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Optical approach for the thermal partition function of photons
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The optical manifold method to compute the one-loop effective action in a static space-time is extended
from the massless scalar field to the Maxwell field in any Feynman-like covariant gauge. The method is applied
to the case of the Rindler space obtaining the same results as the point-splitting procedure. The result is free
from Kabat's surface terms which instead affect theinction or heat-kernel approaches working directly in
the static manifold containing conical singularities. The relation between the optical method and the direct
{-function approach on the Euclidean Rindler manifold is discussed both in the scalar and the photon cases.
Problems with the thermodynamic self-consistency of the results obtained from the stress tensor in the case of
the Rindler space are pointed o[f60556-282(97)01806-7

PACS numbeps): 04.62:+v, 04.70.Dy

[. INTRODUCTION this approach, instead of computing the partition function
directly in the static metric, one performs a conformal trans-
In a recent papdrl] we have computed the one-loop ther- formation in such a way that the resulting manifold has an
mal partition function of photons in the Rindler wedge em-ultrastatic metric. Then, one can compute the relevant quan-
ploying a local{-function method directly in the Euclidean tities in this “optical manifold” using heat-kernel,
Rindler space. Although this approach produces thermodyé-function, or any other method and taking into account how
namical quantities with the correct high temperature behavthe various quantities transform under conformal transforma-
ior requested by the statistical mechanics, the low temperaions. This method is particularly favorable in the Euclidean
ture behavior seems to remain different from that obtainedRindler case, since this manifold has a conical singularity
with other methods. This can be seen by means of a direathich can be quite tricky to deal with, whereas the related
comparison between the free energy following from theoptical manifold has no singularity. However, there is more
above cited approach and the same quantity obtained by the this method than the mathematical content. In fact, it has
point-splitting renormalization procedure for the stress tensobeen showr{13,14,17,18 that the canonical partition func-
[2—4]. In particular, one sees that the dirdefunction ap- tion of a quantum field in a curved background with a static
proach gives, for the coefficient of the term proportional tometric is not directly related to the Euclidean path integral
T2, a result which is one-third of the point-splitting result. with periodic imaginary time in the static manifold, but
This discrepancy can be traced back to an identical discrepather it is equal to Euclidean path integral in the related
ancy in the coefficients of the free energy of a minimally optical manifold. In particular, if14] it is shown that the
coupled massless scalar field propagating in the Rindlestatistical counting of states leads naturally to a formulation
wedge[5-7)]. in the optical manifold. We can also notice that, as far as we
It is important to remark that this problem does not ariseknow, the equivalence of the direct periodic imaginary time
from the particular method used [B,1] to compute the de- path integral formalism to the canonical formalism for com-
terminant of the small fluctuations operator which appears iputing finite temperature effects has been proved in ultra-
the one-loop free energy. In fact, the same discrepancy hasatic manifolds onhyf19].
also been found i8] using a completely different methodto ~ Therefore, the computation of the thermal partition func-
compute the determinant. Therefore, it seems to be intrinsiion from Euclidean path integral in the static manifold re-
of the computations made directly in the Euclidean Rindlerquires the knowledge of the Jacobian of the conformal trans-
space. formation. On regular manifolds this causes no trouble, since
In the photon and graviton case, a further drawback of thét is easily shown(see, e.g.[20]) that the Jacobian affects
approach in1] is the need of a more complicated regular-only the temperature-independent part of the free energy.
ization procedure due to the presence of gauge dependirigstead, as we will see, when in the static metric there is a
“surface” terms[9]. Anyway, the results of5,1] improve  conical singularity the temperature dependence of the Jaco-
previous results obtained using global heat-kernel apbian could be less ftrivial and affect the temperature-
proacheq10,9] in the Rindler space, which is not able to dependent part of the free energy.
reproduce the Planckian high temperature behavior. Another important point is that the optical method pro-
There is another method which can be used to computduces thermodynamic quantities which agree with those ob-
these one-loop quantities, and is the optical ptte-18. In  tained form the point-splitting procedure. This happens in the
case of a massless scalar field conformally coupled in the
Rindler wedge at least, but also, as we shall see, in the case
*Electronic address: moretti@science.unitn.it of the photon field.
"Electronic address: iellici@science.unitn. it In the first part of this paper we shall review the compu-
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55 OPTICAL APPROACH FOR THE THERMAL PARTITION ... 3553
tation of the thermodynamical quantities of a massless scalar 1 27\ 4
field in the Rindler wedge, comparing the point-splitting, lo- <T5>,%S(§)ZWH(?) -1
cal {-function, and optical results. In particular, we note that

while the point-splitting approach can be applied for any w2
coupling of the scalar field with the gravity, the optical ap- +20(6¢— D[(F) -1
proach is feasible only for the conformally coupled case,

where it gives the same result as the point-splitting method.

Moreover, the dependence on the coupling parameter, whi . — .
disappears in the integrated physical quantities when tﬁgymtegratmg Vg T, we get a total energy which we shall

background is a regular manifold, in this case affects thesgOmpare with those following from the other methods:

guantities because of the presence of the conical singularity.

diag —3,1,1,)

di 3 111
1a E' E' y .

@

) \ ) L,L, 27\* 27\
On the other hand, the computations made directly in the U%sgzy—“ 3(—) —-30(6&— 1)(—)
static Euclidean Rindler manifold using the logafunction © 2880m%€”| 1\ B B
technique is still limited to the minimally coupled case, and
even in this case the result is different from the point- +30(66—1)-3]|. (2

splitting one.
In the second part of this work, we shall extend the optical

) : Above, L, andL, are the(infinite) lengths of the transverse
y z
manifold approach to the Maxwell field case. We shall Showdimensions, and sé\, =L,L, is the (infinite) area of the

that there are two possible ways to do this, which are equwa\ﬁorizon. The parametet fixes the coupling of the scalar

lent in the scalar case, but in the photon case could produdg,|q with the gravitation. In théLorentzian Rindler space
a different result. The difference of the two approaches i$pe scalar curvatur® is zero everywhere and the parameter
essentially in the def|n|t|0n of the gauge-fixing and ghost§ remains as a relic of the fact tha,, is obtained by vary-
parts of the Lagrangian. In particular, we shall show thating the metricg,,,, in the field Lagrangiafi21].* Employing
result expected counting the polarization states of the fielghe general expression @f,,(£) [6,21] in terms of the Had-
can be obtained by defining the theory directly in the opticalamard function, one finds that, in the c&®e 0, the global
manifold. The other pOSSIbI'Ity is to define the partition func- conserved quantities as total energy should not depend on the
tion in the Euclidean Rindler wedge and only then performyalue of ¢. This is because the contributions to those quan-
the conformal transformation. We are not able to work outities due to¢ are discarded into boundary surface integrals
thoroughly this latter approach, because of a mathematicalhich generally vanish. However, this is not the case dealing
complication in the ghost action. Nevertheless, we argue thatith the Rindler wedge because such integrals diverge
it gives a different coefficient of the term proportional to therein? The only possibility to get a result not depending on
T2 & consists in taking8=27 producing a trivial result. The

