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Improvement of the staggered fermion operators
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We present a complete and detailed discussion of the finite lattice spacing corrections to staggered fermion
matrix elements. Expanding upon arguments of Sharpe, we explicitly implement the Symanzik improvement
program demonstrating the absence of oméerms in the Symanzik improved action. We propose a general
program to improve fermion operators to remove@{la) corrections from their matrix elements, and dem-
onstrate this program for the examples of matrix elements of fermion bilinear8andVe find the former
does haveD(a) corrections while the latter does not. Also, we give an explicit form of lattice currents which
are accurate to order® at the tree level[S0556-282(97)03301-9

PACS numbgs): 12.38.Gc, 11.15.Ha, 13.25.Es, 71.10.Fd

[. INTRODUCTION Following Golterman and Smit5], we denote the Fourier
With the occurrence of a new generation of teraflop par_components of the fieldg and x as x and x, and decom
: X .~ pose momentum space as

allel supercomputers, we will be able to simulate lattice
QCD with smaller and smaller statistical errors. It is now of
increased importance to gain control of various kinds of sys- k=p+ma, 2
tematic errors which either affect the numerical results di-
rectly or affect the way in which physical quantities are ex-wherek, € (0,27/a), p, € (0,7/a), (ma),=A,m, in which
tracted. One of the most important systematic errors come& ,=0,1. If we define the fermion fields as
from the finite lattice spacing which generates errors of the
order ofaAqcp. For the present lattice computation, this - 1
corresponds to the corrections of the order of 20—30 %. An- Py(p)= 52 (—DAByax(p+mg), (39
other important systematic error comes from the choice of AB
lattice operators. There exist a variety of lattice operators
which approach the same continuum operator in the limit - 1 AB t=
a—0. However, many of these operators differ from the w(p)ngEB (=)™ Pyax(p+mg), (3b)
continuum limit atO(a), and a systematic formalism is ’
needed to improve the lattice operators so as to remove thesssi1
O(a) corrections. where

Throughout this paper, we will use such phrases as “ac- A As As A

— 1 2 3 4

curate through ordem,” “accurate to O(a?),” or “no YAT Y1 Y2 Y3 V4 s 4
O(a) corrections,” etc., to mean that there will be no finite
spacing errors of ordegS”a for arbitrary ordem. Whenever we can write the action as
we are dealing with an expression that is accurate only to

W

lowest order ingg, we will always explicitly refer to it as (2m)4 e — i ~

“accurate to ordea? at the tree level” or “accurate to order S e > vp)| X YuzSiNPa+m|g(p), 6)
0 ” p o

goaZ.

For the case of Wilson fermions, the standard lattice ac- ) ) , i
tion differs from the continuum quark action by a term of where Q) is t_he Iattlce_ volume. It is clear that there is no
O(a). So, both the action and the operators need correctiondera term in tge action, hence the free staggered action is
at ordera. Applying the improvement program of Symanzik accurate tog(aﬁl However, the coordinate fields corre-
[1] to Wilson fermions, a procedure was proposef?y3] to  sponding toy () are nonlocal superpositions of thgs
reduce the systematic errors due to the finiteness of the lafy’s) over all the lattice sites.
tice spacing, from terms db(a) to ones ofO(g3a), and it On the other hand, if we define the local hypercubic ferm-
was numerically demonstrated [id] that this procedure can ion fields as in[6]
reduce the finitea corrections from 30% to around 5%.

The meaning of the statement that there is no term of 1 1
ordera in the staggered fermion action is not clear. Let us aly)= gz Yax(y+A)= 52 Yaxa(y), (63
use the free staggered fermion action as an example: A A

- 1
_ 4 _ — 1w 1 —
S %ax(x)m(X)Za[X(XJru) x(X— )] q(y)zgg\ X(Y+A)ﬂ\=§§ )Yk, (6D

—
+m§ a*x(x)x(x). D e

0556-2821/97/54)/353(9)/$10.00 55 353 © 1997 The American Physical Society



354 YUBING LUO 55

X=y+A, (7)  (O[sysd|K® andBy as examples. We will also determine
the additional operators that must be added to improve the
andy,=0,=2,...,then the staggered fermion action in the standard staggered fermion currents to define operators
momentum space can be written as whose matrix elements are accurate@ga?) at the tree

level. We list the lattice symmetry transformation properties
of the fermion fields needed in this paper in the Appendix.

