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We explore how the existence of a field with a heavy mass influences the low energy dynamics of a quantum
field with a light mass by expounding the stochastic characters of their interactions which take on the form of
fluctuationsin the number of~heavy field! particles created at the threshold, anddissipationin the dynamics of
the light fields, arising from the back reaction of produced heavy particles. We claim that the stochastic nature
of effective field theories is intrinsic, in that dissipation and fluctuations are present both above and below the
threshold. Stochasticity builds up exponentially quickly as the heavy threshold is approached from below,
becoming dominant once the threshold is crossed. But it also exists below the threshold and is, in principle,
detectable, albeit strongly suppressed at low energies. The results derived here can be used to give a quanti-
tative definition of the ‘‘effectiveness’’ of a theory in terms of the relative weight of the deterministic versus
the stochastic behavior at different energy scales.@S0556-2821~97!06406-0#

PACS number~s!: 04.62.1v, 03.701k, 05.40.1j, 11.10.2z

I. INTRODUCTION

The goal of this paper is to explore how the existence of a
field with a heavy mass~a heavy sector, or heavy field, in
short! influences the low energy dynamics of a quantum field
with light mass ~light sector, or light field!. It is a well-
known result from effective field theory@1–3# that at low
energies the heavy fields effectively decouple. This means
that it is possible to describe the low energy~infrared! phys-
ics through an effective action of the light fields, whereby no
explicit reference to heavy fields is made.1 This description
breaks down as the energy gets close to the heavy particle
mass threshold, where particle creation of the heavy field
begins to get significant. Generally, the breakdown of the
effective light theory is described in terms of the loss of
predictive power of the theory, resulting from a proliferation
of increasingly nonlocal interactions. We shall propose a
new way to look at the threshold behavior of the light theory,
based on the manifestation of stochastic features which we
believe are intrinsic to effective theories@6,7#.

This loss of predictability follows from the fact that the
light field interacts in a complex way with quantum fluctua-
tions of the heavy field. The stochastic characters of these
interactions take on the form offluctuationsin the number of
~heavy field! particles created at the threshold, anddissipa-
tion in the dynamics of the light fields, arising from the back

reaction of produced heavy particles. The stochastic proper-
ties of effective field theory arise from particle creation, and
the two processes it engenders, i.e., dissipation and noise, are
related by the fluctuation-dissipation relation@8#.

The appearance of stochastic behavior, such as dissipation
and noise, is predicated upon the actual observational context
which defines the system, and its interaction with the unob-
served or unobservable variables which make up the envi-
ronment. In fact, for observers in the limited range of valid-
ity of the system~say, at low energy!, the existence of the
environment~say, the heavy sector! can sometimes only be
indirectly deduced by the modified behavior of the system,
rendered by such restrictions.

Dissipation becomes obvious above the heavy mass
threshold, where the light field self-energy becomes imagi-
nary ~in agreement with the optical theorem!. As we shall
show below, a proper analysis of the effective light theory
shows that a dissipative theory must also be stochastic at
some level. Our claim, based on the results of this paper, is
that the stochastic nature of effective field theories is intrin-
sic, in that dissipation and fluctuations are present both
above and below threshold. Stochasticity builds up exponen-
tially quickly as the heavy threshold is approached, becom-
ing dominant once the threshold is crossed. But it also exists
below threshold, albeit strongly suppressed at low energy.
This is in contradistinction to the conventional belief that
such behavior changes discontinuously on threshold cross-
ing. Using the expressions we derive here, one can quantita-
tively define the ‘‘effectiveness’’ of a theory in terms of the
relative weight of the deterministic versus the stochastic be-
havior at different energy scales.

The presence of stochastic effects shows that the physics
of the light fields is different in an effective theory, in small
but important ways, from what would follow if the light
action were fundamental, even at scales below the heavy
threshold. The difference lies in the phenomena of dissipa-
tion and fluctuation generation, which are present in effective

1It should be clear from the discussion below that we regard the
effective theory as a description of the actual physics accessible to
an observer at a given energy scale including the effect of the
higher mass sector, rather than as a formal construct obtained from
the full theory by application of some approximation scheme such
as the Schwinger-DeWitt proper-time quasilocal@4# or the
Heisenberg-Euler@5# inverse-mass expansion of propagators. The
nonperturbative effect we discuss here cannot be obtained by these
approximations.
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theories but absent in fundamental ones. On a more specula-
tive level, we may argue that there is no real ‘‘fundamental’’
theory in nature@9#. A theory only appears to be fundamental
at low energy in ignorance of the presence of other heavy
constituents in nature because the stochastic components
generated from such interactions are suppressed. At higher
energies such features become more important and the pres-
ence of the heavy sector becomes more apparent. Thus, the
magnitude of noise and dissipation can serve as a measure of
the degree of resolution of the means of observation com-
pared to the intrinsic mass or energy scales of the more com-
plete theory. This viewpoint is a natural consequence from
regarding an effective theory as an open system@6,7#, which
is what we used earlier in the analysis of the statistical-
mechanical properties of particles and quantum fields@10–
13# and semiclassical gravity@14–17#.

Recent investigation of the statistical-mechanical aspect
of gravitational systems and quantum fields began with the
work of Bekenstein@18# and Hawking@19# on black hole
entropy. Penrose’s proposal of gravitational entropy and the
Weyl curvature conjecture@20# were analyzed in the context
of back reaction of particle creation by one of us@21#. En-
tropy of quantum fields associated with particle creation was
discussed in@22,23# ~see also@24#!. The concept of field
entropy was further explored in@25,26# and more recent
works. Entropy of interacting fields defined by the truncation
of a Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! hi-
erarchy and the factorization of higher order correlation
functions was proposed in@27#. Noise, decoherence, fluctua-
tions, and dissipation in this scheme were discussed in
@12,13#. A common assumption in quantum theories of struc-
ture formation, i.e., quantum correlation functions directly go
over to their classical counterparts, was shown to be incor-
rect@17# when the stochastic properties of quantum fields are
carefully considered. As our present analysis further demon-
strates, only those modes of the light field which are dynami-
cally entangled with the quantum heavy fields can partake of
the process of decoherence and quantum to classical transi-
tion to acquire a stochastic character. The relationship be-
tween dissipation and stochasticity has been further dis-
cussed in the context of decoherence and quantum to
classical transition. Calzetta and Mazzitelli pointed out the
connection between particle creation and decoherence@28#.
Paz and Sinha showed that a decohered field must of neces-
sity possess traits of randomness@29#. The stochastic aspects
of classical theories emerging from quantum mechanics are
discussed at length in an important paper by Hartle and Gell-
Mann @30#. ~See also@31#.!

Our inquiry into the stochastic nature of effective field
theory thus compels us to adopt a new and more complex
viewpoint of quantum field theory, incorporating the
statistical-mechanical properties of quantum fields. This
means that we are more interested in thecausal development
of quantum fields than in the traditional scattering or transi-
tion amplitude aspects. For this we need the in-in@or closed
time path~CTP! or Schwinger-Keldysh# @32# rather than the
in-out ~or Schwinger-DeWitt! @4# formulation. We will use
the related influence functional~Feynman-Vernon! @33# for-
malism to extract the stochastic features of effective field
theory. In addition, we will need to probe into thenonper-
turbative effects. By perturbative, we refer here specifically

to expansions in the coupling constants of fields, rather than
loop expansion, or adiabatic approximation. Nonperturbative
calculations are exemplified by Schwinger’s original deriva-
tion of particle creation in a constant electric field@34#. For
noninteracting fields in curved spacetimes with regions
where a vacuum for a field theory can be defined~asymptoti-
cally flat, or statically bounded evolution!, Parker’s@35# and
Zel’dovich’s @36# treatment of cosmological particle creation
and Hawking’s@19# derivation of black hole radiance by
means of Bogoliubov transformations are nonperturbative,
even though for more general situations where a well-defined
global vacuum is lacking@37#, one may need to appeal to
approximate or perturbative concepts such as adiabatic
vacuum@38,39#. For fields propagating in nontrivial space-
times~such as the nonconformally flat spacetimes of the Bi-
anchi universes@40,41#!, or for interacting fields~e.g.,
@42,43#!, one has to appeal to perturbative expansion of the
interaction or coupling parameter~such as thel in a f4

theory or the anisotropy!. These nonperturbative effects may
be quantitatively significant in the proper environment, such
as during the reheating era in inflationary cosmology@44–
48#.

