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We present a complete and detailed discussion of the finite lattice spacing corrections to staggered fermion
matrix elements. Expanding upon arguments of Sharpe, we explicitly implement the Symanzik improvement
program demonstrating the absence of ordera terms in the Symanzik improved action. We propose a general
program to improve fermion operators to remove allO(a) corrections from their matrix elements, and dem-
onstrate this program for the examples of matrix elements of fermion bilinears andBK . We find the former
does haveO(a) corrections while the latter does not. Also, we give an explicit form of lattice currents which
are accurate to ordera2 at the tree level.@S0556-2821~97!03301-8#

PACS number~s!: 12.38.Gc, 11.15.Ha, 13.25.Es, 71.10.Fd

I. INTRODUCTION

With the occurrence of a new generation of teraflop par-
allel supercomputers, we will be able to simulate lattice
QCD with smaller and smaller statistical errors. It is now of
increased importance to gain control of various kinds of sys-
tematic errors which either affect the numerical results di-
rectly or affect the way in which physical quantities are ex-
tracted. One of the most important systematic errors comes
from the finite lattice spacinga which generates errors of the
order of aLQCD. For the present lattice computation, this
corresponds to the corrections of the order of 20–30 %. An-
other important systematic error comes from the choice of
lattice operators. There exist a variety of lattice operators
which approach the same continuum operator in the limit
a→0. However, many of these operators differ from the
continuum limit atO(a), and a systematic formalism is
needed to improve the lattice operators so as to remove these
O(a) corrections.

Throughout this paper, we will use such phrases as ‘‘ac-
curate through ordera,’’ ‘‘accurate to O(a2),’’ or ‘‘no
O(a) corrections,’’ etc., to mean that there will be no finite
spacing errors of orderg0

2na for arbitrary ordern. Whenever
we are dealing with an expression that is accurate only to
lowest order ing0, we will always explicitly refer to it as
‘‘accurate to ordera2 at the tree level’’ or ‘‘accurate to order
g0
0a2.’’
For the case of Wilson fermions, the standard lattice ac-

tion differs from the continuum quark action by a term of
O(a). So, both the action and the operators need corrections
at ordera. Applying the improvement program of Symanzik
@1# to Wilson fermions, a procedure was proposed in@2,3# to
reduce the systematic errors due to the finiteness of the lat-
tice spacing, from terms ofO(a) to ones ofO(g0

2a), and it
was numerically demonstrated in@4# that this procedure can
reduce the finitea corrections from 30% to around 5%.

The meaning of the statement that there is no term of
ordera in the staggered fermion action is not clear. Let us
use the free staggered fermion action as an example:

SF5(
x,m

a4x̄~x!hm~x!
1

2a
@x~x1m!2x~x2m!#

1m(
x
a4x̄~x!x~x!. ~1!

Following Golterman and Smit@5#, we denote the Fourier

components of the fieldsx and x̄ as x̃ and x̄̃ , and decom-
pose momentum space as

k5p1pA , ~2!

wherekmP(0,2p/a), pmP(0,p/a), (pA)m5Amp, in which
Am50,1. If we define the fermion fields as

c̃~p!5
1

8(A,B ~21!A•BgAx̃~p1pB!, ~3a!

c̃~p!5
1

8(A,B ~21!A•BgA
† x̃̄ ~p1pB!, ~3b!

where

gA5g1
A1g2

A2g3
A3g4

A4 , ~4!

we can write the action as

SF5
~2p!4

V (
p

c̄̃ ~p!S (
m

gm

i

a
sinpma1mD c̃~p!, ~5!

whereV is the lattice volume. It is clear that there is no
ordera term in the action, hence the free staggered action is
accurate toO(a2). However, the coordinate fields corre-

sponding toc̃ ( c̄̃ ) are nonlocal superpositions of thex ’s
(x̄ ’s! over all the lattice sites.

On the other hand, if we define the local hypercubic ferm-
ion fields as in@6#

q~y!5
1

8(A gAx~y1A!5
1

2(A gAxA~y!, ~6a!

q̄~y!5
1

8(A x̄~y1A!gA
†5

1

2(A x̄A~y!gA
† , ~6b!

where
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x5y1A, ~7!

andym50,62, . . . , then the staggered fermion action in the
momentum space can be written as

SF5
~2p!4

V (
p

q̄̃ ~p!H(
m

F ~gm ^ I !
i

2a
sinpm2a

1a~g5^ j5m!S 1asinpmaD 2G1mJ q̃~p!. ~8!

