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We compute the corrections to the transition amplitudes of an accelerated Unruh ‘‘box’’ that arise when the
accelerated box is replaced by a ‘‘two level ion’’ immersed in a constant electric field and treated in second
quantization. There are two kinds of corrections: those due to recoil effects induced by the momentum transfers
and those due to pair creation. Taken together, these corrections show that there is a direct relationship between
pair creation amplitudes described by the Heisenberg-Euler-Schwinger mechanism and the Unruh effect, i.e.,
the thermalization of accelerated systems at temperaturea/2p wherea is the acceleration. In particular, there
is a thermodynamical consistency between both effects whose origin is that the Euclidean action governing pair
creation rates actsas an entropy in delivering the Unruh temperature. Upon considering pair creation of
charged black holes in an electric field, these relationships explain why black holes are created from vacuum
in thermal equilibrium, i.e., with their Hawking temperature equal to their Unruh temperature.
@S0556-2821~97!06006-2#

PACS number~s!: 04.70.Dy, 04.62.1v, 11.10.2z

I. INTRODUCTION

Quantum field theory predicts two remarkable phenomena
when charged matter is accelerated in a uniform electric
field. The first is the Heisenberg-Euler-Schwinger mecha-
nism @1,2#. That is, vacuum instability due to spontaneous
creation of charged pairs. When the electric field is turned on
in a volumeV during a periodT, the norm of the overlap
between the initial and the final vacua, which gives the prob-
ability not to produce pairs, decreases as

u^0,outu0,in&u25e2GT,

where

G5VS E

2p D d/2ln~11e2pM2/E!, ~1!

whered is the number of space time dimensions,M is the
mass of the scalar charged particle,E5eE0 is the product of
the chargee of the particle by the electric fieldE0 ~we put
\5c51). To allow the comparison with the second effect
we shall discuss below, it is appropriate to notice that the
pairs produced by the Schwinger mechanism possess a well-
defined spectrum. Indeed, the mean number of pairsN(k')
characterized by a transverse~with respect to the direction of
the acceleration! momentumk' is given by

N~k'!5Ce2p~M21k'
2

!/E, ~2!

where the overall factorC takes into account the phase space
factor arising from quantization in a volumeV. For later
convenience we reexpress Eq.~2! in such a way that the
constantC cancels,

N~k'!

N~k'50!
5e2pk'

2 /E5
P~k'!

P~k'50!
, ~3!

where we have introduced the probabilityP(k') that a de-
tected particle produced from vacuum possesses that mo-
mentum. This latter concept is more intrinsic since it does
not depend on global characteristics such asV andT nor on
the rate of pair production.

The second effect concerns the physics which arises when
~these! accelerated particles are coupled to quantum radia-
tion, i.e., photons, or more generally to some massless field
f. Through this coupling, massive particles behave like de-
tectors. By detector we mean a quantum system which has
two ~or more! energy levels separated by an energy gap
Dm and which can make transitions by emitting or absorbing
a photonf. Therefore, these detectors probe the state of the
f field.

Using this concept of particle detector, Unruh@3# proved
that when such a detector is uniformly accelerated, it per-
ceives the vacuum state of thef field to be thermally popu-
lated with the temperature

TU5a/2p, ~4!

wherea is the acceleration of the detector. Such an acceler-
ated detector will eventually reach equilibrium with the heat
bath, whereupon its two energy levels are populated with the
Boltzmanian ratio

P1

P2
5e22pDm/a5

R2→1

R1→2
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whereP1(P2) is the probability to be found in the excited
~ground! state. We have also introduced the rates of transi-
tionsR6→7 which determine dynamically this equilibrium.

At first sight, besides the fact that charged particles propa-
gate with uniform acceleration

a5eE0 /M5E/M ~6!

once they are produced in the constant electric field, the
Schwinger and Unruh effects seem hardly related phenom-
ena. Indeed the Schwinger effect requires a second quantized
framework for the massive charged fieldcM only and makes
no references to quantized massless fields. On the contrary,
in the Unruh effect, the propagation of the detector is de-
scribed by a given classical trajectory~this is of course an
approximation, see below! and only its internal transitions
accompanied by the emission or absorption of quanta of the
radiation field are treated quantum mechanically. Moreover,
the Unruh effect can even be understood without introducing
the detector at all. Indeed, it suffices to reexpress the vacuum
state of the fieldf, i.e., Minkowski vacuum, in terms of its
‘‘Rindler’’ particle content. By Rindler quanta, one desig-
nates the quanta of the radiation field associated to the eigen-
modes of the boost operator which vanish beyond the hori-
zon defined by the accelerated trajectory of the system@4,3#.
Fulling found that Minkowski vacuum is a thermal distribu-
tion of Rindler quanta. Then, Unruh proved that accelerate
detectors react to Rindler quanta as inertial detectors react to
inertial ~Minkowski! quanta. Therefore, accelerated systems
find themselves in a thermal bath.

However, there are a number of questions which cannot
be answered by this kinematical analysis based on Rindler
modes only. To reveal the aspects inevitably missed by this
analysis and to prove the necessity of considering more dy-
namical frameworks, we shall proceed in three steps by pos-
ing and answering questions.

~a! What is the energy balance of the accelerated-thermal
equilibrium as seen by an inertial observer? In order to an-
swer this question, it is mandatory to abandon the description
in terms of the Rindler modes and to use instead the
Minkowski modes of the radiation field. The main result is
that, in spite of the equilibrium, Minkowski quanta are pro-
duced@5,6# and their total number equals@7# the number of
internal transitions of the detector.

~b! Where does this energy come from? or more locally,
What is the incidence of the energy-momentum transfer oc-
curing when one emission process takes place? To answer
these questions requires an enlargement of the dynamics.
One must indeed quantize the center-of-mass position of the
detector—and thus attribute it a finite massM—and intro-
duce an external force such that the detector accelerates uni-
formly in the absence of transitions. This is precisely the role
of a constant electric field. The main results of this enlarged
dynamical framework are the following@8#: ~1! The transi-
tion probabilities between excited and ground state still sat-
isfy Eq. ~5! when Dm!M . ~2! Due to recoil effects, the
energy flux emitted by the detector becomes rapidly incoher-
ent and positive. Moreover it is accompanied by a constant
drift from uniformly accelerated trajectories which expresses
the dissipation of potential electric energy into radiation.

