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Detailed study of quasinormal frequencies of the Kerr black hole
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Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152, Japan
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We compute the quasinormal frequencies of the Kerr black hole using a continued fraction method. The
continued fraction method first proposed by Leaver is still the only known method stable and accurate for the
numerical determination of the Kerr quasinormal frequencies. We numerically obtain not only the slowly but
also the rapidly damped quasinormal frequencies and analyze the peculiar behavior of these frequencies at the
Kerr limit. We also calculate the algebraically special frequency first identified by Chandrasekhar and confirm
that it coincides with the n=8 quasinormal frequency only at the Schwarzschild limit.
[S0556-282(197)01906-1

PACS numbe(s): 04.70.Bw, 04.25.Nx, 04.30.Nk

I. INTRODUCTION for obtaining the quasinormal frequencies. The methods have
also been applied to the Keft5] and Reissner-Nordstno
The linear perturbations of the Schwarzschild spacetimdlack holed16] and have provided numerical values for fun-
were first examined by Regge and Whedlg}, who were  damental modes. However, these algorithms cannot provide
trying to solve the stability problem of the black hole. They very accurate values for the frequencies and break down
derived what is now called the Regge-Wheeler equation, aompletely for rapidly damped modes.
second order ordinary differential equation similar to the Leaver[17] has shown that a continued fraction method
Schralinger equation. The perturbation radiates away at th@reviously used for determining the energy spectrum of the
speed of light satisfying the wave equation and hence it corhydrogen molecule iof18,19 can be generalized to deter-
responds to the gravitational wave around the black holemine the quasinormal frequencies. This method provides ex-
Therefore, examining the perturbations of the black hole igremely accurate values for the frequencies of the Schwarzs-
equivalent to solving the scattering problem of gravitationalchild and Kerr black hole. It was found in the Schwarzschild
waves around the black hole. Their pioneering work has le¢ase that there seem to exist an infinite number of damped
to the study of the quasinormal modes because they dommodes for every multipole inddx(later proven in Ref[20])
nate most processes involving perturbed black holes. Quasand these modes are located approximately parallel to the
normal modes were first found by Vishveshw@2hand by  imaginary axis. Also for the Kerr black hole, Leaver calcu-
Presq 3] through numerical computations of the time evolu- lated how these modes move from the Schwarzschild quasi-
tion of the gravitational waves around the black hole. Externormal frequencies as the black hole parameter changes.
nal perturbations excite the quasinormal modes which in turiLater, he generalized his method to the Reissner-Nonaistro
appear as damped vibrations, emitting gravitational waveblack hole[21], and found out how the quasinormal modes
with specific frequencies. This has been shown in severahove as the charge of the black hole changes. These results
other investigations on the response of the black hole to thor the nonrotating cases are confirmed by other independent
external perturbationgl—7]. There have been several algo- investigations: Nollert and Schmidf22] presented the
rithms proposed to determine these resonant frequencies bfplace transform method which is in excellent agreement
the black hole. The first method presented by Chandrasekharith Leaver's results for the Schwarzschild black hole.
and Detweilef8] was not sufficient to obtain accurate values Andersson and coworkers used the phase integral method for
of the quasinormal frequencies because their schemehe Schwarzschild black hol®23-25 to obtain the consis-
namely, a direct numerical integration of the Regge-Wheeletent results. The last method was also used for the Reissner-
equation, was not stable, especially for rapidly dampedNordstran black hole[26,27).
modes. However, it is remarkable that they were able to ob- There are several methods to precisely obtain the quasi-
tain for the first time values of the first few least-dampednormal frequencies for the nonrotating cases; nevertheless,
guasinormal modes. the continued fraction method by Leaver is still the only
Meanwhile, there have been some attempts to obtain thkenown way which can be generalized to the Kerr quasinor-
frequencies analytically. An inverse potential method bymal frequencies. The Kerr black hole is most important as-
Mashhoon[9-11] was the first attempt to obtain the quasi- trophysically, thus its quasinormal modes should be investi-
normal frequencies using a potential for which the spectrungated in detail. At the same time, several questions were
is analytically solvable. There is also a semianalytic ap+aised by the previous detailed studies of the quasinormal
proach, the WKB method used by Schutz and \MiR], and  frequencies of the Reissner-Nordstrdlack hole[28-30.
later refined by lyer and coworkef43,14]. They have pro- In Ref.[28] we have improved a continued fraction method
vided relatively easy and intuitively understandable schemefor the extreme case and then discovered a curious fact that
the gravitational and the electromagnetic frequencies are
identical. Whether this is also the case for the Kerr black
*Electronic address: onozawa@phys.titech.ac.jp hole is still unknown. In Ref[29] we presented a detailed
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calculation of the quasinormal modes of charged black holes d?R dRs