It is obvious that there are ordera terms in the action and in

the propagator for the fieldsq̃ and q̄̃ . In this case, we say
that the fieldsq andq̄ need to be improved. There exists a set
of improved fields

xA
I ~y!5S 12a(

m
Am]m

L DxA~y!, ~9a!

x̄ A
I ~y!5x̄A~y!S 12a(

m
Am]Q m

L D , ~9b!

where

]m
L f ~y!5

1

4a
@ f ~y12m!2 f ~y22m!#, ~10!

such that

SF5
~2p!4

V (
p

q̄̃ I~p!S (
m

gm

i

a
sinpma1mD q̃ I~p!1O~a2!.

~11!

Note those improved fields are still local and superior to the
nonlocal fields both computationally and theoretically when
gauge couplings are included. So, if we use the improved
fields which remove the ordera terms from the action to
construct a lattice fermion operator, there will be noO(a)
corrections to its free field matrix elements. For the Landau
gauge, Sharpe@7# proposed the following smeared operator:

xA~y!smeared5
1

4(n
xA~y12n@122An#!. ~12!

It is easy to show that

xA~y!smeared5xA
I ~y!1O~a2!. ~13!

The full staggered fermion action including gauge cou-
plings is much more complicated. In Sec. II, we will give a
set of improved fermion field variables in terms of which the
action has no explicit ordera terms, and propose a general
program to remove all ordera corrections from the staggered
fermion operators. In Sec. III, we will expand upon the ar-
gument given by Sharpe in@8# to prove that there are no
O(a) terms which can be added to the staggered fermion
action. Based on these two arguments, we conclude that stag-
gered fermion action is already accurate toO(a2), and that
we should use the improved field variables to construct ferm-
ion operators to reduce ordera corrections from their matrix
elements. We apply this program to the case of

^0us̄g54duK0& andBK as examples. We will also determine
the additional operators that must be added to improve the
standard staggered fermion currents to define operators
whose matrix elements are accurate toO(a2) at the tree
level. We list the lattice symmetry transformation properties
of the fermion fields needed in this paper in the Appendix.

II. IMPROVING THE FERMION FIELDS

The standard staggered fermion action is

SF5(
x,m

a4x̄~x!
hm~x!

2a
@U~x,x1m!x~x1m!

2U~x,x2m!x~x2m!#1m(
x
a4x̄~x!x~x!. ~14!

Using the hypercubic formalism@6#, we define gauge-
covariant hypercubic fermion fields as

wA~y!5UA~y!xA~y!, ~15a!

w̄A~y!5x̄A~y!UA†~y!, ~15b!

whereUA(y) is the average of link products along the short-
est paths fromy to y1A, and define the hypercubic matrices
as

~gS^ jF!AB5
1

4
Tr~gA

†gSgBgF
† !. ~16!

Rewriting the staggered fermion action by using the fields
defined in Eq.~15! and decomposing Eq.~14! into terms of
different dimensions~for the definition of the dimension of a
lattice operator, see@9#!, we obtain

SF5O41aO51a2O61•••, ~17!

in which

O45~2a!4(
y

(
AB

w̄A~y!F(
m

~gm ^ I !ABDm
L1mdABGwB~y!

~18!

and

O55~2a!4(
y

(
AB

w̄A~y!F2(
m

~g5^ j5m!ABDm
L

1(
mn

~gm ^ I !ABAn

1

2a2
@Unm~y!2Unm

† ~y!#GwB~y!,

~19!

where the lattice gauge-covariant derivatives are defined as

Dm
LxA~y!5

1

4a
@Um~y1A!Um~y1A1m!xA~y12m!

2Um
† ~y1A2m!Um

† ~y1A22m!xA~y22m!#,

~20!
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Dm
LxA~y!5

1

4a2
@Um~y1A!Um~y1A1m!xA~y12m!

1Um
† ~y1A2m!Um

† ~y1A22m!xA~y22m!

22xA~y!#, ~21!

andUnm is the usual closed-loop path-ordered link product
on a plaquette which lies on the (n,m) plane.

