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Schwinger mechanism, Unruh effect, and production of accelerated black holes
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We compute the corrections to the transition amplitudes of an accelerated Unruh “box” that arise when the
accelerated box is replaced by a “two level ion” immersed in a constant electric field and treated in second
guantization. There are two kinds of corrections: those due to recoil effects induced by the momentum transfers
and those due to pair creation. Taken together, these corrections show that there is a direct relationship between
pair creation amplitudes described by the Heisenberg-Euler-Schwinger mechanism and the Unruh effect, i.e.,
the thermalization of accelerated systems at temperati@e wherea is the acceleration. In particular, there
is a thermodynamical consistency between both effects whose origin is that the Euclidean action governing pair
creation rates actas an entropy in delivering the Unruh temperature. Upon considering pair creation of
charged black holes in an electric field, these relationships explain why black holes are created from vacuum
in thermal equilibrium, i.e., with their Hawking temperature equal to their Unruh temperature.
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I. INTRODUCTION where the overall facto€ takes into account the phase space
factor arising from quantization in a volumé. For later

Quantum field theory predicts two remarkable phenomenaonvenience we reexpress E®) in such a way that the
when charged matter is accelerated in a uniform electriconstantC cancels,
field. The first is the Heisenberg-Euler-Schwinger mecha-
nism[1,2]. That is, vacuum instability due to spontaneous N(k,) o mKCIE_ P(k,) 3)
creation of charged pairs. When the electric field is turned on N(k, =0) P(k,=0)’
in a volumeV during a periodT, the norm of the overlap

between the initial and the final vacua, which gives the prob¥Where we have introduced the probabilfk, ) that a de-
ability not to produce pairs, decreases as tected particle produced from vacuum possesses that mo-

mentum. This latter concept is more intrinsic since it does
not depend on global characteristics suchaand T nor on
the rate of pair production.
The second effect concerns the physics which arises when
where (these accelerated particles are coupled to quantum radia-
tion, i.e., photons, or more generally to some massless field
a/2 ) ¢. Through this coupling, massive particles behave like de-
F=V(E) In(1+e”™%E), (1)  tectors. By detector we mean a quantum system which has
two (or more energy levels separated by an energy gap
Am and which can make transitions by emitting or absorbing
whered is the number of space time dimensioM,is the 3 photong. Therefore, these detectors probe the state of the
mass of the scalar charged partidies e, is the product of 4 field.
the chargee of the particle by the electric fiel&, (we put Using this concept of particle detector, Unri8j proved
fi=c=1). To allow the comparison with the second effectthat when such a detector is uniformly accelerated, it per-

we shall discuss below, it is appropriate to notice that thesejves the vacuum state of tiefield to be thermally popu-
pairs produced by the Schwinger mechanism possess a wejhted with the temperature

defined spectrum. Indeed, the mean number of péis )
characterized by a transverseith respect to the direction of Ty=al2m, (4)
the accelerationmomentumk, is given by

|(0,0ut0,in)|?=e" T,

wherea is the acceleration of the detector. Such an acceler-
s ated detector will eventually reach equilibrium with the heat
N(k, )=Ce M Tk /E (2)  bath, whereupon its two energy levels are populated with the
Boltzmanian ratio
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whereP . (P_) is the probability to be found in the excited (c) What are the consequences of “second quantizing the
(ground state. We have also introduced the rates of transiedetector,” i.e., of taking into account amplitudes of produc-
tions R, _, - which determine dynamically this equilibrium. ing pairs of charged detectors in the electric field? Indeed a
At first sight, besides the fact that charged particles propacompletedescription of a quantum relativistic system in an
gate with uniform acceleration external field can only be obtained by working in a second
quantized frameworKthe answers delivered in poirtb)
were based on an approximate first quantized treatment

(WKB) in which corrections ire” ™?E were neglectes]].
This further enlargement of the dynamisplies that both
once they are produced in the constant electric field, théhe Schwinger and the Unruh effect are encompassed in the
Schwinger and Unruh effects seem hardly related phenonsame model. To analyze the consequences of this enlarge-
ena. Indeed the Schwinger effect requires a second quantizéaent is the central problem addressed in the present article.
framework for the massive charged fielgy only and makes At this point, it is appropriate to consider the emission
no references to quantized massless fields. On the contrar@tes of photons by bremsstrahlung from an electron accel-
in the Unruh effect, the propagation of the detector is de€rated in a constant electric field. These emission rates were
scribed by a given classical trajectofthis is of course an analyzed by Nikisho9,10] a few years before Unruh’s
approximation, see belowand only its internal transitions Seminal work. Itis very interesting to notice that the point of
accompanied by the emission or absorption of quanta of thgiew adopted by Nikishov was to consider these emission
radiation field are treated quantum mechanically. Moreoverprocesses as describing corrections to the Schwinger effect
the Unruh effect can even be understood without introducingather than corrections to the Unruh effect induced by “sec-
the detector at all. Indeed, it suffices to reexpress the vacuu@nd quantizing the detector.” This dual point of view clearly
state of the fieldg, i.e., Minkowski vacuum, in terms of its illustrates the entangled nature of both processes when stud-
“Rindler” particle content. By Rindler quanta, one desig- ied in the enlarged framework. Nikishov showed that the
nates the quanta of the radiation field associated to the eigefatio of the transition rates for an electron to jump from a
modes of the boost operator which vanish beyond the horistate with transverse momentum to a state with zero mo-
zon defined by the accelerated trajectory of the sy§tgB].  mentum accompanied by the emission of a photon to the
Fulling found that Minkowski vacuum is a thermal distribu- inverse transition satisfies
tion of Rindler quanta. Then, Unruh proved that accelerate
detectors react to Rindler quanta as inertial detectors react to Ry, 0
inertial (Minkowski) quanta. Therefore, accelerated systems Ro_k,
find themselves in a thermal bath.