(yﬂ®l) S|an2a

P

2 II. IMPROVING THE FERMION FIELDS

1.
+a(ys®&s,) asmpﬂa

+m]'ﬁ(p). ®) The standard staggered fermion action is

It is obvious that there are ordarterms in the action and in

the propagator for the fields and?f. In this case, we say
that the fieldsy andq need to be improved. There exists a set

— X
5= 3 a%00 2 [Uxt wxxt )
X,

of improved fields —UOGX— ) x(x—p)]+m2 afx () x(x). (14)
X
Xk(Y)Z 1—a2 AM?;LL)XA(V)' (93 Using the hypercubic formalisni6], we define gauge-
. covariant hypercubic fermion fields as
X AY)=xa(y)|1-a> A,ﬁ h), (9b) ealY) =UAY) XalY), (1539
y73
where OaY) = Xa(UA(Y), (15b)
1 wherel{,(y) is the average of link products along the short-
dLf(y)= E[f()“r 2p)—fy=2p)], (100 est paths frony to y+ A, and define the hypercubic matrices
as
such that 1
(277)4 (759 ée)an=7Tr(YAYsYBYE)- (16

2 q'(p) E sinpﬂa+ m) q'(p)+0(a?).

(12) Rewriting the staggered fermion action by using the fields
defined in Eq(15) and decomposing Eq14) into terms of

Note those improved fields are still local and superior to thedifferent dimensiongfor the definition of the dimension of a

nonlocal fields both computationally and theoretically whenlattice operator, sef9]), we obtain

gauge couplings are included. So, if we use the improved

fields which remove the ordex terms from the action to Sr=0,+a0s+a%0g+ - - -, 17

construct a lattice fermion operator, there will be @¢a)

corrections to its free field matrix elements. For the Landad Which

gauge, Sharpg/] proposed the following smeared operator:

04=<2a>4§ @aly)

1 e 2/} (7M®|)ABD,LL+m5AB}PB(y)
Xa(Y) ML Z D xaly+2u[1-2A]). (12 19)

It is easy to show that and

XA )+ O(a?). B oi@a)S 3
y

The full staggered fermion action including gauge cou-
plings is much more complicated. In Sec. I, we will give a —_— 1 t
set of improved fermion field variables in terms of which the + % (7,®l )ABAVE[UVM(V) —U,.(y)]
action has no explicit ordeat terms, and propose a general
program to remove all order corrections from the staggered (19
fermion operators. In Sec. Ill, we will expand upon the ar-
gument given by Sharpe if8] to prove that there are no
O(a) terms which can be added to the staggered fermion
action. Based on these two arguments, we conclude that stagyL
gered fermion action is already accurateQ¢a?), and that D wXa(Y)= a[UM(y+A)UM(y+A+M)XA(y+ZM)
we should use the improved field variables to construct ferm- ot _ + _ _
ion operators to reduce ordarcorrections from their matrix Uy TA= ULy A= 2m)xaly =2 ],
elements. We apply this program to the case of (20

A(y)

-> (7’5®§5M)ABAI,}
B M

es(Y),

where the lattice gauge-covariant derivatives are defined as
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1
ALXA(Y) = 72 [U LY+ AU Ly + A+ ) xa(y+24) Xaly)=|1-a> AyDt)wa), (22a
+UL(Y+A= ) ULy +A=2u) XAy —2p) _
X (y)=X_A(y)(1—aE A DL) (22b)
—2xaY) 1], (21) A A
andU,,, is the usual closed-loop path-ordered link productand replacey, x in Eq. (15) by x' andx". In terms of the
on a plaquette which lies on the () plane. improved fermion fields, the staggered fermion action can be