One main result of this paper is that a light field plane
wave is always followed by a stochastic, slowly varying light
‘‘echo.’’ This ‘‘echo’’ is produced by the back reaction of
heavy particles created from the seed light wave, and it is a
nonperturbative effect. The amplitude and growth rate of the
echo increases exponentially as the frequency of the seed
wave approaches the heavy scales. We may understand this
as a ‘‘diamagnetic’’ effect~in contrast with a paramagnetic
effect!, since it involves two steps: First, the polarization of
the vacuum by the light seed wave, and then the coupling of
the appropriate light modes to the polarized vacuum.

If the light field self-interacts, this effect shall be masked
by the corresponding one originating from quantum fluctua-
tions of the light field. In principle, these two effects could
be disentangled by recourse to their different scale depen-
dence. In any case, the presence of both effects underlies the
fact that any field theory used in practice for the description
of real physical systems is an effective theory. This heuristic
observation may be put on a rigorous footing by casting a
field theory as a theory of a background field interacting with
a hierarchy of Wightman functions; the theory becomes ef-
fective when this hierarchy is truncated, either explicitly
through some approximation scheme, or implicitly by the
limited accuracy of specified observations@12,13#.

To connect with earlier theoretical work~developed
mainly in the 1970s and 1980s! we shall begin in Sec. II with
a discussion of conventional effective field theories@1,3#.
We shall show how the features of light physics we want to
develop appear already in the conventional~in-out! formula-
tion, albeit in a somewhat obscure form. We shall then in
Sec. II B go over to the more suitable causal~in-in! formu-
lation of quantum field theory. In Sec. II C we show how the
stochastic characters of an effective field theory can be iden-
tified from the in-in effective action with the aid of the
Feynman-Vernon formalism, and how both dissipation and
fluctuations can be related to particle creation above thresh-
old. In Sec. III we show how such features remain in the
below-threshold regime and derive the new effects which
can, in principle, be used to discern an effective theory from
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a ‘‘fundamental’’ theory. Appendices contain the details of
the derivation of the heavy field quantization in the back-
ground of a light plane wave.

II. STOCHASTIC BEHAVIOR NEAR THE THRESHOLD

As could be expected, the problems with conventional
light effective theories are most acute if we attempt to imple-
ment them in the above-threshold regime; in this range, dis-
sipation and noise appear even at the perturbative level. We
shall take advantage of this fact to introduce the main con-
cepts of dressed field, dissipation, noise kernels, etc., in the
familiar setting of one-loop Feynman graphs. We shall then
proceed in the next section to discuss these effects in the
physically more relevant, below-threshold regime.

A. Effective theory of the light particles

To simplify the technical burden, we shall work on a toy
model of quantum field theory consisting of two real scalar
fieldsf andF. We have used this model to treat the dissi-
pation of quantum fields via particle creation by the CTP
method before@41,43#. For more general models, we refer
the reader to@10#. Similar consideration of the dissipative
and noise properties of two field interactions can be found in
@44–46,48–51#.

The classical action is given by

S5Sl1SH1SlH , ~2.1!

Sl5E d4x~2 1
2 !@]f]f1m2f22g^F2&0f#, ~2.2!

SH5E d4x~2 1
2 !@]F]F1M2F2#, ~2.3!

SlH5E d4x~2 1
2 !gfF2, ~2.4!

where the subscriptsl ,H are used to denote the light and
heavy fields. We use signature2111, and ignore terms
necessary for renormalization purposes~other than the term
linear in thef field!. Here, ^F2&0 stands for the vacuum
expectation value in the absence of background field, i.e.,
^F2&f50. We also assumem!M .

The effective theory of light particles~we may, hence-
forth, call it light effective theory! is defined by the action
functional

Seff5Sl1dS, ~2.5!

where

dS@f#52 i lnE DF ei $SH~F!1SlH ~f,F!%. ~2.6!

Formally, dS is the effective action for the heavy fields
propagating on the light background field~considered as an
external field!, evaluated at the vacuum expectation value
~VEV! @52#. In our case, this VEV vanishes by symmetry, so
we shall not mention it explicitly. Perturbatively,dS is the
sum of all one particle irreducible~1PI! vacuum bubbles,
with light field insertions but only heavy internal lines.

To second order in the coupling constantg, we find

dS@f#5S 2g

2 D E d4xf~x!DF~x,x!

1S ig24 D E d4xd4x8f~x!f~x8!DF
2~x,x8!,

~2.7!

where

DF~x,x8!5
^outuT@F~x!F~x8!#u in&

^outu in&

5~2 i !E d4k

~2p!4
eik~x2x8!

1

k21M22 i«
~2.8!

is the Feynman propagator for the heavy particles. The linear
term is canceled by an appropriate counterterm. For the qua-
dratic term, we find

DF
2~x,x8!5E d4k

~2p!4
eik~x2x8!H ~ i !~k21m2!

3E
4M2

` ds

~s2m2!

h~s!

~k21s2 i«! J , ~2.9!

where we have performed the necessary subtractions to en-
sure thatm2 remains the physical mass of the light field, and

h~s!5
1

~4p!2
A12

4M2

s
. ~2.10!

An effective light theory deals with thek2→0 limit. We
can obtain a formal expression for the effective action by
expanding Eq.~2.9! in inverse powers of the heavy mass;
this expansion is analogous to the Heisenberg-Euler La-
grangian for the electromagnetic field@5#. At any finite order,
we obtain a higher derivative theory@53#. Such approxima-
tion will not show dissipation nor fluctuations in the light
field.

In this limit, dS is analytic ink and real. However, this
ceases to be the case as soon as we cross the heavy particle
threshold 4M2. Above the threshold,dS is neither analytical
nor real. In this regime a light effective theory is not only
cumbersome because of the proliferation of nonlocal terms,
rather, the whole concept of an effective action breaks down.

A striking feature of the light action, if we insist on taking
it seriously above threshold, is that it leads to complex and
noncausal equations of motion. This follows from the in-out
boundary conditions built in the path integral equation~2.6!.
The imaginary part of the effective action is related to the
imaginary part of the Feynman graph. Because of the optical
theorem, we know this, in turn, is related to pair creation
from the light particles. Therefore, a complex action would
give rise to dissipative terms in the equation of motion of the
light field, and the fluctuations in the particle creation would
measure the breakdown of the~low energy! effective theory.
The unitarity of the full quantum theory is broken in the
effective theory. However, the chosen in-out boundary con-
ditions obscure this fact, since they make it hard to discern
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the arrow of time arising from dissipation@40#. For this and
other reasons, one should use the causal in-in boundary con-
ditions, as introduced by Schwinger@32,41,43#.