From Eq. ~17!, we see that, in addition to the naive
dimension-four termO4, the staggered fermion action also
contains an explicit dimension-five termO5 and other higher
dimension terms. At first sight, the staggered fermions would
appear to haveO(a) corrections to the continuum QCD. For
example, it is obvious that the fermion propagator for the
hypercubic fieldsw and w̄ deviates from the continuum
propagator by terms of ordera. However, we notice that the
dimension-five termO5 in Eq. ~17! can be transformed away
if we introduce the following improved field variables:

xA
I ~y!5S 12a(

n
AnDn

LDxA~y!, ~22a!

x̄ A
I ~y!5x̄A~y!S 12a(

n
AnDQ n

LD , ~22b!

and replacex, x̄ in Eq. ~15! by x I and x̄ I . In terms of the
improved fermion fields, the staggered fermion action can be
written as

SF5~2a!4(
y

(
AB

w̄ A
I ~y!F(

m
~gm ^ I !ABDm

L1mdABG
3wB

I ~y!1a2O681•••. ~23!

Using the new fermion fields, we can construct improved
fermion operators. For example, the improved fermion bilin-
ears have the form

x̄A
I ~y!~gS^ jF!ABxB

I ~y!5x̄A~y!~gS^ jF!ABxB~y!2
a

2(n
]n
L$x̄A~y!@~gS^ jF!AB2~g5nS^ j5nF!AB#xB~y!%

2
a

2(n
x̄A~y!@~g5nS^ j5nF!AB2~gS5n ^ jF5n!AB#Dn

LxB~y!1O~a2!. ~24!

How good is this improvement? We claim that the improved
fermion fields defined in Eq.~22! are accurate through order
a and get no correction from any order of perturbation
theory. To see if this is true, we notice that in Eq.~17!, none
of the termsO4 ,O5 ,O6 , . . . are separately invariant under
the staggered fermion lattice symmetry group. Only their
combination in the form given by Eq.~17! is invariant. We
will prove in the next section that there exists no extra
dimension-five operator which is invariant under the lattice
symmetry group. Hence, to any order in perturbation theory,
there is no extra dimension-five terms that can be added to
the staggered fermion action when carrying out the Syman-
zik improvement program, and hence the relative coefficients
between theO4 term and theO5 term in Eq.~17! will not
change. Therefore, to any order of perturbation, the im-
proved fields have the same form as Eq.~22!. Thus, the
coefficient in front of the ordera term in Eq.~22! is exact to
all orders ofg0, receiving no renormalization. Furthermore,
any matrix elements which consist of only our improved
fermion fields and contain no composite operators will be
accurate through ordera under the condition that the gauge
fixing does not introduce an extra ordera term. This argu-
ment has been checked by examining the quark propagator
computed to orderg0

2 in the paper of Golterman and Smit@5#
where they obtained the form required by the symmetry ar-
gument used here. For the composite operators, one should
use our improved fermion fields to construct them and they
are accurate through ordera at tree level. To remove
O(g0

2na) corrections from the composite operators will re-

quire further, explicit improvement. The general program is
as follows. First, using our improved fermion fields to con-
struct the composite operatorO(d)(x̄ I ,x I) which has no ex-
plicit order a term @e.g., for the continuum operator
c̄gS^ jFc(y), the correct lattice operator is
x̄ I(y)(gS^ jF)x

I(y), but not x̄ I(y)(gS^ jF)x
I(y1am)#.

Second, find all one-dimensional higher operators
Oi
(d11)(x̄ I ,x I) which are constructed from our improved

fermion fields and have the same symmetry properties as the
considered composite operatorO(d)(x̄ I ,x I). Then their linear
combination

O~d!5O~d!~ x̄ I ,x I !1a(
i
ci~g0

2!Oi
~d11!~ x̄ I ,x I !1O~a2!

will be accurate toO(a2), where the coefficientsci(g0
2) can

be computed perturbatively.
There is an analog between the improvements here and

those originally introduced for Wilson fermions. In the case
of Wilson fermions, there are two dimension-five operators
which are invariant under the lattice symmetry group: one is
the Wilson term; another is the SW term. A linear combina-
tion of the Wilson term and the SW term is redundant be-
cause it can be generated from the naive ordera0 action
~which is dimension-four! by an ‘‘order a’’ redefinition of
the fermion fields. Such transformed fermion fields have the
same lattice symmetry transformations as the old ones,
which means they are in the same representation. Thus, it is
easy to write down an improved Wilson action accurate
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through ordera in tree level. One simply uses a combination
of the naive fermion action and the redundant term men-
tioned above—the transformation to an improved fermion
field simply transforms away the redundantO(a) term @2,3#.
In order to remove allO(g0