~c! What are the consequences of ‘‘second quantizing the
detector,’’ i.e., of taking into account amplitudes of produc-
ing pairs of charged detectors in the electric field? Indeed a
completedescription of a quantum relativistic system in an
external field can only be obtained by working in a second
quantized framework@the answers delivered in point~b!
were based on an approximate first quantized treatment
~WKB! in which corrections ine2pM2/E were neglected@8##.
This further enlargement of the dynamicsimplies that both
the Schwinger and the Unruh effect are encompassed in the
same model. To analyze the consequences of this enlarge-
ment is the central problem addressed in the present article.

At this point, it is appropriate to consider the emission
rates of photons by bremsstrahlung from an electron accel-
erated in a constant electric field. These emission rates were
analyzed by Nikishov@9,10# a few years before Unruh’s
seminal work. It is very interesting to notice that the point of
view adopted by Nikishov was to consider these emission
processes as describing corrections to the Schwinger effect
rather than corrections to the Unruh effect induced by ‘‘sec-
ond quantizing the detector.’’ This dual point of view clearly
illustrates the entangled nature of both processes when stud-
ied in the enlarged framework. Nikishov showed that the
ratio of the transition rates for an electron to jump from a
state with transverse momentumk' to a state with zero mo-
mentum accompanied by the emission of a photon to the
inverse transition satisfies

Rk'→0

R0→k'

5e2pk'
2 /E5exp„22p ~k'

2 /2me!/ae… ~7!

where ae5E/me . In the second equality we have written
k'
2 /E ask'

2 /2me32/ae in order to explicitize the relationship
with Eq. ~5!. In the nonrelativistic limitk'

2!me
2 , it is indeed

legitimate to considerk'
2 /2me as providing the energy levels

of the ‘‘detector states,’’ see@11,12# and point ~b! above.
The manifest similarities between Eq.~7! and both Eq.~3!
and Eq.~5! strongly invite to inquire into their dynamical
origin, if any.

A first indication that there is a deep relation is furnished
by an analysis of the Euclidean instanton1 associated with the
Schwinger process. This instanton is obtained by considering
the classical dynamics of a relativistic particle of massM
and chargee in an electric fieldE0. The classical~Lorentz-
ian! trajectories have uniform acceleration either to the right
~corresponding to particles! or to the left ~for antiparticles!
and the Euclidean orbits are closed trajectories, as in a mag-
netic field. The Euclidean action for completing an orbit is

SEuclid5pM2/E. ~8!

Contact with the second quantized framework is made by the
fact that the probability of creating pairs scales like
e2SEuclid, see Eq.~1!.

1Remarkably, this analysis can be straightforwardly extended to
black hole pair production and their subsequent thermal effects.
Furthermore these relations between Euclidean gravity and thermal
phenomena shed a new light on the thermodynamical approach to
gravity @13# presented by Jacobson, see Sec. VII.
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What really concerns us is the amount of Euclidean
proper time necessary to complete this orbit. It is given by
the Hamilton Jacobi relation

tEuclid5]MSEuclid5]MS pM2

E D5
2p

a
5TU

21 . ~9!

It equals the inverse Unruh temperature. At this point, it
should be recalled that the quantum processes induced by the
uniform acceleration and leading to Eq.~5! areall governed
by lapses of proper timet. By using Eq.~9!, Eq. ~7! can be
written as

Rk'→0

R0→k'

5e2 ~k'
2 /2me! ]mSEuclid. ~10!

This strongly suggests that the Unruh process can be ob-
tained from a first order comparison of two neighboring
Schwinger processes, in a manner similar that canonical dis-
tributions characterized by a temperature are obtained from a
first order change applied to microcanonical distributions
characterized by energy only. The validity of this compari-
son with thermodynamics will be confirmed upon consider-
ing black hole pair production. It will then be clear that the
Euclidean action behavesas an entropy in delivering the
Unruh temperature, see Eq.~9!, therefore it behaves like the
Bekenstein entropy in the latter’s determination of Hawking
temperature.

In this paper we shall prove these interpretations are cor-
rect and we shall provide the physical rationale behind them.
To this end, we shall use a simple model and proceed in
several steps. These are presented in the next section.

II. THE MODEL AND THE STRATEGY

Instead of working with the transverse momentum, see
Eqs. ~3! and ~7!, to establish the relations between the
Schwinger and Unruh effects, we shall use a two-
dimensional model@8# composed of two charged fieldscM
and cm and the scalar massless fieldf. The Hamiltonian
which governs the transition amplitudes is

Hfc5g̃E dx@cMcm
†f1H.c.#, ~11!

whereg̃ is a coupling constant. We have chosen that model
because the expressions for the transition amplitudes are con-
siderably simpler than in the four dimensional case, see
@9,10#. Thus, they display more clearly the seeked relation-
ships.

In Sec. V, we shall compute ‘‘exactly’’ the first order~in
g̃) transition amplitudes. By exactly we mean to all orders in
Dm/M and a/M thereby taking into account recoil effects
~first quantized effects! and vacuum instability~a second
quantized effect!. In @14# both recoils and pair creation ef-
fects were neglected, and in@8,15# only recoils effects were
taken into account.

From the properties of these amplitudes undercrossing
symmetry, we prove that the ratio of the transition rate from
the ground to the excited state (m→M ) to the inverse tran-
sition rate (M→m) is exactlygiven by

Rm→M

RM→m
5e2p~M22m2!/E5e22p~M2m!/ ā. ~12!

In the second equality, as in Eq.~7!, we have rewritten the
exponent in order to make contact with the Unruh expression
controlled by an acceleration and an energy gap, see Eq.~5!.
The only difference is that the unique acceleration is re-
placed by the mean accelerationā5(M1m)/2E. This
should cause no surprise since the two levelsM andm ex-
perience different accelerations. In fact the Unruh formula,
Eq. ~5!, should always be considered as an approximate ex-
pression valid when it is legitimate to deal with a single
acceleration. Strictly speaking, this requires that the limit
Dm/M→0, a/M→0 be taken. More physically, it requires
that the mass scales be well separated, i.e.,M2m!M . In
that case, the concept of a single2 acceleration is meaningful,
and therefore the concept of temperature as well.