B. Causal effective field theory

Let us derive the causal and real equations of motion
which describe the evolution of physical perturbations of the
light field. This is achieved by doubling the degrees of free-

dom to two fieldsf1,2, or rather, by assuming the field is
actually defined on a closed time path. The equations of mo-
tion are found by taking the variation with respect tof1 of
the CTP action functional

Seff
CTP5Sl@f1#2Sl@f2#1dSCTP@f1,f2#, ~2.11!

where@32,41#

dSCTP@f1,f2#52 i lnE DF1DF2 ei $SH~F1!2SH~F1!1SlH ~f1,F1!2SlH ~f2,F2!%. ~2.12!

The quadratic terms in the effective action, to second order in the coupling constant, are

ig2

4 E d4xd4x8$f1~x!f1~x8!DF
2~x,x8!22f1~x!f2~x8!D2

2 ~x,x8!1f2~x!f2~x8!DD
2 ~x,x8!%, ~2.13!

where the propagators are the expectation values taken with
respect to the ‘‘in’’ vacuum defined by

DF~x,x8!5^ inuT@F~x!F~x8!#u in&

5~2 i !E d4k

~2p!4
eik~x2x8!

1

k21M22 i«
,

~2.14!

DD~x,x8!5^ inuT̃@F~x!F~x8!#u in&

5~ i !E d4k

~2p!4
eik~x2x8!

1

k21M21 i«
,

~2.15!

D2~x,x8!5^ inuF~x8!F~x!u in&

5~2p!E d4k

~2p!4
eik~x2x8!d~k21M2!u~2k0!.

~2.16!

The equations of motion become~but see below!

~2h1m2!f~x!1g2E d4x8 D~x,x8!f~x8!50,

~2.17!

where

D~x,x8!5
i

2
@DF

2~x,x8!2D2
2 ~x,x8!#. ~2.18!

Since from the definitions

D2~x,x8!5DF~x,x8! if t8.t, ~2.19!

while

D2~x,x8!5DF* ~x,x8! if t.t8, ~2.20!

it is obvious that Eq.~2.17! is real and causal. Explicitly,

D~x,x8!5E d4k

~2p!4
eik~x2x8!H S 21

2 D ~k21m2!

3E
4M2

` ds

~s2m2!

h~s!

@~k1 i«!21s# J , ~2.21!

with the same h as in Eq. ~2.10!, and
(k1 i«)252(k01 i«)21kW2, carrying the causal boundary
conditions.

The light fieldf described by the wave equation~2.17! is
clearly no longer the classical light field, but is now dressed
through the interaction with the quantum fluctuations of the
heavy field. A different approach to the dynamics clarifies
this point. The Heisenberg equations of motion for the light
field are

~2h1m2!f~x!1S g2D @F22^F2&0#50, ~2.22!

where we have subtracted the expectation value ofF2, com-
puted at vanishing light fields, to makef50 the true light
vacuum. Comparing Eqs.~2.17! and ~2.22!, we see that the
former amounts to the approximation

@F22^F2&0#'2gE d4x8D~x,x8!f~x8!. ~2.23!

On the other hand, a direct calculation shows that

2g D~x,x8![
d^F2&~x!

df~x8!
U

f50

~2.24!

so that, within the present accuracy,

2gE d4x8D~x,x8!f~x8!.^F2&f2^F2&0 . ~2.25!
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Here,^F2&f stands for the vacuum expectation value evalu-
ated with respect to the background of a nonzero light field
f. So, in this approximation, theq numberF2 in the Heisen-
berg equation of motion is substituted by its expectation
value, computed as a causal functional of the light back-
ground.~In quantum open systems language, the heavy field
is said to be ‘‘slaved’’ to the light one@13#.!

We wish to point out that the equation of motion, Eq.
~2.17!, for the expectation value of the light field is not the
classical equation of motion, but includes the dissipation ker-
nel D, which accounts for the averaged effect of back reac-
tion of the heavy field on the light one. In the linearized
theory, of course, we use the approximation equation~2.21!
for D to first order ing, but this is still the full~i.e., mean!
back reaction. Actually, Eq.~2.17! is simply the expectation
value, taken with respect to the in vacuum, of the Heisenberg
equation of motion for the light field deduced from the action
equations~2.1!–~2.4!, and thus it provides a consistent and
full description of the dynamics of the expectation value of
the light field to this order.

Now, at issue is whether physically this degree of accu-
racy offers a sufficient depiction of one’s problem at hand.
There are many examples where a mean field description
fails. An important class of problems is critical fluctuations.
As we shall show presently, the theory based on Eq.~2.17!,
no matter how accurately the back reaction~that is,D) is
computed, cannot provide sensible answers to the more com-
plex problem of the physics of fluctuations around the mean
field.

There are two possible answers to the inaccuracy of the
theory based on Eq.~2.17! when dealing with fluctuations.
@Again, we stress that this is not a matter of accounting for
back reaction, since Eq.~2.17! would be unsuitable to de-
scribe the full dynamics of the light field even ifD could be
computed exactly.# The always correct one is to compute the
joint evolution of the coupled light-heavy field exactly. This
is usually difficult if not impossible, and is indeed theraison
d’être for devising an effective theory; i.e., one wishes to
achieve a description of the light field dynamics based
largely on the light field alone~e.g., effective renormalizabil-
ity @1#!. The second response, the one we shall explore in the
following, is to enlarge the usual effective theory framework
to explicitly include stochastic terms. We will show how this
extension can be done in a way which is consistent both with
field theory and with statistical mechanics.

In a free theory, it would be enough to introduce random
initial conditions for the light field to properly account for
these fluctuations. Interacting theories are intrinsically more
complex, since in addition to the first order effect associated
with uncertainty in the initial conditions, we have a ‘‘second
order’’ effect produced by the driving of the light field by
heavy particles created from the initial light field. The sec-
ond order effect has not only a deterministic part~accounted
for by the dissipation kernelD), but also a stochastic part,
because the actual particle production process is not deter-
ministic, and the number of particles displays irreducible
fluctuations. This effect, moreover, changes in character as
the actual state of the heavy field deviates from the vacuum.
It is in this way that an arrow of time appears in the theory.
The fact that pair creation brings forth dissipation, and the
fluctuations in back reaction associated to fluctuations in par-

ticle number manifest as noise, is the physical underpinning
of the fluctuation-dissipation theorem, as we shall show be-
low.

Before we continue, however, let us elaborate on our ear-
lier claim that Eq.~2.17! cannot give a satisfactory account
of the physics of the light field, where satisfactory means that
not only the mean field evolution, but also the fluctuations
around the mean field are accounted for. We can see this, for
example, by consideration of the light field fluctuations.
These are described by the Hadamard kernel

G1~x,x8!5^ inu$f~x!,f~x8!%u in&. ~2.26!

The Fourier transformG1(k) is related to that of the expec-
tation value of the commutator of two fieldsG by the zero
temperature Kubo-Martin-Schwinger~KMS! formula @57#

G1~k!5sgn~k0!G~k!. ~2.27!

If we assume canonical equal-time commutation relations,
there is a simple relationship betweenG andGret,

Gret~x,x8!5~2 i !G~x,x8!u~x02x08!, ~2.28!

which translates into

G~k!52 ImGret~k!. ~2.29!

The retarded propagator is simply the inverse of Eq.
~2.17! with causal boundary conditions. It has a pole at
2k25m2 and a branch cut from2k254M2 on. Therefore,

Gret~k!5
B

@~k1 i«!21m2#
1S g22 D E

4M2

`

ds
h~s!uGret~s!u2

@~k1 i«!21s#
,

~2.30!

whereB is the residue at the pole, andGret(s) stands for the
propagator evaluated on the2k25s shell. We conclude

G~k!52pHBd~k21m2!1S g22 Dh~2k2!uGret~k!u2

3u~2k224M2!J sgn~k0!, ~2.31!

