
Optical approach for the thermal partition function of photons

Valter Moretti* and Devis Iellici†

Dipartimento di Fisica, Universita` di Trento, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento,
I-38 050 Povo (TN), Italy

~Received 23 October 1996!

The optical manifold method to compute the one-loop effective action in a static space-time is extended
from the massless scalar field to the Maxwell field in any Feynman-like covariant gauge. The method is applied
to the case of the Rindler space obtaining the same results as the point-splitting procedure. The result is free
from Kabat’s surface terms which instead affect thez-function or heat-kernel approaches working directly in
the static manifold containing conical singularities. The relation between the optical method and the direct
z-function approach on the Euclidean Rindler manifold is discussed both in the scalar and the photon cases.
Problems with the thermodynamic self-consistency of the results obtained from the stress tensor in the case of
the Rindler space are pointed out.@S0556-2821~97!01806-7#

PACS number~s!: 04.62.1v, 04.70.Dy

I. INTRODUCTION

In a recent paper@1# we have computed the one-loop ther-
mal partition function of photons in the Rindler wedge em-
ploying a localz-function method directly in the Euclidean
Rindler space. Although this approach produces thermody-
namical quantities with the correct high temperature behav-
ior requested by the statistical mechanics, the low tempera-
ture behavior seems to remain different from that obtained
with other methods. This can be seen by means of a direct
comparison between the free energy following from the
above cited approach and the same quantity obtained by the
point-splitting renormalization procedure for the stress tensor
@2–4#. In particular, one sees that the directz-function ap-
proach gives, for the coefficient of the term proportional to
T2, a result which is one-third of the point-splitting result.
This discrepancy can be traced back to an identical discrep-
ancy in the coefficients of the free energy of a minimally
coupled massless scalar field propagating in the Rindler
wedge@5–7#.

It is important to remark that this problem does not arise
from the particular method used in@5,1# to compute the de-
terminant of the small fluctuations operator which appears in
the one-loop free energy. In fact, the same discrepancy has
also been found in@8# using a completely different method to
compute the determinant. Therefore, it seems to be intrinsic
of the computations made directly in the Euclidean Rindler
space.

In the photon and graviton case, a further drawback of the
approach in@1# is the need of a more complicated regular-
ization procedure due to the presence of gauge depending
‘‘surface’’ terms @9#. Anyway, the results of@5,1# improve
previous results obtained using global heat-kernel ap-
proaches@10,9# in the Rindler space, which is not able to
reproduce the Planckian high temperature behavior.

There is another method which can be used to compute
these one-loop quantities, and is the optical one@11–18#. In

this approach, instead of computing the partition function
directly in the static metric, one performs a conformal trans-
formation in such a way that the resulting manifold has an
ultrastatic metric. Then, one can compute the relevant quan-
tities in this ‘‘optical manifold’’ using heat-kernel,
z-function, or any other method and taking into account how
the various quantities transform under conformal transforma-
tions. This method is particularly favorable in the Euclidean
Rindler case, since this manifold has a conical singularity
which can be quite tricky to deal with, whereas the related
optical manifold has no singularity. However, there is more
in this method than the mathematical content. In fact, it has
been shown@13,14,17,18# that the canonical partition func-
tion of a quantum field in a curved background with a static
metric is not directly related to the Euclidean path integral
with periodic imaginary time in the static manifold, but
rather it is equal to Euclidean path integral in the related
optical manifold. In particular, in@14# it is shown that the
statistical counting of states leads naturally to a formulation
in the optical manifold. We can also notice that, as far as we
know, the equivalence of the direct periodic imaginary time
path integral formalism to the canonical formalism for com-
puting finite temperature effects has been proved in ultra-
static manifolds only@19#.

Therefore, the computation of the thermal partition func-
tion from Euclidean path integral in the static manifold re-
quires the knowledge of the Jacobian of the conformal trans-
formation. On regular manifolds this causes no trouble, since
it is easily shown~see, e.g.,@20#! that the Jacobian affects
only the temperature-independent part of the free energy.
Instead, as we will see, when in the static metric there is a
conical singularity the temperature dependence of the Jaco-
bian could be less trivial and affect the temperature-
dependent part of the free energy.

Another important point is that the optical method pro-
duces thermodynamic quantities which agree with those ob-
tained form the point-splitting procedure. This happens in the
case of a massless scalar field conformally coupled in the
Rindler wedge at least, but also, as we shall see, in the case
of the photon field.

In the first part of this paper we shall review the compu-
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tation of the thermodynamical quantities of a massless scalar
field in the Rindler wedge, comparing the point-splitting, lo-
cal z-function, and optical results. In particular, we note that
while the point-splitting approach can be applied for any
coupling of the scalar field with the gravity, the optical ap-
proach is feasible only for the conformally coupled case,
where it gives the same result as the point-splitting method.
Moreover, the dependence on the coupling parameter, which
disappears in the integrated physical quantities when the
background is a regular manifold, in this case affects these
quantities because of the presence of the conical singularity.
On the other hand, the computations made directly in the
static Euclidean Rindler manifold using the localz-function
technique is still limited to the minimally coupled case, and
even in this case the result is different from the point-
splitting one.

In the second part of this work, we shall extend the optical
manifold approach to the Maxwell field case. We shall show
that there are two possible ways to do this, which are equiva-
lent in the scalar case, but in the photon case could produce
a different result. The difference of the two approaches is
essentially in the definition of the gauge-fixing and ghost
parts of the Lagrangian. In particular, we shall show that
result expected counting the polarization states of the field
can be obtained by defining the theory directly in the optical
manifold. The other possibility is to define the partition func-
tion in the Euclidean Rindler wedge and only then perform
the conformal transformation. We are not able to work out
thoroughly this latter approach, because of a mathematical
complication in the ghost action. Nevertheless, we argue that
it gives a different coefficient of the term proportional to
T2.

In the final part, in addition to discussing the obtained
results, we also show that the usual relations between ther-
modynamical quantities, which involve derivatives with re-
spect to the temperature, lead to inconsistencies when ap-
plied to Rindler thermal states with temperature different
from the Unruh-Hawking one.

II. THE GENERAL PROBLEM IN THE CASE
OF A MASSLESS SCALAR FIELD

As we have said in the Introduction, the problem of dis-
crepancy of the coefficient ofT2 in the free energy appears
already in the case of a massless scalar field propagating in
the Rindler wedge. In fact, this problem seems to be inde-
pendent of the field spin. Hence, we start discussing just this
case, taking into consideration the point-splitting, local
z-function, and optical manifold approaches.