However, there are a number of questions which cannolvhere a,=E/m,. In the second equality we have written
be answered by this kinematical analysis based on Rindle/E ask?/2m,x 2/a, in order to explicitize the relationship
modes only. To reveal the aspects inevitably missed by thigjith Eq. (5). In the nonrelativistic limitk? <m?, it is indeed

analysis and to prove the necessity of _considering more dyl'egitimate to considekf/Zme as providing the energy levels
namical frameworks, we shall proceed in three steps by posst the “detector states,” se11,17 and point(b) above.

ing and ansyvering questions. he manifest similarities between E(f) and both Eq.(3)
(","). What is the energy bglanc;e of the accelerated-therm nd Eq.(5) strongly invite to inquire into their dynamical
equilibrium as seen by an inertial observer? In order to ANayrigin, if any.

swer this question, it is mandatory to abandon the description -z irst indication that there is a deep relation is furnished

in terms of the Rindler modes and to use instead thg, an analysis of the Euclidean instartassociated with the

Minkowski modes of the radiation field. The main result is gohyinger process. This instanton is obtained by considering
that, in spite of the equilibrium, Minkowski quanta are pro- e cjassical dynamics of a relativistic particle of mass

duced]5,6] and their total number equallg] the number of 54 chargee in ‘an electric fieldE,. The classicalLorentz-

internal transitions of the detector. ian) trajectories have uniform acceleration either to the right

(b) Where does this energy come from? or more locally, ., resnonding to particlesor to the left(for antiparticles

What is the incidence of the energy-momentum transfer 0Cznq the Eyclidean orbits are closed trajectories, as in a mag-

curing when one emission process takes place? To answg&tlc field. The Euclidean action for completing an orbit is

a=eEy,/M=E/M (6)

—e ™E—exp(—2m (K22my)la)  (7)

these questions requires an enlargement of the dynamics.
One must indeed quantize the center-of-mass position of the Seucia= TM?/E. (8)
detector—and thus attribute it a finite magls—and intro-

duce an external force such that the detector accelerates ui@ontact with the second quantized framework is made by the
formly in the absence of transitions. This is precisely the rolgfact that the probability of creating pairs scales like
of a constant electric field. The main results of this enlarged:™ Sewcid, see Eq(1).

dynamical framework are the following]: (1) The transi-

tion probabilities between excited and ground state still sat——

isfy Eq. (5) when Am<M. (2) Due to recoil effects, the  Remarkably, this analysis can be straightforwardly extended to
energy flux emitted by the detector becomes rapidly incoherblack hole pair production and their subsequent thermal effects.
ent and positive. Moreover it is accompanied by a constanturthermore these relations between Euclidean gravity and thermal
drift from uniformly accelerated trajectories which expresseghenomena shed a new light on the thermodynamical approach to
the dissipation of potential electric energy into radiation.  gravity [13] presented by Jacobson, see Sec. VII.
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What really concerns us is the amount of Euclidean

RmHM _ 2_ 32 _ _ e
proper time necessary to complete this orbit. It is given by R =g mMTMI/E_ gm2m(M—m)a (12
the Hamilton Jacobi relation M=m
M2\ 2n7 In the second equality, as in E(f), we have rewritten the
TEuclid= M SEucid= IMm = =T51. (9) exponent in order to make contact with the Unruh expression

controlled by an acceleration and an energy gap, se€5kq.
It equals the inverse Unruh temperature. At this point, itThe only difference is that the unique acceleration is re-

should be recalled that the quantum processes induced by th ced by the mean acceleratioa=(M+m)/2E. This

uniform acceleration and leading to E&) areall governed S O.UId cause no Surprise since the two leddisndm ex-
by lapses of proper time. By using Eq.(9), Eq. (7) can be perience different accelerations. In fact the Unruh formula,
written as ' Eq. (5), should always be considered as an approximate ex-

pression valid when it is legitimate to deal with a single
Re o , acceleration. Strictly speaking, this requires that the limit
—— =g (K[/2M¢) ISy, (10 Am/M—0,a/M—0 be taken. More physically, it requires
Ro—k, that the mass scales be well separated, Mes;m<<M. In
that case, the concept of a singéeceleration is meaningful,
This strongly suggests that the Unruh process can be oland therefore the concept of temperature as well.
tained from a first order comparison of two neighboring However, even when the conditidt — m<m is not sat-
Schwinger processes, in a manner similar that canonical dissfied, the two level ion reaches equilibrium with the popu-
tributions characterized by a temperature are obtained from @tion ratio of its excited and ground state given by the
first order change applied to microcanonical distributionsSchwinger mechanisnindeed, the ratio of the probabilities
characterized by energy only. The validity of this compari-p,, andP,, to find a given particle produced from vacuum in
son with thermodynamics will be confirmed upon consider-the M or them state is equal to the ratio of the mean num-

ing black hole pair production. It will then be clear that the phersN,, andN,, of produced quanta of massklsandm, see
Euclidean action behavess an entropy in delivering the Egs.(2) and(3), and therefore given by

Unruh temperature, see E@), therefore it behaves like the
Bekenstein entropy in the latter's determination of Hawking
Pu  m2—m2ye Nm
temperature. e m(M"—m >’E=N—. (13
In this paper we shall prove these interpretations are cor- m m
rect and we shall provide the physical rationale behind them. ] ] -
To this end, we shall use a simple model and proceed if he equality of the ratios of the transition rates, Ep), and

several steps. These are presented in the next section. ~ Of the probabilities, Eq(13), proves that there is a consis-
tency between the Schwinger mechanism and the extended-

Unruh-effect defined bykeepingthe finite corrections in
a/M and in Am/M into account. When the mass ratio
Instead of working with the transverse momentum, seeAm/M is negligible, one fully recovers the thermal equilib-
Egs. (3) and (7), to establish the relations between therium governed by a temperature, as in the original Unruh
Schwinger and Unruh effects, we shall use a two-description. WheAm/M is not negligible, even though it is