However, even when the conditionM2m!m is not sat-
isfied, the two level ion reaches equilibrium with the popu-
lation ratio of its excited and ground state given by the
Schwinger mechanism. Indeed, the ratio of the probabilities
PM andPm to find a given particle produced from vacuum in
theM or them state is equal to the ratio of the mean num-
bersNM andNm of produced quanta of massesM andm, see
Eqs.~2! and ~3!, and therefore given by

PM

Pm
5e2p~M22m2!/E5

NM

Nm
. ~13!

The equality of the ratios of the transition rates, Eq.~12!, and
of the probabilities, Eq.~13!, proves that there is a consis-
tency between the Schwinger mechanism and the extended-
Unruh-effect defined bykeeping the finite corrections in
a/M and in Dm/M into account. When the mass ratio
Dm/M is negligible, one fully recovers the thermal equilib-
rium governed by a temperature, as in the original Unruh
description. WhenDm/M is not negligible, even though it is
illegitimate to deal with a single accelerated trajectory, the
equilibrium distribution still exists and still coincides with
the Schwinger distribution. In this sense, pairs are born in
equilibrium @14#.

In Sec. VI, we determine the origin of the equality be-
tween Eqs.~12! and~13!. We show that this equality isdic-
tatedby the analytical properties of the amplitudes govern-
ing pair creation under crossing symmetry andCPT.

To understand this result, it is necessary to first consider
the amplitude for a particle to propagate fromt52` to
t51` @Fig. 1~a!#. By crossing symmetry, one replaces the
incoming particle by an outgoing antiparticle, hence one ob-

2These features arise whenever one enlarges the dynamics so as to
abandon the background field approximation wherein it is postu-
lated that all processes can be described by a quantum system
coupled to a single trajectory. Indeed, upon studyingafterwardsthe
semiclassical regime to determine how the background field ap-
proximation re-emerges, one explicitizes the conditions which must
prevail to validate that approximation. The interested reader will
consult@16# where this approach is applied to quantum cosmology
to determine the validity of the semiclassical Einstein equations.
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tains the amplitude for pair creation@Fig. 1~b!#. The currents
associated with these two propagations are related by the
factore2pM2/E.

Now consider radiative processes involving af quantum,
to first order ing̃. The amplitude~a! of Fig. 2 represents the
deexcitation of a detector massM accompanied by the emis-
sion of a massless quantum of energyv. The norm squared
of this amplitude determines the rateRM→m of Eq. ~12!. On
the other hand the rateRm→M of spontaneous excitation of
the detector is determined by the norm squared of the ampli-
tude ~d! of Fig. 2. Our aim is to understand how these two
amplitudes are related.

First note that by usingT symmetry, amplitude~d! is
equal up to complex conjugation to the amplitude~e! for a
detector in the excited state to absorb a light quanta and
deexcite. Then note that amplitudes~a! and~e! are related by
crossing symmetry for the light quantum, i.e., by taking
v→eipv. This latter relation will be exploited in Sec. V.
However it does not help to understand how Eq.~12! relating
the rateRm→M to RM→m is connected to the Schwinger pro-
cess, Eq.~13!, since it involves crossing symmetry applied to
the photon only.

To obtain this understanding, we shall use instead the
successiona→b→c→d which proceeds through crossing
symmetry appliedtwice to the Schwinger process. First we
use crossing symmetry for the ‘‘excited’’ detector of mass
M so as to relate~a! to the amplitude to create from vacuum
a deexcited detector, an excited anti–detector, and a massless
quantum of energyv @Fig. 2~b!#. The ratio of the norms of
amplitudes~b! and ~a! is given by the Schwinger factor
e2pM2/2E exactly as in the case considered in Fig. 1 above.
Secondly, by using again crossing symmetry applied to the
deexcited detector of massm, one obtains the amplitude~c!
for a deexcited antidetector to get excited and to emit a light
quantum. The ratio of the norms of amplitudes~b! and~c! is
given by the Schwinger factorepm2/2E. In this case it is the
massm rather than the massM which comes up in the ex-
ponential weight. Thirdly, we use theCP symmetry to map
particles into antiparticles while leaving the electric field
E0 unchanged. ThusCP maps the amplitude~c! onto the
sought for amplitude~d! for a deexcited detector to get ex-

cited and emit a quantumv. The equality of Eqs.~12! and
~13! and the connection between the~extended! Unruh effect
and the Schwinger process is thus explained by this succes-
sion.

The motivation for our emphasis onCPT and crossing
symmetry is that these analytical properties should hold irre-
spectively of the specific model under examination. As an
illustration of this universality, in Sec. VII, we consider pair
creation of charged black holes in a constant electric~or
magnetic! field @17–19# and the subsequent emission of
quanta through Unruh effect as well as through Hawking
process@20#. We show that there is once more a complete
thermodynamic consistency between the production of the
black hole pairs and both of these radiative effects. This
thermodynamic consistency illustrates that the Euclidean ac-
tion Eq.~8! acts indeed as an entropy in delivering the Unruh
temperature, see Eq.~9!, since it is given in terms of a quar-
ter of a change in area and occurs in amplitudes added to the
Bekenstein entropy.

III. THE SCHWINGER EFFECT

We recall in this section the essential steps necessary to
obtain the Schwinger effect. The reader unfamiliar with pair
creation in an electric field may consult Refs.@9,10,14,21#.
What differs in our presentation is the emphasis put on the
use ofcrossing symmetryin defining and obtaining the Bo-
goliubov coefficients. The reason for this emphasis is that
crossing symmetry will play a crucial role in Secs. V and VI.

We consider a massive charged scalar fieldcM in a con-
stant electric fieldE0. In the homogeneous gauge (At50,
Az5E0t) cM obeys the Klein Gordon equation

@] t
22~]z2 iEt !22]y

22]x
21M2#cM50, ~14!

whereE5eE0. In this gauge three-momentum is conserved.
The transverse momentum squared acts like a shift of the
mass squared, see Eq.~2!. From now on, however, for rea-
sons of simplicity, we shall take it to vanish and work in
111 dimensions. Since the longitudinal momentump is also
conserved, cM can be decomposed as a sum of
eipzxp,M(t), wherexp,M(t) obeys

@] t
21~p2Et!21M2#xp,M~ t !50. ~15!