In the final part, in addition to discussing the obtainedconsidered ambiguity does not seem to arise from a similar
results, we also show that the usual relations between the@mbiguity in defining the thermal quantum state. In fact, the
modynamical quantities, which involve derivatives with re- thermal Wightman functions employed in calculating the
spect to the temperature, lead to inconsistencies when apenormalized stress tensor do not depend; okinally, it is

plied to Rindler thermal states with temperature differentworthwhile noting that th& ambiguity affects th§8*'2 term
from the Unruh-Hawking one. in the thermodynamical quantities and hence their low tem-

perature behavior.
Notice that Kay and Studd3] found an ambiguity in
defining the scalar Wightman functions around a cosmic
Il. THE GENERAL PROBLEM IN THE CASE string, a background which has the same Wick-rotated metric
OF A MASSLESS SCALAR FIELD as the thermal Euclidean Rindler manifold. However, this
ambiguity is related to the time-independent modes and so,

As we have said in the Introduction, the problem of dis-€-9., émploying the/-function procedure, one simply finds
crepancy of the coefficient 6F2 in the free energy appears
already in the case of a massless scalar field propagating in
the Rindler wedge. In fact, this problem seems to be inde- 1|t is worthwhile noticing that one has to consider the theory

pendent of the field spin. Hence, we start discussing just thig/ithin the curved space time in order to discuss on the physics in
case, taking into consideration the point-splitting, Iocalthe flat space-time. Anyhow, the extension of the theory to a curved

¢-function, and optical manifold approaches space-time is not unique and this involves some subtleties regarding
' ' also the regularization procedure. The choice between different

regularization procedures should be made on the basis of what is
the physics that one is trying to describe. Obviously, the general
A. Point-splitting approach hope is that, at the end of the complete renormalization procedure
involving matter fields and gravity, all these different regularization
We start considering the results produced by the pointapproaches give rise to equivalent physical results[ &2 for a
splitting method. The point-splitting renormalized stress tendiscussion on these topics.
sor readd(see, for exampl¢6], continuing into the Rindler  2Similar problems appear working in subregions of the
space the results obtained for the cosmic sjring Minkowski space in presence of boundary conditip2s].



3554 VALTER MORETTI AND DEVIS IELLICI 55

that this ambiguity cannot produgg ? terms in the Rindler has to deal with the Euclidean section of the Rindler mani-
free energy. Hence, it should not be related with hem-  fold and, considering it as a integral kernel, the curvature
biguity. R takes Dirac’sé behavior atr =0 [25,26], thus the value of
the paramete& could be important. The previous results
B. Direct conical approach have been carried out in the case 0 in the sense that the
eigenfunctions employed in computing thidunctions prop-
erly satisfy the eigenvalue equation with Roterm.
In the caset+# 0 the problems are due to the fact that the
equation for the eigenfunctions contains a Digaand so it
e‘ﬁFt%:Zﬁ:f D¢ exp(— S ¢]), () is not mathematically clear how to treat it. In the case of a
cosmic string, the Dira represents a limit case, maybe
where the(Euclidean action is that of a massless scalar field unphysical, of the problem in which the string has a finite
coupled with the gravitation, thickness, which is mathematically well defined since no
Dirac 6 appeatrs. In the case of the Rindler space there is no

11, u such way out, and the only way to avoid the problem is to
Sél=- §J d*xVgglV, V"~ (R, 4 consider the casé=0.

One can formally define the partition function at the tem-
perature 18 by a Euclidean path integral

The background is the Euclidean Rindler manifglgix R2
with an imaginary time periog3. The Euclidean Rindler
metric reads Let us now consider the optical approactl—18. As
remarked in the Introduction, this approach is not just a
ds?=r2d6?+dr2+dy?+dz, (5) ~ mathematical method to compute the functional integral in
Eqg. (3), but has an important physical content. In fact, as
previously remarked, it fulfills the requirements of a formu-
lation in the optical manifold following from statistical
counting of states.
Let us consider a static metrd52=gﬂ,,dx”“dx” and per-
form a conformal transformation of the metfimaybe sin-
gular if Q(x)=0], 9,,—9,,=Q%X)g,,, so that

C. Optical approach

where 9<[0,8], reR", x=(y,z) e R%. Notice the well-
known conical singularity at=0 whengB+ 2.

In the caseté=0, the previous partition function can be
explicitly computed by a local-function approach recently
introduced by Zerbiniet al. [5] obtaining a Minkowski
renormalized free energy>'’= Fs—Ujp-2, and a renormal-
ized internal energfyU‘Z”b=(93,6’F,3—(alg,[a’lzﬁ)mzz,T which

12_02
read ds®—ds'2=02%ds. (7)

4 2

2

— ] +13|,
B

+10( ChoosingQ "2=gq,, ds'? becomes the related ultrastatic

optical metric. In the case of the Euclidean Rindler space,
5 this conformal factor becomes singular just on the conical
) _ 13}' (6) singularities, which are pushed away to the infifiind the
optical manifold is free from singularities. Under such a
transformation, the massless scalar figldransforms into
whereA, is the (infinite) event horizon area anda short- ¢’ = '¢ and the Euclidean action with coupling factor
distance cutoff representing the minimal distance from thef_transforms into the following more complicated action
horizon[24]. We note that the above result is different from [21];
that of the point splitting withé=0 and the difference is in
the coefficient of the term proportional ® 2. However, as 1
we said in the Intrc_)duction, the partition functit@ﬁ) is re- S[¢']=- Ej d4x\@¢’
lated to the canonical one by the Jacobian of a conformal
transformation: this could explain the different result. We A , _ ,
shall come back on this point after discussing the optical X[V, V=R -0 A(E-EIRIG, (®
approach.
It is worthwhile noticing that the Lorentz section of the
Rindler space is flat and hence, as far as the real time theowhereép=(D —2)/4(D—1) is the conformal invariant fac-
is concerned, we find a complete independence on the paer. If we consider a conformally coupled field= ¢y, we
rameteré. However, in calculating the partition function, one see that also the transformed action is that of a conformally
coupled field in the optical manifol&'xH?3. In the other