A. Point-splitting approach

We start considering the results produced by the point-
splitting method. The point-splitting renormalized stress ten-
sor reads~see, for example@6#, continuing into the Rindler
space the results obtained for the cosmic string!

^Tn
m&b

ps~j!5
1

1440p2r 4 H F S 2p

b D 421Gdiag~23,1,1,1!

120~6j21!F S 2p

b D 221GdiagS 32 ,2 1

2
,1,1D G .

~1!

By integrating2AgT0
0, we get a total energy which we shall

compare with those following from the other methods:

Ub,j
ps 5

LyLz
2880p2e2 F3S 2p

b D 4230~6j21!S 2p

b D 2
130~6j21!23G . ~2!

Above,Ly andLz are the~infinite! lengths of the transverse
dimensions, and soA'5LyLz is the ~infinite! area of the
horizon. The parameterj fixes the coupling of the scalar
field with the gravitation. In the~Lorentzian! Rindler space
the scalar curvatureR is zero everywhere and the parameter
j remains as a relic of the fact thatTmn is obtained by vary-
ing the metricgmn in the field Lagrangian@21#.1 Employing
the general expression ofTmn(j) @6,21# in terms of the Had-
amard function, one finds that, in the caseR50, the global
conserved quantities as total energy should not depend on the
value ofj. This is because the contributions to those quan-
tities due toj are discarded into boundary surface integrals
which generally vanish. However, this is not the case dealing
with the Rindler wedge because such integrals diverge
therein.2 The only possibility to get a result not depending on
j consists in takingb52p producing a trivial result. The
considered ambiguity does not seem to arise from a similar
ambiguity in defining the thermal quantum state. In fact, the
thermal Wightman functions employed in calculating the
renormalized stress tensor do not depend onj. Finally, it is
worthwhile noting that thej ambiguity affects theb22 term
in the thermodynamical quantities and hence their low tem-
perature behavior.

Notice that Kay and Studer@23# found an ambiguity in
defining the scalar Wightman functions around a cosmic
string, a background which has the same Wick-rotated metric
as the thermal Euclidean Rindler manifold. However, this
ambiguity is related to the time-independent modes and so,
e.g., employing thez-function procedure, one simply finds

1It is worthwhile noticing that one has to consider the theory
within the curved space time in order to discuss on the physics in
the flat space-time. Anyhow, the extension of the theory to a curved
space-time is not unique and this involves some subtleties regarding
also the regularization procedure. The choice between different
regularization procedures should be made on the basis of what is
the physics that one is trying to describe. Obviously, the general
hope is that, at the end of the complete renormalization procedure
involving matter fields and gravity, all these different regularization
approaches give rise to equivalent physical results. See@17,22# for a
discussion on these topics.
2Similar problems appear working in subregions of the

Minkowski space in presence of boundary conditions@21#.
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that this ambiguity cannot produceb22 terms in the Rindler
free energy. Hence, it should not be related with thej am-
biguity.

B. Direct conical approach

One can formally define the partition function at the tem-
perature 1/b by a Euclidean path integral

e2bFb5Zb5E Df exp~2S@f#!, ~3!

where the~Euclidean! action is that of a massless scalar field
coupled with the gravitation,

S@f#52
1

2E d4xAgf@¹m¹m2jR#f. ~4!

The background is the Euclidean Rindler manifoldCb3R2

with an imaginary time periodb. The Euclidean Rindler
metric reads

ds25r 2du21dr21dy21dz2, ~5!

where uP@0,b#, rPR1, x5(y,z)PR2. Notice the well-
known conical singularity atr50 whenbÞ2p.

In the casej50, the previous partition function can be
explicitly computed by a localz-function approach recently
introduced by Zerbiniet al. @5# obtaining a Minkowski
renormalized free energyFb

sub5Fb2Ub52p and a renormal-
ized internal energy3 Ub

sub5]bbFb2(]bbFb)ub52p which
read

Fb
sub52

A'

2880p2e2 F S 2p

b D 4110S 2p

b D 2113G ,
Ub
sub5

A'

2880p2e2 F3S 2p

b D 4110S 2p

b D 2213G , ~6!

whereA' is the ~infinite! event horizon area ande a short-
distance cutoff representing the minimal distance from the
horizon@24#. We note that the above result is different from
that of the point splitting withj50 and the difference is in
the coefficient of the term proportional tob22. However, as
we said in the Introduction, the partition function~3! is re-
lated to the canonical one by the Jacobian of a conformal
transformation: this could explain the different result. We
shall come back on this point after discussing the optical
approach.

It is worthwhile noticing that the Lorentz section of the
Rindler space is flat and hence, as far as the real time theory
is concerned, we find a complete independence on the pa-
rameterj. However, in calculating the partition function, one

has to deal with the Euclidean section of the Rindler mani-
fold and, considering it as a integral kernel, the curvature
R takes Dirac’sd behavior atr50 @25,26#, thus the value of
the parameterj could be important. The previous results
have been carried out in the casej50 in the sense that the
eigenfunctions employed in computing thez functions prop-
erly satisfy the eigenvalue equation with noR term.

In the casejÞ0 the problems are due to the fact that the
equation for the eigenfunctions contains a Diracd, and so it
is not mathematically clear how to treat it. In the case of a
cosmic string, the Diracd represents a limit case, maybe
unphysical, of the problem in which the string has a finite
thickness, which is mathematically well defined since no
Dirac d appears. In the case of the Rindler space there is no
such way out, and the only way to avoid the problem is to
consider the casej50.

C. Optical approach

Let us now consider the optical approach@11–18#. As
remarked in the Introduction, this approach is not just a
mathematical method to compute the functional integral in
Eq. ~3!, but has an important physical content. In fact, as
previously remarked, it fulfills the requirements of a formu-
lation in the optical manifold following from statistical
counting of states.

Let us consider a static metricds25gmndx
mdxn and per-

form a conformal transformation of the metric@maybe sin-
gular if V(x)50#, gmn→gmn8 5V2(x)gmn , so that

ds2→ds825V2ds2. ~7!