There are two independent solutions of this equation and
their asymptotic behavior must be used to identify which
linear superpositions describe,in andout, particle and anti-
particle states. Indeed, because of the time dependence of the
frequency,in particle modes, i.e., solutions of Eq.~15! car-
rying unit positive current fort→2`, will be a superposi-
tion of out particle and antiparticle modes fort→`:

xM ,p
in 5aMxM ,p

out 1bMx̄M ,2p
out* . ~16!

Current conservation requires

uaMu22ubMu251. ~17!

To obtain the asymptotic behaviors of the various modes, it
is useful to use the following integral representation, see
@22#. For instance, in modes are given by

FIG. 1. Feynman diagrams representing~a! a particle of mass
M and chargee propagating fromt52` to t51` in the electric
field E0, and ~b! a particle-antiparticle pair creation in the electric
field. The particles are represented by curved lines because they are
accelerated by the electric field. These diagrams are oriented both in
space and time: the left-right symmetric of~a! would represent an
antiparticle accelerated in the opposite direction, the up-down sym-
metric of ~b! would represent particle-antiparticle annihilation. Am-
plitudes~a! and ~b! are related by level crossing. The ratio of their

norms is given by the Schwinger factore2pM2/2E, see Eq.~19! in
the text for the precise mathematical definition.
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xM ,p
in ~ t !5aME

0

` du

A8p2
~u!~2 iM 2/2E!2~1/2!

3eiE[u
2/42~ t2p/E!u1~ t2p/E!2/2], ~18!

where the normalization factor is shown to be the coefficient
aM . One easily obtains the Bogoliubov coefficientbM from
this integral representation because, for largeutu, i.e.,
utu@M /E, the integral receives all its contribution from
saddle points atu→` and from the regionu→0. One finds
that the saddle point atu→` describes the outgoing particle
wave carrying fort→` a currentuaMu2. Instead the contri-
bution from u→0 describes, fort→2` the incoming
branch carrying unit positive current, and fort→1` the
antiparticle branch carrying negative current, see@22# for
more details.bM is the ratio of these latter contributions at
smallu. To evaluate this ratio, it is legitimate to neglect the
term inu2 in the exponential and one is left with the integral
representation ofG functions:

bM5

E
0

`

du u~2 iM 2/2E!2~1/2!eiE~2utuu1t2/2!

E
0

`

du u~2 iM 2/2E!2~1/2!eiE~ utuu1t2/2!

52 ie2pM2/2E.

~19!

Note how it is the sign of the exponent ofe6 iEutuu which
governs the ratio of these integrals. By sendingt to eipt in
the lower integral, the contribution of the incoming particle
is replaced by the one of the outgoing anti-particle. This is
what we designate by crossing symmetry, see Fig. 1. In Sec.
VI, we shall see that it is this continuation used twice which
implies the equality of Eqs.~12! and ~13!.

The corresponding out mode with asymptotic unit final
current directed towardsz51` is obtained by replacingt
by 2t, p by 2p and by complex conjugation. Thus, its
integral representation is

xM ,p
out ~ t !5xM ,2p

in* ~2t !5aME
0

` du

A8p2
~u!~ iM 2/2E!2~1/2!

3e2 iE[u2/41~ t2p/E!u1~ t2p/E!2/2]. ~20!

One also shows that the anti-particlein- andout-modes are
given by

x̄M ,2p
in ~ t !5xM ,p

in ~ t !, x̄M ,2p
out ~ t !5xM ,p

out ~ t !. ~21!

In the second quantized framework, the field operator
cM should be decomposed both in terms of the in modes and
out modes:

cM5E
2`

1`

dp eipz@bM ,p
in xM ,p

in 1cM ,2p
†in x̄M ,2p

in* #

5E
2`

1`

dp eipz@bM ,p
out xM ,p

out 1cM ,2p
†out x̄M ,2p

out* #. ~22!

Whereupon one obtains the in vacuum and the out vacuum,
which are annihilated by the corresponding destruction op-
erators:

bM ,p
in u0,in&M5cM ,p

in u0,in&M50,
~23!

bM ,p
out u0,out&M5cM ,p

out u0,out&M50.

From the Bogoliubov transformation, Eq.~16!, one obtains
the mean number of produced pairs of momentump:

NM5M^0,inubM ,p
†outbM ,p

out u0,in&M5ubMu25e2pM2/E. ~24!

One can also express the in-vacuum in term of its out-
particle content:

u0,in&M5ZM)
p
e2 ~bM /aM !bM ,p

†outcM ,p
†out

u0,out&M , ~25!

whereZM is the amplitude not to produce pairs. Its norm
square is

uZMu25uM ^0,outu0,in&Mu25)
p

U 1

aM
U2

5expS 2(
p
ln~11e2pM2/E! D . ~26!

One recovers the Schwinger result, Eq.~1! by noting that
(p5ELT/2p when the electric field is turned on in a box of
sizeL during a timeT ~if T,L@E21/2), see@21#.

FIG. 2. Feynman diagrams representing~a! an accelerated de-
tector which deexcites and emits af quantum of energyv, ~b! pair
creation of a pair of detectors and the emission of af quantum,~c!
spontaneous excitation of an anti–detector,~d! spontaneous excita-
tion of a detector, and~e! deexcitation of a detector accompanied by
the absorption of af quantum. The conventions are the same as in
Fig. 1. A thick curved line designates an excited detector of mass
M, a thin curved line a deexcited detector of massm, and a straight
line af quantum. The orientation of the straight lines~45 degrees
to the right or left! corresponds to the momentum of the light quan-
tum beingkx52v or kx51v. Amplitudes~a! and~b!, and ampli-
tudes~b! and ~c! are related by level crossing. Upon passing from

one to the other they acquire the Schwinger factore2pM2/2E and

epm2/2E respectively. Diagrams~c! and ~d! are related byCP and
diagram ~d! and ~e! by T symmetry. Alternatively one can pass
directly from ~a! to ~e! by takingv to eipv. These relations shall be
proven in Secs. V and VI.
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Finally we note that the amplitudes represented in Fig. 1
are

Fig. 1~a! ↔ M^0,outubM ,p
out bM ,p

†in u0,in&M5ZM /aM ,

Fig. 1~b! ↔ M^0,outubM ,p
out cM ,2p

out u0,in&M52ZMbM /aM .
~27!

