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We compute the quasinormal frequencies of the Kerr black hole using a continued fraction method. The
continued fraction method first proposed by Leaver is still the only known method stable and accurate for the
numerical determination of the Kerr quasinormal frequencies. We numerically obtain not only the slowly but
also the rapidly damped quasinormal frequencies and analyze the peculiar behavior of these frequencies at the
Kerr limit. We also calculate the algebraically special frequency first identified by Chandrasekhar and confirm
that it coincides with the n58 quasinormal frequency only at the Schwarzschild limit.
@S0556-2821~97!01906-1#

PACS number~s!: 04.70.Bw, 04.25.Nx, 04.30.Nk

I. INTRODUCTION

The linear perturbations of the Schwarzschild spacetime
were first examined by Regge and Wheeler@1#, who were
trying to solve the stability problem of the black hole. They
derived what is now called the Regge-Wheeler equation, a
second order ordinary differential equation similar to the
Schrödinger equation. The perturbation radiates away at the
speed of light satisfying the wave equation and hence it cor-
responds to the gravitational wave around the black hole.
Therefore, examining the perturbations of the black hole is
equivalent to solving the scattering problem of gravitational
waves around the black hole. Their pioneering work has led
to the study of the quasinormal modes because they domi-
nate most processes involving perturbed black holes. Quasi-
normal modes were first found by Vishveshwara@2# and by
Press@3# through numerical computations of the time evolu-
tion of the gravitational waves around the black hole. Exter-
nal perturbations excite the quasinormal modes which in turn
appear as damped vibrations, emitting gravitational waves
with specific frequencies. This has been shown in several
other investigations on the response of the black hole to the
external perturbations@4–7#. There have been several algo-
rithms proposed to determine these resonant frequencies of
the black hole. The first method presented by Chandrasekhar
and Detweiler@8# was not sufficient to obtain accurate values
of the quasinormal frequencies because their scheme,
namely, a direct numerical integration of the Regge-Wheeler
equation, was not stable, especially for rapidly damped
modes. However, it is remarkable that they were able to ob-
tain for the first time values of the first few least-damped
quasinormal modes.

Meanwhile, there have been some attempts to obtain the
frequencies analytically. An inverse potential method by
Mashhoon@9–11# was the first attempt to obtain the quasi-
normal frequencies using a potential for which the spectrum
is analytically solvable. There is also a semianalytic ap-
proach, the WKB method used by Schutz and Will@12#, and
later refined by Iyer and coworkers@13,14#. They have pro-
vided relatively easy and intuitively understandable schemes

for obtaining the quasinormal frequencies. The methods have
also been applied to the Kerr@15# and Reissner-Nordstro¨m
black holes@16# and have provided numerical values for fun-
damental modes. However, these algorithms cannot provide
very accurate values for the frequencies and break down
completely for rapidly damped modes.

Leaver@17# has shown that a continued fraction method
previously used for determining the energy spectrum of the
hydrogen molecule ion@18,19# can be generalized to deter-
mine the quasinormal frequencies. This method provides ex-
tremely accurate values for the frequencies of the Schwarzs-
child and Kerr black hole. It was found in the Schwarzschild
case that there seem to exist an infinite number of damped
modes for every multipole indexl ~later proven in Ref.@20#!
and these modes are located approximately parallel to the
imaginary axis. Also for the Kerr black hole, Leaver calcu-
lated how these modes move from the Schwarzschild quasi-
normal frequencies as the black hole parameter changes.
Later, he generalized his method to the Reissner-Nordstro¨m
black hole@21#, and found out how the quasinormal modes
move as the charge of the black hole changes. These results
for the nonrotating cases are confirmed by other independent
investigations: Nollert and Schmidt@22# presented the
Laplace transform method which is in excellent agreement
with Leaver’s results for the Schwarzschild black hole.
Andersson and coworkers used the phase integral method for
the Schwarzschild black hole@23–25# to obtain the consis-
tent results. The last method was also used for the Reissner-
Nordström black hole@26,27#.

