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Monte Carlo simulation using a cluster algorithm is used to compute the scaling part of the free energy for
a three-dimensional O~4! spin model. The results are relevant for the analysis of lattice studies of high
temperature QCD.@S0556-2821~97!02301-1#
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I. INTRODUCTION

The high temperature phase transition for QCD with two
flavors of light quarks is expected to be driven by chiral
symmetry restoration, with an order parameter having O~4!
symmetry in the continuum limit@1–3#. Thus, near the tran-
sition we expect the scaling properties of a three-dimensional
O~4! spin model. For quark mass or temperature not too
close to the transition, the system would be expected to be-
have like mean field theory. Recently Kocic and Kogut have
suggested that mean field behavior might describe the system
arbitrarily close to the critical point@4#. Finally, with Kogut-
Susskind quarks on a nonzero lattice spacing, the exact chiral
symmetry is only O~2!, and it is possible that lattice simula-
tions are better described by O~2! critical behavior. In addi-
tion to its intrinsic interest as an indicator of the physics of
the transition, the form of the free energy near the critical
point is important in extrapolating the QCD equation of state
from the quark masses where lattice simulations are practical
to the light quark masses of the real world@5,6#.

Assuming a second order transition@7#, we expect the
singular behavior of thermodynamic observables near the
transition to be universal, meaning that the symmetry group
of the order parameter and the dimension of the system de-
termine the critical exponents and the form of the singular
part of the free energy, up to normalization of the scaling
variables.~See, for example,@8#.! The critical exponents for
O~4! and O~2! are well known@9–11#, but the form of the
free energy, or the ‘‘scaling function,’’ is only poorly
known. An e expansion result is available@12#, quoted in
Ref. @2#. Similarly, Monte Carlo calculations of critical ex-
ponents have been used to study the critical behavior of high
temperature QCD@13#, but to date the full power of the
scaling ansatz, namely, comparison with the universal scal-
ing functions as well as critical exponents, has not been
brought to bear.

Here we use Monte Carlo simulation to compute an ap-
proximate scaling function for O~4!, to be used in comparing
to Monte Carlo simulations of QCD.

For the O~N! spin model we use the partition function,
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wherei j are nearest neighbor pairs on a~hyper!cubic lattice
in d dimensions ands0i is the zero component ofsW i . Then
the energy and magnetization are
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In QCD, using the normalization where the plaquette (h) is
three when all links are unity, the analogous equations are
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II. PARAMETRIZING THE SCALING FUNCTIONS

From invariance under a length rescaling by a factorb,
the critical part of the free energy should have the property,

f s~ t,h!5b2df s~b
ytt,byhh!. ~4!

Heret andh are the scaling variables, with the critical point
at (t,h)5(0,0), andyt andyh are the corresponding critical
exponents. Other exponents can be expressed in terms ofyt
andyh . Here t5(T2Tc)/T0 andh5H/H0 are convention-
ally normalized by requiring thatM (t50,h)5h1/d and
M (t,0,h50)5(2t)b. The free energy also has a nonsin-
gular part.

The scaling ansatz, Eq.~4!, implies that the magnetization
near the critical point is determined by a universal scaling
function, conventionally written as

M

h1/d
5 f ~ t/h1/bd!5 f ~x!. ~5!

The normalization conditions ont and h then require that
f (0)51 and f (x)→(2x)b asx→2`.
In computing the energy and pressure of QCD, we require

the plaquette, analogous to the energy in the spin model,
extrapolated to zero quark mass, which is analogous to zero
magnetic field. The magnetization~or c̄c in QCD! is

1

V

] ln~Z!

]H
5

1

VH0

] ln~Z!

]h
,

while the energy~or plaquette in QCD! is
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Since the energy and magnetization are derivatives of the
free energy with respect tot andh, respectively, information
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about one quantity constrains the other. In particular, the
behavior of c̄c in QCD can help in extrapolating the
plaquette to zero or small quark mass.~It is important to
enforce consistency of the plaquette andc̄c in computing
the equation of state. Using a plaquette andc̄c which are not
derivatives of the same free energy could lead to inconsistent
thermodynamics.! Because our analysis requires that we
handle the energy and magnetization on the same footing, in
addition to Eq.~5!, we develop a formulation of the scaling
ansatz which treats the magnetization and energy equally.