ChoosingV225g00, ds8
2 becomes the related ultrastatic

optical metric. In the case of the Euclidean Rindler space,
this conformal factor becomes singular just on the conical
singularities, which are pushed away to the infinity4 and the
optical manifold is free from singularities. Under such a
transformation, the massless scalar fieldf transforms into
f85V21f and the Euclidean action with coupling factor
j transforms into the following more complicated action
@21#:

S8@f8#52
1

2E d4xAg8f8

3@¹m8 ¹8m2j4R82V22~j2j4!R#f8, ~8!

wherejD5(D22)/4(D21) is the conformal invariant fac-
tor. If we consider a conformally coupled field,j5jD , we
see that also the transformed action is that of a conformally
coupled field in the optical manifoldS13H3. In the other

3As is well known, the (b52p)-thermal Rindler state locally
coincides with the Minkowski vacuum and, in renormalizing, we
suppose that this state does not carries energy density. Notice that
such a Minkowski subtraction procedure does not affect the entropy
computed throughFb .

4The points atr50 of the optical manifoldS13H3 are infinitely
far from the points of the manifold withr.0 taking the distance as
the affine parameter along geodesics. Strictly speaking, the former
points do not belong to the manifold at all.
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cases, we have to keep a term proportional toR which has
Dirac’s d behavior atr50 and thus we have an ill-defined
operator.5

When we compute the one-loop partition function, we
may formally write@27,28#

e2bFb5Zb5E Df8J@g,g8,b#exp~2S8@f8# !

5J@g,g8,b#Zb85J@g,g8,b#e2bFb8 . ~9!

We remark that isZb8 which is equivalent to the canonical
partition function @13,14,17,18#. The functional Jacobian
J@g,g8,b# does not depend onf8 and thus it can be carried
out from the integral as we have done above. When the in-
volved manifolds are regular, it is possible to prove that such
a Jacobian is in the form

J@g,g8,b#5exp~2bE0!. ~10!

whereE0 does not depend onb. This is substantially due to
the staticity of the involved metrics@16–18# and the factor
b in the exponent is due to an integration over the whole
Euclidean manifold. If this holds in the presence of a conical
singularity as well, one expects thatFb andFb8 differ only
for the value of the renormalized zero-temperature energy.
When the coupling in the Euclidean Rindler manifold is con-
formal, the direct computation ofFb8 can be performed em-
ploying thez-function approach@16# ~see also the Appendix
of this paper!. We report here the well-known final result
only:

Fb852
A'

2880p2e2 S 2p

b D 4. ~11!

UsingUb85]b(bFb8 ) to compute the internal energy and per-
forming the Minkowski renormalization Ub8

sub5Ub8
2Ub52p8 in order to get a vanishing internal energy at
b52p, we find just

Ub8
sub5Ub,j51/6

ps . ~12!

Therefore, we have got a result equal to the point-splitting
one by renormalizing~with respect to the Minkowski
vacuum! the internal energy obtained on the optical manifold
andwithout taking into account the Jacobian, whether it has
the form ~10! or not.

D. Comparison of the results

In the previous subsection we have seen that the optical
method, when applicable, gives the same result as the point

splitting. On the other hand, we see thatUb,j
ps does not coin-

cide with the corresponding internal energy~6! found by the
z-function approach at the value of coupling parameter one
expects,j50, but rather atj51/9. Note that the discrepancy
is in the term proportional tob22, while the difference in the
b-independent term is not meaningful, because such terms
are fixed by the subtraction procedure: they do coincide
when the remaining terms are equal. Note also that we can-
not compare directly the optical and the localz-function ap-
proaches, since they are not applicable for the same value of
j.

In order to identify the source of the above discrepancy,
we remind the reader that the thermodynamical quantities in
Eq. ~6! have been obtained from the Euclidean path integral
in the static manifold, which differs from the canonical par-
tition function for the Jacobian of the conformal transforma-
tion, see Eq.~9!. As we have said above, on regular mani-
folds the logarithm of this Jacobian is simply proportional to
b, thus giving a contribution only to the temperature-
independent part of the free energy. However, the case of the
Euclidean Rindler space could be more complicated, due to
the presence of a conical singularity atr50, which could
yield a nonlinear dependence onb. In fact, such a singularity
can be represented as an opportune Diracd function with a
coefficient containing a factor (2p2b) @25,26#, and sob
enters not only as integration interval, but also in the inte-
grand. Of course, only an explicit calculation of the Jacobian
can give an ultimate answer. In two dimensions, the Jacobian
J@g,g8,b# is the exponential of the well-known Liouville
action@27#, and an easy calculation shows that the logarithm
of the Jacobian is indeed proportional tob @18#, regardless of
the conical singularity. Unfortunately, in four dimensions the
form of the Jacobian is far more complicated~see@18# and
references therein! and involves also products of curvature
tensors which are ill defined. Therefore, it is not clear
whether the discrepancy in the term proportional tob22

might be assigned to the Jacobian.
Summarizing, we have seen that the optical method has

been applied to the conformally coupled case only, and in
this case it gives the same result as the point-splitting
method. With regard of the direct computation in the Euclid-
ean Rindler wedge, it has to be considered as incomplete,
because of our ignorance of the Jacobian and of the nonmini-
mally coupled case. We stress that, in the case of a regular
manifold, these two approaches should be equivalent.

III. OPTICAL APPROACHES IN THE CASE OF PHOTONS

In @1# the partition function of photons gas in a Rindler
wedge has been computed generalizing the procedure in@5#.
The found Minkowski renormalized free energy amounts to
2Fb

sub1(22 lna)Fb
surface, whereFb

sub is the scalar free energy
previously discussed, Eq.~6!, and theFb

surfaceis a ‘‘surface’’
term which arises integrating a total derivative and has the
form A'@(2p/b)221#/(24p2e2) ~see@9,1# for more com-
ments!, finally a is the gauge-fixing parameter. Notice that
also this anomalous gauge-dependent term involves ab22

dependence. We suggested dropping this latter gauge-
dependent term as the simplest procedure to remove the un-
physical gauge dependence. Anyway, we stressed that other
procedures could also be possible. The obtained result agrees

5One possible way to get rid of this term is to define the action in
the Lorentzian manifold, whereR50, perform the conformal trans-
formation to the optical manifold, and only then use the trans-
formed action to write to partition function with the periodic imagi-
nary time formalism@15#. This procedure gives a result independent
on the parameterj by nature: the coupling in the optical manifold is
always conformal. However, in our opinion this procedure seems
too ad hoc.
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with the statistical mechanics request at high temperatures,
but, as in the scalar case, the low temperature behavior is
different from that obtained with the usual point-splitting
procedure. Therefore, let us consider the point-splitting re-
sults@2,6#: the renormalized stress tensor takes a simple form

^Tn
m&b

phot ps5
1

720p2r 4 F S 2p

b D 4110S 2p

b D 2211G
3diag~23,1,1,1!. ~13!