Il. THE MODEL AND THE STRATEGY

dimensional mode]8] composed of two charged fieldsy illegitimate to deal with a single accelerated trajectory, the
and ¢, and the scalar massless fiefd The Hamiltonian equilibrium distribution still exists and still coincides with
which governs the transition amplitudes is the Schwinger distribution. In this sense, pairs are born in

equilibrium [14].
- In Sec. VI, we determine the origin of the equality be-
HWZQJ dX gmimp+H.cl, 1) ween Eqs(12) and(13). We show thgat this equalci]ty idi)é—
tated by the analytical properties of the amplitudes govern-
whereq is a coupling constant. We have chosen that modeing pair creation under crossing symmetry &D@T.
because the expressions for the transition amplitudes are con- To understand this result, it is necessary to first consider
siderably simpler than in the four dimensional case, se¢he amplitude for a particle to propagate fram —« to
[9,10]. Thus, they display more clearly the seeked relationt=+« [Fig. 1(a)]. By crossing symmetryone replaces the
ships. incoming particle by an outgoing antiparticle, hence one ob-
In Sec. V, we shall compute “exactly” the first ordén
9) transition amplitudes. By exactly we mean to all orders in
Am/M anda/M thereby taking into account recoil effects 2These features arise whenever one enlarges the dynamics so as to
(first quantized effecjsand vacuum instabilitfa second abandon the background field approximation wherein it is postu-
quantized effegt In [14] both recoils and pair creation ef- lated that all processes can be described by a guantum system
fects were neglected, and [i8,15] only recoils effects were coupled to a single trajectory. Indeed, upon studyiftgrwardsthe
taken into account. semiclassical regime to determine how the background field ap-
From the properties of these amplitudes undeassing  proximation re-emerges, one explicitizes the conditions which must
symmetrywe prove that the ratio of the transition rate from prevail to validate that approximation. The interested reader will
the ground to the excited staten{~M) to the inverse tran- consult[16] where this approach is applied to quantum cosmology
sition rate (M —m) is exactlygiven by to determine the validity of the semiclassical Einstein equations.
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cited and emit a quanturm. The equality of Eqs(12) and

M
(13) and the connection between tfextended Unruh effect
e*”ffEM and the Schwinger process is thus explained by this succes-
t sion.
The motivation for our emphasis 08PT and crossing
L M symmetry is that these analytical properties should hold irre-
a b spectively of the specific model under examination. As an
illustration of this universality, in Sec. VII, we consider pair
FIG. 1. Feynman diagrams representi@y a particle of mass  creation of charged black holes in a constant eledtpic
M and charges propagating front=—c to t=+ in the electric  magnetig field [17-19 and the subsequent emission of
field Eq, and(b) a particle-antiparticle pair creation in the electric guanta through Unruh effect as well as through Hawking
field. The particles are represented by curved lines because they ?oceSS[ZO]. We show that there is once more a complete
accelerated by the electric field. These diagrams are oriented both ermodynamic consistency between the production of the
space and fime: the left-right symmetric @ would represent an black hole pairs and both of these radiative effects. This

antnp_arhcle accelerated in the opposite d_wecgon, the_ u_p-c_iown Symfhermodynamic consistency illustrates that the Euclidean ac-
metric of (b) would represent particle-antiparticle annihilation. Am-

plitudes(a) and(b) are related by level crossing. The ratio of their tion Eq.(8) acts indeed as an entropy in delivering the Unruh

e ) M2E . temperature, see E(), since it is given in terms of a quar-
norms is given by the Schwinger facter ™ ™%, see Eq(19) in ter of a change in area and occurs in amplitudes added to the
the text for the precise mathematical definition. Bekenstein entropy

tains the amplitude for pair creati¢fig. 1(b)]. The currents
associated with these two propagations are related by the

factor e~ ™“E, We recall in this section the essential steps necessary to
Now consider radiative processes involvingajuantum, obtain the Schwinger effect. The reader unfamiliar with pair
to first order ing. The amplitudga) of Fig. 2 represents the creation in an electric field may consult Ref8,10,14,21.
deexcitation of a detector mabs accompanied by the emis- What differs in our presentation is the emphasis put on the
sion of a massless quantum of energyThe norm squared use ofcrossing symmetrin defining and obtaining the Bo-
of this amplitude determines the ra®,_., of Eq. (12). On  goliubov coefficients. The reason for this emphasis is that
the other hand the ratR,,_,,, of spontaneous excitation of crossing symmetry will play a crucial role in Secs. V and VI.
the detector is determined by the norm squared of the ampli- We consider a massive charged scalar figldin a con-
tude (d) of Fig. 2. Our aim is to understand how these twostant electric fieldgy. In the homogeneous gaugé;E0,

Ill. THE SCHWINGER EFFECT

amplitudes are related. A,=Eyt) ¢ obeys the Klein Gordon equation
First note that by usingi symmetry, amplituded) is
equal up to complex conjugation to the amplitu@g for a [atz—(&z—iEt)z—ﬁf,—aiJr M?2]yy=0, (14

detector in the excited state to absorb a light quanta and

deexcite. Then note that amplitudes and(e) are related by WhereE=eE,. In this gauge three-momentum is conserved.
crossing symmetry for the light quantum, i.e., by takingThe transverse momentum squared acts like a shift of the
w—€'"w. This latter relation will be exploited in Sec. V. mass squared, see E@). From now on, however, for rea-
However it does not help to understand how B) relating ~ sons of simplicity, we shall take it to vanish and work in
the rateR,, . to Ry _. is connected to the Schwinger pro- 1+1 dimensions. Since the longitudinal momentpris also
cess, Eq(13), since it involves crossing symmetry applied to conserved, ¢, can be decomposed as a sum of

the photon only. ePZxpm(t), wherex, u(t) obeys
To obtain this understanding, we shall use instead the 5 ) )
successiora—b—c—d which proceeds through crossing [df+(P—ED)*+M=]x,m(t)=0. (19

symmetry appliedwice to the Schwinger process. First we ) ) ) )

use crossing symmetry for the “excited” detector of mass'here are two independent solutions of this equation and
M so as to relatéa) to the amplitude to create from vacuum their asymptotic behavior must be used to identify which

a deexcited detector, an excited anti—detector, and a mass|d§tear superpositions describe, andout, particle and anti-
quantum of energy» [Fig. 2(b)]. The ratio of the norms of particle states. Indeed, because of the time dependence of the
amplitudes(b) and (@) is given by the Schwinger factor frequency,in particle modes, i.e., solutions of EQLS) car-

e~ ™?2E gxactly as in the case considered in Fig. 1 above'Y'"9 unit positive current fot— —c, will be a superposi-