The scaling ansatz, Eq.~4!, tells us that if we specify the
singular free energy on any circle in thet,h plane, we have
specified it for allt,h. ~See Fig. 1.! In particular, ifg(u) is
the scaling free energy on the unit circle in thet,h plane,
then the rescaling factorb which takest,h to the unit circle
is determined by

~bytt !21~byhh!251. ~6!

For yt andyh positive this clearly has a unique solution for
b.0 given t and h. Although in general this cannot be
solved analytically forb, it is straightforward to do differen-
tiations implicitly and solve the equation numerically. Then
the singular free energy~actually21 3 temperature3 free
energy per volume! is

1

V
ln@Zs~ t,h!#5b~ t,h!2dg„u~ t,h!…, ~7!

whereu(t,h)5arctan21(byhh/bytt), andg(u) is a universal
function.

Equivalently, the relation betweent,h and b,u can be
expressed as

byhh5sin~u!, bytt5cos~u!. ~8!

After some differentiations, the magnetization and energy
can be expressed in terms ofg(u):
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Physical insight into the form ofg(u) comes from consider-
ing special cases.

First, for t.0 andh small,
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T0yt
td/yt21. ~12!

SinceM must vanish here, we requireg8(0)50. In fact, we
expect the free energy to be an even function ofh, with a
cusp ath50 andt,0 due to the discontinuity ofM on this
line. One more differentiation of the energy will give the
specific heatC'td/yt225t2a. We also find that the suscep-
tibility is
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1g9~0! D t ~d22yh!/yt. ~13!

For t,0 andh small and positive,
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T0yt
~2t !d/yt21. ~14!

For t50 andh.0,

FIG. 1. A length rescaling by a factor ofb is accomplished by
changing the couplings (t,h) at pointA to (bytt,byhh) at pointB by
moving along the renormalization group trajectory~curved line!.
The trajectories may be labeled by their intersections with the unit
circle, so specifying the free energy on the unit circle, together with
the scaling ansatz which tells how the free energy changes along a
trajectory, specifies the free energy everywhere. The discontinuity
in the order parameter att,0 andh50 ~heavy line! implies that
the derivative of the free energy is discontinuous there.
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M5
d

H0yh
g~p/2!hd/yh21,

E5
21

dT0
g8~p/2!h~d2yt!/yh. ~15!

From these expressions we get the following intuition about
the scaling free energyg(u): ~1! g(0) controls the singular
part of the energy forT.Tc ; ~2! g(p) controls the singular
part of the energy forT,Tc ; ~3! g8(p/2) controls
the energy for t50, hÞ0; ~4! limu↑pg8(u)
52 limu↓2pg8(u) controls the expectation value ofM for
T,Tc ; ~5! g(p/2) controlsM for t50 andhÞ0.

Here it is convenient to chooseT0 and H0 so that
H0M (t50,h)5h1/d andH0M (t,0,h50)5(2t)b. The nor-
malization conditions on t and h then require that
g(p/2)5yh /d andg8(p)521. When it is necessary to dis-
tinguish, we will callH0 for the ‘‘ f (x)’’ and ‘‘ g(u)’’ forms
Hf and Hg , respectively. Similarly we distinguishTf and
Tg . They are related byHf5Hg

d11 andTf5TgHg
1/b .

III. SIMULATIONS

Monte Carlo simulations were run on 163, 243, 323, 403,
483, and 643 lattices using a multiple cluster updating algo-
rithm @14#.

To use a cluster updating algorithm with a nonzero mag-
netic field, just imagine that in addition to the regular bonds
with strengthJ connecting neighboring spins, each spin is
connected to a fake ‘‘magnetizing spin’’ by a bond of
strengthH, as illustrated in Fig. 2. Then break both ‘‘J
bonds’’ and ‘‘H bonds’’ and update clusters according to the
usual cluster algorithm@14#. The ‘‘magnetizing spin’’ is a
member of a cluster, and is reflected just like any other spin.
When evaluating the magnetization of the lattice, we take the
components of the lattice spins in the current direction of the
magnetizing spin.

Results for the magnetization of the O~4! model are plot-
ted in Fig. 3. Results from the largest lattice size run at each
point are shown. The remaining finite size effects are about
the same size as the statistical error bars. Then, in Fig. 4 the
results forh50.002, 0.005, 0.01, and 0.02 are plotted in the
form in Eq. ~5!. Here we used the values for the critical
coupling and exponents from Kanaya and Kaya@9#.

