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Scaling functions for O(4) in three dimensions
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Monte Carlo simulation using a cluster algorithm is used to compute the scaling part of the free energy for
a three-dimensional @) spin model. The results are relevant for the analysis of lattice studies of high
temperature QCD.S0556-282(197)02301-]
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The high temperature phase transition for QCD with two

flavors of light quarks is expected to be driven by chiralin QCD, using the normalization where the plaqueffé) (s

symmetry restoration, with an order parameter havid)O three when all links are unity, the analogous equations are
symmetry in the continuum lim{tL—3]. Thus, near the tran-

sition we expect the scaling properties of a three-dimensional 1 dIn(2) — 1 9In(2)
O(4) spin model. For quark mass or temperature not too ()= 2Vn, 96lg%" ( >:V_nt gam, )

close to the transition, the system would be expected to be-
have like mean field theory. Recently Kocic and Kogut have
suggested that mean field behavior might describe the system Il. PARAMETRIZING THE SCALING FUNCTIONS

arbitrarily close to the critical pOIr[t4] Fina”y, with KOgut- From invariance under a |ength resca“ng by a fad:tor

Susskind quarks on a nonzero lattice spacing, the exact chirgde critical part of the free energy should have the property,
symmetry is only @2), and it is possible that lattice simula-

tions are better described by(%) critical behavior. In addi- fo(t,n)=b~9f(b¥tt,bYrh). 4

tion to its intrinsic interest as an indicator of the physics of

the transition, the form of the free energy near the criticalHeret andh are the scaling variables, with the critical point

point is important in extrapolating the QCD equation of stateat (t,h) =(0,0), andy, andyy, are the corresponding critical

from the quark masses where lattice simulations are practica&xponents. Other exponents can be expressed in terms of

to the light quark masses of the real wofki6]. andy, . Heret=(T-T,.)/Ty andh=H/H, are convention-
Assuming a second order transitigi], we expect the ally normalized by requiring thatM(t=0h)=h? and

singular behavior of thermodynamic observables near tht(t<0h=0)=(—1)?. The free energy also has a nonsin-

transition to be universal, meaning that the symmetry grougular part.

of the order parameter and the dimension of the system de- The scaling ansatz, E¢4), implies that the magnetization

termine the critical exponents and the form of the singulamear the critical point is determined by a universal scaling

part of the free energy, up to normalization of the scalingfunction, conventionally written as

variables.(See, for examplg8].) The critical exponents for

O(4) and Q2) are well known[9-11], but the form of the _ 1BS\ _

free energy, or the *“scaling function,” is only poorly h_l’ﬁ_f(t/h )=1(x). ®)

known. An e expansion result is availabld.2], quoted in

Ref. [2]. Similarly, Monte Carlo calculations of critical ex- The normalization conditions oh and h then require that

ponents have been used to study the critical behavior of high(0)=1 andf(x)—(—x)? asx— —.

temperature QCO13], but to date the full power of the In computing the energy and pressure of QCD, we require

scaling ansatz, namely, comparison with the universal scathe plaquette, analogous to the energy in the spin model,

ing functions as well as critical exponents, has not beemxtrapolated to zero quark mass, which is analogous to zero

brought to bear. magnetic field. The magnetizatidor ¢ in QCD) is
Here we use Monte Carlo simulation to compute an ap-

proximate scaling function for @), to be used in comparing 1 dIn(Z) 1 4In(2)

to Monte Carlo simulations of QCD. V oH  VH, oh °

For the GN) spin model we use the partition function,
while the energyor plaquette in QCDis

Z:f[ds]exp<.]i§j: si-sj+H§i: Soi |, (1) Linz) 1 anz)
V JdT VT, ot

whereij are nearest neighbor pairs orfheypencubic lattice

in d dimensions andy, is the zero component & . Then  Since the energy and magnetization are derivatives of the
the energy and magnetization are free energy with respect toandh, respectively, information
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h After some differentiations, the magnetization and energy
can be expressed in terms @ff):
N LN 9
N = Hy\ b I oh 9(0) 9
. = [ 8 Pyoyb-9g(0) 2 10
: —dTogH—latg() 9'(0)— ] (10
where
b —hb#hn
dh|, yt?bP Ty h%p P
—sin(@)bYn™1t
FIG. 1. A length rescaling by a factor of is accomplished by ytcosz( 0)+yhsinz(0)
changing the couplingd () at pointA to (b¥tt,b¥rh) at pointB by b b2V
moving along the renormalization group trajectdgurved ling. ‘9_ — —t
The trajectories may be labeled by their intersections with the unit at |, yt?b Tty h?h !
circle, so specifying the free energy on the unit circle, together with L
the scaling ansatz which tells how the free energy changes along a _ —cog 0)b¥t"
trajectory, specifies the free energy everywhere. The discontinuity  Y,COoS(6) +ypsirt( )’
in the order parameter a0 andh=0 (heavy ling implies that
the derivative of the free energy is discontinuous there. 96 b
“h =tbyt+yh+ht%(yh—yt)byhﬂ'tfl
about one quantity constrains the other. In particular, the t
behavior of ¢y in QCD can help in extrapolating the ybYhcog 6)
plaquette to zero or small quark massu_.ls'lmportant' to = ¥.co2(6) T yrsir(6) '
enforce consistency of the plaquette apg in computing
the equation of state. Using a plaquette g@which are not a6 Jity b Yrtye—1
derivatives of the same free energy could lead to inconsistent ot T h”t"h+ htE(yh—yt)b e
thermodynamic$. Because our analysis requires that we h
hanq_le the energy and magnetization on _the same footi_ng, in —y,bYtsin( ) 11
addition to Eq.(5), we develop a formulation of the scaling = :co2(8) y,SiP(6) (1)