focusing on the rapidly damped modes for nearly extreme Ad7§+2(3+ Dr=M) 4 +V()NRs=0, 2.3
cases. We found that the rapidly damped modes show sev-
eral peculiar features: the higher modes generally spiral into K2—2isK(r—M)

the value for the extreme black hole as the charge increases. v=
We also found that there is a quasinormal mode that con- A
verges to the algebraically special mo@i@l] when the 24
charge vanishes, even though there was no correlation beg;

fhere
tween these two modes in the charged case. It is still unre-

+4diswr — Ay, +2awm—a’e?,

solved whether this is just a coincidence or can be explained u=cog, (2.5
physically. There are arguments for and against the existence
of the quasinormal modes on the imaginary axis. Some A=r2—2Mr+a? (2.6)
methods indicate that there should be such a mode and that it
corresponds to the ninth quasinormal mode. The problem is K=(r2+a%w—am. 2.7

that the algebraically special mode of nonrotating black

holes is purely imaginary and that most existing methods dorhese equations correspond to the electromagnetic waves in

not work for purely imaginary modes. In order to resolvethe Kerr geometry whers=—1 and to the gravitational
these arguments, it will be useful to investigate the Kerr casgyaves whens=—-2. In what follows, we normalize

because the algebraically special mode moves away from th@av = 1 if otherwise mentioned.

imaginary axis and thus can be compared with the quasinor- |n the Schwarzschild case, E€.1) can be solved ana-
mal modes. It is also important to know in detail the behav-ytically and hence the separation constaqt, can be ob-
ior of quasinormal modes for nearly extreme Kerr blacktained asA;,=1(1+1)—s(s+1). However, in the Kerr
holes, because some astrophysically relevant black holes aggse, we have to solve it numerically as follo3]. Bound-

a consequence of the coalescence of binary neutron stars agf, conditions for Eq(2.1) are thatS is regular at the regu-
are believed to have a considerably large angular momengr singular pointai=+ 1. The indices there are determined
tum. However, the behavior of these modes near the extremg; the regularity at both singular points and are given by

limit is not yet well known. _ +(m+s)/2 atu=1 and+(m—s)/2 atu= — 1. A solution to
In this paper, the quasinormal frequencies of the Kerigq (2.1) can be expressed as

black hole are numerically computed using Leaver’s contin-

ued fraction method beyond his original calculation and sev- *
eral unresolved questions about the Kerr quasinormal modesSg(u)=e~2"(1+ u)‘m‘SVZ(l—u)'m*S'/ZE ap(1+u)".
are considered. In Sec. I, we briefly review the continued n=0

fraction method. In Sec. Ill A, we compute the rapidly 2.8

damped quasinormal modes and find that as is established e expansion coefficients are related by a three-term recur-
Reissner-Nordstra case the spherical modes{-0) gener-  once relation and the boundary conditioruat1 is satisfied

ally spiral into the anticipated value far=M when the Kerr 51y 1y its minimal solution sequence. The recurrence rela-
parameter approaches the maximum. In Sec. Il B, we show, is

the behavior of the twisted modesi¢ 0). In the maximally
twisted case om=1=2, all the modes except one converge
into the critical frequency for the super-radiance phenomena.
In Sec. IV, we calculate the algebraically special mode using
the continued fraction method. The numerical results imply
that this mode and the ninth quasinormal mode coalesce on
in the Schwarzschild method. Section V is devoted to con
cluding remarks.