Fsub:_A—L 2_77
B 2880m%e% |\ B

2

B

USb= >3 2—77)4+10
5 ~2880m€?|°| B

3As is well known, the B=2m)-thermal Rindler state locally
coincides with the Minkowski vacuum and, in renormalizing, we “The points ar =0 of the optical manifolds*x H? are infinitely
suppose that this state does not carries energy density. Notice thiar from the points of the manifold with>0 taking the distance as
such a Minkowski subtraction procedure does not affect the entropthe affine parameter along geodesics. Strictly speaking, the former
computed througl ;. points do not belong to the manifold at all.
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cases, we have to keep a term proportionaRtahich has  spjitting. On the other hand, we see th}?, does not coin-

operator’ N . Z-function approach at the value of coupling parameter one
When we compute the one-loop partition function, weeypectsg=0, but rather ag=1/9. Note that the discrepancy
may formally write[27,2§ is in the term proportional t@~ 2, while the difference in the

B-independent term is not meaningful, because such terms

e’BFB=ZB=f D' J[g,9',Blexp(—S'[¢']) are fixed by the subtraction procedure: they do coincide

when the remaining terms are equal. Note also that we can-
_ , - , — gF! not compare directly the optical and the loéalunction ap-
J9.9".81Z5=J[9.9".Ble "%. ©) proaches, since they are not applicable for the same value of

We remark that isZ,} which is equivalent to the canonical &

partition function [13,14,17,1& ‘The functional Jacobian we remind the reader that the thermodynamical quantities in

Jlg,9’,8] does not depend o@p’ and thus it can be carried : . ;
out from the integral as we have done above. When the in.I-Eq' (6) have been obtained from the Euclidean path integral

; o ; in the static manifold, which differs from the canonical par-
volved manifolds are regular, it is possible to prove that such). . . .
L ition function for the Jacobian of the conformal transforma-
a Jacobian is in the form

tion, see Eq(9). As we have said above, on regular mani-
J9.9’,8]=exp — BEy). (10)  folds the logarithm of this Jacobian is simply proportional to

B, thus giving a contribution only to the temperature-
whereE, does not depend of. This is substantially due to independent part of the free energy. However, the case of the
the staticity of the involved metrickl6—-18 and the factor Euclidean Rindler space could be more complicated, due to
B in the exponent is due to an integration over the wholethe presence of a conical singularity rat 0, which could
Euclidean manifold. If this holds in the presence of a conicalield a nonlinear dependence gnlin fact, such a singularity
singularity as well, one expects thaj and F, differ only ~ can be represented as an opportune D#danction with a
for the value of the renormalized zero-temperature energycoefficient containing a factor (2— ) [25,26, and sop
When the coupling in the Euclidean Rindler manifold is con-€nters not only as integration interval, but also in the inte-
formal, the direct computation dfl’; can be performed em- grand_. Of course, only an explicit calgulatio_n of the Jacobign
ploying the¢-function approacliil6] (see also the Appendix Can give an ultimate answer. In two dimensions, thg Jaqob|an
of this paper. We report here the well-known final result J[9.9'.8] is the exponential of the well-known Liouville

In order to identify the source of the above discrepancy,

only: action[27], and an easy calculation shows that the logarithm
of the Jacobian is indeed proportional@d 18], regardless of
) Al 2\ the conical singularity. Unfortunately, in four dimensions the
Fg=— M(F) (11)  form of the Jacobian is far more complicatéske[18] and

references thereirand involves also products of curvature

UsingU[’;=aB(,8Fl’g) to compute the internal energy and per- tensors which are ill defined. Therefore, it is not clear
. - : o rsub_y whether the discrepancy in the term proportional @02
forming the Minkowski renormalization Ug*"=U pancy prop A

—Uj_,, in order to get a vanishing internal energy atm'ght be as_s_lgned to the Jacobian. .
B=27 WWG find just Summarizing, we have seen that the optical method has

been applied to the conformally coupled case only, and in
U .Sub= yps _ (12) this case it gives the same result as the point-splitting
B p.£=1/6 method. With regard of the direct computation in the Euclid-
Therefore, we have got a result equal to the point-splittinge@n Rindler wedge, it has to be considered as incomplete,
one by renormalizing(with respect to the Minkowski Pecause of our ignorance of the Jacobian and of the nonmini-
vacuum the internal energy obtained on the optical manifoldMally coupled case. We stress that, in the case of a regular
andwithouttaking into account the Jacobian, whether it hasmanifold, these two approaches should be equivalent.

the form (10) or not.
Ill. OPTICAL APPROACHES IN THE CASE OF PHOTONS

D. Comparison of the results In [1] the partition function of photons gas in a Rindler

In the previous subsection we have seen that the optica¥edge has been computed generalizing the procedy#.in
method, when applicable, gives the same result as the poifthe found Minkowski renormalized free energy amounts to
2F 5"+ (2—In)F3"™, whereF 3 is the scalar free energy
previously discussed, E¢6), and theFZ””aceis a “surface”
50One possible way to get rid of this term is to define the action interm which arises integrating a total derivative and has the
the Lorentzian manifold, wher@=0, perform the conformal trans- form A, [(27/8)%—1]/(247%€?) (see[9,1] for more com-
formation to the optical manifold, and only then use the trans-ments, finally « is the gauge-fixing parameter. Notice that
formed action to write to partition function with the periodic imagi- also this anomalous gauge-dependent term involvgs &
nary time formalisni15]. This procedure gives a result independentdependence. We suggested dropping this latter gauge-
on the parametef by nature: the coupling in the optical manifold is dependent term as the simplest procedure to remove the un-
always conformal. However, in our opinion this procedure seemgphysical gauge dependence. Anyway, we stressed that other
too ad hoc procedures could also be possible. The obtained result agrees
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with the statistical mechanics request at high temperatures, .
but, as in the scalar case, the low temperature behavior is Sem:J d*x