There are several methods to precisely obtain the quasi-
normal frequencies for the nonrotating cases; nevertheless,
the continued fraction method by Leaver is still the only
known way which can be generalized to the Kerr quasinor-
mal frequencies. The Kerr black hole is most important as-
trophysically, thus its quasinormal modes should be investi-
gated in detail. At the same time, several questions were
raised by the previous detailed studies of the quasinormal
frequencies of the Reissner-Nordstro¨m black hole@28–30#.
In Ref. @28# we have improved a continued fraction method
for the extreme case and then discovered a curious fact that
the gravitational and the electromagnetic frequencies are
identical. Whether this is also the case for the Kerr black
hole is still unknown. In Ref.@29# we presented a detailed*Electronic address: onozawa@phys.titech.ac.jp
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calculation of the quasinormal modes of charged black holes
focusing on the rapidly damped modes for nearly extreme
cases. We found that the rapidly damped modes show sev-
eral peculiar features: the higher modes generally spiral into
the value for the extreme black hole as the charge increases.
We also found that there is a quasinormal mode that con-
verges to the algebraically special mode@31# when the
charge vanishes, even though there was no correlation be-
tween these two modes in the charged case. It is still unre-
solved whether this is just a coincidence or can be explained
physically. There are arguments for and against the existence
of the quasinormal modes on the imaginary axis. Some
methods indicate that there should be such a mode and that it
corresponds to the ninth quasinormal mode. The problem is
that the algebraically special mode of nonrotating black
holes is purely imaginary and that most existing methods do
not work for purely imaginary modes. In order to resolve
these arguments, it will be useful to investigate the Kerr case
because the algebraically special mode moves away from the
imaginary axis and thus can be compared with the quasinor-
mal modes. It is also important to know in detail the behav-
ior of quasinormal modes for nearly extreme Kerr black
holes, because some astrophysically relevant black holes are
a consequence of the coalescence of binary neutron stars and
are believed to have a considerably large angular momen-
tum. However, the behavior of these modes near the extreme
limit is not yet well known.

In this paper, the quasinormal frequencies of the Kerr
black hole are numerically computed using Leaver’s contin-
ued fraction method beyond his original calculation and sev-
eral unresolved questions about the Kerr quasinormal modes
are considered. In Sec. II, we briefly review the continued
fraction method. In Sec. III A, we compute the rapidly
damped quasinormal modes and find that as is established in
Reissner-Nordstro¨m case the spherical modes (m50) gener-
ally spiral into the anticipated value fora5M when the Kerr
parameter approaches the maximum. In Sec. III B, we show
the behavior of the twisted modes (mÞ0). In the maximally
twisted case ofm5 l52, all the modes except one converge
into the critical frequency for the super-radiance phenomena.
In Sec. IV, we calculate the algebraically special mode using
the continued fraction method. The numerical results imply
that this mode and the ninth quasinormal mode coalesce only
in the Schwarzschild method. Section V is devoted to con-
cluding remarks.

II. CONTINUED FRACTION EQUATIONS

It is well known that perturbations of the Kerr black hole
are described by the Teukolsky equations@32#. In case at
andw dependence is given bye2 ivt1 imw, the separated dif-
ferential equation for an angular part of perturbations is

~12u2!
d2Ss
du2

22u
dSs
du

1W~u!Ss50, ~2.1!

W5a2v2u222avsu1Alm1s2
~m1su!2

12u2
, ~2.2!

and that of a radial part is

D
d2Rs

dr2
12~s11!~r2M !

dRs
dr

1V~r !Rs50, ~2.3!

V5
K222isK~r2M !

D
14isvr2Alm12avm2a2v2,

~2.4!

where

u5cosu, ~2.5!

D5r 222Mr1a2, ~2.6!

K5~r 21a2!v2am. ~2.7!

These equations correspond to the electromagnetic waves in
the Kerr geometry whens521 and to the gravitational
waves when s522. In what follows, we normalize
2M51 if otherwise mentioned.