Secondly, by using again crossing symmetry applied to th«gIon of out particle and antiparticle modes forc:
deexcited detector of mass, one obtains the amplitude) N _ . out + By Ol (16)
for a deexcited antidetector to get excited and to emit a light XM.p™ AMXM,p™ PMXM, —p-

guantum. The ratio of the norms of amplitudés and(c) is

given by the Schwinger fact@™™ /. In this case it is the
massm rather than the mas¥@ which comes up in the ex- laml®—|Bul?=1. (17)
ponential weight. Thirdly, we use theP symmetry to map

particles into antiparticles while leaving the electric field To obtain the asymptotic behaviors of the various modes, it
Ey unchanged. Thu€P maps the amplitudéc) onto the is useful to use the following integral representation, see
sought for amplituded) for a deexcited detector to get ex- [22]. For instance, in modes are given by

Current conservation requires
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© d 2 @
in _ —iM4/2E)—(1/2)
X ()= fo N _"MZ,M ,'5

x @E[U%4=(t=p/E)u+(t—p/E)%/2] (18 '
a

where the normalization factor is shown to be the coefficient qp
v - One easily obtains the Bogoliubov coefficigay, from w e m 1\(/,[)

this integral representation because, for largg i.e.,

[t|>M/E, the integral receives all its contribution from ~F

saddle points ati— and from the regiou— 0. One finds

that the saddle point at— oo describes the outgoing particle

wave carrying fort—o a current| ay|?. Instead the contri-

bution from u—0 describes, fort— —c the incoming FIG. 2. Feynman diagrams representi@y an accelerated de-
branch carrying unit positive current, and for- + the  tector which deexcites and emitsfaquantum of energy, (b) pair
antiparticle branch carrying negative current, $288] for  creation of a pair of detectors and the emission ¢f quantum,(c)
more details,8, is the ratio of these latter contributions at spontaneous excitation of an anti—detectdy,spontaneous excita-
smallu. To evaluate this ratio, it is legitimate to neglect the tion of a detector, ante) deexcitation of a detector accompanied by
term inu? in the exponential and one is left with the integral the absorption of @ quantum. The conventions are the same as in
representation oF functions: Fig. 1. A thick curved line designates an excited detector of mass
M, a thin curved line a deexcited detector of masand a straight
« line a ¢ quantum. The orientation of the straight lin@$ degrees
f du U —iM?2E)~(1/2)giE(~[tju+t%/2) to the right or lef} corresponds to the momentum of the light quan-
— #M2/2E tum beingk,= — w or k,= + ». Amplitudes(a) and(b), and ampli-
) tudes(b) and(c) are related by level crossing. Upon passing from
one to the other they acquire the Schwinger faetof™*/2E and
(19 e™’/2E respectively. Diagraméc) and (d) are related byCP and
diagram(d) and (e) by T symmetry. Alternatively one can pass
directly from(a) to (e) by takingw to €. These relations shall be
proven in Secs. V and VI.

O m
e d

=—ije

M ©
f du u(—iM2/2E)—(1/2)eiE(|t|u+t2/2)
0

Note how it is the sign of the exponent ef '€l which
governs the ratio of these integrals. By sendirng '™t in
the lower integral, the contribution of the incoming particle
is replaced by the one of the outgoing anti-particle. This i
what we designate by crossing symmetry, see Fig. 1. In Se

Whereupon one obtains the in vacuum and the out vacuum,
Swhich are annihilated by the corresponding destruction op-

VI, we shall see that it is this continuation used twice which rators
implies the equality of Eqg12) and(13). n 10,inym=c |0,inyy=0,
The corresponding out mode with asymptotic unit final P P 23
current directed towards= + is obtained by replacing bt |0 ou Cout |0 ouby =0
. T . M ’ M .
by —t, p by —p and by complex conjugation. Thus, its
integral representation is From the Bogoliubov transformation, E(L6), one obtains
the mean number of produced pairs of momenfum
= du 2
out __in _ (iM2/2E)—(1/2) t t 2_ 7™M /E
XD =X p(—t) = an fo = N =1 (0Nl D3RR 0,y = | B =€ (24
ETUiAn (t—p/E B2 One can also express the in-vacuum in term of its out-
x e EluTaH TR pIET2], (200 particle content:
One also shows that the anti-partiste andoutmodes are |Oain>M:ZMH o (Bulawbue ’T\‘AOLE)E‘O,OUDM (29
given by 0
xm 7p(t)=xi,3|,p(t), m”f,p(t) Xout (t). (21 whereZ.M is the amplitude not to produce pairs. Its norm
square is
In the second quantized framework, the field operator 112
iy should be decomposed both in terms of the in modes and |Zml?= 1w (0,0ut0,inyy|2=T1 |—
out modes: P am
o0 o _ :exp< - In(1+e”'\"2’E)). (26)
‘//M:f dp épz[bll\r)l,p M p+C1I\L/:nfp ;rl\r/]lf—p] P