2na) errors, the coefficient in front
of the SW term in this action and the coefficients in the
definition of the new fermion fields are replaced by coeffi-
cients which are appropriate series ing0

2. In the case of stag-
gered fermions considered here, as we will prove in the next
section, the fermion action is unique through ordera in that
there is no extra dimension-five operator which can be added
to the original action. However, using the standard hypercu-
bic formalism, there is a term of ordera ~which is not in-
variant under the lattice symmetry group! in this unique ac-
tion, as Eq.~17! shows. If we allow a transformation of the
hypercubic fermion fields which changes their transforma-
tion properties under the lattice symmetry group~i.e.,
changes their representation, but does not change the lattice
symmetry group itself!, then this extra ordera term becomes
redundant and can be transformed away. So, the staggered
fermion action is similar to the improved Wilson action in
that both actions are unique~no extra ordera term can be
added! and differ from the continuum byO(a2) in terms of
the appropriate improved fermion fields. However, these im-
proved fermion fields are different. The improved staggered
fermion fields will change the transformation properties of
the lattice symmetry group, but the improved Wilson ferm-
ion fields will not. Furthermore, there is another big differ-

ence: the coefficient of the ordera term in Eq.~22! is accu-
rate to all order ofg0, but the improvements in the Wilson
fermions have to use more general coefficients which may be
computed order by order in perturbation theory.

III. IMPROVING THE STAGGERED FERMION ACTION

In contrast to the calculation of matrix elements, the ac-
tion is already accurate through ordera to all orders ing0

2, as
we will now discuss. Thus physical quantities that depend
only on the form of the action~for example, particle masses
determined from correlation functions! will have no correc-
tions of orderg0

2na. This can be demonstrated by recognizing
that if there were a correction of orderg0

2a, we must neces-
sarily be able to add some dimension-five operators
a( icig0

2Oi
(5) which must be invariant under the lattice sym-

metry transformations to cancel this orderg0
2a correction

@1,8,9#. However, we will now prove that there exists no
dimension-five operator which is invariant under the lattice
symmetry group @rotations, axis reversal, translations,
U(1)^U(1), charge conjugation#, and therefore, no order
a term can be added to the staggered fermion action. This
discussion, included here for completeness, is intended to
clarify some aspects of Sharpe’s original published argument
@8#.

Following standard notation, we rewrite the staggered
fermion action as

SF5~2a!4(
y,y8

(
A,B

x̄A~y!aF(
m

~gm ^ I !ABDm~y,y8!BC1md~y2y8!dACGxC~y8!bU~y1A,y81C!ab, ~25!

where

Dm~y,y8!AB5D̄m~y,y8!dAB1aD̄m~y,y8!~gm5^ jm5!AB , ~26!

in which

D̄m~y,y8!5
1

4a
@d~y12m2y8!2d~y22m2y8!#, ~27!

D̄m~y,y8!5
1

4a2
@d~y12m2y8!1d~y22m2y8!22d~y2y8!#. ~28!

For convenience, we will not write out the SU(3) links explicitly in the remainder of this section unless there would otherwise
be confusion. Given an operator, the reader can write out the full form very easily. For example, starting with the operator
(mx̄g5^ j5mDm

2x we would construct the corresponding gauge-invariant operator by the substitution

(
y8,y9

(
m

x̄A~y!~g5^ j5m!ABDm~y,y8!BCDm~y8y9!CDxD~y9!

→ (
y8,y9

(
m

x̄A~y!~g5^ j5m!ABU~y1A,y1B!Dm~y,y8!BCU~y81B,y91C!Dm~y8,y9!CDU~y81C,y91D !xD~y9!

~29!
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whereU(y1A,y1B) is the average of the products of link
matrices corresponding to each of the shortest paths from
point y1A to y1B.

Using the transformation properties of the staggered ferm-
ion action~see the Appendix in detail!, we try to construct all
symmetrical dimension-five operators which have the gen-
eral form x̄gS^ jF f (D)x where f is a homogeneous real
polynomial of degree 2.

