-loop gluon vacuum polarization part can be com-

puted in a similar way. The proper gluon self-energy is de-
termined by gauge symmetry to have the form:

Pmn
ab~p!5dab@Pomn~p!1Pemn~p!#

5dabF sgn~p!emnrprP o~p
2!

2
1

m
~dmnp

22pmpn!P e~p
2!G , ~16!

where the subscripts ‘‘ o ’’ and ‘‘ e ’’ denote parity-odd and
parity-even, respectively. The single ghost-loop contribution
to the vacuum polarization tensor@Fig. 3~b!# is

2dab
g2CV

16p2mERe
3
e2 ip•x]m

1

r
]n

1

r
. ~17!

Combining it with the contribution from the singular gluon-
loop, we have

Pomn~p!5 i sgn~k!
g2CV

16p2E
Re
3
e2 ip•xemnr]rF 9

m3r 6
~12e2mr!2

2
18

m2r 5
~12e2mr!e2mr1

1

mr4 S 212
13

2
e2mr

1
33

2
e22mrD2

1

2r 3
e2mr1

9

r 3
e22mr1

m

4r 2
e2mr

2
m2

4r
e2mr2

m3

4
Ei~2mr!G

5 i sgn~k!
g2CV

16p2E
Re
3
e2 ip•xemnr]r

3F 3

8m3 ~¹2!2
~12e2mr!2

r 2
1¹2S 2

1

2
1
5

4
e2mr

2
3

4

e22mr

mr2 D1
m

r 2 S 2
1

4
e2mr23e22mrD

2
m2

4r
e2mr2

m3

4
Ei~2mr!G . ~18!

Again after performing a Fourier transformation we obtain

Po~p
2!5

g2CV

16p2 F S 3p3m3 15
p

m
2
m

p
2
m3

p3 Darctanpm
1S 2

3

2

p3

m3 23
p

m
112

m

p Darctan p2m2
3

4
p
p3

m3

2p
p

m
1
m2

p2
12G . ~19!

The calculation of one gluon-loop contribution toP e(p
2) is

similar but tedious. The result is

FIG. 2. Ghost self-energy.

FIG. 3. Vacuum polarization tensor.
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P e~p
2!5E

Re
3
e2 ip•x

g2

16p2CVF 3

2m4r 6
~12e2mr!22

3

m3r 5
e2mr~12e2mr!1

1

m2r 4 S 182
11

4
e2mr1

33

8
e22mrD

2
1

mr3 S 74 e2mr1
17

4 De22mr1
1

r 2 S 78 e2mr1
1

4
e22mrD2

1

r Sm2 e22mr2
7m

8
e2mrD

2m2Ei~22mr!2
7m2

8
Ei~2mr!G

5E
Re
3
e2 ip•x

g2

16p2CVH ¹4F 116 1

m4r 2
~12e2mr!2G1¹2F 1

m2r 2 S 1162
5

8
e2mr1

9

16
e22mrD G1

1

r 2 S 138 e2mr23e22mrD
2

m

2r
e22mr2

7m

8r
e2mr2m2Ei~22mr!2

7m2

8
Ei~2mr!J

52
g2CV

32p F S 28
m3

p3
124

m

p
1
9

2

p

m
2
1

2

p3

m3Darctan p2m1S 27
m3

p3
213

m

p
25

p

m
1

p3

m3Darctanpm
111

m2

p2
1

p

4

p

m
2

p

4

p3

m3 15G . ~20!

The next step is to construct the local part of the one-loop
effective action and to demonstrate renormalization explic-
itly. From general principles@25# we know that this con-
struction requires at least one one-loop, three-point Green
function. Here we choose the one-loop vertexAcc̄, whose
Feynman diagrams is shown in Fig. 4.

The amplitudes, which we know are divergenceless from
dimensional analysis, can be written from Fig. 4 as

Vm
abc~p,q,r !5

1

2
g3CVf

abcE
x
E
y
e2 i ~p•x1q•y!@Vm

~a!~x,y!

1Vm
~b!~x,y!#, ~21!

wherep1q1r50. The contribution from Fig. 4~a! is

Vm
~a!~x,y!5 iqn]m

x S~x2y!]r
xS~x!Dnr~y!