IV. THE UNRUH EFFECT

We recall the essentials of the Unruh effect for a two level
atom, in the~111!-dimensional case. The reader may also
wish to consult@3,21#. We shall again put emphasis on the
use ofcrossing symmetrywhich allows, in this case, to de-
termine the transition amplitude of the opposite channel in
terms of an analytical continuation in the energy of the pho-
ton applied to the amplitude of the direct channel. The ori-
entation of the continuation is such that the stability of the
vacuum state is guaranteed.

The trajectory followed by the uniformly accelerated de-
tector is

t5a21sinhat, z5a21coshat, ~28!

the detector is coupled to a massless fieldf through the
interaction Hamiltonian

E dzdt Hint5gE dt@e2 iDmtf„t~t!,z~t!…u1&

3^2u1H.c.,# ~29!

whereu1& and u2& are the excited and ground states of the
detector,Dm is the energy gap between the two states and
g is a coupling constant.

The second quantized fieldf obeys the massless Klein
Gordon equation in 111 dimensions

@] t
22]z

2#f50. ~30!

The complete set of solutions with positive Minkowski fre-
quencyv are

wkv
5
e2 ivteikvz

A4pv
v5ukvu ,2`,kv,1`. ~31!

f can therefore be decomposed as

f5E
2`

1`

dkv@akv
wkv

1H.c.#. ~32!

The Minkowski vacuum is annihilated by allakv
operators

akv
u0&50. ~33!

To first order ing the amplitude for the detector to deex-
cite and emit a right moving Minkowski quantum~i.e.,
kv5v) is

A~Dm,v,a!52 i K 2U K 0Uakv
F E dzdtHintGU0L U1 L

52 igaE
2`

`

dte2 iDmt
eive

2at/a

A4pv

52 igE
0

`du

u
uiDm

e2 iuv

A4pv

52 igG~ iDm/a!epDm/2a
~v! iDm/a

A4pv
, ~34!

where the light like variableu5t2z is related to the proper
time t by au52e2at.

Similarly the amplitude for an excited detector toabsorb
this right moving quantum and to get deexcited is

B~Dm,v,a!52 i K 2U K 0UF E dzdtHintGakv

† U0L U1 L .
~35!

This amplitude is related to that usually considered in the
Unruh effect, namely the amplitude for a deexcited detector
to get spontaneously excited, byT symmetry, that is com-
plex conjugation.

We shall not computedB(Dm,v,a) directly since it is
more instructive to determine it from the amplitude
A(Dm,v,a) by exploiting their analytical properties under
level crossing, i.e., by taking v→eipv. Indeed,
B(Dm,v,a) is given by

B~Dm,v,a!5A~Dm,e2 ipv,a!i . ~36!

Using the fourth line of Eq.~34!, one obtains

B~Dm,v,a!5A~Dm,v,a!e2pDm/a. ~37!

Therefore the ratio of the transition rates is

R2→1

R1→2
5U B~Dm,v,a!

A~Dm,v,a!
U25e22pDm/a ~38!

since uB/Au is independent of the energyv of the photon.
This is exactly what one would have obtained in a thermal
bath at temperatureTU5a/2p, see Eq.~5!.

V. THE SCHWINGER MECHANISM
AND THE UNRUH EFFECT

By using the model of the accelerated two level ion pre-
sented in Sec. II, we shall show to orderg̃ 2 that the ratio of
the transition ratesRM↔m to emit a photon starting from the
ground state (m) or the excited state (M ) satisfies Eq.~12!
even when the vacuum instability with respect to pair cre-
ation is fully taken into account. In the next Section, we shall
rederive the same ratio from the sole analytical properties of
the pair creation amplitudesunderCPT and crossing sym-
metry. It is essential that these latter amplitudes do not van-
ish ~i.e., bMÞ0) in order to determine the transition rates
through this second indirect procedure.

We first compute the amplitudeA(Dm,p,v) @depicted in
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Fig. 2~a!# to emit a massless quantum starting from the
heavier stateM . This amplitude corresponds to the amplitude
A(Dm,v,a) of Eq. ~34!. To first order ing̃, using the mo-
mentum conservation, it is given by

A~Dm,p,v!d~p2p82kv!

52 i M ^0,outum ^0,outu ^0uakv
bm,p8
out HcfbM ,p

†,in

3u0&u0,in&m u0,in&M

52 i g̃ZMZmd~p2p82kv!aM
21am

21

3E
2`

`

dt xm,p2kv

in* ~ t !xM ,p
out ~ t !

eivt

A4pv
. ~39!

The overall factorZMZm is the product of the in-out over-
laps, see Eq.~26!. It appears because the scattering process
happens in the presence of pair production of charged
quanta.

Notice that in the limitM2/E→` at fixedM2m5Dm
andM /E51/a, the integrand of Eq.~39! tends uniformly to
the WKB expression studied in@8#. Therefore, by virtue of
the analysis of that paper,A(Dm,p,v) tends to the ‘‘Un-
ruh’’ amplitudeA(Dm,v,a), Eq. ~34!.

In terms of the integral representations of thex modes,
see Sec. III, and forkv5v, we obtain

A~Dm,p,v!

ZMZm

52 i g̃E
0

` du1

A2p
E
0

` du2

A2p
u1

~ iM 2/2E!2~1/2!

3u2
~ im2/2E!2~1/2!

eivp/E

A4pv

1

2E2`

`

dt̃eiv t̃

3e2 iE[u1
2/41 t̃ u11 t̃ 2/21u2

2/42~ t̃1v/E!u21~ t̃1v/E!2/2], ~40!

where we have definedt̃5t2p/E. Performing the Gaussian
integration overt̃ and introducing the variabled5Eu1u2/2
one has

A~Dm,p,v!

ZMZm
52 i g̃E

0

` du1

A2p
E
0

` du2

A2p

3u1
~ iM 2/2E!2~1/2!u2

~ im2/2E!2~1/2!

3
eivp/E

4AEv
e2 iE[u1u2/22u2v/E1v2/2E2]

52 i
g̃

A2E
ei ~vp2v2/2!/E

3E
0

`du2
u2

u2
2 i ~M22m2!/2E eiu2v

A4pv

3F E
0

` dd

A2pE
~2d/E!~ iM 2/2E!2~1/2!e2 idG .

~41!