In the Schwarzschild case, Eq.~2.1! can be solved ana-
lytically and hence the separation constantAlm can be ob-
tained asAlm5 l ( l11)2s(s11). However, in the Kerr
case, we have to solve it numerically as follows@17#. Bound-
ary conditions for Eq.~2.1! are thatSs is regular at the regu-
lar singular pointsu561. The indices there are determined
by the regularity at both singular points and are given by
6(m1s)/2 atu51 and6(m2s)/2 atu521. A solution to
Eq. ~2.1! can be expressed as

Ss~u!5e2asu~11u! um2su/2~12u! um1su/2(
n50

`

ân~11u!n.

~2.8!

The expansion coefficients are related by a three-term recur-
rence relation and the boundary condition atu51 is satisfied
only by its minimal solution sequence. The recurrence rela-
tion is

â0â11b̂0â050, ~2.9!

ânân111b̂nân1ĝnân2150 ~n>1!, ~2.10!

where the recurrence coefficients are, withk15um2su/2 and
k25um1su/2,

ân522~n11!~n12k111!, ~2.11!

b̂n5n~n21!12n~k11k21112as!12as~2k11s11!

1~k11k2!~k11k211!2a2s22s~s11!2Alm ,

~2.12!

ĝn52av~n1k11k21s!. ~2.13!

The minimal solution sequence will be obtained if the angu-
lar separation constantAlm is a root of the continued fraction
equation below:

05b̂02
â0ĝ1

b̂12

â1ĝ2

b̂22

â2ĝ3

b̂32

â3ĝ4

b̂42
•••. ~2.14!
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The quasinormal boundary conditions of the radial Eq.
~2.3! are

R2s;~r2r1!2s2 is1eivr , as r→r1 , ~2.15!

R2s;r2122s1 iveivr , as r→`, ~2.16!

wheres15(vr12am)/b andb5A124a2. Thus, the solu-
tion should be

R2s5eivr~r2r2!212s1 iv1 is1~r2r1!2s2ss1

3 (
n50

`

anS r2r1

r2r2
D n, ~2.17!

where the expansion coefficients are again defined by a
three-term recurrence relation:

a0a11b0a050, ~2.18!

anan111bnan1gnan2150 ~n>1!. ~2.19!

The recursion coefficients are

an5n21~c011!n1c0 , ~2.20!

bn522n21~c112!n1c3 , ~2.21!

gn5n21~c223!n1c42c212, ~2.22!

andcn are defined by

c0512s2 iv2
2i

b S v

2
2amD , ~2.23!

c152412iv~21b!1
4i

b S v

2
2amD , ~2.24!

c25s1323iv2
2i

b S v

2
2amD , ~2.25!

c35v2~412b2a2!22amv2s211~21b!iv2Alm

1
4v12i

b S v

2
2amD , ~2.26!

c45s1122v22~2s13!iv2
4v12i

b S v

2
2amD .

~2.27!

The boundary condition that Eq.~2.17! converges asr→`
reduces again to

05b02
a0g1

b12

a1g2

b22

a2g3

b32

a3g4

b42
•••. ~2.28!

The problem is now to seek frequencies which satisfy both
Eqs.~2.14! and ~2.28!.

III. NUMERICAL RESULTS

A. The case ofm50

The case ofm50 is similar to the Reissner-Nordstro¨m
quasinormal modes and hence several things will be re-
peated. First, eachm50 mode always has a corresponding
mode symmetric about the imaginary axis. This is due to a
symmetry of Eqs.~2.14! and ~2.28!. It is obvious that these
continued fraction equations are equivalent even after the
transformation ofm→2m, iv→( iv)* , and Alm→Alm* .
Therefore, whenm50, a solution always appear as a com-
plex conjugate pair in (iv). In contrast to the Reissner-
Nordström black hole the mode frequencies of the first few
modes have the damping rates~imaginary parts ofv) which
decrease monotonically asa/M increases. On the other hand,
the oscillation frequencies~real parts ofv) increase with
a/M , which is the same as the Reissner-Nordstro¨m black
hole. These results are clear from Fig. 1, where we show the
behavior of the first three modes for (2s,l ,m)5(1,1,0),
~2,2,0!, ~1,2,0!, and ~2,3,0!. The left end point of each line
corresponds to the Schwarzschild mode, and the right end
point corresponds to thea/M50.99 Kerr mode. The electro-
magnetic modes of the Reissner-Nordstro¨m equation, which
correspond to thes521 modes here, moved very fast when
the charge of the black hole was changed@29#. However, the
s521 Kerr black hole modes move slowly even when the
angular momentum of the black hole is changed. This can be
understood, because the electromagnetic perturbation de-
pends more on the change of the black hole electronic charge
rather than the change of the angular momentum. Even
though one might expect that the gravitational and the elec-
tromagnetic mode coalesce in the extreme limit as was es-
tablished in the charged black hole case@28,30#, obviously,
there is no such correlation between these two modes in Fig.
1.