Then we fit the magnetization results to find an approxi-
mate scaling functiong(u) for the free energy in the form in
Eq. ~7!. A simple parametrization ofg(u) which satisfies the
normalization conditions ong(p/2) andg8(p) is

FIG. 2. Cluster updating with a magnetic field. A single ‘‘mag-
netizing spin’’ is coupled to every spin in the lattice by a bond with
strengthH.

FIG. 3. Magnetization in the O~4! model forh50.002, 0.005,
0.01, 0.02 and 0.05. Octagons are forL516, squares forL524,
bursts for L532, diamonds forL540, decorated diamonds for
L548 and decorated plusses forL564.

FIG. 4. O~4! magnetization forh50.002, 0.005, and 0.01 plot-
ted as a scaling function in the conventional form. I use the results
of Kanaya and Kaya@9# for the critical coupling and critical expo-
nents. In this plot the points forh50.05 are plotted with pluss,
those for 0.02, with crosses, 0.01 with diamonds, 0.005 with octa-
gons, and 0.002 with squares. Also shown are the asymptotic forms
f (x)'(2x)b asx→2` ~a! and f (x)'Cx2g ass→` ~b!. A four-
parameter fit to the scaling function from the ‘‘g(u)’’ form is
shown with a solid line~c!, running through the entire graph. The
mean field scaling function, and the second ordere expansion scal-
ing function @12# are shown, labeled ‘‘e ’’ and ‘‘mf.’’ Finally, the
short line segment in the upper left corner is a result of Wallace and
Zia @15#, quoted in the Appendix of Ref.@2#, incorporating the
correct behavior of the susceptibility near the critical line.
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g~u!5yh/312@cos~u/2!2A1/2#1a0cos~u!1a1@cos~3u/2!

13cos~u/2!22A1/2#1a2@cos~2u!11#

1a3@cos~5u/2!25cos~u/2!16A1/2# ~16!

(d53 in this equation.!
In this fit I used the energy and magnetization for

0.89,J,0.99 andH50.005 and 0.002. The free energy
also included an analytic part f A5CH2h

21CJ1t
1CJ2t

21CJ3t
3. The resultingg(u) is plotted in Fig. 5.Tg

andHg were 0.44 and 1.31, respectively. The magnetization
corresponding to this free energy is also plotted in Fig. 6. In
principle, the critical exponentsyt and yh and the critical
coupling are also parameters in this fit. However, to get these
parameters to the same accuracy as has already been done by
Kanaya and Kaya@9# or Butera and Comi@11# would require
a careful correction for finite size effects, and care in using
only data for small enought andh that corrections to scaling
are small. Therefore, the exponents and critical coupling
were fixed to those found by Kanaya and Kaya. Because of
the remaining finite size effects and corrections to scaling,
the x2 of this fit was very bad~243 for 30 degrees of free-
dom!. However, since the results are already many times
more accurate than the QCD data with which we intend to
compare, there is little incentive to make the necessary cor-
rections. This scaling function was then converted to the
‘‘ f (x)’’ form @by computing the resulting magnetization as a
function of t for h50.002 and plotting according to Eq.~5!#,
and plotted as a solid line in Fig. 4, where it can be seen to
describe the magnetization quite well.@It is necessary to con-

vert the normalization oft andh used in the ‘‘g(u)’’ form to
the conventional normalizations for the ‘‘f (x)’’ form:
Hf5Hg

d11 and Tf5TgHg
1/b # In this figure I have also in-

cluded the mean field form of the scaling function and the
epsilon expansion form.

Figure 4 also shows the properly normalized asymptotic
form for f (x) asx→2`, x2b. It can be seen that the scaling
function approaches this asymptotic form quite slowly. This
is the region where long distance physics is dominated by
Goldstone bosons. In particular, we expect that fort,0 and
h small, the magnetization takes the form
M5M (t,0)1Ah1/2, so that the susceptibility diverges at
h50 for all t,0 @15#. The fitting function~16! should really
be modified to support this behavior atu5p, but this prob-
lem seems to occur in a region beyond where these O~4!
results, and the QCD results to which they will be compared,
are taken.

The Monte Carlo scaling function and thee expansion are
in good agreement fort,0 because of the normalization
condition ont, M (t,0,h50)5(2t)b. Had we chosen the
equally sensible normalization conditionx5dM/dh5t2g

for t.0 andh50, we would have found agreement of the
Monte Carlo ande expansion fort.0 with a discrepancy for
t,0.
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