1 1
Z(F,F)-‘r ﬂ(A,daA)
different from that obtained with the usual point-splitting

+ Sghos( @)

procedure. Therefore, let us consider the point-splitting re- 1( ., 1
sults[2,6]: the renormalized stress tensor takes a simple form = —f d*| (A AA)—| 1= —|(A,dSA) |+ Synos{ @)
1 [{2m\* (2|2 (16)
o\ phot ps_ — —] =
(Tv)ﬁ T50m2 4 r4[( B +10< B 11}

In order to maintain the gauge invariance of the theory, it is
x diag —3,1,1,1. (13)  important to keep the dependence on the gauge-fixing pa-
rameter of the ghost action, as one obtains by varying the
The (Minkowski renormalizeli internal energy correspond- 9auge-fixing condition (3er) 5A=0 [29]:
ing to the previous photon stress tensor reads

1
= — 4
Phot ps_ 3A; 2m\* 1 27\ 1 14 Sghos(“)_ \/Zf d*x+gcAc, a7
BT 1440r7%€? B + B . (19

where A is the Hodge—de Rham Laplacian for zero-forms
As far as the energy density is concerned, we have the folandc, ¢ are anticommuting scalar fields. Usually, the depen-

lowing very simple relation: dence on the gauge-fixing parameter is absorbed rescaling
the ghost fields, but in the presence of a scale anomaly this
(T8>2h°t P 2<T8>%S(§: 0), (15)  rescaling gives rise to a nontrivial contribution, which is es-

sential to maintain the gauge invariance of the theory. This is
where on the right the stress tensor is that of a massle just the case here: in fact, the contribution of the acfibn
g 3 the one-loop effective action is proportional to that of a

scalar field. It is worthwhile noticing thag=0 takes place o . . ;
on the right-hand side instead §f1/6. Hence, the energy g:?rlrgs::)ér?;gﬁfd scalar field, which has a scale anomaly in

density of the electromagnetic field does not amount to twice Some comments on the formalism in Eg6) are in order.

y expe nsigenng th ; 9 . ing the photon strength field] , being the covariant deriva-
conformal invariant in four dimensions. As far as the internal,. ~ [t )
. X . tive; the brackets stand for theeforms Hodge local product:

energy is concerned, we find the same unforeseen relation.

However, as previously discussed, the integrated quantities

should not have to depend gnin more “regular” theories, (GH)=GA*H= \/agﬂlvl' : .g#prGlLl‘“MpH vy vy

restoring the naively expected relation between the consid-

ered quantities. For future reference we also define the internal product
Discussing the scalar case we have stressed the impor-

tance of the optical method: therefore, now we go to inves- G-H=gM"1...ghe"sG, ..., HV1-~-vp-

tigate whether it is possible or not to get such an energy
employing the optical-manifold method. There are two pos- . _ N(p+ 1)+ 1x ik
sible ways to implement this method. The simplest one conYV€ remind the reader that=(—1) d* is the for-
sists of defining the partition function directly as a functional Ml adjoint of the operatai with respect to the scalar prod-
integral on the optical manifold. However, there is anothet/Ct Of p-forms induced by the integration of the previous
more complicated possibility: it consists of starting with a Hodge local product; finallyA=dé+ &d is the Hodge—de
functional integral in the initial static manifold, performing Rham Laplacian of the-forms. In order to perform calcu-
the conformal transformation, and finally dropping the func_latlon§ through the usual covariant derivative formalism t.he
tional Jacobian. This is, in fact, the simplest generalization ofollowing relations for zero-forms and one-forms are quite
the results obtained in the scalar case. Both methods produt§eful:

the same final functional integral in the simpler conformally

coupled scalar case, but in the case of the Maxwell field the Ap=-V V¥,

two procedures do not seem to be equivalent, as we shall see,

due to the presence of gauge-fixing and ghost terms. SA=—V ,A¥,

A. Optical approaches in the case of general static manifolds (AA),=-V, V'A,+ R;Av-

Let us start reviewing the formalism we use dealing with
the photon field. The complete action for the electromagnetic The second line of Eq16) represents the complete pho-
field in any covariant gauge and on a general Euclideanon action now expressed in terms of the vector figjdand
manifold, endowed with a metrid32=gwdx"dx”, which  the ghost fields only and it is the one usually employed in
we shall supposstatic and whered, is the global(Euclid-  order to compute the partition function of the photon field by
ean timelike Killing vector with closed orbits of periog. = means of a functional integral. The partition function of pho-
Using the in Hodge—de Rham formalism we have ton at the temperaturé= 1/8 is then formally expressed by
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1 4
Zﬁ=JDAex _EJdX

’ f DCDC—eXF[_Sghos(a)]- +§MCS(S;X)|5:0|n\/E,U/2

d
EiMCS(S:X)Is=o

(A,AA)—(l— %) INZ§ nos{ @) = — J d*x\g’

X (A,d5A) : (21

In order to compute this partition function, we want to
pass to the related optical manifold, and so we consider a
conformal transformation, Eq(7), with Q%=gg,. Notice As a second way, we can suppose to define the partition
that, since we work in four dimensions, tlpeformsA and function directly in the static manifold, adding also the
F have a vanishing mass dimension and thus they must b@auge-fixing term and the ghost Lagrangian to the pure elec-
conformally invariant, namelyA=A’ and F=F'. Further- tromagnetic action, and onlgfter perform the conformal

C. Second general approach

more the following identity arises: transformation to the optical metric. In this way we have to
find how all the pieces in the path integral transform under
(F,FY =(F,F). (18)  the conformal transformation. In particular, the operator

A—(1-a 1)ds transforms into another operatoh,,
which we are going to write shortly. As regards the func-
tional Jacobian which arises from the functional measure, a

As we said above, the way to proceed is twofold. As adirect generalization of the discussion made in the scalar
first way, we can suppose to have performed the conformatase tells us that it has to be ignored if we are interested in
transformationbefore we start with the field theory. This computing the thermal partition function. However, we
means that we define the partition function of photons in thewould have to take it into account if we were computing, for
static manifold as a path integral directly in the optical mani-example, the zero-temperature effective action in a cosmic
fold. In such a case the expression of the partition function istring background.