We postpone the evaluation of this expression since the de-
termination of the equilibrium requires to know the ratio of
the transition rates only, see Eq.~5!. Therefore we shallre-
lateA to the amplitude of the inverse process. One can either
consider the amplitude to emit the same quantum starting
from the ground state (m) @see Fig. 2~d!#, or the amplitude to
absorb this photon starting with the excited detector state
(M ) @see Fig. 2~e!#, since one is the time reversal (T sym-
metry! of the other. As in Sec. IV, we consider the second
amplitude, denoted byB(Dm,p,v), since it isgivenby

B~Dm,p,v!5A~Dm,p,eipv!i ~42!

by virtue of the stability of the vacuum of the photon field,
see Eq.~36!.

From the dependence inv in Eq. ~41!, exactly like in the
third line of Eq. ~34!, one deduces immediately that the
square of the amplitudes which determines both the rates
RM↔m and the equilibrium probabilitiesPM (m) , satisfy

U B~Dm,p,v!

A~Dm,p,v!
U25Rm→M

RM→m
5e2p~M22m2!/E5

PM

Pm
. ~43!

Therefore we have proven Eq.~12! and the fact that the
equilibrium probabilitiesPM andPm defined by these radia-
tive processes are equal to those defined by the Schwinger
process in Eq.~13!.

Furthermore, when the mass gapDm satisfiesDm!M , it
is meaningful to write Eq.~43! as

U B~Dm,p,v!

A~Dm,p,v!
U25e22pDm/ ā5U B~Dm,v,ā!

A~Dm,v,ā!
U2, ~44!

where ā52E/(M1m)5aM(12Dm/2M )21. Thus, under
the above inequality, one fully recovers the Unruh equilib-
rium, see Eq.~38!, governed by a single acceleration since
aM5E/M.E/m.ā.

Notice that it is the first time that the concept of accelera-
tion is brought to bear. It appears through a first order change
in the exponential factor. This is exactly like the recovery of
classical trajectories from wave packets. Indeed the station-
arity condition is a first order change in the energy~or the
momentum! applied to the phase of the wave packet. This
emergence of the classical concepts of acceleration and tem-
perature also bears many similarities with statistical mechan-
ics since it is also through a first order change in the energy
that the concept of equilibrium temperature arises from mi-
crocanonical ensembles. For further discussions see Sec. VII.

For completeness, we now compute the amplitudeA it-
self, see Eq.~41!. Performing the integrations one gets

A~Dm,p,v!

ZMZm
52 i

g̃

2E

ei ~vp2v2/2!/E

A4pv
G~2 i ~M22m2!/2E!

3ep~M22m2!/2E~v! i ~M
22m2!/2E

3FGS i M2

2E
1
1

2D epM2/2E
~E/2!2 iM 2/2E

A2p
G .

~45!

In terms of the mean accelerationā52E/(M1m), one finds
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A~Dm,p,v!

ZMZm
5F g̃

2gEG A~Dm,v,ā!

3ei ~vp2v2/2!/E@aM
21~E/2!2 iM 2/2E#,

~46!

whereA(Dm,v,ā) is the ‘‘Unruh’’ amplitude Eq.~34! for a
two-level system to emit a quantum from the heavier state
when it follows a classical trajectory of uniform acceleration
ā.
From this expression, one can determine what are the

physical processes that cannot be described by theapproxi-
mateamplitudesA(Dm,v,ā) andB(Dm,v,ā) based on the
hypothesis that one can work with a single classical trajec-
tory. An example of such a quantity is given in@8#. It is
shown that the dynamical additional phaseei (vp2v2/2)/E

leads to decoherence effects which in turn lead to a positive
local flux after a finite amount of proper time. This positive
flux cannot be described in the treatment based a classical
trajectory because there cannot be any loss of coherence in
the over restricted dynamical framework wherein only the
f field carries momentum.

VI. CPT AND CROSSING SYMMETRY

The aim of this section is to rederive Eq.~43! from the
amplitudes governing the vacuum instability under pair cre-
ation. We shall thereby understand why Eq.~12! and Eq.
~13! coincide.

To this end we shall proceed as explained in Sec. II, see
also Fig. 2. We introduce two other amplitudes related to
the original amplitudeA(Dm,p,v), Eq. ~39!, by crossing
symmetry. The first one is obtained by replacing the incom-
ing particle created bybM ,p

†,in by an outgoing anti-particle
destroyed bycM ,2p

out . This matrix element, denoted by
A(2)(Dm,p,v) @see Fig. 2~b!#, gives the amplitude to create
a pair of charged quanta accompanied by the emission of the
masslessv quantum. The second one is defined by replacing
in A(2) the outgoing particle destroyed bybm,p8

out by an in-
coming antiparticle created bycm,2p8

†,in . This is the amplitude,
denoted byA(3)(Dm,p,v) @see Fig. 2~c!#, for an accelerated
antiparticle of initial massm to emit anv quantum.

The second amplitude is given by the following matrix
element:

A~2!~Dm,p,v!d~p2p82kv!

52 i M ^0,outum ^0,outu ^0uakv
bm,p8
out cM ,2p

out

3H̃cf u0& u0,in&m u0,in&M

52 i g̃2pd~p2p82kv!

3
ZMZm
aMam

E
2`

`

dt xm,p2kv

in,* ~ t ! xM ,p
in,* ~ t !

eivt

A4pv
. ~47!

The second equality follows from the fact that in the homo-
geneous gauge, the temporal part of the wave function of an
antiparticle of momentum2p is equal to the wave function
of the particle of momentump, see Eq.~22!. Then, as in Eq.

~19!, the only difference with the integrand of Eq.~40! is the

sign flip in the factor e2 iE t̃ u1 which arises from the
replacement3 of xM ,p

out (t) by xM ,p
in,* (t), where thex modes are

expressed in their integral representation, see Eqs.~18! and
~20!. Therefore, exactly as in Eq.~19!, one has

A~2!~Dm,p,v!

A~Dm,p,v!
5bM52 ie2pM2/2E. ~48!

This relation may be understood qualitatively from the fact
thatA is the decay amplitudeM→m1v whereasA(2) can
be envisaged as describing the production of a pair of heavy
particles followed by the decay of one of them intom1v.
Thus one expectsA(2).A e2pM2/2E.