52 iqn

1

~4p!3
]m
x 1

ux2yu
]r
xF1x ~12e2mx!G

3F2 i sgn~k!enra]a
y2

1

m
dnr¹2y1

1

m
]n
y]r

yG1y
3~12e2my!. ~22!

For our purpose, that is, to construct the local part of the
effective action, only the zero-momentum limit of this am-
plitude is needed,

Vm
~a!abc~p,q,r !52g3

CV

2
f abc

17

36

1

4p
iqm1•••. ~23!

The amplitude from Fig. 4~b! can be reduced to

Vm
~b!abc~p,q,r !

5
CV

2
f abcE

x
E
y
ei ~q•y1r •x!F2 i sgn~k!emnrql]s

xS~x2y!

3Dnl~y!Drs~x!2
1

m
prql]s

xS~x2y!Dml~y!Drl~x!

1
1

m
iql]s

xS~x2y!]m
y Drl~y!Drs~x!

2
1

m
iql]s

xS~x2y!]r
yDml~y!Drs~x!

1
1

m
iql]s

xS~x2y!Dnl~y!]m
x Dns~x!

2
1

m
iql]s

xS~x2y!Dnl~y!]n
xDms~x!

1
1

m
pnql]s

xS~x2y!Dnl~y!Dms~x!G , ~24!

which, after a similar analysis and a lengthy calculation,
yields the zero-momentum limit

Vm
~b!abc~p,q,r !5

CV

2
f abc

17

36

1

4p
iqm1•••. ~25!

FIG. 4. One-loop ghost-gluon vertex.
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From Eqs.~21!, ~23!, and ~25!, we conclude that one-loop
Acc̄ vertex takes the form

Vm
abc501•••. ~26!

This means precisely thatZ̃(0)51 to one-loop order,Z̃(0)
denotes theAcc̄ vertex renormalization constant defined at
p25q25r 250. In fact, this is the correct result to any order
in perturbation expansion for a gauge theory in the Landau
gauge.

IV. ONE-LOOP LOCAL EFFECTIVE ACTION

Having computed the vacuum polarization tensor, the
ghost self-energy, and theAcc̄ vertex, we are now in a po-
sition to derive the local effective action. Our method is the
same as that used in@11# for Chern-Simons theory.

We define the generating functionalZ@J,h,h̄,M ,K,L#
with the external fieldsKm

a andLa, respectively, coupled to
nonlinear BRST transformation productsDmc

a and
2g fabccbcc/2 as

Z@J,h,h̄,M ,K,L#5E DXexpH 2FS1E
x
S Jm

aAma
1h̄aca

1 c̄aha1BaMa1Km
aDmca

1LaS 2
1

2
g fabccbccD D G J , ~27!

whereX5(Am ,B,c,c̄). The Slavnov-Taylor identity arising
from the BRST transformation in Eq.~5! is

E
x
FJm

a d

dKm
a 2h̄a

d

dLa
1ha

d

dMaGZ50 . ~28!

In addition, the invariance ofZ@J,h,h̄,M ,K,L# under the
translations Ba(x)→Ba(x)1la(x),c̄a(x)→ c̄a(x)1va(x)
leads, respectively, to theB field and anti-ghost field equa-
tions:

F]m

d

dJm
a 2MaGZ50 , ~29!

F]m

d

dKm
a 2haGZ50 . ~30!

Defining the generating functional for the connected Green
functionW and that for the one-particle-irreducible Green
functionG ~i.e., the quantum effective action! as,

W@J,h,h̄,M ,K,L#52 lnZ@J,h,h̄,M ,K,L#,

G@Am
a ,Ba,ca,c̄a,Km

a ,La#5W@Am
a ,Ba,ca,c̄a,Km

a ,La#

2~AmaJm
a1BaMa1h̄aca1 c̄aha!,

~31!

we obtain the actions of the Slavnov-Taylor identity, theB
field and the anti-ghost field equations onG:

]mA
ma1

dG

dBa 50 , ~32!

]m

dG

dKm
a 2

dG

d c̄a
50 , ~33!

E
x
F dG

dAma

dG

dKm
a 2

dG

dca
dG

dLaG50 . ~34!