One recovers the Schwinger result, Ef) by noting that
do dP? bout yout 4 cfout —oub 29 2,=ELT/2m when the electric field is turned on in a box of
f P e XuaptCump X pl- (22 B during a timeT (if T,L>E 13, see[21].
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Finally we note that the amplitudes represented in Fig. 1
are A(Am,w,a)=—i{ —[{ 0 ay, j dzdtH.||0)|+
Fig. 1@~ w(0.0ufbRibli[0in)y=Zu /ay, :_maf“qummi“'%
H out ~out H o 477(1)
Fig. 1b) < nm(0,0utby,Cy — pl0,iMy=—ZyBu/ay - .
(27) _(=du . e
=—ig| —u
o U A
IV. THE UNRUH EFFECT (o)
— H H mTAm/Za
We recall the essentials of the Unruh effect for a two level =—igl'(iAm/a)e (34)

atom, in the(1+1)-dimensional case. The reader may also VAmo

wish to consulf3,21]. We shall again put emphasis on the \ypere the light like variable=t—z is related to the proper
use ofcrossing symmetryvhich allows, in this case, to de- e ~ by au=—e 2",
termine the transition amplitude of the opposite channel in Similarly the amplitude for an excited detectorabsorb

terms of an analytical continuation in the energy of the phoyg right moving quantum and to get deexcited is
ton applied to the amplitude of the direct channel. The ori-

entation of the continuation is such that the stability of the

vacuum state is guaranteed.
The trajectory followed by the uniformly accelerated de-
tector is
t=a lsinhar, z=a lcoshar, (29
the detector is coupled to a massless fiidhrough the
interaction Hamiltonian

f dzdt Hm=gJ dre 2™ ¢ (t(1),z(7))|+)

X(—|+H.c.] (29)

B(Am,w,a)= —i< —’<o‘ f dzdtH,, alw

o)+ ).
@)

This amplitude is related to that usually considered in the
Unruh effect, namely the amplitude for a deexcited detector
to get spontaneously excited, Ay symmetry, that is com-
plex conjugation.

We shall not computed(Am,w,a) directly since it is
more instructive to determine it from the amplitude
A(Am,w,a) by exploiting their analytical properties under

where|+) and|—) are the excited and ground states of the ) )
detector,Am is the energy gap between the two states and’Sing the fourth line of Eq(34), one obtains

g is a coupling constant.
The second quantized field obeys the massless Klein
Gordon equation in +1 dimensions
(97— 371¢=0. (30
The complete set of solutions with positive Minkowski fre-
guencyw are

e—iwteisz
ok = o=|k,| ,—e<k,<+w. (31
@ 4w
¢ can therefore be decomposed as
+ 00
b= f dkw[akw(pkw-l— HC] (32)

The Minkowski vacuum is annihilated by aale operators

a, |0)=0. (33

To first order ing the amplitude for the detector to deex-
cite and emit a right moving Minkowski quantur.e.,
k,=w) is

level crossing i.e., by taking o—e"w. Indeed,
B(Am,w,a) is given by

B(Am,w,a)=A(Am,e” ' "w,a)i. (36)

B(Am,w,a)=A(Am,w,a)e” ™Ma, (37
Therefore the ratio of the transition rates is

2
R__>+: B(Am,w,a) _ —oraAma 38
Ri_._ |A(Am,w,a)

since|B/A| is independent of the energy of the photon.
This is exactly what one would have obtained in a thermal
bath at temperaturé,=a/2w, see Eq(5).

V. THE SCHWINGER MECHANISM
AND THE UNRUH EFFECT

By using the model of the accelerated two level ion pre-
sented in Sec. I, we shall show to ordgf that the ratio of
the transition rateRy, ., to emit a photon starting from the
ground staterfy) or the excited stateM) satisfies Eq(12)
even when the vacuum instability with respect to pair cre-
ation is fully taken into account. In the next Section, we shall
rederive the same ratio from the sole analytical properties of
the pair creation amplitudesinderCPT and crossing sym-
metry. It is essential that these latter amplitudes do not van-
ish (i.e., By#0) in order to determine the transition rates
through this second indirect procedure.

We first compute the amplitudd(Am,p,w) [depicted in
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Fig. 2(a)] to emit a massless quantum starting from theWe postpone the evaluation of this expression since the de-
heavier statd. This amplitude corresponds to the amplitudetermination of the equilibrium requires to know the ratio of

A(Am,w,a) of Eq. (34). To first order ing, using the mo-
mentum conservation, it is given by

A(Am,p,w)5(p—p'—k,)
= —iy (0,0uty (0,0uf (Ofa, byl Hygbli'
%[0)0,in)m |0,iny

= —iGZuZnd(p—p' —k,)ay ey’

B ) eiwt
XJ dt ink B (t) out (t) .
w Xm,p K XM \/m

(39

The overall factorzy,Z,, is the product of the in-out over-
laps, see Eq(26). It appears because the scattering procesg1
happens in the presence of pair production of charge

guanta.

Notice that in the limitM?/E—ox at fixedM —m=Am
andM/E= 1/a, the integrand of Eq39) tends uniformly to
the WKB expression studied i8]. Therefore, by virtue of
the analysis of that pape#(Am,p,w») tends to the “Un-
ruh” amplitude A(Am, w,a), Eq. (34).

In terms of the integral representations of themodes,
see Sec. lll, and fok,= w, we obtain

A(Am,p,w)
ZyZny

du; (~du 2
__Igj 1 2 u(IM 12E)—(1/2)

iwp/E
1/2)e 1

Varw2) -

R4 T 43 2 2, = = 2
X e IE[ul/4+ tug +t <2+ u5/4— (t+ o/E)uy+(t+ w/E) /2]’ (40)

im2 _ ~ . 7
XU(ZIm 12E) —( dtelwt

the transition rates only, see E®). Therefore we shalte-
late A to the amplitude of the inverse process. One can either
consider the amplitude to emit the same quantum starting
from the ground statenf) [see Fig. 2d)], or the amplitude to
absorbthis photon starting with the excited detector state
(M) [see Fig. 2e)], since one is the time reversal Sym-
metry) of the other. As in Sec. IV, we consider the second
amplitude, denoted b$(Am,p,w), since it isgivenby

B(Am,p,w)=A(Am,p,e' "w)i (42)

by virtue of the stability of the vacuum of the photon field,
see Eq.(36).

From the dependence m in Eq. (41), exactly like in the

ird line of Eqg. (34), one deduces immediately that the
quare of the amplitudes which determines both the rates
m—m and the equilibrium probabilitieB ) , satisfy

Rmﬂ M

‘ B(Am,p,») |? “3

A(Am,p,w)

e~ m(M?—m?)/E _ m
"Ryom Pm

Therefore we have proven E@12) and the fact that the
equilibrium probabilitiesPy, and P, defined by these radia-
tive processes are equal to those defined by the Schwinger
process in Eq(13).