B. First general approach

defined by Hence, employing this second procedure, we shall assume
the photon partition function to be defined by
1 1
z;“:fDA exp{—zj d*x (A,A’A)’—(l——) 1
“ zg):f DA’ex;{—(—f d4x<A’,AaA’>’”
2
X(A,dé’A)’Hch’D?expﬁ—S’gﬁos(a)], _
19) xfpc'pc'exq—sgﬁgs(a)].
where In other words, for the Euclidean effective actieﬂnzﬁf) we

have

1 _
s a)=——J d*x\g'c’A’c’, 1
shost Ja InZi) = — Sindet ™ *A ) +INZF Yoo @). (22

and where the primed metric and variables appearing in the () .
previous functional integral are the optical ones. In other! he form ofS'gy (@) is that of Eq.(17) after a conformal

words, for the one-loop Euclidean effective actierinz{}’ transformation:
we have

1 1
S'thosf @)=~ = d“x@ﬂA% s(R-QR)|c,

(1)
+ |nZﬁyghos(a). (23

(20

1 1
(10— “2IAT 1= = '
InZ; 2Inde‘w [A (1 )d&

wherec’ =Qc, ¢’=Qc. For future reference, we note that
Here n is an arbitrary renormalization scale necessary on ghis effective action of the ghosts amounts trivially to minus
dimensional ground in the above formula and denoting thewice the Euclidean effective action of an uncharged mass-
presence of a scale anomaly if it does not disappear from thiess scalar field ¢ with the Euclidean action
final formulas. (A'=-V,V'#) endowed by am-depending overall factor

For future reference we note that the effective action of

the ghosts, except for the-dependent factor, amounts trivi- 1 1
ally to minus twice the Euclidean effective action of an un-  g2)(4)= _f d*\g'= ¢
charged massless scalar field with the Euclidean action mini- Ja 2
mally coupled with the gravitation. Therefore its contribution (29
to the one-loop effective action can be written immediately
from the ¢ function of a minimally coupled scalar field, When the static manifold is flaR=0, the contribution of
MCS(s;x), in the same background, taking thedependence the ghosts to the effective action can be written in terms of
into account; the ¢ function of a conformally coupled scalar field:

1
A+ E(R'-Q7*R) |o.
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d
|n2532,)ghos£a):_f d4X\/a[d_S§CCS(3;X)|S=O

+ % 5;%) | sz oI aru?|. (25)

Now, let us find the explicit form of the operatdr, . The
following identity holds:

1
5A=5(6’A—77-A), (26)
provided the one-formy be defined as
n=d(InQ2)=4,InQ). (27

Taking into account thas=d" and employing Eqs(16),
(18), and(27), we get the identity

1
Semzzj d4X

1
— 4
2de

1 1
+;<A,7]77-A> —;<A-(7l5 +dn-)A) }

(A,AA}—(l—%)(A,db‘A)

+ Sghos( @)

(AA'AY — ( 1- %)(A,db"A)’

+S' 2 (a). (28)

Looking at the first line of Eq(28) we find the explicit form
of the operator\ ,:

, 1 1 ,
a . 01( )
(25»

1
Aa=A’—(l——
a

Notice that the use of such an operator is equivalent to em-
ploying an unusual gauge-fixing term in the initial photon

Lagrangian which reads

1
—(A(d=7)(&" = 7-)A). (30

IV. THE CASE OF THE RINDLER SPACE

Let us check the physical results arising from E@)
and(22) in the case of the Rindler space. Settdg=r? in
Eq. (7), the related ultrastatic optical metric reads

ds'?=d72+r " 2(dr’+dy?+dz). (31)

Obviously, this is the natural metric & xH? which does
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1 1
- E|no|et(p,—2L): Ef d*x\g’

X[¢'(s=0;%)+ £(s=0;x)Inu?],
(33

where thelocal ¢ function of the operatoL is defined, as
usual, by means of the analytic continuation in the variable
se C of the spectral representation of the complex power of
the operatol:

z<s;x>=; A SAn(X) - A% (X) . (34)

Above, A,(x) is a one-form eigenfunction of a suitable self-
adjoint extension of the operatbrand\, is its eigenvalue.
The indexn stands for all the quantum numbers, discrete or
continuous, needed to specify the spectrum. The set of these
modes is supposed complete afidirac, Kronekey § nor-
malized. We will make also use of the following notation for
the one-forms ors! x H3:

A=(a|B),

wherea indicates a one-form o' and B a one-form on

H3. All the operations between forms which appear aftgr *
are referred to the manifolth® and its metrical structure
only. Latin indicesa,b,c,d, ... are referred to the coordi-
natesr,y,z on H® only.

A suitable set of eigenfunctions of the operator
A'—(1—a"1)dé’" as well as\ , as can be constructed using
the following complete and normalized set of eigenfunction
of the scalar Hodge—de Rham Laplacian @i H3:

ikX qi v 7

2772\/E

kMO (7 x)=

V2w sinl(Tw)rK; (kr),
(35

wherev,= 27n/B, neZ, weR", k=(ky,k,) e R?, k=|K|

and all the previous eigenfunctions have eigenvalue
(v’+ w?+1).K;,(X) is the usual MacDonald function with
an imaginary index. The normalization reads

j d4x\/a¢(k,n,w)* d)(k’,n’,w’):5nn’52(k_k/)5(w_w/)'

In the following, we report some relations which are very
useful in checking the results which we shall report shortly.
It is convenient to define the one-forgw —d(1/r)= n/2r
on H3. On H® we havedn=4, Ap=0, dy=0, d¢=0,
A¢=—3¢&, V3=~ &;/r. Furthermore we remind one that,

not contain conical singularities. We remind one thatif f is a zero-form andv is a one-form:

R/#=—2diag(0,1,1,1) andR’=—6. As for the one-form

7 necessary to define the operatog, we get

2 r
7]#:?5,”'

We want to employ a locaj-function[30,31,2Q regular-

ization technique and hence we define the determinant of an

(at least symmetric operatot. through

[A(fo)]a=f[Aw]at wAf—2(V,F)VPw,.  (36)

Finally, on a three-manifold the following relation holds:
A* (N0 )=*[(Av)\o' ]+ * [oNAo' ]+ R* (0 N\w")
—*[(Ro)N\w']—* (0 \Rw")