By a redefinition ofG,

Ḡ5G1E
x
Ba]mAm

a , ~35!

these equations become

dḠ

dBa 50, ]m

dḠ

dKm
a 2

dḠ

d c̄a
50 , ~36!

E
x
F dḠ

dAma

dḠ

dKm
a 2

dḠ

dca
dḠ

dLaG50 . ~37!

The first relation in Eq.~36! means that the redefined action
Ḡ is independent ofBa, and the second relation implies that
Km
a and c̄a always appear inḠ through the combination

Gm
a ~x!5Km

a2]mc̄
a. ~38!

Now we introduce the loop-wise expansion forḠ

Ḡ5 (
n50

`

\nḠ~n!, ~39!

whereḠ(0) is the classical effective action without the gauge-
fixing term *xB

a]mAm
a

Ḡ~0!52 i sgn~k!E
x
emnrS 12Am

a ]nAr
a1

1

3!
g fabcAm

aAn
bAr

cD
1

1

4mExFmn
a Fmna

1E
x
FGm

aDmca1LaS 2
1

2
g fabccbccD G . ~40!

Substituting this expansion into Eq.~37! and comparing the
coefficients of the\0 and\1 terms lead to

E
x
FdG~0!

dAma

dG~0!

dGm
a 2

dG~0!

dca
dG~0!

dLa G50 ~41!

and

DG~1!50 , ~42!
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where we have used the relation

d

dGm
a 5

d

dKm
a . ~43!

D, the linear Slavnov-Taylor operator

D5E
x
F dḠ~0!

dAma

d

dGm
a 1

d

dAma

dḠ~0!

dGm
a 2

dḠ~0!

dca
d

dLa

2
d

dca
dḠ~0!

dLa G , ~44!

is the quantum analogue of the classical BRST operator and
is nilpotent

D250 . ~45!

Now we follow the method of@11,20# to find the solution to
Eq. ~42!. From the requirement of zero ghost-number and
mass dimension 3 we determine the general form of one-loop
effective action to be that1

G~1!5a1F2 i sgn~k!E
x
emnrS 12Am

a ]nAr
a1

1

3!
g fabcAm

aAn
bAr

cD G
1a2

1

4mExFmn
a Fmna1DE

x
@b1G

maAm
a1b2L

aca#

52 i sgn~k!~a112b1!E
x

1

2
emnrAm

a ]nAr
a2 i sgn~k!~a113b1!E

x

1

3!
emnr f abcAm

aAn
bAr

c1~a212b1!
1

4m

3E
x
~]mAna2]nAma!~]mAn

a2]nAm
a !1~a213b1!

1

2mExg fabc~]mAn
a2]nAm

a !AmbAnc1~a214b1!
1

4m

3E
x
g2f eabf ecdAm

aAn
bAmcAnd1b1E

x
Gm
a ]mca1b2E

x
Gm
aDmca2b2E

x

1

2
g fabccbcc, ~46!

wherea i andb i are constant coefficients. In comparison with CS@11,20#, we find that the formal large-m limit of above
effective action has the same form as that in Refs.@11,20#, i.e., the difference lies only in the mass dependent terms. By using
the results given in the last section and choosing the renormalization point atupu50, we can determine the values of the
parameters as follows:

a15
g2CV

4p
, a252

g2CV

32p
, b152

g2CV

16p
, b250 . ~47!

Thus, up to one-loop the explicit local effective action is

G local5G~0!1G local
~1!

5S 11
1

4p
g2CVD @2 i sgn~k!#E

x
emnrS 12Am

a ]nAr
a1

1

3!
Am
aAn

bAr
cD 1

1

4m S 12
1

32p
g2CVD

3E
x
FmnaFmn

a 2DS 1

16p
g2CVE

x
Gm
aAm

a1E
x
LacaD 1E

x
Ba]mAm

a

5S 11
1

4p
g2CVD @2 i sgn~k!#E

x
emnrS 12Am

a ]nAr
a1

1

3!
Am
aAn

bAr
cD 1

1

4m S 11
9

32p
g2CVD 21

3E
x
FmnaFmn

a 2DS 1

16p
g2CVE

x
GmaAm

a1E
x
LacaD 1E

x
Ba]mAm

a . ~48!