The ~Minkowski renormalized! internal energy correspond-
ing to the previous photon stress tensor reads

Ub
phot ps5

3A'

1440p2e2 F S 2p

b D 4110S 2p

b D 2211G . ~14!

As far as the energy density is concerned, we have the fol-
lowing very simple relation:

^T0
0&b

phot ps52^T0
0&b

ps~j50!, ~15!

where on the right the stress tensor is that of a massless
scalar field. It is worthwhile noticing thatj50 takes place
on the right-hand side instead ofj51/6. Hence, the energy
density of the electromagnetic field does not amount to twice
that of a conformally coupled scalar field, as one could na-
ively expect considering that the electromagnetic field is
conformal invariant in four dimensions. As far as the internal
energy is concerned, we find the same unforeseen relation.
However, as previously discussed, the integrated quantities
should not have to depend onj in more ‘‘regular’’ theories,
restoring the naively expected relation between the consid-
ered quantities.

Discussing the scalar case we have stressed the impor-
tance of the optical method: therefore, now we go to inves-
tigate whether it is possible or not to get such an energy
employing the optical-manifold method. There are two pos-
sible ways to implement this method. The simplest one con-
sists of defining the partition function directly as a functional
integral on the optical manifold. However, there is another
more complicated possibility: it consists of starting with a
functional integral in the initial static manifold, performing
the conformal transformation, and finally dropping the func-
tional Jacobian. This is, in fact, the simplest generalization of
the results obtained in the scalar case. Both methods produce
the same final functional integral in the simpler conformally
coupled scalar case, but in the case of the Maxwell field the
two procedures do not seem to be equivalent, as we shall see,
due to the presence of gauge-fixing and ghost terms.

A. Optical approaches in the case of general static manifolds

Let us start reviewing the formalism we use dealing with
the photon field. The complete action for the electromagnetic
field in any covariant gauge and on a general Euclidean
manifold, endowed with a metricds25gmndx

mdxn, which
we shall supposestatic and where]0 is the global~Euclid-
ean! timelike Killing vector with closed orbits of periodb.
Using the in Hodge–de Rham formalism we have

Sem5E d4xF14 ^F,F&1
1

2a
^A,ddA&G1Sghost~a!

5
1

2E d4xF ^A,DA&2S 12
1

a D ^A,ddA&G1Sghost~a!.

~16!

In order to maintain the gauge invariance of the theory, it is
important to keep the dependence on the gauge-fixing pa-
rameter of the ghost action, as one obtains by varying the
gauge-fixing condition (1/Aa)dA50 @29#:

Sghost~a!52
1

Aa
E d4xAgc̄Dc, ~17!

whereD is the Hodge–de Rham Laplacian for zero-forms
andc, c̄ are anticommuting scalar fields. Usually, the depen-
dence on the gauge-fixing parameter is absorbed rescaling
the ghost fields, but in the presence of a scale anomaly this
rescaling gives rise to a nontrivial contribution, which is es-
sential to maintain the gauge invariance of the theory. This is
just the case here: in fact, the contribution of the action~17!
to the one-loop effective action is proportional to that of a
minimally coupled scalar field, which has a scale anomaly in
four dimensions.

Some comments on the formalism in Eq.~16! are in order.
F[]mAn2]nAm5¹mAn2¹nAm is the two-form represent-
ing the photon strength field,¹m being the covariant deriva-
tive; the brackets stand for thep-forms Hodge local product:

^G,H&5G`*H5Aggm1n1
•••gmpnpGm1•••mp

Hn1•••np
.

For future reference we also define the internal product

G•H5gm1n1
•••gmpnpGm1•••mp

Hn1•••np
.

We remind the reader thatd5(21)N(p11)11* d* is the for-
mal adjoint of the operatord with respect to the scalar prod-
uct of p-forms induced by the integration of the previous
Hodge local product; finally,D5dd1dd is the Hodge–de
Rham Laplacian of thep-forms. In order to perform calcu-
lations through the usual covariant derivative formalism the
following relations for zero-forms and one-forms are quite
useful:

Df52¹m¹mf,

dA52¹mA
m,

~DA!m52¹n¹nAm1Rm
nAn .

The second line of Eq.~16! represents the complete pho-
ton action now expressed in terms of the vector fieldAm and
the ghost fields only and it is the one usually employed in
order to compute the partition function of the photon field by
means of a functional integral. The partition function of pho-
ton at the temperatureT51/b is then formally expressed by
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Zb5E DA expH 2
1

2E d4xF ^A,DA&2S 12
1

a D
3^A,ddA&G J E DcDc̄ exp@2Sghost~a!#.

In order to compute this partition function, we want to
pass to the related optical manifold, and so we consider a
conformal transformation, Eq.~7!, with V25g00. Notice
that, since we work in four dimensions, thep-forms A and
F have a vanishing mass dimension and thus they must be
conformally invariant, namely,A5A8 andF5F8. Further-
more the following identity arises:

^F,F&85^F,F&. ~18!

B. First general approach

As we said above, the way to proceed is twofold. As a
first way, we can suppose to have performed the conformal
transformationbeforewe start with the field theory. This
means that we define the partition function of photons in the
static manifold as a path integral directly in the optical mani-
fold. In such a case the expression of the partition function is
defined by

Zb
~1!5E DA expH 2

1

2E d4xF ^A,D8A&82S 12
1

a D
3^A,dd8A&8G J E Dc8Dc̄8exp@2S8ghost

~1! ~a!#,

(19)

where

S8ghost
~1! ~a!52

1

Aa
E d4xAg8c̄8D8c8,

and where the primed metric and variables appearing in the
previous functional integral are the optical ones. In other
words, for the one-loop Euclidean effective action2 lnZb

(1)

we have

lnZb
~1!52

1

2
lndetm22FD82S 12

1

a Ddd8G1 lnZb,ghost
~1! ~a!.

~20!

Herem is an arbitrary renormalization scale necessary on a
dimensional ground in the above formula and denoting the
presence of a scale anomaly if it does not disappear from the
final formulas.

For future reference we note that the effective action of
the ghosts, except for thea-dependent factor, amounts trivi-
ally to minus twice the Euclidean effective action of an un-
charged massless scalar field with the Euclidean action mini-
mally coupled with the gravitation. Therefore its contribution
to the one-loop effective action can be written immediately
from the z function of a minimally coupled scalar field,
zMCS(s;x), in the same background, taking thea dependence
into account:

lnZb,ghost
~1! ~a!52E d4xAg8F ddszMCS~s;x!us50

1zMCS~s;x!us50lnAam2G . ~21!