aod;+ Boap=0, (2.9

&nén+l+,éné-n+:ynén71:0 (n=1), (2.10

Where the recurrence coefficients are, wWith=|m—s|/2 and
k,=|m+s|/2,

ay=—2(n+1)(n+2k,+1), (2.12)
II. CONTINUED FRACTION EQUATIONS

It is well known that perturbations of the Kerr black hole #n= n(n—1)+2n(k; +ky+1+2a0)+2a0(2k; +s+1)

are described by the Teukolsky equatigBg]. In case at +(Ky+Ko) (K + Ko+ 1) —a202—s(s+1)— A,

and ¢ dependence is given by '“t*!M¢  the separated dif-

ferential equation for an angular part of perturbations is (212
ds,  ds Yo=2a0(n+k;+Ky+5). (213

(1-u?)——> —2u—— +W(u)Ss=0, (2.2
du du The minimal solution sequence will be obtained if the angu-
lar separation consta#,, is a root of the continued fraction
(m+su)? equation below:

W=a2w?u’—2awsu+A,,+s— (2.2

1-u? o m mmaaa
~ apY1 d1Y2 A2Y3 A3y,

and that of a radial part is - 231— ,232— Bs— Br

(2.19
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The quasinormal boundary conditions of the radial Eq. 1. NUMERICAL RESULTS
(2.3) are A. The case ofm=0
R_~(r—r ) s+ asr—r,, (215 The case ofm=0 is similar to the Reissner-Nordstro
quasinormal modes and hence several things will be re-
R_g~r 172stiogler  ggr o0, (2.16  peated. First, eacm=0 mode always has a corresponding

mode symmetric about the imaginary axis. This is due to a
whereo . = (wr . —am)/b andb= \1—4aZ. Thus, the solu- Symmetry of Eqs(2.14) and(2.28. It is obvious that these

tion should be continued fraction equations are equivalent even after the
transformation ofm——m, io—(iw)*, and A,— A}, .
R_g=€ ¢ (r—r_) t-stiotiopp y=s=so. Therefore, wherm=0, a solution always appear as a com-
plex conjugate pair ini@). In contrast to the Reissner-

- r—r,
x 2, a,
n=0 r=r

n Nordstran black hole the mode frequencies of the first few
' (2.17) modes have the damping rat@saginary parts ofv) which
decrease monotonically asM increases. On the other hand,

where the expansion coefficients are again defined by §1€ oscillation frequencieéreal parts ofw) increase with

three-term recurrence relation: a/M, which is the same as the Reissner-Nordstrblack
hole. These results are clear from Fig. 1, where we show the
apay + Bodg=0, (2.18 behavior of the first three modes for-6,I,m)=(1,1,0),

(2,2,0, (1,2,0, and(2,3,0. The left end point of each line
corresponds to the Schwarzschild mode, and the right end
point corresponds to the/ M =0.99 Kerr mode. The electro-
magnetic modes of the Reissner-Nordstrequation, which
correspond to the= —1 modes here, moved very fast when
(2.20 the charge of the black hole was changj2é]. However, the