The behavior for the first few modes was rather simple,
but the rapidly damped modes show the same strange behav-
ior as in the Reissner-Nordstro¨m black hole. As presented in
Fig. 2, the first strange feature appears forn53 in the l51
electromagnetic modes and forn56 in thel52 gravitational
modes. These modes go through a couple of small loops
when the angular momentum increases. Similar loops are
also found in the results for the higher mode numbern. In
these figures it is clear that the loops are getting bigger and
the number of cycles increases when the mode number is
getting higher, as in the case of the Reissner-Nordstro¨m
black hole. These strange features typically appear when the
ratio of the damping rate to the oscillation frequency reaches
a certain value, approximately between 5 and 10 for any
multipole indexl , which is rather large compared with the
charged black hole case. Since the highly damped modes are
not well understood, it is difficult to explain why such a
peculiar behavior occurs. In the previous paper@29# we sug-
gested that the falloff rate of the effective potential at the
horizon might be the cause. This explanation suggests itself
also in this case, because for the Kerr black hole the falloff
rate of the potential depends on the Kerr parameter in a simi-
lar way as that for the Reissner-Nordstro¨m black hole.

It should be noted that we have tracked the trajectory of
the l52 ninth overtone (n58) gravitational quasinormal
mode in Fig. 2. This frequency is known to coalesce with the
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algebraically special mode at the Schwarzschild limit which
is located on the imaginary axis. The algebraically special
mode is defined in a completely different way from the qua-
sinormal mode. It is defined as a mode that is purely ingoing
at both boundaries. Thus, it seems that there is no reason that
these modes have any kind of relationship. We will discuss
this matter in Sec. III C.

The numerical error in the previous work@29#, possibly
caused by the bad convergence property of the continued
fraction, does not affect the Kerr black hole case. The con-
vergence of the continued fraction is very fast for the Kerr
black hole and thus can avoid numerical errors. When check-
ing our code for the fundamentall52 gravitational mode, it
was possible to obtain the mode accurately until
a/M50.999 995. For the Reissner-Nordstro¨m black hole the
same mode could be calculated only up toQ/M50.9985.
Thus, it is concluded that although the Teukolsky equations
are more complicated than the Zerilli-Moncrief equations the
quasinormal frequencies can be calculated very precisely
through the continued fraction method even when the Kerr
parameter is near its maximum value. The recurrence rela-
tions in the Reissner-Nordstro¨m black hole are four-term re-
currence relations and numerical instability might be caused
through the transformation of four-term relations into three-
term relations.

B. The cases ofmÞ0

First, we discuss the case of thes522 gravitational per-
turbation with the least multipole indexl52. ~The result for
each higher multipole index is similar, thus we do not dis-
cuss it.! It is noted that m must be in a range of

2 l<m< l , thus we have four different modes forl52 with
mÞ0. Owing to the symmetry that we mentioned before, all
the modes with the azimuthal multipole indexm are obtained
by reflecting the modes with the index2m about the imagi-
nary axis. We therefore discuss only the modes in the right
half of the complex plane. The trajectories of them511
modes are plotted in Fig. 3. We can find that the oscillation
frequency becomes very fast when the Kerr parameter is in-
creased; on the other hand, the damping rates become
slower. The mode moves fast away from the corresponding
Schwarzschild mode. However, the branch ofm521 moves
slowly and stays near the corresponding Schwarzschild
modes. It is surprising that them521 mode turns sharply at
some specific Kerr parameter, approximatelya50.2, which
is not yet found for any nonrotating black hole. It is also
noted that the mode ofm561 does not experience loops
unlike a highly damped mode of them50 mode. This dis-
tinguishes the behavior ofmÞ0 modes from that of the
m50 modes.