Furthermore, when the mass gAm satisfiesAm<M, it
is meaningful to write Eq(43) as

B(Am,w,a_)2

B(Am,p, w) |?
’ A(Am,w,a)| ’ (44

A(Am,p,w)

7277Am/a

where a=2E/(M+m)=ay(1—Am/2M) 1. Thus, under
the above inequality, one fully recovers the Unruh equilib-
rium, see Eq(38), governed by a single acceleration since
ay=E/M=E/m=a.

Notice that it is the first time that the concept of accelera-
tion is brought to bear. It appears through a first order change

where we have definet=t— p/E. Performing the Gaussian in the exponential factor. This is exactly like the recovery of

integration overt and introducing the variablé= Eu,u,/2
one has
A(Am,p,w) _~f°°dul
—_— - | [—
ZMZm 0 \2m

ing 2
><u(luM J2E) -

* du,
0 \27

(1/2)

|m2/2E —(1/2)

eia)p/E
e
4\Ew

9 ei(wp—wzlz)/E

V2E

fwduz i

X{f:\/g_j{

e IE[U1Uy/2— upw/E+ w?/2E?)

iuyw
2_m?2)/2E €

4w

(ZalE)(iMZ/ZE)—(UZ)e—i& .

(41)

classical trajectories from wave packets. Indeed the station-
arity condition is a first order change in the enefgy the
momentum applied to the phase of the wave packet. This
emergence of the classical concepts of acceleration and tem-
perature also bears many similarities with statistical mechan-
ics since it is also through a first order change in the energy
that the concept of equilibrium temperature arises from mi-
crocanonical ensembles. For further discussions see Sec. VII.
For completeness, we now compute the amplitutié-
self, see Eq(41). Performing the integrations one gets
A(Am,p,w) ’g" ei(wp7w2/2)/E
ki het AU S

s 2_ 2
75— =~i5 T'(—i(M2—m?)/2E)

4w
% ew(Mz—mz)/ZE(w)i(Mz—mz)/ZE

X|T|i

2E 2

M2 1) 7TMZIZE(E/Z)—ilezE

+_
N

(45)

In terms of the mean acceleratian- 2E/(M + m), one finds
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A(AM,p,w) ] - (19), the only difference with the integrand of E¢0) is the
ZuZm | 2gE A(Am,w,a) sign flip in the factore 'EtY1 which arises from the
, ) - replacemeritof X‘,i,,“fp(t) by xwm’p(t), where they modes are
X gl(@P— o 2VEL L L(E[2) ~IMT2E], expressed in their integral representation, see Eigs.and
(46) (20). Therefore, exactly as in E@19), one has
) i g " i AP (Am,p,0)
whereA(Am, w,a) is the “Unruh” amplitude Eq.(34) for a pw) — oM 49)
two-level system to emit a quantum from the heavier state A(Am,p,w) =Bu= :
when it follows a classical trajectory of uniform acceleration
a. This relation may be understood qualitatively from the fact

From this expression, one can determine what are thgyat 4 is the decay amplitud® —m+ o whereasA® can
physical processes that cannot be described byapipeoXi-  pe envisaged as describing the production of a pair of heavy
mateamplitudesA(Am, w,a) andB(Am, ,a) based on the particles followed by the decay of one of them intot w.
hypothesis that one can work with a single classical trajec=|.hus one expects:l(z)zA o TM2/2E
tory. An example of SU(_:h a qugn_ﬂty IS glve'nwﬁpa_];)zlltz);i Similarly, upon considering the amplitude
shown that the dynamical additional phas# A®(Am,p,w) defined by
leads to decoherence effects which in turn lead to a positive "
local flux after a finite amount of proper time. This positive

(3) —n'—
flux cannot be described in the treatment based a classical A(Am,p, ) 5(p=p'—kK,)

trajectory because there cannot be any loss of coherence in = —iy (0,0ut, (0,0ut (O|ay, cot ﬁWCT’i” . |0)
the over restricted dynamical framework wherein only the o P moP
¢ field carries momentum. X 10,iN)y, |0,iNY
VI. CPT AND CROSSING SYMMETRY iq ! ZmZm [~ out
- =—ig2mo(p—p’—k,) 0| dt Xmp-i, (U

The aim of this section is to rederive E@3) from the
amplitudes governing the vacuum instability under pair cre- . giot “9)

i X xs(t 49
ation. We shall thereby understand why E#2) and Eq. Xmp(t) Jare

(13) coincide.

To this end we shall proceed as explained in Sec. Il, see ) . ] o
also Fig. 2. We introduce two other amplitudes related toPn€ finds that the sign of the linear termup appearing in
the original amplituded(Am,p,®), Eq. (39), by crossing the Gaussian factor has flipped. Therefore
symmetry. The first one is obtained by replacing the incom-
ing particle created byol;" by an outgoing anti-particle AP (Am,p,w)
destroyed bycy' ,. This matrix element, denoted by A®(Am,p,w)
AP(Am,p,w) [see Fig. ?)], gives the amplitude to create
a pair of charged quanta accompanied by the emission of th&s in Eq. (48), this may be understood from the fact that the
massless quantum. The second one is defined by replacingamplitude.4®) can also be envisaged as describing the cre-
in A® the outgoing particle destroyed m&”; by an in-  ation of a pair of light particles followed by the spontaneous
coming antiparticle created mz;;viﬂp, . This is the amplitude, ~excitation of one of them, wherea$® is the spontaneous

denoted byA®)(Am,p, ) [see Fig. 20)], for an accelerated €Xcitation amplitude.