From Eq. (17), we see that, in addition to the naive \ritten as
dimension-four term®,, the staggered fermion action also
contains an explicit dimension-five ter®; and other higher
dimension terms. At first sight, the stargSered fermions would  SF=(2)*> % @A)
appear to hav®(a) corrections to the continuum QCD. For Y
example, it is obvious that the fermion propagator for the ><<p'B(y)+a2(9é+ cee (23
hypercubic fieldse and ¢ deviates from the continuum
propagator by terms of order. However, we notice that the Using the new fermion fields, we can construct improved
dimension-five tern®s in Eq. (17) can be transformed away fermion operators. For example, the improved fermion bilin-
if we introduce the following improved field variables: ears have the form

> (7M®|)ABD|[L+ Mg
“

v vl (PN _a Ly— _
Xa(Y) (¥s® &p) aeXe(Y) = Xa(Y) (¥s® &r) apXB(Y) 22,, IAXAW (¥s® €R) A= (¥5,5® &s0F) Bl XB(Y)}

aE — L 2
T4 XaW[(75,5® &5,F) A~ (¥s5,® &5,) aBI D, xB(Y) +O(@%). (24

How good is this improvement? We claim that the improvedquire further, explicit improvement. The general program is
fermion fields defined in Eq22) are accurate through order as follows. First, using our improved fermion fields to con-
a and get no correction from any order of perturbationstruct the composite operat6k?(x ', x') which has no ex-
theory. To see if this is true, we notice that in E#j7), none  plicit order a term [e.g., for the continuum operator
of the termsQ,,05,04, . .. are separately invariant under ¢ys® ér(y), the  correct lattice  operator s
the staggered fermion lattice symmetry group. Only theiry '(y)(ys® &) x'(y), but not x '(y)(ys® &) x'(y+a,)].
combination in the form given by Eq17) is invariant. We Second, find all one-dimensional higher operators
will prove in the next section that there exists no extraoi(d“)(X_',X') which are constructed from our improved
dimension-five operator which is invariant under the latticefermion fields and have the same symmetry properties as the
symmetry group. Hence, to any order in perturbation theoryconsidered composite operatof®(x', x'). Then their linear
there is no extra dimension-five terms that can be added téombination
the staggered fermion action when carrying out the Syman-
zik improvement program, and hence the relative coefficients " &— .| 2y (@41 —1 1 5
between the?, term and the®Ds term in Eq.(17) will not O0D=09(x ", x )+a§i: ci(9p) 0" (x x)+0(a%)
change. Therefore, to any order of perturbation, the im-
proved fields have the same form as E2). Thus, the
coefficient in front of the ordea term in Eq.(22) is exact to b 4

e computed perturbatively.

all orders ofgg, receiving no renormalization. Furthermore, There is an analog between the improvements here and

any matrix elements which consist of only our improvedy, se originally introduced for Wilson fermions. In the case

fermion fields and contain no composite operators will byt \yjjson fermions, there are two dimension-five operators

accurate through order under the condition that the gauge \yhich are invariant under the lattice symmetry group: one is
fixing does not introduce an extra orderterm. This argu-  the Wilson term; another is the SW term. A linear combina-
ment has been checked by examining the quark propagat@pn of the Wilson term and the SW term is redundant be-
computed to ordegy in the paper of Golterman and S| cause it can be generated from the naive omferaction
where they obtained the form required by the symmetry artwhich is dimension-fourby an “ordera” redefinition of
gument used here. For the composite operators, one shouldle fermion fields. Such transformed fermion fields have the
use our improved fermion fields to construct them and theysame lattice symmetry transformations as the old ones,
are accurate through ordex at tree level. To remove which means they are in the same representation. Thus, it is
O(gS”a) corrections from the composite operators will re- easy to write down an improved Wilson action accurate

will be accurate tdd(a?), where the coefficientsi(gé) can
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through order in tree level. One simply uses a combination ence: the coefficient of the ordarterm in Eq.(22) is accu-

of the naive fermion action and the redundant term mensate to all order ofg,, but the improvements in the Wilson
tioned above—the transformation to an improved fermionfermions have to use more general coefficients which may be
field simply transforms away the redund#&»a) term[2,3]. computed order by order in perturbation theory.