—2*(V,0/\V3w'), (37
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where obviously [*(V,0/\V20'")]e: i &* (X) b(X)
= Vg€erdVq0?)Vi0'®, w and ' are one-forms, and the  {(s;X)=(a*+1) _2 dzkdwm
Ricci tensor acts on one-forms trivially aR®) ,= ngb. =T
. 2 Phde 2T (06(X)
A. First optical approach ns2s [w?+1°]°

Let us now consider the first optical approach, in which

=(a%+1)MCS(s;x) +2¢CCK ;%) + (&Y s: %),
we define the path integral directly in the optical manifold, (a 1))+ 20550+ )

see Eq(19). Starting from the scalar eigenfunctions, one can (39
obtain the following set of eigenfunctions of the operator
A—(1—a Hds on SIxH3: where we have set
JoZ+1 - dw ¢* (X) ()
A= - a,4|d extry g y) = 2 dzkf
|v[Vo?+ V2+1( ¢ld¢) ) n:z—oo 2 [02+ 7
[ 2
_ N 5.0.6.006.0,8) _Vm D(s=112)( B |\* 15(28_1)
|v[Vo?+ 12 +1 yrmre mB TI(s) 2 R ’
(40)
1 _ .2
A(Z)_ ‘974’ 2 dd’) extr: . 1 extr . 2 H
02+ 12+ 1 w+1 so that/*"{s=0;x) =0 and/’'®"{s=0;x) = 1/38°. Notice
that the second and third terms in E§9) arise from the
transverse modea® andA™. The first term in Eq(39) is
¢ ¢ due to the modes witd=1,2
(3)—_ - hd Y
A [O| d(£¢)]1= (0 0.2+ ayr ' In calculating Eq.(39), we encountered Kabat's surface
terms similar to those we encountered1n. However, in the
5 present case all these terms vanish automatically and no fur-
A<4>——[0| sd(£4)]= r Ok .0, oy ¢ 9,0 ¢ ther regularization procedure needs. In fact, all these terms
Zr )" read as

The last three modes are transvei®& =0, whereas the first

one is a pure gauge mode. From a little Hodge algebra, the

following normalization relations can be proved:

f d4X<A(J,w,n,k)* ,A(J’,w’,n’,k’)>
=& 5" 2(k—k')S(w—w'). (38)

As far as the eigenvalues are concerned, we have

w’+17+1
[A'—(1- a_l)dé’]A(1)=TA(1),

[A'—(1-a Hd&'JAP =(0?+ 1?+1)A?
[A"—(1-a 1Hd&' AV = (1P + w?) AV

if J=3,4.

Employing the definition in Eq(34), the above modes and
the definitions given in the Appendix, we have tliabtice
that ¢* and ¢ take the same values &f n, w)

D,; fdkf dor?K; ,(krK;,(krf(w,v,s),

whereD, is an opportune differential operator in Passing
from the integration variablé to the integration variable
rk, we see that the term after the operator does not depend
onr, and so the differentiation produces a vanishing result.
In order to write the complete locdl functions of the
electromagnetic field we have to take account of the ghost
contribution. We have already said that in this approach the
¢ function of the ghosts is just minus two times thdéunc-
tion of a minimally coupled scalar field, but with a gauge-
fixing dependent scale factor, see E2l):

gghOSth;X) =— 2§MCS(S;/-L_za_l/ZLg:O)(X)-

Using this relation, Eq(39) and reintroducing everywhere
the renormalization scale, we can write the complete local
¢ function of the electromagnetic field as

£*M(s%) = (& + 1) MO(s; ™ 2L g—0) (X)
+20°s 17 %L g 116 (X) + LS, 7 2) (X)

—20MCS(s; 20 VAL o) (%), (4

It follows that the one-loop effective Lagrangian density is
just
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1d 2 1 A AV={0?+[(—1)7+|v|12IAD) if J=1,2,
Len(¥)= 5 ol 207980+ LU0 ]m0= 3553 + 5 52 '
(42 A, AV =P+ w?)AY if J=34.

We remark the importance of keeping thedependence of
the action of the ghosts: it gives a contribution proportionalEMPIoying the definition in Eq34) and the found modes we
to Ina which cancels against the ¢rdependent term com- Nnave(notice thatg™ and ¢ take the same values & n,
ing from (a5+1)¢MCS(s:x), restoring the gauge invariance @)
of the theory. Note also how all the terms containing4n
cancel givi_ng th_e expect_ed scale invariar_wt theory. _ . * 2% (X) ()

Integrating this quantity over the manifold and introduc- (D(s;x)=2, f dkf dwm
ing a cutoff at a distance form r=0 in order to control the
horizon divergence, we get the one-loop free energy:

- 2¢* (X) p(X)
+2 Jd"J doF 7 =17

F(l):—%f d4X\/a£eff(X)
+E fko dwiz(x—(ﬁz% (46)

= AL 2m 4+ 30 27 i 43

- 14407%€° |\ B B “3)

For simplicity, we have omitted the terms corresponding to

. : . . n=0, which contribute only to the temperature-independent
Renormalizing this result in such a way that the internal

ish = find i h . it part of the free energy: this part will be changed during the
fenseJI?y vanishes g8=2m, we find just the point-splitting renormalization procesgsubtraction of the Minkowski

vacuum energy We also stress that Kabat's surface terms
involved during the calculations disappeared exactly as in
U {sub=yhretes, (44)  the previous approach. The latter term in E89) is due to
the modes with)= 3,4: this term is exactly twice thé func-
tion of a conformally coupled Euclidean scalar field propa-
gating inS*x H3,

Let us then consider the second optical approach. We As far as the ghost contribution is concerned, it arises
were able to perform the calculations in the casel only,  from the action(23). Since the corresponding small fluctua-
hence a complete discussion on the gauge invariande-(  tions operator involves the curvature of the Euclidean Rin-
variance is not possible. However, the found result containsdler manifold, which has a Dirac’$ singularity atr=0,
some interest. As before, the eigenfunctions of the operatafnathematically it is not well defined and is not clear how to
A .-, are constructed from the scalar eigenfunctions, Eqdeal with it. However, as a try we can suppose to consider
(35): R=0 and see the consequenédsnder this hypothesis, the

ghost contribution is just minus twice that of a conformally
coupled scalar fieldsee Eq.25)] and so it cancels against
the contribution of the mode$=3,4.