ansatz which treats the magnetization and energy equally.

The scaling ansatz, E4), tells us that if we specify the
singular free energy on any circle in thgn plane, we have
specified it for allt,h. (See Fig. 1. In particular, ifg(#0) is
the scaling free energy on the unit circle in thé plane,
then the rescaling factdy which takest,h to the unit circle
is determined by

(bYit)2+ (b¥nh)?=1. (6)

Physical insight into the form af(#) comes from consider-
ing special cases.
First, fort>0 andh small,

M:ig’(o)td/ytt_yh/yt, E:@td/)&—l_ (12)
Ho oYt

SinceM must vanish here, we requigg (0)=0. In fact, we
expect the free energy to be an even functiorhpfvith a

Fory, andy, positive this clearly has a unique solution for cusp ath=0 andt<0 due to the discontinuity a1 on this

b>0 givent and h. Although in general this cannot be
solved analytically fob, it is straightforward to do differen-

line. One more differentiation of the energy will give the
specific heaC~t¥t"2=t~ We also find that the suscep-

tiations implicitly and solve the equation numerically. Thentibility is

the singular free energiactually —1 X temperaturex free
energy per volumeis

%'n[zs(t,h)kb(t,h)fdg(0(t,h)), @)

where 4(t,h) =arctan *(bYhh/bYit), andg(#) is a universal
function.

Equivalently, the relation betweenh and b,6 can be
expressed as

bYhh=sin(9), bYt=cog0). (8)

1
=i

dg(0)
Yi

+g”(0))t(d_2yh)’y1. (13)

Fort<0 andh small and positive,

M=/ (m)(~0) 4 (1),
E= _190(;:) (—t)dn-1, (14)

Fort=0 andh>0,



364 DOUG TOUSSAINT 55

T ma’gnetiZing Spin 0 . 5 | T T T T I T T T T I T T T T

. 0(4) magnetization 07
- o Q . 0 3
0.4 — , © o ¢ g—-&:
H/H [/ H \H\H\UH L o ° o e wm e |
L o s O b B 4
| 0] O 4+ i
03— o o o o B |
i o] ¢ o + ]
. = [ © o] o 4 ]

o]
bttt —— o E
L ® ]
FIG. 2. Cluster updating with a magnetic field. A single “mag- (o * 1
netizing spin” is coupled to every spin in the lattice by a bond with [ - ]
strengthH. (o ]
d B 1 1 L 1 | 1 1 1 1 | ]
M= ——g(m/2)h%¥n~1, 0.95 1.00

Hoyn J
-1 FIG. 3. Magnetization in the @ model forh=0.002, 0.005,
E g’ (m/2)h@d=Y0Vn, (15)  0.01, 0.02 and 0.05. Octagons are for16, squares fot. =24,

dTo bursts for L=32, diamonds forL=40, decorated diamonds for

L =48 and decorated plusses lor 64.
From these expressions we get the following intuition about
the Sca"ng free energg( 0): (1) g(O) controls the Singu|ar Then we fit the magnetization results to find an approxi-
part of the energy fol >T,; (2) g(=) controls the singular Mate scaling functiog(6) for the free energy in the form in
part of the energy forT< Te; (3) g’(ﬂ-/Z) controls Eq. (7)A S|mple pqrgmetrization Q(a) WhICh satisfies the
the energy for t=0, h#0; (4 limy,9'(0) normalization conditions og(w/2) andg’ () is
=—limy _.9'(6#) controls the expectation value & for
T<T.; (5 g(=7/2) controlsM for t=0 andh#0.

Here it is convenient to choos&, and H, so that
HoM (t=0h)=h% andHM (t<0h=0)=(—1)~. The nor- i
malization conditions ont and h then require that 15—
g(7/2)=y,/d andg’ (7)=—1. When it is necessary to dis- r
tinguish, we will callH, for the “f(x)” and “ g(6)"” forms
H¢ and Hy, respectively. Similarly we distinguisfi; and
Ty. They are related bid;=HJ ™ and T(=T,H”.

T T | T T T T |

0(4) scaling function]

10—

M/hl/é
T

Ill. SIMULATIONS r

Monte Carlo simulations were run on @43, 32%, 40°, 05—
48%, and 64 lattices using a multiple cluster updating algo-
rithm [14].