C. Second general approach

As a second way, we can suppose to define the partition
function directly in the static manifold, adding also the
gauge-fixing term and the ghost Lagrangian to the pure elec-
tromagnetic action, and onlyafter perform the conformal
transformation to the optical metric. In this way we have to
find how all the pieces in the path integral transform under
the conformal transformation. In particular, the operator
D2(12a21)dd transforms into another operatorLa ,
which we are going to write shortly. As regards the func-
tional Jacobian which arises from the functional measure, a
direct generalization of the discussion made in the scalar
case tells us that it has to be ignored if we are interested in
computing the thermal partition function. However, we
would have to take it into account if we were computing, for
example, the zero-temperature effective action in a cosmic
string background.

Hence, employing this second procedure, we shall assume
the photon partition function to be defined by

Zb
~2!5E DA8expF2S 12E d4x^A8,LaA8&8D G

3E Dc8Dc8exp@2S8ghost
~2! ~a!#.

In other words, for the Euclidean effective action2 lnZb
(2) we

have

lnZb
~2!52

1

2
lndet~m22La!1 lnZb,ghost

~2! ~a!. ~22!

The form ofS8ghost
(2) (a) is that of Eq.~17! after a conformal

transformation:

S8ghost
~2! ~a!52

1

Aa
E d4xAg8c̄8FD81

1

6
~R82V22R!Gc8,

~23!

wherec85Vc, c̄85V c̄. For future reference, we note that
this effective action of the ghosts amounts trivially to minus
twice the Euclidean effective action of an uncharged mass-
less scalar field w with the Euclidean action
(D852¹m8 ¹8m) endowed by ana-depending overall factor

S~2!~a!5
1

Aa
E d4xAg8

1

2
wFD81

1

6
~R82V22R!Gw.

~24!

When the static manifold is flat,R50, the contribution of
the ghosts to the effective action can be written in terms of
the z function of a conformally coupled scalar field:
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lnZb,ghost
~2! ~a!52E d4xAg8F ddszCCS~s;x!us50

1zCCS~s;x!us50lnAam2G . ~25!

Now, let us find the explicit form of the operatorLa . The
following identity holds:

dA5
1

V
~d8A2h•A!, ~26!

provided the one-formh be defined as

h5d~ lnV![]mlnV. ~27!

Taking into account thatd5d† and employing Eqs.~16!,
~18!, and~27!, we get the identity

Sem5
1

2E d4xF ^A,DA&2S 12
1

a D ^A,ddA&G1Sghost~a!

5
1

2E d4xF ^A,D8A&82S 12
1

a D ^A,dd8A&8

1
1

a
^A,hh•A&82

1

a
^A,~hd81dh• !A&8G

1S8ghost
~2! ~a!. ~28!

Looking at the first line of Eq.~28! we find the explicit form
of the operatorLa :

La5D82S 12
1

a Ddd81
1

a
hh•2

1

a
~hd81dh• !.

~29!

Notice that the use of such an operator is equivalent to em-
ploying an unusual gauge-fixing term in the initial photon
Lagrangian which reads

1

a
^A,~d2h!~d82h• !A&. ~30!

IV. THE CASE OF THE RINDLER SPACE

Let us check the physical results arising from Eqs.~20!
and ~22! in the case of the Rindler space. SettingV25r 2 in
Eq. ~7!, the related ultrastatic optical metric reads

ds825dt21r22~dr21dy21dz2!. ~31!

Obviously, this is the natural metric ofS13H3 which does
not contain conical singularities. We remind one that
Rn8

m522diag(0,1,1,1) andR8526. As for the one-form
h necessary to define the operatorLa , we get

hm5
2

r
dm
r . ~32!

We want to employ a localz-function @30,31,20# regular-
ization technique and hence we define the determinant of an
~at least! symmetric operatorL through

2
1

2
lndet~m22L !5

1

2E d4xAg8

3@z8~s50;x!1z~s50;x!lnm2#,

~33!

where thelocal z function of the operatorL is defined, as
usual, by means of the analytic continuation in the variable
sPC of the spectral representation of the complex power of
the operatorL:

z~s;x!5(
n

ln
2sAn~x!•An* ~x! . ~34!

Above,An(x) is a one-form eigenfunction of a suitable self-
adjoint extension of the operatorL andln is its eigenvalue.
The indexn stands for all the quantum numbers, discrete or
continuous, needed to specify the spectrum. The set of these
modes is supposed complete and~Dirac, Kroneker! d nor-
malized. We will make also use of the following notation for
the one-forms onS13H3:

A[~auB!,

wherea indicates a one-form onS1 andB a one-form on
H3. All the operations between forms which appear after ‘‘u’’
are referred to the manifoldH3 and its metrical structure
only. Latin indicesa,b,c,d, . . . are referred to the coordi-
natesr ,y,z on H3 only.

A suitable set of eigenfunctions of the operator
D82(12a21)dd8 as well asLa as can be constructed using
the following complete and normalized set of eigenfunction
of the scalar Hodge–de Rham Laplacian onS13H3:

f~k,n,v!~t,r ,x!5
eikxeinnt

2p2Ab
A2v sinh~pv!rK iv~kr !,

~35!

wherenn5 2pn/b, nPZ, vPR1, k5(ky ,kz)PR2, k5uku
and all the previous eigenfunctions have eigenvalue
(n21v211). Kiv(x) is the usual MacDonald function with
an imaginary index. The normalization reads

E d4xAg8f~k,n,v!*f~k8,n8,v8!5dnn8d2~k2k8!d~v2v8!.

In the following, we report some relations which are very
useful in checking the results which we shall report shortly.
It is convenient to define the one-formj52d(1/r )5h/2r
on H3. On H3 we havedh54, Dh50, dh50, dj50,
Dj523j, ¹ajb52db

a/r . Furthermore we remind one that,
if f is a zero-form andv is a one-form:

@D~ fv!#a5 f @Dv#a1vaD f22~¹bf !¹
bva . ~36!

Finally, on a three-manifold the following relation holds:

D* ~v`v8!5* @~Dv!`v8#1* @v`Dv8#1R* ~v`v8!

2* @~Rv!`v8#2* ~v`Rv8!

22* ~¹av`¹av8!, ~37!
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where obviously @*(¹av`¹av8)#e :
5Ageebc(¹dv

b)¹dv8c, v and v8 are one-forms, and the
Ricci tensor acts on one-forms trivially as (Rv)a5Ra

bvb .