In order to remove alD(g%”a) errors, the coefficient in front

of the SW term in this action and the coefficients in the

definition of the new fermion fields are replaced by coeffi- IIl. IMPROVING THE STAGGERED FERMION ACTION

cients which are appropriate serie&_j%\ In the case of stag- . .
gered fermions considered here, as we will prove in the nex, In_ contrast to the calculation of matrix elemer_lts,zthe ac-
section, the fermion action is unique through oréden that tion IS already _accurate through o_rdEto al o_r(_jers Yo, as
there is no extra dimension-five operator which can be addey® Will now discuss. Thus physical quantities that depend

to the original action. However, using the standard hypercu®nly on the form of the actioffor example, particle masses
bic formalism, there is a term of order (which is not in- determined from correlation functionwill have no correc-

variant under the lattice symmetry group this unique ac- tions_ of orderg?,”a. This can_be demonstrated by recognizing
tion, as Eq.(17) shows. If we allow a transformation of the that if there were a correction of ordgfa, we must neces-
hypercubic fermion fields which changes their transformasarily be able to add some dimension-five operators
tion properties under the lattice symmetry grodie., aEicig(Z,Oi(S) which must be invariant under the lattice sym-
changes their representation, but does not change the latticeetry transformations to cancel this ordgﬁa correction
symmetry group itself then this extra ordea term becomes [1,8,9. However, we will now prove that there exists no
redundant and can be transformed away. So, the staggerdimension-five operator which is invariant under the lattice
fermion action is similar to the improved Wilson action in symmetry group [rotations, axis reversal, translations,
that both actions are unigu@o extra ordera term can be U(1)®U(1), charge conjugation and therefore, no order
added and differ from the continuum b@(a?) in terms of a term can be added to the staggered fermion action. This
the appropriate improved fermion fields. However, these im4discussion, included here for completeness, is intended to
proved fermion fields are different. The improved staggerealarify some aspects of Sharpe’s original published argument
fermion fields will change the transformation properties of[8].

the lattice symmetry group, but the improved Wilson ferm-  Following standard notation, we rewrite the staggered
ion fields will not. Furthermore, there is another big differ- fermion action as

Se=(22)'2 2 Xa)"| 2 (7,8 DasD,(y:y Joct MEY =y ) dac|xc(y )V +AY +CO)*, (29)
Y.y !
where
D;L(y’y/)AB:D_;L(yiy,)éAB+ aA_u(yiy/)()’Ms(X’ §,5)AB > (26)
in which
— 1
Du(y,y)=ggloly+2u—y")=dy—=2u-y")], (27)
— 1
Auyy") = geldly+2u—y")+8(y=2u—y")—28(y=y")]. (28

For convenience, we will not write out the SU(3) links explicitly in the remainder of this section unless there would otherwise
be confusion. Given an operator, the reader can write out the full form very easily. For example, starting with the operator
2 XYs® §5#Dix we would construct the corresponding gauge-invariant operator by the substitution

2 2 XA)(75® £5,)naDulY'Y )acD (Y'Y eoxo(y")

yy

— 2 2 XaY)(v5®&5,) asU(Y+A,y+B)D ,(y,y )scU(y' +B,y"+C)D (¥, )cpU(y' +C,y"+ D) xp(y")
vy R
(29)
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whereU(y+A,y+B) is the average of the products of link Yl ¥y, Vol ®Es(€,+£,)[D,.D,], (36)
matrices corresponding to each of the shortest paths from
pointy+A to y+B. Ysl Y vu]®Es(§,—§,){D,.D,} (37