Similarly, upon considering the amplitude
A(3)(Dm,p,v) defined by

A~3!~Dm,p,v!d~p2p82kv!

52 i M ^0,outum ^0,outu ^0uakv
cM ,2p
out H̃cfcm,2p8

†,in u0&

3u0,in&m u0,in&M

52 i g̃2pd~p2p82kv!
ZMZm
aMam

E
2`

`

dt xm,p2kv

out ~ t !

3xM ,p
in,* ~ t !

eivt

A4pv
~49!

one finds that the sign of the linear term inu2 appearing in
the Gaussian factor has flipped. Therefore

A~2!~Dm,p,v!

A~3!~Dm,p,v!
5bm52 ie2pm2/2E. ~50!

As in Eq.~48!, this may be understood from the fact that the
amplitudeA(2) can also be envisaged as describing the cre-
ation of a pair of light particles followed by the spontaneous
excitation of one of them, whereasA(3) is the spontaneous
excitation amplitude.

Now, byCPT invariance, one obtains

A~3!~Dm,p,v!5B~Dm,p,v! ~51!

given in Eq.~42!. Indeed one verifies that the integrand of
A(3)(Dm,p,v) coincides with the one ofB(Dm,p,v) under
the change of the dummy variablet̃52 t̃. Therefore, com-
bining this latter relation with Eqs.~48! and~50!, one obtains

B~Dm,p,v!

A~Dm,p,v!
5

bM

bm
5e2p~M22m2!/2E. ~52!

3It should be noted that this product of in-modes appears system-
atically upon evaluating any amplitude under the double condition
~pre- and post-selection in the Aharonov language! that the initial
state of the system was the in-vacuum and that the final state con-
tains one specific pair of charged quanta, see@23,21#.

3610 55R. PARENTANI AND S. MASSAR



Thus the ratio of the scattering amplitudes is equal to the
ratio of the Schwinger factors obtained by using crossing
symmetry twice. This is what guaranteed that Eqs.~12! and
~13! coincide. QED.

In the above calculation we considered the emission or
absorption of a right moving quantume2 iv(t2z). Had one
considered left moving quantae2 iv(t1z), different transition
amplitudes would have been obtained since parityP is ex-
plicitly broken in our model by the external electric field.
However the ratio of amplitudes for left and right moving is
a constant

A~right!

A~ left!
5
A~2!~right!

A~2!~ left!
5
A~3!~right!

A~3!~ left!
5

aM

am
eiv

2/2E.

~53!

Therefore the ratios Eqs.~48!, ~50!, and ~52! and the equi-
librium distribution Eq.~43! are independent of whether left
or right moving particles are emitted.

VII. PAIR CREATION OF BLACK HOLES

We consider how the above analysis applies to pair cre-
ation of charged black holes in an external electric field
which was considered in Refs.@17–19#. In the black hole
case, the picture is more complicated because black holes
have themselves an intrinsic temperature, the Hawking tem-
perature, and because the semiclassical description of the
production requires that their Unruh and Hawking tempera-
ture coincide. We recall that this condition arises from the
requirement that the Euclidean instanton have no conical sin-
gularity. For a given electric fieldE0, the chargeQ of the
hole is a function of its massM . Thus only the probability to
produce this one parameter family of black holes can be
obtained by this semiclassical treatment.

Following @24,25#, we express the probability to create a
pair of black holes which belong to this family as

PM ,Q,E0
5Ce~DA1ABH!/4, ~54!

whereABH(M ,Q) is the area of the black hole horizon,
DA(M ,Q,E0) is thechangeof the area of the acceleration
horizon induced by the creation of the black hole pair and
C a constant which takes into account the appropriate phase
factors, see Eq.~2!. As emphasized in@24,25#, ABH/4 ap-
pears in this expression as furnishing the density of black
hole states with massM and chargeQ thereby confirming
the Bekenstein interpretation ofABH/45SBH as the black
hole entropy.

The domain of the one parameter family which can be
compared with the Schwinger mechanism is the one in which
the black holes are small compared to the inverse accelera-
tion, i.e., in the point particle limit. Then, the change of the
area reduces to

DA
4

52SEuclid52pM2/QE0 , ~55!

i.e., minus the Euclidean action to complete an orbit, Eq.~8!.
In order to make contact with Eq.~9! and therefore to

show thatSEuclid acts as an entropy in delivering the Unruh
temperature, we consider the black hole pair creation prob-

ability from another point of view: We assume that Eq.~54!
is valid for all values ofM andQ and not only for the black
holes which belong to the one parameter family. Then, one
can make independent variations ofM andQ and determine
the most probable massM at fixed Q by extremizing
PM ,Q,E0

with respect toM . Using Eq.~55!, one gets

]MPM ,Q,E0
5PM ,Q,E0F]MS 2pM2

QE0
D1]MSABH~M ,Q!

4 D G
05PM ,Q,E0F2

1

TU~M ,QE0!
1

1

TH~M ,Q!G , ~56!

where we have defined the Hawking temperature as usual by
dABH/45dM/TH . Therefore the equality of the Hawking
and the Unruh temperature which defined the one-parameter
family is recovered here as determining the most probable
massM . Indeed one verifies thatM constitutes a maximum
of PM ,Q,E0

at fixed4 Q and E0. In this determination, the

Euclidean actionSEuclid acts exactly like the Bekenstein en-
tropy ABH/4. This strongly suggests that the equality of
Hawking and Unruh temperatures should be understood in
the meanand not as anecessarycondition thatM andQ
must satisfy in order to have black hole production.~A simi-
lar point of view has been put forward, but some how less
explicitly, in @24#.!

We now turn to the radiative processes which the black
holes undergo as they are accelerated. Indeed the black holes
will both emit radiation through the Hawking process and
will interact with the Unruh heat bath of Rindler quanta.
Because of the thermodynamic nature of the equilibrium
condition Eq.~56!, one expects that it should be preserved
when radiative processes are taken into account. We now
show that this is indeed the case, and more importantly that
the rates of emission and absorption of photons can be de-
duced from the pair creation probability Eq.~54!. To this
end, we define the rateRM ,n

2 for an accelerated black hole of
massM to emit a massless quanta of boost energyn thereby
decreasing its mass byn. Similarly we define the rate
RM2n,n

1 for the inverse transition, that is the absorption rate
of quanta of boost energyn by a black hole of mass
M2n, see the amplitudesA andB in Sec. IV.