The behavior of them562 modes is quite similar to that
of the m561 modes. Figure 4 shows how these modes
move as the Kerr parameter increases. As is easily seen, the
m512 modes move very fast compared with any other
modes and these modes converge to a specific undamped
frequency at the Kerr limit. It is already known that the
modes of thel52,m512 branch accumulate onto the criti-
cal frequency of super radiance,vc52. Detweiler@33# has
shown that whena51/2, an infinite number of modes cluster
at the critical frequency. This suggests a marginally unstable
feature of the extreme Kerr black hole discussed by several
authors@33–35#, and this is quite interesting to investigate in

FIG. 1. Solid lines and dashed lines are trajectories of them50 quasinormal frequencies of the gravitational and electromagnetic wave,
respectively. Each right end point corresponds to the Schwarzschild quasinormal frequency, and each right end point corresponds to the
frequency in the limit of nearly maximal angular momentuma/M50.99. Ticks marked on each line are the frequencies fora50.1, 0.2, 0.3,
and 0.4 from the left to right.

3596 55HISASHI ONOZAWA



detail. At present, people believe that when the Kerr param-
eter is close to the maximum, the Kerr parameter is de-
creased emitting the gravitational waves and losing rotational
energy. Then, the black hole settles down to a stable nonex-
treme Kerr black hole. One can also notice in Fig. 4 that not
all the modes converge to the real critical frequency, but the
sixth mode turns sharply at abouta50.365 and then limits to
a complex value aroundv5(0.239,20.242). Detweiler’s re-
sult was that there are an infinite number of quasinormal
modes converging to the critical frequency. Our numerical

results suggest that most of modes converge into the critical
frequency but some modes still stay away from the critical
frequency. We so far have calculated the modes up to
n520 but there was no other mode which does not converge
into the critical frequency.

It is also interesting that there seems to be some relation
between them562 modes and them561 modes. As is
shown in Fig. 5, both them511 andm512 modes start
from the Schwarzschild mode initially in the same direction
and both them521 andm522 modes move in the oppo-

FIG. 2. The first three specific quasinormal modes form50 are plotted. The marks correspond to the frequencies of
a50,0.05,0.10,. . . ,0.45. These modes are generally spiral into the values in the extreme limit. The qualitative features for the gravitational
and electromagnetic frequencies are basically identical. These figures are much finer than the figures in the previous work for the charged
black hole because the continued fraction scheme works fine with less numerical errors.
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site direction to the above two modes. Therefore, the trajec-
tories of these two modes are tangential to each other. On the
other hand, them50 mode moves into a noncorrelated di-
rection. It seems that them562 modes move just twice as
fast as them561 mode initially. ~This can be also con-
firmed by examining thel53 case, where them53 mode
moves three times as fast as them51 mode.! These features
can be understood, them562 modes are more distorted
than them561 modes and hence them562 modes are

more sensitive to the change of the Kerr parameter that cor-
responds how much the spacetime is twisted.

Figure 6 is a figure of the trajectories of the
l51, m561 modes for the electromagnetic perturbations
(s521). It is very similar to the case of the2s5m52
modes. These modes also converge into the undamped criti-
cal frequency,vc51. Owing to Detweiler’s argument, for
any s the l5m modes have a similar accumulation of an
infinite number of the quasinormal modes onto the critical

FIG. 3. The first ninem521
and m511 gravitational quasi-
normal modes forl52 are plot-
ted. The diamonds are the
Schwarzschild quasinormal fre-
quencies and the right part starting
from the Schwarzschild frequency
is the branch of them511
modes, which is depicted by the
dashed lines. The left part is the
branch of them521, which is
depicted by the solid lines. We
marked the values of the
a50.05,0.10,0.15,. . . ,0.45 Kerr
frequencies for the m511
branch anda50.1,0.2,0.3,0.4 for
the m511 branch. It is noticed
that the ninth mode comes out of
the imaginary axis that corre-
sponds to the algebraically special
mode of the Schwarzschild black
hole.