Using the transformation properties of the staggered ferm- _
ion action(see the Appendix in detajlwe try to construct all whereD ,,D, can be replaced b ,,D, without affecting
symmetrical dimension-five operators which have the genthese operators up to ordaf.
eral form yys® é&f(D)x where f is a homogeneous real Under a rotation around the center of a hypercube, we
polynomial of degree 2. have

Invariance undetJ,(1) requires thatS+F is odd, so

(po)
only the following combinations o8® F are valid: X—REX, (383
o S ppo)—-1
(1, ¥5 Yy ¥Y5) ® (1 1 €50), (30 X—XRPT, (38b)
(7,u, ’ 75;1,)®(| 1‘55!5)\7 155)\7)' (31) D/L_>R<pU)R,tLVD VR(pU)_lr (396‘)
Under reflection with respect to a hyperplane normal to A_ﬂ_qg(pa)mwm_vR(po)fl, (39b)
the p direction, we have the transformation
D,—R"R,,D,RPIL 390
X*}IPX' (323 /,l,_> 124 14 ( )
— Combining the transformation properties listed in Eq.
x—xL,", (32b (A12) of the Appendix, the rotational invariance will further
eliminate the term in Eq34) but allows the remaining three
and terms Eqs(35—(37).
- _ —_ 3 Finally, let us discuss invariances under translation by one
D,—(1-26,,)I,D,1,", (333 attice unit:
A, —>IpAﬂIP1, (33b) x—8Py, (409
D,—(1-26, )IPDMIpl. (330 x—xSPL (40b)
Using the transformation formulas ¢£® & listed in Eq. D_M_>3<p>[) Sh-1 (413
(A7) of the Appendix, we deduce that axis reversal invari- o
ance and Y(1) invariance allow only the four terms A, —>$(P>A Sh-1 (41b
2
5@ €.} (34 D, —SPAY DS, (410
2
¥5®¢£5,D5, (39  where

Aé‘gF<y,y'>AB=s(F){(—1)Fp5A85<y—y'>+a[<—1>Fp—<—1>Sp]><[aaABA_p<y,y'>+<y5p®§5p)ABD_p<y,y')]},( ’
4

A(S’glzl(yay,)AB:S(F){(_l)FpéABﬁ(y_y’)+a[(_1)Fp_(_1)Sp]x[aéABA_p(y1y,)_(75p® gSp)ABD_p(y!y,)]}1( 2
4

and IV. APPLICATIONS

Sy @ EeSP = ys@ EpAL) . (43) As we argued above, actual numerical simulation should
use the improved fermion field variables. However, in most
From these properties, we can see that none of the ternsstuations, we can use the improvement program proposed in
listed in Egs.(35—(37) are invariant under lattice transla- this paper to remove th®(a) corrections at tree level with-
tion. So, we conclude that there is no dimension-five fermiorout increasing the computational work. Here, we apply this
operator which is invariant under the lattice symmetry groupprogram to the calculation of the matrix element
and therefore no dimension-five operator can be added to th@[sys,d|K®) which givesfy in the continuum, and the cal-
staggered fermion action. culation ofBy . We will show that the former differs from its
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continuum counterpart byp(mga), but Bx has noO(a)

corrections. We also apply the improvement program to the

matrix elements of lattice currents.