Br=—ie” "I, (50

antiparticle of initial massn to emit anw quantum. Now, by CPTinvariance, one obtains

The second amplitude is given by the following matrix
element: A®(Am,p,w)=B(Am,p,w) (5
AP (Am,p,w)8(p—p’'—k,) given in Eq.(42). Indeed one verifies that the integrand of

AB)(Am,p,w) coincides with the one dB(Am,p,w) under
the change of the dummy variable- —t. Therefore, com-
bining this latter relation with Eq$48) and(50), one obtains

= —iw (0,0ut, (0,0ut (Olay b3 o,
XH 4 10) [0,in)p, [0,in

=—ig2mé(p—p'—k,) B(Am,p, ) _ B_Mzeffr(szmz)IZE_ (52)
A(Am!plw) Bm

ZMZm “ in,% in,% !
X—— B dt Xm,pfkm(t) XM,p(t) —. (47

ap Oy \/m
31t should be noted that this product of in-modes appears system-
The second equality follows from the fact that in the homo-atically upon evaluating any amplitude under the double condition
geneous gauge, the temporal part of the wave function of afpre- and post-selection in the Aharonov langyaiat the initial
antiparticle of momentum- p is equal to the wave function state of the system was the in-vacuum and that the final state con-
of the particle of momenturp, see Eq(22). Then, as in Eq. tains one specific pair of charged quanta, [28:21].
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Thus the ratio of the scattering amplitudes is equal to thebility from another point of view: We assume that E54)
ratio of the Schwinger factors obtained by using crossings valid for all values ofM andQ and not only for the black
symmetry twice. This is what guaranteed that H4®) and  holes which belong to the one parameter family. Then, one
(13) coincide. QED. can make independent variationsMfandQ and determine

In the above calculation we considered the emission othe most probable masM at fixed Q by extremizing
absorption of a right moving quantuer '“("?_ Had one Pm.QE, with respect toM. Using Eq.(55), one gets
considered left moving quane '“(t*2, different transition

[ en obtained since pdvitis ex-
amplitudes would have be pévitis ) (_WMZ) y (ABH(M,Q)”
M M

plicitly broken in our model by the external electric field. (9MPM,Q,EOZ PM,Q,EO

However the ratio of amplitudes for left and right moving is QEy 4
a constant
Arrighty  A@(righty  A®(right) @y . o, B 1 }
_ _ S ) 0=P — + , 56
AQef) ~ AD(lefty  A(lef)  am ' MQE|  Ty(M,QEp) Tw(M.Q) (56
(53

Therefore the ratios Eq$48), (50), and (52) and the equi- where we have defined the Hawking temperature as usual by

librium distribution Eq.(43) are independent of whether left 9-As/4=dM/Ty . Therefore the equality of the Hawking
or right moving particles are emitted. and the Unruh temperature which defined the one-parameter

family is recovered here as determining the most probable
massM. Indeed one verifies thadl constitutes a maximum
of Pu,q, at fixed Q and Eo. In this determination, the

We consider how the above analysis applies to pair cregyclidean actiorSg,q acts exactly like the Bekenstein en-
ation of charged black holes in an external electric fieldiropy Ag,/4. This strongly suggests that the equality of
which was considered in Ref§17-19. In the black hole  Hawking and Unruh temperatures should be understood in
case, the picture is more complicated because black holg@he meanand not as anecessarycondition thatM and Q
have themselves an intrinsic temperature, the Hawking temmyst satisfy in order to have black hole productioh simi-

perature, and because the semiclassical description of thgr point of view has been put forward, but some how less
production requires that their Unruh and Hawking temperaexplicitly, in [24].)

ture coincide. We recall that this condition arises from the We now turn to the radiative processes which the black

requirement that the Euclidean instanton have no conical sirholes undergo as they are accelerated. Indeed the black holes
gularity. For a given electric fiel&,, the chargeQ of the  wijll both emit radiation through the Hawking process and
hole is a function of its madl§l. Thus only the probability to  will interact with the Unruh heat bath of Rindler quanta.
produce this one parameter family of black holes can be&ecause of the thermodynamic nature of the equilibrium

VII. PAIR CREATION OF BLACK HOLES

obtained by this semiclassical treatment. condition Eq.(56), one expects that it should be preserved
Following [24,25, we express the probability to create a when radiative processes are taken into account. We now
pair of black holes which belong to this family as show that this is indeed the case, and more importantly that

the rates of emission and absorption of photons can be de-
duced from the pair creation probability E(4). To this
end, we define the rafe,, , for an accelerated black hole of

where Ag,(M,Q) is the area of the black hole horizon, massM to emit a massless quanta of boost enerdiiereb
AA(M,Q,Ey) is thechangeof the area of the accelerationdg d dy y

hori - duced by 1h i t the black hol . ecreasing its mass by. Similarly we define the rate
orizon nduced by the creation of the black nhole pair angg. for the inverse transition, that is the absorption rate
C a constant which takes into account the appropriate phas

M—v,v
factors, see Eq(2). As emphasized 124,25, Ag,/4 ap- ﬁ_qragéi tohfe t;?ﬁsltitueg;g;] dbg i: Sbgichhme of mass
pears in this expression as furnishing the density of black On the basis of our analysis of accelerated detectors pre-

tk‘hoéeBS;i;ensst\g'l:]h .m:fyrleg;qoﬁhg;gﬁ_thse rebays ng"g?:;ﬁ sented in Sec. V, we conjecture that the amplitudes for these
in-interp ! BRI <BH processes are related by level crossing @RI to the am-

hole entropy. : . . ;
. . : plitudes of producing pairs of black holes, E&4) continued
The domgm of the one parameter_ fa”?"y which can l.)eoutside of the one parameter family. If this is correct, the
compared with the Schwinger mechanism is the one in Whlcfpatio of the transition rates can be expressed as

the black holes are small compared to the inverse accelera-
tion, i.e., in the point particle limit. Then, the change of the

PM’Q‘EOZCe(AAJrABH)/Zl, (54)

area reduces to R PmoEe
M-viy QFo = e~ %Seuciat dApn /4 (57)
Ry P
AA 2 M,v M- VerEo
2 =~ Seucia= ~ "M/ QE,, (59
i.e., minus the Euclidean action to complete an orbit, (BY. “Together with Spindel and Gabriel, we are presently investigat-