A. First optical approach

Let us now consider the first optical approach, in which
we define the path integral directly in the optical manifold,
see Eq.~19!. Starting from the scalar eigenfunctions, one can
obtain the following set of eigenfunctions of the operator
D2(12a21)dd on S13H3:

A~1!5
Av211

unuAv21n211
~]tfudf!

5
Av211

unuAv21n211
~]tf,] rf,]yf,]zf!,

A~2!5
1

Av21n211
S ]tfU 2n2

v211
df D ,

A~3!5
1

k
@0u* d~jf!#5

1

k S 0,0,]zf

r
,2]y

f

r D ,
A~4!5

1

kv
@0udd~jf!#5

r

kv S 0,k2r f,] r]y
f

r
,] r]z

f

r D .
The last three modes are transverse,dA50, whereas the first
one is a pure gauge mode. From a little Hodge algebra, the
following normalization relations can be proved:

E d4x^A~J,v,n,k!* ,A~J8,v8,n8,k8!&

5dJJ8dnn8d2~k2k8!d~v2v8!. ~38!

As far as the eigenvalues are concerned, we have

@D82~12a21!dd8#A~1!5
v21n211

a
A~1!,

@D82~12a21!dd8#A~2!5~v21n211!A~2!,

@D82~12a21!dd8#A~J!5~n21v2!A~J!

if J53,4.

Employing the definition in Eq.~34!, the above modes and
the definitions given in the Appendix, we have that~notice
thatf* andf take the same values ofk, n, v)

z~s;x!5~as11! (
n52`

` E d2kdv
f* ~x!f~x!

@v21n211#s

1 (
n52`

` E d2kdv
2~11v22!f* ~x!f~x!

@v21n2#s

5~as11!zMCS~s;x!12zCCS~s;x!1zextra~s;x!,

~39!

where we have set

zextra~s;x!52 (
n52`

` E d2kE dv

v2

f* ~x!f~x!

@v21n2#s

5
Ap

p2b

G~s2 1/2!

G~s! S b

2p D 2s21

zR~2s21!,

~40!

so thatzextra(s50;x)50 andz8extra(s50;x)51/3b2. Notice
that the second and third terms in Eq.~39! arise from the
transverse modesA(3) andA(4). The first term in Eq.~39! is
due to the modes withJ51,2.

In calculating Eq.~39!, we encountered Kabat’s surface
terms similar to those we encountered in@1#. However, in the
present case all these terms vanish automatically and no fur-
ther regularization procedure needs. In fact, all these terms
read as

Dr(
n
E dkE dvr 2Kiv~kr !Kiv~kr ! f ~v,n,s!,

whereDr is an opportune differential operator inr . Passing
from the integration variablek to the integration variable
rk, we see that the term after the operator does not depend
on r , and so the differentiation produces a vanishing result.

In order to write the complete localz functions of the
electromagnetic field we have to take account of the ghost
contribution. We have already said that in this approach the
z function of the ghosts is just minus two times thez func-
tion of a minimally coupled scalar field, but with a gauge-
fixing dependent scale factor, see Eq.~21!:

za
ghosts~s;x!522zMCS~s;m22a21/2Lj50!~x!.

Using this relation, Eq.~39! and reintroducing everywhere
the renormalization scalem, we can write the complete local
z function of the electromagnetic field as

zem~s;x!5~as11!zMCS~s;m22Lj50!~x!

12zCCS~s;m22Lj51/6!~x!1zextra~s;m22!~x!

22zMCS~s;m22a21/2Lj50!~x!. ~41!

It follows that the one-loop effective Lagrangian density is
just
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Leff~x!5
1

2

d

ds
@2zCCS~s;x!1zextra~s;x!#s505

p2

45b4 1
1

6b2 .

~42!

We remark the importance of keeping thea dependence of
the action of the ghosts: it gives a contribution proportional
to lna which cancels against the (lna)-dependent term com-
ing from (as11)zMCS(s;x), restoring the gauge invariance
of the theory. Note also how all the terms containing lnm2

cancel giving the expected scale invariant theory.
Integrating this quantity over the manifold and introduc-

ing a cutoff at a distancee form r50 in order to control the
horizon divergence, we get the one-loop free energy:

F ~1!52
1

bE d4xAg8Leff~x!

52
A'

1440p2e2 F S 2p

b D 4130S 2p

b D 2G . ~43!

Renormalizing this result in such a way that the internal
energy vanishes atb52p, we find just the point-splitting
result

Ub
~1!sub5Ub

phot ps. ~44!

B. Second optical approach

Let us then consider the second optical approach. We
were able to perform the calculations in the casea51 only,
hence a complete discussion on the gauge invariance (a in-
variance! is not possible. However, the found result contains
some interest. As before, the eigenfunctions of the operator
La51 are constructed from the scalar eigenfunctions, Eq.
~35!:

A~1!5
1

unu S ]tfU1 unu
2

hf D5
1

unu S ]tf,unu
f

r
,0,0D

A~2!5
1

unu S ]tfU2 unu
2

hf D5
1

unu S ]tf,2unu
f

r
,0,0D

A~3!5
1

k
@0u* d~jf!#5

1

k S 0,0,]zf

r
,2]y

f

r D
A~4!5

1

k
$0u* @j`* d~jf!#%5

1

k S 0,0,]y f

r
,]z

f

r D .
The following normalization relations hold:

E d4x^A~J,v,n,k!* ,A~J8,v8,n8,k8!&

5dJJ8dnn8d2~k2k8!d~v2v8!. ~45!

As far as the eigenvalues are concerned, we have

La51A
~J!5$v21@~21!J1unu#2%A~J! if J51,2,

La51A
~J!5~n21v2!A~J! if J53,4.

Employing the definition in Eq.~34! and the found modes we
have ~notice thatf* andf take the same values ofk, n,
v)

z~2!~s;x!5 (
n51

` E dkE dv
2f* ~x!f~x!

@v21~n11!2#s

1 (
n51

` E dkE dv
2f* ~x!f~x!

@v21~n21!2#s

1 (
n51

` E dkE dv
4f* ~x!f~x!

@v21n2#s
. ~46!

For simplicity, we have omitted the terms corresponding to
n50, which contribute only to the temperature-independent
part of the free energy: this part will be changed during the
renormalization process~subtraction of the Minkowski
vacuum energy!. We also stress that Kabat’s surface terms
involved during the calculations disappeared exactly as in
the previous approach. The latter term in Eq.~39! is due to
the modes withJ53,4: this term is exactly twice thez func-
tion of a conformally coupled Euclidean scalar field propa-
gating inS13H3.