After having added the ghost contribution, we can write
the completel function of the electromagnetic field as

B. Second optical approach

AL = |(a

[ 1
7]¢ | | r¢|V|

1
_un¢) | |( 3,4, — | |;£-0-0)

w=p{ oo
I 2¢* (X) ()
=3, | o | dorgr e

24" (X) 60
o3 [ o o [+ -7

A<3)——[0| d(&d)]=— (ooa ¢ ay;f)

<‘”——{0| [EN*d(£g)]}= 1(00a ¢ d’)-

The partition function of the photons is obtained employing
the previous function opportunely continued in the variable
The following normalization relations hold: s in Eg. (33). Dealing with it, as in the previous case, we

finally find the free energy
(277)4 30( 2w
B B

A, 2

J' d4X<A(J,w,n,k)* ,A(J’,w’,n’,k’)>
14402 €2

F(Z)sub: _

+29|. (48

="M 2(k—k')S(w—w'). (45)

As far as the eigenvalues are concerned, we have bSee footnote number 5.
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é)utation in the manifold with conical singularities could

In deriving this result we have employed the Riemann zet Lhow its advantages, provided one knows how to compute

function {(z,q) and its relation with the Bernoulli polyno-

mials [32]. This result has the same form as that obtainec}heAabO;]/e Jacoblaln. . hich ires further i L
with the first approach, Eq43), but the sign in front to the nother general point which requires further investigation

second term is opposite. The third term is fixed by the renoriS the request of self-consistency of the thermodynamics of
malization procedure. The problems arise with ghe term  th€ gas of Rindler particle, when the temperature is not the
once again. Unruh one. This is a very important point in calculating the
In this case it is easy to identify the origin of the discrep-Ccorrection to the entropy of a black hole supposing such
ancy in our hypothesis of settin@=0 in the ghost action. corrections due to the fields propagating around it. We re-
Nevertheless, there is some evidence that the origin is ndhind one that the Rindler metric approximates the region
that. In particular, if we assume that the optical method givegiear the horizon of a Schwarzschild black hole. The entropy
the same results as the point-splitting one even wken of the fields is computed using the relatibmhere gy, is the
#1/6, then we can suppose that it is right to substitute théJnruh-Hawking temperature, 72 in the Rindler case
optical result for the ghost contribution to the above freeSBHzﬂﬁaBFﬁ|BH. In calculating the previous derivative at
energy with the point-splitting one fagf=0. As a result, we B=p,, one has to consider also the partition functiaf

get shell namely evaluated g8+ 27 and 8 near B . It is not
A Py 2|2 so clear whether it is necessary or not that the thermody-
F(2)sub_ _ —iH_w) —60( _Tr) +59|, (49 namical laws hold also fo8+# By and 8 nearfBy in order to
1440r°€*( | B B ' assure the consistency the procedure followed in calculating
the entropy of the fields aB=pBy. Moreover, it is well
which is different from the previous one but still different known that the off-shell quantum states of a field are affected
from the first optical approach result. In particular, the freeby several pathologies on the horizon evefurthermore,
energy in Eq.(48) [or Eq. (49)] would yield a negative en- they are unstable states in a semiclassical approach to quan-
tropy at the Unruh-Hawking temperature, which is very hardtum gravity due to the divergence of the renormalized stress
to accept on a physica] ground_ Summarizing, it seems to uT@nsor on the horizon. ThUS, it is reasonable to wonder about
that this second approach, which is the natural generalizatioe thermodynamical consistency of the results when one

of the procedure used in the scalar case, does not yield §orks off shell. We conclude with a discussion on this point.
correct result. Let us first consider the point-splitting result and the an-

noying dependence on the parametaf the massless scalar
field results and its relation with the request of a consistent
thermodynamics. As we have already said, on more regular
The main result of this paper is the proof that the opticalmanifolds the(integrated physical quantities should not de-
method(the “first approach’) can be used to compute one- pend on the actual value &f whereas in the case of Euclid-
loop quantities in the Rindler space also in the case of th€an Rindler wedge the conical singularity introduces an, ap-
photon field. The method has been developed employing parently unphysical, ¢ dependence in the physical
general covariant gauge choice. Furthermore, by a compariuantities? A similar problem occurs even in flat spaces in
son with other methods, we have seen that this method prgresence of boundari¢g1]. In those cases, one can see that
duces the same result as the point-splitting procedure. the renormalized energy-momentum tensor diverges on the
It is also important to stress that the partition functionboundary, unless the coupling is conformal. So, one could
arising from our method is completely free from “Kabat's” say that the conformal coupling is, in this sense, more
surface terms. This is very important because, as we previphysical” than the others. By this we mean that it behaves
ously said, the approaches based on the direct computation e a real field, such as the Maxwell field.
the Euclidean Rindler space usigiefunction or heat-kernel Inspired by this fact, we shall look for a criterion to
techniques produces such anomalous ti@nH and further  choose a value of which is more “physical” than the oth-
regularization procedures seem to be necessary to get physirs as far as the thermodynamics is concerned. Thus we shall
cally acceptable results. discuss the consistency of the thermodynamics of the point-
We have also developed a general optical formalism fosplitting results.
the Maxwell field in the covariant gauges based on From the thermodynamics, we know that we can obtain
Hodge—de Rham formalism which, in principle, can be usedhe internal energ_\J(Jf(’;‘{S [see Eq.2)] as the derivative with
in different manifolds than the Rindler space.
However, many problems remain to be explained. In par-
ticular, both in the photon and in the scalar case the relation ‘Rindler thermal states witB+ 2 violates several axioms of the
between the optical approach and the direct approach in theuantum field theoryQFT) in curved backgrounds. For example,
manifold with the conical singularity remains quite obscure.see[33] and references therein.
This is due to difficulties involved in computing the Jacobian &Notice that the case of the cosmic string theory is quite different
of the conformal transformation in the presence of conicabecause different values gfcorrespond to different internal struc-
singularities. Moreover, while the optical approach can beures of the string. This is obvious by considering a string with a
used in the case of massless fields without particular diffifinite thickness, which has a nonvanishing curvature within itself. In
culties, as soon as the fields have a mass the optical methdtk limit of a vanishing thickness, the curvatiRegets a Diracd
becomes much harder to apply. In this case, the direct conbehavior along the string in the Lorentzian manifold.