In order to make contact with Ed9) and therefore to ing more general variations in whied also varies. Then the chemi-
show thatSg,q acts as an entropy in delivering the Unruh cal potential induced by the electric field also participates to the
temperature, we consider the black hole pair creation probdetermination of the equilibrium in the usual thermodynamical way.
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for all values ofv and of M, i.e., for values no longer re- holes since they are produced from vacuum. This correlation
stricted tov<M nor to M=M, (both conditions being re- is, however, necessarily destroyed by photons since the in-
quired for the semiclassical approximatif6] to be valig.  teractions among the radiation field and the black holes are
The factore™? Sewid expresses both the conjecture thatlocal in the sense that the inverse acceleration characterizing
transition rates of charged black holes coincide tothe mean wave length of the radiation emitted or absorbed is
those of the corresponding pointlike charged parti¢égsne  much larger than the horizon radius. Thus their masses will
masses, same chajgeand the fact that the latter's spread independently around the mean. However, in spite of
transition rates are governed Y8, uic=Seuaid(M.QEy)  this destruction of the initial correlations, the equilibrium
— Seuaid M — v,QE), see Eq(43), and not by thecanoni-  distribution of the decohered momenta and masses is identi-
cal) expression Z(M—v)/a as in the semiclassical treat- cal to the initial distribution when they were still exactly
ment, see Eq(38). The factore®er’4 expresses the conjec- correlated, since the radiative processes maintain the “pair
ture that black holes behave like pointlike particlescreation” equilibrium, see Eq58).
characterized by a degeneracy givened\#+/*. This second Moreover, this decoherence is just what it is necessary to
conjecture has been recently proven for Schwarzshild blackvalidate the conclusions of the analysis of [26,28. He
holes in[27]. Notice that Eq(57) reduces to the semiclassi- argued that accelerated black holes no longer emit radiation
cal calculation wherv—0 and whenM =M. Indeed, using When their Hawking and Unruh temperatures coincide. His
Eqg. (56), one obtains directly o reasoning was based on coherently interfering amplitudes, a
misleading feature arising when one works in a single clas-
T T sical background, i.e., by neglecting all quantum recoil ef-
— 08 "UTMIH=1 " (58)  fects. As stressed if29] and the last remark of Sec. V, the
amplitudes evaluated in the background field approximation
as in[26]. are approximations which neglect the important phase ap-

Thus we see that not only the area of the black hole hoP€ang in Eq.(46). Taking into account this phase com-
fizon acts as @eservoirentropy in delivering the properties pletely modifies the local properties of the emitted radiation
of the radiation(for a recent expose which makes clear thel8]- ) .
passage from a microcanonical ensemble to canonical con- N Summary we have shown that there is a thermodynamic
siderations in black hole thermodynamics, see Chap. 3.6 iRonsistency between the Schwinger and Unruh effects. The
[21]), but more surprisingly, by virtue of Eq(55), the classical concept of acce_leranon, anq th(_e thermodynamic
(change if area of the acceleration horizon acts in the sam&°ncept of temperature, arise upon taking first order changes
way. Therefore the transition rates are directly determined b the energy applied to the exponential factor appearing in

+
RM— v,y PM,Q,E

RM,V a PM— v,Q,E

the sum of the change of horizon areas: ransition amplitudes, see the remark made after (Eg).
This is a universal feature. For instance the emergence of
Ryi— s time in quantum cosmology also results from first order
= — = eXp( S Al 4). (59)  treatment of exponential factofd6] (the analogous treat-
M,v

ment of exponential factors in statistical mechanics is also
discussed in this paperin the case of accelerated black

The present analysis sheds new light on the thermOdot}loles the consistency with thermodynamics is enlarged once
namical approach to gravity recently presented by Jacobs o A
pp 9 y y P y the additional fact that the black holes have an intrinsic en-

[13]. We recall that his approach is based on two main hy- : . ; .
pothesis, namely that changes in area are linearly related E&Opy is properly taken Into account. Th'.s enlarged consis-
changes in entropy and that the surface gravity is related t ncy can probably be .der|ved by appealing to the analytical
the temperature seen by accelerating observers. From theBEpperties of the amplitudes to produce black holes and to

hypothesis, he deduced Einstein equations in the limit mem't Hawking radiation under crossing symmetry a’.BiEIT,_
small fluxes. The present analysis can be conceived as pri! close analogy to what we proved for accelerated particles.

viding statisticamicrocanonical foundations to his thermo- his might shed new light on the debate about whether black

dynamical approach, at least for the restricted set of phenonb—Ole evolution can be described by_a _umt&ynatnx [30] .
ena considered in this paper. Indeed, both of his hypothesi% Thus th_e outcome of our anal_y5|s is that upon er!'arg'”g
are now derived from the fact that transition probabilities aren® dynam!cal framework and going beyond the semi classl-
cal approximation, apparently unrelated phenomena such as
;t)'_]e Unruh effect, the Schwinger effect, Hawking radiation,
are described in one thermodynamicaly consistent whole.
And the area of causal horizons seem to play an essential
c{ole in bringing about this unified description. We shall re-

port further on this aspect in a forthcoming publicat[@i].

erns thetransition amplitudesof gravity, most likely that
gravity is described by the Einstein-Hilbert actipRrom Eq.
(59) one obtains, first, that the area of the horizon indee
behaves like an entropy in its determination of transition
rates and equilibrium configurations, and, secondly, that ac-
celeration and temperature are correctly related.

Finally we note that the local interactions between the
radiation field and the black holes lead t@ecoherencef R.P. is grateful to C. Bouchiat, R. Brout, J. lliopoulos, and
the black holes states. To understand this decoherence, nofe Jacobson for useful comments and S.M. would like to
that before the first photon is emitted, one has a stricthank N. Itzhaki. A major part of this work was done while
Einstein-Podolsky-RosefEPR correlation between the mo- R.P. was at Laboratoire de Physique ®@tique de I'Ecole
menta(and the other quantum numbgrsf the two black Normale Supeeure, UPR 701 CNRS.
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