As far as the ghost contribution is concerned, it arises
from the action~23!. Since the corresponding small fluctua-
tions operator involves the curvature of the Euclidean Rin-
dler manifold, which has a Dirac’sd singularity at r50,
mathematically it is not well defined and is not clear how to
deal with it. However, as a try we can suppose to consider
R50 and see the consequences.6 Under this hypothesis, the
ghost contribution is just minus twice that of a conformally
coupled scalar field@see Eq.~25!# and so it cancels against
the contribution of the modesJ53,4.

After having added the ghost contribution, we can write
the completez function of the electromagnetic field as

zem~s;x!5 (
n51

` E dkE dv
2f* ~x!f~x!

@v21~n11!2#s

1 (
n51

` E dkE dv
2f* ~x!f~x!

@v21~n21!2#s
. ~47!

The partition function of the photons is obtained employing
the previous function opportunely continued in the variable
s in Eq. ~33!. Dealing with it, as in the previous case, we
finally find the free energy

F ~2!sub52
A'

1440p2e2 F S 2p

b D 4230S 2p

b D 2129G . ~48!

6See footnote number 5.
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In deriving this result we have employed the Riemann zeta
function z(z,q) and its relation with the Bernoulli polyno-
mials @32#. This result has the same form as that obtained
with the first approach, Eq.~43!, but the sign in front to the
second term is opposite. The third term is fixed by the renor-
malization procedure. The problems arise with theb22 term
once again.

In this case it is easy to identify the origin of the discrep-
ancy in our hypothesis of settingR50 in the ghost action.
Nevertheless, there is some evidence that the origin is not
that. In particular, if we assume that the optical method gives
the same results as the point-splitting one even whenj
Þ1/6, then we can suppose that it is right to substitute the
optical result for the ghost contribution to the above free
energy with the point-splitting one forj50. As a result, we
get

F ~2!sub52
A'

1440p2e2 F S 2p

b D 4260S 2p

b D 2159G , ~49!

which is different from the previous one but still different
from the first optical approach result. In particular, the free
energy in Eq.~48! @or Eq. ~49!# would yield a negative en-
tropy at the Unruh-Hawking temperature, which is very hard
to accept on a physical ground. Summarizing, it seems to us
that this second approach, which is the natural generalization
of the procedure used in the scalar case, does not yield a
correct result.

V. SUMMARY AND DISCUSSION

The main result of this paper is the proof that the optical
method~the ‘‘first approach’’! can be used to compute one-
loop quantities in the Rindler space also in the case of the
photon field. The method has been developed employing a
general covariant gauge choice. Furthermore, by a compari-
son with other methods, we have seen that this method pro-
duces the same result as the point-splitting procedure.

It is also important to stress that the partition function
arising from our method is completely free from ‘‘Kabat’s’’
surface terms. This is very important because, as we previ-
ously said, the approaches based on the direct computation in
the Euclidean Rindler space usingz-function or heat-kernel
techniques produces such anomalous terms@9,1# and further
regularization procedures seem to be necessary to get physi-
cally acceptable results.

We have also developed a general optical formalism for
the Maxwell field in the covariant gauges based on
Hodge–de Rham formalism which, in principle, can be used
in different manifolds than the Rindler space.

However, many problems remain to be explained. In par-
ticular, both in the photon and in the scalar case the relation
between the optical approach and the direct approach in the
manifold with the conical singularity remains quite obscure.
This is due to difficulties involved in computing the Jacobian
of the conformal transformation in the presence of conical
singularities. Moreover, while the optical approach can be
used in the case of massless fields without particular diffi-
culties, as soon as the fields have a mass the optical method
becomes much harder to apply. In this case, the direct com-

putation in the manifold with conical singularities could
show its advantages, provided one knows how to compute
the above Jacobian.

Another general point which requires further investigation
is the request of self-consistency of the thermodynamics of
the gas of Rindler particle, when the temperature is not the
Unruh one. This is a very important point in calculating the
correction to the entropy of a black hole supposing such
corrections due to the fields propagating around it. We re-
mind one that the Rindler metric approximates the region
near the horizon of a Schwarzschild black hole. The entropy
of the fields is computed using the relation~wherebH is the
Unruh-Hawking temperature, 2p in the Rindler case!:
SbH

5bH
2 ]bFbubH. In calculating the previous derivative at

b5bH , one has to consider also the partition functionoff
shell, namely evaluated atbÞ2p andb nearbH . It is not
so clear whether it is necessary or not that the thermody-
namical laws hold also forbÞbH andb nearbH in order to
assure the consistency the procedure followed in calculating
the entropy of the fields atb5bH . Moreover, it is well
known that the off-shell quantum states of a field are affected
by several pathologies on the horizon event.7 Furthermore,
they are unstable states in a semiclassical approach to quan-
tum gravity due to the divergence of the renormalized stress
tensor on the horizon. Thus, it is reasonable to wonder about
the thermodynamical consistency of the results when one
works off shell. We conclude with a discussion on this point.

Let us first consider the point-splitting result and the an-
noying dependence on the parameterj of the massless scalar
field results and its relation with the request of a consistent
thermodynamics. As we have already said, on more regular
manifolds the~integrated! physical quantities should not de-
pend on the actual value ofj, whereas in the case of Euclid-
ean Rindler wedge the conical singularity introduces an, ap-
parently unphysical, j dependence in the physical
quantities.8 A similar problem occurs even in flat spaces in
presence of boundaries@21#. In those cases, one can see that
the renormalized energy-momentum tensor diverges on the
boundary, unless the coupling is conformal. So, one could
say that the conformal coupling is, in this sense, more
‘‘physical’’ than the others. By this we mean that it behaves
like a real field, such as the Maxwell field.

Inspired by this fact, we shall look for a criterion to
choose a value ofj which is more ‘‘physical’’ than the oth-
ers as far as the thermodynamics is concerned. Thus we shall
discuss the consistency of the thermodynamics of the point-
splitting results.