G1~k!52pHBd~k21m2!1S g22 Dh~2k2!uGret~k!u2

3u~2k224M2!J . ~2.32!

But this result is inconsistent with Eq.~2.17!: since modes
above threshold are damped, they could not possibly sustain
a time translation invariant autocorrelation such as Eq.
~2.32!. However, addition of a stochastic sourcegj to the
right-hand side of Eq.~2.17! removes the contradiction: we
can identify the first term in Eq.~2.32! as the ‘‘natural’’ light
quantum fluctuations, and the second as the fluctuations in-
duced by the action of the external source. If the statistics of
this new term is chosen correctly, the stochastic source will
feed onto the light field precisely the amount of fluctuation
necessary to keep the noise level, as required by the
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fluctuation-dissipation relation. We shall show now how to
set up a theory whereby this desirable result is built in.

C. Above threshold: Fluctuations and dissipation

As we have just remarked, the expectation value alone
does not capture the full effect of the heavy fields on the
light ones; to do so consistently demands that an extra sto-
chastic source termj(x) should be present in Eq.~2.17!, as

~2h1m2!f~x!1g2E d4x8D~x,x8!f~x8!5gj~x!,

~2.33!

which takes into account the fluctuations of the heavy fields:
namely,

j~x!;~ 1
2 !@F22^F2&f#~x!. ~2.34!

The external source vanishes on average, but has a rms value

^j~x!j~x8!&[N~x,x8!5~ 1
8 !@^$F2~x!,F2~x8!%&0

22^F2&0
2#. ~2.35!

Or, explicitly,

N~x,x8!5E d4k

~2p!4
eik~x2x8!S p

2 Dh~2k2!. ~2.36!

Following Feynman and Vernon@33#, as we have done in
related problems@17#, we can show that a Langevin-type
equation~2.33! is properly derived from the CTP effective
action, rather than the more familiar deterministic equation
~2.17!.

To this end, let us first replace the field variablesf1,2 by
the average and difference variables

@f#5f12f2, $f%5f11f2. ~2.37!

With the identity

Seff
CTP~$f%,@f#50![0, ~2.38!

it follows that the equation of motion is

dSeff
CTP

d@f#
~$f%5f,@f#50!50. ~2.39!

The quadratic terms in the effective action, Eq.~2.13!,
may be written as

g2

2 E d4xd4x8$2@f~x!#D~x,x8!$f~x8!%

1 i @f~x!#N~x,x8!@f~x8!#%. ~2.40!

It may seem that the noise kernelN does not contribute to
the equations of motion. However, by virtue of the identity

expH 2
g2

2 E d4xd4x8@f~x!#N~x,x8!@f~x8!#J
[E DjP@j#expH 2 igE d4xj~x!@f~x!#J ~2.41!

for some probability densityP, with

^j~x!j~x8!&[N~x,x8! ~2.42!

we may substitute the quadratic term in the light effective
action by coupling the field to a stochastic source whose
autocorrelation is given by the noise kernelN. The fact that
both dissipation and noise kernels can be expressed in terms
of the same functionh in this example is the origin of the
fluctuation-dissipation theorem.

We should stress that the fieldf in Eq. ~2.33! does not
allow the same physical interpretation asf in Eq. ~2.17!.
The latter is the expectation value of the Heisenberg light
field operator, while the former includes also the fluctuations
around the mean field, we may call it the ‘‘dressed’’ light
field. The dressed light field isprima faciea quantum field,
and the stochastic driving force from the environment is also
quantum in nature. Since light and heavy modes are dynami-
cally entangled, interference effects abound, but are ex-
tremely hard to display for observations carried out at low
energy. A heavy sector serving as an environment to the light
sector can decohere it, and induce a quantum to classical
transition. After decoherence the open system variables obey
an effectively classical equation of motion, but driven by
stochastic source terms, such as in a Langevin equation. In-
deed, the amount of noise in this open system is a direct
measure of the degree of entanglement with the unobserved
sector.~This delicate borderline between classical and quan-
tum physics is a general feature of quantum noisy systems
@54#.! The issue of decoherence is an important one lying at
the foundation of quantum mechanics and has been studied
by many people in recent years@55,56#. We have also dis-
cussed this issue for model field theories@14,17#. By the
same reasoning, we can assume safely for our considerations
here that the light field has been decohered and behaves like
a classical stochastic field.

To drive this point deeper, observe that the calculation
above relied on ordinary quantum-mechanical rules, such as
the KMS theorem, so it would be correct to consider the
fluctuations in the dressed light field as quantum in nature.
But this is the point of view of an observer who is aware of
the existence of the heavy field. Since the high momentum
modes are entangled with the heavy field and become corre-
lated through particle creation, only such an observer could
effect interference between modes above the threshold. For
observers who cannot operate on the heavy field, the inter-
ference of these modes is not observable, and their answer
could be that these are classical fluctuations. As in many
other situations in quantum physics, questions such as this
can have different answers depending on the specific obser-
vational context.

Our perturbative treatment so far suggests that noise and
dissipation only turn on above threshold. We now wish to
show that they are indeed present below the threshold, albeit
exponentially suppressed.
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III. STOCHASTIC BEHAVIOR BELOW THE THRESHOLD

The analysis of the previous section highlighted the main
elements of the light field theory, namely, the dressing of the
light field by the heavy quantum fluctuations, the onset of
dissipative processes, and the decoherence and noise genera-
tion thereof. However, this analysis is based on a hypotheti-
cal light field with momenta above the heavy threshold, a
regime where light effective theory would be of theoretical
rather than practical~observational! interest. What makes the
ongoing discussion relevant is that the same phenomena are
actually occurring at the light scales, albeit strongly sup-
pressed. They are not revealed in a perturbative theory. In
this section, we shall describe some of the most conspicuous
manifestations of noise and dissipation in the infrared re-
gime.

To simplify the calculation, we shall assume the existence
of a seed classical light background field, in the form of a
monochromatic plane wave. It may arise through the action
of some external agent, or as an outcome of the previous
history of the system. We also assume that the interaction
between the light background and the heavy quantum field is
adiabatically switched off in the past, so that there is a well
defined in vacuum for the heavy fields, and that no substan-
tial particle creation occurs prior to a given time~conven-
tionally, taken ast50), so that at this time the heavy field is
still in the in vacuum state. Our aim is to compute the am-
plification of the heavy quantum fluctuations due to paramet-
ric resonance, and the light fluctuations arising from the back
reaction thereof.

This situation actually arises in many cases of interest,
such as the background gravitational field in the early Uni-

verse interacting with quantum matter fields. In this case,
detailed studies show that indeed the gravitational field is
prone to decohere earlier than the matter fields, so the
classical-quantum distinction is unambiguous@29#. In the
case of multiparticle production in heavy ion collisions, for
example, particle currents are applied externally, while the
gauge fields take the role of the ‘‘irrelevant’’ heavy fields
@58# which are coarse grained. If we study the generation of
a cosmic background magnetic field, on the other hand, a
seed magnetic field comes from the past~for example,
through amplification of vacuum fluctuations during infla-
tion! and is further amplified through interaction with
charged particles in the radiation era@59#. To give yet an-
other example, we could model a laser as a light field~the
electromagnetic field in a resonant cavity! interacting with
heavy fields~the creation operators for the gas in the cavity,
in different possible internal states!. Then, the seed is the
externally provided pumping@60#.

While the situation we shall discuss is at best a toy model
for these relevant systems, it will allow us to show in detail
how the back reaction of the heavy field on the light one
leads to the onset of a distinct, inhomogeneous, stochastic
structure, whose amplitude, growth, and coarsening rates de-
pend exponentially on the ratio of the light to the heavy
scales. Thus, the light theory will have a stochastic character,
even for observers confined to infrared phenomenology.