' s=—1 Kerr black hole modes move slowly even when the

apdni 1t Brant ynan-1=0 (n=1). (2.19
The recursion coefficients are

ap=n%+(co+1)n+cy,

angular momentum of the black hole is changed. This can be

Bn=—2n*+(C1+2)n+cy, (22D ynderstood, because the electromagnetic perturbation de-
pends more on the change of the black hole electronic charge
Yn=Nn?+(C—3)N+Cy—Cp+2, (222 rather than the change of the angular momentum. Even
though one might expect that the gravitational and the elec-
andc, are defined by tromagnetic mode coalesce in the extreme limit as was es-
tablished in the charged black hole c428,30, obviously,
. 2 (o there is no such correlation between these two modes in Fig.
c0=1—s—|w—3(5—am , (2.23 1.
The behavior for the first few modes was rather simple,
4ilw but the rapidly damped mocjes show the same strange behav-
C1=—4+2iw(2+b)+ blz—am), (2.24  ior as in the Reissner-Nordstroblack hole. As presented in
Fig. 2, the first strange feature appearsrier3 in thel=1
oi electromagnetic modes and for=6 in thel =2 gravitational
_ : I modes. These modes go through a couple of small loops
C2_5+3_3'w_3(§_am ’ 229 \hen the angular momentum increases. Similar loops are

also found in the results for the higher mode numbetn
Ca=w?(4+2b—a2)— 2amw—s—1+(2+b)iw—A, these figures it is clear that the loops are getting bigger and
the number of cycles increases when the mode number is
getting higher, as in the case of the Reissner-Nordstro
' (2.26 black hole. These strange features typically appear when the
ratio of the damping rate to the oscillation frequency reaches
a certain value, approximately between 5 and 10 for any
multipole index|, which is rather large compared with the
charged black hole case. Since the highly damped modes are
(2.27) not well understood, it is difficult to explain why such a
peculiar behavior occurs. In the previous paf#3] we sug-
gested that the falloff rate of the effective potential at the
horizon might be the cause. This explanation suggests itself
also in this case, because for the Kerr black hole the falloff
0=, %Y1 *1Y2 A2Y3 X3Y4 (228 rate of the potential depends on the Kerr parameter in a simi-
O Bi— B— Bs— Ba— ' ' lar way as that for the Reissner-Nordstrdlack hole.
It should be noted that we have tracked the trajectory of
The problem is now to seek frequencies which satisfy bothithe |=2 ninth overtone §=8) gravitational quasinormal
Egs.(2.14 and(2.28. mode in Fig. 2. This frequency is known to coalesce with the

4w+ 2i
b

(O]

E—am

4w+ 2i
b

w

—~ —am

C,=5+1-2w?—(25+3)iw— >

The boundary condition that E¢2.17) converges as— «
reduces again to
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FIG. 1. Solid lines and dashed lines are trajectories oftlked quasinormal frequencies of the gravitational and electromagnetic wave,
respectively. Each right end point corresponds to the Schwarzschild quasinormal frequency, and each right end point corresponds to the
frequency in the limit of nearly maximal angular momentafnv =0.99. Ticks marked on each line are the frequenciesafod.1, 0.2, 0.3,
and 0.4 from the left to right.

algebraically special mode at the Schwarzschild limit which—I<m=I, thus we have four different modes fior 2 with

is located on the imaginary axis. The algebraically speciam=0. Owing to the symmetry that we mentioned before, all
mode is defined in a completely different way from the qua-the modes with the azimuthal multipole indexare obtained
sinormal mode. It is defined as a mode that is pUrE|y ingOing)y reﬂecting the modes with the indexm about the imagi-

at both boundaries. Thus, it seems that there is no reason th@éry axis. We therefore discuss only the modes in the right
these modes have any kind of relationship. We will discussqf of the complex plane. The trajectories of thie= + 1

this matter in Sec. Il C. modes are plotted in Fig. 3. We can find that the oscillation

The numerical error in the previous wofR9], possibly  foq1ency becomes very fast when the Kerr parameter is in-
caused by the bad convergence property of the contmue&eased; on the other hand, the damping rates become

fraction, does not aff_ect the Ker_r b'?‘Ck hole case. The CONg ower. The mode moves fast away from the corresponding
vergence of the continued fraction is very fast for the Kerr

black hole and thus can avoid numerical errors. When checkSChwaerSChIId mode. However, the branchof — 1 moves

) o ~Slowly and stays near the corresponding Schwarzschild
Ing our cod_e for the funda_lmentalcz gravitational mode, it .modes. It is surprising that the= —1 mode turns sharply at
was possible to obtain the mode accurately until