From the thermodynamics, we know that we can obtain
the internal energyUb,j

ps @see Eq.~2!# as the derivative with

7Rindler thermal states withbÞ2p violates several axioms of the
quantum field theory~QFT! in curved backgrounds. For example,
see@33# and references therein.
8Notice that the case of the cosmic string theory is quite different

because different values ofj correspond to different internal struc-
tures of the string. This is obvious by considering a string with a
finite thickness, which has a nonvanishing curvature within itself. In
the limit of a vanishing thickness, the curvatureR gets a Diracd
behavior along the string in the Lorentzian manifold.
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respect tob of an appropriate free energyFb,j
ps multiplied by

b, possibly corrected by an suitable energy-subtraction pro-
cedure. Taking the space homogeneity along they and z
directions into account, we found the form of the free energy

Fb,j
ps 52

LyLz
2880p2e2 F S 2p

b D 4230~6j21!S 2p

b D 2

230~6j21!13G2
LyLz

2880p2e2 FU~j,e!1
f ~j,e!

b G .
~50!

The unknown functionf (j,e) can be dropped by requiring
that the entropySb,j5b2]bFb,j

ps vanishes atb→1`. The
functionU, which does not depend onb but can depend on
the geometry background, is necessary due to the fact that
the energy in Eq.~2! is the Minkowski renormalized one, but
we want to remain on a more general ground in order to use
the thermodynamical laws. In other words, we may notice
that the energy in Eq.~2! becomes negative if the tempera-
ture is sufficiently low, for example, in the most interesting
range 0<j<1/6, and hence such an energy cannot directly
arise from a statistical partition function but a further sub-
traction procedure must have taken place. The functionU
takes into account this energy subtraction procedure.

From statistical thermodynamical laws, one expects that
they andz principal pressure, namelyTyy andTzz in Eq. ~1!,
integrated overdzdrAg and dydrAg, respectively, can be
obtained taking theLy (Lz) derivative of the previous free
energy, with the sign changed andU opportunely chosen. An
easy computation shows that, due to the terms containing
b22, this does not hold for any value ofj, but only in the
conformally coupled case,j51/6. After the Minkowskian
energy subtraction, the corresponding free energy reads

Fb
ps:5Fb,j51/6

ps sub 52
A'

2880p2e2 F S 2p

b D 413G . ~51!

This is just the free energy obtained by the optical method
after the Minkowski renormalization. Therefore, it seem that
only in the conformally coupled case the stress tensor~1!
yields a consistent thermodynamics, at least as far as the
relation between energy and pressures is concerned.

Now, let us consider the photon case. In such a case we
have not the freedom to adjust a parameter in the stress ten-
sor in order to agree with the thermodynamics. The free en-
ergy we find from the total energy in the case of the photon
stress tensor of Eq.~15! reads

Fb
phot ps52

LyLz
1440p2e2 F S 2p

b D 4130S 2p

b D 2233G
2

LyLz
1440p2e2 FU~e!1

f ~e!

b G . ~52!

As before, we can drop the term containing the undetermined
function f (e) by requiring a vanishing entropy in the limit

b→1`. The above free energy produces the point-splitting
internal energy and, after the Minkowski renormalization, it
coincides with the free energy obtained by renormalizing
that obtained by the optical approach, Eq.~43!.

The point is that if we apply the above procedure to com-
pute the integrated principal pressures along they and z
directions to the above photon free energy, there is no way to
chooseU in such a way to get the same result as integrating
the yy andzz components of the photon stress tensor in Eq.
~15!. This is due to the presence of a term proportional to
b22 and the independence onb of the functionU.

In order to get the ‘‘correct’’ pressures~but a wrong in-
ternal energy! employing the derivatives as previously
pointed out, one should take a free energy which is twice that
in Eq. ~50! with j51/9, f50 andU opportunely chosen.

Hence, it seems that the point-splitting stress tensor of
photons in the Rindler wedge does not give a consistent
thermodynamics.9 It is very important to remark that the
above thermodynamical argument cannot be applied to the
cosmic string theory, since in that case the stress tensor in
Eq. ~15! is the zero-temperature one, andb is not the inverse
of the temperature.

In a pessimistic view, this problem and thej dependence
of the integrated quantities in the scalar case could be con-
sidered as another proof of the inconsistency of the Rindler
theory ~and maybe of the Schwarzschild theory! when one
works at temperatures different from the Unruh-Hawking
one, and a discouraging result for the attempt to evaluate the
correction to the Bekenstein-Hawking entropy through the
‘‘off-shell’’ procedure.10
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APPENDIX

In computing the photonz function onS13H3 one meets
the z function of a scalar field in the same background, both
in conformal and minimal coupling. Therefore, it is useful to
report here thesez functions. The small fluctuations operator
for a scalar field in the optical metric is

Lj5D26j52@]t
22r ] r1r 2] r

216j#,

whereD is the Hodge–de Rham Laplacian onS13H3. A
complete set of eigenfunctions has been given in the main
text, Eq.~35!, with eigenvalue@nn

21v21126j#. Therefore,
the localz function is

9This problem arises also dealing with the massless spinorial field
as it simply follows from the point-splitting renormalized stress
tensor obtained in@6# ~analytically continued from the cosmic string
to the Rindler space!.
10However, it could be possible to interpret the entropy formula at

Hawking’s temperature, without making use of thermodynamical
laws off shell. Maybe, possible ways could arise studying thegeo-
metricalentropy employing the replica trick@10,22#.
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z~suLj!~x!5 (
n52`

` E
0

`

dvE d2k@nn
21v21126j#2sf* ~x!f~x!

5
Ap

8p2b

G~s23/2!

G~s! (
n52`

` E
0

`

dvv2@nn
21v21126j#2s

5
Ap

8p2b

G~s23/2!

G~s! S 2p

b D 322sF2ES s2
3

2
;

b

2p
A126j D2S b

2p
A126j D 322sG ,

whereE(s;a)5(n50
` @n21a2#2s is the Epsteinz function.

In the conformally coupled case, the Epstein function be-
comes a Riemannz function and so

zCCS~s;x![z~suLj51/6!~x!

5
Ap

4p2b S b

2p D 2s23G~s23/2!

G~s!
zR~2s23!.

One can easily check thatzCCS(s;x)us5050 and

d

ds
zCCS~s;x!us505

p2

45b4 .

Another important case is the minimally coupled one,
j50, for which there is not a more explicit form. However,
using the identity

E~s;a!5
1

2a2s
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2

G~s21/2!

G~s!
a122s
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G~s! (n51
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and the fact that the MacDonald functionKn(x) is analytic in
the indexn and decays exponentially asuxu→` so that the
third term in the previous expansion is analytic ins ~and
vanishes ass→0), we find that thez function does not van-
ish in s50:

zMCS~s;x!us505
1

32p2 .

We do not know the value in zero of the derivative, but it is
not required in our computations.
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