A. The matrix element {0[sysd|K®)
The axial current used in numerical simulations is

A,L<y>=AEB Xa(75,® ) agU (Y A) xp(y). (44

From the continuum expression

P(t)°°“‘=<0 > Ag(x,t)en K°> =\2f me M«
X
(45)
we define, on the lattice,
P<t>=<o 2 Agx,t) K°>, (46)
X

and put the wall source that creates #on the time slice
att=0. Then we will have

V2fimee ™l (t>0),
p(t):{ V2f mee ™l (t<0), “
where
fi =fr+0(mga). 9

If we do not consideO(gSa) terms, we can take only the
term

a S —
- EEV I XA(¥54® €5) aBXB]

in Eq. (24) because other terms contribute zero “flavor
trace at the tree level. So, we have

im, a L
P(t)™=P(t)— 5 dzP(t)

V25 mPme ™t (1>0),
= _ 49
V2f MPme ™t (1<0), 49
and
+,imp 1 + 2
fK’ =1+ EmKa fK +O(goa)y (509
—,im 1 - 2
fK' p: 1_ EmKa fK +O(goa)v (50b)
fi'"™P="f = O(gFa). (51)
So, we get
. (,-1 2
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Unimproved, t > 0
—-— Unimproved, t <0
---- Improved, t> 0
— Improved, t < 0

2.0 -
10.0

20.0
Time It

15.0 25.0

FIG. 1. The value of IR(t) with respect to the timét|. Where
mga=msa=0.01. Calculated with the cubic wall source method.
The unimproved data correspond td(t), the improved data cor-
respond to IR(t)™. Here we use an axial current similar to Eq.
(44), but work in Landau gauge and replace the link variable by
1. The error bars are about the symbol size and not included in the
figure.

The numerical dat&from the full QCD simulation on a
16%x 40 lattice with the cubic wall source, at the quark mass
msa=mga=0.01, see[10]) for the unimproved and im-
proved matrix elements are shown in Fig. 1, from which
we see that fix —fg)/fx=ma~25% and ("™
—f"™)/fc~5% is much smaller.

From this simple example, we can see that if we do not
consider O(g?a) corrections, the improved operator is
equivalent to the extrapolation:

P(t)= y2fMPm, e~ mklt+1/2, (53)
B. The weak matrix elementBy

The formula for calculatind« is
B, =K (54)

K™ (8R/MY'

where

My=(K[s7,(1+ y5)dSy,(1+ y5)d[K%,  (55)
M¥:<F|S_7475d|0><0|3_?’47’5d|KO>- (56)

The improved numerator {®mitting theO(g3a) termg

MEP= My~ SdEM+OgR). (8D
Since M (t) is computed from a platedile., time indepen-
den) within the statistical error, there is r@(a) corrections
to the numerator.

Note that the denominato\’/l\,é will have noO(a) correc-
tions even if our naive definition of; is used since the
ordera errors will cancel in the product:
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fifx=fr+0(g5a). (58) V. SUMMARY

. . In this paper, based on the demonstration that there is no
Hence, we showed that there is neith®(a) nor — gimension.five fermion operator which is invariant under all
O(agp'log"a) corrections toBy . Sharpe[8] has examined |5ttice symmetry transformations and that there exists a set of
this question in greater detail and argued that in fact there algnproved fermion fields with respect to which the staggered
no corrections 0fO(g3"a) also. However, if we calculated fermion action has no ordexr terms, we concluded that the
the denominator Only in one time direction and took thestaggered fermion action iS already in fact improved to
square off, (or f), there would be an error of order of O(a2). We argued that to remove ordarcorrections from
O(mga). the matrix elements, one has to use the proposed improved
fermion field variables to construct fermion operators. We
C. Renormalization of lattice currents applied our program to the matrix eleméo{sys,d|K°) and
found that the unimproved one differs from the continuum
by a factor ofO(mga). At the same time, we showed that
F 0o or there is noO(a) corrections tdBy , which is consistent with
=X V29 X, 9 the result of( S)harpéS]. We als% discussed the matrix ele-
and according td11], their renormalized continuum forms me_nts of the lattice currents, and _obtained the explicit terms
can be written as Whl_ch s_hould be added to the original current operators to
define improved operators accurate througba) at tree
I =253, (60) level. To _improve the_m thro_ugh ordarto all order i_ngo, we
have to find out all dimension-four operators which are con-
where Z, is the usual(divergeni renormalization constant Structed from our improved fermion fields and have the same
and «% is a finite lattice renormalization constant. Using the SYmmetry properties as the original current operators.
method developed in this paper, we can explicitly determine
the improved currents accurate@ga?) at the tree level. For ACKNOWLEDGMENTS
example, the conserved vector current and axial vector cur-
rent corresponding to the Jg1)® U,(1) lattice symmetry
can be written as