_ . i : some specific Kerr parameter, approximataky 0.2, which
221 '\r:I}e_ ?mg)gz gciilgcg;h:aEE:nggroT‘?rduwggﬁﬂcigogl)gége is not yet found for any nonrotating black hole. It is also
y up e . noted that the mode ah=+1 does not experience loops

Thus, it is concluded that although the Teukolsky equatlonsl,mlike a highly damped mode of the=0 mode. This dis-

are more complicated than the Zerilli-Moncrief equations thetin uishes the behavior aii#0 modes from that of the
guasinormal frequencies can be calculated very precisel%go modes

through the continued fraction method even when the Kerr The behavior of then= +2 modes is quite similar to that
parameter is near its maximum value. The recurrence relao-f the m=+1 modes _Fi_ure 4 showg how these modes
tions in the Reissner-Nordstroblack hole are four-term re- e - "9

currence relations and numerical instability might be caused'Ve 38 the Kerr parameter increases. As is easily seen, the

through the transformation of four-term relations into three-M ™~ +2 modes move very fast compared W't.h. any other
term relations. modes and these modes converge to a specific undamped

frequency at the Kerr limit. It is already known that the
modes of thd =2, m= +2 branch accumulate onto the criti-
cal frequency of super radiance.= 2. Detweiler[33] has
First, we discuss the case of the —2 gravitational per- shown that whema= 1/2, an infinite number of modes cluster
turbation with the least multipole inddx=2. (The result for  at the critical frequency. This suggests a marginally unstable
each higher multipole index is similar, thus we do not dis-feature of the extreme Kerr black hole discussed by several
cuss it) It is noted thatm must be in a range of authord33-35, and this is quite interesting to investigate in

B. The cases om+#0
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FIG. 2. The first three specific quasinormal modes fo=0 are plotted. The marks correspond to the frequencies of
a=0,0.05,0.10, . . ,0.45. These modes are generally spiral into the values in the extreme limit. The qualitative features for the gravitational
and electromagnetic frequencies are basically identical. These figures are much finer than the figures in the previous work for the charged
black hole because the continued fraction scheme works fine with less numerical errors.

detail. At present, people believe that when the Kerr paramresults suggest that most of modes converge into the critical
eter is close to the maximum, the Kerr parameter is defrequency but some modes still stay away from the critical

creased emitting the gravitational waves and losing rotationdrequency. We so far have calculated the modes up to
energy. Then, the black hole settles down to a stable nonext=20 but there was no other mode which does not converge

treme Kerr black hole. One can also notice in Fig. 4 that nointo the critical frequency.

all the modes converge to the real critical frequency, but the
sixth mode turns sharply at abaait= 0.365 and then limits to  between them=*2 modes and then==*=1 modes. As is
a complex value around=(0.239,—0.242). Detweiler’s re-

It is also interesting that there seems to be some relation

shown in Fig. 5, both then=+1 andm= +2 modes start
sult was that there are an infinite number of quasinormafrom the Schwarzschild mode initially in the same direction
modes converging to the critical frequency. Our numericaland both then=—1 andm= —2 modes move in the oppo-
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FIG. 3. The first ninem=—1
and m=+1 gravitational quasi-
normal modes fol =2 are plot-
ted. The diamonds are the
Schwarzschild quasinormal fre-
qguencies and the right part starting
from the Schwarzschild frequency
is the branch of them=+1
modes, which is depicted by the
dashed lines. The left part is the
branch of them=—1, which is
depicted by the solid lines. We
marked the values of the
a=0.05,0.10,0.15,..,0.45 Kerr
frequencies for the m=+1
branch anda=0.1,0.2,0.3,0.4 for
the m=+1 branch. It is noticed
that the ninth mode comes out of
the imaginary axis that corre-
sponds to the algebraically special
mode of the Schwarzschild black
hole.

site direction to the above two modes. Therefore, the trajeamore sensitive to the change of the Kerr parameter that cor-
tories of these two modes are tangential to each other. On thresponds how much the spacetime is twisted.