Invariance underUA(1) requires thatS1F is odd, so
only the following combinations ofS^F are valid:

~ I ,g5 ,gmn ,g5mn! ^ ~jl ,j5l!, ~30!

~gm ,g5m! ^ ~ I ,j5 ,jlt ,j5lt!. ~31!

Under reflection with respect to a hyperplane normal to
the r direction, we have the transformation

x→Irx, ~32a!

x̄→x̄I r
21 , ~32b!

and

D̄m→~122dmr!IrD̄mI r
21 , ~33a!

D̄m→IrD̄mI r
21 , ~33b!

Dm→~122dmr!IrDmI r
21 . ~33c!

Using the transformation formulas ofgS^ jF listed in Eq.
~A7! of the Appendix, we deduce that axis reversal invari-
ance and UA(1) invariance allow only the four terms

g5^ jmDm
2 , ~34!

g5^ j5mDm
2 , ~35!

g5@gm ,gn# ^ j5~jm1jn!@Dm ,Dn#, ~36!

g5@gm ,gn# ^ j5~jm2jn!$Dm ,Dn% ~37!

whereDm ,Dn can be replaced byD̄m ,D̄n without affecting
these operators up to ordera2.

Under a rotation around the center of a hypercube, we
have

x→R~rs!x, ~38a!

x̄→x̄R~rs!21, ~38b!

D̄m→R~rs!RmnD̄nR~rs!21, ~39a!

D̄m→R~rs!uRmnuD̄nR~rs!21, ~39b!

Dm→R~rs!RmnDnR~rs!21. ~39c!

Combining the transformation properties listed in Eq.
~A12! of the Appendix, the rotational invariance will further
eliminate the term in Eq.~34! but allows the remaining three
terms Eqs.~35!–~37!.

Finally, let us discuss invariances under translation by one
lattice unit:

x→S~r!x, ~40a!

x̄→x̄S~r!21, ~40b!

D̄m→S~r!D̄mS~r!21, ~41a!

D̄m→S~r!D̄mS~r!21, ~41b!

Dm→S~r!Lgm ^ I
~r!21DmS~r!21, ~41c!

where

LS^F
~r! ~y,y8!AB5«~F !$~21!FrdABd~y2y8!1a@~21!Fr2~21!Sr#3@adABD̄r~y,y8!1~g5r ^ j5r!ABD̄r~y,y8!#%,

~42a!

LS^F
~r!21~y,y8!AB5«~F !$~21!FrdABd~y2y8!1a@~21!Fr2~21!Sr#3@adABD̄r~y,y8!2~g5r ^ j5r!ABD̄r~y,y8!#%,

~42b!

and

S~r!21gS^ jFS~r!5gS^ jFLS^F
~r! . ~43!

From these properties, we can see that none of the terms
listed in Eqs.~35!–~37! are invariant under lattice transla-
tion. So, we conclude that there is no dimension-five fermion
operator which is invariant under the lattice symmetry group,
and therefore no dimension-five operator can be added to the
staggered fermion action.

IV. APPLICATIONS

As we argued above, actual numerical simulation should
use the improved fermion field variables. However, in most
situations, we can use the improvement program proposed in
this paper to remove theO(a) corrections at tree level with-
out increasing the computational work. Here, we apply this
program to the calculation of the matrix element
^0us̄g54duK0& which givesf K in the continuum, and the cal-
culation ofBK . We will show that the former differs from its
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continuum counterpart byO(mKa), but BK has noO(a)
corrections. We also apply the improvement program to the
matrix elements of lattice currents.

A. The matrix element Š0zs̄g54dzK0
‹

The axial current used in numerical simulations is

Am~y!5(
AB

x̄A~g5m ^ j5!ABUm~y1A!xB~y!. ~44!

From the continuum expression

P~ t !cont5K 0U(
xW
A4~xW ,t !

contUK0L 5A2 f KmKe
2mKutu,

~45!

we define, on the lattice,

P~ t !5K 0U(
xW
A4~xW ,t !UK0L , ~46!

and put the wall source that creates theK0 on the time slice
at t50. Then we will have

P~ t !5H A2 f K1mKe
2mKutu ~ t.0!,

A2 f K2mKe
2mKutu ~ t,0!,

~47!

where

f K
65 f K6O~mKa!. ~48!