1Rigorously speaking, the one-loop local effective action given here is not perfect, it should contain other (1/m)n (n>1) dependent higher
covariant derivative terms such as (1/m2n11) *xFmn(D

2)nFmn, (1/m) D*xe
mnrGm

a , and (1/m) D*x(L
aca)( c̄bcb), etc. They also have correct

mass dimension and ghost number. However, since in this section our aim is at the largem limit, we have put these 1/m dependent terms
out of consideration.
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Finally the one-loop effective action of CS can be easily
obtained by taking the large-mass limitm→`. Obviously
the wave-function renormalization constants are

ZA5ZB
215ZG

21512
1

16p
g2CV , ZL5ZC

2151 .

~49!

This result can be cast intok2shift form: i.e.,

k→k1 sgn~k!CV . ~50!

V. GAUGE FIELD SELF-ENERGY
IN THREE-DIMENSIONAL QED

In the Appendix are given some formulas which are use-
ful for computation in the study of any three-dimensional
theory in coordinate space. Here, by the way, we would like
to point out that, as an example, using these formulas we can
get the one-loop self-energy part for the gauge field in three-
dimensional massive QED an analytic expression whose in-
tegral form was given in Ref.@5#;

P i j ~p!52
e2

8p
~d i j p

22pipj !F2mp2 1S 1p2
4m2

p3 Darctan p2mG
2me2e i jk

1

2pp
arctan

p

2m
, ~51!

where the notation is the same as that in Ref.@5#.

VI. SUMMARY

We carried out the one-loop calculation of the topologi-
cally massive Yang-Mills theory and Chern-Simons theory
in coordinate space using the method of differential renor-
malization. Our calculation shows that the method is very
powerful and is especially suited for quantum field theories
in three dimensions. The results we obtained on TMYM
theory coincide with those of Ref.@9#, which used the
method of dimensional regularization. However, as was
pointed out in Ref.@9#, the calculus of dimensional regular-
ization for a theory in three dimensions is subtle and perhaps
even problematic, not least because of the need for a dimen-
sional continuation of the antisymmetric tensoremnr ; it is
not known to what extent the calculated renormalization of a
field theory such as TMYM, whose property is closely tied to
the dimension of space-time, could be an artifact of this con-
tinuation. In differential renormalization there is not such an
ambiguity because one does not change the dimension of
space-time, so there is no need for a continuation of the
antisymmetric tensor. It is therefore reassuring that the two
sets of results agree. For Chern-Simons field theory our re-
sult shows the shiftk to k1sgn(k)CV , which coincides with
the case of scalar regulator of Ref.@19#.
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APPENDIX

1. Differential formulas

Defining

f ~n![S 1r d

dr D
n

f ~r !, f ~r !5
12e2mr

r
, ~A1!

and denoting]15] i1, x15xi1, etc., we have

]1]2•••]2nf5~d12d34•••d2n21,2n1permutations! f ~n!

1~x1x2d34d561permutations! f ~n11!

1~x1x2x3x4d56d78•••d2n21,2n

1permutations! f ~n12!1•••

1~x1x2•••x2n! f
~2n!, ~A2!

]1]2 •••]2n11f5~x1d23d45•••d2n,2n11

1permutations! f ~n11!

1~x1x2x3d45•••d2n,2n11

1permutations! f ~n12!1•••

1~x1x2•••x2n11! f
~2n11!. ~A3!

Some examples are

] i f5xi f
~1!,

] i] j f5d i j f
~1!1xixj f

~2!,

] i] j]kf5~xid jk1xjdki1xkd i j ! f
~2!1xixjxkf

~3!. ~A4!

2. Fourier transforms of some functions

E
x

1

x2
eip•x5

2p2

upu
, ~A5!

i E
x

e2nmx

x
eip•x5

4p

n2m21p2
,

E
x

e2nmx

x2
eip•x5

4p

p
arctan

p

nm
,
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E
x
Ei~2nmx!eip•x52

8p

p3 Fp4 2
1

2
arctan

mn

p

2
1

4

mnp

p21m2n2G .
3. Integrals overRe

3

Recall thatRe
3 is R3 excluding a small ballBe of radius

e about the origin.
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4. Short-distance expansion
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