V. SUMMARY AND DISCUSSION
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respect tg3 of an appropriate free enerdsf’, multiplied by ~ S— +. The above free energy produces the point-splitting
8, possibly corrected by an suitable energy-subtraction prol_nternal energy and, after the Mlnkowskl renormallzatlo.n., it
cedure. Taking the space homogeneity along yhand z coincides with the free energy obtained by renormalizing

directions into account, we found the form of the free energyinat obtained by the optical approach, E4).
The point is that if we apply the above procedure to com-

2 pute the integrated principal pressures along yhand z
) directions to the above photon free energy, there is no way to
choosel/ in such a way to get the same result as integrating
theyy andzz components of the photon stress tensor in Eq.
(15). This is due to the presence of a term proportional to
B2 and the independence ghof the functionl/.
(50) In order to get the “correct” pressurdgbut a wrong in-
ternal energy employing the derivatives as previously
pointed out, one should take a free energy which is twice that
in Eq. (50) with £=1/9, f=0 andi/ opportunely chosen.
Hence, it seems that the point-splitting stress tensor of
hotons in the Rindler wedge does not give a consistent

LL,

2w
Fhe=~ 5aa022 -
p.¢ 2880r“€

2|4
sl

LyL, f(é.e)
‘m[”@f“ B

—-30(66—1)+3

The unknown functiorf(&,€) can be dropped by requiring
that the entropyS, ;= B%J4Ff; vanishes a3— +. The
function i/, which does not depend g# but can depend on
the geometry background, is necessary due to the fact th

h in Eq(2) is the Mink K lized b ermodynamics. It is very important to remark that the
the energy in Q(_ ) is the Minkowski renormalized one, but 5,,¢ thermodynamical argument cannot be applied to the
we want to remain on a more general ground in order to us

USBosmic string theory, since in that case the stress tensor in

eEq. (15) is the zero-temperature one, afids not the inverse

of the temperature.

In a pessimistic view, this problem and thelependence

the integrated quantities in the scalar case could be con-
sidered as another proof of the inconsistency of the Rindler

theory (and maybe of the Schwarzschild thepwhen one

works at temperatures different from the Unruh-Hawking

a{)ne, and a discouraging result for the attempt to evaluate the
correction to the Bekenstein-Hawking entropy through the
“off-shell” procedure®

that the energy in Eq2) becomes negative if the tempera-
ture is sufficiently low, for example, in the most interesting
range G<¢<1/6, and hence such an energy cannot directlyOf
arise from a statistical partition function but a further sub-
traction procedure must have taken place. The function
takes into account this energy subtraction procedure.
From statistical thermodynamical laws, one expects th
they andz principal pressure, namell,, andT,,in Eq. (1),
integrated ovedzdryg and dydry/g, respectively, can be
obtained taking thé., (L,) derivative of the previous free

energy, with the sign changed a#¥dpportunely chosen. An ACKNOWLEDGMENTS
easy computation shows that, due to the terms containing _ _
B2, this does not hold for any value @ but only in the We are grateful to Francesco Belgiorno, Guido Cognola,

conformally coupled case=1/6. After the Minkowskian ~Giuseppe Nardelli, and in particular to Giampiero Esposito,

energy Subtraction' the Corresponding free energy reads MarCO TOller, Luciano VanZO, Sel’gio Zerbini, for valuable
discussions and useful suggestions.
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In computing the photoy function onS'x H3 one meets

This is just the free energy obtained by the optical methodhe ¢ function of a scalar field in the same background, both
after the Minkowski renormalization. Therefore, it seem thatin conformal and minimal coupling. Therefore, it is useful to

only in the conformally coupled case the stress terfgpr eport here theselfunctmns_. The sm.all_ﬂuctuauons operator

yields a consistent thermodynamics, at least as far as tHer & scalar field in the optical metric is

relation between energy and pressures is concerned.

Now, let us consider the photon case. In such a case we
have not the freedom to adjust a parameter in the stress ten-
sor in order to agree with the thermodynamics. The free enwhere A is the Hodge—de Rham Laplacian @&xH?®. A
ergy we find from the total energy in the case of the photorcomplete set of eigenfunctions has been given in the main
stress tensor of Eq15) reads text, Eq.(35), with eigenvalud vﬁ+ w?+1—6£]. Therefore,

the local{ function is
277) 2 }
—1] —33

B

Le=A—6¢=—[d2—rd,+r297+6¢],

4

F%hOIPSZ _ i[(zw +30

1440722 |\ B

%This problem arises also dealing with the massless spinorial field
as it simply follows from the point-splitting renormalized stress

L.L f(e) tensor obtained if6] (analytically continued from the cosmic string
- # U e)+—}, (52)  to the Rindler spage
€ B 1%owever, it could be possible to interpret the entropy formula at

Hawking’s temperature, without making use of thermodynamical
As before, we can drop the term containing the undeterminethws off shell. Maybe, possible ways could arise studyinggée-
function f(e) by requiring a vanishing entropy in the limit metrical entropy employing the replica trigk.0,22,.
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(elLg00= 3 [do [ Ko 1-661 6" (0600

7 T(s-302) 2

“8mB I(s)

n=—o

dwwz[ 2+ wl+1-6£]7°

Jr T(s—3/2)(2m|32 3 B B 3-2s
o R e b £ - £

8m°B TI'(s) B

whereE(s;a)==,_,[n?+a?]"S is the Epstein{ function.

In the conformally coupled case, the Epstein function be-

comes a Riemang function and so

{EXs) = (S| L g=176) (X)

m (,8)2531“(5—3/2)
AV I'(s)

{r(25—3).

One can easily check thgF“s;x)|s—o=0 and

d w2
CCS - —
ng S(S1X)|S=O 45[_34

Another important case is the minimally coupled one,

J I(s—1/2) Lz

E(s;a)—2 5t —— 5 T(s)
2\/— s—1/2
F(S)nEl Ks-1(27ma)

and the fact that the MacDonald functi&n(x) is analytic in
the index» and decays exponentially &g — so that the
third term in the previous expansion is analytic sn(and
vanishes as—0), we find that the function does not van-
ish ins=0:

ZMCS(S;X)|S=0=EZ

£=0, for which there is not a more explicit form. However, We do not know the value in zero of the derivative, but it is

using the identity

not required in our computations.
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