If we do not considerO(g0
2a) terms, we can take only the

term

2
a

2(n
]n
L@ x̄A~g54^ j5!ABxB#

in Eq. ~24! because other terms contribute zero ‘‘flavor’’
trace at the tree level. So, we have

P~ t ! imp5P~ t !2
a

2
]4
LP~ t !

5H A2 f K1, impmKe
2mKutu ~ t.0!,

A2 f K2, impmKe
2mKutu ~ t,0!,

~49!

and

f K
1, imp5S 11

1

2
mKaD f K11O~g0

2a!, ~50a!

f K
2, imp5S 12

1

2
mKaD f K21O~g0

2a!, ~50b!

f K
6, imp5 f K6O~g0

2a!. ~51!

So, we get

f K
65S 17

1

2
mKaD f K1O~g0

2a!. ~52!

The numerical data~from the full QCD simulation on a
163340 lattice with the cubic wall source, at the quark mass
msa5mda50.01, see@10#! for the unimproved and im-
proved matrix elements are shown in Fig. 1, from which
we see that (f K

22 f K
1)/ f K'mKa;25% and (f K

2, imp

2 f K
1, imp)/ f K;5% is much smaller.
From this simple example, we can see that if we do not

consider O(g2a) corrections, the improved operator is
equivalent to the extrapolation:

P~ t !5A2 f KimpmKe
2mKut11/2u. ~53!

B. The weak matrix elementBK

The formula for calculatingBK is

BK5
MK

~8/3!MK
V , ~54!

where

MK5^K0us̄gm~11g5!ds̄gm~11g5!duK0&, ~55!

MK
V5^K0us̄g4g5du0&^0us̄g4g5duK0&. ~56!

The improved numerator is@omitting theO(g0
2a) terms#

MK
imp5MK2

a

2
]4
LMK1O~g0

2a!. ~57!

SinceMK(t) is computed from a plateau~i.e., time indepen-
dent! within the statistical error, there is noO(a) corrections
to the numerator.

Note that the denominatorMK
V will have noO(a) correc-

tions even if our naive definition off K
6 is used since the

ordera errors will cancel in the product:

FIG. 1. The value of lnP(t) with respect to the timeutu. Where
mda5msa50.01. Calculated with the cubic wall source method.
The unimproved data correspond to lnP(t), the improved data cor-
respond to lnP(t)imp. Here we use an axial current similar to Eq.
~44!, but work in Landau gauge and replace the link variable by
1. The error bars are about the symbol size and not included in the
figure.
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f K
1 f K

25 f K
21O~g0

2a!. ~58!

Hence, we showed that there is neitherO(a) nor
O(ag0

2nlogna) corrections toBK . Sharpe@8# has examined
this question in greater detail and argued that in fact there are
no corrections ofO(g0

2na) also. However, if we calculated
the denominator only in one time direction and took the
square off K

1 ~or f K
2), there would be an error of order of

O(mKa).

C. Renormalization of lattice currents

The lattice currents can be written as

Jlatt
F 5x̄gJ^ jFx, ~59!

and according to@11#, their renormalized continuum forms
can be written as

Jcont
F 5ZJkJ

FJlatt
F , ~60!

whereZJ is the usual~divergent! renormalization constant
andkJ

F is a finite lattice renormalization constant. Using the
method developed in this paper, we can explicitly determine
the improved currents accurate toO(a2) at the tree level. For
example, the conserved vector current and axial vector cur-
rent corresponding to the UV(1)^UA(1) lattice symmetry
can be written as

Vm
I ~y!5Vm~y!2

a

2(n
]n@x̄A~gm ^ I !ABxB#

2
a

2
]m@x̄A~gm ^ I !ABxB#

2
a

4(n
]n@x̄A~g5[m,n] ^ j5n!ABxB#1O~g0

2a!,

~61!

Am
j5 ,I~y!5Am

j5~y!2
a

2(n
]n@x̄A~gm5^ j5!ABxB#

2
a

2
]m@x̄A~gm5^ j5!ABxB#

1
a

4(n
]n@x̄A~g [m,n] ^ jn!ABxB#1O~g0

2a!.

~62!

The effect of the second term on the right-hand side is to
shift the positiony, labeling the current, from the corner to
the center of the hypercube. The third term whose effect is to
shift in them ’s direction occurs here because the currents are
nonlocal operators which involve an overlap between two
nearest hypercubes. The forth term is a mixing of a different
spin-flavor operator and is necessary to remove all ordera
effects from a general matrix element. As we discussed in
Sec. II, to remove allO(a) corrections, we have to find out
all dimension-four operators which have the same symmetry
properties as these currents. This work is in preparation.