FIG. 4. The first ninel52 and
m522,12 gravitational quasi-
normal modes are plotted. All the
modes of them512 branch ex-
cept the sixth overtone (n55)
converge into the critical fre-
quency on the real axis. This ac-
cumulation of modes is in agree-
ment with Detweiler’s result@33#.
But our numerical results suggest
that some of the modes do not
cluster into the critical frequency.
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frequencyv5 l . There was one mode which never con-
verged into the critical frequency for thes522 case; how-
ever, for thes521 case no such mode was found up to
n58.

C. Algebraically special modes

Here, we only consider the algebraically special mode of
the s522 gravitational perturbations because the only
known implication that there is a correlation between the
algebraically special mode and the quasinormal mode is that
both modes for the Schwarzschild black hole coalesce for

gravitational perturbations.
The algebraically special perturbations were first consid-

ered by Wald@36#, who was interested in how the perturba-
tion can be the only independent component among several
Weyl scalars.~Actually, it is impossible if one considers only
the real frequency.! As is well known, the perturbations have
generally two independent componentsC0 andC4, which
correspond to the ingoing and the outgoing wave, respec-
tively. Thus the algebraically special mode is the mode that
has only an ingoing or an outgoing wave. Such kind of per-
turbations was first analytically solved by Chandrasekhar
@31#. For the Schwarzschild black hole, algebraically special

FIG. 5. Thel52 gravitational
fundamental quasinormal modes
for any m are zoomed up. The
branch ofm511,21 is tangent
to the branch ofm512,22,
but them50 mode is not. The
marks correspond to the
a50.0,0.1,0.2,0.3,0.4 values.

FIG. 6. The first ninem521
and m511 quasinormal modes
for the electromagnetic waves in
the Kerr geometry are shown.
This is very similar to the case of
l5m52 gravitational quasinor-
mal modes; however, all the
modes up ton58 converge into
the critical frequency in contrast
with the gravitational frequencies.
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frequency can be easily solved by imposing the condition
that Starobinsky’s constant vanishes~because the two modes
are related to each other with a Starobinsky constant!. It is
then found that there is such a mode on the imaginary axis at
v522i /M .

For the Kerr black hole it is rather difficult to obtain the
algebraically special frequencies owing to the difficulty to
get the separation constantAlm without resorting to numeri-
cal computation. Nevertheless, if we use the continued frac-
tion technique for the angular part of the Teukolsky equa-
tions ~2.1!, the separation constant is accurately obtained.
The square of the Starobinsky constant is given by

uCu25l2~l12!228v2l@a2~5l16!212a2#

1144v2~M21s21a4!, ~3.1!

where

a5a22
am

v
, ~3.2!

andl, the separation constant in Chandrasekhar’s notation,
is related to ours with the relation

l5Alm22avm1a2v2. ~3.3!

Therefore, we only need to solveuCu250, together with Eq.
~2.28!. In contrast with quasinormal modes, algebraically
special modes can be calculated even when the black hole is
extreme, because we do not need to solve Eq.~2.3! which
has two confluent singularities in the extremal limit.

The solutions always appear as a pair, owing to a reflec-
tion symmetry about the real axis. It is also noticed that the
symmetry of Eqs.~3.1! and ~2.28! allows us to get the
m521,22 modes by reflecting them511,12 modes
about the imaginary axis as in the quasinormal mode. There-
fore, it is enough to see the first quadrant. The solutions of

l52 branch which are obtained using the continued fraction
scheme are plotted in Fig. 7, together with Chandrasekhar’s
result @31#, and these values are listed in Table I. The
m50 mode increases initially along the imaginary axis as
the Kerr parameter increases and then goes away from the
imaginary axis whena50.247 222. In Ref.@31# the value of
them50 mode fora50.25 still stays on the imaginary axis,
but Chandrasekhar mentioned that this mode does not satisfy
a positivity of k. This contradiction was caused because his
values were obtained using a separation constant with a large
numerical error, and thus his value was wrong. Our values
are all in agreement with this positivity check, since our
scheme can avoid numerical errors. If one sees Fig. 6, there
is nom521 andm522 mode in the first quadrant, and the
m511 andm512 modes go horizontally from the imagi-
nary axis such as the quasinormal mode. Despite that, there
seems to be no correlation with any quasinormal mode.