On the basis of our analysis of accelerated detectors pre-
sented in Sec. V, we conjecture that the amplitudes for these
processes are related by level crossing andCPT to the am-
plitudes of producing pairs of black holes, Eq.~54! continued
outside of the one parameter family. If this is correct, the
ratio of the transition rates can be expressed as

RM2n,n
1

RM ,n
2 5

PM ,Q,E0

PM2n,Q,E0

5e2dSEuclid1dABH /4 ~57!

4Together with Spindel and Gabriel, we are presently investigat-
ing more general variations in whichQ also varies. Then the chemi-
cal potential induced by the electric field also participates to the
determination of the equilibrium in the usual thermodynamical way.
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for all values ofn and ofM , i.e., for values no longer re-
stricted ton!M nor toM5M , ~both conditions being re-
quired for the semiclassical approximation@26# to be valid!.

The factore2d SEuclid expresses both the conjecture that
transition rates of charged black holes coincide to
those of the corresponding pointlike charged particles~same
masses, same charge! and the fact that the latter’s
transition rates are governed bydSEuclid5SEuclid(M ,QE0)
2SEuclid(M2n,QE0), see Eq.~43!, and not by the~canoni-
cal! expression 2p(M2n)/a as in the semiclassical treat-
ment, see Eq.~38!. The factoredABH /4 expresses the conjec-
ture that black holes behave like pointlike particles
characterized by a degeneracy given byeABH /4. This second
conjecture has been recently proven for Schwarzshild black
holes in@27#. Notice that Eq.~57! reduces to the semiclassi-
cal calculation whenn→0 and whenM5M . Indeed, using
Eq. ~56!, one obtains directly

RM2n,n
1

RM ,n
2 5

PM ,Q,E

PM2n,Q,E
→n→0e

2n/TU1n/TH51 ~58!

as in @26#.
Thus we see that not only the area of the black hole ho-

rizon acts as areservoirentropy in delivering the properties
of the radiation~for a recent expose which makes clear the
passage from a microcanonical ensemble to canonical con-
siderations in black hole thermodynamics, see Chap. 3.6 in
@21#!, but more surprisingly, by virtue of Eq.~55!, the
~change in! area of the acceleration horizon acts in the same
way. Therefore the transition rates are directly determined by
the sum of the change of horizon areas:

RM2n,n
1

RM ,n
2 5exp~dAtotal/4!. ~59!

The present analysis sheds new light on the thermody-
namical approach to gravity recently presented by Jacobson
@13#. We recall that his approach is based on two main hy-
pothesis, namely that changes in area are linearly related to
changes in entropy and that the surface gravity is related to
the temperature seen by accelerating observers. From these
hypothesis, he deduced Einstein equations in the limit of
small fluxes. The present analysis can be conceived as pro-
viding statistical~microcanonical! foundations to his thermo-
dynamical approach, at least for the restricted set of phenom-
ena considered in this paper. Indeed, both of his hypothesis
are now derived from the fact that transition probabilities are
given by the change in horizon area, Eq.~59!. ~Notice that
this expression necessitates a choice of the action that gov-
erns thetransition amplitudesof gravity, most likely that
gravity is described by the Einstein-Hilbert action.! From Eq.
~59! one obtains, first, that the area of the horizon indeed
behaves like an entropy in its determination of transition
rates and equilibrium configurations, and, secondly, that ac-
celeration and temperature are correctly related.

Finally we note that the local interactions between the
radiation field and the black holes lead to adecoherenceof
the black holes states. To understand this decoherence, note
that before the first photon is emitted, one has a strict
Einstein-Podolsky-Rosen~EPR! correlation between the mo-
menta ~and the other quantum numbers! of the two black

holes since they are produced from vacuum. This correlation
is, however, necessarily destroyed by photons since the in-
teractions among the radiation field and the black holes are
local in the sense that the inverse acceleration characterizing
the mean wave length of the radiation emitted or absorbed is
much larger than the horizon radius. Thus their masses will
spread independently around the mean. However, in spite of
this destruction of the initial correlations, the equilibrium
distribution of the decohered momenta and masses is identi-
cal to the initial distribution when they were still exactly
correlated, since the radiative processes maintain the ‘‘pair
creation’’ equilibrium, see Eq.~58!.

Moreover, this decoherence is just what it is necessary to
invalidate the conclusions of the analysis of Yi@26,28#. He
argued that accelerated black holes no longer emit radiation
when their Hawking and Unruh temperatures coincide. His
reasoning was based on coherently interfering amplitudes, a
misleading feature arising when one works in a single clas-
sical background, i.e., by neglecting all quantum recoil ef-
fects. As stressed in@29# and the last remark of Sec. V, the
amplitudes evaluated in the background field approximation
are approximations which neglect the important phase ap-
pearing in Eq.~46!. Taking into account this phase com-
pletely modifies the local properties of the emitted radiation
@8#.

In summary we have shown that there is a thermodynamic
consistency between the Schwinger and Unruh effects. The
classical concept of acceleration, and the thermodynamic
concept of temperature, arise upon taking first order changes
in the energy applied to the exponential factor appearing in
transition amplitudes, see the remark made after Eq.~43!.
This is a universal feature. For instance the emergence of
time in quantum cosmology also results from first order
treatment of exponential factors@16# ~the analogous treat-
ment of exponential factors in statistical mechanics is also
discussed in this paper!. In the case of accelerated black
holes the consistency with thermodynamics is enlarged once
the additional fact that the black holes have an intrinsic en-
tropy is properly taken into account. This enlarged consis-
tency can probably be derived by appealing to the analytical
properties of the amplitudes to produce black holes and to
emit Hawking radiation under crossing symmetry andCPT,
in close analogy to what we proved for accelerated particles.
This might shed new light on the debate about whether black
hole evolution can be described by a unitarySmatrix @30#.

Thus the outcome of our analysis is that upon enlarging
the dynamical framework and going beyond the semi classi-
cal approximation, apparently unrelated phenomena such as
the Unruh effect, the Schwinger effect, Hawking radiation,
are described in one thermodynamicaly consistent whole.
And the area of causal horizons seem to play an essential
role in bringing about this unified description. We shall re-
port further on this aspect in a forthcoming publication@31#.
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