6 is a figure of the trajectories of the
rection. It seems that the= +=2 modes move just twice as 1=1, m==1 modes for the electromagnetic perturbations

other hand, then=0 mode moves into a noncorrelated di-

fast as them= =1 mode initially. (This can be also con-
firmed by examining thé=3 case, where then=3 mode

Figure

(s=—1). It is very similar to the case of the s=m=2
modes. These modes also converge into the undamped criti-

moves three times as fast as the- 1 mode) These features cal frequency,w.=1. Owing to Detweiler's argument, for
can be understood, them=*=2 modes are more distorted any s the |=m modes have a similar accumulation of an

than them= =1 modes and hence the=*2 modes are

infinite number of the quasinormal modes onto the critical

FIG. 4. The first nind=2 and
m=—2,+2 gravitational quasi-
normal modes are plotted. All the
modes of them= +2 branch ex-
cept the sixth overtone nE=5)
converge into the critical fre-
quency on the real axis. This ac-
cumulation of modes is in agree-
ment with Detweiler’s resul33].
But our numerical results suggest
that some of the modes do not
cluster into the critical frequency.
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-0.18 | .
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-0.178
-0.176 FIG. 5. Thel =2 gravitational
fundamental quasinormal modes
for any m are zoomed up. The
-0.174 R
branch ofm=+1,—1 is tangent
,;' to the branch ofm=+2,-2,
0172 F ¢ % -4 but the m=0 mode is not. The
i i marks  correspond to  the
i M=+ N a=0.0,0.1,0.2,0.3,0.4 values.
017 | | .
-0.168 | [ me=t m=0 * N
-0.166 |- e
L i I“ ) [l
0.65 0.7 0.75 0.8 0.85 0.9

frequency w=I1. There was one mode which never con- gravitational perturbations.
verged into the critical frequency for tree= —2 case; how- The algebraically special perturbations were first consid-

ever, for thes=—1 case no such mode was found up toered by Wald 36], who was interested in how the perturba-
tion can be the only independent component among several

n=8.
Weyl scalars(Actually, it is impossible if one considers only
- ; the real frequencyAs is well known, the perturbations have
C. Algebraically special modes generally two independent componenlty and ¥4, which

Here, we only consider the algebraically special mode oftorrespond to the ingoing and the outgoing wave, respec-
the s=—2 gravitational perturbations because the onlytively. Thus the algebraically special mode is the mode that
known implication that there is a correlation between thehas only an ingoing or an outgoing wave. Such kind of per-
algebraically special mode and the quasinormal mode is thatirbations was first analytically solved by Chandrasekhar
both modes for the Schwarzschild black hole coalesce fof31]. For the Schwarzschild black hole, algebraically special

-4.5 T T T
-
-
"(x"\o “
3.5 } ~+\‘+__‘+\~ + E
el +..
3+ ey * e N . .
T, e FIG. 6. The first ninen=—1
"‘*~~.\_‘+ and m=+1 quasinormal modes
25| M**W Tl Tl Tl 4 for the electromagnetic waves in
T " the Kerr geometry are shown.
Bilaian N ‘*‘\-.,* + T This is very similar to the case of
2 F A T 71 1=m=2 gravitational quasinor-
*“~~+‘___\* * mal modes; however, all the
sk M~+-+._+ I modes up ton=8 converge into
Pl . ) A the critical frequency in contrast
- S with the gravitational frequencies.
1 *M__F ey
-1 b e
+eal
+ -
05 b TR
HOHHH—O+ b b b +
o 1 1 1

0 0.2 04 0.6
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FIG. 7. The algebraically spe-
cial modes ofm=0, +1, and+2
for |=2. There also exist another
branches of modes symmetric
- about the real axis. The mode of
R m=-—1 and m=-2 are in the
& left-half plane, which are obtained
by reflecting the m=+1 and
m=+2 modes about the imagi-
R nary axis, respectively. The
A m=0 algebraically special mode
first goes up vertically and then
produces two branches, one in the