A. Nonperturbative equations of motion

Let us return to the fundamental definitions

Seff
CTP5Sl@f1#2Sl@f2#1dSCTP@f1,f2#, ~3.1!

dSCTP@f1,f2#52 i lnE DF1DF2 ei $SH@F1#2SH@F1#1SlH @f1,F1#2SlH @f2,F2#%. ~3.2!

We shall now attempt a nonperturbative evaluation of this
path integral. Using the sum and difference field variables

@f#5f12f2, $f%5f11f2, ~3.3!

we can extract the ‘‘deterministic’’ part as

dSCTP@f1,f2#5S 2g

2 D E d4x^F2&$f%~x!@f#

1DS~$f%,@f#!, ~3.4!

where, as defined in the previous section, the subscript$f%
denotes averaging with respect to the$f% field. We perform
a functional Fourier transform

exp$ iDS@$f%,@f##%5E Djeig*j[f]P@j,$f%#. ~3.5!

Observe that

^j~x!&50, ~3.6!

^j~x!j~x8!&[N~x,x8!5~ 1
8 !@^$F2~x!,F2~x8!%&$f%

22^F2&$f%~x!^F2&$f%~x8!#, ~3.7!

where

^ f &[E Dj f P@j,$f%#. ~3.8!

This is to be contrasted with the result in the perturbative
treatment equation~2.36!.

The functionalP@j,$f%# must be real„as follows from
DS@$f%,2@f##52DS@$f%,@f##* … and it is non-negative
to one-loop approximation. We may think of it as a func-
tional Wigner transform of the effective action@61#, and
thereby as a probability density ‘‘for all practical purposes.’’
Observe thatP will not be Gaussian in general. In our con-
crete application, nevertheless, the effective action is one-
loop exact, so the identification ofP as a Gaussian probabil-
ity density poses no difficulty.
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We conclude that the correct~in the sense of accounting
for both mean field and the fluctuations around it!, nonper-
turbative effective equation of motion for the light fields
reads

~2h1m2!f~x!1S g2D @^F2&f2^F2&0#~x!5gj~x!.

~3.9!

Our goal is to show that any plane wave light field back-
ground will be followed by a slowly varying echo. Since the
light mass is nonvanishing there is no loss of generality for
our purpose if we assume the light field is homogeneous in
space and harmonic in time: i.e.,

f~ t !5f0sin2vt. ~3.10!

The condition that the light four-momentum lies below
the branch point at2k254M2 translates intov<M .

Of course, the field configuration equation~3.10! is a so-
lution of the light equations of motion only insofar as dissi-
pative effects can be neglected, which, as we shall show, is
not the case close to threshold. Therefore, to extend our ar-
gument near threshold, we must assume that the background
light field is sustained by some external agent.~This way of
reasoning is not unusual, e.g., it appears in Kramer’s calcu-
lation of decay rates, where it is assumed that ensemble dis-
tribution is kept stationary by such an external agent.! The
point is that, even below threshold, external agent will have
to do work to sustain the light field~dissipation! and that part
of the dissipated energy will be returned to the field as a
stochastic echo~fluctuations!. Equally important, these phe-
nomena do not appear all of a sudden as threshold is crossed,
but build up gradually as we approach the critical scale from
below.

To compute the nonperturbative noise kernel, we decom-
pose the quantum heavy fields propagating on the light back-
ground field into normal modes. The amplitudes of each nor-
mal mode are complex, with

F2kW5FkW
† . ~3.11!

They obey the wave equation

] t
2FkW1Vk

2FkW50, ~3.12!

where

Vk
25kW21M21gf~ t ! ~3.13!

is the natural frequency of thekW th mode. Here, we shall
disregard the possibility ofV becoming imaginary through a
large negative light field, i.e., we assumegf0<M2. Beyond
this, we shall not make other assumptions on the strength of
the interaction. The Eq.~3.12! is the exact Heisenberg equa-
tion of motion for the heavy modes, and the resulting light
effective theory will be nonperturbative.

The strength of interaction between the light and heavy
fields is measured by

kk5
1

2Vk

dVk

dt
5

1

4Vk
2

dVk
2

dt
. ~3.14!

We assume the heavy field is in the vacuum state at some
initial time t50. Since it is a free field, Wick’s theorem
holds, and our problem is to relate the field at abitrary times
to the initial creation and destruction operators. Of course,
without knowing the explicit evolution law for the light field,
we cannot get the exact form, but have to find a suitable
approximation scheme. The general relationship we seek is

Fk~ t !5 f k~ t !ak~0!1 f k* ~ t !a2k
† ~0!, ~3.15!

where f k is the positive frequency mode associated to the in
particle model@14#. It can be decomposed into instantaneous
positive and negative frequency parts as

f k~ t !5
1

A2Vk

@ak~ t !1bk~ t !#. ~3.16!

B. Stochastic features near threshold

Let us first consider the near threshold (v;M ), weak
field regime, whereVk is essentially constant, and

kk;2ckcos2vt, ~3.17!

where

ck;
vgf0

4Vk
2 . ~3.18!

The Bogoliubov coefficientsak ,bk are calculated in Ap-
pendix A to be

ak~ t !5S ck
2gk

De2 ivtegkt~11eidke22gkt!e2 idk/2,

~3.19!

bk~ t !5S ck
2gk

Deivtegkt~12e22gkt!, ~3.20!

where

eidk/25S gk

ck
D1 i S Vk2v

ck
D , ~3.21!

gk5Ack22~Vk2v!2. ~3.22!

The nonperturbative character of these expressions should
be clear; the approximations made involved keeping only the
dynamically most relevant interactions, but we have consis-
tently retained all powers of the coupling constant. In other
words, in this theory the path integral defining the light ef-
fective action is one-loop exact, and our results, which
amount to a calculation of this path integral, are correspond-
ingly nonperturbative.

We observe that Eqs.~3.19! and~3.20! are formally valid
in the whole range of frequencies. However, outside the
parametric resonance regime, we have

gk;6 i ~Vk2v! ~3.23!

and bothak andbk describe positive frequency oscillations
above the heavy threshold. We are interested here in the
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opposite case, where three features stand out, namely,~1! the
generation of the negative frequency components described
by bk , which is the physical basis for vacuum particle cre-
ation; ~2! the exponential amplification due to ongoing par-
ticle creation, and~3! the phase locking of a whole range of
wavelengths at the resonance frequencyv. As we shall now
see, phase locking allows the generation of a low frequency,
inhomogeneous stochastic field, which can be detected at the
scale of the light sector. This is the main physical indication
of the new features of dissipation and fluctuation below
threshold we want to highlight in the context of effective
field theory.

In order to find the noise kernel, let us decompose the
Heisenberg operatorF2 into ac number, a diagonal~D! and
a nondiagonal~ND! ~in the particle number basis! part

F25^F2&f1FD
21FND

2 , ~3.24!

where the~D! and ~ND! components are

FD
25E d3k

~2p!3
d3k8

~2p!3
ei ~k1k8!x$ f k~ t ! f k8

* ~ t !a2k8
† ak

1 f k* ~ t ! f k8~ t !a2k
† ak8%, ~3.25!

FND
2 5E d3k

~2p!3
d3k8

~2p!3
ei ~k1k8!x$ f k~ t ! f k8~ t !akak8

1 f k* ~ t ! f k8
* ~ t !a2k

† a2k8
† %. ~3.26!