From the point of view of the scattering problem, a qua-
sinormal mode is regarded as a pole of the reflection ampli-
tude R(v) and the transmission amplitudeT(v); on the
other hand, an algebraically special mode corresponds to a
zero ofR(v). Therefore, these two modes will never coa-
lesce in general, which is consistent with the above numeri-
cal results. Superficially, it might appear that these two
modes coalesce at the Schwarzschild limit, but we believe
that the quasinormal mode disappears at the limit owing to a
cancellation with the corresponding mode in the left half of
the complex plane.

IV. CONCLUDING REMARKS

In this paper we have presented several hints to be useful
for resolving a couple of questions concerning the quasinor-
mal mode of the black hole. We have presented the results of
detailed calculations of the quasinormal modes of the Kerr
black hole. This supplements previous studies in several
ways. First, we take the rapidly damped mode into consider-

FIG. 7. The algebraically spe-
cial modes ofm50, 11, and12
for l52. There also exist another
branches of modes symmetric
about the real axis. The mode of
m521 and m522 are in the
left-half plane, which are obtained
by reflecting the m511 and
m512 modes about the imagi-
nary axis, respectively. The
m50 algebraically special mode
first goes up vertically and then
produces two branches, one in the
right half of the complex plane
and the other in the left half of the
complex plane, which is not
shown in this figure. The corre-
sponding Kerr parameter is
a50.247 222 and the pure imagi-
nary frequency is about26.681i .
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ation. Second, we also investigate precisely how these modes
move as the Kerr parameter approaches the limit. Third, we
also consider the relationship between the algebraically spe-
cial mode and the quasinormal mode.

As was the case for the Reissner-Nordstro¨m black hole
@29#, the highly dampedm50 Kerr quasinormal modes gen-
erally spiral into the extreme values. Though not presented in
this paper, we have found the similar behavior also in the
case of the test scalar field on the Kerr background (s50).
Therefore, these spirals must be one of the fundamental fea-
tures for rapidly damped modes. The behavior of themÞ0
modes are, on the other hand, different from the behavior of
them50 mode. The damping rates of 0,m< l modes de-
crease very fast without going through spirals. An infinite
number of them5 l modes tend to accumulate onto the criti-
cal frequency,vc5 l , asa/M→1. We also found that there
is one mode which does not converge to the frequency.
Whether another mode such as that exists is an open ques-
tion. At present, there is no evidence up ton520 for l52
gravitational perturbations. The2 l<m,0 modes have
rather simple behavior in contrast to the positivem cases.
These modes move slowly around the corresponding
Schwarzschild modes. An interesting fact is that some of the
modes go through a quick turn. These surprising features for

mÞ0 were not yet found for the spherical black holes and
hence should be considered in detail. Since themÞ0 modes
do not exist for nonrotating black holes~all themÞ0 modes
degenerate into them50 case owing to the spherical sym-
metry!, these modes are actually specific for the rotating
black holes. We also obtained the precise values of the alge-
braically special modes using a continued fraction method.
There was no correlation between the algebraically special
mode and the quasinormal mode except that these modes
superficially coalesce in the Schwarzschild limit. Currently,
we do not know why the coalescence occurs. However, ow-
ing to the existence of the algebraically special mode at
v524i , the quasinormal mode cannot be there. Two qua-
sinormal modes coalesce and then probably cancel at the
limit. This cancellation prevents the existence of the purely
damped quasinormal mode.
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@18# G. Jaffé, Z. Phys.87, 535 ~1934!.
@19# W. Baber and H. Hasse´, Proc. Camb. Philos. Soc.25, 564

~1935!.
@20# A. Bachelot and A. Motet-Bachelot, inProceedings of IV In-

ternational Conference on Hyperbolic Problems, edited by
Taosmina~Vieweg, Braunschweig, 1992!, pp. 67–82.

@21# E. Leaver, Phys. Rev. D41, 2986~1990!.
@22# H. Nollert and B. Schmidt, Phys. Rev. D45, 2617~1992!.
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