)t right half of the complex plane
é g and the other in the left half of the
& (,;" complex plane, which is not
& shown in this figure. The corre-
° sponding Kerr parameter is
a=0.247 222 and the pure imagi-
nary frequency is about 6.681.

m=+2

0 1 ! 1 1 1 1
-1 -0.5 0 0.5 1 1.5 2 2.5 3

frequency can be easily solved by imposing the condition =2 branch which are obtained using the continued fraction
that Starobinsky's constant vanishiecause the two modes scheme are plotted in Fig. 7, together with Chandrasekhar’s
are related to each other with a Starobinsky congtdnts  result [31], and these values are listed in Table I. The
then found that there is such a mode on the imaginary axis ah=0 mode increases initially along the imaginary axis as
w=—2i/M. the Kerr parameter increases and then goes away from the
For the Kerr black hole it is rather difficult to obtain the imaginary axis whem=0.247 222. In Ref{31] the value of

algebraically special frequencies owing to the difficulty tothem=0 mode fora=0.25 still stays on the imaginary axis,
get the separation constaft,, without resorting to numeri- but Chandrasekhar mentioned that this mode does not satisfy
cal computation. Nevertheless, if we use the continued fraca positivity of x. This contradiction was caused because his
tion technique for the angular part of the Teukolsky equa-values were obtained using a separation constant with a large
tions (2.1), the separation constant is accurately obtainednumerical error, and thus his value was wrong. Our values

The square of the Starobinsky constant is given by are all in agreement with this positivity check, since our
scheme can avoid numerical errors. If one sees Fig. 6, there
|CI2=N\?(A+2)?—8w\[ @*(5\ +6) — 128] is nom=—1 andm= —2 mode in the first quadrant, and the
m=+1 andm= +2 modes go horizontally from the imagi-
+1440*(M?+ 0%+ a”), (3.)  nary axis such as the quasinormal mode. Despite that, there

seems to be no correlation with any quasinormal mode.

where From the point of view of the scattering problem, a qua-
am sinormal mode is regarded as a pole of the reflection ampli-
a=a2—?, (3.2  tude R(w) and the transmission amplitud&w); on the

other hand, an algebraically special mode corresponds to a
and\, the separation constant in Chandrasekhar’s notatiorero of R(w). Therefore, these two modes will never coa-

is related to ours with the relation lesce in general, which is consistent with the above numeri-
b o cal results. Superficially, it might appear that these two
AN=An—2aom+a‘e”. (3.3 modes coalesce at the Schwarzschild limit, but we believe

that the quasinormal mode disappears at the limit owing to a
cancellation with the corresponding mode in the left half of
Tilge complex plane.

Therefore, we only need to soly€|?>=0, together with Eq.
(2.28. In contrast with quasinormal modes, algebraically
special modes can be calculated even when the black hole
extreme, because we do not need to solve B@) which
has two confluent singularities in the extremal limit.

The solutions always appear as a pair, owing to a reflec- In this paper we have presented several hints to be useful
tion symmetry about the real axis. It is also noticed that thdor resolving a couple of questions concerning the quasinor-
symmetry of Egs.(3.1) and (2.28 allows us to get the mal mode of the black hole. We have presented the results of
m=—1,—2 modes by reflecting then=+1,+2 modes detailed calculations of the quasinormal modes of the Kerr
about the imaginary axis as in the quasinormal mode. Thereslack hole. This supplements previous studies in several
fore, it is enough to see the first quadrant. The solutions ofvays. First, we take the rapidly damped mode into consider-

IV. CONCLUDING REMARKS
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TABLE I. The algebraically special modes calculated through the continued fraction algorithm are com-
pared with those obtained in Chandrasekhar’s pg®&r The upper values are obtained through the contin-
ued fraction method and the lower values are from his paper. It seems his values are not accurate for large

Kerr parameters, owing to the numerical errors caused when getting the separation constants.