Observe that

^FD
2 &f5^FND

2 &f5^FD
2FND

2 &f5^FD
2FD

2 &f[0.
~3.27!

Therefore,

N~x,x8!5~ 1
8 !^$FND

2 ~x!,FND
2 ~x8!%&$f%

5~ 1
2 !E d3k

~2p!3
d3k8

~2p!3
ei ~k1k8!~x2x8!

3Re$ f k~ t ! f k8~ t ! f k* ~ t8! f k8
* ~ t8!%.

If no particle creation occurred, the noise kernel would
contain frequencies above threshold only. However, in the
presence of frequency locking and a negative frequency part
of the mode functionsf , the noise kernel also contains a
steady component

NS~x,x8!5S 12D E8 d3k

~2p!3Vk

d3k8

~2p!3Vk8

3ei ~k1k8!~x2x8!Qkk8~ t,t8!, ~3.28!

where the integral is restricted to those modes wheregk is
real, and

Qkk8~ t,t8!5Re$@ak~ t !bk8~ t !1ak8~ t !bk~ t !#@ak~ t8!bk8~ t8!

1ak8~ t8!bk~ t8!#* %. ~3.29!

It is important to notice thatQ is slowly varying not only
with respect to the heavy frequenciesV, but also with re-

spect to the locking frequencyv. Of course, we do not ob-
serve the noise kernel directly, but only through its effect on
the light field. However, since the steady part of the stochas-
tic source is slowly varying in space and time, to first ap-
proximation it induces a stochastic light fieldfS which is
simply proportional to it

fS;S g

m2D jS; ^fSfS&;S g

m2D 2NS . ~3.30!

This is the echo we sought for. One can deduce the noise and
its autocorrelation in this way.

It is interesting to show the actual form of the noise kernel
in the opposite limits of very long and very short times, as
we now do.

1. Long time limit

At long times, the correlation function is dominated by
the very long wavelength modes. We may thus approximate

ck;c0;
vgf0

4M2 , ~3.31!

gk;g02
s2k2

2
~3.32!

in the exponents, where

g05Ac022~M2v!2, ~3.33!

s25
1

g0
F12

v

M
1
2v2g2f0

2

M6 G , ~3.34!

neglectingk2 elsewhere. Moreover, forg0t@1, we neglect
the decaying modes, and extend the integral to allk space.
The result is

ak~ t !;S c0
2g0

De2 ivtegkte2 id0/2, ~3.35!

bk~ t !5S c0
2g0

Deivtegkt, ~3.36!

ak~ t !bk8~ t !1ak8~ t !bk~ t !;2S c0
2g0

D 2e~gk1gk8!te2 id0/2,

~3.37!

Qkk8~ t,t8!54S c0
2g0

D 4e~gk1gk8!~ t1t8!, ~3.38!

NS~x,x8!5S 1

8~2p!6M2D S c0g0
D 4e2g0~ t1t8!

3F E d3keik~x2x8!e2s2k2~ t1t8!/2G2.
~3.39!

Performing the Gaussian integrals,
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NS~x,x8!;S vgf0

4M2 D 4e2g0~ t1t8!

g0
4M2

e2~x2x8!2/s2~ t1t8!

„2ps2~ t1t8!…3
.

~3.40!

We observe that a large scale, inhomogeneous stochastic
structure in the light sector emerges from the back reaction
of the created pairs of the heavy field. This structure takes
the form of domains where the field is aligned, and the char-
acteristic size of these domains grows as the square root of
time.

2. Short time limit

In the opposite, very short time limit, we find

ak'e2 ivt, ~3.41!

bk~ t !5ckte
ivt, ~3.42!

ak~ t !bk8~ t !1ak8~ t !bk~ t !;~ck1ck8!t, ~3.43!

Qkk8~ t,t8!5~ck1ck8!
2tt8, ~3.44!

NS~x,x8!5S tt82 D E8 d3k

~2p!3Vk

d3k8

~2p!3Vk8
ei ~k1k8!~x2x8!

3~ck1ck8!
2. ~3.45!

Approximately,

NS~x,x8!;S c0
2k0

6

2p4V0
2D tt8 f 2~k0r !, ~3.46!

wherer5uxW2xW8u,

f ~u!5S 1u3D @ucosu2sinu#, ~3.47!

andk0 marks the boundary of the resonant zone,

k0;A~v1c0!
22M2. ~3.48!

As before, we should stress that the scale of the stochastic
echo is much lower than threshold. Even in thev→M limit,
we find

k0;vAgf0

2M2!v. ~3.49!

C. Stochastic behavior far below threshold

Let us now consider the physically most relevant case,
when the frequency of the light background wave is far be-
low the heavy threshold. As before, we assume
f(t)5f0sin2vt, so that

Vk;Vk01dVk , ~3.50!

dVk;
gf0

2Vk0
sin2vt, ~3.51!

kk5
1

2Vk

dVk

dt
;2ckcos2vt, ~3.52!

where

ck5
gf0

4Vk0
2 v. ~3.53!

We are interested in the case whereck!v, and we assume

Vk0

v
5~2N11!~11d!, ~3.54!

with N@1@d.
As we show in Appendix B, the Bogoliubov coefficients

are given by

ak~ t !5S Ck

2Gk
DeGkt~11eiDke22Gkt!e2 iDk/2e2 iQk,

~3.55!

bk~ t !5S Ck

2Gk
DeGkt~12e22Gkt!eiQk, ~3.56!

where

eiDk/25S 1Ck
D $Gk1 i @Vk02~2N11!v#%, ~3.57!

Gk5ACk
22@Vk02~2N11!v#2, ~3.58!

Qk5~2N11!vt2S Vkck
v2 D cos2vt, ~3.59!

and

Ck5ckJ2NS 2Vk0ck
v2 D , ~3.60!

where J represents the usual Bessel function. WhenN is
large, the asymptotics of Bessel functions yield@62#

Ck;S ck

ApNtanha
D e22N~a2tanha!, ~3.61!

where cosha5v/2ck(11d), or, in short,

a; lnS 4Vk0
2

gf0
D . ~3.62!

As expected, both the amplitude and the growth rate of
the stochastic ‘‘echo’’ are exponentially suppressed. In terms
of the analysis of the previous subsection, this case always
falls in the ‘‘short time’’ limit. The amplitude and growth
rate, as well as the inverse size, of a stochastic domain shall
be given byC0 . At truly low scales, the effect is extremely
feeble, but it builds up exponentially as we reach for the
heavy threshold. Since in a realistic situation this effect may
be masked by self-interactions, this exponential scale depen-
dence may be essential to its detectability, as one carries out
measurements at successively higher energies in this below-
threshold region.

The exponential suppression of particle creation and its
back reaction below the threshold brings to mind the analogy
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with quantum tunneling phenomena, which also depend ex-
ponentially on the height of the potential barrier.2 In both
cases, though, these quantitatively small effects become im-
portant because of their qualitative impact on the physics of
the system, and because no other perturbative effects are
there to mask them. This analogy also shows that an expo-
nentially small efect is not necessarily nonobservable. The
analogy to tunneling is also striking because tunneling dy-
namics is extremely sensitive to dissipation@63# and, there-
fore, to the kind of phenomena we are discussing.

Even if the phenomena we have described would not ap-
pear in this same form in nature, for example, because of the
absence of an external agent to sustain the light background
field against dissipation, a second conclusion from our work
is equally important, namely, that the breakdown of the light
effective theory is not a discrete event occurring at threshold
energies, but rather a progressive event unfolding as we
reach the threshold from below, with the relative strength of
the random to the deterministic parts providing a quantitative
measure of the range of applicability of effective theory in
any given context.