V. SUMMARY

In this paper, based on the demonstration that there is no
dimension-five fermion operator which is invariant under all
lattice symmetry transformations and that there exists a set of
improved fermion fields with respect to which the staggered
fermion action has no ordera terms, we concluded that the
staggered fermion action is already in fact improved to
O(a2). We argued that to remove ordera corrections from
the matrix elements, one has to use the proposed improved
fermion field variables to construct fermion operators. We
applied our program to the matrix element^0us̄g54duK0& and
found that the unimproved one differs from the continuum
by a factor ofO(mKa). At the same time, we showed that
there is noO(a) corrections toBK , which is consistent with
the result of Sharpe@8#. We also discussed the matrix ele-
ments of the lattice currents, and obtained the explicit terms
which should be added to the original current operators to
define improved operators accurate throughO(a) at tree
level. To improve them through ordera to all order ing0, we
have to find out all dimension-four operators which are con-
structed from our improved fermion fields and have the same
symmetry properties as the original current operators.
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APPENDIX: SYMMETRY PROPERTIES
OF STAGGERED FERMION

For completeness, we collect some formulas connected
with the transformation properties of the staggered fermion
under the lattice symmetry group from@12#.

1. The axial symmetry U„1…A

xA~y!→eia«~A!xA~y!, ~A1a!

x̄A~y!→eia«~A!x̄A~y!, ~A1b!

where

«~A!5~21!(mAm. ~A2!

2. Reflection with respect to a hyperplane

I H
r :

xr852xr11,

xm8 5xm , mÞr.
~A3!

The transformation of the fermion fields are

xA~y!→(
B

(
y8
Ir~y,y8!ABxB~y8!, ~A4a!
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x̄A~y!→(
B

(
y8

x̄B~y8!I r
21~y8,y!BA , ~A4b!

where

Ir~y,y8!AB5~gr5^ j5!ABd~ I ry2y8!, ~A5a!

I r
21~y,y8!AB5~g5r ^ j5!ABd~ I ry2y8!, ~A5b!

and

~ I ry!m5H ym ~mÞr!,

2yr ~m5r!.
~A6!

The spin-flavor matrices transform as

~gS^ jF!→~gr5^ j5!•~gS^ jF!•~g5r ^ j5!. ~A7!

3. Rotations byp/2 around the center of a hyperplane

RH
~rs! :

xr85xs ,

xs852xr11,

xm8 5xm ~mÞr,s!.
~A8!

DefineRmn such that

~Ry!m5Rmnyn5H ys ~m5r!,

2yr ~m5s!,

ym ~mÞr,s!.

~A9!

Then, we have the transformation

xA~y!→(
B

(
y8
R~rs!~y,y8!ABxB~y8!, ~A10a!

x̄A~y!→(
B

(
y8

x̄B~y8!R~rs!~y,y8!AB
21 , ~A10b!

where

R~rs!~y,y8!AB5
1

2
@~12grs! ^ ~js2jr!#ABd~R21y2y8!,

~A11a!

R~rs!~y,y8!AB
215

1

2
@~11grs! ^ ~js2jr!#ABd~Ry2y8!.

~A11b!

The spin-flavor matrices transform as

~gS^ jF!→
1

2
@~12grs! ^ ~js2jr!#•~gS^ jF!•

1

2
@~11grs! ^ ~js2jr!#. ~A12!

4. Translations by one lattice unit

Tr :
xr85xr11,

xm8 5xm ~mÞr!
~A13!

lead to the following transformation on thexA , x̄A’s:

xA~y!→(
B

(
y8
S~r!~y,y8!ABxB~y8!, ~A14a!

x̄A~y!→(
B

(
y8

x̄B~y8!S~r!~y,y8!AB
21 , ~A14b!

where

S~r!~y,y8!AB5
1

2
@~ I ^ jr2gr5^ j5!ABd~y2y8!

1~ I ^ jr1gr5^ j5!ABd~y12r2y8!#,

~A15a!

S~r!~y,y8!AB
215

1

2
@~ I ^ jr2gr5^ j5!ABd~y22r2y8!

1~ I ^ jr1gr5^ j5!ABd~y2y8!#.
~A15b!
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