To use a cluster updating algorithm with a nonzero mag- L
netic field, just imagine that in addition to the regular bonds 0.0
with strengthJ connecting neighboring spins, each spin is =5
connected to a fake “magnetizing spin” by a bond of
strengthH, as illustrated in Fig. 2. Then break bothl “
bonds” and “H bonds” and update clusters according to the ) I X
usual cluster algorithnfil4]. The “magnetizing spin” is a tefd as a scaling function in the c_qnvenuongl form. | use the results
member of a cluster, and is reflected just like any other spinc.) Kanaya and Kay#9] for the critical coupling and critical expo-

- S . nents. In this plot the points fanr=0.05 are plotted with plusgr,
When evaluating the magnetization of the lattice, we take th ose for 0.02, with crosses, 0.01 with diamonds, 0.005 with octa-

compon.e.nts of .the lattice spins in the current direction of thegons, and 0.002 with squares. Also shown are the asymptotic forms

magnetizing spin. o f(x)~(—x)P asx— —o (a) andf(x)~Cx  ass—x (b). A four-
Results for the magnetization of th¢4D model are plot-  paameter fit to the scaling function from theg¢®)” form is

ted in Fig. 3. Results from the largest lattice size run at eaclnown with a solid ling(c), running through the entire graph. The

point are shown. The remaining finite size effects are abouhean field scaling function, and the second orelexpansion scal-
the same size as the statistical error bars. Then, in Fig. 4 thRg function[12] are shown, labeled ¢’ and “mf.” Finally, the

results forn=0.002, 0.005, 0.01, and 0.02 are plotted in theshort line segment in the upper left corner is a result of Wallace and
form in Eq. (5). Here we used the values for the critical zia [15], quoted in the Appendix of Ref2], incorporating the
coupling and exponents from Kanaya and K&9a correct behavior of the susceptibility near the critical line.

FIG. 4. O4) magnetization foh=0.002, 0.005, and 0.01 plot-
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FIG. 5. Four-parameter fit to the scaling functig@®) for the
O(4) free energy.

g(6) = y,/3+2[ cog 6/2) — \[1/2] + a,cog 6) + a;[ cog 36/2)
+3c0g 0/2) — 2\/1/2] +a,[cog 26) + 1]
+a3[cog56/2) — 5cos 6/2) + 61/1/2] (16)

(d=3 in this equation.
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FIG. 6. The scaling part of the magnetization fo(4D corre-
sponding to the scaling function in Fig. 5.

vert the normalization of andh used in the ‘g(8)” form to
the conventional normalizations for thef(x)” form:
Hi=HJ" and T=T4H #] In this figure | have also in-
cluded the mean field form of the scaling function and the
epsilon expansion form.

Figure 4 also shows the properly normalized asymptotic
form for f(x) asx— — o, x 2. It can be seen that the scaling
function approaches this asymptotic form quite slowly. This

In this fit | used the energy and magnetization foris the region where long distance physics is dominated by

0.89<J<0.99 andH=0.005 and 0.002. The free energy Goldstone bosons. In particullar,.we expect thattfo0 and
also included an analytic part f,=Cp,h?+Cyt h  small, thl?2 magnetization ta!<e_s_ t_he form
+C,t2+ C,5t3. The resultingg(6) is plotted in Fig. 5T, M=M(t,0)+Ah~%4, so tha't .the susqeptlblllty diverges at
andH,4 were 0.44 and 1.31, respectively. The magnetizatio! =0 for allt<0 [15]. The fitting function(16) should really
corresponding to this free energy is also plotted in Fig. 6. 1€ modified to support this behavior @& , but this prob-
principle, the critical exponentg, andy, and the critical €M Seems to occur in a region beyond where theé® O
coupling are also parameters in this fit. However, to get thesEeSults, and the QCD results to which they will be compared,
parameters to the same accuracy as has already been doned5§ faken. _ _ .

Kanaya and Kay$9] or Butera and Conil1] would require The Monte Carlo scaling function and theexpansm'n are

a careful correction for finite size effects, and care in using" 900d agreement fot<0 because of the normalization
only data for small enoughandh that corrections to scaling condition ont, M(t<0h=0)=(—t)*. Had we chosen the
are small. Therefore, the exponents and critical couplin@dually sensible normalization conditigp=dM/dh=t""
were fixed to those found by Kanaya and Kaya. Because o' t>0 andh=0, we would have found agreement of the
the remaining finite size effects and corrections to scalingMonte Carlo ands expansion fot>0 with a discrepancy for
the x2 of this fit was very bad243 for 30 degrees of free- {<0.
dom). However, since the results are already many times
more accurate than the QCD data with which we intend to
compare, there is little incentive to make the necessary cor-
rections. This scaling function was then converted to the Tom Blum, Carleton DeTar, and Bob Sugar have contrib-
“f(x)"” form [by computing the resulting magnetization as auted greatly to this work. | thank Joe Rudnick for a valuable
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