D. Dissipation below threshold

As discussed in the Introduction, a noisy theory should
also be dissipative. It is interesting then to conclude our
treatment of fluctuations with a brief account of dissipative
phenomena at low energies.

Dissipation is associated with the nonperturbative deter-
ministic part of the equation of motion, Eq.~3.9!, namely,

S g2D @^F2&f2^F2&0#~x!. ~3.63!

It is straightforward to show that

^F2&f5E d3k

~2p!32Vk
$112ubku212Re@akbk* #%.

~3.64!

Neglecting the dependence ofVk on the light field, the
vacuum subtraction amounts to deleting the first term within
brackets. The second term induces a deterministic, homoge-
neous shift in the low frequency light field. However, this
effect is not associated with dissipation, being a reversible
vacuum polarization effect much alike the Casimir energy
between conducting plates@64#.

It is the third term which depicts the truly dissipative ef-
fects. At short times it amounts to a viscous force

f5S g2D E8 d3k

~2p!3Vk
$cktcosvt% ~3.65!

@cf. Eqs.~3.41! and~3.42!#. The integral is restricted to those
modes where particle creation is effective. This force dissi-
pates energy from the oscillating light field, which must be
provided by the external agency sustaining the plane wave
background. The energy dissipated per unit volume is

d«5E dt fḟ;S g2D E8 d3k

~2p!3Vk
H vckf0t

2

2 J
[E d3k

~2p!3
Vkubku2 ~3.66!

@cf. Eqs.~3.10!, ~3.18!, and~3.42!#. This establishes the link
between dissipation and particle creation, and is essentially
the same result as obtained earlier via the perturbative ap-
proach~e.g.,@43#!.

A fraction of the dissipated energy is returned to the sys-
tem, degraded into stochastic fluctuations. The stochastic
source produces a total amount of work per unit volume

dW;gE dt^jḟS&;S gmD 2E dt
]

]t8
NS~ t,t8!u t8→t

;S g2c02k06m2V0
2 D t2 ~3.67!

@cf. Eq. ~3.46!#.
Under equilibrium conditions, the sum total of the dissi-

pated energy equals the total work done by the stochastic
force integrated over time. This is a manifestation of a non-
linear fluctuation-dissipation relation. A precise statement of
this involves the simultaneous consideration of several light
modes, a task perhaps for future investigations.

IV. DISCUSSIONS

In this paper, we have presented a new way of looking at
effective field theories, bringing forth their intrinsically dis-
sipative and stochastic aspects. We have shown that dissipa-
tion and noise are generic features of such theories, both
below and above the energy threshold of the heavy mass
which defines their limit of applicability. As the threshold is
crossed, the character of the light theory does not change
discontinuously, as commonly believed, but is a continuous
extension of what is already present below the heavy scales.
The stochastic features of the light theory~including the
build up of randomness and the breakdown of unitarity!,
though exceedingly small, will manifest themselves at an
exponentially increasing rate as the energy is raised.

In the Introduction we have stressed the relevance of the
observational context in the definition of an open system,
and in interpreting the physical meaning of what is measured
~e.g., appearance of dissipation and fluctuations in an open
system, but absence in a closed system! in the restricted
range of validity of the effective theory. In the same vein we
understand a light field as a representation of the full quan-
tum field observed at low energy. Standard texts tell us that
this physical field is obtained from the bare fields of the
theory through the renormalization process. However, it is
instructional to reexamine the meaning of renormalization in
an effective field theory from the open-system viewpoint.
Technically, renormalization means that the effects of certain
quantum degrees of freedom are added to the bare quantities,
and one regards these renormalized quantities as the actual
physically measurable ones~e.g., the mean energy in the
Maxwell field is added to the bare electron mass to make up
its physical mass!. In the open-system viewpoint, which is2We thank Diego Mazzitelli for this observation.
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closer to observation than the formally complete yet unreal-
istic closed-system description~of all the constituents at all
energies!, renormalization is a coarse-graining operation:
certain ‘‘irrelevant’’ modes~in the above example, the vir-
tual photons surrounding an electron!, considered as the en-
vironment, are ‘‘slaved’’~for definition see@13#! to the ‘‘rel-
evant’’ modes of the particle, which constitute the~open!
system, thus enabling one to compute their mean effect on
the relevant physics and come up with an effective theory for
the ~open! system. Because this is an essentially statistical
operation, it carries with it the well-known statistical conse-
quences: first, there is a gap between the mean value of a
system mode and the actual value which includes the back
reaction of the ‘‘irrelevant’’ modes, and for this difference
the system will be subject to a random source from the en-
vironment. Second, the approximations on which the slaving
procedure is based~for example, to compute the quantum
averages of the environment variables it is often necessary to
ignore or to downplay the back reaction of these modes on
the system variables!, lose accuracy as the influence of the
‘‘irrelevant’’ sector becomes large, as is the case when the
fluctuations become significant, their coupling becomes
strong, or, generally, in the long-time limit.

If one intends to have the light field represent the physical
field, in a strict sense, the setup of the effective field theory
should include a detailed account of the observational con-
text, or at least of the renormalization procedure involved.
Presumably, there would be transformation rules to translate
the results from different renormalization prescriptions, and
these could eventually take the form of renormalization
group equations@65,66#. However, in the presence of a siz-
able gap between a light and a heavy scale, as in the case
studied here, sensible prescriptions will label most of the
heavy field modes as environment, and most of the light
modes as system. Thus, we have adopted in the above the
somewhat simplistic view of treating renormalization as the
dressing of the light fields by the heavy quantum fluctua-
tions. One shortcoming of this assumption is that, for ex-
ample, if the light fields self-interact, this prescription will
not eliminate all infinities from the theory.

In the region where the system and environment get pro-
gressively entangled, the system dynamics will acquire a sto-
chastic component, and become dissipative. An arrow of
time will also emerge in the effective theory. It is of interest
to develop a renormalization group theory for dissipative
systems. Some of the traditional concepts would need a
newer and broader interpretation. The breakdown of an ef-
fective theory in the threshold region is theoretically related
to the crossover behavior in critical phenomena studied in
depth by O’Connor and Stephens@65#. Their observation on
how the relevant degrees of freedom of a physical theory are
dependent on the scales at which the theory is probed will be
useful for the construction of open systems which are sensi-
tive to the energy and observation scales. These are impor-
tant questions at the foundation of statistical mechanics and
field theory which we hope to probe into.

In the low energy regime where effective light theory
works, the stochastic effects we have described are very
weak and may be unobservable. However, for the effective
theory concept to be fruitful in a broader range, it is highly
desirable to find ways to extrapolate the low energy results to

the threshold region, where contact with the fundamental
theory can be made. The conventional approach is inad-
equate for this purpose because, as our analysis shows, dis-
sipative and stochastic effects will assert themselves even
below that scale.

The formalism we have presented is an improvement on
the conventional one, not that it provides a better answer to
the same question~the usual formalism essentially asks for
the dynamics of the mean light field interacting with the
quantized heavy field!, but because it enables us to ask a
different and deeper question, namely, the dynamics of the
light mean field and the fluctuations around that mean. While
keeping the light field as external, not only the mean effect
of the heavy field, but also the fluctuations around the mean
are computed. This allows one to keep track of the fluctua-
tions of the light field induced by its interaction with the
heavy field in full consistency, as required by and embodied
in the fluctuation-dissipation relation.

The phenomena we have discussed, in particular the ran-
dom features of the back reaction of the heavy field on the
light ones, are, of course, a consequence of quantum theory
and are, in principle, retrievable in other formulations. The
stochastic method we used has the advantage that it high-
lights and systemizes these effects, which would otherwise
have been much harder to decipher.