The lattice currents can be written as
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a S
- ZE I XA V5[] ® €5) aBxe]+O(g3Q), APPENDIX: SYMMETRY PROPERTIES
v OF STAGGERED FERMION

(62) For completeness, we collect some formulas connected
a with the transformation properties of the staggered fermion
Ais,l(y):Ais(y) _ EE 9,1 XAl 7,5® &5) ABXE] under the lattice symmetry group frofh2].
a 1. The axial symmetry U(1) 5
——9.0va ® )
2 M[XA( Yus &5)asXel XA(y)He'ag(A)XA(y), (Ala)
a - — ~ iae(A)Y,,
22 AWV @ € asXe] +O(G52). XAY) =€ EXAY), (A1D)
where
(62)
e(A)=(—1)%rhu, (A2)

The effect of the second term on the right-hand side is to
shift the positiony, labeling the current, from the corner to
the center of the hypercube. The third term whose effect is to
shift in the i’s direction occurs here because the currents are Y= —x +1

nonlocal operators which involve an overlap between two A s P (A3)
nearest hypercubes. The forth term is a mixing of a different X, =Xy, MFP.

spin-flavor operator and is necessary to remove all oader . L

effects from a general matrix element. As we discussed in '€ ransformation of the fermion fields are

Sec. Il, to remove alD(a) corrections, we have to find out

all dimension-four operators which have the same symmetry xaly)—> > Z,(¥.Y" ) asxs(Y'), (Ada)
properties as these currents. This work is in preparation. By

2. Reflection with respect to a hyperplane
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Xa)=2 2 Xa(Y)T 1Y Yo, (AdD)
y!
where
Z,(Y,Y" ) ae= (7,p5® &) agdl )y —y'), (A5a)
T MYy ) ae=(v5,© é6)asdll,y—y'),  (A5b)
and
Yu (HFp),
| = A6
(oY) -y, (u=p). (A6)
The spin-flavor matrices transform as
(Ys® €)= (7p5©85) - (Ys® &p) - (¥5,085). (A7)

Yo (n=p),
(Ry),=R,y,=) ~Y, (n=0), (A9)
Yo (u#p,o).
Then, we have the transformation
XA(Y)HZB > RPI(y,y )apxe(y'), (A10a
yl
(A10b)

Z(y)ﬂg > xs(Y)RP(y,y ) ag,
y/

where

1
R(po—)(yvy’)ABZE[(l_ 7po’)® (50'_ fp)]ABﬁ(R_ly_y,)i

3. Rotations by z/2 around the center of a hyperplane (Alla)
X, =Xg 1
R s X=X+, 8 Ry, Y )ag=5(1+ ¥,0) & (£~ £,) IasS(Ry—Y").
X,:L:X,LL (M;&p,o-) (Allb)
DefineR,,, such that The spin-flavor matrices transform as
1 1

4. Translations by one lattice unit

X, =X, + 1,
(n#p)

lead to the following transformation on theg,, xa’s:

(A13)

!
. P
p- r_

Xp=Xu

Xa) =2 2 SPy.y aexe(y'),  (Al4a)
y

Xa(y) =2, %E(y')sw(y,y');é, (A14b)

where

1 -
S(p)(y-y,)ABZE[(I ®&,— Vps®Es)asd(Y—Y')

F(1®E,+ 7,50 &s5) a0y +2p—Y')],
(A15a)

Sy y')KQZE[“@)f —Yp5®&5)a0(Y—2p—Y")
' 2 p~ Yp

T(1®&,+ ¥,5®E5)asd(Y—Y')].
(A15b)
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