a m=0 m=1 m=2
0.00 (0, —4.0000) (0.0000,—4.0000) (0.0000,—4.0000)
0.05 (0, —4.03107) (0.522581, 3.92142 (0.918857,—3.6612)
(0, —4.0310) (0.5218,—3.9218) (0.9184,—3.6620)
0.10 (0, —4.13218) (0.980889,—3.69993 (1.36523,—3.07054
(0, —4.1304) (0.9772,—3.7056 (1.3662,—3.0750
0.15 (0, —4.33511) (1.32376,—3.38382 (1.51483,—2.57005
(0, —4.3240) (1.3216,—3.4026 (1.5204,-2.5774
0.20 (0, —4.74699) (1.54036,—3.03936 (1.53973,—2.1907%
(0, —4.6906) (1.5498,-3.0739 (1.5508,—2.1986
0.25 (0.715878;-6.57057) (1.65595,-2.71464 (1.51441,—1.90332
(0, —5.8038) (1.6868,—2.7600 (1.5304,—-1.91094
0.30 (2.47766,—5.25615) (1.70404,—2.42938 (1.46928,—1.68066
(1.7626,—2.4766)
0.35 (2.84578,—4.36141) (1.71091,—2.18596 (1.41732,—-1.50403
(1.53041,—-1.9109
0.40 (2.93170,—3.71616) (1.69372,—1.9799% (1.36428,—1.36084
0.45 (2.91142,—3.23046) (1.66300,—1.80540 (1.31270,—1.24256
0.50 (2.84632,—2.85259) (1.62505,—1.65663 (1.26369,—1.14328

ation. Second, we also investigate precisely how these modes+ 0 were not yet found for the spherical black holes and
move as the Kerr parameter approaches the limit. Third, w@ence should be considered in detail. Sincentt¥0 modes
a_Islo consider thﬁ relationship l:lletween the algebraically spgj not exist for nonrotating black holéall them=0 modes
cial mode and the quasinormal mode. degenerate into they=0 case owing to the spherical sym-

As was the case for the Reissner-Nordstrblack hole metry), these modes are actually specific for the rotating
[29], the highly dampeah=0 Kerr guasinormal modes gen- lack holes. We also obtained the precise values of the alge-

erally spiral into the extreme values. Though not presented i1 . . . . .
ysp 9 P gralcally special modes using a continued fraction method.

this paper, we have found the similar behavior also in th . . .
here was no correlation between the algebraically special

case of the test scalar field on the Kerr backgrousd @). q d th ) | q ¢ that th q
Therefore, these spirals must be one of the fundamental fediode an € guasinormal mode except thal these modes

tures for rapidly damped modes. The behavior of fiine 0 superficially coalesce in the Schwarzschild limit. Currently,

modes are, on the other hand, different from the behavior ofe do not know why the coalescence occurs. However, ow-

the m=0 mode. The damping rates okn=I modes de- ing to the existence of the algebraically special mode at

crease very fast without going through spirals. An infiniteg’i:o;nf';’l trrr]f) dqeusasclgg{en;ilen;?%e tﬁzgnoﬁoﬁléﬁ‘er&rz’g? ;{u,‘?r;e
number of than=1 modes tend to accumulate onto the criti- P y

cal frequencym.=1, asa/M— 1. We also found that there limit. This cancellation prevents the existence of the purely

is one mode which does not converge to the frequency(.jamped quasinormal mode.

Whether another mode such as that exists is an open ques-
tion. At present, there is no evidence uprne 20 for | =2
gravitational perturbations. The-I=m<0 modes have | would like to thank Professor A. Hosoya for his continu-
rather simple behavior in contrast to the positivecases. ous encouragement. | wish to thank Professor H. Ishihara for
These modes move slowly around the correspondingtimulating discussions. This work was supported in part by
Schwarzschild modes. An interesting fact is that some of théhe JSPS and the Scientific Research Fund of the Ministry of
modes go through a quick turn. These surprising features fdEducation of Japan.
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