The ideas presented in this paper can lead to several di-
rections of further development. At a basic level, there is the
question about the fundamental nature of any realistic physi-
cal system described by quantum field theories. It is the view
of the authors that in nature there is no irreducibly ‘‘funda-
mental’’ theories in the absolute sense, just as the existence
of an absolute closed system is more in the hypothetical
rather than in the physical realm.~Even for the Universe, it is
a closed system only in the ontological rather than the physi-
cal sense.! All realistic theories describing open systems are
to varying degrees noisy and dissipative. They are depicted
by stochastic rather than strictly deterministic equations.
Only when noise and dissipation are small can one describe
in approximate terms the system by the usual tenets~e.g.,
effective action! of unitary field theory. The criterion of va-
lidity of an effective field theory is derived in this paper. In
terms of structures, we also think that there are no irreduc-
ibly elemental theories or constituents in the absolute sense.
The presence of noise, albeit in small amounts, points to the
presence of a deeper layer of structure.~To give a historical
example, Brownian motion marks the boundary between hy-
drodynamics and many-body theory, as it discloses the
graininess of a seemingly continuous fluid.! Indeed, this
point of view can be used to guide the probing into possible
deeper and unknown layers of structures from a better-
known, lower energy domain. The case of gravity, from the
better-known, semiclassical regime to the unknown quantum
regime, was what motivated us into examining the general
properties of quantum open systems and effective theories in
the first place@6#. Noise and fluctuations could then in this
sense serve as a trace detector which allows us to obtain a
glimpse of the deeper structures.

There are also many physical situations where the mecha-
nisms of fluctuation generation and structure growth de-
scribed in this paper could be put to practical use. A particu-
larly fertile ground is the physics of the early universe,
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modeled by a theory of massless fields~gravitons, neutrinos,
and gauge bosons!, interacting with heavy fields such as
electrons, quarks, and cold dark matter candidates. The
gravitational background will create particles of the heavy
fields ~while neutrinos and gauge bosons are shielded by
conformal invariance!, which in turn will react on the light
fields, resulting in the generation of primordial gravitational
fluctuations@17# and gauge fields. Closer to home, the theory
of heavy ion collisions also presents a situation where a color
field background interacts with the massive quark fields, re-
sulting in the formation of a quark-gluon plasma, which
could be investigated using the framework of this paper@58#.
We hope to report on the result of this and related research in
later publications.
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APPENDIX A: DERIVATION OF a AND b

Our method can be described as a translation into
Hamilton-Jacobi language of the classical averaging method,
as found in the textbooks by Landau and Lifshitz@67# and
Bogoliubov and Mitropolsky@68# ~it is close to the methods
used by@47#!. We shall borrow some tools of classical me-
chanics to approach our problem. The mode equation follows
from the Hamiltonian

H5P2kPk1V2F2kFk , ~A1!

whereFk andF2k are independent canonical variables and
Pk , P2k their conjugate momenta, respectively. We intro-
duce creation and destruction operators through

Fk5
1

A2V
@ak1a2k* #, ~A2!

Pk5 iAV

2
@ak*2a2k#. ~A3!

We adopt the destruction operators as new canonical vari-
ables, with conjugated momenta

p6k5 ia6k* . ~A4!

The Hamiltonian expressed in terms of these new vari-
ables is

K52 iV@akpk1a2kp2k#2 ik@aka2k1pkp2k#, ~A5!

where, as before,

k5
1

2V

dV

dt
. ~A6!

The Bogoliubov transformation linking the destruction
and creation operators at timet with those at timet50 is
given by

ak~ t !5a~ t !ak~0!1b* ~ t !a2k
† ~0!, ~A7!

ak
†~ t !5a* ~ t !ak

†~0!1b~ t !a2k~0!, ~A8!

where the coefficients satisfy the Wronskian condition

uau22ubu251. ~A9!

In terms of the canonical variables, the Bogoliubov trans-
formation takes the form

ak~ t !5a~ t !ak~0!2 ib* ~ t !p2k~0!, ~A10!

pk~ t !5a* ~ t !pk~0!1 ib~ t !a2k~0!. ~A11!

This is a canonical transformation with generating functional

S5G~ t !@akpk~0!1a2kp2k~0!#1F~ t !aka2k

1E~ t !pk~0!p2k~0!, ~A12!

where~from now on, we shall occasionally omit thek sub-
indices, to simplify the appearance of our formulas!

G5
1

a
, E5

ib*

a
, F5

ib

a
. ~A13!

S satisfies the Hamilton-Jacobi equation

2 iVFak ]S

]ak
1a2k

]S

]a2k
G2 ikFaka2k1

]S

]ak

]S

]a2k
G1

]S

]t

50. ~A14!

Therefore,

dE

dt
2 ikG250, ~A15!

dG

dt
2 i @V1kF#G50, ~A16!

dF

dt
22iVF2 ik@11F2#50. ~A17!

Short of an exact solution, the conventional appproach to
solving this equation would be to expand in powers ofk.
This leads to the usual adiabatic approximation@38,39#,
sincek;O(g), which is precisely what we should avoid for
the present purpose.

As before, let us assumeV is essentially constant, and

k;2ccos2vt, ~A18!

where
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c;
vgf0

4Vk
2 , ~A19!

with v<Vk . The idea is to retain only the most resonant
terms in Eq.~A17!; namely, we write

dF

dt
22iVkF2 ic@e2ivt1e22ivtF2#50. ~A20!

This equation allows a solution of the form

F5
i

c
e2ivt

u̇

u
, ~A21!

whereu satisfies the ordinary equation

d2u

dt2
22i ~V2v!

du

dt
2c2u50. ~A22!

The solutions are

u6;e6gtei ~V2v!t, ~A23!

where

g5Ac22~V2v!2. ~A24!

The case of interest to us is wheng is real.
To finda we integrate Eq.~A16! under the approximation

kF;ce22ivtF[ i
u̇

u
, ~A25!

that is, we keep only the slowly varying term. The integra-
tion is then trivial, and we get

G5
eiVt

u
, a5ue2 iVt. ~A26!

GivenF anda, finding b is a matter of algebra

b52 iaF[
u̇

c
ei ~2v2V!t. ~A27!

We thus find the boundary conditionsu(0)51, u̇(0)50.
The solution is

u5S c

2g D @e2 id/2egt1eid/2e2gt#ei ~V2v!t, ~A28!

leading to Eqs.~3.19!–~3.21! as given in the main text.

APPENDIX B: PARTICLE CREATION
FAR BELOW THRESHOLD

When the frequencyv of the normal modes of the light
field is far belowM , the above analysis is valid up to Eq.
~A17!, but care must be taken to identify the resonant terms.
Let us decompose the frequencyV into constant and fluctu-
ating parts

V5V01dV. ~B1!

Then, from

k5
1

2V

dV

dt
;2ccos2vt, ~B2!

we get

dV;S 2V0c

v D sin2vt. ~B3!

Let us assume

V0

v
[~2N11!~11d!, ~B4!

whereN is an integer andd!1. Then, resonance occurs at
the frequency (2N11)v.

Instead of Eq.~A21!, we now try

F5S i ~21!Ne2iQ

C
D F U̇
U

G , ~B5!

where

Q5~2N11!vt2S Vc

v2 D cos2vt. ~B6!

Expanding the exponential as a Fourier series, and keep-
ing only the resonant term, we find

ke62iQ;~21!NcJ2NS 2Vc

v2 D[~21!NC. ~B7!

The equation forU reads

Ü22i @V2~2N11!v#U̇2C2U50. ~B8!

From here on, the argument exactly reproduces the previous
case, leading to the results reported in the text.
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